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Abstract

The systematic study of complementarity problems began with the work of R.W Cottle in the 1960s.

The importance of complementarity can be measured by the crucial role it plays in solving many

problems in different fields. These problems first manifested themselves in the optimality conditions

of the optimization problems; the Karush, Kuhn and Tucker conditions of a linear or a quadratic

program are equivalent to a linear complementarity problem. This thesis interests with the analysis

and implementation of interior-point methods for solving horizontal linear complementarity problem.

In chapter 1, we give some notations and definitions that will be used in the following chapters and

we introduce the mathematical reformulation of the linear complementarity problem and some of its

applications. In chapter 2, we present a theoretical and practical study of the transformation of an

absolute value equation to an horizontal linear complementarity problem by introducing an infeasible

primal-dual central path method. In chapter 3, we propose a feasible primal-dual interior-point meth-

ods for horizontal linear complementarity problem. The method is based on a new class of parametric

kernel functions. We show that the corresponding algorithm has the best known iteration bound for

large-update methods. Then, we illustrate the performance of the proposed kernel function by some

comparative numerical results. In chapter 4, a new variant of Mehrotra type-predictor-corrector al-

gorithm is proposed for horizontal linear complementarity problem. We demonstrate the theoretical

efficiency of this algorithm by showing its polynomial complexity. We test the practical efficiency

and the validity of our algorithm by running some computational tests. Finally, this algorithm is com-

pared with a Mehrotra-type predictor-corrector algorithm [63].

Keywords: Horizontal linear complementarity problem, interior-point method, kernel function, predictor-

corrector algorithm, Mehrotra’s algorithm, complexity bound.
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Introduction

The aim of this doctoral thesis is the complexity analysis and numerical implementation of interior-

point methods for P∗(κ)-horizontal linear complementarity problem (P∗ (κ)-HLCP). The name of this

problem has undergone several changes. It has been called the ”composite problem”, the ”fundamen-

tal problem” and the ”complementary pivot problem”. In 1965, the current name ”linear complemen-

tarity problem (LCP)” was proposed by Cottle. It was later used in a paper by Cottle, Habetler and

Lemke (1970). Probably the earliest publication containing an explicitly stated LCP is one by Du Val

(1940). This paper, part of the literature of algebraic geometry, used a problem of the form (q, M)

to find the least element (in the vector sense) of the linear inequality system q + Mz ≥ 0, z ≥ 0.

Ordinarily, problems of this sort have no solution, but when the matrix M has special properties,

a solution exists and is unique. The linear complementarity problem was conceived as a unifying

formulation for the linear and quadratic programming problems as well as for the bimatrix game

problem which includes the standard linear complementarity problem, linear and quadratic optimiza-

tion problems (LO and QO). In fact, quadratic programs have always been—and continue to be—an

extremely important source of applications for the linear complementarity problem. Several highly

effective algorithms for solving quadratic programs are based on the linear complementarity problem

formulation. As far as the bimatrix game problem is concerned, the linear complementarity prob-

lem formulation was instrumental in the discovery of a super constructive tool for the computation

of an equilibrium point. After the landmark paper of Karmarkar [34] for linear problem (LP), the

interior-point methods (IPMs) became an active area of research. Nowadays, introducing an effi-

cient variant of the polynomial time interior-point methods with low complexity results is the main

challenge in this area of research. Among the different variants of interior-point methods, the most

efficient methods are the so-called primal-dual path following methods from a computational point

of view. The primal-dual central path was initially described by Megiddo [43], and the evolution

of primal-dual path following methods was surveyed in the paper by Gonzaga [26], followed by the

algorithm of Kojima, Mizuno, and Yoshise [38]. Because the linear complementarity problems have

a close connection with linear problem, so that many algorithms such that interior-point algorithms
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were extended to linear complementarity problems without losing their attributes of simplicity and

good practical behavior [58]. Kojima et al. [37] extended all previously results for linear problem

to a linear complementarity problem with a positive semi-definite matrix. Since then, many interior

point algorithms have been prolonged to P∗(κ)-LCP. In chapter 2, we present a theoretical and prac-

tical study of the transformation of an absolute value equation to a horizontal linear complementarity

problem by introducing an infeasible primal-dual central path method.

It’s well known that there is a gap between the practical behaviour of IPM and the theoretical perfor-

mance results especially for the so-called large-update methods. Much research work has been done

on IPM theoretically and practically. Recently, a particularly interesting alternative is being studied,

that of IPMs based on barrier functions that are defined by a large class of univariate functions called

kernel functions that have been successfully used to design new IPMs for linear optimization. Kernel

functions play an important role in the analysis of primal-dual interior-point algorithms. They are not

only used to determine search directions but also to measure the distance between the given iteration

and the µ-center of those algorithms. Peng et al. [48] introduced a primal-dual IPM for LO based

on a new class of barrier function that is defined by the so-called self-regular kernel function. They

significantly improved the theoretical complexity and obtained the best known theoretical iteration

bound for LO with large-update primal-dual IPM, namely O
(√

n log n log n
ε

)
. Recently, Bai et al.

[11] defined the concept of eligible kernel functions which require some conditions and proposed

primal-dual IPMs for LO problems based on these functions, and some of these methods achieved the

best known complexity results for both large and small-update methods.

Cho [18] and Cho et al. [17] extended these algorithms from LO to P∗(κ)-LCPs and obtained the

similar complexity results as LO problems for large-update methods. Wang et al. [57] generalized

polynomial IPMs for LO problem to P∗(κ)-HLCP based on a finite kernel function, which was first

defined in [5], and obtained the same iteration bounds for large and small-update methods as in LO

problem. Lee et al. [39] proposed new classes of kernel functions whose barrier term is exponential

power of exponential functions for P∗(κ)-HLCP. Asadi et al. [8] proposed an infeasible interior point

algorithm for P∗(κ)-HLCP based on a kernel function. Fathi-Hafshejani et al. [27] presented an IPM

for P∗(κ)-HLCP based on a new proximity function. El Ghami et al. [23] extended IPMs for LO

problems to the P∗(κ)-LCPs based on eligible kernel functions, which were defined in [11], and pro-

posed large as well as small-update methods. Bouafia et al. [14] proposed an IPM for LO problems

based on a kernel function whose barrier term is a trigonometric function. El Ghami et al. [24] and

Fathi-Hafshejani et al. [28] proposed a new trigonometric kernel function for P∗(κ)-LCP. Ji et al. [33]

introduced a primal-dual large-update interior point algorithm for P∗(κ)-HLCP based on a new class

of kernel function.
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In an attempt to improve theoretical complexity of large-update methods, in chapter 3, we introduce

a primal-dual interior-point algorithm for P∗(κ)-HLCP based on a new family of kernel functions

with trigonometric barrier term [29]. We provide the polynomial iteration complexity. We examine

the performance of our algorithm by comparing its implementation results with other recent kernel

functions.

Among various variants of interior-point methods, the so-called predictor-corrector methods have at-

tracted much attention in the interior method community due to the high efficiency and have been

widely used in several interior-point method based optimization packages [21, 31, 32, 44, 46, 49,

54, 62]. Mehrotra’s predictor-corrector algorithm for LP was proposed in 1989 in which the coeffi-

cient matrices in both predictor step and corrector step are the same and it needs less computational

efforts than other methods so the performance of practical primal-dual algorithms is significantly im-

proved. After that, many variants of this algorithm have been studied and discussed. Illés et al. [31],

Miao [45] analyzed a version of the Mizuno-Todd-Ye predictor-corrector interior-point algorithm for

P∗(κ)-LCP. In 2012, Liu et al. [41] proposed two Mehrotra-type predictor-corrector algorithms for

sufficient LCP. Jarre et al. [32] proposed an extension of Mehrorta’s predictor-corrector algorithm

and gave a modification to allow some repetition of the corrector step. Salahi et al. [55] discussed the

polynomial complexity of a version of Mehrotra’s predictor-corrector algorithm and gave a numerical

example showing that the choice of some terms in this algorithm may give a small steps, so that, they

introduce a safeguard strategy to avoid these small steps and also the poorly performance of the affine

scaling direction. Yang et al. [59] and Liu et al. [42] study new infeasible versions of Mehrotra-type

algorithm. Recently, Asadi et al. [6], proposed a Mehrotra-type predictor-corrector algorithm for LP

which is a variant of the algorithm presented in [9]. The analysis leads to an improvement of factor n3

in the complexity analysis, which is a significant improvement in the theoretical complexity of the al-

gorithm given in [9]. In 2019, Zhou et al. [63] proposed a variant of Mehrotra type predictor-corrector

algorithm in which a safeguard step is used to avoid small step sizes. They proved the polynomial

iteration complexity of the new algorithm.

Motivated by these works, in chapter 4, we propose a new Mehrotra type interior-point algorithm

to P∗(κ)-HLCP. In this algorithm, we use the negative infinity norm neighborhood and the corrector

search direction is obtained by solving the same system given in [63] but with a different centering

parameter. We demonstrate the theoretical efficiency of this algorithm by showing its polynomial

complexity, then we examine its performance by solving some problems. Finally, we compare our

algorithm with the Mehrotra-type predictor-corrector algorithm presented in [63] by solving some

problems via both algorithms.
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The thesis is organized as follows:

In chapter 1: we give fundamental definitions and notations that will be used throughout the thesis.

Also, we present some applications of the linear complementarity problem.

In chapter 2: we present an application of the horizontal linear complementarity problem by intro-

ducing a theoretical and numerical study of an infeasible primal-dual central path-following method.

In chapter 3: we propose a primal-dual interior-point method based on a new class of kernel func-

tions to solve horizontal linear complementarity problem. The polynomial iteration complexity is

provided. Some illustrative and comparative numerical results are reported.

