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Introduction

Contact problems with friction typically appear in everyday life and play a crucial role in
a wide range of applications, engineering systems and in the flow of fluids, such as brakes,
machine tools, motors, turbines, or wheel-rail systems. As a result of this interest, over the
last decades, there has been a lot of work on the mathematical theory of friction contact. The
well-known and predominant friction laws used in the mathematical literature are Tresca’s
and Coulomb’s laws.
In 1972, Duvaut and Lions [21] investigated the dynamic and static contact problems with
Tresca’s friction law involving linearly elastic and fluid rigid bodies.

In the literature, it can be noted that there are a many research done on frictional contact
problems involving elastic and piezoelectric materials, see for instance [20, 17, 22, 29] and
the references cited therein. Demkowicz et al. [17] established the some existence and
uniqueness result in contact problem with non linear friction. In addition, El-H-Essofi et al.
[22, 42] studied static frictional contact models between a piezoelectric body and conductive
foundation using Coulomb’s model for the contact. For the dynamic evolution with frictional
contact of an elastic body, Ionescu et al. [29] proved the existence of solution in the two-
dimensional case and the uniqueness for one-dimensional shearing problem. Further, in
[32, 43] the authors studied a several classes of variational inequalities and showed the
existence and uniqueness of the solution. Besides, a frictionless contact between an elastic
body and a rigid foundation when the contact is described by the normal compliance with
adhesion and that it is bilateral was regarded by Hemici and Matei [28].

In the study of fluid flow, the first mathematical results noticed are with the boundary
conditions of the friction type which were proposed by Fujita et al. [23, 24] for stationary
Stokes flows. A detailed study of the stationary solution for Brigham flow with non-local
friction is given in [15]. Recently, Khan et al. [30] considered the fractional Brinkman type

fluid in the channel under the effect of MHD with Caputo-Fabrizio fractional derivative.

v



Introduction

Asymptotic methods have been used to reduce the problems of three-dimensional friction
contact to the one-dimensional or two-dimensional models on thin domains. The importance
of the latter which are obtained resides in the fact that they can be used instead of full three-
dimensional models, the thickness to be small. It is obvious that, the two-dimensional models
are simpler than their three-dimensional counterparts and this makes it easier to study. In
applied sciences, the problems posed in a thin domain are widely used in several fields such
as mechanics, chemistry, aeronautics, and even civil engineering.

In Solid mechanic, the elasticity models for beams, rods and plates have been obtained
from a priori hypotheses on the displacement, which upon substitution in the equilibrium
and constitutive equations three-dimensional elasticity lead to useful simplifications. Nev-
ertheless, both from a constitutive and geometric point of view, the validity of most of the
models thus obtained must be mathematically justified.

In this regard, a considerable effort has been made over the past decades by many au-
thors to derive new models and justify existing ones using the asymptotic expansion method,
the foundations of which can be found in [35]. Previous work by Ciarlet and Destuynder [14]
showed the equilibrium states of a thin plate ) x (—&,¢) under an external force where
is a smooth domain in R? and ¢ is a small parameter, to justify the two-dimensional model
of plate bending. A similar method is used recently for problems of general elastic shells in
unilateral contract without friction with an obstacle (see for instance [31, 38]). In addition,
the piezoelectric beam models were justified in [46] using the asymptotic expansion method

followed by rigorous convergence results.

Asymptotic methods represent a powerful tool for studying and modeling thin elastic
bodies. In recent decades, many related articles have been written for similar problems with
the friction boundary. For instance, the work of Bayada and Lhalouani [4] where they in-
vestigated the asymptotic analysis for a unilateral contact problem with Coulomb friction
law between an elastic body and a thin elastic soft layer. Likewise, the authors in [5, 33]
considered the theoretical analysis of a friction contact between two elastic bodies in a sta-
tionary regime in three-dimensional thin domain with Tresca friction law. Additionally, the
asymptotic analysis of dynamical problems of isothermal and non-isothermal with nonlinear
friction law are proved in [6, 40]. Ultimately, Dilmi and Benseridi [18] showed the asymp-

totic behavior of an electro-viscoelastic quasi-static problem in a thin domain with friction
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modeled by Tresca’s law.

On the other hand, several works are interested in the study of the asymptotic analysis
of incompressible Newtonian and non-Newtonian fluids in stationary and dynamic regime
in three-dimensional thin domains. For this, the authors of [4, 9] studied the asymptotic
behavior of a Stokes flow with boundary friction conditions and obtained the generalized
Reynolds equation for the limit problem. The asymptotic convergence of the Stokes flow
with the Fourier and Tresca boundary conditions when one dimension of the fluid domain
tends to zero has been studied in [10]. Recently, some authors have proved the asymptotic
analysis of the isothermal thin-film Bingham fluid with Fourier and Tresca boundary condi-

tions see [7, 8, 19].

The objective of this thesis is the study of the asymptotic behavior of some boundary
value problems for a fluid, piezoelectric and elastic materials in the stationary and dynamic
regime occupying a bounded three-dimensional thin domain 2°, when the thickness ¢ tends
to zero. The boundary I'® of this thin domain consists of three parts: the bottom, the later
part, and the top surface.

It is then considered that at the bottom, the normal displacement or the normal veloc-
ity is equal to zero. However, the displacement or the tangential velocity is unknown and
satisfies the boundary conditions of type Tresca or Coulomb. On the later and top parts, we
have Dirichlet boundary conditions. The weak form of problems is derived from a variational

inequality [21].

The main parts of this thesis can be summarized as follows.
Chapter 1. In the first chapter, we introduce some necessary notations and recall some
fundamental definitions and theorems on functional analysis, including, Sobolev’s embed-
ding theorem, the basic semi-continuous lower convex definitions, differentiability functions,
and Gronwall’s lemma, which will be needed to prove our main results. The basic tools
presented in this chapter are standard and can be found in many functional analysis books.

For further information in the field we suggest to the reader to books [1, 12, 16, 26, 39, 43, 47].

Chapter 2. In this chapter, we are interested in the asymptotic analysis of an incom-

pressible fluid in stationary regime in the thin domain Q° C R? governed by the Brinkman

vi
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equation ([2, 13]) with the Tresca nonlinear friction condition type.

The complete problem we are studying can be formulated as follows.

e

—pAuf + Vpf + u(af)? = f¢ in QF,
div(u®) =0 in QF,
u*=0 onl%,
¢ u*=0 only,
u*.n =0 on I},
log| < k* => uZ = s,

on Fb,
lo¢| = k*f = 3IX >0, v =s— Aot

where f¢ is the external force.

First, we give the related weak formulation of the problem. Then, we discuss the existence
and uniqueness theorem of the weak solution. Next, we study the asymptotic analysis
according to the change of the variables z3 = £ to transform the initial problem posed in
the domain €2° which depends on a small parameter ¢ into a new problem posed on a fixed
domain {2 which is independent of €. Then, we find some estimates on the velocity and
pressure which are independent of the parameter €. We obtain further the main results
concerning the existence of a weak limit (u*,p*) of (u®,pf) such that (u*,p*) satisfies the
weak form of the Reynolds equation

/ [h—3Vp b (z) — Vst@)+ 6 (@U*(x, By — /h U*(x,t)dt)
12p 2 2 0
-I-ﬁ(:c)] Vo(z)dr =0, Vo € H(Q),

where

1 h(zx)
Flz) = / F(z,t)dt — —F(m b,
“(a,1) / / ui (4,6)d8dC,  F(y,t) = / / 7w, 6)dbd,
and, we give precise characterization of the limit form of Tresca boundary conditions

plrt| <k =>s*=s

~ a.e. on I'y,
plm™|=k=3IA>0,s* =s+ A"

where

s*(z) = u*(z,0) and 7*(x) = P (z,0).

Vil
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In thin ends, the uniqueness of the limit velocity and pressure distributions are established.
This result has been published in the paper [37].

Chapter 3. We consider a piezoelectric body with Coulomb free boundary friction con-
ditions in the stationary regime occupying a bounded domain of R3. The electro-elastic

constitutive law is given by

o (uf, ¢%) = 2ufd(uf) + Netr(d(u®)) I3 + (F€)TV® in QF,

DE(’U,E, (PE) — _IBEV(PE + 35d(u5) iIl Qe,
where %, A° are the coefficients of Lamé, I5 is the identity, §° = (efjk) is the third order
piezoelectric tensor (F¢)7 is the transpose of the tensor §¢, 3° denotes the electric coefficient

of permittivity and d(u®) = (d;;(u®)) is the linearized strain tensor, d;;(u®) = 3 (g:f + giwz).

In the first step, we show the variational formulation of the problem and prove its unique

weak solution, the theorem of existence was established in [22]. After that, we study the
asymptotic behavior of the displacement and the electric potential according the change of
variable T3 = £, we transform the initial problem posed in the domain ©° into a new problem
posed on a fixed domain 2 independent of the parameter €. Using the scaling change we
find some estimates and prove that the limit solution satisfies also a variational inequality.

Moreover, these estimates will be useful to obtain a weak form of the limit problem and the
limit of Coulomb boundary conditions

/w [/ / / €33 5¢ dﬁdz] V¥dz
e /"a&;g; i) + 7| vrae 0w e,

|ZZ’7’* +é\3i3ﬂ*| < /]{; |R(é\333ﬂ*)| = s* = S,

a.e. on w
|ur* + ezizm*| = % |R(€3337r*)| = 3\ > 0 such that s* = s+ A\ (ur* + €337*),

where

~ h h
F=/0 Fi(z, z)dz — 5 Fi(z,h), Fi(z,z)= //fzmé?dﬁdﬁ, i=1,2,

Ou * = p*(z,0), T = %l;(x, 0).

s* =u*(z,0), ™=

Finally, we prove the uniqueness of solution of the limit problem.

Chapter 4 This chapter is devoted to the study of the asymptotic behavior for transmission

viil
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problem in a dynamic regime in a three dimensional thin domain ¢ = Qf U Q2§ with Tresca
friction law. In fact, we take materials with Hooke constructive laws with nonlinear dissipa-
tive term. We give the related weak formulation of the problem and explore the theorem of
existence and uniqueness of the weak solution. By the same change of scale as in the two
previous chapters we carry out the asymptotic analysis. Then, we established some esti-
mates independent of the small parameter € by using the Korn and Poincaré inequality also
we prove convergence theorem. Furthermore, we obtain the following limit problem with a
specific weak form of the generalized equation
. 0s} 0s}
ot ot

a.e.on w x 0,7
Os¥  0s}
|| = & = 3B > 0 such that % — % = s+ By,

h 0
/ (F + G+ m/ ui(z,y,t)dy + uz/ uz (2, y, t)dy) Vy(z)dz’ =0, Vi € H' (w),
w 0

—h
where
*
al: (@,0,t), 1=1,2,

h h
F= / F(a',y, t)dy — hF(, g,), G = — / (@', y, O)dy + hG(@',y, 1)
0 0

sj(z,t) = uj(z',0,t) and 7} (z,t) =

The analysis of this problem has been recently published in [36].

1X



Chapter 1
Mathematical tools

The objective of this chapter is to recall the knowledge of functional analysis which will be
used in subsequent chapters in this thesis. The results are stated without proof, since they
are standard and can be found in many references. Nevertheless, we pay particular attention
to the results which are repeatedly used in the next chapters, including the Holder inequality,
the weak convergence, and among others. Most of them are concerned with different spaces

of functions.

For this chapter, we can take designating a bounded Lipschitzian domain of R? provided

with the Lebesgue measure dz.

1.1 Some functional spaces

Sobolev spaces play an important role in the study of elliptic and hyperbolic partial differ-
ential equations. In the theory of hyperbolic evolution equations, it is necessary in general

to make the time variable and the distinct roles to the time variable and the space variables.

A Lipschitz domain or domain with Lipschitz boundary, is a domain in Euclidean space
whose boundary is ”sufficiently regular” in the sense that it can be thought of as locally
being the graph of a Lipschitz continuous function. Many of the Sobolev embedding theo-
rems require that the domain of study is a Lipschitz domain. Consequently, many partial

differential equations and variational problems are defined on Lipschitz domains.



1.1. SOME FUNCTIONAL SPACES

1.1.1  L*(Q2) Spaces
In this subsection, we consider the Lebesgue space LP(2)

Definition 1.1.1 [12] Let p € [1,00[, we call the Lebesgue space LP(Q2), the set

LP(Q) = {u : Q@ —> R is measurable and / lulP dz < oo} .
Q

This is a normed space, with the norm is denoted by ||.||, (or II]I L,,(Q)) is defined by

full, = ( |u(x)|pdx)’l’.

If p=00 and u : Q@ — R measurable, then we define the space L*°(2) by

u 1is measurable and there exist a constant C
L) =<u:Q—R .

such that |u(z)| < Ca.e. on Q

This is normed space with norm
|ull foo(y = E{C; |u(z)| < C a.e. on}.
Notation. Let 1 < p < 0o, we denote by g the conjugate exponent of p i.e. % + % =1
Theorem 1.1.2 (Fisher-Riesz) [12] L? is a Banach space for any p, 1 <p < oo.
Corollary 1.1.3 Ifp =2, L?(Q) equipped with the inner product
(u,v) = / wvdz,
Q
is a Hilbert space.
Theorem 1.1.4 (Separability ) [12] LP(2) is separable space for any p € [1, 00|.
Theorem 1.1.5 (Reflexivity,) [12/ LP(Q) is reflexive space for any p € |1, c0].

Definition 1.1.6 [12] We denote by C, the space of continuous function on Q with compact
support in €, i.e.
C(Q)={feC(Q);f(x)=0 Vz € Q\ K where K C Q is compact}.
C*(Q) is the space of function k times continuously differentiable on Q (k > 1 is an integer)
C=(Q) = MC*(Q),
G5 () = CH(Q) N C(9),
C () = C=(Q) N Co().

2



1.1. SOME FUNCTIONAL SPACES

In this thesis, we write D(2) instead of C°(12).

Theorem 1.1.7 (density) [12] The space D(R2) is dense in LP(Q2) for any 1 < p < oco.

Theorem 1.1.8 (Dual of L?(2)) [1] Let p be a real number such that p € ]1,00[. The
topological dual of LP(2) is (LP(2))' = L(R2).

Proposition 1.1.9 [1] The dual of L*(Q) is L®(Q).

Theorem 1.1.10 (Young’s inequality) [12/ Assume that 1 < p,q < oo, and % + % =1
we have

1 1
ab < —a? + -b? Va, b > 0.
b q

Theorem 1.1.11 (Holder’s inequality) [12] Assume that u € LP(Q) and v € LI(2) 1 <
p < o0o. Then uv € L*(Q) and moreover

lwvll ) < llull o) 191l Loy -
In the case p = 2 and hence q = 2, Hélder inequality is nothing else than Cauchy-Schwarz
inequality

luvll @) < lull 2 101l L2y -

1.1.2 The Sobolev spaces and embedding theorem

Definition 1.1.12 [12] Let p € R, with 1 < p < oo, the Sobolev space WIF(Q) is defined
to be

3G1, G2, Gs € LP(Q) such that
WLP(Q) — {U c Lp(Q) gl 92 g3 ( ) SUucC a },

Jause == JoGip Yo € D(@) i=1,2,3
for u € WHP(Q) denote

ou
axi

=g anqu=(au Ou au).

91’ Oxy’ O3
The space WP(Q) is equipped with the norm

(7

0 If1 <p< oo,
8xi

Lr(2)

3
ull o = Il oy +
=1



1.1. SOME FUNCTIONAL SPACES

or sometimes, if 1 < p < 0o, with the equivalent norm

3
ou
I (nunzp(g) £
i=1

896,-

1
P P
L”(Q)) .

We set
HI(Q) = Wl’z(Q).

The space H*(Q) is equipped with the scalar product

2 /0u v
(u, ) = (4, V) 2y + (—,—) ,
8 o ; 0; 0%/ 12(0)

and with the associated norm
1
2 2
2) .

3
2
1l ) = (IIUIlz +>

i=1

ou
8.’1Ii

The space of Sobolev H*(QY) is Hilbert space.

Proposition 1.1.13 [12] The space W'?(Q) is a Banach space for 1 < p < oco. It is

reflezive for 1 < p < oo and separable for 1 < p < co. The space H(Q) is a separable

Hilbert space.

Definition 1.1.14 [12] Let 1 < p < oo. The space Wy (Q) desing the closure of C1(Q) in

W2(Q) (we do not define Wy for p=00). Set

Hy () = W (Q).

The space Wy (), is equipped with the norm of W'?(Q) is a separable Banach space, it is

reflexive for (1 < p < 00). The space H}(SY) is equipped with the scalar product of H'() is

a separable Hilbert space.

Definition 1.1.15 [12] The dual space of W, *(Q) (1 < p < o0) is denoted by W—4(Q),

and the dual space of Hi(Q) is denoted by H(Q).

Remark 1.1.16 The dual of L*(Q) is identified with L*(Q). We have inclusion

Hy(Q) C L*(Q) c HY(Q),
where these injection are continuous and dense.

4



1.1. SOME FUNCTIONAL SPACES

Theorem 1.1.17 (Poincaré’s inequality) [12] There exists a constant Cq > 0 such that
ullze) < CallVullpoq), Vu € WyP ().
where C' depending on ).

Theorem 1.1.18 (Korn’s inequality) [89] In L?(Q) version, can be stated as follows.
There exist Cx > 0, such that

3
> ldi@)lga +lIvloe > Cx vlig  WoeV,

,j=1

where
1

V ={ve Q) :d;) € L(Q)}, dyj(v) = 2 (

a’l),,; 4 8”0_7'
6$J~ 8567, '

We now recall some results concerning Sobolev embeddings.

Theorem 1.1.19 (Sobolev embedding Theorem) [16] Let Q@ C R™ be a bounded open
set with Lipschitz boundary. We have

o Ifp e [l,n[, then WHP(Q) C LY(Q) for every q € [1 ﬂ].

' n—p
o Ifp=n then W'"(Q) C LY(Q) for every g € [1,00).
e Ifp € n,o0[, then WP(Q) C L*(Q).
all these injection are continuous.

Theorem 1.1.20 (Rellich-Kondrachov Theorem) [16/ Let Q@ C R™ be a bounded open
set with Lipschitz boundary. We have

e Ifp € [1,n], then the injection of WYP(Q) in LY(Q) is compact for every q € [1, nn—_’;)].
o If p = n then the injection of W™(Q) in LI(S2) is compact for every q € [1,00).
o If p > n, then the injection of WP(Q) in C(Q) is compact.

In the next paragraph, we will define the Sobolev space consists of the function in LP({2)
whose partial derivation reaches the order of m (with m € N) in the sense of distribution.

