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THÈSE
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Resumé :

Dans cette thèse, on s’intéresse a la résolution du problème d’optimisation convexe avec

contraintes linéaire. En première partie, on présente une méthode barrière logarithmique

avec poids suivie de l’étude de la convergence, l’efficacité de la méthode proposée est

confirmée par des tests numériques qui sont encouragée. En deuxième partie on propose

une méthode primale duale pour la résolution d’un programme quadratique convexe, la

technique des fonctions majorantes est utilisée pour le calcul du pas de déplacement, ce

travail est enrichi par des simulations numériques importantes.

Mots clés : Programmation convexe avec contraintes linéaire; Programmation

quadratique; Méthodes de points intérieurs; Fonctions majorantes.

Abstract:

In this thesis, we are interested solving the linearly constrained convex optimization

problem. In the first part, we present a weighted logarithmic barrier method followed by a

study of convergence, the efficiency of the proposed method is shown by presenting

numerical experiments. In the second part, we propose a primal-dual method to solving

convex quadratic programming, the technique of majorant function is used to compute the

step size, this work is enriched by important numerical simulations.

Keywords: Linearly constrained convex programming; Quadratic programming;

A primal-dual interior-point method; Logarithmic barrier methods; A Majorant

functions.
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Title: Logarithmic Barrier Interior-Point Method for Linearly Constrained Con-

vex Programming

Abstract:

This thesis develops two interior-point algorithms, a weighted logarithmic barrier algo-

rithm and a primal-dual logarithmic barrier algorithm, for solving more general groups of

convex optimization problems: quadratic and linearly constrained programs.

In chapter 1: we provide an introduction to convexity, necessary notions in convex op-

timization, duality and we present Newton’s method with a variant of the interior-point

method for convex programming.

In chapter 2: a weighted logarithmic barrier interior-point method for solving the linearly

convex constrained optimization problems is presented. Unlike the classical central path,

the barrier parameter associated with the perturbed barrier problem is not a scalar but is

a weighted positive vector. This modification gives theoretical flexibility to its convergence

and its numerical performance. In addition, this method is of a Newton descent direction

and the computation of the step size along this direction is based on a new efficient technique

called the tangent method. The practical efficiency of our approach is shown by giving some

numerical results.

In chapter 3: we provide a new variant of primal-dual interior-point method for solving a

quadratic optimization problem with linear constraint, the method based to solve an equiv-

alent problem of KKT condition, this problem is linearly constrained convex problem. Our

proposed method uses a classical Newton descent method to compute the descent direction.

The difficulty is in the computation of the step size, it induces high computational costs.

Here, we use the majorant function which is more efficient than classical line searches. The

numerical results are reported to show the efficiency of the method.

Keywords: Linearly constrained convex programming; Quadratic programming;

A primal-dual interior-point method; Logarithmic barrier methods; Majorant

functions.
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Glossary of Notation

Problem Classes
(CP) : Convex Programmation;

(LP) : Linear Programmation;

(QP) : Quadratic Programmation;

(LCCO) : Linearly Constrained Convex Optimization;

(P) : Primal of a mathematics problem;

(D) : Dual of (P);

IPC : Interior-Point Condition;

(K.K.T) : Karush-Kuhn-Tucker.

Spaces

R : The set of real numbers;

Rn : The real n-dimensional space;

Rn
+ : The nonnegative orthant of Rn;

Rn+m : we write points in Rn+m in the form

(x, y) where x = (x1, . . . , xn)T ∈ Rnand y = (y1, . . . , ym)T ∈ Rm;

Rn×n : The set of all n× n square matrices;

Rn×m : The space of n×m real matrices.

Vectors

Vectors are denoted by : x and y;

x ∈ Rn : n− dimensional real vector ( is a column vector of Rn);

x ≥ 0 : means x ∈ Rn
+;

x > 0 : means the components xi > 0, for i = 1, . . . , n;

e : (1, . . . , 1)T ;

xT = (x1, . . . , xn) the transpose of a vector x;

〈x, y〉 or xTy =
n∑
i=1

xiyi the standard inner product of vectors in Rn;

log(x) = (log(x1), . . . , log(xn))T (x > 0);
x
y

= (x1
y1
, x2
y2
, . . . , xn

yn
)T (y 6= 0);
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√
x = (

√
x1, . . . ,

√
xn),T (x ≥ 0);

x−1 = ( 1
x1
, 1
x2
, . . . , 1

xn
),T (x 6= 0);

Matrices are denoted by capitals;

AT : The transpose of A;

X = diag(x) : Denote the n× n diagonal matrix whose (i, i)th entry is xi for

1 ≤ i ≤ n and is zero on all other entries.

Functions and Norms

∇f(x) = ( ∂f
∂x1

(x), . . . , ∂f
∂xn

(x))T : The gradient of a function f : Rn → R ;

∇2f(x) =

(
∂2f

∂xi∂xj
(x)

)
1≤i, j≤n

: The Hessian matrix of f : Rn → R ;

‖x‖ =
√
〈x, x〉 Euclidean norm;

‖x‖1 =
∑n

i=1 |xi| Lebesgue norm.



Introduction

An optimization problem consists of maximizing or minimizing a real function by system-

atically choosing input values from within an allowed set and computing the value of the

function. More generally, optimization includes finding ”best available” values of some ob-

jective function given a defined domain. Optimization or mathematical programming is an

important tool in decision science, where optimization problems arise in all quantitative dis-

ciplines, from computer science and engineering to operational research and economics, in

the words of Leonhard Euler,{ ...Nothing whatsoever takes place in the universe in which

some relation of maximum or minimum does not appear}.
Linearly constrained convex optimization problems are classified among the nicest class of

optimization problems, where one seeks to minimize a convex function over a linear space.

The existence and uniqueness of solutions and on optimality conditions are available as soon

as the problem is known to be convex. This problem has many important applications in

theory as well as in practice. In particular, it includes linear and quadratic optimization.

Feasible logarithmic barrier interior-point methods gained much more attention than oth-

ers. Their derived algorithms enjoy some interesting results such as polynomial complexity

and numerical efficiency. However, these algorithms require that the starting point must be

strictly feasible and close to the central-path. This is a hard practical task to release and

even impossible. On the other hand, at each iteration, they compute a descent direction and

determine a step size in this direction. It is known that computing the latter is very expen-

12
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sive while using classical line search methods. In order to overcome these two difficulties,

we suggest for the first, a weighted-path (see [1],[2],[3],[4],[17],[22],[23]) where a relaxation

parameter associated with perturbed problems is introduced in order to give more flexibility

on the numerical aspects. Besides, we propose a new numerical efficient procedure called the

tangent method for the computation of the step size. The numerical tests show the efficiency

of our approach compared to the classical logarithmic barrier method.

Quadratic programming is knowledging significant progress, thanks to its various applica-

tions, we cite: agriculture, economics, production, operations, finance (problem of portfolio

selection). In the last decade, many primal-dual interior-point methods for linear program-

ming (LP) have been extended successfully to quadratic programming and (LCCO) prob-

lems. In this thesis, we propose a primal-dual logarithmic barrier interior-point method for

quadratic programming (QP) based on solving an equivalent problem of KKT optimality

conditions. At each iteration, the Newton method and the technique of majorant function

are used to compute the descent direction and the step size. The technique of majorant

functions solves an equation of a single variable unlike the procedure of classical line-search.

The numerical result proved that the method proposed is suitable for (QP).

Structure of thesis

The structure of the thesis is as follows. It consists of three chapters.

Chapter 1. is devoted to convex optimization problems. In the beginning, we introduce the

terminology and the notions of convexity for sets and functions and duality. Next, we present

a different classes of convex optimization problems. Then we present Newton’s method and

a variant of interior-point method for linearly constrained convex programming.

Chapter 2. this chapter is organized as follows.

Firstly, perturbed relaxation problems based on the weighted barrier penalization are given

where the convergence to the original problem is studied. The computation of the direction

and of the step size is stated and a weighted-path interior-point algorithm is presented. Next,

some numerical results are given to show the efficiency of our approach. Finally, a conclusion

and remarks end the chapter.

Chapter 3. in this chapter, a primal-dual logarithmic barrier method is proposed for solv-

ing a convex quadratic optimization problems. The basic idea of this method is to solve

an equivalent problem of KKT optimality conditions, this problem is a linearly constrained

convex problem. The algorithm uses the Newton method to compute the descent direction
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and an efficient alternative to determine the step size called the majorant function. Numer-

ical results are reported to show the efficiency of the algorithm.

Finally, we end the thesis with a conclusion and we provide the reader with an important

bibliography that should facilitate the reading of the subject.