In chapter 4: a new variant of Mehrotra type predictor-corrector algorithm is proposed to solve hor-

izontal linear complementarity problem. We demonstrate the theoretical efficiency of this algorithm

by showing its polynomial complexity. We test the practical efficiency and the validity of our algo-

rithm by running some computational tests. Finally, this algorithm is compared with a Mehrotra-type

predictor-corrector algorithm [63].

These chapters are followed by a general conclusion and bibliography.
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Chapter 1

Fundamental definitions and notations

Our purpose in this chapter is to collect the essential background materials needed for the rest of the

thesis.

1.1 Notations

Rn : the real n-dimensional space;

Rn
+ : the nonnegative orthant of Rn;

Rn
++ : the positive orthant of Rn;

Rn×n : the set of all n× n squared matrices;

xT : the transpose of vector x;

e = (1, ..., 1)T ; the n-dimensional vector of ones;

xy = (x1y1, ..., xnyn)T ; the Hadamart product;

xTy =
n∑
i=1

xiyi;

〈x, y〉 = xTy

x
y

=
(
x1
y1
, ..., xn

yn

)T
, yi 6= 0 for all i = 1, . . . , n;

√
x =

(√
x1, ...,

√
xn
)T
, x ≥ 0;

x−1 =
(

1
x1
, ..., 1

xn

)T
, xi 6= 0 for all i = 1, . . . , n;

|x| = (|x1| , ..., |xn|)T ; the componentwise absolute value of a vector x ∈ Rn

‖x‖ =

√
n∑
i=1

x2
i ; the 2-norm of a vector x;

‖x‖1 =
n∑
i=1

|xi| ; the 1-norm of a vector x;

‖x‖∞ = max (|x1| , ..., |xn|) ; the infinite norm of vector x
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diag (x) : the diagonal matrix where the diagonal elements are the components

of x i.e xi;

I : the identity matrix

σmin (A) (σmax (A)) : the minimal (maximal) singular value of the matrix A;

λmin (A) (λmax (A)) : the minimal (maximal) eigenvalue of the matrix A.

min(a, b) : the componentwise minimum of two vectors a and b.

max(a, b) : the componentwise maximum of two vectors a and b.
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1.2 Preliminaries

1.2.1 Definitions

Definition 1.2.1. A function f : Rn → R is differentiable at a ∈ Rn if and only if there exists a linear

function L : Rn → R such that

f (x) = f (a) + L (x− a) + o (x) ‖x− a‖ , lim
x→a

o (x) = 0.

If this is the case, then L = df (a) is the differential of f at the point a.

Definition 1.2.2. A set D ⊂ Rn is called convex if

tx+ (1− t) y ∈ D, for all x, y ∈ D and t ∈ [0, 1] .

• Given a convex set D, a function f : D → R is called convex if

f (tx+ (1− t) y) ≤ tf (x) + (1− t) f (y) , (1.1)

for all x, y ∈ D and t ∈ [0, 1], f is called strictly convex if the inequality (1.1) is strict for all

x, y ∈ D, x 6= y and t ∈ ]0, 1[.

• A function f is concave over a convex set if and only if the function −f is a convex function

over this set.

Definition 1.2.3. A barrier function of a set D is a continuous function which approaches infinity as

the boundary of D is approached from the interior.

Definition 1.2.4. A function ψ : R++ → R+ is called a kernel function if ψ is twice differentiable

and satisfies the following conditions

ψ′ (1) = ψ (1) = 0, ψ′′ (t) > 0, for all t > 0, and lim
t→0+

ψ (t) = lim
t→∞

ψ (t) =∞.

Note that the two first conditions mean that f is a strictly convex function and allow a minimum at

t = 1 and the last one creates a barrier at the boundary of the definition set, so this function has also

the name ”barrier function”.
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1.2.2 Newton’s method for nonlinear system

Most iterative algorithms in optimization (for example interior-point methods) have two basic ingre-

dients, a procedure for determining the step and measure of the desirability of each point in the search

space, the search direction procedure has its origins in Newton’s method for the nonlinear equations.

So we give the following definitions.

Given a system of nonlinear equations

f (x) =


f1 (x1, ..., xn)

f2 (x1, ..., xn)
...

fn (x1, ..., xn)

 = 0

with x = (x1, ..., xn)T ∈ Rn and fi, i = 1, ..., n , are real functions.

• The Jacobian matrix J (x) of f is as follows

J (x) =


∂f1
∂x1

(x) ∂f1
∂x2

(x) · · · ∂f1
∂xn

(x)

∂f2
∂x1

(x) ∂f2
∂x2

(x) · · · ∂f2
∂xn

(x)
...

... . . . ...
∂fn
∂x1

(x) ∂fn
∂x2

(x) · · · ∂fn
∂xn

(x)


where ∂fi

∂xj
(x) is the jth partial derivative of fi.

• The Hessian matrix is a matrix of second order partial derivatives, define as follows

H (x) =



∂2f
∂x21

(x) ∂2f
∂x1∂x2

(x) · · · ∂2f
∂x1∂xn

(x)

∂2f
∂x2∂x1

(x) ∂2f
∂x22

(x) · · · ∂2f
∂x2∂xn

(x)
...

... . . . ...
∂2f

∂xn∂x1
(x) ∂2f

∂xn∂x2
(x) · · · ∂2f

∂x2n
(x)

 .

Newton’s method

Given a vector x0 representing the first guess for the solution, successive approximations to the solu-

tion are obtained from

xk+1 = xk − J−1(xk)f
(
xk
)

= xk + ∆xk,
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where ∆xk is the Newton’s direction, solution of the system

J(xk)∆xk = −f(xk).

1.3 Linear complementarity problem (LCP)

1.3.1 Problem statement

The linear complementarity problem (LCP) consist in finding two vectors (x, y) in Rn×Rn such that

y = Mx+ q, xTy = 0, x ≥ 0, y ≥ 0, (1.2)

where M ∈ Rn×n and q ∈ Rn are given, or to show that no such a solution exists.

In the so-called optimality conditions the first constraint represents feasibility, whereas the last equa-

tion is the so-called complementary condition. The nonnegativity constraints make the problem non-

trivial: only iterative methods can find a solution of a linear system involving inequality constraints.

The complementary condition is nonlinear, which makes the resolution of the system (1.2) extra hard.

We denote

F = {(x, y) ∈ Rn × Rn : y = Mx+ q, x ≥ 0, y ≥ 0}

the set of feasible solutions of (1.2), and

F0 = {(x, y) ∈ F : x > 0, y > 0}

the set of its strict feasible solutions.

Classes of matrices

LCPs are typically classified according to the classes of the matrix M . In this regard, the following

definitions are given:

• A matrix M ∈ Rn×n is called positive semidefinite (definite) if for every x ∈ Rn we have

xTMx ≥ 0 (xTMx > 0, x 6= 0).

• A matrix M ∈ Rn×n is called a P -matrix (P0-matrix) if all of its principal minors are positive

(nonnegative), i.e, for all x 6= 0 there exist i ∈ {1, . . . , n} : xi(Mx)i > 0, (xi(Mx)i ≥ 0).

13



• Kojima et al. [37] have introduced a class of matrices called P∗(κ)-matrix, we say that a matrix

M ∈ Rn×n is a P∗(κ)-matrix if

(1 + 4κ)
∑

i∈I+(x)

xi (Mx)i +
∑

i∈I−(x)

xi (Mx)i ≥ 0, for all x ∈ Rn,

where κ is a nonnegative real and

I+ (x) = {i : xi (Mx)i ≥ 0}, I− (x) = {i : xi (Mx)i < 0}.

We may define the set of P∗-matrices as the union of P∗(κ)-matrices in the following way

P∗ =
⋃
κ≥0

P∗(κ).

These properties are closely related to the existence and uniqueness of solutions of LCPs. The fol-

lowing results was proved by Cottle et al. [20].

Theorem 1.3.1. (Theorem 3.1.2, [20]) Let M be a positive semidefinite matrix, if the corresponding

LCP is feasible then it is solvable.

Theorem 1.3.2. (Theorem 3.3.7, [20]) a matrix M ∈ Rn×n is a P -matrix if and only if the corre-

sponding LCP has a unique solution for all vectors q ∈ Rn.

LCP and optimization problems

The linear complementarity plays a very important role in solving several problems in different do-

mains: linear problem, convex quadratic programing, variational inequations, mechanic...

The LCP (1.2) generalises the linear problem and the convex quadratic problem as follows:

• Linear programming

Consider the linear program (LP) 
min cTx

Ax ≤ b

x ≥ 0,

where A ∈ Rm×n is of full rank , b ∈ Rm and c ∈ Rn.

This problem is convex and the constraints are qualified, then the Karush–Kuhn–Tucker (KKT)

conditions are necessary and sufficient, so they are equivalent to an LCP as follows: x ∈ Rn
+ is

14



an optimal solution of the previous LP if and only if there exists y ∈ Rm
+ and λ ∈ Rn

+ such that

the KKT conditions are written as an LCP

Find (w, z) ∈ Rn+m × Rn+m such that:

w = Mz + q

wT z = 0,

(w, z) ≥ 0,

where

M =

 0 AT

−A 0

 , q =

 c

b

 , w =

 λ

v

 , v = b− Ax and z =

 x

y

 .
• Quadratic programming

1/ Consider the quadratic problem
min 1

2
xTQx+ cTx

Ax ≤ b

x ≥ 0,

where Q ∈ Rn×n is a symmetric semidefinite matrix, c ∈ Rn and b ∈ Rm.

This problem is convex and the constraints are qualified, which we denoted by (CQP), then the

KKT conditions are necessary and sufficient, x is an optimal solution of CQP if and only if

there exists y ∈ Rm
+ and λ ∈ Rn

+ such that the KKT conditions can be written as an LCP



Find (w, z) ∈ Rn+m × Rn+m

w = Mz + q,

wT z = 0,

(z, w) ≥ 0,

where

M =

 Q AT

−A 0

 , q =

 c

b

 , z =

 x

y

 , w =

 λ

v

 and v = b− Ax.
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2/ Consider the LCP 
Find x ∈ Rn

Mx+ q ≥ 0, x ≥ 0,

xT (Mx+ q) = 0,

* IfM is symmetric, the LCP constitutes the KKT optimality conditions of quadratic programs

with simple nonnegativity constraints of the variables that is: min 1
2
xT (Mx+ q)

x ≥ 0.