For these derivatives, we set a = (i, ...,an) and |a = N

=

L @. Moreover, we use the

notation
olely

D*y= ——————.
0%x;...0°NL N

5



1.1. SOME FUNCTIONAL SPACES

Definition 1.1.21 [43/ Let m € N and 1 < p < oo the Sobolev space W™P(Q2) defined by
Wm™P(Q) ={ue LP: D% € LP(Q) VYa with |a| < m}.

The space W™P(QQ) endowed with norm

1

[Cociatgm 1Dl |” 3 1<p < o0,

maxo<ja<m | D[] poo(qy o P = 00,

lellyms =

is a Banach space. For p € |1, 00| space is reflexive.
Proposition 1.1.22 [12] The space H™(2) = W™2(Q) and endowed with the scalar product

(u, V) gm() = Z (D*u, D%u) 2(q).

0<|a|<m

Supplied with the norm

[ 1

a 12
||U||Hm(n): Z |D U’“L2(Q)

0<]al<m
Trace operator

Now, we study the trace theory for function belonging to a Sobolev space H'(Q).

Theorem 1.1.23 [26] Let Q be a Lipschitz domain of R3. There exists unique linear con-
tinuous operator
¥ : HY(Q) — L?(09).

The function you, also denoted by u,,, defined on a dense subspace C*(Q). u),, s called the
trace of u on O).
Now, we define

H3(09) = {ujp, : u € HYQ)},

and can be endowed with the norm

191,13 o) = IE Nl @y € HAQ) 5w = ).

The most important properties of the trace are the following
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(i) If u € HY(Q), the in fact uy,, € H2(dQ) is surjective from H'(Q) and

(ii)) We have Green’s formula

auvda:—— u@u

d:L'—I—/ wv(77.6)ds, Yu, v e HY(Q),
o0

where dé is the surface measure on OS2 and 1 is the outward unit normal to 02. Note

that the surface integral has a meaning since u, v € L2(09).

In particular, if u € HY(Q), v € H2(Q), we have half Green formula

/ uAvdzx + / VuVudzr = %vdé.
Q Q aq ON

1.1.3 Vector valued function spaces

We shall need the spaces of vector-valued functions in studying time-dependent variational
problems.

Let X is a Banach space and [0, 7] will denote the time interval of interest, for T > 0.

Definition 1.1.24 [43] For 1 < p < co. LP(0,T;X) is the set of (class of almost every
where equal) measurable function u :|0,T[ — X such that ||u| x € LP(0,T), and

1
T P
lollorn = ([ Tl )" 1< <

||“||L°°(0,T;X) =ess sup |lu(t)|x ifp=oo.
t€]0,T[

When (X, (.,.)x) is a Hilbert space, L?(0,T; X) is also a Hilbert space with the inner product
given by

() = [ (), o0

Definition 1.1.25 [43] The space C ([0,T];X) comprises all continuous function
u:[0,T] — X with the norm

lellogoma = gmas, (el

C([0,T); X) is Banach space.
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Proposition 1.1.26 We have
1. I*(0,T; X) is a Banach space for 1 < p < oo.
2. If X is a reflexive space for 1 < p < oo, if q satisfy % -I—% =1, then L*(0,T;X) is a
reflexive and its dual is identify algebraically L9(0,T;X).
3. If X is separable space for 1 < p < oo, then LP(0,T; X) is separable.

Theorem 1.1.27 (Aubin) [41] Let Xo, X, X; be three Banach spaces and suppose that
Xo and X; are reflexive. Xo C X with compact injection and X C X; with continuous

injection. Let pg,p1 > 1. Consider the space
d
B = {u € LP(0,T; Xo); — 6 LP(0,T; Xl)}

endowed with the norm

du
dt

Then the ingection of B into L*°(0,T; X) is compact.

lullg = ”u’”LPO(OTXo) +

L~ (OvT;Xl)

Lemma 1.1.28 (Simon) [41] Let Xy, X1 X be three Banach space such that Xo C X with

compact injection and X C X; with continuous injection.

e Ifu is bounded in LP(0,T; Xo) and 2* is bounded in LP(0,T;X;) where 1 < p < oco.
Then u is relatively compact in L*(0,T; X).

o Ifu is bounded in L*(0,T; X)), % is bounded in L"(0,T; X;) where v > 1. Then u is

relatively compact in C([0,T]; X).
Theorem 1.1.29 (Bochner) [47] A strongly measurable function u : [0,T] — X is inte-

grable if and only if ||u||y is integrable, and

T
0 < [ oy
X 0

Theorem 1.1.30 Let (X, (.,.)x) is a Hilbert space and v : 10, T[ — X is the function such
that u € LP(0,T; X) and % € L?(0,T; X) for some 1 < p < co. Then

1. The mapping t — ||u(t)|| x is absolutely continuous. With

@ o)l =2 (‘f;t‘( ),u(t))X ae. in ]0,T[.

2. 5 lu@®ll = 5 @)% + fo (5 (5),u(s) x ds ¥t €10, TT.

8



1.2. FUNCTIONAL ANALYSIS REMINDERS

1.2 Functional analysis reminders

In this section, we give some preliminaries on weak convergence and weak star convergence,
convex functions, and lower semi-continuous functions. We also present some notions related

to the differential and sub-differential.

1.2.1 Weak convergence and Weak star convergence

we now turn our attention to the notion of convergence. Let X is a Banach space and X’
the dual space of X and denote (., .) the duality product between X and its topological dual
space X'.

Definition 1.2.1 (Strongly convergence) A sequence u, is said to strongly converge to
u if up,u € X and if

nli_IPOO [[tn — ullx =0,
we will denoted this convergence by u, — u in X.

Now, Let’s recall some definitions and results on weak topology

Definition 1.2.2 (Weakly convergence) [47] A sequence u,, is said to weakly converge
to u if up,u € X and if

lim (un,v)XxX: = <U,U>Xxxl, Yv € X,.
n—>-oo

This convergence will be dented by u, — u in X.

Proposition 1.2.3 [12] Let u,, be a sequence in X. Then
1. If u, — u strongly in X, then u, — u weakly in X.
2. If u, — u weakly in X, then ||u,| 5 is bounded and ||u|| 5 < nli_r)nooinf l|%n |5 -
3. Ifu, — u weakly in X and if v, — v strongly in X', then (U, vn) xxx — (U, V) xx X"

Theorem 1.2.4 (The compactness properties of reflexive space) [12] Assume that X
is a reflexive Banach space and let (u,,) be bounded sequence in X. Then there exists a sub-

sequence (unk) that converges weakly to u in X.



1.2. FUNCTIONAL ANALYSIS REMINDERS

Definition 1.2.5 (Weak * Convergence) [47] A sequence u, in the dual space X' of a

normed linear space X is said to be Weakly* converge to u € X' if:

lim (v,u, —u)xxx =0, Vv € X,
n—oco

will denoted by u, = u in X'.
Proposition 1.2.6 [12] Let (u,) be a sequence in X'. Then
1. If u, — u strongly in X', then u, — u weakly* in X'.
2. If up, = u weakly* in X', then |un||x, is bounded and |u||y < lim_inf l|tn || 7 -

3. If up, = u weakly * in X' and if v, — v strongly in X, then

<unavn>X’><X — <U, 'U>X’><X-

Corollary 1.2.7 [12] Let X be a separable Banach space and let (u,) be a bounded sequence

in X'. Then, there erists a subsequence (unk) that converges weakly* to u in X'.

1.2.2 Lax-Milgram theorem

We introduce in what follows some useful results which are valid in Hilbert spaces. This

concerns the Riesz representation theorem and Lax-Milgram Theorem.

Definition 1.2.8 (Bilinear form) [12] Let X be a vector space. A scalar product (u,v)
is a bilinear from X x X with values in R (i.e., a map X X X to R that is linear in both

variables) such that
(u,v) = (v,u) Yu,v € X (symetry),
(w,u)>0 YueX (positive),
(u,u) #0  Yu#0 (definite).

Theorem 1.2.9 (Riesz representation theorem) [12] Let X be a Hilbert space and ¢ €
X' there exist unique f € X such that

(p,u)y = (f,u) Yu e X.

Moreover,

el = NI fllx -

10



1.2. FUNCTIONAL ANALYSIS REMINDERS

Definition 1.2.10 [12] Let X be a Hilbert space. A bilinear form a : X x X — R is said
to be

1. Continuous, if there is a constant C' such that

la(u,v)| < Clu||v|] Vu,ve X.

2. Coercive, if there exists a constant v > 0 such that

a(u,u) > v|ul> Yue X.

Theorem 1.2.11 (Lax-Milgram) [12] Assume that a(u,v) is a continuous coercive bilin-

ear form on X. Then, given any ¢ € X', there exist a unique element v € X such that

a(u,v) = (p,v) Yv € X.

1.2.3 Schauder fixed point theorem

In this subsection, we discuss a fundamental fixed theorem on Banach spaces-complete
normed spaces, the Schauder fixed point theorem.
The Schauder fixed-point theorem is an extension of the Brouwer fixed-point theorem to

infinite-dimensional spaces.

Theorem 1.2.12 [25] Let C be a compact convez set in a Banach space X and let T be a

continuous mapping of C into itself. Then has a fized point, that is Tx = = for some z € C.
We note the following extension of Theorem 1.2.12.

Corollary 1.2.13 [26] Let C be a closed convez set in Banach space X and let T be a
continuous mapping of C into C such that the image T(C) is precompact. Then T has a

fixed point.

1.2.4 Convex lower semi-continuous function

The convex lower semi-continuous function represents a crucial ingredient in the study of
variational inequalities. Let j(.) defined on a vector space X with values in |—o0, 400].

Recall the following definition.

11



1.2. FUNCTIONAL ANALYSIS REMINDERS

Definition 1.2.14 [12] A function j(.) is said to be convex if
J(1=tu+tv) < (1 —-1t)j(u) +tjv), foralu,veX, tel0,1].

the function j(.) strongly convez if the last inequality is strict for u # v and t € (0,1).
For all function j : X — |—00,+00] so that j take the value +00 (but —oo is excluded).
We denote by D(j) the domain of j, that is

D(j)={veX; j) < +4oo}.
The epigraph of j is the set
epi(j) = {lv,\] € X xR; j(v) < A}
It is clear that we can establish the following prosperity
1. j(.) 4s proper if and only if D(j) # 0.
2. The domain of j(.) is a convez set of X if j(.) is conver.

3. If §(.) is a convex function, then epi(j) is a conver set in X x R.

Definition 1.2.15 [12] Let X is topological space. A function j : X — |—o00, +00] is said

to be lower semi-continuous (I.s.c) if for every A € R the set
{ve X; jv) <A} is closed.

We shall use some elementary prosperity of I.s.c functions.

Proposition 1.2.16 [12] Let j: X — R. Then

(i) If j is Ls.c, the epi(j) is closed in X X R, and conversely.

(i) If j is Ls.c, then for every v € X and for every € > 0 there is some neighborhood V,,
of v such that
ju) > j(v) —e Yu eV,
(#i) If j is Ls.c, then for every (u,) in X such that u, — u, we have
lim inf j(un) > j(u).

12



1.2. FUNCTIONAL ANALYSIS REMINDERS

1.2.5 Differentiability

Hereafter X denotes a Banach space and (.,.) is the duality product between X and its

topological dual space X . We now recall the definition of Gateaux differentiable function.

Definition 1.2.17 [43] A function j : X — |—00, +00] is Gateaus differentiable at u € X
if exists an element Vj(u) € X such that

g JuF 1) = (@)

t—0 t

= <Vj(u),U>X/XX VU € X.

The element Vj(u) is called the differential in the sense of Gateauz of j at u. The function
J(.) is said to be Gateaux differential if it is Gateauz differentiable at every point of X. In
this case the operator Vj : X — X' which maps every element u € X into the element
Vj(u) is called the gradient of j.

The convexity of Gateaux differentiable function can be characterized as follows.

Proposition 1.2.18 [43] Let j : X — R be Gateauz differentiable function. Then the

following statement are equivalent.
(i) j is a convex function.
(i1) j satisfies the inequality

j() — j(uw) > (Vj(u),v — u)xxx Yu,v € X.

(111) The gradient of j(.) is a monotone operator, that is

(Vi(u) — Vi), u —v)xxx >0 Vu,veX.

Definition 1.2.19 We say that the function j : X — ]—o00,+00] is sub-differential at a
point w € X such that

jlu) — j(v) > (w,u—v)xrx Vv EX.

The element w is then called a sub-gradient of j in u and the set of sub-gradients of j in u

is called the sub-differential of j in u and is noted 0j(u), with
0j(w) = {w € X';j(u) — j(v) > (w,u — v) x5, YvEX}.

13



1.3. GRONWALL’S LEMMA

We note by D(0j) the set define by
D(05) = {v € X; 9j(u) # 0}.
Using the two last equations and the definition of the domain of a function, we obtain
D(83) € D(j)-
The function j(.) is said to be sub-differentiable if it is sub-differentiable at any point of X,
i.e. D(05) =X.

Corollary 1.2.20 [43] Letj : X — |—00, 4+00] be a convez Gateaux differentiable function.

Then, j is lower semicontinuous.

Corollary 1.2.21 Let j : X — |—00,+00] be a convex Gateauz differentiable function.

Then, j(.) is a sub-differentiable, and we have

9j(u) ={Viw)}, Yue X.

1.3 Gronwall’s Lemma

At the end of this chapter, we review the Gronwall lemmas which are used in many boundary
problems, in particular to establish the uniqueness of the solution, as well as to form and to

form the a priori estimates.

Lemma 1.3.1 [27] Let u(t) and o(t) be nonnegative, continuous function on 0 < t < T,

for which inequality
t
o) < a+ / o(s)p(s)ds, Vi € [0,T].
0

holds, where a is a nonnegative constant. Then

o(t) < aexp ( /0 t’u(s)ds) e o]

Lemma 1.3.2 Let u(t) and v(t) be nonnegative function for all t € [0,T)], such that u,v €
C(0,T;R) and let a nonnegative constant. Consider a function p € C(0,T;R) such that

t

o) <a+ /Otu(s)ds +/0 v(s)p(s)ds, Vt € [0,T].

o(t) < <a+ /0 tu(s)ds) exp ( /0 tv(s)ds), Ve [0,7].

14
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Also, if u = 0 the Lemma 1.3.2 we get the Lemma 1.3.1

Lemma 1.3.3 Let u,v € C(0,T;R) such that u > 0 and v > 0 for all t € [0,T], a is

nonnegative constant. Let also ¢ : [0,T] — R be a function such that

%cpz(t) < a+/0 u(s)p(s)ds +/0 v(s)p?(s)ds, Vt € [0,T].

lp(t)] < (a+ /Otu(s)ds) exp (/Otv(s)ds) , Vte[0,T].

In particular, If u = 0 le Lemma 1.3.3 becomes.

Then,

Corollary 1.3.4 Let v € C(0,T;R) such that v > 0 for all t € [0,T] and a > 0 constant.
Let also ¢ : [0,T] — R be function such that

%soz(t) < a+/0 v(s)¢*(s)ds Vt € [0,T].

Then, ,
lot)| < aexp (/0 'U(s)ds) vVt e [0,T].

15



Chapter 2

Analysis for flow of an incompressible
Brinkman-type fluid in thin domain

with friction

In this chapter, we study the convergence asymptotic of an incompressible Brinkman-type
fluid in a thin domain with Tresca friction on the bottom surface. In Section 2.1, we discussed
the variational formulation of the problem and the results of the existence in addition to
the uniqueness of the weak solution. Following [3, 6, 8], we introduce a new scaling taking
into account the small parameter ¢. In section 2.2, using the scale change and unknown
news to conduct the study on a fixed domain 2. Then we prove after an explicit work
different inequalities for the solution (u®,p®) which the thickness becomes infinitely small in
the formulation variational. Finally, these estimates allow us to have the limit problem, the

Reynolds equation and establish the uniqueness of the solution.

2.1 The problem statement

In this section, we give an overview of the thin domain. Next, we introduce the problem
considered in this domain. Finally, we explore the theorem of existence and uniqueness of

the weak solution.

16



2.1. THE PROBLEM STATEMENT

2.1.1 The domain

We denote by (z,x3) the vector of R® whose z = (z;,%2) is the generic vector of R? and
x3 € R.

Let I'y a domain of the x plane and h a bounded continuous function defined on T, with
h of class C! such that 0 < h,, < h(z) < hys, V(2,0) € Ty . The fluid is contained between
the lower I'y and the upper surface T, defined by z3 = eh (z). Let

Qf = {(z,z3) € R® such that z € T, and 0 < % < h(z)},

where € € ]0,1[ is a small parameter that will tend to zero. The boundary of Q¢ is I'* =
T, UT, UT;, where I§ is the lateral boundary.
Let v = (v1,v2,v3) = (0,0,—1) the unit outward normal to the boundary I'*. The

normal and tangential components of u¢ are given by

€ __ ,,€ — 0i€q,. € __ € _ €y,
U, =u .V =14y, un—ui U, V.

Similarly, for a regular tensor field 0°, we denote by o and o2 the normal and tangential
components of o¢ given by

&
v

€

— g — & 1/ p— & L g
= (0°.v).v = ojv;, 05, = 05Vj — 0

o v

v;.

2.1.2 Basic Equations

The boundary-value problem describing the stationary flow for incompressible Brinkman
fluid is described by:

The law of conservation of momentum
—div(0®) + p(af)’u® = f° in QF, (2.1)

where f€: Q° — R3 is the external force and (af)~2 is the permeability.

The stress tensor o is decomposed as follows
ous  Oug
or j 8.’1,'1

where u°, p°, and p are the velocity field of the fluid, the pressure, the viscosity, and d;; is

1
Uisj = —p®0i; + 2pd;;(uf), dij(u®) = 5 ( ) (1<4,j5<3), (2.2)

the Kronecker symbol, given by
1 if 7=j,
555 = ’
0 if ¢#j.

17



2.1. THE PROBLEM STATEMENT

The incompressibility equation:
div(u®) =0 in Q°. (2.3)

Our boundary conditions is described as.

e On I, no-slip condition is given. The upper surface is assumed to be fixed as
u® = 0. (2.4)
e On I, the velocity is known and chosen parallel to the I',-plane
u® =0. (2.5)
e On T, there is no-flux condition across I'y so that
u.v=0. (2.6)

The tangential velocity on I', is unknown and satisfies Tresca friction law with k° (see [20])

upper limit for stress

log| < k* = us = s,
log| = k* = 3IA >0, v =s— Aoz,

T

on I (2.7)

where |.| denotes the R? Euclidean norm, s is the velocity of lower surface.

In order to give the variational formulation of the strong problem, we establish the

following lemma.

