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Abstract

It is well known that a wide class of problems, which arises in pure and applied

sciences can be studied in the unified framework of the system of absolute value

equations (AVE) of the type:

Ax−B |x| = b, A, B ∈ Rn×n, b ∈ Rn,

where |x| is the vector in Rn with absolute values of components of x. In this thesis,

we highlight, on one hand the unique solvability of the AVEs where some sufficient

weaker conditions are given. These results are also generalized to the unique solv-

ability of horizontal and standard linear complementarity problems. On the other

hand, for its numerical solution, Picard’s iterative and preconditioned conjugate gra-

dient methods are proposed. Finally, some numerical results are given to confirm the

efficiency of our suggested approaches for solving the AVEs.

Keywords: Absolute value equations, Linear complementarity problems, Linear

system, Singular value, Iterative methods, Unconstrained convex quadratic optimiza-

tion.
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Glossary of Notation

Problem Classes

AVE : Absolute value equations .

SLCP : Standard linear complementarity problem.

HLCP : Horizontal linear complementarity problem .

CG : Conjugate gradient.

PCG : Preconditioned conjugate gradient.

SPD : symmetric positive definite.

ICF : Incomplete Cholesky Factorization.

Spaces

Rn : The real n-dimensional space.

Rn
+ : The nonnegative orthant of Rn.

Rn
++ : The positive orthant of Rn.

Rn×n : The set of all n× n squared matrices.

Vectors

xi : The i-th component of x.

xT : (x1, . . . , xn) the transpose of a vector x, with components xi
x ≥ 0 = xi ≥ 0 , ∀i.
x > 0 : xi > 0, ∀i.
e = (1, ..., 1)T ∈ Rn.

|x| = Absolute value of a vector x ∈ Rn. |x| = (|xi|), i = 1, . . . , n.

xTy =
n∑
i=1

xiyi the standard inner product in Rn.

sign(x) = denotes a vector with the components equal to -1, 0 or 1.

‖x‖ : denote the Euclidean norm (xTx)1/2.

Matrices

3



4 GLOSSARY OF NOTATION

I : Identity matrix .

0n×n : The null matrix of type (n, n) .

AT : The transposed matrix of A.

A−1 : The inverse of a regular matrix A.

A invertible ∼= Anon singular.

|A| = |(aij)| , the absolute value of aij.

λi(A), i = 1, . . . , n : The eigenvalues of A ∈ Rn×n.

λmax(A), i = 1, . . . , n : The largest eigenvalues of A ∈ Rn×n.

λmin(A), i = 1, . . . , n : The smallest eigenvalues of A ∈ Rn×n.

σmax(A) : The largest singular value of matrix A.

σmin(A) : The smallest singular value of matrix A.

tr (A) =
n∑
i=1

aii =
n∑
i=1

λi(A), (the trace of a matrix A ∈ Rn×n).

ρ (A) = max |λi(A)| , ( the spectral radius of A ).

‖A‖2 =
√
ρ (ATA), (the spectral norm of A ).

D(x) = diagonal matrix whose diagonal elements are ± 1and 0.

κ(M) = ‖M‖‖M−1‖, condition real number of an invertible matrixM.

κ(M) =
|λmax(M)|
|λmin(M)|

, ifM is symmetric and invertible.



Introduction

In the last decade the problem of studying the existence and uniqueness and finding

a solution of the generalized nonlinear system of absolute value equations (AVE) of

the form:

Ax−B |x| = b, (0.1)

where A, B ∈ Rn×n and b ∈ Rn are given, and |x| denote the component wise ab-

solute values of the vector x ∈ Rn, has been received a great importance from the

searchers in the domain of numerical analyis and optimization. The AVE (0.1) in-

cludes the two following important problems. If B = I the identity matrix,then the

AVE reduces to the system of absolute value equations of the type:

Ax− |x| = b. (0.2)

Furthermore, if B = 0 (null matrix), then the AVE (0.1) is equivalent to the classical

system of linear equations:

Ax = b.

The importance of the AVEs is due to its broad applications in many domains of

mathematics and applied sciences. For instance the linear complementarity problem

(LCP) including the linear (LO) and convex quadratic (CQO) optimization, bimatrix

games, system of linear interval matrix, the boundary value problems, and the hy-

drodynamic equation can be formulated as AVEs. (For more details the reader can

consult the following references [12, 18, 24, 30, 31] and the references therein).

The AVE (0.1) was first introduced by Rohn [33] in 2004. He used the theorem of

the alternatives for solving it. There is no direct method for solving system of AVE

because these systems are nonlinear. Rohn [33] proved the equivalence between

system of AVE and linear complementarity problems. Besides, in 2006 Mangasarian

and Meyer [24] studied the AVE (0.2), where several results of existence and nonex-

istence of solutions are provided. Besides, in 2009, Rhon [31], generalized certain

results of existence of AVE (0.2) to AVE (0.1) where a theorem of the alternatives is

stated. The problem of checking whether system of AVE has a unique solution is NP-

hard [21, 30]. If the system of AVE is solvable, then either it has a unique solution or

5



6 INTRODUCTION

multiple solutions (exponentially many). We do not know about the exact number of

solutions of the system of AVE. The system of AVE can be solved iteratively. Several

iterative methods were proposed for solving system of AVE, for example, general-

ized Newton method [22], minimization iterative methods [24, 26, 27, 28] and the

methods based on linear complementarity problems [24, 30].

Now, we turn to give some sufficient conditions posed by several researchers which

play an important role in the unique solvability of system of AVEs. We cite the most

frequently used.

• The system of AVE (0.2) has a unique solution when
∥∥A−1∥∥ < 1, or 1 < σmin(A)

(σmin(A) denotes the smallest singular values of matrix A.).

• Rohn [31], generalized this result to unique solvability of AVEs (0.1) where he

imposed the following sufficient condition

σmax(|B|) < σmin(A),

where σmax(|B|) denotes the maximal singular value of matrix |B| = (|bij|) and

the Furthermore, Lotfi and Veiseh [20], imposed other sufficient condition that

if the following matrix

ATA− ‖|B|‖2I,

is positive definite, then the AVE is uniquely solvable for any b ∈ Rn.

In this thesis, we address two points. The first point is the unique solvability of the

AVEs (0.1) and the second point is its numerical solution.

In the first chapter, a mathematical background is stated and which will be useful

throughout the thesis.

In the second chapter, we discuss unique solvability and numerical solution of

AVE (0.1) including the AVEs (0.2). So our main principal result is: if matrices A and

B satisfy either of the following conditions:

• σmin(A) > σmax(B),

•
∥∥A−1B∥∥ < 1, provided A is non singular,

• The matrix ATA− ‖B‖2 I is positive definite,

then the AVE is uniquely solvable for any b. To do so, a reformulation of the AVE as

a standard linear system of equations and then we show under our conditions that

its matrix of coefficients is non singular. It is worth mentioning that our proof dif-

fers for the first condition from Rhon’s proof [33], which is based on the alternative

theorem and also for the second condition from the proof of Lotfi and Veiseh [20],
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which is inspired by the regularity of the interval matrix. Also it differs for the first

condition from the proofs of Achache [1], Achache and Hazzam [3] and Wu and Li

[36], where they involved the theory of linear complementarity problems with the

class of P -matrix,i.e., a matrix with the determinants of all principal submatrices are

positive (Theorem 3.3.7 in [10]). In addition, across an example of AVE, we demon-

strate that our obtained results are reliable to detect unique solvability of AVE rather

than those stated in [20] and [31]. These results are also extended to standard LCP

and its generalization horizontal LCP where through their reformulation as AVE ,

we deduce their unique solvability. And present, a Picard iterative method is sug-

gested to compute numerically an approximated solution for some uniquely solvable

AVE problems. The globally linear convergence of the latter is guaranteed via the

sufficient condition ‖A−1B‖ < 1.

In the third chapter, we suggest an a reformulating the AVE into an equivalent

unconstrained quadratic optimization problem, we prove first under the condition

that the smallest singular value (eigenvalue) of symmetric A is greater than the

largest singular value of B, the AVE is uniquely solvable for any b. We show that

the unique minimum of the corresponding unconstrained quadratic problem is the

unique solution of the AVE. Then, across the latter, we apply the conjugate gradient

algorithms to approximate numerically the solution of the AVE. In the presence of

the ill-conditioned, preconditioned conjugate gradient methods can be used to en-

sure and to accelerate the convergence of the basic conjugate gradient algorithms.

We show across some examples of the AVE, the efficiency of these approaches. Fi-

nally, we end the thesis by a conclusion and future work.



Chapter 1

Mathematical background

In this chapter, we present some mathematical background in matrix and convex

analysis, differential calculus, unconstrained optimization and the definition of the

absolute value equations.

1.1 Matrix Analysis

We denote by Rn, the finite-dimensional Euclidean vector space n ∈ N − {0} and by

Rn×n, the set of real square matrices of order n.

- For all x and y ∈ Rn, we denote by:

xTy =
n∑
i=1

xiyi,

the usual scalar product of x and y. The vector xT denotes the transpose of the

vector column x of Rn.

- Two vectors x and y are orthogonal if xTy = 0.

- The Euclidean norm associated with the usual scalar product, is given by:

‖x‖2 =
√
xTx =

√√√√ n∑
i=1

x2i .

Definition 1.1. An application ‖.‖ : Rn → R is said to be a vectorial norm if it satisfies

the following conditions:

• ‖x‖ ≥ 0,∀x ∈ Rn, ‖x‖ = 0⇔ x = 0.

• ‖αx‖ = |α| ‖x‖ ,∀α ∈ R,∀x ∈ Rn.

• ‖x+ y‖ ≤ ‖x‖+ ‖y‖ ,∀x, y ∈ Rn.

8



1.1. MATRIX ANALYSIS 9

- The Cauchy-Schwarz inequality:∣∣xTy∣∣ ≤ ‖x‖ ‖y‖ ∀x, y ∈ Rn.

Definition 1.2. Let C be the set of complex numbers and let A be a real square matrix

of Rn×n. We recall that λ ∈ C is an eigenvalue of the matrix A if there exists a vector

x ∈ Cn with x 6= 0 such that:

Ax = λx,

we call x the eigenvector of A associated to the eigenvalue λ.

Definition 1.3. We say that the matrix A is positive semi-definite if:

xTAx ≥ 0 ,∀x ∈ Rn,

and we say that A is positive definite if:

xTAx > 0,∀x ∈ Rn(x 6= 0).

Definition 1.4. We call the singular value of a matrix A ∈ Rm×n any square root of

an eigenvalue of the semi-definite symmetric matrix ATA, that is to say:

σ(A) =
√
λ(ATA),

such that λ( ATA) ≥ 0, is the eigenvalue of ATA.