* If M is asymmetric, in this case we can associate with the LCP the following quadratic

program 
min xT (Mx+ q)

Mx+ q ≥ 0,

x ≥ 0.

Notice that the objective function of this quadratic program is always bounded bellow by

zero on the feasible set. It is trivial to see that a vector x is a solution of the LCP if and

only if it is a global minimum of this quadratic program with an objective value of zero.

In the study of LCP, one normally does not assume that the matrix M is symmetric. The

formulation of this quadratic program is useful in that it allow one to specialize the results

from quadratic programming theory to the general LCP.

1.3.2 Resolution methods

Many algorithms have been developed for solving the linear complementarity problem, the existing

methods are extensions of methods designed for linear programming.

Pivotal methods

The first class of methods to be developed for the LCPs are the pivotal methods or simplicial methods.

These are variants of the simplex method in which the concept of pivot is used. These algorithms

require the class of positive semidefinite matrices and the P -matrices, this class of LCPs is equivalent

to the class of convex quadratic programs. We cite

• Principal pivoting methods

• Lemke’s method.
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The simplicial methods start at a solution of an artificially set up simple system, and trace a path

through the n-dimensional simplices of the triangulation, which, when the method works, terminates

with a simplex that contains an easily computed approximate solution of the original system. Using

a homotopy interpretation of this path, a variety of other homotopy and path tracing algorithms have

been developed for solving systems of nonlinear equations. These algorithms are known by their

good numerical behavior, while in theory they are considered inefficient because of their exponential

complexity expressed by the total number of possible pivots.

Interior-point methods

The other important class of methods for the LCPs are the interior-point methods. Those approaches

are proposed by Kojima et al. originated from the algorithm introduced by Karmarkar in 1984 for

solving linear programs. The most successful interior-point methods follow a path in strict feasible

set of the problem (hence the name interior-point methods) in an effort to reduce xTy to zero. They

generally demonstrate an excellent practical and theoretical behavior (polynomial complexity). We

cite

• Projective methods,

• Affine-scaling methods,

• Potential-reduction methods,

• Path-following methods.

We focus a little on the last category of the interior-point methods which is the objective of this thesis,

in particular, on the central path-following methods.

For each of these classes of methods, it is possible to define primal, dual and primal-dual variants. We

can classify the interior-point methods depending on the type of algorithms they employ. For this pur-

pose, we have: small-update algorithms, large-update algorithms and predictor-corrector algorithms.

Central path-following methods for LCP

Consider the linear complementarity problem
Find (x, y) ∈ Rn × Rn such that

y = Mx+ q,

xTy = 0, x ≥ 0, y ≥ 0,

(1.3)
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where M ∈ Rn×n and q ∈ Rn are given, and

F = {(x, y) ∈ Rn × Rn : y = Mx+ q, x ≥ 0, y ≥ 0} ,

F0= { (x, y) ∈ F : x > 0, y > 0}.

In what follows, the matrix M is assumed to be positive semidefinite (in this case the LCP is called

monotone). We further assume that the previous LCP has a strictly feasible vector.

The LCP is equivalent to the following quadratic program
min
(x,y)

xTy

y = Mx+ q,

(x, y) ≥ 0,

(1.4)

in the sense that if (x∗, y∗) is a solution of (1.4) with x∗Ty∗ = 0 then (x∗, y∗) is a solution of (1.3).

The concept of a central path can be introduced using a logarithmic barrier function, we associate

with (1.4) the following barrier problem
min
(x,y)

fµ (x, y) = xTy − µ
n∑
i=1

log xiyi,

y = Mx+ q,

(x, y) > 0,

(1.5)

where µ > 0, if µ→ 0, the solution of (1.5) converges to the solution of (1.3), so we solve a series of

problems (1.5) by decreasing the values of µ until we obtain a solution of (1.3). It’s well known that

the function fµ is strictly convex (Proposition 3 in [35]).

Theorem 1.3.3. (Theorem 4 in [35]) IfM is positive semidefinite andF0 6= ∅, the (1.5) have a unique

solution for all µ > 0.

Theorem 1.3.4. (Theorem 5 in [35]) Let µ > 0 and M be a positive semidefinite matrix, (x, y) is a

solution of (1.3) if and only if (x, y) satisfies the following system:
XY e− µe = 0,

y = Mx+ q,

(x, y) > 0.

(1.6)

Therefore, solving (1.5) is equivalent to solving the system (1.6).
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Kojima et al. in [37] showed that if an LCP is strictly feasible then the central path of the under-

lying LCP is well-defined. Let (x (µ) , y (µ)) denote the unique solution of the nonlinear system (1.6)

for a given µ > 0. The set T = {(x (µ) , y (µ)) : µ > 0} is called the central path.

Since the first equation of the problem (1.6) is nonlinear, a direct resolution is generally difficult. So,

we look for an approximate solution (x (µ) , y (µ)) to the following system

Fµ (x, y) = 0, (1.7)

where (x, y, µ) ∈ Rn × Rn × R and Fµ : Rn × Rn → Rn × Rn is defined by

Fµ (x, y) =

 XY e− µe

y −Mx− q

 ,
(x, y) is a solution of the LCP if and only if it is a solution of (1.7). Apply Newton’s method to the

system (1.7) from a strict feasible point (x, y) , we obtain

∇Fµ (x, y)

 ∆x

∆y

 = −F (x, y)

i.e.,  Y∆x+X∆y = µe−XY e

−M∆x+ ∆y = 0.

The new iterate is (
x+, y+

)
= (x, y) + (∆x,∆y) .

Proximity measure

The quality of each found solution is measured by a so-called proximity measure

δ (x, y, µ) = min
µ>0
‖XY e− µe‖ =

∥∥∥∥XY e− xTy

n
e

∥∥∥∥ .
(x, y) ∈ F0 is a point of the central path if∥∥∥∥XY e− xTy

n
e

∥∥∥∥ = 0.

A point (x̄, ȳ) is in the neighbourhood of the central path if

(x̄, ȳ) ∈ T (θ) =

{
(x, y) ∈ F0 :

∥∥∥∥XY e− xTy

n
e

∥∥∥∥ ≤ (xTyn
)
θ

}
,
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where θ > 0.

Algorithm

Input

ε > 0, an accuracy parameter,

β ∈ (0, 1) and 0 < θ ≤ 0.1 are given parameters;

(x0, y0) ∈ T (θ) ;

k = 0;

Begin

while xkTyk ≥ ε

compute µ = xkT yk

n
;

find
(
∆xk,∆yk

)
solution of the following system Y k∆xk +Xk∆yk = βµke−XkY ke

−M∆xk + ∆yk = 0,

set
(
xk+1, yk+1

)
=
(
xk, yk

)
+
(
∆xk,∆yk

)
;

set k = k + 1;

end while

end.

Convergence

If the current point
(
xk, yk

)
is close to the central path and a suitable value of the parameter β is

chosen, then the new iterate
(
xk+1, yk+1

)
remains close to the central path.

Concept of neighborhood

A path-following algorithm explicitly restricts the iterates to a neighborhood of the central path and

follows this central path to a solution of the problem. The neighborhood excludes points that are

too close to the boundary of the nonnegative orthant. Therefore, search directions calculated from

any point in the neighborhood make at least minimal progress toward the solution set. The two most

interesting neighborhoods of the central path are the so-called 2-norm neighborhood N2 (θ) defined

by

N2 (θ) =
{

(x, y) ∈ F0 : ‖XY e− µe‖2 ≤ θµ
}
,

for some θ ∈ ]0, 1[, and the∞-norm neighborhood N−∞ (γ) defined by

N−∞ (γ) =
{

(x, y) ∈ F0 : xiyi ≥ γµ for i = 1, 2, ..., n
}
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for some γ ∈ ]0, 1[. If a point lies in N−∞ (γ), each pairwise product xiyi must be at least some

small multiple γ of their average value µ. This requirement is actually quite modest, and we can

make N−∞ (γ) encompass most of the feasible region F0 by choosing γ close to zero. The N2 (θ)

neighborhood is more restrictive, since certain points in F0 do not belong to N2 (θ) no matter how

close θ is chosen to its upper bound of 1.

Infeasible central path-following methods

One may distinguish between feasible IPMs and infeasible IPMs (IIPMs). Feasible IPMs start with

a strictly feasible interior-point and maintain feasibility during the solution process. Feasible IPMs

require that the starting points satisfy exactly the equality constraints and are strictly positive, i.e.,

they lie in the interior of a region defined by inequality constraints. All subsequent points generated

by the feasible IPMs will have the same properties. IIPMs start with an arbitrary positive point and

feasibility is reached as optimality is approached. The choice of the starting point in IIPMs is crucial

for the performance.

Reconsider the LCP (1.3), replacing the equation xy = 0 by xy = µe, where µ > 0, we get

Fµ (x, y) =

 y −Mx− q

xy − µe

 = 0.

To define the search direction we apply the Newton’s method we get

∇Fµ (x, y)

 ∆y

∆x

 = −Fµ (x, y) ,

which is equivalent to  ∆y −M∆x = rf

x∆y + y∆x = rc,
(1.8)

where rf = Mx+ q − y and rc = µe− xy.

We start by choosing arbitrary (x0, y0) > 0, such that x0y0 = µ0e for some positive number µ0, we

update this vector by computing a search direction and a suitable step-size α > 0 in each iteration.

We stop the algorithm when the

max (‖y −Mx− q‖ , ‖xy‖)
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is less than the accuracy parameter ε.