Lemma 2.1.1 The boundary condition of Tresca (2.7) equivalent to the following punctuated
relation

loZ| < kf, (u* —s)oi+k|u®—s|=0 onT,. (2.8)

The proof of the Lemma 2.1.1 can be found in [21].

2.1.3 Weak formulation

We introduce the following functional framework:
Ef = {v e (H'())® such that v =0 on TE UT$, v.v =0 on I},
v = 1V € E® such that div(v) =0 in Q°},

L%(9°) = {q € L*(£¥) such that / qdzdzs = 0}.

13
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2.1. THE PROBLEM STATEMENT

To simplify the writing, we note

a(u®, p) :/ 2udij(u5)d¢j(<p)dxdac3—|—u/ (®)*uspidzdas, (2.9)
(pe di’ugo) :/ p55¢'i(<,01 — uf)dzdzs (2.10)
’ Qe JaLL'j ' ’
we define the functional j by
i) = [ Kle—sldz, (2.11)
Ty
J is continuous and convex.
Finally, we note
(f"", <p) = / fipidxdzs. (2.12)
Qe

Lemma 2.1.2 Let u®, and p° be the solution of (2.1)-(2.7), then it checks the following

variational formulation problem

Find the pair (uf,p°) € ES;, x L3(Q°), such that

a(uf, p — u®) — (pe,dz"mp) + () — 5w > (fa,go _ u€>, Vi € EF. (2.13)

Proof of Lemma 2.1.2. Multiplying equation (2.1) by (¢ —u®), where ¢ € E° then

integrating over ()¢ and using the Green’s formula, we get
€ a & £ g
05ia— (pi — uf) dedrs — i (pi —u5) do
Qe a.’L'J e
+/ p(0f)?uf (i — uf) dodzs = ff (p; — ) dzdzs.
£ QS

According the boundary conditions (2.4) and (2.5), yields to

(2.14)

/rs oY) (pi —u;)dd = Uijj((pi —ug)dz.

Ty
Besides, as of;v; = 0% +oyv; and (p; — uf) v; = 0 on '}, we have
[ omei—wydsi= [ oz(o-uw)n
Ie Ty
The equation (2.14) be written as

€ a € =1 €
| o550 (o dadas = [ (o — ) e

Ty

+/ u(a6)2uf (pi — u;) dzdzs = ff (i — ui) dzdzs,
£ QE

19



2.1. THE PROBLEM STATEMENT

by adding and subtracting the term fl“b k® (| — s| — |u® — s|) dz, we find

0
/ Ufja_ (i — u7) dzdzs +/ k(o — 8| — [u® — s|) dz
Qe Z;

Ty

—/ ai(cp—ue)dx—/ k(| — 8| — |[u® — s|) d= (2.15)
Ty Ty

+ / p(f)?u (p; — uf) dzdzs = [ f5 (pi — uf) ddas,
=>4 QE
we pose

o= [ tlo—u)+ [ K (o=l =l —sl)ds
b

Ty
we use now Lemma 2.1.1, we show that

6= [ cto=s)+ [ Wlp—sldo 20
T T

/oi(so—s)dwz—/ 0%l —sldo > — [ k| — 5| da.
Ty Ty

Ty

Therefor, the equation (2.15) can be written as follows

0
/ Ufj—a (s — u5) d$d$3+/ k(o — s| — |u® — s|) dz
Qe T4 T

+/ p(a®)?us (p; — ul) dedrs > I7 (i — u;) dzdzs,
£ QE

We replaced o° by its expression (2.2) and as div(u®) = 0 in ¢, then we obtain the Lemma
212. =m

Theorem 2.1.3 If k* € LY(Ty) and f¢ € (L*(Q))%, then there exists a unique u® € ES;,
and p¢ € L2(Q€) (to an additive constant) solution to problem (2.13).

Proof of Theorem 2.1.3. Since our goal in this work is to prove the asymptotic conver-
gence of the problem posed, we only give the steps followed for the proof of this theorem.
Let ¢ € E5;, in (2.13), we have:
Find v® € Ej,,, such that

a(ut, 0 —ut) +3(p) = i(w) = (£5,0 —u), Vg € By, (2.16)
Using the Cauchy-Schwartz inequality, and Zf i1 |di;(u¥)|? < |Vus|’, we obtain that the

bilinear from a(.,.) is continuous

la(u®,v)| =/ 2,udij(u5)dij(v)dmdm3—l—/ p(af) ufvdrdrs
QE £

< o+ w(@)?) 16l M0l » V(uF,0) € (EBg)™
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2.2. DILATATION IN THE VARIABLE Xj

By Korn’s inequality, we obtain
3
2 2 2
a(u®,u’) = 20 ) Ildi(u?)lI72qe) + 1(e")? 16172
i,j=1
> min(2uCy, p(a®)?) ||u5||i11(95) , VU € Eg,,
where Cj > 0 independent of . We deduce that a(.,.) is coercive on E5,, x E3;,. Moreover
j is convex, continuous on Ej5,. This ensures the existence and uniqueness of u® € E,,

satisfying the variational inequality (2.16). In addition, using the techniques of [44], we can

prove the existence of pf € L2(QF) for which (uf, p®) is a solution of (2.13). =

2.2 Dilatation in the variable z3

For the asymptotic analysis we will use the dilatation in the variable x3 given by x3 = z¢,

then our problem is defined on a domain {2 does not depend on € given by:
Q = {(z,2) € R? such that x € Ty and 0 < 2 < h(z)},

and its boundary T =T, UT UT,.

After this change, here are the new functions defined on the fixed domain 2.

ﬁf(xaz) = uf(xax3) (Z = 172)7
1u§(;1;, x3), (2.17)

7°(z, 2) = e2p°(z, x3).

@(z,2) = &

Likewise for new data

f('xv Z) = 62f€(.'1,’,$3),
a = e, (2.18)
T = eke.

Following [9], we say that v = (v1,ve) € (L%(Q2))? satisfies condition (D) if

00 09 N
/Q (’Ula—ml + ’Uza—x2) dxdz =0 Vo e CO (Fb) (D)

Now, we define function spaces and sets on 2 we need in our considerations
E={ve (H'(Q)*:9=0 on T,UTI,, 9.v=0 on T},
E4yn={ve E: div(v) =0 in Q},
Hi or,(Q)={0€ H(Q):7=0 on T, UL},
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2.2. DILATATION IN THE VARIABLE Xj

[3(Q) = {q € I2(Q) : /qumdz - 0} ,
and

(E) = {¢ = () € (H @) : s € HQ), § = (4, ¥, ) € B,

S(E) = {¢ € II(E) : ¢ satisfies condition (D)},

09;
0z

V.= {¢ = (®1,9,) € (L*(Q))*: (Q), =0 on I', UFI}

1
2
L2<n>)) '

V,={®eV,: & satisfies condition (D)}.

V. be the Banach space with norm

2
09;
], = (Z (@ o+ |5

=1

We define its linear subspace

According (2.17) and (2.18), then the problem (2.13) leads to the following:

Problem 2.2.1 Find (@,p°) € E x L(Q2), such that

/ div(uF)dzdz = 0, Vq € L3(), (2.19)

2 . ame
ou;  Ou; 0
2 1 J _568.. )\ (5. — 7E
Z / ©H (83:j 6951-) P 6”) oz; (6i — @) dedz

ij=17%
2
865 2011//\63 6 —~ e 9 8 N .
+;/Q“(6z +€ 8%_) (82 (p; —us) +¢ ami(ws u3)) dedz
Y
Q
+Z“a /Ae(w’_%)dxd”s pa / uz)dzdz + j (P) — j (@)

> Z Fi(@; =) dzdz + ¢ | f3(Ps — 5)dwdz, V3 € E,
=1 /@ Q

where

i@ = [ Flp-sldo
Ty

Next, we present the lemma which is useful in establishing the priori estimates.
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2.2. DILATATION IN THE VARIABLE Xj

Lemma 2.2.2 We have

6@-(%} 2 8/\38’07, 2 81}]8/\3 8A38A3 .
Z/axiax,.d“’d”;/ax@dd ;/azax,ddz | o 5 0=,

1,7=1
(2.21)

for any v € Eg,.
Proof of Lemma 2.2.2. Let us denote for all ¥ € (CZ, (Q))3,

81)] Vi 6’\3 Vi 8’\ 8A3 663 81/)\3
I_Z/axzax]d zdz +Z/a 5, dodz +Z/a—a—%d zdz /Qaadmdz.

3,j=1

Using the density of C2 i, (Q) in Hf (), and the Green’s formula, we get
I= Il - I27

where

I = Z/ v,ujd6+2/aA3AV3d5+Z/ Ugujd5+/%@31/3d5

2,5=1

O3
I, = Z/amzaxjvzdxdz—i—Z/a vzd dz—l—Z/a o Usdrdz + N 2U3dggdz

1,j=1

Since div(v) =0 in €2, then I = 0 and as ¥ = 0 on I', U T}, we have

6A3,\ 8’1)3,\
Z 8 v,vjd<5 + Z/ V3d(5 + Z/ —’Uglljd(s + /b E’Ugl/g}d(s

z]lrb

On T, we have v = (0,0, —1) and from v.v = v3v3 = 0, we have

663 81/3
By = — = 1,2
8.’131;1/3 /036.%& Oa ? ) <y
8—631/ = —7; 52 =0
9z >~ 9z

as v3 independent of (zy,z3,2). Then I, = 0, we deduce that I =0. m

Now, we do the estimates of velocity u° then on the pressure 7 solution of our variational

problem in fixed domain.

Theorem 2.2.3 Assuming (2.17)—(2.18) the following estimate on u* is satisfied

2 2 2 2
2y ou; ‘Z s . oug 1 .| 0us
0%l 255102 Ml FHl0%illae) 2 102lme (222
& 1|72 + €°0% 185172y < C.
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2.2. DILATATION IN THE VARIABLE Xj

Proof of Theorem 2.2.3. Putting ¢ = 0 in (2.20), leads to

ous 3175]- .\ O
({5 2) ) S
’\6 7€
o5 [ (G o) (G
’\6 7€
—|—/ (2u6 %— ) 611; dwdz+2ua /AsAedwdz
Q

+e2ua® /Q usuzdrdz + j(u®) < Z / fiw;dzdz + ¢ / fsuzdzdz.

After that, using [, 7°div(@®)dzdz = 0 and j(T®) > 0, we have

o oz \ s o5 | L0\ (00,00
”21/“6 (00 32.) d‘”d”z/ (5 +<5) (52 + ') ot
+ / 2 0% 0 3d:vdz—|—z i / U drdz

0z 0z

+/,L62&2/i2§u’\€3dxdz < Z/ﬁu’fdxdz+s/£u’\€3dxdz.
Q ~ Ja Q

According to the Lemma 2.2.2, we get

pe — +u —t vus
1,j=1 axj L2(Q) =1 0z L2(Q) i—1 awz L2()
~¢c |12
2 |y T Wi+ 18 1 (2.23)

2
< Z/Qﬁu'\fdxdz+s/ﬂﬁ,ﬂ§dxdz.
i=1

We Apply the Cauchy-Schwarz inequality then the Young inequality, we obtain the following

/ fiu;dzdz+e / fsug

The Poincaré inequality, we give

2 7

2 ||~e)2
12() 2h%45 ”u3||L2(Q)'

h?
= o

22 2h2 ”AEHL"’(Q)JF Hf3

2
acdadz + ¢ / atdodz < M H“‘ a ‘ gt Bea|| %)
/Qf Qf3 3 / I2(Q) 2 6z 12(Q) 2 0z 12(Q)
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2.2. DILATATION IN THE VARIABLE Xj

Also, the equation (2.23) can be written as

2 2
2 i ) G N e |
6j=1 0%l 245 6z L2(Q) =1 awi L2(Q) 0z || r2()
N2 ||e 22 (1€ (12
+ua ”U ”L2(Q) + peto ||u3||L2(Q) < 2,LL Hﬂ L2(Q)

thus (2.22) follows. m

Theorem 2.2.4 Assuming (2.17) the followmg estimate on p° are satisfied

a’”z H-1(9)

where C1 and Cy the constants denote independent of €.

<eCy, (2.24)
H-1(@)

<Gy (i=1,2), (2.25)

Proof of Theorem 2.2.4. Let v € H}(Q), putting in (2.20) §; = @ (for s = 1,2) and

Z/”‘( az)ﬁ“

o~

3 = ug £ 1, we deduce

(2.26)
o OU3 ~\ O 2, ~2 [ ~¢ =
+ 2e*pp—= —p° | =—dxdz+e“pa usdzdz =€ | fspdxdz.
Therefore,
7€ 7€
/ As—dxdz = / e (82% + aau’) gd]'dmdz
i=1 Tio OFJ O% (2.27)
o Ou3 O 2,52 | s
+ 2 ME a—dxdz +ep u3¢dxdz —€ fgwdxdz
Using the Green’s formula and Cauchy-schwarz 1nequa.11ty, we obtam
1
~ 2 ~c |12 2 2 8/\5 2 2
/ aizpdmdz < |e'u Z 8u3 + & Z
q 0z 0z; || 12 8z 2
=1 (D) =1 L2 () (2 28)

oug
+2e2u .

2, ~2 (|5 r
+ e“pa ||u3||L2(Q)—I-€Hf3 L2(Q)] ||¢||H3(Q)-

L2(Q)
From Theorem 2.2.3, we deduce the inequality (2.24).
Taking in (2.20), @5 = U5 4, ¢ in Hy(Q); P2 = U5, P3 = U5, we have

500 _/a_@i L0 0y / o 0
6w1dxdz Q,u(az + €2 Dor 6zd xdz + “axlaxld xdz

€ €
+ / EN LG KL F A / @dedz — / Fipdedz.
Q 33’)2 83:1 6:}52

(2.29)
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2.2. DILATATION IN THE VARIABLE Xj

In the same way, the chose §; = U5, @3 = u§, and P = U + 1, ¥ in HF(Q), we have

e e ~
/p‘sa_wdxdz=/,u %4—52% a—wdxdz+/252,u%a—¢dxdz
Q 6$2 Q Q

e azaw 0zy ) 0z 0zy OTa (2.30)
2 1 2 ~2 [ =~¢ _ z
—I—/Qs 7’ (8x2 + 8$1) oz, dzdz 4 pa /Quzwd:cdz /Qf2¢da:dz.

We use the same technical in (2.29) and (2.30) to obtain inequality (2.25). =

Thanks to the estimations (2.22), (2.24) and (2.25), we have the following convergence

result:

Theorem 2.2.5 Suppose that the estimations (2.22), (2.24) and (2.25) hold. There exists
(u*,p*) = ((ut,ud), p*) in V, x L2(Q) such that we have the following:

W —ur weakly in V,, 1<i<2. (2.31)
6% — 0 weakly in L*(Q), 1<4,57<2. (2.32)
s%azg — 0 weakly in L*(Q). (2.33)

295 =0 weakly in L*(Q), 1<i<2 (2.34)
eu — 0 weakly in L3(Q). (2.35)

7°—p* weakly in L%(Q). (2.36)

Proof of Theorem 2.3.2. Using the estimate (2.22), there exist a constant C' independent

of € such that )
ou;

0z

+ @l <€ (i=1,2).
L)

we deduce that the (u5,u5) is bounded in V,. From thin one we get the existence of (u}, u3)
in V, such as

(a7, u3) = (uj, u3) in V..

To prove that u} € V, we have to check condition (D). As div(@) = 0 in €, we have for

all ¢ € C§°(w)

_ oi; om 0%\ [ (-0 - 0
0= /Qq(ac) (6:1:1 + 9%, + 5% dxdz = /Q ulaxl +u28$2 dzdz,
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2.3. STUDY OF THE LIMIT PROBLEM

because u*.v =0 on I', and u — u} in V,, i = 1,2, we obtain the condition (D) for u*
/Q (ula_xl + u28_502> dzdz =0, Vq € C5°(w).

Now, the convergences (2.32)-(2.35) follows from (2.22).
Finally, from (2.24) and (2.25), there exist a constant C' > 0 independent of € such that

||VI/5€||H—1(Q) <C.
Then, according [45, Proposition 1.2, p.14-15], there exist a constant C’ > 0 such that
”Z/)\EHL?(Q) S Cl ”Vﬁe”H—l(g) S CIC
So, there exists a subsequence (7°) converging weakly in L?(f2) to some p*, and

Moreover, p* € L3(Q) as LE(Q) is weakly closed in L%(2), also 7° — p* weakly in L2(Q2). m

2.3 Study of the limit problem

To reach the desired goal, we need the results of previous convergences.

We go to the limit in (2.20) and using (2.19) (¢ — 0), we find

2 N —~
our @ .. . (0p1 | 003

i1 Q 8x 1 8x2

2
+Zua/9u;‘(@—u;)dxdz+/ k(7 —s| - |u* —s|) dz (2.37)
=1

T
2
> Z/sz(@ — u})dzdz, Vo € II(E).
i=1

If & satisfy condition (D), the inequality (2.37) is reduced as follows

2 2
au: 8 o * ~2 * (A *
;=1 Qp o &(cpi —u})dzxdz + ;=1 po /Quz (Ps — uj)dxdz

. (2.38)
4 [((p—sl—lu = shio > 3 [ Fpi—udeds, vp e 5(B),
T = Jo
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2.3. STUDY OF THE LIMIT PROBLEM

Theorem 2.3.1 With the same assumptions as Theorems 2.2.8 and 2.2.4, the pair (u*, p*)

satisfies
p*(z1, T2, 2) = p*(21,22) a.e. inQ, p* € H'(Ty), (2.39)
62 * ap* 0 ~
= 4+ pdPur = f; in LA(Ty). 2.4
é)2+(,)wi+uozuz fi in L*(T) (2.40)

Proof of Theorem 2.3.1. We choose in (2.20), @3 = U5 £ with ¢ in H}(Q2) and §; = T,
(for i = 1,2) we give

ous ous\ oY ous oy
2 4 2 3 2 3 fan s
,u,/Qf-: (_62 +e€ 8xi) 8xidxdz+/ﬂ (2;1,6 e ) aZdacdz

+e / polspdrdz = € / ﬁ,wdacdz.
Q Q

Using the convergence limit (2.31), (2.34), (2.33), and the hypothesis of this theorem, we
find

/Qp*g—fdxdz =0 Yy € Hy(Q).