- The minimal singular value of A is given through :

σmin(A) = min
‖x‖2=1

√
xTATAx,

likewise the maximal singular value of A, is given by:

σmax(A) = max
‖x‖2=1

√
xTATAx.

We note if the matrix A is symmetric i.e., A = AT , then the minimal singular value

of A coincides with the minimal eigenvalue of A and we have:

λmin(A) = min
‖x‖2=1

‖Ax‖,

likewise the maximal singular value of A coincides with the maximal eigenvalue of

A, and we have:

λmax(A) = max
‖x‖2=1

‖Ax‖.

Lemma 1.5. Any positive definite matrix A is invertible i.e. there exists a matrix de-
noted by A−1 such that AA−1 = I where I denotes the identity matrix in Rn×n.
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Lemma 1.6. Any real symmetric matrix A, has real eigenvalues and there exist n eigen-
vectors of A forming a basis of Rn.

Lemma 1.7. If A is a real symmetric matrix. Then

xTAx ≥ λmin(A) ‖x‖22 , ∀x ∈ Rn,

where λmin(A) denotes the smallest eigenvalue of A.

Lemma 1.8. If the matrix A ∈ Rn×n is symmetric, then A is positive semi-definite if
and only if λmin(A) ≥ 0, and A is positive definite if and only if λmin(A) > 0.

Definition 1.9. Let A,B ∈ Rn×n , the following application:

‖.‖ : Rn×n → R,

is said to be a matrix norm if it satisfies the following properties:

• ‖A‖ ≥ 0, ∀A ∈ Rn×n, ‖A‖ = 0⇔ A = 0.

• ‖αA‖ = |α| ‖A‖ ,∀α ∈ R,∀A ∈ Rn×n.

• ‖A+B‖ ≤ ‖A‖+ ‖B‖ ,∀A,B ∈ Rn×n.

• ‖AB‖ ≤ ‖A‖ ‖B‖ ,∀A,B ∈ Rn×n.

Definition 1.10. - Recall that a subordinate matrix norm is defined as follows:

‖A‖ = sup
x 6=0, x∈Rn

‖Ax‖
‖x‖

.

- If the vector norm, is the Euclidean norm, then:

‖A‖2 =
√
|λmax(ATA)|,

where λmax(A
TA) denotes the largest eigenvalue of the matrix ATA .

- If A is real symmetric and positive definite, then

‖A‖2 = λmax(A).

Definition 1.11. The matrix A ∈ Rn×nis said to be P-matrix if and only if its principal

minors are positive.

Definition 1.12. Any positive definite matrix is a P-matrix.

Definition 1.13. The absolute value of a matrix A is defined by

|A| = |(aij)| ,

where A = (aij).
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1.2 Differential calculus

In this paragraph, we introduce the notion of differentiability of a function. We start

to give some basic topological notions.

- For all x ∈ Rn and r > 0, the open ball of Rn, denoted by B(x, r), is given through:

B(x, r) = {y ∈ Rn : ‖x− y‖ < r} .

- If {xk} is a sequence of Rn and x? is an element of Rn. We say that {xk} converges

to x? (denoted xk → x?) if ‖xk − x?‖ → 0 when k →∞.
- That is D ⊂ Rn.

1- We define the interior of D as the set of elements x ∈ D for which there exists

an r > 0 such that B(x, r) ⊂ D.

2- D is said to be open if ∀x ∈ D exists B(x, r) ⊂ D.

3- D is said to be closed if for any sequence {xk} from D such that xk → x? we

have: x? ∈ D.

- Let a and b, the set noted [a, b] of Rn, given by:

[a, b] = {a+ t(b− a) = (t− 1)a+ tb : t ∈ [0, 1]} .

The set [a, b] is called the segment connecting a and b.

Definition 1.14. Let D be a subset of Rn and f : D → R. We say that f is continuous

in x ∈ D, if f(xk) → f(x?) for any sequence {xk} of D such that xk → x?. So we say

that f is continuous over all D ⊂ Rn, if it is continuous at any point of D.

Suppose now that the set Ω, is an open set of Rn and f is a function f : Ω→ R.

Definition 1.15. For all x ∈ Ω , and h ∈ Rn, the directional derivative of f at x in the

direction h, is given by

∂f

∂h
(x) = lim

t→0

f(x+ th)− f(x)

t
.

The gradient of f at x, denoted by ∇f(x), is the column vector of Rn given by:

∇f(x) =

(
∂f

∂x1
(x), . . . ,

∂f

∂xn
(x)

)T
.

Recall the formula:

∂f

∂h
(x) = hT∇f(x), ∀x ∈ Ω, ∀h ∈ Rn.
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- We say that x? is a critical or stationary point of the function f if

∇f(x?) = 0.

- We denote for all x ∈ Ω, ∇2f(x) the symmetric square matrix of order n, given by

(∇2f(x))ij =
∂2f

∂xi∂xj
(x), ∀i, j = 1, . . . , n.

∇2f(x) is called the Hessian matrix H from f to x. We also have:

H = ∇2f(x)h =
∂

∂xi
hT∇f(x).

- We say that f is of class C2 on Ω if the partial derivatives of order 2 of f, exist and

are continuous.

Some important examples:

- Consider the following quadratic function:

f(x) = xTAx.

Then

∇f(x) = (A+ AT )x et ∇2f(x) = A+ AT .

In particular, if A is real symmetric, then

∇f(x) = 2Ax et ∇2f(x) = 2A.

- Let f(x) = bTx, then:

∇f(x) = b et ∇2f(x) = 0.

1.3 Convex analysis

In this paragraph, we cite some basic notions of convex analysis which will be useful

afterwards.

Convex functions

Definition 1.16. A set D ⊂ Rn is said to be convex if ∀x, y ∈ Rn the segment [x, y] ⊂
D.

Definition 1.17. Let D ⊂ Rn be a convex set and f : D→ R .

1- f is said to be convex on D if:

f((1− t)x+ ty) ≤ (1− t)f(x) + tf(y).∀x, y ∈ D,∀t ∈ [0, 1].

2- f is said to be strictly convex if:

f((1− t)x+ ty) < (1− t)f(x) + tf(y).∀x, y ∈ D, x 6= y,∀t ∈ ]0, 1[ .
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Definition 1.18. If f is of class C2 on D, then f is convex over D if and only if

the matrix hessian ∇2f(x) is semi-definite positive. Likewise, f is said to be strictly

convex on D if and only if the hessian matrix is positive definite.

Coercive functions

Definition 1.19. Let D be an unbounded set of Rn and f : D → R. f is said to be

coercive on D if:

lim
‖x‖→+∞

f(x) = +∞.

Proper function

Definition 1.20. We say that f , is an eigenfunction (proper function) on domf if

f(x) < +∞. The set domf ⊂ Rn, denotes the effective domain of the function f.

Generalized Jacobian in the sense of Clarke

In this paragraph, one gives the definition of the generalized Jacobian matrix

within the meaning of Clarke [29]. Indeed, we define the generalized Jacobian for

non-differentiable functions. For this purpose, we begin to give the definition of a

Lipschitizian function.

Definition 1.21. Let f : D ⊂ Rn → R be a function, f is said to be Lipschitzian on D
if there exists L > 0, such as :

‖f(x)− f(y)‖ ≤ L ‖x− y‖ ,∀x, y ∈ D.

Definition 1.22. Let f : D → R be a Lipschitzian function. So the set

∂fB(x) =
{
V ∈ Rm×n : ∃ {xk} ⊂ D with xk → x,∇f(xk)→ V

}
.

is called the B−sub-differential of f at x.

Definition 1.23. The generalized Jacobian matrix ∂f is defined as follows:

∂f(x) = conv(∂fB(x)),

where conv denotes the convex hull.

Definition 1.24. Let the function f : Rn → Rn.

f(x) = |x| ,

then the Jacobian generalized is given by:

D(x) = diag(sign(x)),
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where D is the diagonal matrix whose elements are equal to 1, 0 or − 1, with

sign (x) =


−1 if x < 0

0 if x = 0

1 if x > 0.

Strongly convex function

Let D be an unbounded set of Rn and f : D → R, f is said to be strongly convex if

and only if there exists m > 0 such that:

〈f(x)− f(y), x− y〉 ≥ m ‖x− y‖2 ,∀x, y ∈ D.

1.4 Unconstrained optimization problem

In this section, we only consider unconstrained optimization problem. We give the

existence and the uniqueness of a minimum thus the characterization of the latter

through its optimality conditions.

A unconstrained optimization problem (P ) is defined by

(P ) min
x∈Rn

f(x).

Definition 1.25. If D ⊂ Rn, x? ∈ D and f : D → R.
1- We say that x? is a global minimum of f on D if:

f(x) ≥ f(x?), ∀x ∈ D.

2- We say that x? is a local minimum of f on D if there exists a neighborhood V of x?

such than :

f(x) ≥ f(x?),∀x ∈ D ∩ V .

Remark 1.26. Any global minimum is a local minimum.

1.4.1 Results of existence and uniqueness of the solution

In order to be able to easily calculate or approach the solution of an optimization

problem, it is interesting to know the hypotheses guaranteeing the existence and

uniqueness of this solution.

Existence.

Theorem 1.27. Let D ⊂ Rn. If f : D → R, is continuous and if D is a compact set
(closed and bounded), then f has a minimum on D.

Theorem 1.28. We suppose that:
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1. The set D is closed

2. f is lower semi-continuous on D.

3. lim
‖x‖→+∞

f(x) = +∞ , (i.e. f is coercive).

Then f has a minimum on D.

Uniqueness.

The following result shows the impact of convexity in optimization problems.

Proposition 1.29. Let f be a convex function defined on a convex set D. Then any local
minimum of f on D is a global minimum. If f is strictly convex, it there is at most a
global minimum.

1.4.2 Necessary and sufficient conditions for optimality

Necessary conditions

Theorem 1.30. (Necessary condition of first order optimality) Let f : Rn → R, a
differentiable functional. If x? achieves a minimum (global or local) of f on Rn then:

∇f(x?) = 0.

Theorem 1.31. (Necessary condition of second-order optimality) Let x? a minimum of
f . If f is twice differentiable at the point x?, then:

〈
∇2f(x?)y, y

〉
≥ 0, ∀y ∈ Rn.

Sufficient conditions

Theorem 1.32. (First order sufficient condition ) If f is convex and if:

∇f(x?) = 0.

then x? is a global minimum of f.

Theorem 1.33. (Second order sufficient condition) If f is twice differentiable and if
∇f(x?) = 0 and ∇2f(x?) positive definite then x? is a global minimum of f.
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1.4.3 Convergence of a sequence of points

Let x? be the limit of a sequence {xk}k≥0 produced by an iterative algorithm. We

say that xk → x? when k → +∞ ⇔ xk − x? → 0 when k → +∞ ⇔ ‖xk − x?‖ = 0

when k → +∞. Now we try to characterize the speed of convergence of the quantity

xk − x? → 0 when k → +∞. We say that:

- xk converges linearly to x?, if there is a ck(0 < ck < 1) such that:

‖xk+1 − x?‖ ≤ ck ‖xk − x?‖ from a certain rank k0.