Chapter 1

Convex Optimization

Contents

1.1 Convex Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.1.1 Convex sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.1.2 Convex functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.2 Convex Optimization Problems . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.2.1 The statement of the problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.2.2 Existence and uniqueness of optimal solutions . . . . . . . . . . . . . . . . . . 20

1.2.3 Optimality conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.2.4 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.3 Newton’s Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.4 Convex Optimization with Linear Constraints (LCCO) . . . . . . . . . . 23

1.4.1 The Primal problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.4.2 The Dual problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.4.3 Weak duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.4.4 Strong duality via slater’s condition . . . . . . . . . . . . . . . . . . . . . . . . 24

1.5 Solving (LCCO) Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.5.1 Interior-point methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.5.2 Logarithmic barrier interior-point method for (LCCO) problems . . . . . . . . 25

15



16

In this chapter we consider convex optimization problems. We start with the basic concept

of convexity for sets and functions, then, we present different classes of convex optimization

problems and we discuss the theoretical aspects of these problems. Finally, we provide

Newton’s method and we present linearly constrained convex problem with a variant of

Interior-Point-Method.

1.1 Convex Analysis

1.1.1 Convex sets

Definition 1.1.1. A set C in Rn is called convex if

∀x, y ∈ C and λ ∈ [0, 1] : λx+ (1− λ)y ∈ C.

Definition 1.1.2. A set C in Rn is called affine if

∀x, y ∈ C and λ ∈ R : λx+ (1− λ)y ∈ C.

Definition 1.1.3. The set K in Rn is a convex cone if K is convex set and ∀x ∈ K,
∀λ ≥ 0, λx ∈ K.

Definition 1.1.4. Let C is a nonempty convex set, we say that d is a direction of recession

of C if x+ αd ∈ C for all x ∈ C and α ≥ 0.

Thus, d is a direction of recession of C if starting at any x ∈ C and going indefinitely

along d, we never cross the relative boundary of C to points outside C.

The set of all directions of recession is a cone containing the origin. It is called the recession

cone of C and it is denoted by C∞. An important property of a closed convex set is that test

whether d ∈ C∞ it is enough to verify the property x+ αd ∈ C for a single x ∈ C.

Proposition 1.1.5. Recession cone Let C be a nonempty closed convex set.

1. The recession cone C∞ is closed and convex.

2. A vector d belongs to C∞ if and only if there exist a vector x ∈ C such that x+αd ∈ C
for all α ≥ 0.

Proposition 1.1.6. Let C is a closed and nonempty convex set, so C is bounded if and only if C∞ =

{0}.
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1.1.2 Convex functions

Definition 1.1.7. A function f : Rn → R is called convex if its domain is a convex set and

for all x, y in its domain, and ∀λ ∈ [0, 1], we have

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y).

Definition 1.1.8. A function f : Rn → R is

• Strictly convex if ∀x, y ∈ Rn, x 6= y and λ ∈]0, 1[

f(λx+ (1− λ)y) < λf(x) + (1− λ)f(y).

• Strongly convex if ∀x, y ∈ Rn and λ ∈]0, 1[, ∃τ > 0 such that

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)− τ

2
‖ x− y ‖2 .

Remark 1.1.9. f is strongly convex ⇒ f is strictly convex ⇒ f is convex.

Theorem 1.1.10. [26] Suppose f : D⊆ Rn → R is twice differentiable over an open domain

D. Then, the following are equivalent:

1. f is convex,

2. f(y) ≥ f(x) +∇f(x)T (y − x), for all x, y ∈ D,

3. ∇2f(x) � 0, for all x, y ∈ D.

Definition 1.1.11. A function f : Rn →]−∞,+∞[ is said to be lower semi-continuous at

x̄ if for any sequence {xk} in Rn with xk → x̄

f(x̄) ≤ lim
k→+∞

f(xk).

Definition 1.1.12. A convex function f is proper if its effective domain is nonempty and it

never attains −∞.

Definition 1.1.13. A full rank matrix is one which has linearly independent rows.
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Description of a system of equations. Suppose that we have p equations depending

on p+ 1 variables (parameters) written in implicit form as follows

ψ1(x1, x2, . . . , xp, y) = 0,

ψ2(x1, x2, . . . , xp, y) = 0,
...

ψp(x1, x2, . . . , xp, y) = 0.

(1.1)

The Jacobian matrix of the system in (1.1) is defined as p × p matrix of first partials as

follows 
∂ψ1

∂x1

∂ψ1

∂x2
. . . ∂ψ1

∂xp
∂ψ2

∂x1

∂ψ2

∂x2
. . . ∂ψ2

∂xp
...

...
...

...
∂ψp

∂x1

∂ψp

∂x2
. . . ∂ψp

∂xp


This matrix will be of rank p if its determinant is not zero.

Theorem 1.1.14. Implicit Function Theorem[34] Suppose that ψi are real-valued func-

tions defined on a domain D and continuously differentiable on an open set D1 ⊂ D ⊂ Rp+1,

where p > 0 , where

ψ1(x
0
1, x

0
2, . . . , x

0
p, y) = 0,

ψ2(x
0
1, x

0
2, . . . , x

0
p, y) = 0,

...

ψm(x01, x
0
2, . . . , x

0
p, y) = 0,

(1.2)

where (x0, y0) ∈ D1. We often write equation (1.2) as follows

ψi(x
0, y0) = 0, i = 1, 2, . . . ,m, and (x0, y0) ∈ D1.

Assume the Jacobian matrix
[
∂ψi(x

0,y0)
∂xj

]
has rank p. Then there exists a neighborhood Nδ(x

0, y0) ⊂
D1, an open set D2 ⊂ R containing y0 and real valued functions ζk, k = 1, 2, . . . , p continu-
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ously differentiable on D2, such that the following conditions are satisfied:

x01 = ζ1(y
0),

x02 = ζ2(y
0),

...

x0p = ζp(y
0)

(1.3)

For every y ∈ D2, we have

ψi(ζ(y), y) = 0, i = 1, 2, . . . , p.

We also have that for all (x, y) ∈ Nδ(x
0, y0) , the Jacobian matrix

[
∂ψi(x

0,y0)
∂xj

]
has rank p.

Furthermore for y ∈ D2, the partial derivatives of ζ(y) are the solutions of the set of linear

equations ∑p
k=1

∂ψ1(ζ(y),y)
∂xk

∂ζk(y)
∂y

= −∂ψ1(ζ(y),y)
∂y

,∑p
k=1

∂ψ2(ζ(y),y)
∂xk

∂ζk(y)
∂y

= −∂ψ2(ζ(y),y)
∂y

,
...∑p

k=1
∂ψp(ζ(y),y)

∂xk

∂ζk(y)
∂y

= −∂ψp(ζ(y),y)

∂y
,

or perhaps most usefully as the following matrix equation
∂ψ1

∂x1

∂ψ1

∂x2
. . . ∂ψ1

∂xp
∂ψ2

∂x1

∂ψ2

∂x2
. . . ∂ψ2

∂xp
...

...
...

...
∂ψp

∂x1

∂ψp

∂x2
. . . ∂ψm

∂xp




∂ζ1(y)
∂y

∂ζ2(y)
∂y
...

∂ζp(y)

∂y

 =


−∂ψ1(ζ(y),y)

∂y
−∂ψ2(ζ(y),y)

∂y
...

−∂ψp(ζ(y),y)

∂y

 .

1.2 Convex Optimization Problems

1.2.1 The statement of the problem

A convex programming problem is often written as

min
x
f(x) subject to x ∈ C, (CP )

where C = {x ∈ Rn : hj(x) ≤ 0, j = 1, . . . , k, gi(x) = 0, i = 1, . . . ,m} is a convex set and f

is a convex function on Rn to R . The function f is known as the objective function and the
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vector x is called the decision variable, while C is often termed the set of feasible solutions.

In an optimization problem, the types of mathematical relationships between the objective

function and constraints and the decision variables determine how hard it is to solve and

the solution methods or algorithms that can be used for optimization. The classification of

(CP) is based on the fundamental properties of function f and the set of feasible solutions

C, namely convexity and differentiability.

Among the most studied special cases we note:

1. Unconstrained convex optimization:

f convex, C = Rn (noconstraints)

2. Linear programming:

( f linear, C affine set).

3. Quadratic programming:

(f quadratic, C affine set ).

4. Linearly Constrained Convex Problems

(f convex, C affine set ).

5. Convex programming

(f convex, C convex set).

Note that cases 2, 3, and 4 are successive generalizations. In fact linear programming is a

special case of every other problem type except for case 1.