Algorithm

an accuracy parameter ε > 0;

given x0, y0 > 0 and µ0 > 0;

set k = 0;

While max(
∥∥yk −Mxk − q

∥∥ ,∥∥xkyk∥∥) > ε do

solve the system (1.8) to obtain (∆xk,∆yk);

determine a step size α > 0 : xk + α∆xk > 0 and yk + α∆yk > 0;

update xk+1 := xk + α∆xk, yk+1 := yk + α∆yk;

set k = k + 1;

end.

Convergence

Theorem 1.3.5. ([56]) Let (xk, yk) be a sequence generated by the precedent algorithm, then for all

ε > 0 there exists k∗: max(
∥∥yk −Mxk − q

∥∥ ,∥∥xkyk∥∥) ≤ ε, for all k > k∗.

Interior-point method based on kernel functions

Most of interior-point methods for linear optimization are based on the logarithmic barrier function.

In 2001, Peng et al. [47] proposed new variants of IPMs based on a new nonlogarithmic kernel

functions. Such a function is strongly convex and smooth coercive on its domain. They obtained the

best known complexity results for large and small-update methods.

Consider the LCP (1.3), we replace the equation xy = 0 by the parameterized equation xy = µe with

µ > 0. Thus we consider the system 
y = Mx+ q,

xy = µe,

x > 0, y > 0,

(1.9)

where M is positive semidefinite matrix. We suppose that F0 6= ∅. Since M is a positive semidefinite

matrix and LCP is strictly feasible, then (1.9) has a unique solution for any µ > 0.

1/ The classical approach:

The classical way to define the search direction at the given point x > 0, y > 0 is to apply Newton’s

method to the nonlinear system (1.9). This yields the following system of linear equations for the
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search directions ∆x and ∆y.  M∆x = ∆y

y∆x+ x∆y = µe− xy.

By taking a step along the search direction with the step size defined by some line search rule, one

constructs a new pair (x, y) that is closer to the µ-center (x(µ), y(µ)). Then, we reduce µ to µ+ =

(1− θ)µ for some fixed θ ∈ (0, 1) and setting µ = µ+, we apply Newton’s method again, targeting

at the new µ-center. Then µ is reduced again, and so on. This procedure is repeated until µ is small

enough, say until nµ < ε.

Let (x, y) a strict feasible point and µ > 0. Define

v =

√
xy

µ
.

Note that the pair (x, y) coincides with the µ−center (x (µ) , y (µ)) if and only if v = e.

Hence, a point on the central path can be characterized by the property vi = 1,∀i. In interior-point

methods the iterates usually are not on the central path, but in some neighbourhood of it. A natural

way to measure the deviation of the ith coordinate vi from one is to use the value at vi of the smooth

strictly convex function ψ : R++ → R+ that is nonnegative, assumes its minimal value zero at 1 and

that goes to infinity when the argument goes to zero or infinity.

Let us recall the definition of the primal-dual logarithmic barrier function, which is given by

φlb(xy, µ) =
xTy

µ
−

n∑
i=1

log
xiyi
µ
− n,

this can be rewritten in terms of vector v as follows

φlb(xy, µ) =
n∑
i=1

(v2
i − 1− logv2

i ),

hence, if the univariate function ψ : R++ → R+ is defined by

ψlb(t) =
t2 − 1

2
− log t.

We have φlb(xy, µ) = 2Ψlb(v) where Ψlb(v) =
∑n

i=1 ψlb(vi).

A proximity function Ψ(v), based on a function ψ, in the scaled space can be defined as follows

Ψ(v) =
n∑
i=1

ψ(vi). (1.10)

23



ψlb(t) is nonnegative, strictly convex, minimal at t = 1 and ψlb(1) = 0. Consequently Ψlb(v) is

nonnegative, strictly convex, minimal at v = e and Ψlb(e) = 0.

By introducing the notations

d =

√
x

y
, dx =

v∆x

x
, dy =

v∆y

y
, (1.11)

we can rewrite the previous system as the following scaled Newton-system: −M̄dx + dy = 0

dx + dy = v−1 − v,

where M̄ = DMD and D = diag (d) . The right hand side in this equation is nothing else than

the negative gradient of the scaled logarithmic barrier function Ψlb(v). The second equation in this

system is called the scaled centering equation which we replaced by

dx + dy = −∇Ψ (v) ,

where Ψ(v) = Ψlb(v). Therefore, we can get the following modified Newton-system: −M̄dx + dy = 0

dx + dy = −∇Ψ (v) ,
(1.12)

Since M is a positive semidefinite matrix and LCP is strictly feasible, the search direction (∆x,∆y)

is uniquely defined. Using the proximity function Ψ (v), in order to find the search direction and to

measure the proximity between the current iterates and the µ-center, the generic primal-dual algo-

rithm for LCPs can be described as follows.
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Algorithm

Input

a proximity function Ψ (v);

a threshold parameter τ > 0 and an accuracy parameter ε > 0;

a fixed barrier update parameter θ, 0 < θ < 1;

begin

x = x0; y = y0;µ = µ0;

while nµ ≥ ε do

µ = (1− θ)µ ;

v =
√

xy
µ

while Ψ (v) ≥ τ do

calculate (∆x,∆y) from (1.12) and (1.11);

calculate a suitable step size α;

set x = x+ α∆x and y = y + α∆y;

end.

The inner “while loop” is called inner iteration and the outer “while loop” is called outer iteration.

Each outer iteration consists of an update of parameter µ and a sequence of (one or more) inner

iterations. The total number of inner iterations is referred to as iteration complexity of the algorithm.

Usually this number is described as a function of the dimension n and ε.

2/ The new approach

In principle any nonnegative, strictly convex function satisfying

ψ′(1) = ψ(1) = 0, ψ′′ > 0, ∀t > 0, lim
t→0

ψ(t) = lim
t→∞

=∞,

can be used instead of the primal-dual logarithmic barrier function, then (1.10) can be used to define

a new proximity function Ψ(v) and the negative gradient of Ψ(v) can be used to define new search

direction. A key task in designing interior-point methods is to find proper functions that are suitable

to design and analyze polynomial interior-point methods.

Predictor-corrector method for LCP

The prediction-correction name comes from the domain of algorithms for solving differential equa-

tions, there is a prediction step and a correction step. The principle of the prediction-correction

method is to try to achieve two objectives: to remain central and to get closer to the optimum by
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means of two different types of iterations.

Going back to the problem (1.3), relaxing the complementarity condition we get
XY e = σµe,

y = Mx+ q,

(x, y) > 0.

(1.13)

where µ > 0 and σ ∈ [0, 1] is the reducing factor of duality measure µ.

Let

Fµ (x, y) =

 XY e− σµe

y −Mx− q

 .
Then solving (1.13) is equivalent to solve the nonlinear system

Fµ (x, y) = 0.

Applying Newton’s method we get Y∆x+X∆y = σµe−XY e

−M∆x+ ∆y = 0.
(1.14)

Predictor-corrector method uses the two directions an affine direction (prediction) to reduce µ and a

centring direction (correction) to stay close to central path.

Affine direction

Let σ = 0, then we solve the system Y∆x+X∆y = −XY e

∆y = M∆x.

We get the so-called predictor search directions noted (∆xa,∆ya).

Centering direction

Let σ = 1, then we solve the system Y∆x+X∆y = µe−XY e

∆y = M∆x.

The obtained directions called corrector search directions noted (∆xc,∆yc).
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Mehrotra’s predictor-corrector algorithm

In 1989, Mehrotra proposed the first predictor-corrector algorithm to solve a linear program that is

very efficient numerically. His idea was to determine the centering parameter in an adaptive way and

no longer according to a predetermined value as in the central path-following algorithms. Several

variants of this algorithm were introduced for linear programming and were later extended to LCP by

several researchers.

In the following, we describe a feasible version of the original Mehrotra’s algorithm. Note that the

original algorithm of Mehrotra is infeasible.

In the prediction step the algorithm calculates the affine direction (∆xa,∆ya) by setting σ = 0 in

(1.14) that is  M∆xa = ∆ya

x∆ya + y∆xa = −xy.
(1.15)

Then we find the longest step length αa ∈ [0, 1] which guarantees

(x+ αa∆x
a, y + αa∆y

a) ≥ 0. (1.16)

We define µa to be the value of µ that would be obtained by a full step to the boundary, that is

µa =
(x+ αa∆x

a)T (y + αa∆y
a)

n
,

and set the centering parameter to be

σ =

(
µa

µ

)3

.

We can see that when good progress is made along the predictor direction we have µa << µ, so the

σ obtained from this formula is small and conversely.

Using the outcomes of (1.15) and (1.16) we obtain the corrector direction (∆x,∆y) by solving the

system  M∆x = ∆y

x∆y + y∆x = σµe−∆xa∆yae− xy,
(1.17)

the new iterate is

(x, y) = (x, y) + α (∆x,∆y) .

where

αx = min(1, min
i:∆xi<0

−xi
∆xi

), αy = min(1, min
i:∆yi<0

−yi
∆yi

), α = min(1,min(βαx, βαy)), (1.18)
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and β ∈ [0.9, 1[.

Algorithm

Input

an accuracy parameter ε > 0;

a proximity parameter γ ∈ (0, 1) ;

given (x0, y0) ∈ N−∞ (γ) ;

for k = 0, 1, ...

set (x, y) = (xk, yk) and solve (1.15) to get (∆xa,∆ya);

calculate αa and µa;

set σ =
(
µa

µ

)3

;

solve (1.17) for (∆x,∆y);

calculate α from (1.18);

set xk+1 = xk + αk∆x
k, yk+1 = yk + αk∆y

k;

end.

1.4 Some application examples of LCPs

Complementarity problems arise naturally in the study of many phenomena in economics and engi-

neering. A comprehensive and excellent treatment of applications of complementarity problems is

provided in [25]. Additionally, a large collection of problems from a variety of application areas can

be found in the MCPLIB library of test problems [15]. Applications of complementarity from the

field of economics include general Walrasian equilibrium, spatial price equilibria, invariant capital

stock, and game-theoretic models. In engineering, complementarity problems arise in contact me-

chanics, structural mechanics, obstacle and free boundary problems, elastohydrodynamic lubrication,

and trafic equilibrium.