- xk converges superlinear to x? if lim
k→+∞

ck = 0.

- xk converges quadratically to x?, if there is a c(0 < c < 1) such that:

‖xk+1 − x?‖ ≤ c ‖xk − x?‖2 from a certain rank k0.

1.5 Equation in absolute values

In this section, we give the definition of an equation in absolute values, and some

results of existence and uniqueness of the solution.

An absolute value equations (abbreviated as AVE) is defined as follows:

Ax−B |x| = b, (1.1)

where A,B ∈ Rn×n are given, b ∈ Rn, and |x| is a vector whose i-th entry is the

absolute value of the i-th entry of x. If B = I, the identity matrix, then the AVE (1.1)

can be reduced to the type:

Ax− |x| = b. (1.2)

1.6 The standard Linear Complementarity Problem

The standard linear complementarity problem (abbreviated by SLCP) consists to find

a couple of vectors (x, y) ∈ Rn × Rn such that

x ≥ 0, y ≥ 0, y = Mx+ q, xTy = 0. (1.3)

where M ∈ Rn×n and q ∈ Rn are given. We will denote by

F =
{

(x, y) ∈ R2n : y = Mx+ q, x ≥ 0, y ≥ 0
}

the feasible set of the (SLCP) (1.3). The solution set of the (SLCP) is given by:

Sol(M, q) =
{

(x, y) ∈ F : xTy = 0
}
.
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1.6.1 Reformulation of SLCP as an AVE

Let us make the following variable change:

x = |z|+ z, y = |z| − z,

it is easy to verify that:

x = |z|+ z ≥ 0, y = |z| − z ≥ 0,

and

xTy = (|z|+ z)T (|z| − z) = 0.

With this change of variable, the (SLCP) turns into an equation in absolute values:

(I +M)z − (I −M) |z| = −q.

Using the previous results for the AVE, we deduce that:

Lemma 1.34. If the matrix (I −M) is invertible, then the SLCP becomes:

(I −M)−1(I +M)z − |z| = −(I −M)−1q, (1.4)

where
A = (I −M)−1(I +M), b = −(I −M)−1q.

Remark 1.35. The solution of (SLCP) is therefore computed via the formula:

x = |z|+ z,

with z is the solution of the equation in absolute values (1.4).

1.7 The horizontal Linear Complementarity Problem

Given two square matrices M,N ∈ Rn×n and a vector q ∈ Rn, the horizontal linear

complementarity problem (HLCP) consists in finding a pair (x, y) ∈ Rn × Rn such

that:

Ny −Mx = q, x ≥ 0, y ≥ 0, xTy = 0, (1.5)

We will denote

F? =
{

(x, y) ∈ R2n : Ny = Mx+ q, x ≥ 0, y ≥ 0
}
.

The feasible set of points of the HLCP as defined in (1.5). The solution set of the

HLCP is given by:

Sol(M,N, q) =
{

(x, y) ∈ F? : xTy = 0
}
.
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Remark 1.36. If N = I or N−1 exists, the HLCP reduced to the standard LCP in

1.6.1.

With the same change of variable for SLCP as in (1.6.1), the HLCP is transformed

into an equation of absolute values as follows.

(N +M)z − (N −M) |z| = −q,

with A = N +M,B = N −M and b = −q.

Lemma 1.37. If the matrix (N −M) is invertible, then the (HLCP) becomes:

(N −M)−1(N +M)z − |z| = −(N −M)−1q. (1.6)

So we set
A = (N −M)−1(N +M), b = −(N −M)−1q.

and z is the solution of the equation in absolute values (1.6) such that

x = |z|+ z.

1.8 Some results of existence and uniqueness of the

solution of the AVE

For unique solvability of AVE, we cite the most well-known established results until

today. In [24], Mangasarian and Meyer presented a sufficient condition, namely,

1 < σmin(A) for AVE (1.2). In [31], Rohn generalized this result to unique solvability

of AVE (1.1) where he imposed the following sufficient condition

σmax(|B|) < σmin(A), (1.7)

where σmax(|B|) denotes the maximal singular value of matrix |B| = (|bij|) and the

σmin(A) denotes the smallest singular values of matrix A.

Theorem 1.38 (Theorem 2 [31]). Under Assumption 1.7, the AVE (1.1) is uniquely
solvable for every b ∈ Rn.

Proof. The proof proceeds by contradiction. Assume to the contrary that the equa-

tion AVE (1.1) does not have a unique solution. Then Theorem 1 [31] with D = |B|
implies existence of a λ ∈ [0, 1] and of a ±1-vector y such that the equation

Ax− λdiag(y)|B||x| = 0.
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has a nontrivial solution x which can be normalized so that ‖x‖2 = 1. So

|Ax| = |λdiag(y)|B||x|| ≤ |B||x|,

hence

xTATAx ≤ |(Ax)T (Ax)| ≤ |Ax|T |Ax| ≤ (|B||x|)T (|B||x|) = |x|T |B|T |B||x|,

and

σmin(A) = min
‖z‖2=1

zTATAz ≤ xTATAx ≤ |x|T |B|T |B||x|

≤ max
‖z‖2=1

zT |B|T |B|z = σmax(|B|),

which contradicts (1.7).

In [3], M. Achache and N. Hazzam generalized this result, where assumed that the

AVE (1.1) satisfies the following condition.

•Assumption 1. The pair of the matrices [A,B] satisfies

σmax(B) < σmin(A),

From the theory of the HLCP and Assumption 1, we will show, based on the following

theorem, that the AVE (1.1) is uniquely solvable for every b ∈ Rn.

Theorem 1.39 (Theorem 2 [3]). Under Assumption 1, the AVE (1.1) is uniquely solv-
able for every b ∈ Rn.

Proof. We prove under Assumption 1 that HLCP (1.5) is reduced to a standard P-LCP

with M = (A − B)−1(A + B) and q = (A − B)−1b. Then we only prove that M is

positive definite. First, we show that (A − B) is invertible. If not, for some nonzero

x ∈ Rn, we have that (A− B)x = 0, which derives a contradiction. This implies that

Ax = Bx. Hence,

σmin(A) = min
‖z‖=1

〈
ATAz, z

〉
≤
〈
ATAx, x

〉
=
〈
BTBx, x

〉
≤ max

‖z‖=1

〈
BTBz, z

〉
= σmax(B),

which contradicts our condition. Hence (A − B)−1 is invertible. Now, we prove that

M is positive definite. To this end, we have, for all nonzero x ∈ Rn.〈
(A−B)−1(A+B)x, x

〉
=
〈
(A+B)x, (AT −BT )−1x

〉
.

Letting (AT −BT )−1x = z, one has〈
(A−B)−1(A+B)x, x

〉
=

〈
(A+B)(AT −BT )z, z

〉
=

〈(
ATA−BTB − ABT +BAT

)
z, z
〉

=
〈
(ATA−BTB)z, z

〉
+
〈
(BAT − ABT )z, z

〉
.
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Note that
〈
(BAT − ABT )z, z

〉
= 0. (A − B)−1(A + B) is positive definite if and only

if (AAT − BBT ) is positive definite. Indeed, by Weyl’s inequalities [Matrix Analysis:

Theorem 4.3.1 in [13] ], we find that

λmin(AAT −BBT ) ≥ λmin(AAT ) + λmin(−BBT ) = λmin(AAT )− λmax(BB
T ).

From Assumption 1, λmin(AAT )− λmax(BB
T ) > 0, (AAT − BBT ) is positive definite.

Hence (A − B)−1(A + B) is positive definite. Consequently, M is a P -matrix. Thus,

from Theorem 3.3.7, [8], the SLCP has a unique solution for any q ∈ Rn, so is the

AVE (1.1) for any b ∈ Rn. This completes the proof.

Furthermore, Lotfi and Veiseh [20], imposed other sufficient condition that if the

following matrix

ATA− ‖|B|‖2I, (1.8)

is positive definite, then AVE (1.1) is uniquely solvable for any b ∈ Rn. Their proof is

based on the regularity of the system of an interval matrix. To simplify this concept,

we give a short overview on this topic. We will give first the notion of an interval

matrix.

Definition 1.40. Given matrices A and B in Rn×n, the set of matrices

I = [A− |B|, A+ |B|] := {S : |S − A| ≤ |B|} = {S : A− |B| ≤ S ≤ A+ |B|}

is called an interval matrix (with midpoint A and radius |B|).

Now we have this definition introducing the an important distinction:

Definition 1.41. A square interval matrix A is called regular if each S ∈ I is regular

(invertible) and singular otherwise, i.e. I contains a singular matrix.

The following result concerning the unique solvability of AVE (1.1).

Lemma 1.42. If the interval matrix I is regular, then the AVE (1.1) for any b has a
unique solution.

For more details we adress to the reference (Lemma 2.3 Lotfi and Veiseh [20]).

1.9 Fixed point method

1.9.1 Fixed point principle

Let F be a function from to Rn → Rn, and consider the equation F (x) = 0. It is clear

that x? is a solution of F (x) = 0 if and only if x? is a root of the equation

F (x?) = 0.
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The principal of fixed point method is to convert the equation F (x) = 0 to the equiv-

alent equation:

Φ(x) = x,

where Φ(x) is a given function. So finding the root of F (x) = 0, is equivalent to

finding the unique fixed point of Φ(x) = x. Then, the fixed point method for getting

the root x? of the equation F (x) = 0 is based on the following recurent iterative

scheme: {
x0 ∈ Rn given

xk+1 = Φ(xk), k ≥ 0,

For the analysis of the conditions of its convergence, the reader can consult the The-

orem 2.8, Chapter II.

1.10 Conjugate gradient methods

In numerical analysis, the conjugate gradient method is an algorithm to solve sys-

tems of linear equations Ax = b, whose matrix A is positive definite. This method

was imagined in 1950 simultaneously by Cornelius Lancgos, Magnus Hestnes 1951

and Edward Steifel, is an iterative method, which converges in a finite number of

iterations (equal to the size of the system). The conjugate gradient method is also

a method for solving a optimization problem, it is a descent method, it comes to

remedy the disadvantage of the orthogonality of the directions of the gradient (it

breaks this orthogonality) by taking conjugated directions (not orthogonal) so it can

be classified between the gradient method and Newton’s method.

1.10.1 Conjugate directions methods

Definition 1.43 (Conjugated vectors). Let A ∈ Mn(R) be a symmetric positive defi-

nite matrix.

• Two vectors d1 and d2 ∈ Rn\ {0} are said to be A-conjugate (or conjugate with

respect to A) if

〈Ad1,d2〉 = dT2Ad1 = 0.