1.2.2 Existence and uniqueness of optimal solutions

We are interested in identifying points in C at which the function f attains a (local or global)

minimum.

• Local minimum: Let f : C→ R , a point x∗ ∈ C is local minimum of f if f(x∗) ≤ f(x)

for all x in the neighborhood of x∗ i.e. exists an open ball around x∗, Bε(x
∗) such that

f(x∗) ≤ f(x) ∀x ∈ Bε(x
∗).
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• Global minimum: A point x∗ ∈ C is a global minimum to (CP) if f(x∗) ≤ f(x) for

all x ∈ C.

Local and global maximum can be defined similarly by just reverting the inequalities.

Proposition 1.2.1. Suppose that C is a convex set, f : C→ R is a convex function, and x∗

is a local minimum of (CP ). Then x∗ is a global minimum of f over C.

Existence of a solution:

Theorem 1.2.2. Weierstrass Theorem[19]

Let Ω be a compact subset of Rn and f : Ω → R be continuous on Ω. Then there exists at

least x∗ ∈ Ω such that f(x∗) ≤ f(x) for all x ∈ Ω.

Uniqueness of a solution:

Theorem 1.2.3. [19] Suppose C is a nonempty and convex subset of Rn, suppose f est

strictly convex function on C. Then (CP) admits an optimum solution at most.

1.2.3 Optimality conditions

The constraint qualification

Definition 1.2.4. Let x̄ be feasible for (CP) and put I(x̄) := {i | hi(x̄) = 0}. We say that

the linear independence constraint qualification holds at x̄ if the gradients

∇gi(x̄) (i = 1, . . . ,m), ∇hj(x̄) (j ∈ I(x̄)),

are linearly independent.

Theorem 1.2.5. (Karush-Kuhn-Tucker (K.K.T))[?] If x∗ is a solution of (CP), if the

gradients of f, g and h are finite at x∗, and if a constraint qualification is satisfied, then there

exists an y∗ ∈ Rm and z∗ ∈ Rk such that:

∇f(x∗) +
∑m

i=1 y
∗
i∇gi(x∗) +

∑k
j=1 z

∗
j∇hj(x∗) = 0,

z∗jhj(x
∗) = 0 j = 1, . . . , k,

z∗j ≥ 0 j = 1 ∈ I(x̄).
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1.2.4 Convergence

Rate of convergence:

If a sequence {x1, x2, ..., xn} converges to a value x̃ and if there exist real numbers ν > 0 and

p ≥ 1 such that

lim
n→∞

|xn+1 − x̃|
|xn − x̃|p

= ν,

then we say that p is the rate of convergence of the sequence.

When p = 1 we say the sequence converges linearly and when p = 2 we say the sequence

converges quadratically. If 1 < p < 2 then the sequence exhibits superlinear convergence.

1.3 Newton’s Method

Our problem consists of finding a vector x∗ that will minimize a function f :{
f : Rn → R ,

x∗ = argminxf(x).

Newton’s method is a root-finding algorithm used to generate a sequence {xk} that will

converge towards x∗ (argminf(x)). The sequence is built in the following way:

xk+1 = xk + d,

Where n is the iteration, and d is a vector, same size as x, defined as follow:

d = −(∇2f(xk))
−1∇f(xk),

where ∇f(x) = ( ∂f
∂x1

(x), . . . , ∂f
∂xn

(x))T is the gradient of the function f and ∇2f(x) is the

Hessian matrix of the function f .

In order to use Newton’s method, you need to guess a first approximation to the zero of the

function and then use the above procedure.
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1.4 Convex Optimization with Linear Constraints (LCCO)

1.4.1 The Primal problem

Convex nonlinear optimization problem with linear equality constraints is a problem consist-

ing of minimizing a nonlinear function over a convex set. More explicitly, a convex nonlinear

problem is of the form

p̄ = min
x
f(x) subject to x ∈ F, (P )

where the objective function f : Rn → R is twice differentiable and convex over the feasible

set F = {x ∈ Rn : x ≥ 0, Ax = b}, A is a given (m × n) matrix with full rank row m and

b ∈ Rm. This problem has many important applications in theory as well as in practice.

In particular, it includes linear and quadratic optimization. The method that works on the

original problem directly by searching through the feasible region for the optimal solution

called the primal method.

1.4.2 The Dual problem

The dual of the problem (P ) in the Wolfe sense is:

d̄ = {max
y
bTy + f(x)− xT∇f(x)|ATy + z = ∇f(x), z ≥ 0}. (D)

We define the following feasibility sets:

Fp = {x ∈ Rn|Ax = b, x ≥ 0} ; Fd = {y ∈ Rm|ATy − z = ∇f(x), z ≥ 0},

Fop = {x ∈ Rn|Ax = b, x > 0} ; Fod = {y ∈ Rm|ATy − z = ∇f(x), z > 0}.

The method that works simultaneously with primal and dual variables called the primal-

dual method.

Throughout the thesis, we focus to convex programming with linear constraints problems

when the function f is convex and F is an affine set.
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1.4.3 Weak duality

Theorem 1.4.1. (Weak duality theorem)[19] If x and (y, z) are respectively feasible

solutions for (P) and (D) then,

p̄ ≥ d̄.

1.4.4 Strong duality via slater’s condition

We have seen how weak duality allows to form a convex optimization problem that provides

a lower bound on the original (primal) problem, even when the latter is non-convex. The

duality gap is the non-negative number p̄− d̄.

Strong duality holds for the above problem if the duality gap is zero: p̄ = d̄.

Slater’s condition

We say that the problem satisfies Slater’s condition if it is strictly feasible. We can replace the

above by a weak form of Slater’s condition, where strict feasibility is not required whenever

the set F is affine.

Theorem 1.4.2. [19] If the primal problem is convex, and satisfies the weak Slater’s condi-

tion, then strong duality holds, that is, p̄ = d̄.

Remark 1.4.3. If f is quadratic convex and the set F is affine, then the duality gap is always

zero, provided one of the primal or dual problems is feasible. In particular, strong duality

holds for any feasible linear optimization problem.

1.5 Solving (LCCO) Problems

There is in general no analytical formula for the solution of (LCCO) problems, but there are

very effective methods for solving them. Interior-point methods work very well in practice,

and in some cases can be proved to solve the problem to a specified accuracy with a number

of operations that does not exceed a polynomial of the problem dimensions like methods for

solving linear programs.



25

1.5.1 Interior-point methods

In this section we discuss interior-point methods for solving convex optimization problems

that include linear equality constraints,

min
x∈Rn

f(x) subject to {Ax = b, x ≥ 0}. (P )

Interior-point methods are a certain class of algorithms that solve linear and nonlinear convex

optimization problems. Arguably, interior-point methods were known as early as the 1960s

in the form of the barrier function methods, but the modern era of interior-point methods

dates to 1984 when Karmarkar proposed his algorithm for linear programming. In 1994

algorithms and software for linear programming have become quite sophisticated (more than

1300 published papers ). The interior-point methods can be generalized to more general

classes of problems, such as convex quadratic programming, semi-definite programming, and

nonlinear convex problems.

Interior-point methods solve the problem (P ) by applying Newton’s method to a sequence

of equality constrained problems. We will concentrate on a particular interior-point method,

the logarithmic barrier method for which we give proof of convergence.

1.5.2 Logarithmic barrier interior-point method for (LCCO) prob-

lems

Idea:

The logarithmic barrier interior-point method is a procedure for approximating constrained

optimization problems by unconstrained problems. The approximation is accomplished in

the case of logarithmic barrier method by adding to the objective function a logarithmic

function that prescribes a high cost for violation of the constraints.

We consider the following (LCCO) problem:

min
x
f(x) subject to x ∈ F, (P )

with a feasible set F given by

F = {Ax = b, x ≥ 0},
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We assume that the optimal set of P is nonempty and compact.

We shall study a family of unconstrained minimization problems of the form

minϕµ(x), x ∈ Rn, (Pµ)

with

ϕµ(x) =

{
f(x) +

∑n
i=1 θµ(xi) if x ∈ F,

+∞ otherwise,

where µ > 0 is a barrier parameter which will ultimately go to zero and the function θµ

defined by

θµ(x) =


µ log x− µ log µ if µ > 0, xi > 0,

0 if µ = 0, xi ≥ 0,

+∞ otherwise.

The function θµ is convex, proper and lower semi-continuous defined on R × Rn.

Newton method is used to find an approximate solution of Pµ for a certain value of µ, and

then µ is decreased to zero.