0 (),

The Green’s formula, we obtain
then

_ / op*
Q
P . -1
5 0 in H (). (2.41)

Now, we take §; = u +; (for i = 1,2) with ¢; in H}(Q2) and @3 = @5 in (2.20) to get

AR ou | 00\ 9y
”ZI/ (6 : (axj axi) -F 6”) 9z; 92, " Z/ ( 63"1) azd wdz
2
+> / PP drdz = Z / Fipdzdz.
=1/ =1/

Using Theorem 2.2.5, we deduce first with ¢; = 0 and ¥, € H3(2), and then with ¢, = 0
and v in H}(Q), the following equality

O = [ Bur Oy
;/ﬂ—p (9xid$dz+zz_:/ 52 8zd xdz

2
+> /Q patuiidedz = Z /Q Fhidzdz.
=1 =1

(2.42)
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2.3. STUDY OF THE LIMIT PROBLEM

With Green’s formula, we have

2 *
/ Y ddz + / 0P
Q 02* q Oz;
(2.43)

+pa? / ufdrdz = / Fbidzdz Vb, € H(Q).
Q Q
Then, )
a : ap* AND .k T -1 :
e ) +8 + pofu; = f;, in H(Q) (i =1,2).
To prove p* € H(T'), we see from (2.41) that p* is functions does not depend on z. Then
as in [3], we choose v;(z, 2) = 2(z — h(z))y(z) in (2.43), with v € H}(T';), we obtain

h(z) h(z) 2 *
/ / 6p 2(z — h(z))y(z)) dzdx — / / (9 — h(z))y(x)) dzdz
I (9.%, T,

h(z) h(w)
/ / polul — h(z))y(x))dzdz = / fi(w, 2)(2(z — h(z))y(z))dzdz.
Ty I'y JO
Using the Green formula, we deduce
1 6(h37(x / /h@)
— | pr——dx —2 (z, 2)y(z)dzdz
6 ). " om, kL )y(x)

/Fb /h(z) potul — h(x))y(x))dzdz = /b /Oh(z) fi(z, 2)2(z — h(z))y(x)dzdz.

Thus,
3 ~
o [ v 0 s —ou [ @yis()in+pa [ @)= [ Fows
6 Ty axz Ty Ty Ly
where
B = [ @ /h(m) (2, 2)2(z ~ @)
’U/,L.'L'_ u;\r,z)az, U,L: U \ T, Z)R\Z — T z,
h(w) 0 0
k@)
fi= i fi(2(z — h(z)))dz
Whence
h36p* ~% D~k r -1
6 Bs 2uh(z)u; + pa*uy = f; in H (D). (2.44)

As f; € L*(Q) and u! € V, then in L2(2), therefore f;, @, and @} are in L2 (I‘b) In addition,
from (2.44) we get p* in H(I'}). So, as f; belong to L?(Q) from (2.39) we have i e LX(Q).
Whence (2.40) holds, and we also have %
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2.3. STUDY OF THE LIMIT PROBLEM

Theorem 2.3.2 Let

ou*
0z

s*(x) = u*(z,0) and 7*(z) = (z,0).

Under the same assumption of Theorem 2.2.8, the trace (17*,s*) satisfy the following limit

from of Tresca boundary conditions
/ B+ 5" —s| — |s* — ) do — / Bripds > 0, Vo € (IATY)?,  (2.45)
Ty Ty

and

plr| < k=>s"=s
~ a.e. onTy. (2.46)
pl™|=k=3IA >0, =s+ A"

Proof of Theorem 2.3.2. In the same spirit in [3, 9], we choose in (2.20), = (%1, P2, U5),
with @; = U5 + o, (for s = 1,2) and ¢; € Hf p, (), we get

Z/ (s u(azj Z—Aj) Ae(gm) WzdxderZ/ ( )861?

3,j=1
—|—Zu&2/u’f¢idmdz+/ %(|ﬂ€+¢—s|—|a€—s|)dx22/ﬁ¢idxdz.d
i=1 Q T =1 /8

Firstly, by the convergence result in the Theorem 2.2.5, we find

Z/ P o dxdz-l—z /(9u &ﬁzd dz—I—Z/,ua u;;dxdz
/1“,, (Is*+9v—s|—|s"—s]|) dw>Z/fl¢zdmdz

Now, using the Green formula, we obtain

Z/a ¢,d:cdz—2u

+/1‘b u%@mdw + /1“,,75“8* +Y—s|—|s"—s|)dz > ;/ﬂﬁwidmdz.

.dzdz + Z / pdu;dzdz

From equation (2.40) and as v = (0,0, —1), we deduce

[ R+ ("= sl =15 = sda— [ priundo 20, Vs € (Hiun, (@)
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2.3. STUDY OF THE LIMIT PROBLEM

This inequality remains valid for any ¢ € (D(T';))? and as D(T';) dense in L*(T) for any
¥ € (L?(Tp))2. Then (2.45) follows.
Next, to prove (2.46), we take ¢; = +(s} — s) in (2.45), we obtain

/ /Ig|s* — s|dz — / ur*(s* — s)dz =0, (2.47)
Ty Ty
taking 9 = ¢ — (s* — s), with ¢ in (L?(T3))2, we get
/ (/IE|¢| - ,uT*qb) dzx > / (74;\|s* — 8| — pr*(s" — s)) dzx.
Ty Ty

From (2.47), we deduce

[ (Ri61-ur6) do 2 0, v € (20> (2.49)

Ty
Now, in (2.48), we take ¢ = (1, p2) such that ¢; > 0 for i = 1,2 in (2.48), we obtain
[ (F=ulrleost, ) tel > 0
b

Thus
k> p|r cos(7*,¢) a.e. on I'y. (2.49)

After that, taking —¢, with ¢ = (1, p2) such that ¢; > 0 for i = 1,2 in (2.48), we obtain
[ (R uirlcostr,0)) 161 2 0,
Ty

hence
—k<u |7*| cos(7*, ¢) a.e. on Ty. (2.50)

Going back to (2.49) and (2.50), we get
p|r| <% ae. on Ty (2.51)

Then
/k?|s* —s| > p|r*||s* —s| = pur* (s* —s) a.e. on I,
From (2.47), we deduce that
k |s* — s| — pr*(s* —s) =0 a.e. on I. (2.52)

If plr*| = %, then from (2.52), we have p|7*||s* — s| = pur*(s* — s) a.e. on I',. So, there
exist A > 0 such that (s* — s) = Aut*.
If plr| < %, then from (2.52) we have

0= 7C\|8* —s|—pr*(s"—s) > (7{?\— w |T*|) (s* —s) a.e. onIy,
since (/k\— ©|7*|) > 0, hence s* —s=0a.e. on I} m
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2.3. STUDY OF THE LIMIT PROBLEM

Theorem 2.3.3 Suppose that the assumptions of the previous Theorem hold, then the solu-

tion (u*,p*) satisfies the weak generalized equation of Reynolds:

/ [%vp 4 hil (m)—gs*(x)+a(gU*(x,h)—/OhU*(a:,t)dt)

+ﬁ(m)] Vo(z)ds =0, Yy € H'(Q),

(2.53)

where

- h(z)
Flz) = 1/ Flz, t)dt — %F(w b,

*(z,1) / / *(z,0)d0d¢, F(z,t) = / / Fi(z, 0)dodc.

Proof of Theorem 2.3.3. By integrating twice the expression (2.40) from 0 to z, it comes:

ou} 22 Op*
0z - (2,0) 2 Oz;

+pa? /0 i /0 (u;‘(a:, t)dtd¢ = /0 i /0 t Fdtdc.

In particular, for z = h, we obtain

us*(z) + pht*(x) + e 8p po? / / u; (z,t)dtd¢ = / / fz(ac t)dtd¢. (2.55)

—pu; (2, 2) + pui (z,0) + pz
(2.54)

Integrating (2.54) from 0 to h, we get

h h2 h3 op*
—u/ u;(z,t)dt + phs*(z) + 2 H "(z) + — P
| 2 6 0z,

+pd? /0 ' /O ‘ /O tu;(x, 0)dodtd¢ = /0 ' /0 ‘ /0 tﬁ(w,&)d@dtd(.

As ©(z) =+ [, ") u¥(z, t)dt, we have

- h? h3 0
— b (2) + puhs*(z) + pg7(2) + 6;

R pC gt h(z)
i / / / w (z, 0)d0dtdC = / F(z, t)dt
0 0 0 0

From(2.55)-(2.56), we deduce (2.53). Which ends the proof requested. m

(2.56)

Theorem 2.3.4 Suppose that the assumptions of the previous Theorem hold, then the solu-
tion (u*,p*) of the limit problem (2.37) is unique in V, x L3(9).
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2.3. STUDY OF THE LIMIT PROBLEM

Proof of Theorem 2.3.4. Suppose that the problem (2.38) admits two solutions that

*,1

we denote by u*' and u*?. Using classical techniques, we choose in (2.38) @ = u*! then

» = u™? as test functions, then by summing the two inequalities obtained, we find

2 2 2
a A * *
E ,u/ — (- u?)| dedz + E ua2/ |ui’1—ui’2|2dxdz§0. (2.57)
i=1 YO 0z i—1 Q
Then
|z - et g <0 (259)
— W —u® + ||u™t —u® <0. :
0z L2(@) L*(Q)

Consequently, this last inequality ensures the uniqueness of the solution »* in XN/z
Similarly, we take in the Reynolds equation (2.53) the pressure value p* = p*! then p* = p*?
respectively, at the end by subtracting the equations obtained, it becomes:

h3
—V(p*! — p*?)Vpdz = 0.
/Fb 1o ( Ve

Finally, by performing the change of variable ¢ = p*! — p*?2 then by Poincaré inequality, we

obtain

*,1 0
)

||p p*’2||L2(Fb) =

as p** € L3(2). We deduce the desired result. m
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Chapter 3

Asymptotic analysis of a static
Electro-Elastic problem with

Coulomb’s Law

In this chapter, we use asymptotic analysis to derive and justify a two-dimensional limit
problem for an electro-elastic problem on a thin domain which is in frictional contact with
a foundation. In modeling the contact, the Coulomb free boundary friction condition is
used. This chapter is divided into four sections; in section 3.1, the basic equations and some
notations are presented. The related weak formulation is given in section 3.2. The results
on the existence of the weak solution when the proof is based on arguments of a variational
inequality and Schauder’s fixed point developed recently in [22]. In section 3.3, we use the
change of the domain to find some estimates on displacement and electric potential. Finally,
we state the convergence and the limit problem when the small parameter ¢ close to zero.

Moreover, the uniqueness of (u*, ¢*) are treated.

3.1 Formulation of the problem

Let w be a fixed bounded domain of R® with 3 = 0. The upper surface I is defined by
z3 = eh(z). Now, introducing a small parameter £ which will be close to zero, and the

smooth bounded function h such that

0 < hm < h(z) < hy, Y(z,0) € w.
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3.1. FORMULATION OF THE PROBLEM

We denote by €2¢ the following domain
O = {(z,z3) € R% (z,0) € w,0 < 73 < eh(z)},

with its boundary is I* = @ UT; UT;, where I'§ is a lateral boundary.
In what follows, S® denotes the space of second order symmetric tensors on R?® and |.| denotes

12 and for

the Euclidean norm on R3. Indeed, for every u,v € R3, w.v = wv;, |v| = (v.v)
every o,7 € S?

0.T = 04Tij, 7| = (r,7)Y2.
Besides, we denote by u® : Q° — R the displacement field, o° : Q° — S? and ¢° = (0;)
the stress tensor, and D* the electric displacement field. We also denote E(¢®) = —V¢© the
electric fields, where ¢° : 2 — R the electric potential. Moreover, let d(u®) = (d;;(u®)) is
the linearized strain tensors given by
out  Ous

1
(1yE) = = + <1,7 <3.
dis (u”) 2 (8xj axi) ls4ys3

The electro-elastic constructive law given by

of(uf, ¢°) = 2pd(u) + Xtr(d(vf)) s — (§°)TE(¢") in @, (3.1)

Df(uf, ¢%) = BCE(¢°) + §d(u) in Q°, (3.2)
where uf, A¢ are the coefficients of Lamé, I5 is the identity. The operator §° = (efjk) is the

third order piezoelectric tensor and (5° denotes the electric coefficient of permittivity. We

use here (F°)T to denote the transpose of the tensor §¢, given by
(Sg)T = (ez‘?jkT) = (eiij) for all iaja k€ {]-a 2, 3},
and, we have
Fov=0.(F)v VoS3 VveR3 (3.3)

Let n = (91,12, n3) be the unit outward normal to I'*, we define the normal and the tangential

components of displacement and stress tensors on the boundary, respectively, as follow

€
n

€ €

n ’UT=’U€—5 € — €

vE=w vg-n, oy = (0°.m).n, o7 =0n—o.m.

Therefore, the classical model for the electro-elastic problem is as follows.
Problem P¢. Find a displacement field u° : 2 — R3, and electric potential ¢® : Q¢ — R
such that
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3.1. FORMULATION OF THE PROBLEM

—div(o®(u, ¢%)) = f¢ in QF, (3.4)
div(De(uf, ¢f)) = ¢° in QF, (3.5)
u*=0 on I%, (3.6)
u*=g with gs=0 on I%, (3.7)
u; =0 on w, (3.8)
05] < kefos] = s = s,
on w (3.9)
of| =kfloi| = da >0 such that u: =s— acs,
| T| n T T
¢*=0 on I'fUIY, (3.10)
D*n=0 on w. (3.11)

Expressions (3.4)-(3.5) represent the equilibrium equation and (3.6)-(3.8) represent the
boundary condition for the displacement and normal displacement. The Coulomb’s friction
law with friction coefficient k° is given by condition (3.9) (see [21]). The electric boundary
conditions are given by (3.10)-(3.11). We note that f¢ and ¢° are the densities of the forces
and the densities of electric charge, respectively. Recalling also that g = (g;)1<i<3 is a vector
function in (H/2(I"))? such that

/ gndo=0, gg=0onl5, g=0onlj, ¢gn=0 onuw,
then, according [26, Lemma 2.2, p.24| there exists a function G such that
G¢ € (H'(9¢))® with G°=g on T*.

For (Hp) we have

u;=93=0 and s=g on w.

Furthermore, we need the following assumptions.

(H1) Lamé’s coefficient satisfy
e, A% € L®(Q°), Ju*, A > 0 such that p(y) > p*, 0 < X(y) < A, Vy e Q.
(H,) The electric coefficient of permittivity, satisfies
B° € L*(Q°), 3B* > 0 such that B°(y) > B*, Vy € Q°.
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3.1. FORMULATION OF THE PROBLEM

(Hs) The piezoelectric tensor §° = (€f;;) : Q° x §* — R?, satisfies

egjk = efkj € LOO(QE)7 Ele* > 0 such that efjk(y) S Sup'efjk(y” = €y, Z.aja k= 1a 2737 vy € .

Let us recall an equivalent formulation to (3.9).

Lemma 3.1.1 [21] For sufficiently smooth values of o, and o7 on w. Coulomb boundary

condition (3.9) are equivalent to
log| < k5|af,|, (ui—s)aﬁ+k5|a§;| |us —s| = 0. (3.12)

Proof of Lemma 3.1.1. If (3.9) holds. Then, if |oZ| = k* |af7| we have u2 = s — aot for

somme a > 0, so
(uf — 8)0% + k° |0 [us — s| = (—aof) (%) + k¢ |oF | |ur — s
— —alot +alof? 0.
If |of| < k° |af7| by (3.9) u¢ =s, hence (3.12) holds.
Conversely, we assume that (3.12) take place.
if |o¢| = k* |af;|, then
(uy = 8)0% + k% |op | [uz — 8| = (uf — 8)o% + |o7] [us — 8] =0,
whence
(u7 —s)o7 = —|o7] |u; —s].
So, there exist o > 0 such that u? — s = —ao?.
If |o%| < k* |af7|, then
0 = (uf — )% + k* [o%] [us — | > — [uf — s o] + k* |0 [uZ s,
> Jut — | (k¢ [of] o),
as (k° |af7| —loz|) > 0, so
U —s=0,—=u: =s.

Our proof is now complete. =
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3.2. WEAK FORMULATION

3.2 Weak formulation

We turn to formulation of Problem P¢, we introduce the necessary functional spaces. Let
L*() be the usual Lebesgue space with the norm denoted by ||.||z2(qe) and (H* (€2))? be
the Sobolev space

Ov;

— € L*(),Vi,j =1,2,3 ;.

ol € I2(@),¥ii = 1,2,3}

Moreover, we need the following functional spaces

HYQ)® = {v e (LX())? -

Ke={ve (HY(2)?®: v=G°onT¢UTS, v.n=0 on w},
We={pecH(): =0 on SUT:}.

Multiplying (3.4) by (v —uf) € K* and (3.5) by 9 € W* performing an integration by parts
on ¢ with the use of Green’s formula, the conditions (3.6)-(3.11), and Lemma 3.1.1 yield
the following variational problem.

Problem?Ps,. Find a displacement field u® € K*, and electric potential ¢* € W*¢ such that
A(uf, v — uf) + Age(¢®, v — u°) +7(u5, @5, V) —;(ue,cpe,ue) > (fe,v—uf), Yve K,
(3.13)
Acoef((P67¢) - Aelfe(usa ¢) = (qs,¢), V’¢ € Wsa (314)

where

3
A(uf,v) =2 Z /QE ped;;(uf)d;j(v)dedes + /Qe Xediv(u®)div(v)dzdzs,

2,j=1

Aele((.oey’v) :/ (-36)Tv905d(’l))d$d$3,

£

A (5, ) = /Q (F () Vipdoda,

Acoef(9087¢) =/ stwevwdxdx&
Qe

-~

T, ¢*,0) = / K|t o — sd,
3

(f50) =Y | ffvdzdss,
i=1 Y Q°

(@) = | dudods,

The integral j(uf, %, v) has no meaning for v* € K¢, v € K¢, Indeed, o; is defined by

duality as an element of H -3 (w). Therefore, |af,| is not well defined on w. In the same spirit
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3.2. WEAK FORMULATION

of [15, 20] we replace o; by some regularization R(c;), where R is a regularization operator
from H~2(w) into L?(w) defined by

Vr € H 2(w), R(r) € L*(w), R(7)(z) = (T, ds)

~1 1 € w,
H™2 (“’)7H020 (w)

with ¢ — ¢,(t) = ¢(x —t) is a given positive function of class C* with compact support

in wand H _%(w) is the dual space of
Hgp(w) = {uv, :v € H'(Q),v=0 on T{UT;}.

Remark 3.2.1 From the definition of R, then it is an application that retains positivity and
can be obtained by convolution with a positive reqular function whose integral is equal to

unity.

After this regularization, we obtain the following new problem:
Problem P5°. Find u® € K¢, and ¢° € W* such that

A(us, v — u®) + Aciec(9®, v — u®) + 5(uf, 9%, v) — j(uf, %, uf) > (f¢,v —uf), Yve K*®
(3.15)
Acoes(¢°, 1) — Aate(us,¥) = (¢5,9), VY € WF, (3.16)
where
i) = [ IR0, )l = slda.