• A set of vectors {d1, d2, . . . , dk} of ∈ Rn \ {0} is called A-conjugate if

(dj)
TAdi = 〈Adi,dj〉 = 0,∀i 6= j and 1 ≤ i ≤ k, 1 ≤ j ≤ k.

• This means that two A-conjugate vectors are orthogonal for the product asso-

ciated to the matrix A defined by:

〈x, y〉A = yTAx, ∀x, y ∈ Rn.
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Description of the method

Let {d1, d2, . . . , dn} a family of A-conjugated vectors. We then call the conjugate di-

rections method any iterative method applied to a strictly convex quadratic function

of n variables:

f(x) =
1

2
xTAx− xT b+ c,

with x ∈ Rn and A an n× n, matrix symmetric and positive definite and b ∈ Rn and

c ∈ Rn, leading to the optimum in n steps at most. This method is of the form:{
x1is a given initial point

xk+1 = xk + αkdk, k ≥ 1,
(1.9)

where αk is optimal and {d1, d2, . . . , dn} have the property of being mutually conju-

gated with respect to matrix A. If we note

gk := ∇f(xk) = Axk − b,

the method is constructed as follows:

Calculation of αk
Since αk minimizes f in the direction dk, then we have ∀k

f ′(αk) = dTk∇f(xk+1) = 0

dTk∇f(xk+1) = dTk (Axk+1 − b).

If

dTk (A(xk + αkdk)− b) = 0,

from where

αk = − gTk dk
dTkAdk

. (1.10)

Theorem 1.44. For all x1 ∈ Rn the sequence {xk} generated by the algorithm (1.9) −
(1.10) converges to the solution x? of the linear system Ax = b in at most n steps.

1.10.2 Conjugate gradient method for quadratic problem

In the conjugate gradient method, we start from a point x1 ∈ Rn, d1 = −g1, the

directions dk, k = 2, . . . , n− 1 are calculated at each iteration. The iterative formula

of the method is as follows.{
x1 ∈ Rn (initial point);

xk+1 = xk + αkdk k ≥ 2,

or

dk =

{
−gk if k = 1

−gk + βkdk−1 if k ≥ 2
: gk := ∇f(xk).
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The displacement step αk is calculated using an exact linear search and the scalar

βk ∈ R is obtained so that dk is A conjugated with the other vectors di, i = 1, . . . , k−1.

In other words we must have

dTkAdi = 0, i = 1, . . . , k − 1.

In the appellation conjugate gradient, we find the two words: gradient and conju-

gated.

• The word gradient is used because dk is calculated from the gradient at the

point xk.

• But the conjugated word it concerns the directions {dk : k ≥ 1} and not the

gradients {gk : k ≥ 1} , this is why a better name would be method combined

directions.

1.10.3 Algorithm of the conjugate gradient for quadratic

problem

Suppose that at iteration k we have a direction dk of descent, that is to say that dk
checks

gTk dk = (Axk − b)Tdk < 0.

• Let αk > 0 obtained by an exact linear search, i.e., αk satisfies

f(xk + αkdk) = min
α>0

f(xk + αdk).

Then

αk = − gTk dk
dTkAdk

.

• βk is chosen so that

dTkAdk−1 = 0,

since

dk = −gk + βkdk−1.

Then

(−gk + βkdk−1)
TAdk−1 = 0,

i.e.,

βk =
gTkAdk−1

dk−1TAdk−1
.
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Therefore a simple description of the conjugate gradient algorithm is stated in the

following table.

Step 1. An arbitrary initial point x1 ∈ Rn, ε > 0 and g1 := Ax1 − b, d1 = −g1, k = 0;

Step 2. Compute αk = − gTk dk
dTkAdk

and set xk+1 = xk + αkdk;

Step 3. If ‖gk‖ < ε then STOP, otherwise compute dk according to

dk = −gk + βkdk−1 with βk =
gTk+1Adk

dTkAdk
;

Step 4. Set k = k + 1, and go to Step 2.



Chapter 2

On unique solvability and Picard’s
iterative method for absolute value
equations

In this chapter we have introduced some weaker sufficient conditions that guarantee

the unique solvability of the AVE (1.1). Across an example of AVE (1.1), we have

showed the reliability of our weaker sufficient conditions to detect unique solvability

of AVE (1.1). These obtained results are also extended to detecting unique solv-

ability of standard and horizontal LCP. Numerically, the proposed Picard’s iterative

method is efficient to provide an approximated solution of some uniquely solvable

AVE including standard and horizontal LCP problems.

25
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CHAPTER 2. ON UNIQUE SOLVABILITY AND PICARD’S ITERATIVE METHOD FOR

ABSOLUTE VALUE EQUATIONS

2.1 On unique solvability for absolute value

equations

In this section, we will give our main results. First, for given matrices A,B ∈ Rn×n

and for any diagonal matrix D ∈ Rn×n whose diagonal elements are ±1 and 0, we

define the matrix (A−BD) ∈ Rn×n. Then to achieve our main results, the following

lemma is required.

Lemma 2.1. Each of three conditions below implies the non singularity of (A−BD).

1. σmin(A) > σmax(B),

2.
∥∥A−1B∥∥ < 1, provided A is non singular,

3. the matrix ATA− ‖B‖2 I is positive definite.

Proof. For the first claim, assume that (A−BD) is singular then,

(A−BD)x = 0, for some x 6= 0.

We then have

σ2
min(A) = min

‖y‖=1
yTATAy ≤ xTATAx = xTDBTBDx

≤ max
‖z‖=1

zTDBTBDz = ‖BD‖2 .

≤ ‖B‖2 ‖D‖2 ≤ ‖B‖2 = max
‖z‖=1

zTBTBz = σ2
max(B),

which contradicts the first condition. Hence (A−BD) is non singular.

Next, by the same argument, assume that A is singular and let a nonzero vector x

with ‖x‖ = 1 and such that

(A−BD)x = 0.

Next, because x = A−1BDx, we then have,

1 = ‖x‖ = ‖A−1BDx‖

≤
∥∥A−1B∥∥ ‖D‖ ‖x‖

≤
∥∥A−1B∥∥ .

This leads to a contradiction and hence (A−BD) is non singular.

For the last claim, assuming the contrary that (A − BD) is singular, then for a

nonzero vector x with ‖x‖ = 1, we have,

(A−BD)x = 0.
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As Ax = BDx, we then have,

xTATAx− ‖B‖2xTx = xT (BD)TBDAx− ‖B‖2xTx

= ‖BDx‖2 − ‖B‖2xTx

≤ ‖B‖2‖D‖2‖x‖2 − ‖B‖2xTx

≤ ‖B‖2 − ‖B‖2 = 0,

and consequently

xTATAx− ‖B‖2xTx ≤ 0.

This contradicts the fact that the matrix ATA − ‖B‖2I is positive definite. Hence

(A− BD) is non singular for any diagonal matrix D whose elements are are ±1 and

0. This completes the proof.

Next, according to Dx = |x| where D := Diag(sign(x)), the AVE (1.1) can be rewrit-

ten [18] as the following standard linear system of equations:

(A−BD)x = b. (2.1)

Then, it is clear that the AVE (1.1) is uniquely solvable for any b if the matrix of

coefficients (A−BD) of the linear system (2.1) is non singular for all diagonal matrix

D whose diagonal elements are ±1 or 0.

Theorem 2.2. If matrices A and B satisfy
1. σmin(A) > σmax(B),
2.
∥∥A−1B∥∥ < 1, provided A is non singular,

3. the matrix ATA− ‖B‖2 I is positive definite,
then the AVE (1.1) is uniquely solvable for any b.

Proof. Based on the results in Lemma (2.1), the matrix (A − BD) of coefficients of

the linear system (2.1) is non singular for any diagonal matrix D whose diagonal

elements are ±1 and 0. Hence the AVE (1.1) is uniquely solvable for any b. This

completes the proof.

For AVE (1.2), the results of unique solvability are summarized in the following the-

orem.

Theorem 2.3. If a matrix A satisfies either of the following conditions:
1. σmin(A) > 1,
2.
∥∥A−1∥∥ < 1, provided A is non singular,

3. the matrix ATA− I is positive definite,
then the AVE (1.2) has a unique solution for any b.
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Proof. The proof is straightforwardly from Theorem (2.2), with B = I.

The following results concerning the unique solvability of the AVE (1.1) were pro-

vided in [20, 31].

Theorem 2.4 (Theorem 1.38). Let A and B satisfy

σmin(A) > σmax(|B|),

then the AVE (1.1) has a unique solution for any b.

Theorem 2.5 ([20]). Let A,B ∈ Rn×n and the matrix

ATA− ‖|B|‖2I,

is positive definite, then the AVE (1.1) has a unique solution for any b.

Next example shows that Theorem (2.2) is reliable to detect unique solvability of

AVE (1.1). Consider the following AVE (1.1) problem, where A,B ∈ R3×3 and b ∈ R3

are given by

A =

 7 0 0

0 7 0

0 0 7

 , B =

 4 −2 −2

−2 −5 −2

−2 −2 2

 , b =

 7

2

9

 .
By simple calculations, σmin(A) = 7, σmax(B) = 6.1355, σmax(|B|) = 7.9018. Theorem

1.38, is not capable to detect the unique solvability of the AVE since σmin(A) = 6 <

σmax(|B|) = 7.9018. However, the application of Theorem 2.2 shows that σmin(A) >

σmax(B) which implies that the AVE has a unique solution for any b ∈ R3. Next,

checking Theorem (2.5) [20], we have

ATA− ‖|B|‖2 I =

 −13.438 0 0

0 −13.438 0

0 0 −13.438

 .
So it is clear that ATA − ‖|B|‖2 I is not positive definite. But Theorem (2.2), shows

that

ATA− ‖B‖2 I =

 11.356 0 0

0 11.356 0

0 0 11.356


is positive definite and the AVE has a unique solution for any b. The unique solution

of this example is x? = [1, −1, 1]T .
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2.2 Unique solvability of standard and horizontal LCP

2.2.1 The standard LCP

In this section, our interest is to deduce sufficient conditions for the existence and

uniqueness of the solution of standard LCP via those established in Theorem (2.2)

for the AVE.

The linear complementarity problem [8], consists in finding a vector x ∈ Rn such

that

y = Mx+ q ≥ 0, x ≥ 0, xTy = 0 (2.2)

where M ∈ Rn×n is a given matrix and q ∈ Rn. Letting

y = |z| − z, and x = |z|+ z,

then the LCP (2.2) can be reformulated as the following AVE (1.1) as follows:

(I +M)z − (I −M)|z| = −q. (2.3)

Then the LCP (2.2) has a unique solution for all q if and only if the AVE in (2.3) has

a unique solution for any b = −q. Using Theorem (2.2) the following results of the

unique solvability of the LCP are deduced.