The prototype primal logarithmic barrier algorithm can be specified as follows:

Framework (Log-Barrier)

Given µ0 > 0, a starting point x0;

Set k ← 0

Repeat

Starting at xk , and fixing µk;

Obtain xk+1 by performing one or more Newton steps;

Choose new barrier parameter µk+1 ∈ (0, µk);

k ← k + 1;

Until some termination test is satisfied.

.

Figure 1.1: Algorithm 1.1
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In this chapter, we consider the linearly convex constrained optimization (LCCO) prob-

lem:

p̄ = min f(x) subject to x ∈ F, (P )

where the objective function f : Rn → R is twice differentiable and convex over the feasible

set F = {x ∈ Rn : x ≥ 0, Ax = b}, A is a given (m × n) matrix with full rank row m and

b ∈ Rm.

2.1 The Weighted Barrier Penalization

Throughout the chapter, we assume that the following assumptions hold.

1. There exist a strictly feasible point x0 > 0 such that Ax0 = b.

2. The set of optimal solutions of P is non empty bounded set.

It follows from the second hypothesis that the recession cone

K∞ = {d ∈ Rn : f∞(d) ≤ 0, d ≥ 0, Ad = 0} = {0},

where f∞ denote the recession function of f . We deduce from the optimality conditions that

x∗ is a solution of P if and only if there exists an y∗ ∈ Rm and z∗ ∈ Rn such that

∇f(x∗) + ATy∗ = z∗ ≥ 0, Ax∗ = b, 〈z∗, x∗〉 = 0, x∗ ≥ 0. (2.1)

2.1.1 The weighted perturbed problems

Let us define the function θ : R × R → (−∞,+∞] by

θ(t, w) =


t(log t− logw) if t > 0, w > 0,

0 if t = 0, w ≥ 0,

+∞ otherwise.
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The function θ is convex, lower semi-continuous and proper. We consider now the following

function defined on Rn
+ × Rn

+ by

ϕ(µr, x) =

{
f(x) +

∑n
i=1 θ(µri, xi) if x ∈ F,

+∞ otherwise,

where µ > 0 is the barrier parameter and r = (r1, r2, . . . , rn)T ∈ Rn
+, the vector of the weight

associated with the barrier function.

Finally, we introduce the function pr defined by

pr(µ) = inf
x

[ϕrµ(x) = ϕ(µr, x) : x ∈ Rn]. (P r
µ)

The function pr is convex since ϕrµ is convex. By construction, P r
0 is only the problem P

with p̄ = pr(0). The function ϕrµ is convex, lower semi-continuous and proper, its recession

function is given by

(ϕrµ)∞(d) = lim
α→+∞

ϕrµ(x0 + αd)− ϕrµ(x0)

α
.

We obtain

(ϕrµ)∞(d) =

{
f∞(d) if d ≥ 0, Ad = 0,

+∞ otherwise.

Then

{d ∈ Rn : (ϕrµ)∞(d) ≤ 0} = {d ∈ Rn : f∞(d) ≤ 0, d ≥ 0, Ad = 0},

where d is a recession direction and α ≥ 0 .

Since this set is reduced to {0} then the problem P r
µ admits an optimal solution for each

µ > 0. The function ϕrµ is strictly convex for all µ > 0 and r ≥ 0, then P r
µ has an unique

optimal solution denoted by xrµ.

2.1.2 Convergence of the weighted perturbed solutions to the op-

timal solution of P

The necessary and sufficient optimality conditions of (P r
µ) imply that there exits yrµ =

y(µ, r) ∈ Rm, such that

∇f(xrµ)− µX−1r + ATyrµ = 0, (2.2)

Axrµ = b, (2.3)



30

where X = Diag(xrµ).

Note that yrµ is uniquely defined since A is of full rank row. In fact, the couple (xrµ, y
r
µ) is the

solution of the system H(x, y) = 0 where

H(x, y) =

(
∇f(x)− µX−1r + ATy

Ax− b

)
.

By the implicit function theorem, the functions µ 7→ x(µ, r) = xrµ and µ 7→ y(µ, r) = yrµ are

differentiable on (0,∞) and we have,(
∇2f(xrµ) + µRX−2 AT

A 0

)(
x′(µ, r)

y′(µ, r)

)
=

(
X−1r

0

)
, (2.4)

where R=Diag(r), it follows that the function pr is differentiable on (0,∞). Recall that

pr(µ) = f(xrµ) + µ
n∑
i=1

ri(lnµri − ln(xi)
r
µ),

and then

(pr(µ))′ =
n∑
i=1

ri(1 + lnµri − ln(xi)
r
µ) + 〈∇f(xrµ)− µX−1r, x′(µ, r)〉.

In view of (2.2) and (2.4)

(pr(µ))′ =
n∑
i=1

ri(1 + lnµri − ln(xi)
r
µ)− 〈ATyrµ, x′(µ, r)〉,

=
n∑
i=1

ri(1 + lnµri − ln(xi)
r
µ)− 〈yrµ, Ax′(µ, r)〉,

=
n∑
i=1

ri(1 + lnµri − ln(xi)
r
µ).

Since xrµ ∈ F and pr is convex we obtain:

f(xrµ) ≥ p̄ = pr(0) ≥ pr(µ) + (0− µ)(pr(µ))′ = f(xrµ)− µ‖r‖1.
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Consequently, we have

p̄ ≤ f(xrµ) ≤ p̄+ µ‖r‖1.

Then if

µ 7→ 0, f(xrµ) = p̄.

Now, we interested to the weighted-path of {xrµ} when µ 7→ 0.

i) Case where f is strongly convex with coefficient τ > 0. Hence P has a unique optimal

solution x∗, and we have

µ‖r‖1 ≥ f(xrµ)− f(x∗) ≥ 〈∇f(x∗), xrµ − x∗〉+
τ

2
‖xrµ − x∗‖2.

In view of (2.1), we deduce

µ‖r‖1 ≥ 〈z∗, xrµ〉+
τ

2
‖xrµ − x∗‖2 ≥

τ

2
‖xrµ − x∗‖2,

‖xrµ − x∗‖ ≤
√

2µ‖r‖1
τ

.

ii) For the case where f is only convex is more complicated case. Note first that for µ ≤ 1,

xrµ ∈ {x : x ≥ 0, Ax = b, f(x) ≤ ‖r‖1 + p̄}.

This set is closed convex and non empty. Its recession cone is

{d ∈ Rn : f∞(d) ≤ 0, d ≥ 0, Ad = 0} = {0}.

By the second assumption the set of optimal solutions of P is bounded which implies that

each adherence value of {xrµ} when µ 7→ 0 is an optimal solution of P .

Remark 2.1.1. If r = e, where e is the vector of ones, then the weighted-path coincides with

the classical central path.

2.2 The Description of The Method

Letting Fo = {x ∈ Rn : x > 0, Ax = b } the set of strictly feasible points. The principle of

the method is as follows: Let (µkr, xk) ∈ Rn
+ × Fo, the current iterate.
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1. We make an approximated minimization of the weighted perturbed P r
µk

which gives a

new point xk+1 such that ϕ(µk+1r, xk+1) < ϕ(µkr, xk).

2. We take µk+1 < µk.

We iterated until we obtained an approximated optimal solution of the original problem. The

weighted perturbed problem is defined by

min
x

ϕrµ(x) = min
x

[ f(x) +
n∑
i=1

θ(µri, xi) : x ∈ F]. (P r
µ)

2.3 The Newton Descent Direction

At x ∈ F◦, the Newton descent direction d is given by solving the following quadratic convex

program:

min
d

[ 〈∇ϕrµ(x), d〉+
1

2
〈∇2ϕrµ(x)d, d〉 : Ad = 0 ].

It suffices to solve the linear system with n+m equations(
∇2f(x) + µRX−2 AT

A 0

)(
d

s

)
=

(
µX−1r −∇f(x)

0

)
, (2.5)

where s ∈ Rm .

It easy to prove that the linear system (2.5) has a unique solution. The descent direction

being thus obtained, it is now question of minimizing a function of one real variable to obtain

the step size α.

γr(α) = ϕrµ(x+ αd)− ϕrµ(x) = f(x+ αd)− f(x) − µ
n∑
i=1

ri ln(1 + αti),

where t = X−1d, the function γr is convex.

Next task, we propose a new method to determine the step size .

2.4 A Tangent Method for Determining The Step Size

Our approach is try out a sequence of candidate values for α, when the condition (γr(α))′ ≤ ε

is satisfied, stopping and accept this value. We can say that this technique is done in two
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phases.

1. The first phase finds an interval containing the required step size, the choice of the

bounds of the interval is similar to the bisection method, when we restrict the value of

α until we find the required value.