As a rule of thumb, the complementarity framework should be considered whenever the system being

studied involves complementary pairs of variables (that is, where one or the other member of each

pair must be at its bound).

Linear complementarity problems also have many applications in mathematical programming and

equilibrium problems. These applications are too numerous to be listed all. For example, optimiza-

tion problems (linear programming, convex quadratic programming,...), bimatrix and equilibrium

points, variational inequalities, fixed point problems and set of piecewise-linear equations...,for more

details, basic theory, algorithms, and applications, the reader can refer to [20].

We cite here some LCPs applications:
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1.4.1 Quadratic programming formulations

We consider the quadratic program minimize f(x) = qTx+ xTMx,

x ≥ 0,
(1.19)

If M is positive semidefinite, the program (1.19) is completely equivalent to the LCP, where M is

symmetric.

A significant number of applications in engineering and the physical sciences lead to a convex quadratic

programming model of the special type (1.19) which is equivalent to the LCP.

These applications include the contact problem, the porous flow problem, the obstacle problem, the

journal bearing problem, the elastic-plastic torsion problem as well as many other free-boundary

problems. A common feature of these problems is that they are all posed in an infinite-dimensional

function space setting. The quadratic program (1.19) to which they give rise is obtained from their

finite-dimensional discretization. Consequently, the size of the resulting program tends to be very

large. The LCP plays an important role in the numerical solution of these applied problems.

1.4.2 Fixed-point formulations

A fixed-point of a mapping h : Rn → Rn is a vector z such that z = h(z).

Obviously, finding a fixed-point of the mapping h is equivalent to finding a zero of the mapping

g(z) = z − h(z). Conversely, finding a zero of the mapping g : Rn → Rn is easily translated into

finding a fixed point of the mapping h(z) = z − g(z). We describe several ways of transforming a

linear complementarity problem into either a fixed-point or zero-finding problem.

The simplest zero-finding formulation of the LCP with given M and q is gotten by defining

g(z) = min(z, q +Mz). (1.20)

Obviously, a vector z is a solution of the LCP if and only if g(z) = 0. The corresponding fixed-point

formulation is defined by the mapping

h(z) = z − g(z) = max(0,−q + (I −M)z), (1.21)
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Note that h(z) can be interpreted as the projection of −q + (I −M)z onto the nonnegative orthant.

There are several variations of the formulations (1.20) and (1.21). We mention one which is obtained

by scaling the vectors z and w = q +Mz.

Let D and E be two n× n diagonal matrices with positive diagonal entries. Define

g(z) = min(Dz,E(q +Mz)). (1.22)

Again, a vector z is a solution of the LCP if and only if g(z) = 0. In this case the associated fixed-

point mapping

h(z) = z − g(z)

can no longer be interpreted as a projection.

1.4.3 Piecewise linear equations

Given M ∈ Rn×n and q ∈ Rn, find x, y ∈ Rn satisfying

y = Mx+ q, xTy = 0, x ≥ 0, y ≥ 0, (1.23)

for each x ∈ Rn define

hi (x) = min (xi, (q +Mx)i) ,

and let

h (x) = (hi (x)) .

Then h (x) : Rn → Rn is a piecewise linear concave function, and clearly, solving the LCP (1.23) is

equivalent to solve the system of piecewise linear equations

h (x) = 0.

Conversely, under a mild nonsingularity assumption, any piecewise linear system of equations can be

reformulated as a linear complementarity problem.

1.4.4 Obstacle and free boundary problems

In this simple obstacle problem, we try to compute a trajectory joining the boundary of a domain with

an obstacle g, and a minimal curvature f . This can be formulated using the following equation and

30



inequalities: find u such that

(ü (x)− f (x))T (u (x)− g (x)) = 0, ü (x)− f (x) ≥ 0, u (x)− g (x) ≥ 0.

We approximate the second order derivative with a second-order centred finite difference to get a

discrete version on an equispaced grid xi = ih, i = 1, ..., n.

(Du− f)T (u− g) = 0, Du− f ≥ 0, u− g ≥ 0,

where

D =


2
h2

−1
h2

−1
h2

. . . . . .

. . . . . . −1
h2

−1
h2

2
h2

 , gi = g (xi) and fi = f (xi) .

This can be written as a linear complementarity problem by setting

z = u− g,M = D and q = Dg − f,

that is

(Mz + q)T z = 0,Mz + q ≥ 0, z ≥ 0.
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Chapter 2

Horizontal linear complementarity

problem(HLCP)

2.1 Problem statement

A slightly more general problem is the horizontal linear complementarity problem (HLCP), which

seeks x and y satisfying

Ny −Mx = q, x ≥ 0, y ≥ 0, xTy = 0, (2.1)

where N,M ∈ Rn×n and q ∈ Rn are given. We denote

F = {(x, y) ∈ Rn × Rn : Ny −Mx = q, x ≥ 0, y ≥ 0}

the set of feasible solutions of (2.1), and

F0 = {(x, y) ∈ F : x > 0, y > 0}

the set of its strict feasible solutions. If N is invertible, then the HLCP is reduced to an LCP.

Classes of pairs

• (M,N) is called a monotone pair if −Mx+Ny = 0 implies xTy ≥ 0.

• (M,N) is called a P0-pair (respectively a P -pair) if −Mx + Ny = 0 and (x, y) 6= 0 implies

that there exists an index i such that xi 6= 0 or yi 6= 0 and xiyi ≥ 0 (respectively, such that

xiyi > 0 ). Note that P -pairs are thus also P0-pairs.
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• (M,N) is called a P∗(κ)-pair if

−Mx+Ny = 0⇒ (1 + 4κ)
∑

i∈I+(x)

xiyi +
∑

i∈I−(x)

xiyi ≥ 0,

where

κ ≥ 0, I+(x) = {i ∈ I : xiyi ≥ 0} , I−(x) = {i ∈ I : xiyi < 0} , and I = {1, 2, ..., n} .

If κ = 0, we get the class of monotone pairs.

The HLCP defined by a monotone pair is solvable whenever it is feasible.

We can see that LCP ⊂ HLCP.

LCP is not just a special case of HLCP but is actually equivalent to this formulation, that is: HLCP=LCP.

The messing links that we need to complete the proof of this result are given in the following theorem:

Theorem 2.1.1. (Theorem 8.2 in [58]) (HLCP ⊂ LCP ) Any horizontal linear complementarity

problem can be reformulated as an LCP. Primal-dual algorithms applied to the two formulations

generate sequences of iterates
{

(xk, yk)
}

that are identical to within a permutations of the variables.

The proof of Theorem 2.1.1 can be found in [13].

2.2 Solving absolute value equations using complementarity and

interior-point methods

In this part, an infeasible path-following interior-point algorithm is proposed for solving the absolute

value equation across the HLCP [2]. This equation is manifested in differential and partial derivative

equations.

Given two matrices A,B ∈ Rn×n, B 6= 0, and a vector b ∈ Rn, the absolute value equations (AVE) is

given by

Ax−B |x| = b. (2.2)

Here, |x| denotes the componentwise absolute value of vector x ∈ Rn.
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Reformulation of the AVE as an HLCP

Definition 2.2.1. For x ∈ Rn the vectors x+ and x− are defined such that

x+
i = max

i
(0, xi) and x−i = max

i
(0,−xi).

Then

x+ ≥ 0, x− ≥ 0, x = x+ − x−, |x| = x+ + x−, (x+)Tx− = 0. (2.3)

According to the decompositions of x and |x| (2.3), the AVE in (2.2) can be reduced as the following

equivalent HLCP: 
Nx+ −Mx− = q

x+ ≥ 0, x− ≥ 0

x+Tx− = 0

(2.4)

where

N = (A−B), M = (A+B) and q = b.

Theorem 2.2.1 (Theorem 3.3.7 in [20]). A matrix M ∈ Rn×n is a P -matrix if and only if the corre-

sponding LCP has a unique solution for every q ∈ Rn.

In what follows we assume that the AVE (2.2) satisfy the condition

• Assumption*. The pair of the matrices [A,B], satisfies

σmin(A) > σmax(B).

From the theory of the HLCP, and under Assumption*, we show, based on the following theorem,

that the AVE (2.2) is uniquely solvable for every b ∈ Rn.

Theorem 2.2.2. Under Assumption*, the AVE (2.2) is uniquely solvable for every b ∈ Rn.

Proof. We prove under Assumption*, that HLCP in (2.4), is reduced to a standard P -LCP with

M = (A − B)−1(A + B) and q = (A − B)−1b. Then we prove only that M is positive definite.

We show first that the matrix (A − B) is invertible. If not, for some nonzero x ∈ Rn, we have that

(A−B)x = 0, which derives a contradiction. This implies that Ax = Bx. Hence,

σmin(A) = min
‖z‖=1
〈ATAz, z〉 ≤ 〈ATAx, x〉 = 〈BTBx, x〉

≤ max
‖z‖=1
〈BTBz, z〉 = σmax(B)
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which contradicts our condition. Hence (A − B)−1 is invertible. Now, we prove that M is positive

definite matrix. To this end, we have, for all nonzero x ∈ Rn,

〈(A−B)−1(A+B)x, x〉 = 〈(A+B)x, (AT −BT )−1x〉.

Letting (AT −BT )−1x = z, one has

〈(A−B)−1(A+B)x, x〉 = 〈(A+B)(AT −BT )z, z〉

= 〈(AAT −BBT − ABT +BAT )z, z〉

= 〈(AAT −BBT )z, z〉+ 〈(BAT − ABT )z, z〉.

Note that 〈(BAT−ABT )z, z〉 = 0. (A−B)−1(A+B) is positive definite if and only if (AAT−BBT )

is positive definite. Indeed, by Weyl’s inequalities [Theorem 4.3.1 in [30]], we find that

λmin(AAT −BBT ) ≥ λmin(AAT ) + λmin(−BBT ) = λmin(AAT )− λmax(BBT ).