Theorem 2.6. Let I +M , I −M ∈ Rn×n satisfy either of the following conditions:
1- σmin(I +M) > σmax(I −M),
2- ‖((I +M)−1(I −M))‖ < 1, provided that the matrix I +M is non singular,
3- (I +M)T (I +M)−‖I −M‖2I is positive definite,then the LCP has a unique solution
for any q.

2.2.2 The horizontal LCP

The generalization of the standard LCP is called the horizontal linear complementar-

ity problem (HLCP) [3, 8], consists also in finding a vector x ∈ Rn such that

Ny = Mx+ q ≥ 0, x ≥ 0, xTy = 0, (2.4)

where N,M ∈ Rn×n are given matrices and q ∈ Rn. It is worth noting that the HLCP

becomes a standard LCP if N = I, then the HLCP reduces to an LCP. By using the

same change of variables, y = |z| − z and x = |z| + z, the HLCP reduced to the

following AVE (1.1)

(N +M)z − (N −M)|z| = −q. (2.5)

According to this relation, then it is clear that the HLCP (2.4) has a unique solution

for any q if and only if the AVE (2.5) is uniquely solvable for any b = −q. Again by

Theorem (2.2), we provide the following results for the unique solvability of HLCP.
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Theorem 2.7. Let N +M , N −M ∈ Rn×n satisfy either of the following conditions:
1- σmin(N +M) > σmax(N −M)

2- ‖(N +M)−1(N −M))‖ < 1, provided that the matrix (N +M) is non singular,
3- (N +M)T (N +M)− ‖N −M‖2I is positive definite,
then the HLCP has a unique solution for any q.

2.3 Picard’s iterative method for AVE

In this section, in order to provide an approximated solution of some uniquely solv-

able AVE problems, a simple Picard’s iterative method is proposed. First, we state the

Banach fixed point theorem which will be used for proving the convergence of the

proposed method, one can see [17] and [6] for its details proof.

Theorem 2.8 (Banach’s fixed point theorem). Let (X, d) be a non-empty complete
metric space, 0 ≤ α < 1 and T : X → X a mapping satisfying

d(T (x), T (y)) ≤ αd(x, y), for all x, y ∈ X.

Then there exists a unique x ∈ X such that T (x) = x. Furthermore, x can be found as
follows: start with an arbitrary element x0 ∈ X and define a sequence {xk} by

xk+1 = T (xk),

then
lim
k 7→∞

xk = x,

and the following inequalities hold:

d(x, xk+1) ≤
α

1− α
d(xk+1, xk), d(x, xk+1) ≤ αd(x, xk).

Next, based on the fixed point principle, the sequence of iterations for solving the

AVE (1.1) is given by

xk+1 = A−1B |xk|+ A−1b, k = 0, 1, 2, . . . (2.6)

Next under the condition 2 (Theorem (2.2)), we provide a sufficient condition for

the globally linear convergence of the fixed point iterations (2.6).

Theorem 2.9. Let A be a non singular matrix and if∥∥A−1B∥∥ < 1,

then the sequence {xk} converges to the unique solution x? of the AVE (1.1) for any
arbitrary x0 ∈ Rn. In this case the error bound is given by

‖xk+1 − x?‖ ≤
‖A−1B‖

1− ‖A−1B‖
‖xk − x?‖ , k = 0, 1, 2, . . . (2.7)
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Moreover, the sequence {xk} converges linearly to x? as follows

‖xk+1 − x?‖ ≤
∥∥A−1B∥∥ ‖xk − x?‖ , k = 0, 1, 2, . . . (2.8)

Proof. First, if the condition
∥∥A−1B∥∥ < 1, holds then Theorem 2.(2.2), implies that

the AVE (1.1) is uniquely solvable for any b. Next, to prove the convergence of the

sequence {xk} to x?, we define the function ϕ : Rn→ Rn by

ϕ(x) = A−1B |x|+ A−1b.

Then it is easy to see with the help of the following inequality

‖|x| − |y|‖ ≤ ‖x− y‖, for allx, y ∈ Rn,

that

‖ϕ(x)− ϕ(y)‖ ≤
∥∥A−1B∥∥ ‖x− y‖ , for all x, y ∈ Rn.

Using Theorem (2.8) with X = Rn, T = ϕ, d(x, y) = ‖x− y‖ for all x, y ∈ Rn and

α =
∥∥A−1B∥∥ < 1, we deduce the convergence of the sequence {xk} given by

xk+1 = ϕ(xk), k = 0, 1, 2, . . .

to the unique fixed point x? to ϕ(x) which is in turn the unique solution of the

AVE (1.1). Moreover, the (2.7) and (2.8) hold which lead to the globally linear

convergence of the method.

2.4 Checking unique solvability of AVE and numerical

results

In this section, we present some examples of AVE problems including some examples

of LCP where their unique solvability is checked. Also by applying Picard’s iterative

method, we compute an approximated solution of these examples. Our implementa-

tion is done by using the software Matlab. The starting point and the unique solution

of the AVE are denoted, respectively, by x0 and x?. In the tables of numerical re-

sults we display the following notations: ”Iter” and ”CPU” state for the number of

iterations and the elapsed times. The termination of the algorithm is as the relative

residue:

RSD :=
‖Ax−B|x| − b‖

‖b‖

is less than the tolerance ε = 10−6.

Example 1. Consider the problem of AVE where A,B ∈ R10×10 are given by:
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A =



101 1 1 1 1 1 1 1 1 1

−1 102 1 1 1 1 1 1 1 1

−1 −1 103 1 1 1 1 1 1 1

−1 −1 −1 104 1 1 1 1 1 1

−1 −1 −1 −1 105 1 1 1 1 1

−1 −1 −1 −1 −1 106 1 1 1 1

−1 −1 −1 −1 −1 −1 107 1 1 1

−1 −1 −1 −1 −1 −1 −1 108 1 1

−1 −1 −1 −1 −1 −1 −1 −1 109 1

−1 −1 −1 −1 −1 −1 −1 −1 −1 110



, B = I.

By the help of Matlab software, we get σmin(A) = 101.04 > 1 and
∥∥A−1B∥∥ =

0.09897 < 1. Hence Theorem (2.3) implies that this problem is uniquely solvable

for any b ∈ R10. For b = (A− I)e and with the starting point

x0 = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]T ,

the obtained numerical results by Picard’s method are stated in Table 1.

Iter CPU (time) RSD

5 0.008021 3.9734e− 008
.

Table 1.

The unique solution of this example is x? = e.

Example 2. Consider the AVE in (1.1) where A, B ∈ R7×7 are given by:

A =



1 10 1 1 2 0 0

2 1 6 6 1 1 2

1 3 5 9 100 1500 −5

5 1 3 1 0 3 40

3 3 8 2 2 0 2

1 5 5 0 0 1 0

1 1 1 1 1 2 1000


,

and

B =



0.5 0.5 0.05 0.05 0 0 0

0 0.5 0 0 0.5 0.5 0

0.5 0.5 0.5 0.5 0 0 0

0 0.5 0.5 0 0 0 0.5

0 0 0.25 0.5 0.25 0 0.5

0.5 0 0 0 0 0.05 0

0.5 0.05 0 0.05 0 0 0


.
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Applying Theorem (2.2), we have, σmin(A) = 1.5029 > σmax(B) = 1.4653 and∥∥A−1B∥∥ = 0.373 < 1, then this problem is uniquely solvable for any b.

For

b = [−16.2, 23, 3206, 79, 13, −1.1, 2004.8]T .

The starting point is taken as:

x0 = [1, 2, 3, 4, 5, 6, 7]T .

Then the obtained numerical results are summarized in Table 2.

Iter CPU (time) RSD

6 0.023814 7.1883e− 007.
.

Table 2.

The exact unique solution of this problem is given by

x? = [−2, −2, 2, 2, 2, 2, 2]T .

Example 3. Consider the standard LCP where M ∈ R4×4 is given as

M =


0.4974 −0.0105 −0.0630 −0.001

−0.0839 0.6642 −0.0147 −0.00336

−0.0105 −0.042 0.7482 −0.0042

−0.001 −0.0042 −0.0252 0.7996

 .
By a simple calculation using Theorem (2.6), we get σmin(I+M) = 1.4786 > σmax(I−
M) = 0.5239 and

∥∥(I +M)−1(I −M)
∥∥ = 0.35413 < 1 then the associated AVE has a

unique solution for any b = −q and consequently the LCP problem has a unique solu-

tion for every q. For example if b = −(I +M)−1q, where q = [−1.5, −2, −3.5, −4.5]T

and with the starting point

z0 = [1, 2, 3, 4]T ,

the obtained numerical results are stated in Table 3.

Iter CPU (time) RSD

13 0.005759 3.9225e− 007.
.

Table 3.

The exact unique solution for the AVE (2.3) is given by

z? = [1.8664, 1.8110, 2.4831, 2.9040]T .
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Hence the unique solution of the LCP is x? = z? + |z?|. But since z? is positive vector

i.e., z?i > 0 for all i, then |z?| = z? and so the unique solution of the LCP is x? = 2z?.

Example 4. Consider the standard LCP where M ∈ Rn×n is given by:

M =



0.6 −0.01 0 · · · 0 0

−0.01 0.6 −0.01 · · · 0 0

0 −0.01 0.6 · · · 0
...

...
... . . . . . . −0.01 0

0 0 0 · · · 0.6 −0.01

0 0 · · · 0 −0.01 0.6


.

By using Matlab software, we get for any size of n of the matrix M , σmin(I + M) =

1.5808 > σmax(I −M) = 0.4192, and
∥∥(I +M)−1(I −M)

∥∥ = 0.2652 < 1, then the

LCP has a unique solution for any q ∈ Rn. For b = −(I + M)−1q where q = −e, and

the starting point z0 = [1, 2, 3, · · · , n]T , the obtained numerical results with different

size of n, are summarized in Table 4.

size n Iter CPU(s) RSD

100 15 0.039046 5.8061e− 007

1000 17 4.912430 4.1563e− 007

2000 17 35.421034 8.3189e− 007

3000 18 119.553462 3.3178e− 007

Table 4.

Therefore the unique solution of the LCP for any size of n, is deduced from the

formula x? = |z?|+ z?. Also since z? > 0, then x? = 2z? where

z? = [0.8477, 0.8618, 0.8621, · · · , 0.8621, 0.8618, 0.8477]T .

Example 5. Consider the following horizontal LCP where M,N ∈ Rn×n are given by

M =



4 2 2 · · · 2 2

2 4 2 · · · 2 2

2 2 4 · · · 2
...

...
... . . . . . . 2 2

2 2 2 · · · 4 2

2 2 · · · 2 2 4


,
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and

N =



5 1 1 · · · 1 1

1 5 1 · · · 1 1

1 1 5 · · · 1
...