2. The second phase computes the optimal step size within this interval, in this phase we

determine the tangents T1 and T2 in the bounds of the interval and we select the value

corresponding to the intersection of the tangents T1 and T2.

The upper bound on the step size α is given by

αmax = min

{
−xi
di

; i ∈ Î
}
,

where

Î = {i : di < 0} .

Because the convexity of the function γr(α), this technique will be more efficiency in practice,

the next figures shows clearly this idea:

Figure 2.1: Step 1. Figure 2.2: Step 2. Figure 2.3: Step 3.

The tangent algorithm for determining the step size is follows.
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Algorithm

Input

An accuracy parameter ε > 0;

A threshold parameter 0 < β < 1;

a = 0, b = βαmax, such that (γr(b))′ > 0;

α = b
2
;

While|(γr(α))′| > ε do

if (γr(α))′ > 0 then

b = α;

if not

a = α ;

end if

α = −(γr(b))′b+γr(b)+(γr(a))′a−γr(a)
(γr(a))′−(γr(b))′ ;

End While

.

Figure 2.4: Algorithm 2.1

We are now ready to state the generic algorithm for solving LCCO.

The Generic interior-point algorithm for LCCO:

Threshold parameters ε > 0, µ̄ > 0 and λ ∈ [0, 1], are given;

Start with x0 ∈ Fo, µ > µ̄ and a weight vector r > 0;

1) Solve the linear system (2.5) to obtain d;

2) Take t = X−1d;

If ‖t‖ ≥ ε

- Determinate α̃ with tangent method ;

- Update xk+1 = xk + α̃dk, µk+1 = λµk and return to 1;

If ‖t‖ ≤ ε

Case 1. µk ≤ µ̄

STOP we have obtained a good approximation of the optimal solution of P ;

Case 2. µk > µ̄

We have obtained a good approximation of pr(µ), do µk+1 = λµk and go to 1;

.

Figure 2.5: Algorithm 2.2
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2.5 Numerical Results

In the following section, we apply our algorithm on some different examples of LCCO. A

comparative numerical tests with a classical line search are presented. Our implementation

is done by the Scilab 5.4.1. We use in the sequel the following notation.

Method 1: the first alternative uses the tangent technique.

Method 2: the second alternative uses the Wolfe method.

Outer: the number of outer iterations.

Inner: the number of inner iterations.

Objective: the optimal value of the objective function p̄.

Time: the time measured in seconds. Our tolerance is ε = 10−6 in all our testing examples.

We consider three examples that are written in the following form:

(QP )


p̄ = minx∈Rn

1
2
〈x,Qx〉+ 〈c, x〉

s.t Ax = b,

x ≥ 0.

Example 1.

Q =


2 0 0

0 2 0

0 0 2

 , A =

(
1 1 1

−1 1 1

)
,

c = (0, 0, 2)T , b = (6, 4)T .

The initial point is

x0 =
(

1, 1.5, 3.5
)
,T

and the optimal solution is:

x∗ =
(

1, 1.00028, 3.99971
)
.T
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with p̄ = 10, such as r1 = (0.9, 1, 0.03)T .

Example 2.

Q =



20 1.2 0.5 0.5 −1

1.2 32 1 1 1

0.5 1 14 1 1

0.5 1 1 15 1

−1 1 1 1 16


, A =


1 1.2 1 1.8 0

3 −1 1.5 −2 1

−1 2 −3 4 2

 ,

c = (1,−1.5, 2, 1.5, 3)T , b = (9.31, 5.45, 7.06)T .

The initial point is

x0 =
(

2.42, 1, 1.55, 2.3, 1.465
)T

,

and an optimal solution is:

x∗ =
(

2.6603177, 0.7036150, 1.3245096, 2.4893527, 1.1646029
)T

,

with p̄ = 175.24586, and r2 = (2, 1, 3, 1, 4)T .

Example 3.

Q =



30 1 1 1 1 1 1 1 1 1

1 21 0 1 −1 1 0 1 0.5 1

1 0 15 −0.5 −2 1 0 1 1 1

1 1 −0.5 30 3 −1 1 −1 0.5 1

1 −1 −2 3 27 1 0.5 1 1 1

1 1 1 −1 1 16 −0.5 0.5 0 1

1 0 0 1 0.5 −0.5 8 1 1 1

1 1 1 −1 1 0.5 1 24 1 1

1 0.5 1 0.5 1 0 1 1 39 1

1 1 1 1 1 1 1 1 1 11



,

A =


1 −1 1.9 1.25 1.2 0.4 −0.7 1.06 1.5 1.05

1.3 1.2 0.15 2.15 1.25 1.5 0.4 1.52 1.3 1

1.5 −1.1 3.5 1.25 1.8 2 1.95 1.2 1 −1

 ,
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b =


11.64771

16.66587

21.28925

 , c =
(
−0.5, −1, 0, 0, −0.5, 0, 0, −1, −0.5, −1

)
.T

The strictly feasible starting point is taken as:

x0 =
(

1.475, 0.868, 1.752, 1.637, 1.560, 1.926, 1.538, 1.416, 1.223, 0.728
)T

.

An optimal solution is:

x∗ =

(
0.9635696, 0.5093399, 1.7397881, 1.9042982, 1.2431635,

2.6257839, 1.3225584, 1.6164774, 0.8237509, 0.8972367

)T

,

with the optimal value is p̄ = 263.96783. The value of the weight vector is taken as:

r3 = (1, 1, 0.4, 1, 0.4, 1, 0.4, 0.4, 1, 0.96)T .

Method 1 Method 2
Example Size (m,n) Inner Outer Inner Outer
1 (2,3) 7 7 162 7
2 (3,5) 24 6 46 8
3 (3,10) 20 7 40 8

Table 2.1: Comparative numerical tests

In the following, we compare our approach with the classical path method (non weighted

case).

Problem with variable size. We consider the following LCCO problem:

p̄ = min
x∈Rn

[f(x) : x ≥ 0, Ax = b],

where f(x) =
∑n

i=1 xi lnxi, bi = 1 and

A[i, j] =

{
1 if i = j or j = i+m),

0 else,
withn = 2m.
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The strictly feasible starting point is:

x0 =
(

0.7, . . . , 0.7, 0.3, . . . , 0.3
)
.T

An optimal solution is:

x∗ =
(

0.5, 0.5, . . . , 0.5
)
.T

The optimal values with different size of n are:

n 20 400 900

Objective -6.9314718 -138.62944 -311.911623

The obtained numerical results with different size of n and barrier parameter µ are stated in

tables 2 and 3.

Weighted case:

The weighted vector is r = (0.011, . . . , 0.011, 0.022 . . . , 0.022).T

n = 20 n = 400 n = 900
µ Outer Time Outer Time Outer Time
0.01 2 0.296×10−3 2 0.17160 2 23.476212
0.25 4 0.316×10−3 4 0.28762 4 32.40515
1 5 0.499×10−3 5 0.355702 5 41.84014
5 6 0.665×10−3 6 0.400961 6 52.96016

Table 2.2: Numerical results ( Weighted case )

Non weighted case

n = 20 n = 400 n = 900
µ Outer Time Outer Time Outer Time
0.01 4 0.325×10−3 4 0. 2915518 4 33.147112
0.25 6 0.482×10−3 6 0.3832547 6 40.40114
1 7 0.591×10−3 7 0.4512415 7 49.88745
5 8 0.835×10−3 8 0.6001489 8 58.91456

Table 2.3: Numerical results (Non weighted case)
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2.6 Conclusion and Remarks

In this chapter we have introduced a relaxation of the classical path of the perturbed LCCO

problem and we have presented a new technique for determining the step size. These have

a great influence on the acceleration of the convergence of the algorithm i.e., the number of

iterations and the time produced are reduced significantly.
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The purpose of this chapter is to solve the following optimization problem

p̄ = min
x∈Rn
{cTx+

1

2
xTQx subject to Ax = b, x ≥ 0}, (QP )

and its dual

d̄ = max
y∈Rm
{bTy − 1

2
xTQx subject to ATy + z = Qx+ c, z ∈ Rn

+}, (QD)

with Q ∈ Rn×n is symmetric positive semi-definite matrix, c is an n real vector, b is an m

real vector.

The feasible sets of (QP) and (QD) problems given by:

Fp = {x ∈ Rn, Ax = b, x ≥ 0}, Fd = {(y, z) ∈ Rm+n, ATy + z = Qx+ c, z ≥ 0},

Fop = {x ∈ Rn, Ax = b, x > 0}, Fod = {(y, z) ∈ Rm+n, ATy + z = Qx+ c, z > 0}.