Theorem 3.2.2 If f¢ € (L2(Q2))3, ¢¢ € L%(QF), the friction coefficient k* is non negative
function in L*(w) and (Hy) — (Hs) hold, then there exists (us, ) € K* x W¢, solution of

problem Pfjd’. Moreover, for small k%, the solution is unique.

Proof. The proof of Theorem 3.2.2 will be carried out in several steps and it is based on
arguments of variational inequalities and fixed point techniques. Then, we define the non

empty closed convex set of L?(w) by
K¢ ={h€ L*(w) h>0 and |2 < ki},

where kf is positive constant to be specified.

We start with the following equivalence result.
Lemma 3.2.3 The couple (u®, %) € K¢ x W*¢ is a solution to Pf,’d’ if and only if

A(ue, v —= ue) + Aele((Pea v — ue) + j(uaa 906, U) - j(uea SOE, ue) + Acoef((P67 ¢ - 906)
_Aelie(us,zp - QOE) > (fea v = us) + (qe, ¢ - (pe), V(Uv ¢) € K* x We.

(3.17)

39



3.2. WEAK FORMULATION

Proof of Lemma 3.2.3. Let (uf,¢°) € K° x W¢ be a solution to Problem P§? and
let (v,9) € K¢ x W¢. Using the test function (¢ — ¢°) in (3.16), add the corresponding
inequality to (3.15) to obtain (3.17). Conversely, let (u,¢°) € K¢ x W* satisfies (3.17).
For any v € K¢, we take (v,7) = (v,¢*) in (3.17) to obtain (3.15). Then, for any ¢ € We*,
we take (v,9) = (uf, p*+9) and (v,¥) = (u®, ¢ — 1)), respectively in (3.17) to obtain (3.16).

Now, to prove the existence and uniqueness result of (3.17). The major point of the
proof is the existence of a fixed point for the mapping defined from L%*(w) into L?(w) by
h — —k°R (o) ((uf,¢%)(h)), we consider the following intermediate Problem

AWE, v — ) + Aue(gF v — ) + / O R G LT
w 3.18

—Aee(uS, % — ¢°) 2 (f50 = u) + (5,9 — ¢F), V(v,9) € K® x W°

We put the function ji(us, ¢%,v) = [ hlv —s|dz, V((u®,¢) € K& x We. It is easy to see
that j5 is a proper, convex and continuous function on K¢ x W¢. The existence and unique-
ness result of (3.18) follow from elliptic variational inequalities (see [11]). More precisely,
we apply Schauder’s fixed point theorem to get the existence of a fixed point for a weakly
continuous mapping T from K¢ into K¢ the proof can be found in [22].

Uniqueness: Let (u5, ¢5), (u5,¢5) € K¢ x W*¢ be two different solution for (3.17). Taking
(v, %) = (u§, ¢5) and (v,v) = (u5, ¢5) respectively, as test function in (3.17), we obtain

A(ug, ug — u) + Aae(, ug — i) + 5(ul, ¢, uz) — J(ul, 01, ul) + Acoes (91, 95 — ©1)
—Age(uf, 05 — 1) = (f,uz — ul) + (05,95 — 1),
A(uz, ui — u3) + Aae(eph, ug — ug) + 5(uz, 95, u7) — J(uz, 5, u3) + Acoes (93, P1 — ©3)
—Age(ug, P — ¢5) = (f°,ui — u3) + (¢, 1 — 5)-
Adding both inequality, we get
Aug — u3,u] — u3) + Acoes (1 — ¥5, 91 — ¥5) < /wka |uf — u5| | R(op(uf, ¢3) — R(oy(us, ¢5))| da.
(3.19)

Next, using Korn’s inequality, there exist a Constant C'x > 0 independent of ¢, such that
A — s, 0§ — ) > Cic IV (a5 — 05) 2o

and by (Ha), yields
Acoos (95 — 05 05 — 95) = B IV (5 — 08 agary -
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3.3.  CHANGE OF THE DOMAIN AND SOME ESTIMATES

Again, using theorem trace, there exist a constant Cy > 0. Then, equation (3.19) can be

written as (e, 5 )
min(p*Ck, f* N e e\ 2
7 (19 (s = )l + 1965 = #5220

S ”kE”L“(w) CO ||R(0-1€7(ui7 (pi)) —R (0-157(“‘;7 (p;)) ||L2(w) .

Denoting by C, the norm of the linear and continuous mapping R from Hz(w) into L?(w),

and by C; the one of ¢ from K* into H —2(w) [4 , We obtain
n

1

(195 = ) 32 + 1V (65 = 95 20e))
2|8 | m(o CoC1C
min(p*Ck, 5*)

(1 = w5l ooy + 165 = ¥l 2 ) -

Setting: k* = % Then if [|k®]| oo () < k*, therefore (uf, ¢7) = (u3, ¢5). ®

3.3 Change of the domain and some estimates

In this section, we study the asymptotic analysis of Problem P{j’d’. For that, we use the
approach which consists in transposing the problem initially posed in the domain 2¢ which
depend on a small parameter € in an equivalent problem posed in the fixed domain €2 which
is independent of ¢.

First, by the change of variable 2 = #2, we define the fixed domain
Q={(z,2) €R®: (2,0) €w, 0<z<h(x)},

we denote by I' =T; UT;, U@ its boundary.

Now, we define the following functions in (2

u(x, 2) = u§(z, x3), 1=1,2,
us(x, 2) = e 1u§(z, x3),

(ﬁa(xv z) = 906('7;’ 333).

We assume the following dependence of data on &

{ -~

f(xa Z) = 82f8($a $3), fl\(x, Z) = 82q8(x7$3)7
7‘3\ = s_lkea 3(1', z) = Bs(ma m3)a /X = )‘67 ﬁ = :u'ea
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3.3.  CHANGE OF THE DOMAIN AND SOME ESTIMATES

with f € (L2(Q))3, § € L*(), § € (H2(T))3 and %, B, [i, A, and €5, (1 < 4,5,k < 3),
independent of € while the first assumption means that the body forces cannot be too big.

Next, we define the stress tensor ¢%;, as follows

R
a.\fj = 820’% ]- S 7'7.7 S 2)
853 - 60-::3 Z - 1, 2, 3.

and for the vector G¢ introduced in Section 2 will be defined as

az(x,z) = G5(z,x3), i1=1,2,

Gs(z,2) = e1G5(z, z3).
Now, we introduce the functional frameworks on (2

K:{ve(Hl(Q))3:U=@ on IMUTL, v.p=0 on w},

0(K) = {x € (H'@)*: X = b, xa), xi=Gi on UL for i=1,2],
W={ypeH(Q):9=0o0nT1 UL},

W, = {@e L*(Q) : g—f € L*(Q), and 1Z=0 on I‘l},

and, let I
v, = {@: (91, %2) € (LA(Q)* : % € L*(@), and =0 on Fl}’

V, is a Banach space for the norm

2 a@ 2
1812, = 5™ [ 18122 + \ %"
; @ 702 || 20

Consequently, the variational problem P§’¢ is equivalent to the following problem.

Problem Py. Find (uf, ¥°) € K x W such that:

~ 2. ~ (3.20)
_](ae,(/ﬁe,ae) ZZ(fwai_af)+(f3,5ﬁ3_5a§) Yu e K,
i=1
Aeoes (@ D) — Aae@, D) = @) VP eW, (3.21)
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3.3.  CHANGE OF THE DOMAIN AND SOME ESTIMATES

where
dzdz

2
~ (0w Ouz\ [(O(v;
A(ﬁ,u—m):Zé/ﬂu(ax&ax’_)( ((% @)
J g J

o~ e ~ _ e ~ g
ﬁ(aui 6u3) (a(vl ) +626(’U3 u3)> drds

+2¢? /Q ﬁ‘?&?’ 0 “3(9; %) dods + ¢ /Q Ndiv (@) div (0 — B°)dadz,
Zde(s?"',ﬁ— ) = e i / (ié\ Jgi) 5 (8(@6;]17‘{) + 0(63;17;)) dxdz
w3 [ (@2) 3 (PO 2 4
+iz:; /Q (é‘gig% + skz:@kiggf:> (a(@a; %) 4 e 8@%% )) dzdz

L0 . OFF 9T — @)
+e /Q (63335 + €;6k33 B P dzxdz,

and
n A 6 6¢
6 / 9z 0z 3, %242

AJuAs N _5222/@0”( (g )) g;idxdz

k=1 1,j=1

ou 0T\ 09
+€Z/63” (— (8% 6:@)) 3z —dxdz

1,j=1

~

2 2
~ au o OU (9u 31753 57
D) ENCNEL) PRI o K Ry LS

. 0u5 0y
+6Z/ek33$a_d d2'+6/s;e333 9z Oz —dz d

and

3@,7°,9) = [ FIRG;@, 7)) - slda.
w
Now, we establish the a priori estimates for the displacement u* and the electric potential

©°. For that, we have the following identity.

Lemma 3.3.1 (Poincaré inequality) [9/ Recall that 0 < h(z) < hy, Vz € w. We have
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3.3.  CHANGE OF THE DOMAIN AND SOME ESTIMATES

the following inequality
ous

0z

ioH ||L2(Q) < hyu

L (9)

Lemma 3.3.2 (Korn inequality) [39/ For allv € K=. We have the inequality
Cx V0l Z2(0ey < 1)l 2qey
where Ck s constant independent of € and v.

Theorem 3.3.3 Assuming that (f, q) € (L*(Q))3 x L*(Q), then there exzists a constant C
independent of € such that

2 ~e ]2 2 2 9 5
ous OuE OuE OUE
3 ol ey 2 | 52 5 12| <o (322
i,j=1 Oz LX) =1 0z L2(2) =1 Oz; L2(Q) 0z L2()
2
(3.23)
Z axz L2(Q) H 8z LQ(Q)

Proof of Theorem 3.3.3. Choosing (v,%) = (G*,0) in (3.17) and using (3.3), we obtain
AU, U =G") - Acoes (75 0°) = Aate(¢%, G7) +5 (0%, %, u5) = (07, ¢F, G°) < (5, w0 =G°)+(¢", ¢%).
As G = s on w, and j(uf, ¢, uf) > 0, we have
AU, %) + Acoes (¢°,¢°) < A(W, G°) + Aae(9”, G°) + (f5u° — G°) + (¢, ¢°).  (3.24)
Now, using Korn’s inequality, there exists a constant Cx > 0 independent of €, such that
A, uf) > p*Ck || V|72 ge- (3.25)

By (Hy), we get
Acoef (9%, ¢°) 2 5*||V(P€”i2(96)- (3.26)

Similarly, applying Holder’s and Young’s inequalities, we get

6 2
e ey o MUK C'K € 8|l ||L<><>(Qe) 62 .
A(us,G%) < [Vu ||L2(Qe) < 1Cr + 1*Cre VG ||L2(Q€)7 (3.27)
Aae(¥°,G%) < 24 ||VGE||L2(Q€) + ||V90 ||L2(Qs) (3.28)
5
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3.3.  CHANGE OF THE DOMAIN AND SOME ESTIMATES

Using Poincaré’s inequality

|u®|| L2y < €hm|| VU] L2ey,  har = suph(z).

TEW

Thus, we can write

el e _ (o (5hM) . *CK
fe(u® — G°)dzdzs| < 2 |f ||L2(Qe)+ [Vu ||L2(Qs
os C (3.29)
M K
||VG€”L2(QE) )
. e eh
| wdods| < ;f) 16 ey + 2 19 ey (3.30)
Next, using (3.25)-(3.30) in the variational inequality (3.24), we find
(b CrlV sy + BV a(a ) <
16 ||H€||i°°(gs) 1222 ,u*C'K e2
+ 5+ VG® |12 e
( O O T 3 T2l IZ2e) (3.31)
(ehar)® (&ThM) e
25 lla ||L2(ne)+4 1721 z2qey

2
Since € ||f6||iz(ge) =gt Hﬂ . and &2 ||q6||i2(ge) =t ||f[]|i2(9), multiplying (3.31) by e,

we get
min(u*Cr, 8%) (el Ve[3a(ae) + £l Ve lFaar) ) < G, (3.32)

where C does not depend of &, with

16 || 72|% 122 O 2
C=< 2117 @ 120 Ok el ”

+2

~[12 h2 h2 2
G 2 |}y + 42 || 7]

w*Cx wCx 2 B* )’
and,
2 2 2 2 2 2
NV ey =< 3 | 0 i© |5 o
L2 (QE) 8.’1,' . 8z am ' az
i,j=1 JNL2(Q) =1 LXQ) =1 i llL2(@Q) L2(Q)
2 2 2
o0p° o0p°
Al =2 5| |5
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3.4 A convergence results

Theorem 3.4.1 Under the assumptions of Theorem 8.3.3, there ezists u* = (uf,u}) in V,

and ¢* in W,, such that

u; ~ut (1<i<2) weakly in V,. (3.33)
P — " weakly in W,. (3.34)
sg—LZ —0 (i, =1,2) weakly in L*(Q),
278 0 (1<i<2) weakly in L¥(Q), (3.35)
6% —0 weakly in L*(Q).
op , I
€ o 0 (1<i<2) weakly in L*(Q). (3.36)

Proof of Theorem 3.4.1. According to the Theorem 3.3.3 there exists a constant C'

independent of € such that

2 2

du;

0z

<Ci=12

i=1 @

Using this estimates and Poincaré’s inequality, yields

u;

0z

i=1,2,
2(Q)

IWM@SW‘

we deduce that 4 is bounded in V,, and as this space is reflexive we obtain the weak con-
vergence result (3.33) in V. Similarly, from (3.24) and Poincaré’s inequality in the domain
Q, we deduce that @° is bounded in W,, this implies the existence of ¢* in W, such that ¢®
convergences weakly to ¢* in W,.

Also, the convergences (3.35)-(3.36) result from (3.22)-(3.23). =

To be able to pass to the limit in the Problem Py, we must prove the convergence of
the integral term defined on w.

For our case, we adopt the following lemma of ([4]).

Lemma 3.4.2 There ezists a subsequence of R(0,(u®, §°)) converging strongly towards R (53332“‘5)

oz
in L2(w).
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Proof of Lemma 3.4.2. From the equilibrium equation (3.4), we have
—div(o®(u®, ¢?)) = f° in Q°,

with f¢ € (L?(9¢))3. According to the bounds of (u?,%®) in V, x W given in the Proof of

Theorems 3.4.1, we deduce that ¢° is bounded in
Hyin(Q) = {1 = (1) € (L*(R))°, and div(7) € (L*(R))%},

hence, there exists a subsequence converging weakly towards o*. Using the continuity of
the trace operator from Hy;, () into H—2 (w) (see [26]) on(u®, P°) weakly converges towards
(5333)3—6"‘;—* in H~2(w) for almost all z in w, and

*

(’a\n(uAE, 7)o =1) 0z 2C t)>H_%(w),H% (@)

L 1 converges towards <€333
H™2(w),HE ()

Which implies by definition of R that R(G,(u*,»")) converges almost everywhere towards
R(é},;;;;%%*) on w. On the other hand, using the Cauchy—Schwartz inequality and the fact
that the support of ¢ is compact in w, we obtain

[RE(@,8%)(@))| = |(Ba(@, 80,6 =),y ) 3

< 15o(@ )3 11,3, Vo€
oo\w

As o7, is bounded in H ~2(w), we deduce the existence of a constant C > 0 independent
€ and z such that:

[R@)@)| < Cldll,5,, Vzew (3.37)
00

Applying Lebesgue’s convergence dominated theorem, we get that R(c,(u®, ")) strongly
converges towards R(€333%“"z—*) in L'(w). Now, we shall prove the convergence with the
L2-norm. From (3.37), and the almost everywhere convergence of |R(3,,('L’Z€, @“"))| towards

|R (8333%"‘;—*” on w, there exists a constant C' > 0 such that
op*
R(E )

‘ 33375

So, from (3.37), we get the existence of a constant C > 0 depending only of ¢, such that

<(C, Vzew.

. Al
HR(an('z’f,@s))—R(eggg ) .
L2(w

~ (me =€ . Op*
SC’HR(an(u, ))—R(6333 ai)

L (w) .

Due to the L! strong convergence, we get the desired result. m
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Lemma 3.4.3 Let H = {u* = (uf, ud) : u* is a weak limit of ©® in the topology of V,}. So

H is contained in the closure of II(K) in the norm of V.
The proof of this Lemma can be found in [10].

Theorem 3.4.4 Ui — u} strongly in 'V, fori=1,2. Moreover with the same assumptions

of Theorem 8.4.1, (u*,*) satisfies

_Ou;” 0
Z / 5. a dxdz+z / iz u;*) dzdz

+/7C\|R(€3336i)| (v —s| — |u* — s|)dz > Z/ };(@ —u)dzxdz Yo € II(K),
w 0z —~ Ja

389" awd dz — /Q (8313 5 ) (W) dzdz = / qdzdz Vi € W, (3-39)

(3.38)

0z 0z 0z

and, the limit problem

_g%( ) i%(@ (6‘0 )):ﬁ(@zm) in I2(Q), (3.40)

i=1

o7 (A&D)*Z (%) =7 =12 in L) (3.41)

Proof of Theorem 3.4.4. We use the same idea in [9, Proof of Theorem 4.2], for the
proof of strong convergence of (u5,u5) to (uf,us). Indeed, for (uf,¢) € K* x K¢, and
(p°,) € W¢ x W¢, from inequality (3.17), we obtain

A(UE - ¢7 (O ¢) + Acoef(‘PE - wa (PE - ¢) < Aele(‘pea ¢ - ua)
A W= ¢) + [ F0F = O+ (" =)
TA(¢, ¢ = u) + Acocs (¥, ¥ — ¢F) + 5 (U, ¢°, ) — j(u, ¢, uf).
Using (3.3), we get
AQE = 6,1 = 8) + Ay (¢ = 4" = ¥) < Aacl",0) = Aacu, ) + | (0" = d)dadoy

+ /E qe(goe - ¢)d.’)3d.’)33 + A(¢7 ¢ - ue) + Acoef(,(pa ¢ - 806) + j(us’ Soev ¢) - j(uev 806, ,U/E).
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The use of Korn’s inequality and (H;), yields
,U'*CK ”v(uE - ¢)||i2(ge) + ﬂ* ”v((p6 - w)”i?(gs) S Aele((psa ¢) - Adj(uea w)
+ | ff(u® — ¢)dzdzs + / ¢ (¢ — ¥)dzdzs + A(p, d — u®) (3.42)
Qe Qe

+Acoef(¢, ¢ - (pz-:) + j(uev (pe, (b) - j(us, (Pea ue).
Now, writing (3.42) in new variables, we get
2
LZ(Q))

A @9+ Y [ F@ - Bodedz -+ (e(@s = da) + [ 77 ~ Doz

i=1 79

2 2

0 ~ ~
S S 2 -9

L2(Q) L2 (Q)

\ ] ~
2u*Ck (H&(U/\i —$1)
FA(B, ¢ — T) + Acoes (9,0 — &) + (@, 7, ) — 1 (@, &, ).