...
... . . . . . . 1 1

1 1 1 · · · 5 1

1 1 · · · 1 1 5


.

By simple calculation using Theorem (2.7), and for different size of n, we have∥∥(N +M)−1(N −M)
∥∥ = 0.3333 < 1,

then this problem has a unique solution for any b. For b = −(I+M)−1q with q = −Me,

and with the starting point

z0 = [1, 2, 3, · · · , n]T ,

the obtained numerical results for different size of n, are summarized in Table 5.

Size (n) Iter CPU(s) RSD

100 17 0.042596 5.9651e− 007

1000 19 5.722172 8.7750e− 007

2000 20 40.834046 3.7460e− 007

3000 20 135.925389 8.9758e− 007

Table 5.

Also since z? is positive, the unique solution of the HLCP is x? = 2z? = e where

z? = [0.5, 0.5, · · · , 0.5]T .



Chapter 3

Preconditioned conjugate gradient
methods for absolute value equations

In this chapter we have introduced preconditioned conjugate gradient methods for

solving the NP-hard absolute value equations. These methods determine new descent

search directions and offer solutions for some class of AVE problems, including some

interesting instances such as hydrodynamic equations and standard linear comple-

mentarity problems.

36
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3.1 Basic conjugate gradient methods

Before describing the conjugate gradient algorithm, the following results are useful.

For given symmetric matrices A and B, we define, for any diagonal matrix D whose

elements are equal to 1, 0 or - 1, the matrix Q = A − BD. To prove the unique

solvability of the AVE (1.1), the following result is required.

Lemma 3.1. If symmetric matrices A and B satisfy:

σmin(A) > σmax(B),

then the matrix A−BD is non-singular for any diagonal matrix D whose elements are
equal to +1, 0 or - 1.

Proof. Assume a contrary that A − BD is singular, then for some nonzero vector x

with ‖x‖ = 1, we then have that (A−BD)x = 0, which derives a contradiction. This

implies that Ax = BDx. Hence

σmin(A) = min
‖y‖=1

‖Ay‖ ≤ ‖Ax‖ = ‖BDx‖

≤ ‖B‖‖D‖‖x‖ ≤ ‖B‖ = σmax(B).

This contradicts our condition. Hence A−BD is non-singular.

Now according to the equality D(x)x = |x|, with D(x)=diag(sign(x)) the AVE (1.1)

can be transformed into the following linear system of equations:

Qx = b, (3.1)

where Q = A−BD.

Lemma 3.2. If symmetric matrices A and B satisfy

σmin(A) > σmax(B),

then the AVE (1.1) is uniquely solvable for any b ∈ Rn.

Proof. Based on the result of Lemma (3.1), the matrix Q is non-singular for any

arbitrary diagonal matrix D whose elements are equal to 1, 0 or - 1 and therefore the

AVE (1.1) has a unique solution for any b.

One of the important numerical tools to solve the system (3.1) is to transform it into

an equivalent convex quadratic optimization problem:

min
x∈Rn

f(x) = 1
2
(Qx− b)T (Qx− b). (3.2)

The gradient and the Hessian matrix of f(x) are given by:

g(x) := ∂f(x) = QT (Qx− b),
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and

H(x) := ∂2f(x) = QTQ.

Since H(x) is positive definite for any diagonal matrix D whose elements are equal

to +1, 0 or −1, the problem (3.2) has a unique minimum that satisfies

g(x) = 0,

or

QTQx = QT b. (3.3)

Since Q is non-singular therefore (3.3) is equivalent to (3.1) and so is equivalent to

AVE (11). Hence solving the AVE (1.1) is equivalent to find the unique minimum of

(3.2). The conjugate gradient methods are known to be effective in solving quadratic

problems in finite termination [10], [11], [35], [37], [38]. These methods start with

an initial point x0 and generate a sequence {xk} according to the following recurrence

formula:

xk+1 = xk + αkdk, k = 0, 1, 2, . . . (3.4)

where αk > 0 is the step-size obtained by a line search and the directions dk are

computed by the rule

dk = −gk + βkdk−1, k ≥ 1, d0 = −g0, (3.5)

where βk is a suitable positive scalar known as the conjugate updating parameter and

gk refers to g(xk).

3.1.1 Exact line search

Determining the step-size αk in (3.4) along the direction dk, for an objective function

f(x), which is to be minimized, can be simplified to finding the value of αk = α which

consequently minimizes the function:

f(xk+1) = f(xk + αdk) = m(α).

The function m(α) is of a single variable, that is α. Therefore, the αk is calculated by

an exact line search as follows. Using Taylor’s expansion, we have,

m(α) = f(xk + αdk) = f(xk) + αgTk dk + α2

2
dTkHkdk,

so
∂m

∂α
= 0⇔ α = − gTk dk

dTkHkdk
.

Therefore the exact line search is taken as:

αk = − gTk dk
dTkHkdk

, (3.6)

where Hk refers to H(xk).
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3.1.2 Computation of βk

The coefficients βk being chosen in such a way that dk is conjugated with all the

preceding directions, in other word

dTkQdk−1 = 0,

then it implies that:

dTkQdk−1 = −gTkQdk−1 + (βkdk−1)
TQdk−1 = 0,

and so:

βk =
gTkQdk−1
dTk−1Qdk−1

. (3.7)

3.1.3 Basic conjugate gradient algorithms.

We are now ready to state the basic CG algorithms for solving the AVE (1.1).

Step 1. Choose an arbitrary initial point x0 ∈ Rn, ε > 0 and d0 = −g0, k = 0;

Step 2. Compute αk from (3.6) and set xk+1 = xk + αkdk;

Step 3. If ‖Axk −B|xk| − b‖ < ε then STOP, otherwise compute dk according to

dk = −gk + βkdk−1 with βk is computed from (3.7);

Step 4. Set k = k + 1, and go to Step 2.

In [10], and [37], it is shown that the convergence of the CG methods is linearly

global to the unique minimum x∗. It is known that the convergence of CG methods

depends heavily on the condition number κ(Q). If κ(Q) is close to 1, i.e. if the matrix

Q is well-conditioned then CG methods converge fast to the solution. Otherwise,

in the presence of ill-conditioned of the matrix Q, these methods have a very slow

convergence.

3.2 Preconditioned conjugate gradient algorithms

Preconditioning is mainly used in CG methods in order to accelerate their conver-

gence when κ(Q) is very far from 1, i.e. when Q is ill-conditioned. Based on this fact,

we can consider the preconditioned AVE (1.1):

PAx− PB |x| = Pb, (3.8)

where P is a non-singular matrix, called the preconditioner. Obviously, the form (3.8)

is a general form of the AVE (1.1). For P = I, the form (3.8) reduced to the AVE
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(1.1). Again using D(x)x = |x|, then (3.8) becomes the following preconditioned

linear system:

PQx = Pb. (3.9)

Hence the system (3.9) has a unique solution if the matrix PQ is invertible. Since P

is assumed to be non-singular, then we only prove that Q is non-singular. By Lemma

3.1, the matrix Q is non-singular for any diagonal matrix D whose elements are 1,

0, or -1, and consequently, the system (3.9) has a unique solution and so the pre-

conditioned AVE in (3.8) is uniquely solvable for each b. Based on this observation,

therefore, the equivalent preconditioned quadratic optimization problem is:

min
x∈Rn

fP (x) = 1
2
(PQx− Pb)T (PQx− Pb). (3.10)

The gradient and the Hessian matrix of f are:

gP (x) := ∂fP (x) = (PQ)T (PQx− Pb)

and

HP (x) := ∂2fP (x) = (PQ)T (PQ).

It is clear that if P = I, the problem (3.10) reduces to the original problem (3.2).

Also since (PQ)T (PQ) is positive definite matrix, the problem (3.10) has a unique

minimum that satisfies:

gP (x) = 0,

or

(PQ)T (PQx− Pb) = 0,

which means that the unique minimum is the unique solution of the preconditioned

system and which is in turn the unique solution of the AVE (1.1). For the precondi-

tioned problem (3.9), with same manner as the basic CG algorithms, we compute the

exact line search αk and the conjugate parameter βk along the new preconditioned

modified search direction by the formulas:

αk = − (gPk )Tdk
dTkH

P
k dk

, (3.11)

and

βk =
(gPk )TQdk−1
dTk−1Qdk−1

. (3.12)

Now the preconditioned conjugate gradient (PCG) algorithm for solving the AVE

(1.1) is described as follows.
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3.2.1 Preconditioned conjugate gradient algorithm

Step 1. Choose an arbitrary x0 ∈ Rn, a preconditioner matrix P ,

ε > 0 and d0 = −gP0 , k = 0;

Step 2.Compute αk from (3.11) and set xk+1 = xk + αkdk;

Step 3. If ‖PAxk − PB|xk| − Pb‖ < ε then STOP, otherwise compute dk;

according to dk = −gPk + βkdk−1 with βk is computed from (3.12);

Step 4. Set k = k + 1, and go to Step 2.

Note that there is no unique strategy for choosing the preconditioning matrix P for

the conjugate CG methods. In fact, the strategy of choosing P is based on a such

way that the κ(PQ) << κ(Q). For more details see [10].

3.2.2 Another preconditioned conjugate gradient algorithm

In this subsection, we restrict our selves to the AVE (1.2) i.e., B = I.Here, we give

another choice to the preconditioning P followed by the obtained numerical results.

We have seen that if the matrix Q is ill-conditioned then CG algorithm converges

slowly or even diverges. For this reason, we look to transform the system Qx = b into

an equivalent well-conditioned system. We remind that Q = A−D. Then it is worth

to write A in the form of a splitting

A = M −N

where M is SPD. Since M is SPD then it has a Cholesky decomposition ,

M = LTL,

where L is a lower triangular matrix. If we let

Ã = L−TAL−1, b̃ = L−T b

then solving (1.2) is equivalent to

Q̃ỹ = b̃

where Q̃ = Ã−D̃ with ỹ = Lx. We hope that κ(Q̃) << κ(Q), where k(Q) denotes the

condition number of the corresponding matrix. For Q its spectral condition number

is defined as:

k(Q) =
λmax(Q)

λmin(Q)
.

Therefore solving (1.2) by performing the conjugate gradient to the SPD linear sys-

tem Q̃ỹ = b̃. With the new formulation, we have

ỹk = Lxk.
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and

r̃k = b̃− Q̃ỹk = L−T (b−Qxk) = L−T rk.

A conjugate gradient step would be

d̃k+1 = r̃k + βkd̃k

yk = yk−1 + αkd̃k

We prefer to update xk = L−1yk. We have that

d̃k+1 = L−T rk + βkd̃k,

so

xk = L−1yk = L−1yk−1 + αkL
−1d̃k.