Without loss of generality, we assume that (QP) and (QD) satisfy the interior-point condition

(IPC), i.e., there exist x0, y0 and z0 such that x0 ∈ Fop and (y0, z0) ∈ Fod. It is well known that

searching a pair of optimal solution of (QP) and (QD) is equivalent to solving the following

system, which represents the (K.K.T) optimality conditions

(KKT )


Ax = b, x ≥ 0, ( Primal feasibility)

ATy + z −Qx = c, z ≥ 0, y ∈ Rm, ( Dual feasibility)

xT z = 0. ( Complementarity condition)

Generally the idea of the classical path-following method is to replace the complementarity

equation xT z = 0 by xz = µ. Thus we consider the nonlinear system parameterized by µ.
Ax = b, x ≥ 0,

ATy + z −Qx = c, z ≥ 0, y ∈ Rm,

xizi = µ, i = 1, . . . , n,

when µ > 0.

In the next section, we shall present an other strategy for solving the primal-dual problems

by logarithmic penalty methods.
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3.1 The Primal-Dual Logarithmic Barrier Method

The basic idea of our approach is to solve an equivalent system of (K.K.T) optimality con-

ditions defined as

(S)


minxT z

s.t Ax = b,

ATy + z −Qx = c,

x ≥ 0, z ≥ 0, y ∈ Rm,

we denote by Fs the set of optimal solutions of this problem. Now, we make assumptions

about the problem (S):

Assumption 1. The m rows of the matrix A are linearly independent.

Assumption 2. The set of optimal solution Fs is nonempty and bounded set.

Throughout all the following, we assume that the two assumptions hold and we set χ =

(x, z, y), D = Fp × Fd, Dint = Fop × Fod.

Firstly let us define the function

g(χ) =

{
xT z if χ ∈ D,

+∞ otherwise.

Then the function g is convex, lower semi-continuous and proper on D.

Proof. To prove that g is a convex function on affine space

D = {(x, z, y) ∈ R2n+m : Ax = b, ATy + z −Qx = c, x ≥ 0, z ≥ 0},

we shall prove that the restriction of the function g to any straight-line of D is convex.

Let

(x, z, y) ∈ R2n+msuch that Ax = b, ATy + z −Qx = c, x ≥ 0, z ≥ 0,

and

(dx, dz, dy) ∈ R2n+m such that Adx = 0, ATdy + dz = Qdx.

Define the function

ζ(t) = g(x+ tdx, z + tdz, y + tdy),
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then

ζ(t) = (x+ tdx)T (z + tdz),

= t2dxTdz + t(dxT z + xTdz) + xT z,

then if dxTdz ≥ 0 the function g is convex, we have

Adx = 0, ATdy + dz = Qdx,

since Q is a symmetric positive semi-definite matrix, we have

dxTdz = dxT (Qdx− ATdy) = dxTQdx ≥ 0.

3.2 Penalization

Now let us introduce the function ϑ : R2 → (−∞,+∞)

ϑ(t, w) =


t(1

2
log t− logw) if t > 0, w > 0,

0 if t = 0, w ≥ 0,

+∞ otherwise,

given µ ≥ 0, we set

φ(χ, µ) =

{
g(χ) +

∑2n
i=1 ϑ(µ, χi), if χ ∈ Dint,

+∞ if not.

We consider the perturbed problem

l(µ) = inf
χ

[φ(χ, µ) = φµ(χ), χ ∈ R2n+m], (Sµ)

φµ is convex lower semi-continuous and proper on R2n+m. In addition if µ > 0 then φµ is

strictly convex function and (Sµ) has at most one optimal solution. Our next result concerns

the existence of such solution.
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Recall that the recession function of φµ is defined by

[φµ]∞(d) = lim
α→∞

φµ(χ0 + αd)− φµ(χ0)

α
,

where χ0 = (x0, z0, y0) and d = (dx, dz, dy).

We set

A =

(
A 0 0

−Q I AT

)
,

the recession functions of φ and g are related by

[φµ]∞(d) =

{
g∞(d) if d ≥ 0,Ad = 0,

+∞ if not.

Then

{d ∈ R2n+m : [φµ]∞(d) ≤ 0} = {d ∈ R2n+m : [g]∞(d) ≤ 0, d ≥ 0,Ad = 0}.

On the other hand, assumption 2 is equivalent to

{d ∈ R2n+m : [g]∞(d) ≤ 0, d ≥ 0,Ad = 0} = {0},

hence,

{d ∈ R2n+m : [φµ]∞(d) ≤ 0} = {0},

this condition implies that the set of optimal solutions of problem (Sµ) is a nonempty closed

convex and bounded set.

Now, we show that the problem (Sµ) converges to the problem (S) as µ→ 0.

3.3 Convergence of Sµ to S

We have the following lemma

Lemma 3.3.1. For µ > 0, let the problem (Sµ) have χµ = (xµ, zµ, yµ) as an optimal solution,

then the problem (S) has χ∗ = limµ→0 χµ as an optimal solution.

Proof. Let µ a positive parameter be given and χ ∈ Dint be arbitrary. We set h(χ) = xT z
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and recall that

φ(χ, µ) =

{
h(χ)− µ

∑2n
i=1 ln(χi) + nµ lnµ if χ ∈ Dint,

+∞ if not.

Since the function φ(., .) is differentiable at the point (χ, µ), we have

h(χ) = φ(χ, 0)

≥ φ(χµ, µ) + (χ− χµ)T∇χφ(χµ, µ) + (0− µ)
∂

∂µ
φ(χµ, µ),

= φ(χµ, µ)− µ ∂

∂µ
ϕ(χµ, µ),

= h(χµ)− µ
2n∑
i=1

ln(χi) + nµ lnµ− µ(−
2n∑
i=1

ln(χi) + n+ n lnµ),

= h(χµ)− nµ,

where the second equality follows from the fact that

∇χφ(χµ, µ) = 0,

because the point (χµ, µ) is optimal. Since χ ∈ Dint was arbitrary, we then have

h(χµ)− nµ ≤ min
χ∈Fo

s

h(χ) ≤ h(χµ).

Letting µ approach zero and χ∗ = limµ→0 χµ, we get

h(χ∗) = h(lim
µ→0

χµ) = lim
µ→0

h(χµ) = min
χ∈Dint

h(χ).

The result is established.

3.4 Solving The Perturbed Problems (Sµ)

The focus of this section is on the numerical solution of perturbed problem (Sµ). Recall that

the perturbed problem is

l(µ) = min
χ
φµ(χ) = min

χ

[
g(χ) +

2n∑
i=1

ϑ(µ, χi), χ ∈ Dint

]
, (Sµ)
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3.4.1 The descent direction

At χ ∈ D, the Newton descent direction d is given by solving the following quadratic convex

optimization problem:

min
d∈R2n+m

[
〈∇φµ(χ), d〉+

1

2
〈∇2φµ(χ)d, d〉, Ad = 0

]
.

It suffices to solve the linear system(
∇2
χφµ AT

A 0

)(
d

λ

)
=

(
−∇χφµ

0

)
, (L)

with

∇2
χφµ =


µX−2 I 0

I µZ−2 0

0 0 0

 and ∇χφµ =


z − µX−1e
x− µZ−1e

0

 ,

where X = Diag(x), Z = Diag(z).

It easy to show that the system (L) is non singular, the most desirable methods for solving

(L) are the Cholesky methods. The descent direction being obtained, the next task consists

in a line search.

3.4.2 A majorant function

The function of one real variable to be minimized is

ψ(α) =
1

µ
[φµ(χ+ αd)− φµ(χ)] =

1

µ
[h(χ+ αd)− h(χ)− µ

2n∑
i=1

ln(1 + αy̆i)],

where

y̆ =

(
X−1dx

Z−1dz

)
.

This function is convex, we have

ψ′(α) =
1

µ
〈d,∇h(χ+ αd)〉 −

2n∑
i=1

y̆i
1 + αy̆i

,
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ψ′′(α) =
1

µ
〈d,∇2h(χ+ αd)d〉+

2n∑
i=1

y̆2i
(1 + αy̆i)2

≥ 0,

Our problem consists to find some α giving a significant decrease of the convex function

ψ. Crouzeix and Merikhi [16] propose a new technique called a majorant function this

technique is much less expensive than line search methods. The idea is approach the function

ψ(α) by a simple majorant function producing the optimal step size αk at each iteration k.

It is based on the following result.

Theorem 3.4.1 ([16]). Assume that vi > 0 for i = 1, . . . , N , Then

N∑
i=1

ln vi ≥ A,

with

A = (N − 1) ln(v̄ +
σv√
N − 1

) + ln(v̄ − σv
√
N − 1).

where

v̄ =
1

N

N∑
i=1

vi and σv =

√√√√ 1

N

N∑
i=1

(vi − v̄)2.