Let o° = (@, ), u* = (u!,u) and ¢* as in Theorem 3.4.1, let ¢ = (¢1, $2), ¢ € II(K) and
12 € W, we have
i s { 2°Ce o = 9, i+ m -G )
: -99: 0
Swa F— 60+ (@ - +Z/ — 5. $i — u})dzdz
0

[ 26y )dxdz+2/ 20 % gy, +Z/ s 28 % g,

Then

7, +iw. & w) -7, 79)
2 > N ~ N a_ Aa/\ a ~

< Z(fi,uz — i) + (@ 9" — ) -l-/ 8¢ (¢ —u )dxdz—l—/ﬁa—f&(w — ¢*)dzdz
i=1

2u*Cc || — 9|y, + 8

+Z/63,38(p 8¢1d dz —Z/G3Z38u 8¢d dz + 4, Ve < €(9),

where > 0 is arbitrary.
Thanks to Lemma 3.4.3, there exists a sequence of function ¢ € II(K) which has u* as a

limit in V,, hence

~l12 -~ “ L~
2:“‘*CK ”ﬂs _U*”%/ +/B* as _w‘ +j(a67$6aﬁ6) _j(U*a(p*7U*) S (qa(p —¢’)
~0 8 Op* Ou ou} 6¢
/ 8z8z¢ ©*)dzdz +E/e3z3 ~dadz —Z/ €z -5 —dzdz +0, Ve < ().

49



3.4. A CONVERGENCE RESULTS

Next, by density, there exists a sequence of function 1/#\ € W which has ¢* as a limit in W,

whence

~

20 C [[5 — w*[|}, + B 1&° — " I3y, + 3@, &, %) — j(u", ¢",u*) < 6, Ve <&(6).
Thus
2u* O || — u*|[3, +5(T, 7°,T°) — j(u*, ¢*,u*) < §, Ve < e(9).
Now, by weak lower semi-continuity of the functional 7, as well as /j\(ﬂe, &, ut) — 3\(u*, ©*,u*)

(¢ — 0), we obtain the strong convergence of u® to u* in V.

Using the convergence results of Theorem 3.4.1 and the lower semi-continuity property

in L2(2), we obtain as e — 0,

NN [ 0t .,
E h s, 5, (U; ui)d:vdz—k;/ﬂegmaa(vi—ui)dxdz

i=1
|(|f1)—s|—|u —3|)dm> E :/ .(’U' —u)d:cdz
5 = - .)1, i 3 ’

- [in:
75 3. () (3 e -

Now, we choose ¥; = u} £ x;, ¢ = 1,2, with x; € H3(Q2), we find

2 ou? Ox; 2 0p* Ox; 2 ~
Z Q,u %% 02 dxdz+;/ﬂe3i3¥ 9% dxdz = ;/ﬂfixidxdz.

i=1

Using Green’s formula, we deduce first with x; = 0 and x» € Hj (), then with x; = 0 and
x1 € H} (), the following equalities

2

2
0 (.Ouf _. Op* T
— E /Qa (ug+egi38—i> xidxrdz = E (fisxi), Yxi€ H&(Q)-
i=1

=1

And

_ / ( >¢dxdz + Z / (6313 ) Ddzdz
2
/ (’\390 263%3 ) napdz = /Q Ghdzdz, Vi € W.

i=1

20



3.4. A CONVERGENCE RESULTS

From (3.11), we have (ﬁ—*"— 2@ Eai3 o 5 ) ns = 0, which gives

_ou} op* 2 -
_Z/ Oz ( +e37,3 Oz )demdz = Z(fzaXz) VX'L c H&(Q)a

i=1

_ / aﬁ( wdmd +Z / (6313 )dedz= /Q qhdzdz, Vi € W.

Therefore

2 * *
—Zﬁ (ﬁ&f +€3,38‘P ) i i=1,2in HY(Q),
(3.43)

8 [~0p* 208 (. dwr\ . . ..
~ o5 E)‘F;az (€3z3az)—q in H™(),

As f;, and § belongs to L2(€). From (3. 43) we have 632”2; in L?(Q2) and %1%* in L2(Q).
Whence (3.40)-(3.41) holds, and we also have —L in V,, EL nW, =

For convenience, we will denote by s*(z) = u (:c, 0), m™(z) = % (,0), p*(z) = ¢*(=,0)
and 7*(x) = %%*(ac, 0).Moreover, as a;j in V, aa; in W,, then 7*, 7* belong to L?(w),

and we have

Theorem 3.4.5 Under the assumptions of preceding theorems, the traces of displacement
(s*,7*) and the electric potential (p*,7*) satisfy the inequality

/ R|R (@) | (g5 —sl—ls" sl ) do— / (A" + Boism™) bz > 0, Vb € (L2(w))?, (3.44)
and the following limit form of the Coulomb boundary conditions

|ZZT* +é\3i3ﬂ*| < /]{; |R(é\33371'*)| = s* = S,

a.e. on w
|uT* + exizm*| = % |R(€3337r*)| => 3\ > 0 such that s* = s+ X (UT* + €3;37*) .
(3.45)
Moreover, the pair (u*, p*) satzsﬁes the following weak form
/ [ / / / / o *dgdz] Vs
(3.46)

hi [t o _ 0
+ /w [_5 ( 8’2 / Bi3 a"; dg) + F} Vdz =0 Y& e H'(w),

where

E:/Ohm(x,z)dz —F(w B), Fi,2) = /z/ogﬁ(x,O)deg, i=12,
F= (FI,E) .
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3.4. A CONVERGENCE RESULTS

Proof of Theorem 3.4.5. Using the Green’s formula in (3.38), and taking v; = ¢; + u}

(for s =1,2) where ¢; € Hf r, () and

H%lurL(Q) ={fve H'(Q):v;=00on T, UT},

2
0 (_.ou;* 0 (. 0p*
_; [ /Q = (u . )¢,dxdz+ / = (e&3 = )qbzdxdz}

+//]5|R(/€\3337T*)| (|¢+ s — 3| - |8* — 8|) dx

then

2
- / (Ar* + E3ism™) pdz > ) / fididzdz.
w i=1 Q

From (3.40) and for ¢ € (Hf yr, (9))?, we have

/E|R(a3337r*)| (16 + 5" — 5| — |s* — s|) dz — / (r* + i) ddz > 0.

This inequality remains valid for any 9 € (D(w))?, and by the density of D(w) in L*(w) we

deduce (3.44). For the proof (3.45), refer to Chapter 2 (Proof of Theorem 3.7) .

Now, to prove (3.46) we integrate twice the equation (3.40) between 0 and z, we obtain

Z(x,0)7* + 283sm" — / (,u%ug)(x,f)dﬁ

—/Oz’e\g,igaa—?(w,&)df:/o /0 fi(z,0)dode.

For z = h(z), then the equation (3.47) can be rewritten as follows

h(2) iz, 0)7* + h(z)Byis(x, 0)n* = / (A &)t

+/0he3133‘2*(x ¢ d§+/ / Fi(z, 6)dbd.

Integrating the equation (3.48) from 0 to h, we get

@ﬁ(gg,oyw (a0 - / / (A

/ / 6313 (z,& dgdz—/o Fi(z, z)dz,
Fi(z, 2) / / fz(x 6)dodg.

From (3.48) and (3.49), we deduce (3.46). =

where
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3.4. A CONVERGENCE RESULTS

Theorem 3.4.6 There exists a positive constant sufficiently small k* such that for ||7c\|| Low) <
k* the solution (u*,*) of limit problem (3.38)-(3.39) is unique.

Proof of Theorem 3.4.6. We replace J by («Z —¢*) in (3.39), and the sum with equation

(3.38), we give the following variational equation
_Oou;* @ 8(,0 8 .
Z / % 6 dxdz+z / Cais— - —u;*) dzdz
2Bl NOP N e ol o ~0* 0(¢ — ¢*)
-I—/wk|R((e333) (sl ~ lu s|)dw—|—/96 V00 e

2 2
~ Ou* 0 ~ * PN *
i=1 =1
+ / G — *)dzdz, V(D,9¢) € II(K) x W.
Q

(3.50)

Let (u*!, ¢*1), (u*?, ©*?) be two solution of (3.50). Taking (7, 12) = (u*?, p*?) and (7, 12) =

(u*!, ©*1) respectively, as test functions in (3.50), we obtain

6u a *2 *1 / 890*1 8 *1
;=1 T % ) dzdz + E Cais—— 8z —u}') dzdz
N R 8(,0*1 .2 .1 A&p*l 8(90*2 . 90*1)
—|—/wlc R( €333) 57 )‘ (Jur® — s| — |uf* — s|) dz + /QB % % dzdz

2 aufl a 2 R
- ; /9331'3—32 —(¢*? — p*)dzdz > ; /Q fiur? — whdedz
/ /(@*2 dxdz

and

0

a *2
*1 *2 i *1 *2
[ e [

*2 *2 _ %2
+/k R(Eg,g,g)agz )‘(|u2‘1—s|—|u2‘2—3|)da:—|—/ﬁa(p d(a 5 L4 )da:dz

z

—2/63,,3 — (™ —<p*2)d:cdz> Z/f’ *l—u*2)dxdz
/A(cp*l )dzdz.
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3.4. A CONVERGENCE RESULTS

Summing up the two inequalities, we get
2
-3 [
i=1 v
~ = 6 *2
+/ k (‘R<€333 .4 )
w 0z

*

7

0 *1 *2 2
&(uZ —u;’) dzdz

2 %,
2 ¥l %2
otz ~ [ Bl - )

~ 0 *! * *
_‘3(6333 (;pz ) ) (|u1—s|—|u2—s|)d3:20,

so that

2 2

+ B*

0
*1 _ =!<2 -~
2 it - 2 .
. Op
R (6333 3

*2
S

Using the fact that (a + b)? < 2(a® + b?), then the last term can be rewritten as:

mmmm(‘ y
L2(Q)

2
9 1 2 %
(R(%w%) — R(€333%)) ‘ dm) ||Uz1 - uz'2||L2(w)-

ﬂwm@(/
2
L2 (9)>

By Sobolev’s trace theorem, there exists a constant Cy > 0 such that
0 1 2
0z ( i i )

min(u*, %) (‘
2
L2(Q) Lz(ﬂ))

2

smwmw(/
L2(9)> -

Thus, we obtain
L% (Q)

(P*l _ 90*2)
L2(0)
*1

0 *1 %2

&(z uz)

0
+ H_((p*l _ S0*2)
@ 1192
(3.51)

0

0
55\

&(90*1 _ (p*Z)
2 3
dx)

a %k *
5(901—902)

Do)+

L3(Q)

u

Ry ) ~R(ews )

L*(Q) -

Q(U*l _ u>!<2)

Oz ! +

min(p*, 5%)
2

< Co|| k| oo )

x <
Consequently, the last equation leads to
a *1 *2

2hpr Col |k || 2o ()
min(p*, 5*)

o (- u?)

a * *
&(901—?2)

+\

L2(Q)

a * *
&(@1—902)

1

L2(Q)

(e) - (")

(3.52)

L2 (w) '
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3.4. A CONVERGENCE RESULTS

Now, as R is a linear continuous operator from H~2(w) to L2(w), there exists a constant

C1 > 0, such that

Je(e?s”) - (e

a *1

= - o) (3.53)

< O lesss|l poo )

L2 (w) L2(w)

From (3.52)-(3.53), we deduce that if ||/I~5|| Loo(w) < k* for sufficiently small £*, then we have
(i — ) llv. + (e = ¢**)llw. = 0.

Hence ||(w}" — u;?)|lv. = 0 and [[(¢*" — ¢**)|lw. = 0.

This shows the uniqueness of solution (u*,p*)in V, x W, . m
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Chapter 4

3D-2D asymptotic analysis of an
interface problem with a dissipative

term in a dynamic regime

In the last chapter, we present the asymptotic analysis of frictional contact between two
elastic bodies in a 3D thin domain with a dissipative term ag (‘g—’;). In section 4.1, we derive
the model and its variational formulation of the problem. For this problem, the theorem of
existence and uniqueness of the weak solution has been proved recently in [20, 34]. In Section
4.2, we study the asymptotic analysis, in which the small parameter of the domain tends
to zero. The next step will be to use Gronwall’s lemma and Korn’s inequality to establish
some estimates independently of the parameter €. These estimates will be useful to prove
the convergence of the solution toward the expected function. Finally, section 4.3 is devoted
to obtaining the main results pertaining to the convergence, the limit problem and establish

the uniqueness of its solution.

4.1 Description of the problem

In this section, we first define the thin domain and some necessary sets to study the asymp-
totic behavior of the solutions. Next, we introduce the problem considered in the thin

domain. We finish this section by giving the weak variational formulations of our problem.

The points z € R3 will be decomposed as z = (2/,x3) with ' € R?, 3 € R. We
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4.1. DESCRIPTION OF THE PROBLEM

also use the notation z’ to denote a generic vector of R2. Thus, we define the thin domain
QF = (25U Q) € R3, where

Q= {(2',23) €R3,(',0) € w,0 < 73 < eh(z)},

Q5 = {(2',23) € R?,(/,0) € w, —eh(2) < 3 < 0}
We use a superscript [ to indicate that a quantity is related to the domain €0}, = 1,2, where
¢ is a small parameter that tend to zero. For each domain €2;, we assume that its boundary
O€ is the class C! and is partitioned into three disjoint measurable parts: 95 = @UTUTS iy

and 005 = w U5 UTS, , where

e w is a fixed region in the plane z’ = (z1,z;) € R

e The upper surface I'§ is defined by z3 = €h(z’), and the upper surface I'§ is defined by

x3 = —eh(2’) where h is a positive smooth and bounded function such that

0< hmin=h< h(ml) < AMaz = }_La V(.’L’I,O) € w.
e I'7,,1 = 1,2 is a lateral boundary of the domain 0} (see FIG 4.1).

X3

=)

Figure 4.1: The domain °

In what follows, S® denotes the space of second order symmetric tensors on R3, while
”.” represent the inner product and |.| the Euclidean norm on R? and S3,
w = u.v;, |v] = wo)Y2 Vu,v e R3,

Vo, € S5

NI

0.7 = 04.T;j, || = (T.7)
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4.1. DESCRIPTION OF THE PROBLEM

The indexes 7 and j take their values between 1 and 3, and the summation convention over
repeated index is adopted.
Let m; be the unit outward normal to 0. Now, we define the normal and the tangential

components of displacement and stress tensors on the boundary, respectively, as follows

E __ € E __ € € : — —
Vipn =V, Vi = V[ = V.. 7, with n=mn=-—"n,

0-167] = (Ulsnl)'nla 0-;:7- = O'ZE’I']l — (Ulen)'nl'

4.1.1 The model problem

We consider two elastic bodies that occupy the domains €2 and 5. The two bodies are in
bilateral, frictional, contact along the common part w.

We denote the displacements field by uf = (uf;)i1<i<s, ! = 1,2, and the stress tensor by
of = (0f;j)1<ij<3, | = 1,2. d;;(uf) designates the components of the linearized strain tensor.

We model the materials according to elastic constructive law
afij(u;:) = 2,uld,-j(uf) + )\ldkk(uf)éij, 1< i,j, k< 3, l= 1,2,

where p;, A; are the Lamé coefficients and (d;;) is the Kronecker symbol.
e On I'¥ x ]0,T'[,1 = 1,2, no slip condition is given. The upper surface is assumed to be
fixed. Therefore:

u =0, =12

e OnI'y, x]0,T[,I = 1,2 the displacement is known and parallel to the w-plane:

e We describe the conditions on the common surface w x |0, T'[. We suppose that the normal

velocity is bilateral, that is:

ous ou;
6t1.771 + 6t2.172 =0 on wx]|0,T].
Therefore,
n=m=—-n and ofj.m =—05.m9 on w x]0,T].
Consequently,
o, =01, =03, and o7 =0} =—05 onwx|0,T].
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4.1. DESCRIPTION OF THE PROBLEM

However, the tangential velocity on w x ]0,T[ is unknown and satisfies the Tresca boundary

conditions, with friction coefficient k° :

ou§ ou§
it <= (58), (%) =+

josl = re = 38>0,(%8) —(58) =s-po,

on w x ]0,77.

The problem consists in finding uf,! = 1,2 satisfying limit conditions, using the following

initial conditions:

ou;j

(z,0) =uj(z) VzeQf [=1,2.
Next, we suppose that the dissipative terms g;, [ = 1,2 are continuous vector functions
g:R® — RS
v — gi(v),

with g1 # g, we make the following assumptions:
(H,) Functions g;, I =1,2 is monotonic
(gi(w) — gi(v),u —v) >0, Vu,v € R®.
(H;) Functions g;, ! =1,2 in the origin satisfy,
9:(0,0,0) = (0,0,0) I=1,2.
(Hs) For all v € R, g is increasing function

g;’L(U)ZO i:172737 l:1,2.

We consider a transmission problem associated to the non-homogeneous elastic body 2¢

in a dynamic regime with a nonlinear dissipative term.

Problem P*. Find a displacement field u§ = (uf;)1<ij<s : Qf X ]0,T[ = R?, 1= 1,2, such
that

T _ divos +afg (ZH) = £ in 05 x]0,T], (4.1)
Pui — divog +o5ge(2) = £5 in Q5 x]0,T], (4.2)
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4.1. DESCRIPTION OF THE PROBLEM

o5(uf) = 2u1d(uf) + Mde(us)d in Q5 x 10,77, (4.3)
o5(ug) = 2u2d(uf) + Aedkr(u$)d in Qf x 10,77, (4.4)
w=0 on I%x]0,T], (4.5)

u;=0 on TI%x]0,T], (4.6)

ui =0 on T'f x]0,T7, (4.7)

u;=0 on Iy x]0,T7, (4.8)

6;5.17 - %.n =0 on wx]0,T7J, (4.9)
ofm—o5n=0 on wx]0,TY, (4.10)

ou§ ou§
orl <= (5F), - (5) ==

e " onw x ]0,T7, (4.11)
j0%] = k¢ = 3B > 0, (%—;)T - (%)T = s — Bot,
ué(z,0) = u)(z), %(x,O) =uj(z) Vze, =12, (4.12)

where ff = (f5, f5, f5), | = 1,2, is the density of the forces. Expressions (4.1)-(4.2) are
representing the dynamic elasticity systems with nonlinear dissipative terms in Qf and €25.
Relations (4.3)-(4.4) are the Hooke constructive laws. Furthermore, equations (4.5)-(4.8)
are the displacements on I'f x ]0,T[ and I'y, x ]0,T[, I = 1,2 respectively. Conditions
(4.9)-(4.10) are representing the normal velocity. The Tresca friction law is given by (4.11)
with friction coefficient k° and s is the velocity of the lower surface w. Finally, the initial

conditions of the displacement and the velocity field are given by (4.12).