Thus

xk = xk−1 + αkdk

where

dk+1 = L−1L−T rk + βkdk.

Since

M−1 = L−1L−T

if we let

zk = M−1rk

then

dk+1 = zk + βkdk

is the update to the descent direction. The formulas for βk and αk update to

βk =
rTk zk

rTk−1zk−1

αk =
rTk−1zk−1

dTkQdk
.

These modifications lead to the another preconditioned conjugate gradient method

(PCG).

3.2.3 PCG algorithms

The basic PCG algorithms for solving the AVE (1.2) is described as follows.
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Step 1. Choose an arbitrary initial point x0 ∈ Rn,

ε > 0 and d0 = r0, k = 0, Mz0 = r0;

Step 2. Compute αk from αk =
rTk−1zk−1

dTkQdk
, and set xk = xk−1 + αkdk;

Step 3. If ‖Qxk − b‖ < ε then STOP,

otherwise compute dk according to dk+1 = zk + βkdk

with βk =
rTk zk

rTk−1zk−1
;

Step 4. Set k = k + 1, and go to Step 2.

In this work the choice of the matrix M is very important, because it has an effect

on numerical results. So we applied the Incomplete Cholesky Factorization program

to shoose M.

3.2.4 Incomplete Cholesky Factorization

We get

M = L̃T L̃.

where LM = (l̃kj) from the following algorithm. Here lkj = 0 if akj = 0.

Algorithm (Incomplete Cholesky Factorization (ICF))

for k = 1, · · · , n− 1

l̃kk =
√
akk;

for j = k + 1 : n

l̃kj =
akj

l̃kk
;

end;

for i = k + 1 : n

for j = i : n % Upper triangle only

if aij 6= 0

aij = aij − l̃kil̃kj;
end;

end;

end;

end;

lnn =
√
ann;
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3.3 Numerical experiments

In this section, we present some numerical experiments on some examples of solv-

able AVE (1.1) to confirm the viability of the PCG algorithms. The experiments

are performed with MATLAB 7.9 and carried out on a PC where our tolerance is

set to ε = 10−6. The initial point and the true solution of AVE (1.1) are denoted

by x0 and x?, respectively. Meanwhile, the number of iterations, the elapsed times

and the residue are denoted by Iter, CPU and RSD=‖Axk − B|xk| − b‖ respectively.

In our numerical implementation, the appropriate choice of the preconditioners are

P =
1

n
I, n ≥ 1, and P = A−1.

Example 1. Let the symmetric matrices A, B and the vector b be given as

A = (aij) =



4n n 0.5 · · · 0.5 0.5

n 4n n · · · 0.5 0.5

0.5 n 4n · · · 0.5
...

...
... . . . . . . n 0.5

0.5 0.5 0.5 · · · 4n n

0.5 0.5 · · · 0.5 n 4n


,

and

B = (bij) =



n
1

n
0.125 · · · 0.125 0.125

1

n
n

1

n
· · · 0.125 0.125

0.125
1

n
n · · · 0

...
...

... . . . . . . 1

n
0

0.125 0.125 0.125 · · · n
1

n

0.125 0.125 · · · 0.125
1

n
n


,

b = [548, 647.5, · · · , 647.5, 548]T .

The two initial points are taken as x01 = [0.001, . . . , 0.001]T and x02 = [0.9, . . . , 0.9]T ,

The computational results with different size of n, are summarized in Table 1.
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Size n x0 P = I (basic CGA) P =
1

n
I, n > 1 P = A−1

x01

Iter

CPU(s)

RSD

29

0.0186

6.0870e− 006

21

0.0161

8.4089e− 006

2

0.0057

4.5068e− 007

100 x02

Iter

CPU(s)

RSD

27

0.0178

6.7790e− 006

19

0.0158

9.1783e− 006

3

0.0074

6.9333e− 006

x01

Iter

CPU(s)

RSD

33

3.5787

5.4336e− 006

21

2.4979

8.5594e− 006

2

0.2273

4.5352e− 008

1000 x02

Iter

CPU(s)

RSD

31

3.3429

6.0443e− 006

19

2.0959

9.3010e− 006

3

0.3293

8.8665e− 015

x01

Iter

CPU(s)

RSD

34

26.6083

5.7908e− 006

21

16.2365

8.4035e− 006

2

1.5644

2.2684e− 008

2000 x02

Iter

CPU(s)

RSD

32

24.4110

6.4720e− 006

19

14.6529

9.2160e− 006

3

2.2716

1.5029e− 014

x01

Iter

CPU(s)

RSD

34

90.5026

8.4709e− 006

21

53.2645

8.3032e− 006

2

4.9661

1.5124e− 008

3000 x02

Iter

CPU(s)

RSD

32

83.9471

9.5473e− 006

19

48.7091

9.1581e− 006

3

5.7692

2.7556e− 014

Table 1.

The true solution is x? =

[
4

3
,
4

3
, . . . ,

4

3
,
4

3

]T
.
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Example 2. The hydrodynamic equations (equilibrium problem [18] ), is modeled

as the following non-differentiable algebraic equations:

Bx+ max(0, x) = c,

where B ∈ Rn×n, c ∈ Rn are given. Using the identity

max (a, b) =
1

2
(a+ b+ |a− b|) ,

equality, the hydrodynamic equation can be reformulated as an AVE (1.1). We have,

Bx+
1

2
(x+ |x|) = c⇔ Ax− |x| − b = 0 where A = −(2B + I) and b = −2c.

Consider now, a randomly hydrodynamic equation where B ∈ Rn×n and c are given

by:

B = (bij) =



−25.5 −2.5 0 · · · 0 0

−2.5 −25.5 −2.5 · · · 0 0

0 −2.5 −25.5 · · · 0
...

...
... . . . . . . −2.5 0

0 0 0 · · · −25.5 −2.5

0 0 · · · 0 −2.5 −25.5


,

and

c = [−27,−29.5, . . . ,−29.5,−27]T .

The initial points are x01 = [0.5, . . . , 0.5]T and x02 = [0.9, . . . , 0.9]T . The computational

results with different size of n, are summarized in Table 2.
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Size n x0 P = I (basic CGA) P =
1

n
I, n > 1 P = A−1

x01

Iter

CPU(s)

RSD

11

0.0143

6.1357e− 006

8

0.0133

5.7939e− 006

4

0.0081

4.8013e− 008

100 x02

Iter

CPU(s)

RSD

10

0.0170

5.6321e− 006

7

0.0113

5.1941e− 006

3

0.0068

2.0096e− 006

x01

Iter

CPU(s)

RSD

11

1.1760

5.8906e− 006

7

0.7838

2.5537e− 006

4

1.5308

4.8112e− 008

1000 x02

Iter

CPU(s)

RSD

10

1.1115

5.4239e− 006

6

0.6666

2.2815e− 006

3

1.1335

2.0219e− 006

x01

Iter

CPU(s)

RSD

11

8.9451

5.8609e− 006

6

4.7227

5.7002e− 006

4

5.5383

4.8116e− 008

2000 x02

Iter

CPU(s)

RSD

10

8.1684

5.4023e− 006

5

4.0932

5.0782e− 006

3

5.3227

2.0226e− 006

x01

Iter

CPU(s)

RSD

11

28.4459

5.8503e− 006

6

15.5639

3.7993e− 006

4

13.9749

4.8117e− 008

3000 x02

Iter

CPU(s)

RSD

10

25.7548

5.3948e− 006

5

12.8931

3.3853e− 006

3

10.7083

2.0228e− 006

Table 2.

The true solution of this example is x? = e.
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Example 3. We consider a LCP ( see subsection 2.2.1). The M ∈ Rn×n and q are

given by:

M = (mij) =



0.6 −0.01 0 · · · 0 0

−0.01 0.6 −0.01 · · · 0 0

0 −0.01 0.6 · · · 0
...

...
... . . . . . . −0.01 0

0 0 0 · · · 0.6 −0.01

0 0 · · · 0 −0.01 0.6


, q = −e.

The initial points are x01 = [0.001, · · · , 0.001]T and x02 = [0.9, · · · , 0.9]T and the ob-

tained computational results with different size of n, are stated in Table 3.

Size n x0 P = I (basic CGA) P =
1

n
I, n > 1 P = A−1

x01

Iter

CPU(s)

RSD

7

0.0152

2.0378e− 006

5

0.0090

2.3141e− 006

4

0.0083

9.3375e− 006

100 x02

Iter

CPU(s)

RSD

6

0.0106

3.3940e− 006

4

0.0081

3.8226e− 006

4

0.0104

7.3068e− 006

x01

Iter

CPU(s)

RSD

7

1.6359

1.9182e− 006

4

1.0504

2.4378e− 006

4

0.9420

9.34412e− 006

1000 x02

Iter

CPU(s)

RSD

6

1.4547

3.2870e− 006

3

0.6995

4.1163e− 006

4

0.9617

7.3117e− 006

x01

Iter

CPU(s)

RSD

7

7.2802

1.9091e− 006

4

4.1854

1.2187e− 006

4

4.1506

9.3440e− 006

2000 x02

Iter

CPU(s)

RSD

6

6.1432

3.2795e− 006

3

3.0415

2.0590e− 006

4

4.8948

7.3116e− 006

x01

Iter

CPU(s)

RSD

7

20.3593

1.9059e− 006

3

8.6417

6.7655e− 006

4

11.5123

9.3440e− 006

3000 x02

Iter

CPU(s)

RSD

6

18.1800

3.2770e− 006

3

8.6375

1.3729e− 006

4

11.6423

7.3116e− 006

Table 3.
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The true solution is

x? = [0.8477, 0.8618, 0.8621, . . . , 0.8621, 0.8618, 0.8477]T ,

and then

z∗ = [1.6954, 1.7237, 1.7241, . . . , 1.7241, 1.7237, 1.6954]T

is the solution of LCP.

Example 4. The matrices A and B are given by

A = (aij) =



10001
1

2

1

3
· · · 1

n− 1

1

n
1

2

1

3
+ 1

1

4
· · · 1

n

1

n+ 1
1

3

1

4

1

5
+ 1 · · · ...

...
...

... . . . . . . 1

2n− 4

1

2n− 3
1

n− 1

1

n

1

n+ 1
· · · 1

2n− 3
+ 1

1

2n− 2
1

n

1

n+ 1
· · · 1

2n− 3

1

2n− 2

1

2n− 1
+ 1


, B = I.

For example, if n = 4, then

A =



10001
1

2

1

3

1

4
1

2

4

3

1

4

1

5
1

3

1

4

6

5

1

6
1

4

1

5

1

6

8

7


.