Set

ȳ =
1

2n

2n∑
i=1

y̆i, σy =

√√√√ 1

2n

2n∑
i=1

(y̆i − ȳ)2, vi = 1 + αy̆i

and

β1 = ȳ +
σy√

2n− 1
, β2 = ȳ − σy

√
2n− 1.

Then, v̄ = 1 + αȳ and σv = ασy.

For all α > 0 we may define a majorant function ψ1 by

ψ(α) ≤ ψ1(α) =
h(χ+ αd)− h(χ)

µ
− (2n− 1) ln(1 + αβ1)− ln(1 + αβ2),

ψ′1(α) =
〈d,∇h(χ+ αd)〉

µ
− (2n− 1)

β1
1 + αβ1

− β2
1 + αβ2

,

ψ′′1(α) =
〈d,∇2h(χ+ αd)d〉

µ
+ (2n− 1)

β2
1

(1 + αβ1)2
+

β2
2

(1 + αβ2)2
.
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The function ψ1 is strictly convex function and therefore reaches its minimum at one unique

point ᾱ. This point ᾱ is the unique root of the equation ψ′1(α) = 0 which belongs to the

domain of ψ1(α). Since ψ is bounded from above by ψ1 one has

ψ(ᾱ) ≤ ψ1(ᾱ) < 0.

Thus, with ᾱ, we obtain a significant decrease of the function ψ. Now we are interested to

solving the equation ψ′1(α) = 0, we can write ψ′1 as

ψ′1(α) =
ȧα3 + ḃα2 + ċα + ḋ

µ(1 + αβ1)(1 + αβ2)
= 0.

This implies that

ȧα3 + ḃα2 + ċα + ḋ = 0, (3.1)

where 
ȧ = 2β1β2d

T
x dz,

ḃ = 2(β1 + β2)d
T
x dz + β1β2(d

T
x z + xTdz),

ċ = 2dTx dz + (β1 + β2)(d
T
x z + xTdz)− 2nµβ1β2,

ḋ = −µ[(2n− 1)β1 + β2)] + dTx dz.

We may solve the equation (3.1) by Cardon method and we get .
α1 = −w+uv−

1
3

1+v−
1
3
,

α2 = 2ȧ3−9ȧḃ+27ċ
27

,

α3 = 3q
2p

+
√

( 3q
2p

)2 + p
3
,

where 

p = ḃ− ȧ3

3
,

q = 2ȧ3−9ȧḃ+27ċ
27

,

u = 3q
2p

+
√

( 3q
2p

)2 + p
3
,

w = − p
3u
,

v = − p
w
.

We choose the root which belongs to the domain of function ψ1.
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.

Algorithm

Initialization
(x(0), z(0), y(0)) ∈ Dint, ε > 0, µ(0) > 0, µ̄ > 0 and κ ∈ [0, 1].
Set x = x(0), z = z(0), µ = µ(0).
1. Solve the Linear System (L) to obtain (dx,dz,dy).
2. Compute the step size α.
3. Update x = x+ αdx, z = z + αdz, y = y + αdy.
If xT z > ε
Set µ = κµ, and go to 1.
If not

a.Ifµ > µ̄ (we have a good approximation of h(µk).)
Set µ = κµ, and go to 1.

b. Ifµ < µ̄ Stop we have obtained a good approximation of optimal solution.

Figure 3.1: Algorithm 3.1

3.5 Numerical Experiments

In this section, we test the Algorithm (3.1) on some quadratic problems of different size,

we compare the performance of our approach with a Primal-dual interior-point approach

proposed by Achache and Goutali [6] , the implementation is done by Scilab 5.4.1.

We use the following notation in the following.

Method 2.1: the approach proposed in this chapter,

Method 2.2: the approach proposed in [6],

N.I: the number of iterations,

Time: the time measured in seconds,

p̄: the approximation of the optimal value of primal problem obtained by The Algorithm

(3.1),

d̄: the approximation of the optimal value of the dual problem obtained by The Algorithm

(3.1).

The following numerical results obtained with the barrier parameter µ0 =
xT0 z0
n

, κ = 0.5 and

ε = 10−6.

Problem 1.
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We consider the following convex quadratic problem:

p̄ = minx f(x) = 1
2
〈x,Qx〉+ 〈c, x〉 , Ax = b, x ≥ 0, .

Q =


4 −2 0 0

−2 4 0 0

0 0 0 0

0 0 0 0

 , A =

(
1 1 1 0

1 5 1 1

)
,

c = (1, 2, 0, 0)T , b = (2, 5).T

The initial point is

x0 =
(

0.6, 0.3, 1.1, 1.8
)
,T

z0 =
(

3.8, 5, 1, 0.5
)
,T

y0 =
(
−0.5, −0.5

)
.T

The numerical results of this example are configured in the following table:

x∗ = (3.5× 10−6, 1.7× 10−6, 2, 3)
T

z∗=(1, 2, 1.7× 10−6, 1.2× 10−6)
T

y∗ = (−5× 10−7,−1× 10−6)
T

p̄ = 7× 10−6

d̄ = −7× 10−6

xT z = 1× 10−7

N.I = 17
Time = 0.00234

Table 3.1: Problem 1.
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Problem 2.

Q =



20 1.2 0.5 0.5 −1

1.2 32 1 1 1

0.5 1 14 1 1

0.5 1 1 15 1

−1 1 1 1 16


, A =


1 1.2 1 1.8 0

3 −1 1.5 −2 1

−1 2 −3 4 2

 ,

c = (1,−1.5, 2, 1.5, 3)T , b = (9.31, 5.45, 7.06) .T

The initial point is

x0 =
(

2.420, 1.000, 1.550, 2.300, 1.465
)
,T

z0 =
(

3.060, 15.719, 8.175, 7.225, 7.870
)
,T

y0 =
(

20.000, 11.000, 5.000
)
.T

The numerical results of this example are configured in the following table:

x∗ = (2.6604159 0.7034860 1.3244184 2.4894347 1.1644801)T

z∗ =(1× 10−6 3.7× 10−6 2× 10−6 1× 10−6 2.2× 10−6)
T

y∗ = (25.001084 12.153761 5.6674206)T

p̄ = 175.24586,
d̄ = 175.245847
xT z = 0.000013
N.I = 24
Time = 0.004368

Table 3.2: Problem 2.
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Problem 3.

Q =



2 1 0 0 0 0

1 2 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


, A =


5
12

−1 1 0 0 0
5
2

1 0 1 0 0

−1 0 0 0 1 0

0 1 0 0 0 1

 ,

c = (−30,−30, 0, 0, 0, 0) ,T b =

(
35

12
,

35

2
, 5, 5

)
.T

The initial point is

x0 =
(

4.7399, 4.2328, 5.1745, 1.4173, 9.3799, 0.7672
)
,T

z0 =
(

2.2411, 2.5161, 2.0281, 7.4499, 0.9415, 13.8886
)
,T

y0 =
(
−2.02809, −7.4499, −0.9415, −13.8886

)
.T

The numerical results of this example are configured in the following table:

x∗ = (4.99994, 5, 5.83335, 9× 10−7, 9.63994, 6× 10−7)
T

z∗ = (1.1× 10−6, 1.1× 10−6, 9× 10−6, 5.9999647, 6× 10−7 8.999897)
T

y∗ = (9× 10−6, −5.999965, −6× 10−6 − 8.999897)
T

p̄ = −224.99909

d̄ = −224.99796
xT z = 0.0000402
N.I = 24
Time = 0.005668

Table 3.3: Problem 3.
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Problem 4.