Lemma 4.1.1 [20] The condition of Tresca (4.11) is equivalent to

Oui Ouj s
ot ot

ot ot

=0 onw.

ou; O
(ul u2—s)a§+ﬁ5

4.1.2 Variational formulation

We end this section by giving the equivalent weak variational formulation of Problem P¢,
which will be useful in the next sections.

First, we use the following notation

V(Qi):{VG(Hl(QIE))?’V:O on ]_"lau]_"il} , l=1,2,
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4.1. DESCRIPTION OF THE PROBLEM

the space V/(€2}) is real Hilbert space endowed with their natural norms ||.||;,q¢ and scalar
product (., .)1,q:-

Moreover, we need the following functional spaces
K?® ={(v1,v2) e V(Q]) x V(Q3) : vi.-p + V2. =0 on w}.
The norm of a real Hilbert space K¢ is
v vl = (IMaliag + Vallyag)
We still denote the norm of space (H'(1))*> x (H'(25))® by [|(-, )ll1,0¢xos-

Lemma 4.1.2 Let (u$, u§) be a solution of Problem P¢, with a sufficient reqularity. Then,

it checks following variational problem

( Find (u§,us) where (%( ), 2us (t)) € K¢, Vte[0,T],
o*ug oug e e ouj ous
Z/E 8t2 ( ot ) d$+A ((u17u2)7 (‘Pl ot T P2 — ot ))
< o ous (4.13)
+Z/ 0‘19!( ul) (‘Pl - al;l) dz + J*(p1, p2)

a €
/fl (wz ;’)dw V(p1,¢2) € K°,

with (u$(0),u50) = (), (50, FE0) = (abu),
where
A((uel,lle2)» (901,902)) Z {2ul/ i (1) dij (1) dz + )\l/E div(uel)dw(%)dw} ,
=1 1

J(p1,2) = / (1 — par — 5)\de.

w

Proof of Lemma 4.1.2. We multiply (4.1) by (¢1 — %) and (4.2) by (2 — %) where

(p1,92) € K. We perform an integration by parts on QS and Qf, using Green’s formula

%, o, ous,
Z/s e ( i — )d;(;’dZ—I-Z/ 0'1”6 (‘Plz En )dm’dz

) dz'dzs (4.14)

leads to .
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4.1. DESCRIPTION OF THE PROBLEM

According to the boundary conditions(4.5)-(4.8), we find

= 8 i £ 8uez
/BQe 015N (‘Pli ot ) dé + / 0225 (902i - 8t2 ) dd =
Oug ous
/Ufﬂl (901 En ) dr’ +/0§772 (cpz — 8t2) dx’.

On the other hand, we have ofm = o7, + (o7,).m, (I =1,2), o7 = 05, = —o5_ and by the
condition (4.9)-(4.10), we get

£ 8 i £ 8’11,67:
/69i 014 (<P1z' 5 >d5+/ 02i5M2j (<P2i - 8t2 ) dé =
3u . Oug.
/Ui [(<P1r — Par) — ( 62 - a—tz)} dz’.

Thus, equation (4.14) becomes

0%, ous,
Z/e ot? ( P~ ot )dllildz—|—2/ Ulzja ((plz ot )d:v’dz

ouf, 2 ous.
- Z/ Ulzgnj (Solz ot ) ds + Z/e Oélegl ( 81&11) d.’L',dl'3
=1 1
oui Ou 2 Out.
+J€(901’(102) - JE ( atl’ 8t2) - Z/e flez (()Ol’t - al‘fz) d.l'ldz =
=1 1

ous ou§ ous ous
15 17 2T / £ 17 2T /
T T) - d k T T - - Tar d .
/wO-T |:(901 ©2 ) ( at 8t ):| z +/¢_; |:|Q01 ©2 S| at at S:| €T
Using Lemma 4.1.1, we deduce directly the variational inequality (4.13) m
Theorem 4.1.3 Suppose that
{ € € 2 re 2 re
(5.5, (%.%), (55, 55) e (0,15 2(99) x (%)),
k¢ € C§°(w), k>0 1isindependent of t, (4.15)

(u?,u) € (H*(929))® x (H*(Q%))%,  (uj,u3) € (HY(Q))* x (H'(25))?,
| gi(u}) € (L3(%))%, (u}).=0, 1=1,2.

Then, there exists one and only one solution (u3,us) satisfying the problem (4.13) with

(S, u5), (3“1 3“2) € 1°(0, T3 (H(5))° x (H'(9%))°),

ot’ ot
0?u§ 0%u o . .
(G )  L=(0.75 (2@ x (205)°).
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4.2. SCALE CHANGE IN THE VARIABLE X3

Proof of Theorem 4.1.3. The proof consists of three steps (see the works of Duvaut and
Lions [20, 34] ):
First, we regularize the function J® by Jg, where

1

= 1M ¢>o.

JE(v1,v9) = / K5 (2)Pe (|v1r — var — 8|*)dx’ with  @¢(N)

Next, we formulate the associated approximate problem. Then, the proof is based on the
nonlinear operators theory. For that, using Galerkin’s method, we show that there exists
a unique solution uf = (uf;, u5,) of this approximate problem. Finally, we prove that the

limit of u to u® when ¢ tends to zero is a solution of (4.13). m

4.2 Scale change in the variable x3

Our aim is to study the asymptotic behavior of u® = (u§, u$) when ¢ tend to zero. For this
purpose, as usual when we deal with thin domains, we use the dilatation in the variable x3

given by z = % Thus, for (2, z3) in O (for [ = 1,2), we have (/, 2) in

O ={(2',2) €R?, (¢/,0) Ew, 0<z<h(z)},
Qe = {(z',2) €R?, (¢,0) €w, —h(z) <z<0}

To have the functions defined in ; with boundary 8 = wUT, UTy,,l = 1,2, we define
(i, 5) € L= (0, T (H*(©))* x (H'(22))°) by

4E. x/,z,t =’u,€i x/,x,t, l,i=1,2,
2, 1) = Uil 20 0 (4.16)
’11183(.’1:/,,2, t) = 6_1Ul63(.’1,'/,$3,t), l= 1, 2.

For the data of problem (4.1)-(4.12), we suppose that they depend of € in the following

manner
fi(«, 2,t) = (7', z3, ), 1=1,2,
= er?, (4.17)

x>

&, = 20§, 1=1,2,
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4.2. SCALE CHANGE IN THE VARIABLE X3

with f'l, % and &; independent of €.

Now, we introduce the functional framework on 2, U 5. We note

V(Ql) = {\Af € (HI(QZ))?’ :v=0 on I;U FL;},
K ={(V1,V5) e V(1) X V() : Vi.p—Vop=0 on w},

Oty . :
Hz(Ql) = {\Afl = (@ll,ﬁlz) € (L2(Ql))2 : 81;1 € L2(Ql), and v; =0 on I, ¢,l= 1,2},

Hz = Hz(Ql) X HZ(QQ),
V() ={w € (H'()?: @1 = (en,912), #, =0 on I Ul for i=1,2}.
H,(y), 1=1,2, and H, be two Banach spaces, with norms
1
2 59 2
¥l 2z 2y = {Z (Ilvullizml) >, ||Lz(9,))} :

i=1

1
171, %)l = (191l o) + 1920, 0))?

Using the transformation z = ﬁ, the variational problem (4.13) is equivalent to the following
€

problem.

Problem 4.2.1 Find (5,145) where (aul( ), 2% (t)) € K, Vt € [0,T], such that

024, 0%, s,
g2 [ / 4 3 (., _ 9Us /
> /Q T ( Pri — 8t)dxdz+s Z/ o ( s — )d:cd
1<4,1<2
B B
+ Z Otz/ glz( ) (A' l’) dm'dZJrZOéz/ 6913( ) (901 gf) dz'dz
+J(61,¢2) —J(%,%) +A((u1,u2) N ) E

1<4,1<2
§ : l1, ! § : /
/ flz (‘plz ) dxr'dz + / fl3 ((Pl3 - _> dz dZ V(‘Pl, 902) S K
(97}

1<4,l1<2

a0)=4a), 2X0) =4, = 1,2,

(

(4.18)

where
j(gbl: @2) = / l/{'@l‘r - ¢2T - 5|d$l,
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and

6U,L oty; 0P i 7 1
A5, (g = 3 [ ( %) 0, 1

1<4,5,1<2

8ula 8“13 20013 0Py /
+Zm/( x)("faﬁ*@)dm

1<j,1<2

E Oug3 Oi3 o
+ 2¢2 B0 dr'dy + 2\ div(48) div dl'ldz:| -
1<I<2 |: H o} 0z 0z ! Q ( l) (Sol)

Our goal then is to describe the asymptotic behavior of these new sequences when ¢ tends
onu° i

to zero. To do this, we need to obtain appropriate estimates on @°, and . These

ot ot?

estimates will be useful to prove the convergence of G° toward the expected function. For

this, we introduce some results which will be used next. The detailed description can be
found in [10].

Ck |[Vullpq < ld(w)llpq ! =1,2, for (vi,v3) € K (Korn inequality),

— ous i Ou 1)
1@, @oi)llo,0y xe2p < hH( 6zl 5;)

(Poincaré inequality).
0,91 X Qz

4.2.1 A priori estimates

We start this subsection by obtaining some priori estimates given in the following Theorems.

Theorem 4.2.2 Under the assumptions of Theorem 4.1.8, there exists a constant C inde-
2 oas. g 06s, 945, \ || oas. 8 2
Z Hg( us; UZi) 62( Uis U23) H( U’lz uzz)
- ot ot Oz; ~ Ox; 0,91 x02 ' 0z 0,921 xS
N Z . (311% aagi) .2 (8&53 aag3) 2 N Hs (6u13 811;3) 2
dz;’ Ox; 0t * 0t ) |lo0.x0 0z " 0z ] ||o0,xe,
(4.19)

1<4,5<2
oy \ oug; , / / 6Ul3 8’“13 /
< .
}://ﬂ (6t) ddz+§: N “Bardz < C. (4.20)

1<1,i<2

pendent of €, such that the following estimates hold

2

0,91 XQQ
2

<C.

O,Ql XQ2
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4.2. SCALE CHANGE IN THE VARIABLE X3

Theorem 4.2.3 Let the assumptions of Theorem 4.1.8 hold, there exists a constant C in-
dependent of €, such that

2

0,91 XQz]

2

2

2

H (32% 32%@)
+ 2 7 52
0,01 X ot2 ’ Ot

2 0 (i dis,
8£Ci ot ’ ot

NE NE 2 NE NE 2
+ Z 2 <6u1i, a’u/21/) + e 8 (auli’ 6“21) (4.21)
2|02\ 0t " 0t )loguua 15l 025 \ 0 0 ) lg0x0,
~ ~ 2 ~ N 2
+ 62 (82/“53’ 82u2§3) + ‘ 62 (8’(1&3, 81153) S C.
ot ot 0.01 X2 0z \ 0t " 0t ) lloa,xas

Proof of Theorem 4.2.2. Let (u$,u$) be a solution to the problem (4.13) , we choose
(p1,92) = (0,0). Then, we have

0%u§ ous 0%us du;

. . ou; 0uj
o 07 Ot dz o; O 0t az +A(("1(t)’u2(t))’(at 8t))

+JE (8“1 8“2)+Za,/ (a“’) Ol i do <Z/ auldm'd:c

ous ||?
ot

2
L2(0%) ‘ L2(25)

—I—Zal/ (ﬁ) O G dcy <E/ ,a(;‘l do’ ds.

By integration in times on [0,¢], and as Y, ., i, |di(V)]* < |[VV[*, |div(v)[]* < 3|VV[*, we
2

find
€ 5 t 5
Ouj Ous A 0), (0, ) + 205 / / g (20) O g
3t 0t ) llogsxos i

ot ot
ouj
+2a2/ /Egz(at)

+ A ((ui(2), u5(8), (i (?), UZ(t)))]

I U ”onsng +Z(2/“+3)‘l ” vul’vu2)”095xm

) / / 1da:ds+2 / / fea“2dxds

By Korn’s inequality, there exists a constant Cx > 0 independent of €, such that

(4.22)

A((u (), u5(6), (5(8), u5(4) ) > O (2IVUE @35 + 202 VU5D)I305) - (4.23)
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By applying the integration by parts, we obtain

[/ /Ef“' 1dmds+//ef5 a“ded]
22!/ tu; t)da:—/ £7(0)u; (0 //E l(sul dwds].

Using Poincaré’s inequality, we obtain

||ul€||L2(le) <c¢h ||VU?||L2(Q;) , =12, h = suph(z).

TEW

Applying Cauchy-Schwartz and Young’s inequalities, we obtain

/ / £(s 6u1dxds—|— / / £5(s uzdxds

2—2

h (4 & &
+12Cx | VU5 |[6.0 + —~— 1aCr 12 (Ol 05 + 1V, VudIl3 as cas + 2 1£5(0), £5(0) 3 5 g

af’()

2
< mCxk || VUi [ ac + oI @lloes

(eh)?

ds.
mCk

0,08
(4.24)

0 (i [ 10+ | 1050 ) +

From (4.22)-(4.24), we deduce

Ou; 0u; R c
(%8 25) ||+ (mlvusolas + mlVusolis)
0,05 x5
ou \ ou dJuj\ ou;
+2a1/ /agl ( atl) o d8+2a2/ /592 ( atz) a1 2 <[/ Doy
+(2:u‘1 + 3)‘1 ||Vu?||o’gi + (2/'L2 + 3)‘2) ||vug||0’gg + ”(vu(l)a vug)”g,ﬂfxﬂg

t
72 € e € €
+ER(E(0), 5O B aguos + O | (ulnlel(s)na,gi + 12| V5(5) 3 ) s

[ |

=1

&2
ds + 2 0 | .
s e I >||0,Ql]

(4.25)
Since 52||f5||L2(QE) =¢ 1||fl||L2(Q y» =1,2, multiplying (4.25) by ¢ and for 0 <& < 1, we see
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that

2

H(8u1 8u2)
0,5 x5
+2sZal//gl(6;l) ld ds <

+ O (Vs ()l305 + mnw;(t)uagg)]

ous dug ||? . .
[H( g 2) +Ck (Nlnvul(t)”g,gg +M2||V112(t)||3,9§)] ds
0,05 xQ5
aff 2R’ , ,
+ ds + £ ()12 0 + (211 + 3N) |V |2 o
? E [mcK 7% )| ot = O+ (58 IVl

—2
+e ”(u%a u%)”(),gixgg + €||(V11?, vug)”g,ﬂixﬂg + €3h ”(fls(o)a f;(o))”(z],ﬂfxﬂga

with p_ = min(p, ), p4+ = max(pg, u2) and Ay = max(A;, A2). Therefore

H (6u1 6u2)
0,05 xQ5

+2EZal / / g (6ul) 6uld ds <A (4.26)

[(IGE 50

where A does not depend on ¢

+Ck (Nl”vui(t)”g,ﬂi + M2||Vu§(t)||g,ng)>

0,05 xQ5

+ Ck (Nl”vui(t)n(z],ﬂf + Mz”vug(t)”(z),ng)) ds,

0 o 2, 4 A
Gy, 05 ||0 Qux@ T (1424 + 324 [[(VaY, VIR)|[5 o, <0, + B [|(£1(0), £2(0)[13 0, xa,

_2 R . 2
b i e of, of,
+,LL—CK ”(fl, f2)||L°°(()’T;(L2(Ql))3X(L2(Q2))3) + H <E’ E
L2(0,T5(L2(R0))2 X (L2(22))?)

Using now Gronwall’s Lemma, we have

(1G-%)

from which (4.19)-(4.20) follows. =

2

+ II(Vui(t),VU§(t))||§,ggxgg) <C,

0,05 x Q5

Proof of Theorem 4.2.3. The functional J¢ is convex but non differentiable. To overcome

this difficulty, we shall use the following approach. We regularize the function J¢ by J¢, where
Feory5) = [ w@)cllone —oar — sP)a’ with g0 = 1 C|)\|(1+C) ¢>0.
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Then, we build the approximate problem

(& 0%uf, p ous, p
Z le at2 w1 w+al/ g at wLar

=1

+ A ((ufg, u5e), (1, ¢2))

ous, Ous 2
< € 1¢ 2¢ — £
((‘] ) ( ot ' ot ) ’(901,902)) l§=1: /S;IE L pide,
ous,

: € _ .0 i< _ 1 _

\ with . (0) = uj, 5t 0)=u;, I=1,2.
. . *us, o0*us
We derive (4.27) in t and take p; = then

at2 ) (p2 - at2 7
Z / uf, 82ulC izt A ouj, du, *u§, 0%uj,
. Ot3 Ot? ot ot )\ o2’ otz
2 2 2
0 o°uj. 0°us
+3 i [ o (%) T
2 o ) o o
d, ... [0u 8u2< 82u1C Pus\\ 2 off 9%uf,
+(E( <) ( at ot ) \ee o _; o Ot 08 4z,

d, .., (005 Ou 0*u§, 0*uj,
(E(Jﬁ) ( ot ot )( o2’ ot )) 20

Due to (Hj3), we have

o\ 0%us, d%us ous,.\ 0%us,. 9%us
€ ’ 1¢ 1¢ 1¢ € ! 2¢ 2¢ 2¢ >
0‘1/9591( ot ) o o dx+a2/392< ot ) o op w20

then, we obtain

where

2t ||| 92 || 200y | 02 |l oy ot > ot '\ "ot ot
3f5 62111( d 3f5 azuzcd
o Ot OF os Ot OF

Using Korn’s inequality, we get
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4.2. SCALE CHANGE IN THE VARIABLE X3

0%us, 0% ) 2 2 ous\ |I? 0%us 0?u 2
¢ 2¢ ¢ 1¢ 2¢
| race v (B2)| < | (G o)
H( 02 * 0 ) |loasxns lz:; Ot )|l ot ot? 0,05 x5
2 2 -2 2
Ouj, e2n” || of¢
% w0 (%) 0 o,
zz:; ot 2@p  HCK 1L 08 e
2 2 +2 2 2
611? 62h of¢ 81122
+3 [ |[v (G ) @ o ruce|v (G0
lzz; at Lz(Qi;) HICK 6t LQ(Q?) 6t L2(Q§:)
2 272t 52 2 ¢ e 2
e“h / 0°ff / H oug,
+ s ds+ | wCk||V S ds| .
lzz; [l,l:lCK 0 8t2 ( ) L2(Q§:) 0 K at ( ) L2(Q;¢)
(4.28)
_ *u§.  0*us,
Now, let us estimate 52 (0), 52 (0) J. From (3.15) and (4.27), we deduce
0%u ous
aT;C(O)Wldw + 3t22§ (0)p2 + A ((u1¢(0), uzc(0)), (01, ¥2))
Qf 25
2 aulgc 2
+Z/ g (W(O)) odz = f£(0)pida.
1=1 V& 1=1
So,
us, d*us, IR
. W(O)(pldx+/§,§ W(O)Sozdx < €hlzzl 1€ (0) | 205) [ Ver | L2 s
2
+ 3 (@ + 3NV || z205) IVl 2y + o g 2o 1ol z2ap)] <
=1
2 Q
o 1=
(Z IOy + 2+ 33 o oy + ;h||gz<u%>||m,e>]) o1, 22l ess
=1
Multiplying this inequality by 4/, we get
0%u 0%us
Ve || —3(0), =2+ (0) < (4.29)
or? o? 0,5 xQ5
2 J— A —
where ¢ = ) | [h”ff(o)”L?(m) + (2 + 30167 | g1y + dth*||gz(Uzl)||L2(m)] is independent
=1

of e.
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If we pass to the limit in (4.28) as ¢ tends to zero, then

2us H%u out\ || ous \ |2
H( 6) Ok V(ff) + Ha V<82)
0t " 9t /) ||o,05 <o ¢t/ ll2s) t /) llr203)

2
o%us

ot?