From Assumption*, λmin(AAT ) − λmax(BBT ) > 0, (AAT − BBT ) is positive definite. Hence

(A − B)−1(A + B) is positive definite. Consequently, M is a P -matrix. Thus from Theorem 2.2.1,

the standard LCP has a unique solution for any q ∈ Rn, so is the AVE (2.2) for any b ∈ Rn. This

achieves the proof.

Corollary 2.2.1. The vector x∗ = x+
∗ − x−∗ is the unique solution of AVE (2.2) if and only if the pair

of vectors (x+
∗ , x

−
∗ ) is the unique solution of HLCP (2.4).

Proof. Note that the AVE (2.2) is uniquely solvable for every b. Let x∗ be its unique solution, i.e., x∗

satisfies

Ax∗ −B |x∗| = b.

From (2.3), x∗ = x+
∗ − x−∗ and |x∗| = x+

∗ + x−∗ , we arrive at

A(x∗+ − x∗−)−B(x∗+ + x∗−) = b,

which is equivalent to

(A−B)x∗+ − (A+B)x∗− = b.

Let A− B = N,A+B = M and q = b. Hence Nx∗+ −Mx∗− = q. From (2.3), we have x∗+, x
∗
− ≥ 0

and 〈x∗+, x∗−〉 = 0. Consequently, the pair (x∗+, x
∗
−) is a solution of HLCP (2.4). Note that the HLCP
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is reduced to an P -LCP. From Theorem 2.2.1, we see that this solution is unique. Conversely, with

the same manner, we can prove the inverse implication. This completes the proof.

Solving AVE by interior-point methods

In this part, we need to put the AVE (2.2) into the framework of interior-point methods. It’s known

that solving the HLCP (2.4) is equivalent to solve the following nonlinear system of equations Nx+ −Mx− = q, x+ ≥ 0, x− ≥ 0

X+x− = 0,
(2.5)

where X+:= diag(x+). Next, the feasible set and the strict feasible set of HLCP are, respectively,

denoted by

F =
{

(x+, x−) ∈ Rn
+ × Rn

+ : Nx+ = Mx− + q
}
,

and

F0 =
{

(x+, x−) ∈ F , x+ > 0, x− > 0
}
.

Besides the strict monotony of HLCP (2.4), we assume in the sequel that F0 6= ∅, this assumption

is known as the interior-point condition (IPC). These two conditions play together an important role

for the analysis of the convergence of infeasible interior-point algorithms for solving HLCP (see, e.g.

[61, 58]). The path-following interior-point methods [58], are based on replacing the second equation

in (2.5) by the parameterized equation X+x− = µe where µ > 0. Thus we consider the following

perturbed system

Fµ(x+, x−) =

 Nx+ −Mx− − b

X+x− − µe

 =

 0

0

 . (2.6)

Under the condition of IPC, (2.6) has a unique solution denoted by ((x+(µ), x−(µ)) for all µ > 0.

The set

C =
{

(x+(µ), x−(µ)) : µ > 0
}

is called the central-path of HLCP. If µ → 0, then the limit of the central-path exists and since the

limit point satisfies the complementarity condition, the limit yields a solution of HLCP [61]. Now, we

are in a position to define search directions (∆x+,∆x−) that move in the direction of the central-path

C. Applying Newton’s method for (2.6), we get

∇Fµ(x+, x−)

 ∆x+

∆x−

 = −Fµ(x+, x−)
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which is equivalent to the following linear system N∆x+ −M∆x− = rf

X−∆x+ +X+∆x− = rc
(2.7)

where X−=Diag(x−), rf = Mx− + b − Nx+and rc = µe − X+x−. Note that if x+ and x− are in

F0 i.e., are strictly feasible then rf = 0. The unique solution of (2.7), is guaranteed by assumptions

F0 6= ∅ and the strict monotony of HLCP since the block matrix N −M

X− X+


is invertible (see Proposition 3.1 in [58]).

An infeasible path-following algorithm for AVE. We present an infeasible path-following interior-

point algorithm for computing the unique solution of HLCP in (2.4) that uses the primal-dual interior-

point framework proposed by many authors. In each iteration of the algorithm we start with guesses

x+, x− > 0, not necessarily feasible. We would like to update these vectors until we are within our

desired tolerance of satisfying equations in (2.5). We stop our algorithm when the

max
(∥∥Nx+ −Mx− − b

∥∥ , ∥∥X+x−
∥∥)

is small enough.

Algorithm

Input:

An accuracy parameter ε > 0;

initial guesses x+, x− > 0 and µ > 0;

two matrices A and B, a vector b with N = A−B and M = A+B;

While max(‖Nx+ −Mx− − b‖ , ‖X+x−‖) > ε do

begin

- Solve the system (2.7) to obtain (∆x+,∆x−);

- Determine a step size α > 0 s.t. x+ + α∆x+ > 0 and x− + α∆x− > 0;

- Update x+ := x+ + α∆x+, x− := x− + α∆x−;

end
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The direction is determined by solving the linear system in (2.7). We compute the damped Newton

step-size α > 0 so that x+ + α∆x+ > 0 and x− + α∆x− > 0. We need to determine a maximum

possible step-size αmax so that if 0 < α < αmax then x+ +α∆x+ > 0 and x−+α∆x− > 0. Let αx+

and αx− be the maximum possible step-sizes in the directions ∆x+ and ∆x−, respectively. Then our

maximum step-size is αmax = min (αx+ , αx−), where

αx+ =

 min
i

(
− x+i

∆x+i

)
if
(
∆x+

i

)
< 0,∀i = 1, ..., n

1 otherwise

and

αx− =

 min
i

(
− x−i

∆x−i

)
if
(
∆x−i

)
< 0,∀i = 1, ..., n

1 otherwise

Then, we compute our step-size as α = min(ραmax, 1), for some ρ ∈ (0, 1], which guaranties that

our next iterates will be positive. For specifying the parameter µ > 0, it is easily seen from the

second equation in (2.6) that µ = x+T x−

n
which is known as the duality gap of HLCP. The polynomial

complexity of these algorithms is proved by many authors in the literature of infeasible interior-point

methods (see, e.g., [61, 58]).

Numerical results

In this part, the pair (x+
0 , x

−
0 ) denotes the infeasible starting point for the algorithm and the pair

(x+
∗ , x

−
∗ ) denotes the unique solution of the HLCP. The number of iterations and the solution for the

AVE (2.2) are denoted by ”It” and x∗ = x+
∗ − x−∗ , respectively. The implementation of the algorithm

is running on MATLAB 7.1 and our accuracy in all examples is set to ε = 10−6 and the parameter ρ

is chosen such that 0.85 ≤ ρ ≤ 0.95.

Problem 2.1. The matrices A and B and b ∈ Rn are given by

A = (aij) =


5 if i = j

1 if |i− j| = 1

0 otherwise

∀i, j = 1, .., n

B = (bij) =


1 if i = j

1 if |i− j| = 1

0 otherwise

∀i, j = 1, .., n
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and

b = (−8, −10, ...,−10, −8)T ∈ Rn.

The pair of initial point for this problem is:

x−0 = x+
0 = (1, 2, ..., n)T ,

and the exact solution is x∗ = e. The algorithm gives an approximate solution of the problem 2.1 as

x = (0.99995, 0.99995, ..., 0.99995)T .

The numerical results for different sizes of n are summarized in table (2.1).

n It Time(s)
3 22 0.0510
10 19 0.0592
100 15 0.8542
500 12 39.0083
1000 11 248.945

Table 2.1: Numerical results of problem 2.1.

Problem 2.2. The data (A,B, b) of the AVE is given by

A = (aij) =


10 if i = j

−1 if |i− j| = 1

0 otherwise

∀i, j = 1, .., n

B = (bij) =


5 if i = j

−1 if |i− j| = 1

0 otherwise

∀i, j = 1, .., n

and b = (A− I) e. The exact solution is

x∗ = (1.6, 1.4, ..., 1.4, 1.6)T .

The numerical results are summarized in table (2.2). The algorithm gives an approximate solution of

the problem 2.2 as

x = (1.59999, 1.39999, ..., 1.59999)T .
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n It Time(s)
3 21 0.0506
10 20 0.0640
100 18 0.956
520 16 62.240
1000 16 385.66

Table 2.2: Numerical results of problem 2.2.

Problem 2.3 The AVE is given by

A =



1.5 0.5 0 1.5 −1.5

0.5 2.5 0 2 1

0 0 3.5 −1 0.5

−1.5 −2 1 0.5 0

1.5 −1 −0.5 0 0.5


,

B =



0.5 0.5 0 1.5 −1.5

0.5 1.5 0 2 1

0 0 2.5 −1 0.5

−1.5 −2 1 −0.5 0

1.5 −1 −0.5 0 −0.5


and

b = (1,−2, 4, 10, 2)T .

The exact solution is x∗ = (1.5,−0.5, 4, 8, 1)T . So the number of iterations is 14 in 0.23 seconds.

Problem 2.4 The AVE is given by

A =



6 0.5 0.5 · · · 0.5 0

0.5 6 0.5 · · · 0.5 0

0.5 0.5 6 · · · 0.5 0
...

... . . . . . . · · · 0

0.5 0.5 0.5 · · · 6 0

0 0 · · · 0 0 6


, B =



−1 0.5 0.5 · · · 0.5 0

0.5 −1 0.5 · · · 0.5 0

0.5 0.5 −1 · · · 0.5 0
...

... . . . . . . · · · 0

0.5 0.5 0.5 · · · −1 0

0 0 · · · 0 0 −1


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and

b = (21, 28, · · · , 28, 21)T

The exact solution is x∗ = (3, 4, · · · , 4, 3)T . The algorithm gives an approximate solution of the

problem 2.4 as x = (3.000004, 4.000004, ..., 4.000004, 2.99999)T . The following table contains nu-

merical results for this AVE

n It Time (s)
5 20 0.005
50 17 0.45
100 16 0.54
1000 12 220.86
1500 11 728.11

Table 2.3: Numerical results of problem 2.4.