The spectrum of A, is given by {10001, 1.657, 1.0189, 1.0002}. Since λmin(A) =

1.0002 > λmax(I) = 1, then the AVE is uniquely solvable for any b and also the matrix

Q = A −D is symmetric positive definite for all diagonal matrix D whose elements

are 1,0, or -1. The matrix A is ill-conditioned since κ(A) =
10001

1.0002
= 9999 >> 1, and

consequently, Q is ill-conditioned for any matrix D whose diagonal elements are 1,0,

or -1.
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Next, for b = (A − I)e ∈ Rn, and with the initial point x0 = [0, 0, · · · , 0]T , the

computational results for this example with different size of n, are illustrated in Table

4.

Size n P = I (basic CGA) P =
1

n
I, n > 1 P = A−1

4
Iter

CPU(s)

RSD

3530

0.1300

9.9959e− 006

2701

0.0983

9.9952e− 006

2

0.0050

4.1168e− 016

10
Iter

CPU(s)

RSD

16483

0.6712

9.9991e− 006

12079

0.4594

9.9983e− 0.006

2

0.0051

6.753e− 016

1000
Iter

CPU(s)

RSD

∗ ∗
2

0.2494

3.9550e− 014

2000
Iter

CPU(s)

RSD

∗ ∗
2

1.5669

7.2000e− 014

Table 4.

The "*" means that the basic CG and the preconditioned CG with P =
1

n
I, n > 1

algorithms failed.

The true solution of this example is x? = e.

• For numerical experiments the another preconditioned conjugate gradient algo-

rithms (ICFPCG). Where we set ε = 10−6. The residue is given by

RSD =
‖Qx− b‖
‖b‖

, or

∥∥∥Q̃x− b̃∥∥∥∥∥∥b̃∥∥∥ (for Alg (CG) and Alg (ICFPCG), respectively) .
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Example 5. Let the symmetric matrices A, B and the vector b be given by:

A = (aij) =



4n n 0.5 · · · 0.5 0.5

n 4n n · · · 0.5 0.5

0.5 n 4n · · · 0.5
...

...
... . . . . . . n 0.5

0.5 0.5 0.5 · · · 4n n

0.5 0.5 · · · 0.5 n 4n


,

B = I, b = (A− I)e.

With the initial points x01 = [0.01, . . . , 0.01]T and x02 = [0.9, . . . , 0.9]T , the computa-

tional results with different size of n, are summarized in Table 5.

size (n) x0 Alg (CG) Alg (ICFPCG)

x01

Iter

CPU(s)

RSD

15

0.0109

6.1097e− 006

4

0.0052

7.9089e− 006

100 x02

Iter

CPU(s)

RSD

10

0.0106

6.9542e− 006

4

0.0052

5.7335e− 006

x01

Iter

CPU(s)

RSD

12

0.0848

7.6005e− 006

4

0.0411

3.2862e− 006

1000 x02

Iter

CPU(s)

RSD

7

0.0529

7.4305e− 007

4

0.0310

2.8331e− 006

x01

Iter

CPU(s)

RSD

11

0.2570

7.6835e− 006

4

0.0908

2.5811e− 006

2000 x02

Iter

CPU(s)

RSD

6

0.1438

8.9312e− 006

4

0.0954

2.4027e− 006

x01

Iter

CPU(s)

RSD

11

0.5743

6.2286e− 006

4

0.2075

2.1659e− 006

3000 x02

Iter

CPU(s)

RSD

6

0.3069

7.2842e− 006

4

0.2025

2.0873e− 006

Table 5.
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The true solution is x? = e.

• Same as the second example. We give the numerical results for the initial points

are x01 = [0.1, . . . , 0.1]T and x02 = [0.9, . . . , 0.9]T . The computational results with dif-

ferent size of n, are summarized in Table 6.

size (n) x0 Alg (CG) Alg (ICFPCG)

x01

Iter

CPU(s)

RSD

7

0.0088

4.6532e− 006

3

0.0060

2.5617e− 006

100 x02

Iter

CPU(s)

RSD

5

0.0082

6.0301e− 006

3

0.0066

5.8363e− 006

x01

Iter

CPU(s)

RSD

3

0.0470

1.4699e− 007

3

0.0499

7.5929e− 007

1000 x02

Iter

CPU(s)

RSD

3

0.1309

1.0384e− 007

3

0.0475

1.8679e− 006

x01

Iter

CPU(s)

RSD

6

0.1515

3.2255e− 006

3

0.1383

5.3482e− 007

2000 x02

Iter

CPU(s)

RSD

4

0.1027

3.2648e− 006

3

0.1251

1.3216e− 006

x01

Iter

CPU(s)

RSD

5

0.2477

9.4332e− 006

3

0.2332

4.3611e− 007

3000 x02

Iter

CPU(s)

RSD

4

0.2512

3.9532e− 006

3

0.2444

1.0794e− 006

Table 6.

The true solution is x? = e.
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• Same as the third example. We give the numerical results of the initial points are

x01 = [0.1, · · · , 0.1]T and x02 = [0.9, · · · , 0.9]T and the obtained computational results

with different size of n, are stated in Table 7.

size (n) x0 Alg (CG) Alg (ICFPCG)

x01

Iter

CPU(s)

RSD

5

0.0074

2.8462e− 006

4

0.0065

4.0077e− 007

100 x02

Iter

CPU(s)

RSD

4

0.0067

9.6956e− 006

4

0.0069

3.8310e− 007

x01

Iter

CPU(s)

RSD

4

0.0531

7.3072e− 006

3

0.0506

5.1550e− 006

1000 x02

Iter

CPU(s)

RSD

4

0.0543

2.9346e− 006

3

0.0540

5.0868e− 006

x01

Iter

CPU(s)

RSD

4

0.1870

5.1523e− 006

3

0.1284

3.6387e− 006

2000 x02

Iter

CPU(s)

RSD

4

0.1417

2.0693e− 006

3

0.1317

3.5944e− 006

x01

Iter

CPU(s)

RSD

4

0.2730

4.2028e− 006

3

0.2368

2.9693e− 006

3000 x02

Iter

CPU(s)

RSD

4

0.2872

1.6879e− 006

3

0.2363

2.9342e− 006

Table 7.

The true solution is x? = [0.8477, 0.8618, 0.8621, ..., 0.8621, 0.8618, 0.8477]T , and

then the true solution for LCP is z? = [1.6954, 1.7237, 1.7241, ..., 1.7241, 1.7237, 1.6954]T .



General conclusion and perspectives

In this dissertation, , we have presented some weaker sufficient conditions that guar-

antee the unique solvability of the AVE (1.1). Our proofs are simple and elegant

with the advantage that we do not use the theory of linear complementarity to prove

unique solvability of the AVE (1.1). Across an example of AVE, we have showed

the reliability of our weaker sufficient conditions to detect unique solvability of AVE

(1.1). These obtained results are also extended to detecting unique solvability of

standard and horizontal LCP. Numerically, the proposed Picard’s iterative method is

efficient to provide an approximated solution of some uniquely solvable AVE includ-

ing standard and horizontal LCP problems.

We have also presented preconditioned conjugate gradient methods for solving the

absolute value equations. The obtained numerical results with the preconditioned

matrix P = A−1 are the best since the number of iterations and the elapsed times are

minimum compared with those obtained by the basic conjugate gradient algorithms

(P = I). We have also used a new choice of preconditionning matrix P based on the

Imcomplete Cholesky decomposition. The obtained results are also efficient.

We hope that the preconditioned absolute value equations serves as a basis for future

research on other more choice for the preconditioned matrix P to intend an efficient

study of the absolute value equations.

Finally some prespectives are given.

1- A good topic of research is the study of the AVE where there is no conditions

are stated on the existence and uniqueness of solutions. For this purpose, we have

planned in the futur a DC programming reformulation ( difference of convex func-

tions) for solving the AVE (1.1). Theoretical and numerical study.

2- An important new axis is to consider the matrix absolute value equation of the

form (Sylvester):

AX −B|X| = C,

where A,B and C are given matrices and X is the matrix solution. Here |X| denotes

the absolute value of the matrix X. This new type of the AVE, generalizes the classi-

cal absolute values equation Ax − B|x = b. This topic remains a good subject in the

future where a theoretical and numerical study is needed.

54
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3- An intersting question is the reformulation of the nonlinear LCP as absolute value

equations and deducing new result concerning its solvability. In addition its numeri-

cal solution through the AVE remains a good subject in the future.
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   ملخص

 

 

ا قابلي  على  ناحية  من  الضوء،  نسلط  الأطروحة،  هذه  في   وحدانية  للحة    القيمة  ذات  لمعادلات ل 

ة  قابلي  على   أيض ا  النتائج  هذه  تعميم  يتم  و  . أضعف  شروط   إعطاء  يتم ,كافيا    بعضها  يكون  حيث  المطلقة

ا  و  الخطي  تامالت   سائللم  لحلوحدانية    اقتراح   يتم  العددي  لحلها  ،  أخرى  ناحية  من.    الأفقي   العادي 

العاديالمتراف  التدرج  وطرق  التكرارية  الثابتة  النقطة  طريقة  بعض  إعطاء  يتم  أخير ا،.  .  المشروط و  ق 

 . المطلقة القيمة ذات لمعادلاتا لحل المقترحة الطرق فعالية لتأكيد العددية النتائج

ذاتية  ال  القيم  ،  الخطي   النظام  ،  الخطي   التكامل  مسائل  ،  المطلقة  القيمة  معادلات  :   المفتاح  الكلمات

 المقيدة  غير  مسائل الأمثلية التربيعية المحدبة  ، ألتكرارية الطرق ، الشاذة

 

 
Résumé 

Dans cette thèse, nous soulignons, d'une part, la solvabilité unique des  équations aux valeurs 

absolues (EVA) lorsque des conditions suffisamment faibles  sont données. Ces résultats sont 

également généralisés à la solvabilité  unique des problèmes de complémentarité linéaire 

horizontale et standard.  D'autre part, pour la solution numérique, la méthode itérative point fixe et 

des méthodes de gradient conjugué classique et pré-conditionné sont proposées. Enfin, quelques 

résultats numériques sont donnés pour confirmer l'efficacité de nos approches proposées pour 

résoudre l’EVA. 

Mots clés  : Equations aux valeurs absolues, Problèmes de complémentarité linéaire, Système 

linéaire, Valeur singulière, Méthodes itératives, Optimisation quadratique convexe sans contrainte 

 

Abstract 

 

 

In this thesis, we highlight, on one hand the unique solvability of the absolute value equations 

where some sufficient weaker conditions are given. These results are also generalized to the 

unique solvability of horizontal and standard linear complementarity problems. On the other 

hand, for its numerical solution, Picard’s iterative and preconditioned conjugate gradient methods 

are proposed. Finally, some numerical results are given to confirm the efficiency of our proposed 

approaches for solving the AVEs. 

Keywords:  Absolute value equations, Linear complementarity problems, Linear system, Singular value, 

Iterative methods, Unconstrained convex quadratic optimization. 
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