0%us

T Ot2

2
+ Z (2m + 3\ + wCk) |V ”;(97)
=1

(0)

(50570

0,05 xQ8

i e % o Ly o L 7
=1 wCxk L2(le) wCk || Ot L2(9%) NZCK ot? L2(95) |
¢ %us 9%us) ||? ous |2 ous |2 ]
+/ ( 5 2) +Cxk | i v( 1) + pio v( 2) ds.
o I\ 987 0 Jlloosa 0t /)l 2ag) 0t ) llses) ) |
(4.30)
Multiplying now (4.30) by &, we have
0?us 82u§) 2 2 ous \ ||?
€ , + Ck 7, V( l)
[ ( 8t2 (9t2 0,Q§XQ§ IZ=; 8t L2(Ql5)
¢ 2 82us\ ||? 2 o) ||?
o [ B G
0 [ 6t2 3t2 O,Qi X Q‘E ; at L2 (le)
where
B2 ||(ok . of \|
Al 1 2
B=c"+ (2us + 32+ + p:Ck) || Vula ”0 auxes T o (E(t)a E@))
0,91XQ2
B2 || (ot ok, \I B’ ot ot \|
1 2 1 2
= (0), —(0)) (—(8), —(8)) ds.
[L_CK ( ot ot 0.01 X N—CK 0 ot ot 0.01 X
By Gronwall’s inequality there exists a constant C' independent of €, such that
(XS G
ot ot 0,05 xQ8 ot " ot 0,05 x05
Thus we obtain (4.21). =
4.3 Convergence results and limit problem
In this section, we prove the convergence results and give the limit problem in the fixed

domain ().

71




4.3. CONVERGENCE RESULTS AND LIMIT PROBLEM

4.3.1 Convergence results

Theorem 4.3.1 Assume that the assumptions of Theorems 4.2.2 and 4.2.3 hold, then there
(ug;,us;) in L2(0,T; H,) N L>(0,T; H,), i = 1,2, such that

ezxists (uy, u3) =

T ot

5

(2
(45

(97.42Z

E—i5E
t

€

ox;’

ulz

U’lz 621.1,21
096] ot

) = 0.0

(’U'L'a ’U«g,)

o5, 015, _,
t

0
8u1z 8uzz

024, 82u2z R
a2 op

8wz8t

2 3u§3
ot ’

82u13

82615

20
5 0715

(%
<
2z
(4

2.4
0°U5

€ 020t

2
26 Uog

o2’

ot?

* *
ouj; O us,

ot ’ ot

)Amm
=12 ¢
~(0,0)

— (0,0)

— (0,0)

) — (0,0)
1 [ Ouy;

1<i<?)

(1<i<2)

g
O, U3\ ) .
€013 (87) y €923 (€—t (0, 0)
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weakly in L2(0,T; H,),

(4.31)
weakly « in L*°(0,T'; H,).

weakly in L2(0,T; L2(Q4) x L*(Q2)),
weakly x in L*®(0,T; L?(;) x L?(Qy)).

(4.32)

weakly in L2(0,T; L?(€4) x L*(Q2)),
weakly x in L*(0,T; L2(;) x L%(Q2)).

(4.33)

weakly in L?(0,T; L*(Q;) x L*(Q2)),
weakly x in L*®(0,T; L?(;) x L*(Qg)).

(4.34)
weakly in
L2(0,T; L*(Q4) x L2()),
weakly x in
L>(0,T; L?() x L?(y)).

0 ul weakly in
( ot )) L2(0,T; L3() x L2(S)),
weakly x in
L>®(0,T; L2(;) x L2(Qy)).
(4.36)

(4.35)

-~
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Proof of Theorem 4.3.1. According to estimates (4.19) and (4.21), there exists a fixed

constant C which does not depend on e such that

e a7e 2
H (aull au2’b) H_ (8“11/, au2’b> S C (1 S 7/ S 2).
0,021 XQz 8t at 0,01 xQ2
Using the above estimate and Poincaré’s inequality in the domain 2 = €2; U (23, we obtain

8uz(9uz
Il < i | (G2, 52)

o, o, 0 (0ouy; Ous,
ot’ ot Oz \ Ot Ot

We deduce that the sequences (u5;, ug;) and (%, %) are bounded in L?(0,T; L*(Q4) X

L2(022)) N L®(0, T; L2(€y) x L*(R2,)) this implies the existence of(u3;, ug;), and ("’g; 3;;) in

I2(0,T; 12(Q) x 12(@2)) N L2(0,T; L(91) x L*(2)) such that (75,,85,), and (%5, %)

converges weakly to (u3;, u3;) ((au;i au;") : respectively) in L2(0,T; L2(y) x L)) N

)
O,Ql XQQ

1<i<2)

[

0,01 X2 0,21 X Q2

3t 1 ot
L>(0,T; L*(Q;) x L?(2)). Also, the convergence (4.32)-(4.36) are deduced from (4.19)-

(4.21) and (4.31). =

In the following subsection, we give the convergence of our problem towards the weak

generalized equation.

4.3.2 The limit problem

Theorem 4.3.2 With the same assumptions of Theorem 4.2.2, the solution (uf,u}) satisfies

out 8 (. ouy)
Z 'u'l/Ql 62; az (Soll at )dde‘I-J(SO]_,SOQ)

1<1,i<2

A [ Ouy; . Oug Vo ou O
+1<z§i:<2al/nlg“(8t)<"’“ at)d * J(( at)’(at (4.37)

> [ fu(u= ) do'ds, Wl ) € VO x VW)

1<1,i<2
(ul; (2, 2,0), ul; (', 2,0)) = (4, 49,)  Vi=1,2. (4.38)

o?u ou} o?uly ous A oa
(- +aun (G ) e pp + a2 02 () ) = (ube) i (LW x (T (W)
(4.39)

73



4.3. CONVERGENCE RESULTS AND LIMIT PROBLEM

Proof of Theorem 4.3.2. Using the convergence result of Theorem 4.3.1 in the variational

inequality (4.18), with the fact that J is convex and lower semi-continuous, we obtain
ou; . Oou},
aha ( B — at“dg;’dz) al/ Jii ( 5t ) + J(301,<p2)
@ 0% 1<ii<e

J(8U1 aU2) Z / flz (‘plz )dw,dz
1<l,i<2 /U

1<3, l<2

By choosing (see [9])

. Ouj;
P = at

with (15, ¥2s) 1<i<2) € H (1) X H(Q2), we find

ulz/ 6u11 a¢hdx'dz—|—,u22/ 811:27, awmdx/dz_'_alz:/ 911( )¢1zd$ dz
+a22 / goi ( )¢2,dx dz = / Friprida’dz + Z / Fostpaida’dz.

By employing Green’s formula, we deduce

— Z/ = (aulz) (t)hrda'dz — g Z/ (auzZ (t)) Posdx’dz
+éy Z/ 91i <8u ) Yride'dz + o Z/ 92 ( ) Yoida’dz

= Z Fritbridz'dz + Z Fosthodz' dz.
i=1 7 i=1 Y Qe

ous,
o= %) = 1727
ot Vi, @

+ Y1, Poi =

So,

(o (5 ®) Ao anon (5o ) o (20)) =t oo (52) ) ) =

i=1,2, V(¢u, V) € Hy(Q) x Hy(Q).

Thus

0?u3; ous; Ous,; . ous\\ (7
(7 (58 +ovon (%) o (52) womom (50)) = ()

i=1,2 in HYQ) x HY(Qy),

and as ( Fui, f%) € L3(Q) x L(Qy), then (4.40) is valid in L?(Q;) x L*(Qy). m
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Theorem 4.3.3 Under the assumptions of previous theorems, we have the following equality

i = pamy in (L*(w))?, (4.41)
0sy 0s3 0s; 0sj
(‘w L_ 6t2 — s‘ - 8t1 — 6_t2 —SD dx'—/ wripde’ >0, Vi € (L*(w))?,
(4.42)
|7r*|<f%:%—%—s
HilT ot ot
ae. on wx|0,T[ (4.43)
w|mr| =& = 36 > 0 such that % — % = s+ By,
where
si(z,t) = uj(¢',0,t) and 7} (z,t) = %1: (',0,¢) , 1 =1,2.

Also uj satisfy the weak generalized equation:

h 0
/ (13” +G+m / uj(e',y, t)dy + po / U’é(w',y,t)dy) Vo(z')de' =0, Yy € H' (w),
w 0 —h

(4.44)
where
. h . h
F= [ P,y 0y~ hE @01, G= - [ G\ u)dy+ hG(a ).
0 0
~ . - ouy;
Proof of Theorem 4.3.3. From [4], we can choose @; in (4.37) such that ¢y; = 5t +

oul;

Y1i, Poi = 5 i = 1,2, with (1, ¥2i) 1<i<2) € HrluI‘L (1) x Hr2urL (2), where

H%‘IUFLI () ={pr€ H () : o, =0 on ;U I',} (forl=1,2),

then, we find

aulz awli / / auZz aw?t /
IR S I
Oug; Ouy Ou;
+ > al/ gli¢lidx'dz+J( +¢2z) - (8t 8t)

1<1,i<2
Z fliwlidxldza V(¢1i, wZi)(ISigz) € HI1‘1UI‘L1 (Ql) X H%‘gUFL2 (92)

1<1,i<2
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Using Green’s formula on each sub-domain €,/ = 1,2, and n = (0,0, —1), we get

0%uy; /
- > / 5 (vuda'dz + /

N17T’1k-¢1d96/—/M27T;-¢2d96'

1<1,i<2 w w
N 631 632 631 633 ,
+/’i<¢1 P + 5t ot s‘ it dz
T Z ay / i <8uh) Yudz'dz > Z futhude'dz,
1<1,i<2 1<l,i<2 VU

by (4.39) and for ¢; € (Hqul“Ll ()32 1=1,2,

(98* as* * *
- 8_t1 - 8_t2 - SD dz’ — /w (k1771 — pemy.4he) dz’ > 0.

This inequality remains valid for any 1 € (D(w))?, | = 1,2, and by the density of D(w) in
L?(w), we deduce
TRSVARE N B S

3 s| ) dz’'
/w ( ot ot ot ot ) (4.45)
_/ (77 b1 — pamy.4h2) dz’ > 0, Vi1, € (L (w))*.

In the particular case for ¢, = 1y = £, we obtain

/ (i — o) =0, W € (L)),

* *
0sy 0s3

st Osj ‘ B

which implies (4.41).

From (4.41) and (4.45), we deduce the inequality (4.42). The proofs of (4.43) are those given
in case of the problem of fluid (see [3]).

To prove (4.44), we integrate twice the first equation of (4.39) between 0 and z, and the
second between 2z and 0, then by setting z = h in the first equation and z = —h in the second
equation, we find

(
8u1z

st + mhrl; = — [ f2 dagus ( ) (,0,t)d8de + [ [¢ fri(=,0,t)dode,

ou},
u28§i - u‘2h7r;i f f{ 012.921 ( ot ) (-'E 0 t d0d£+ f fé fgl z, 0 t)d0d§

\

Consequently, (4.46) with (4.41) leads to

P18T; + Mass; = / / algh< )(x 6 t)d0d§+/ / fui(@',0,t)d0de
- /_ 1 /6 anz,-( at%) (z',6,t)d0dE + /_ ) /£ fai(z', 0, t)dOE.
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Now, we integrate the first equation of (4.46) between 0 and h, and the second between

—h and 0, we obtain

p1 foh ui (', y, t)dy = pihst + Lpnh?rf + &y foh Gi(z',y,t)dy — foh F(z,y,t)dy,

K2 fi)h ug(mla Y, t)dy = ‘u,th’{ o %H2h27f§ + 6[2 fi)h G2(mla Y, t)dy - fi]h F2(mla Y, t)dya
with

0 0
Fi(z,y,t) / / f1 (z,6,t)d0d¢ and Fy(z',y,t) = / / fa2(z', 6, ¢)dOd¢,

(z',y,t) / / g1< ) ',0,t)d0d¢, Go(z',y,t) / / gz(at)( ',0,t)dOdE.

Therefore,
h 0
B(uasts + pasy) — i / W (@, g, )dy — o / Wi,y t)dy =
0 —h
) . (4.48)
- G(mlayat)dy + / F(m/ayat)dya
0 0

with
F(mla Y, t) = Fl(mla Y, ) + FQ(m —-Y, t) and G( z,y, ) - OA[lGl(:L.Ia Y, t) + OA[2G2($,, —-Y, t)
which gives (4.44). m

Theorem 4.3.4 The solution (uf,u}) of the limit problem (4.37)-(4.39) is unique in L?(0,T; H,)N
L®(0,T; H,).

Proof of Theorem 4.3.4. Let (u}, u}) and (v}, v3) be two solution of (4.37), then

6ulz S au’lz /
Z #l/ 5% 82( ot )dxdz+J(<p1,<p2)

1<1,i<2

¢ ¥ af () (65w ((5) (7)) o

A Ao
> 3 [ (- GE ) wdn v € VOO0 x VW)

> nw / Ovi, O (
l
1<1,1<2 az az

> o () (-5
lngh ot

Z / flz <(ph
1<li<a V™

Uth) dw'dz + j((ﬁl, (,52)

da'dz — J ((66‘;1) , <aa‘f)) (4.50)

) dx’dz, V((,OAl, (,52) € V(Ql) X V(Qz)
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Taking (41, J2) = (‘98‘; L aa‘; 2) in (4.49), then (1, f2) = (68'11, 801;2) in (4.50) and sum-

ming the two inequalities, we find for W = u} — v} and Wy = u} — v3,
2
0 (0 0 — 0 —
1 Z / ( le) —Wyde'dz + Lo Z / ( Wgz) —Wod'dz
— 0z \ ot 0z 0z

0 ok ou;, Ovg ,
—I—Zaz/ (glz( uh) _gli(av:)) ( gth— ;zz) dr'dz <0.

3,l=1

(4.51)

Now, using the assumption (Hs), the equation (4.51) can be rewritten as:

2
o (0 0 — 5
H ;/ 0z (8tW1’) 92 —Wyda'dz + pa Z/ ( sz) &Wzidx'dz <0,

which implies

—I—,LLQ

2dt H_ 2 dt H_

Since W;(0) =0, [ = 1,2, we have

H&W

Using Poincaré ’s inequality, we find

2
=0.
0,0

Fo
= d =
0 an H8zW2

||(W17 W2)||L2(OTH2) ||(W17 W2 ||i°°(0,T;Hz) =0.

Finally, we deduce that (uf,u}) = (v}, v3) in L2(0,T; H,) N L*(0,T; H,). =
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Abstract: This thesis focuses on the study of the asymptotic analysis of some boundary value
problems in a three-dimensional thin domain Qf with nonlinear boundary conditions of friction
type on a part of the boundary. The main idea of this study is to show how to derive two-
dimensional limit problems when the thickness tends to zero for three types of bilateral contacts
problems involving Tresca's or Coulomb's friction law. We start first with an incompressible fluid
governed by the Brinkman equation. Then the second problem concerns a mathematical model
describing the static process of contact between a piezoelectric body and a foundation. Finally, the
third work carried out is devoted to the transmission problem for the linear elasticity equation with
a nonlinear dissipative term. Precisely, we have transformed the original problems posed in the
domain QZ into new equivalent problems on a fixed domain € independent of a small parameter &,
and by using a new scale and several inequalities we prove some estimates and convergence
theorems. Then, we obtain the limit problems with the weak generalized equation and its
unigueness.

Keywords: Brinkman fluid; Coulomb law; Elastic bodies; Electro-Elastic bodies; Reynolds
equation; Tresca law.

Résumeé : Cette thése porte sur I'étude de l'analyse asymptotique de quelques problémes aux
limites dans un domaine mince tridimensionnel Q¢ avec des conditions aux limites non linéaires de
type frottement sur une partie de la frontiére. L'idée principale de cette étude est de montrer
comment dériver des problemes limites bidimensionnels lorsque I'épaisseur tend vers zéro pour
trois types des problémes de contacts bilatéraux mettant en jeu la loi de frottement de Tresca ou de
Coulomb. Nous commencons d'abord avec un fluide incompressible régi par I'équation de
Brinkman. Ensuite le deuxieme probleme concerne un modele mathématique décrivant le
processus statique de contact entre un corps piézoélectrique et une fondation. Enfin, le troisieme
travail réalisé est consacré au probleme de transmission de I'équation d'élasticité linéaire a terme
dissipatif non linéaire. Précisément, nous transformons les problemes originaux posés dans le
domaine Q¢ en de nouveaux problémes équivalents sur un domaine fixe Q indépendant d'un petit
paramétre €. En utilisant un changement d’échelle et plusieurs inégalités nous prouvons quelques
estimations et théoremes de convergence. Grace a ces estimates, nous obtenons finalement les
problemes limites associes avec les équations généralisées faibles et leurs unicités.

Mots-clés: Corps élastiques; Corps Electro-élastique; Equations de Reynolds; Fluide de
Brinkman; Loi de Coulomb; Loi de Tresca.