In the next example, we compare our algorithm with an other feasible primal-dual IPMs used to

solve the AVE (2.2).

Problem 2.5 [60]. The data (A,B, b) of the AVE is given by

rand(′state′, 0);R = rand(n, n);

A = R′ ∗R + n ∗ eye(n); b = rand(n, 1);

B = I;

q = ((A+ eye(n)) ∗ (inv(A− eye(n)))− eye(n)) ∗ b;

The numerical results are summarized in table (2.4), where our algorithm is denoted by Algo1 and

the algorithm used in [60] by Algo2. From [60], we use the same tolerance ε = 10−4.

Size Algorithms It Time(s)
8 Algo1 13 0.1103

Algo2 19 8.1350
32 Algo1 12 0.1445

Algo2 34 9.1270
128 Algo1 10 0.3802

Algo2 94 15.0780
512 Algo1 7 18.3298

Algo2 147 21.6560
1024 Algo1 5 94.8895

Algo2 171 37.9070

Table 2.4: Numerical results of problem 2.4.
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From the numerical results stated in the above tables, we see that the algorithm offers a solution of

the absolute value equations. In addition, the numerical results, obtained for problem 2.5, confirm that

the algorithm performs well in comparison with those obtained via the feasible interior-point methods

since the number of iterations and times are almost less. From above tables, we also mention that the

advantage of interior-point methods for solving this problem is that for the higher dimension of the

problem, the lower number of iterations is obtained.
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Chapter 3

A primal-dual interior point method for

P∗(κ)-HLCP based on a class of parametric

kernel functions

In this chapter, we are interested in the central path-following methods via a kernel function. Cur-

rently, researchers are trying to improve the algorithmic complexity of interior-point methods, using

new techniques, knowing that these approaches have the advantage of starting the algorithm with any

starting point (x0, y0) strictly feasible. We consider the HLCP in the standard form as follows

−Mx+Ny = q, xy = 0, (x, y) ≥ 0, (3.1)

where M,N ∈ Rn×n, x, y, q ∈ Rn and xy denotes the componentwise product of vectors x and y,

with

F = {(x, y) ∈ Rn × Rn : Ny −Mx = q, x ≥ 0, y ≥ 0},

F0 = {(x, y) ∈ F : x > 0, y > 0}.

The aim of this chapter is to propose a primal-dual IPM based on a new class of kernel functions for

solving the HLCP. In all that follows, we have these assumptions:

• Assumption 1 Without loss of generality we may assume that the HLCP satisfies the interior-

point condition, i.e., there exists a pair of vectors (x0, y0) such that

−Mx0 +Ny0 = q,
(
x0, y0

)
> 0.
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• Assumption 2 The pair {M,N} is a P∗(κ)-pair.

The basic idea of primal-dual IPM is to replace the second equation in (3.1) by the nonlinear equation

xy = µe, where e is the all-one vector, and µ > 0. Thus we have the following parameterized system:
−Mx+Ny = q,

xy = µe,

(x, y) > 0

(3.2)

Under Assumption 1 and Assumption 2 , the parameterized system (3.2) has a unique solution

(x(µ), y(µ)) for each µ > 0. (x(µ), y(µ)) is called µ−center of (3.2), the set of µ−centers (µ > 0)

defines a homotopy path, which is called the central path of (3.2). If µ → 0, the limit of the central

path exists. This limit satisfies the complementarity condition, and belongs to the solution set of (3.1),

[37]. Using Newton’s method to the system (3.2), we have −M∆x+N∆y = 0

Y∆x+X∆y = µe− xy,
(3.3)

where X = diag (x) and Y = diag (y) .

For the formulation and analysis of the generic interior-point method for the HLCP, the introduction

of the following vector is critical :

v =

√
xy

µ
, (3.4)

where (x, y) ≥ 0 and µ > 0. Note that the point (x, y) coincides with the µ-center (x (µ) , y (µ)) if

and only if v = e. Next, the following scaled directions are introduced:

dx =
v∆x

x
, dy =

v∆y

y
. (3.5)

Then we have the scaled Newton system as follows −M̄dx + N̄dy = 0

dx + dy = v−1 − v,
(3.6)

where M̄ = DMD and N̄ = DND with D = X
1
2Y

1
2 , X = diag(x), Y = diag(y). Note that the

right-hand side v−1−v in the second equation of (3.6) is equal to the negative gradient of the classical

logarithmic barrier function Ψc (v) , i.e.,

dx + dy = −∇Ψc (v) ,
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where Ψc (v) =
n∑
i=1

ψc (vi) and ψc (t) = t2−1
2
− log t with t > 0 (vi represents the ith component of

the vector v). We call ψc (t) the kernel function of the classical logarithmic barrier function Ψc (v) .

Now, we consider the barrier function

Ψ (v) = Ψ (x, y;µ) =
n∑
i=1

ψ (vi) ,

where the univariate function ψ (t) : D → R+ with D ⊆ R++ is called the kernel function of Ψ (v) if

ψ (t) is twice differentiable and satisfies the following conditions

ψ (1) = ψ′ (1) = 0, ψ′′ (t) > 0, lim
t→0

ψ (t) = lim
t→∞

ψ (t) =∞.

Hence Ψ (v) is strictly convex and minimal at v = e, i.e.,

Ψ (v) = 0⇔ ∇Ψ (v) = 0⇔ v = e.

We can replace Ψc (v) by the strictly convex barrier function Ψ (v) such that the new scaled centering

equation becomes

dx + dy = −∇Ψ (v) . (3.7)

Then the system (3.3) can be written as the following modified Newton system −M∆x+N∆y = 0

x∆y + y∆x = −µv∇Ψ (v) .
(3.8)

The algorithm works as follows. Suppose that the current iterate (x, y) is known and is in the τ -

neighborhood of the corresponding µ-center, i.e., Ψ(v) ≤ τ . Next, the value of µ is reduced by the

factor 1 − θ with 0 < θ < 1, which changes the value of v according to (3.4) and defines a new

µ-center (x (µ) , y (µ)). This will cause the increase of the value of the barrier function above the

threshold value of τ , i.e., Ψ (v) ≥ τ . Now we start the inner iteration by calculating new iterates

where ∆x and ∆y are calculated from (3.8) and the step size α is chosen appropriately with the goal

of reducing the value of barrier function Ψ (v). If necessary, the procedure is repeated until we find

the iterate that again belongs to the τ -neighborhood of the current µ-center, that is, until Ψ (v) ≤ τ . It

is important to mention that during the inner iteration the value of µ is kept constant. At this point we

start a new outer iteration by reducing the value of µ again. This process is repeated until µ is small

enough, say until nµ < ε for a certain (small) value of the accuracy parameter ε > 0.
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Algorithm: Generic Primal-Dual Algorithm for P∗(κ)-HLCPs

Input :

a proximity function Ψ (v) ;

a threshold parameter τ > 0;

an accuracy parameter ε > 0;

a fixed barrier update parameter θ, 0 < θ < 1;

begin

x := x0; y := y0;µ := µ0;

while nµ ≥ ε do

µ := (1− θ)µ; v :=
√

xy
µ

;

while Ψ (v) > τ do

calculate (∆x,∆y) from (3.8);

calculate α the step size, then put

x := x+ α∆x; y := y + α∆y; v :=
√

xy
µ

;

end while

end while

end.

The parameters τ and α must be chosen in such a way that the number of iterations is as small as

possible. This number depends on the choice of the proximity function ψ.

Recently, researchers are trying to improve the number of iterations, i.e. the algorithmic complexity,

based on new kernel functions for large-update methods. The choice of the barrier functions plays

an important role not only for the analysis but for the performance of the algorithm. Regarding the

small-update methods, the results are the same for all functions, namelyO
(
(1 + 2κ)

√
n log n

ε

)
which

is the best complexity until now for this type of methods. The table 3.1 shows some recent kernel

functions with the complexity with large-update methods.

3.1 Introduction of the kernel function

Our aim is to investigate a new kernel function with a trigonometric barrier term. This function is

defined as follows :

ψ (t) = p

(
t2 − 1

2

)
+

4

π
(tanp h (t)− 1) , t > 0, p ≥

√
2 (3.9)
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Kernel functions ψi Large-update methods
t2−1

2
−
(√

3− 1
)p t∫

1

dx

(tan( 1+x
4+2x

π)−1)
p , p ≥ 2 O

(
(1 + 2κ)

√
n log n log n

ε

)
[33]

t2−1
2

+ t1−q−1
q(q−1)

− q−1
q

(t− 1) , q > 0 O
(

(1 + 2κ) qn
q+1
2q log n

ε

)
[23]

e(t2−1)
2

+ ep(g1(t)−e)−1

pr
, g1 (t) = et

−r
, p ≥ 1, r ≥ 1 O

(
(1 + 2κ)

√
n log n log nµ0

ε

)
[39]

t2−1
2

+ ep(g2(t)−1)−1
pr

, g2 (t) = et
−r−1, p ≥ 1, r ≥ 1 O((1 + 2κ)

√
nlog nµ

0

ε
) [39]

t2−1
2

+ 4
pπ

(
tanp

(
π

2t+2

)
− 1
)
, t ≥ 1, p ≥ 2 O(p(1 + 2κ)n

2+p
2(1+p) log n

ε
) [24]

t2−1
2
−

t∫
1

1
x2p
e
x
p
−pdx, p ≥ 1, t > 0 O

(
(1 + 2κ) p

√
n
(

1
p

log n+ 1
)2

log n
ε

)
[33]

p(t2−1)
2
−

t∫
1

pep(
1
x
−1)dx, p ≥ 1 O

(√
p5n (log pn)2 log n

ε

)
[53]

t2−1−log(t)
2

+ e
1
tq−1
2q

, t > 0, q ≥ 1 O
(
q
√
n (log

√
n)

q+1
q log n

ε

)
[22]

Table 3.1: Some kernel functions and their complexity with large-update methods

with h (t) =
π

2t+ 2
.