Q =



2 −1 0 0 0 0 0 0 0 0 0

−1 1 0 0 0 0 0 0 0 0 0

0 0 2 1 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0



, A =



1 2 1 1 1 0 0 0 0 0 0

3 2 1 1 0 1 0 0 0 0 0

0 −1 −4 0 0 0 1 0 0 0 0

−1 0 0 0 0 0 0 1 0 0 0

0 −1 0 0 0 0 0 0 1 0 0

0 0 −1 0 0 0 0 0 0 1 0

0 0 0 1 0 0 0 0 0 0 1


,

c = (−1,−3, 1,−1, 0, 0, 0, 0, 0, 0, 0) ,T b = (5, 4, 5, 1.5, 0, 0, 0, 0 ) .T

The initial point is

x0 =

(
0.130437 1.421849 0.709742 0.00001 1.316122 0.055277

5.760817 0.130437 1.421849 0.709742 0.00001

)
,T

z0 =

(
0.113781 0.080468 3.031929 0.733798 0.222491 0.716914

0.016924 0.098479 0.072834 0.394635 0.084649

)
,T

y0 =

(
−0.222487 −0.71691 −0.016919 −0.098474

−0.07283 −0.394631 −0.084645

)
.T

The numerical results of this example are configured in the following table: Problem 5.
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x∗
(

0.2069005 1.6896584 0.0000002 0.0000191 1.4137724 0.0000003
3.1896593 0.2069005 1.6896584 0.0000002 0.0000009

)T
z∗

(
0.0000010 0.0000001 0.9516398 0.0110610 0.0000002 0.7586191

6.795× 10−8 0.0000010 0.0000001 0.9423597 0.2524304

)T
y∗

(
0.0000038 −0.7586151 0.0000049 0.0000040 0.0000039
−0.9423557 −0.2524264

)T
p̄ −4.1552052
d̄ −4.155123
xT z 0.0000024
N.I 21
Time 0.00858

Table 3.4: Problem 4.

Q =



2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 4 2 0 0 0 0 0 0 0 0 0 0 0 0 0

0 2 4 2 0 0 0 0 0 0 0 0 0 0 0 0

0 0 2 4 2 0 0 0 0 0 0 0 0 0 0 0

0 0 0 2 4 2 0 0 0 0 0 0 0 0 0 0

0 0 0 0 2 4 2 0 0 0 0 0 0 0 0 0

0 0 0 0 0 2 4 2 0 0 0 0 0 0 0 0

0 0 0 0 0 0 2 4 2 0 0 0 0 0 0 0

0 0 0 0 0 0 0 2 4 2 0 0 0 0 0 0

0 0 0 0 0 0 0 0 2 4 2 0 0 0 0 0

0 0 0 0 0 0 0 0 0 2 4 2 0 0 0 0

0 0 0 0 0 0 0 0 0 0 2 4 2 0 0 0

0 0 0 0 0 0 0 0 0 0 0 2 4 2 0 0

0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 0

0 0 0 0 0 0 0 0 0 0 0 0 0 2 4 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 4



,
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A =



1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0. 1 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1


,

c = (−1,−1,−1,−1,−1,−1,−1,−1, 0, 0, 0, 0, 0, 0, 0, 0)T , b = (2, 2, 2, 2, 2, 2, 2, 2) .T

The initial point

x0 =
(

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
)
,T

z0 =
(

5 9 9 9 9 9 9 9 10 10 10 10 10 8 10 8
)
,T

y0 =
(
−2 −2 −2 −2 −2 −2 −2 −2

)
,T

The numerical results of this example are configured in the following table:

x∗ =

 2 0.1250718 1.9998565 0.1250718 1.9999999 1.848× 10−8

1.75 0.7500000 1.884× 10−8 1.8749282 0.0001435 1.8749282
7.403× 10−8 2 0.2500000 1.25

T

z∗ =


1.859× 10−8 3× 10−7 1.865× 10−8 3× 10−7 1.863× 10−8

1.9999997 2.114× 10−8 4.951× 10−8 1.999713 1.971× 10−8

0.0005735 3.665× 10−8 0.4997133 1.852× 10−8 1× 10−7

2.974× 10−8


T

y∗ =

(
3.2505845 7.5000002 7.4988305 7.5000002 7.2505848 4.4999998
7.5000001 5.5

)T
p̄ = 46.125
d̄ = 46.124999
xT z = 0.000001
N.I = 28
Time = 0.008736

Table 3.5: Problem 5.
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Example with variable size. We consider the following quadratic problem with n =

2m:

p̄ = min[f(x) : x ≥ 0, Ax = b],

where f(x) = xTQx+ cTx, bi = 2, c(i) = 1, for i = 1, . . . ,m and c[m+ 1 : n] = 0,

with

Q[i, j] =


2 if i = j = 1 or i = j = n− 2,

4 if i = j and i 6= {1, n− 2},
2 if i = j − 1 or i = j + 1,

0 otherwise,

and

A[i, j] =

{
1 if i = j or j = i+m),

0 if not,

The starting point χ0 = (x0, y0, z0) given by

x0(i) = 1 for i = 1, . . . , n,

y0(i) = −2 for i = 1, . . . ,m,

z0(1) = 5, z0[2 : m] = 9, z0[m+ 1 : n− 3] = 10, and z0[n− 2 : n] = (8, 10, 8).

In the following tables we compare the primal-dual logarithmic barrier algorithm with the

primal-dual interior-point algorithm proposed by Achache and Goutalli in [6].

n=50
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Method 2.1 Method 2.2

N.I 29 67

p̄ 164.92857 169.475

d̄ 164.92857 169.475

Time 0.079 0.3806424

Table 3.6: Numerical results with n = 50

n=100

Method 2.1 Method 2.2

N.I 30 103

p̄ 338.8125 342.3533

d̄ 338.8125 342.3533

Time 0.255204 0. 6162039

Table 3.7: Numerical results with n = 100

n=150



58

Method 2.1 Method 2.2

N.I 31 132

p̄ 513.13028 515.51894

d̄ 513.13028 515.51894

Time 1.0728088 1.428969

Table 3.8: Numerical results with n = 150

n=200

Method 2.1 Method 2.2

N.I 31 157

p̄ 687.25 690.65836

d̄ 687.25 690.65836

Time 2.80489 3.371181

Table 3.9: Numerical results with n = 200

n=250
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Method 2.1 Method 2.2

N.I 32 180

p̄ 861.52686 862.66061

d̄ 861.52686 862.66061

Time 5.113712 7.313326

Table 3.10: Numerical results with n = 250

n=300

Method 2.1 Method 2.2

N.I 32 201

p̄ 1035.6875 1037.5621

d̄ 1035.6875 1037.5621

Time 8.332013 14.1102

Table 3.11: Numerical results with n = 300

Comment

The tables (3.6, 3.7, 3.8, 3.9, 3.10) and 3.11 are showed the performance of our algorithm 3.1,

the tables show that the primal-dual logarithmic barrier approach with the majorant func-

tion produced the lowest iterations, time and the optimal value compared to the proposed

algorithm in [6].
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Conclusion

This thesis is concerned with the analysis, implementation of logarithmic barrier interior-

point method. In particular, we focus on two type of problems: the linearly constrained

convex problems (LCCO) and the quadratic primal-dual problem.

In the first part of study, we have introduced a relaxation of the classical path of the perturbed

(LCCO) problem and we have presented a new technique for determining the step size called

the tangent technique. The numerical efficiency of this algorithm is confirmed by numerical

tests.

In the second part, we presented a theoretical and numerical study of a logarithmic barrier

interior-point method of the primal-dual type, to solve a quadratic program with linear

constraints and we have used a majorant function to compute the step size. The efficiency

of the proposed approach in terms of the quality of the obtained solutions and the speed of

convergence.
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Annex

The Algorithm proposed by Achache and Goutalli to solve the LCCO problem in the follow-

ing.

Algorithm

Input

An accuracy parameter ε > 0;

a threshold parameter 0 < β < 1;

a fixed barrier update parameter 0 < θ < 1;

a feasible point (x0, y0, z0) and µ0 such that δ(x0z0;µ0 ≤ β);

begin

x = x0; y = y0; z = z0; µ = µ0;

While nµ ≥ 0 do

begin

• Solve the system (3.2) to obtain: (∆x,∆y,∆z);

• Update x = x+ ∆x, y = y + ∆y, z = z + ∆z;

• µ = (1− θ)µ;

end

end

.

Figure 3.2: Algorithm 3.2
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The system (3.2) given by
A 0 0

−∇2f(x) AT I

Z 0 X




∆x

∆y

∆z

 =


0

0

µe−Xz

 , (3.2)

we give also a norm-based proximity measure δ(xz;µ) to the central-path as follows

δ(xz;µ) =
1

2

∥∥∥∥∥∥
√(

xz

µ

)−1
−
√
xz

µ

∥∥∥∥∥∥ .
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(UCL) Louvain-la-Neuve, Belgium, (2004).

[27] Nestrov,Y.E., Nemiroveskii, A., Interior Point Polynomial Algorithms in Convex Pro-

gramming, SIAM, Philadelphia (1994).

[28] Nocedal, J., Wright, S.J., Numerical Optimization, Springer Series in Operations Re-

search, (1999).

[29] Lamri, S., Merikhi, B., Achache, M., A weighted logarithmic barrier interior-point

method for linearly constrained optimization, Stud. Univ. Babes-Bolyai Math. 66(2021),

no. 4, 783-792.

[30] Ouriemchi, M, Résolution de problèmes non linéaires par les méthodes de points
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