3.1.1 Some technical results

The first three derivatives of ψ are given by

ψ′ (t) = pt+
4

π
p
(
1 + (tanh (t))2) ((tanh (t))p−1 h′ (t)

)
,

ψ′′ (t) = p+
4

π
p
(
1 + (tanh (t))2) [

[
(p− 1) tanp−2 h (t) + (p+ 1) tanp h (t)

]
h′ (t)2

+ tanp−1 h (t)h′′ (t)],

ψ′′′ (t) =
4

π
p
(
1 + tan2 h (t)

)
[[(p− 1) (p− 2) tanp−3 h (t) + 2p2 tanp−1 h (t) +

(p+ 1) (p+ 2) tanp+1 h (t)]h′ (t)3 +

3 (p− 1) tanp−2 h (t) + 3 (p+ 1) tanp h (t)]h′′ (t)h′ (t) +

tanp−1 h (t)h′′′ (t)].

with

h′ (t) = − π

2 (t+ 1)2 , h
′′ (t) =

π

(t+ 1)3 , h
′′′ (t) =

−3π

(t+ 1)4 ,

are the first three derivatives of h. The next lemma serves to prove that the new kernel function (3.9)

is eligible.

Lemma 3.1.1. Let ψ be as defined in (3.9), and t > 0. Then

ψ′′ (t) > 1, (a)
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tψ′′ (t) + ψ′ (t) > 0, (b)

tψ′′ (t)− ψ′ (t) > 0, (c)

ψ′′′ (t) < 0 , (d)

2ψ′′ (t)2 − ψ′′′ (t)ψ′ (t) > 0, t < 1. (e)

Proof. a) we have :

0 < h (t) <
π

2
,∀t > 0 (*)

because h is decreasing function in ]0,+∞[ and

lim
t→0+

h (t) =
π

2
, lim
t→+∞

h (t) = 0,

we get that

tanh (t) > 0, t > 0, (**)

then, it comes that

[
(p− 1) tanp−2 h (t) + (p+ 1) tanp h (t)

]
h′ (t)2 + tanp−1 h (t)h′′ (t) > 0 (***)

which implies that

ψ′′ (t) > 1.

b) Using (**) and (***) we have

tψ′′ (t)−ψ′ (t) =
4p

π

(
1 + tan2 h (t)

)

t [(p− 1) tanp−2 h (t) + (p+ 1) tanp h (t)]h′ (t)2

+t tanp−1 h (t)h′′ (t)

+ tanp−1 h (t) (−h′ (t))

 > 0, t > 0.

c)

tψ′′ (t) + ψ′ (t) = 2pt+
p

π

(
1 + tan2 h (t)

) t (p− 1) (h′ (t))2 tanp−2 h (t) +

tanp−1 h (t)
[
t (h′ (t))2 (p+ 1) + th′′ (t) + h′ (t)

]

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and

t (h′ (t))
2

(p+ 1) + th′′ (t) + h′ (t) =
4π

(2t+ 2)4

[
2t2 + π (p+ 1) t

(
tanh (t)− 2

(p+ 1) πt

)]
.

Now, define

g (t) = tanh (t)− 2

(p+ 1) πt
,

with simple calculations we find that the derivative of g is negative. Thus g (t) is decreasing in

]0,+∞[ , and since lim
t→+∞

g (t) = 0, then

tanh (t)− 2

(p+ 1) πt
> 0, t > 0,

which leads to

tψ′′ (t) + ψ′ (t) > 0.

d) Using (**), h′ (t) < 0 and h′′′ (t) < 0, then ψ′′′ (t) < 0.

e) We put

ψ′ (t) = pt+ A (t)h′ (t) tanp−1 h (t)

ψ′′ (t) = p+ A (t)B (t)

ψ′′′ (t) = A (t)C (t)

with

A (t) =
4

π
p
(
1 + tan2 h (t)

)
B (t) =

[
(p− 1) tanp−2 h (t) + (p+ 1) tanp h (t)

]
h′ (t)2 + tanp−1 h (t)h′′ (t)

C (t) = [[(p− 1) (p− 2) tanp−3 h (t) + 2p2 tanp−1 h (t) +

(p+ 1) (p+ 2) tanp+1 h (t)] (h′ (t))
3

+[
3 (p− 1) tanp−2 h (t) + 3 (p+ 1) tanp h (t)

]
h′′ (t)h′ (t) +

tanp−1 h (t)h′′′ (t)]

then

2ψ′′ (t)2−ψ′′′ (t)ψ′ (t) = 2p2+A (t)2 [2B (t)2 − C (t)h′ (t) tanp−1 h (t)
]
+A (t) 4pB (t)−ptA (t)C (t) ,
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using (**), (***) and (d), we have A (t) > 0, B (t) > 0 and C (t) < 0, then

A (t) 4pB (t)− ptA (t)C (t) > 0, t > 0,

it remains to see if 2B (t)2 − C (t)h′ (t) tanp−1 h (t) is positive,

2B (t)2 − C (t)h′ (t) tanp−1 h (t) = h′ (t)4 [p (p− 1) tan2(p−2) h (t) +
(
2p2 − 4

)
tan2p−2 h (t)

+p (p+ 1) tan2p h (t)]

+h′ (t)2 h′′
[
(p− 1) tan2p−3 h (t) + (p+ 1) tan2p−1 h (t)

]
+ tan2(p−1) h (t)

(
2h′′ (t)2 − h′ (t)h′′′ (t)

)
from (**) and definitions of h′ (t) , h′′ (t) and h′′′ (t) and

2h′′ (t)2 − h′ (t)h′′′ (t) =
π2

2 (t+ 1)6 > 0, t > 0,

it follows that

2B (t)2 − C (t)h′ (t) tanp−1 h (t) > 0,

which implies that

2ψ′′ (t)2 − ψ′′′ (t)ψ′ (t) > 0, t < 1.

It follows that ψ (1) = ψ′ (1) = 0 and ψ′′ (t) ≥ 0, proving that ψ is defined by ψ′′ (t) ,

ψ (t) =

∫ t

1

∫ ξ

1

ψ′′ (ζ) dζdξ. (3.10)

Property (b) is equivalent to the convexity of the composed function z → ψ (ez) and this is true if and

only if

ψ
(√

t1t2
)
≤ 1

2
(ψ (t1) + ψ (t2)) ,∀t1, t2 ≥ 0.

We say that ψ is exponentially convex, or shortly, e-convex, when t > 0.

Lemma 3.1.2. Let ψ be as defined in (3.9), one has

ψ (t) <
1

2
ψ′′ (t) (t− 1)2 , if t > 1.
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Proof. By Taylor’s theorem and ψ (1) = ψ′ (t) = 0, we obtain

ψ (t) <
1

2
ψ′′ (t) (t− 1)2 +

1

6
ψ′′′ (ξ) (ξ − 1)3

where 1 < ξ < t , if t > 1. Since ψ′′′ (t) < 0, then

ψ (t) <
1

2
ψ′′ (t) (t− 1)2 ,

the lemma follows.

Lemma 3.1.3. Let ψ be as defined in (3.9), one has

tψ′ (t) ≥ ψ (t) if t ≥ 1.

Proof. Defining g (t) = tψ′ (t)− ψ (t) , one has g (1) = 0 and g′ (t) = tψ′′ (t) ≥ 0. Hence g (t) ≥ 0,

and the lemma follows.

3.1.2 Proximity measure

We now introduce a norm-based proximity measure δ (v)

δ (v) =
1

2
‖∇Ψ (v)‖ =

1

2

√√√√ n∑
i=1

ψ′ (vi)
2 =

1

2
‖dx + dy‖ . (3.11)

Since Ψ (v) is strictly convex and attains its minimal value zero at v = e, we have

Ψ (v) = 0⇔ δ (v) = 0⇔ v = e.

For the analysis of the algorithm we need to establish relations between Ψ (v) and δ (v). A crucial

observation is that the inverse function of ψ (t), for t ≥ 1, plays an important role in this relation.

Let ρ : [0,∞[ → ]0, 1] denotes the inverse function of the restriction of −1
2
ψ′ (t) for 0 < t ≤ 1, and

% : [0,∞[→ [1,∞[ denotes the inverse function of ψ (t) for t ≥ 1, then

y = ψ (t)⇔ t = % (y) , t ≥ 1, (3.12)

y =
−1

2
ψ′ (t)⇐⇒ t = ρ (y) , t ≤ 1. (3.13)

The following theorem gives a lower bound of δ (v) as a function of Ψ (v).

51



Theorem 3.1.1. (Theorem 5.1 of [40]) Let % be as defined in (3.12). One has

δ (v) ≥ 1

2
ψ′ (% (Ψ (v))) .

Corollary 3.1.1. (Corollary 5.2 of [40]) Thus we have

δ (v) ≥ Ψ (v)

2% (Ψ (v))
.

Theorem 3.1.2. If Ψ (v) ≥ 1 then

δ (v) ≥ 1

6
Ψ1/2. (3.14)

Proof. The inverse function of ψ (t) for t ∈ [1,∞[ is obtained by

ψ (t) = p

(
t2 − 1

2

)
+

4

π

(
tanp

(
π

2t+ 2

)
− 1

)
= y, t > 1.

We derive an upper bound of t. From (3.10) and ψ′′ (t) ≥ 1,

y = ψ (t) =

∫ t

1

∫ ξ

1

ψ′′ (ζ) dζdξ. ≥
∫ t

1

∫ ξ

1

dζdξ =
(t− 1)2

2
,

which implies

t = % (y) ≤ 1 +
√

2y. (3.15)

Assuming that y ≥ 1, we get t = % (y) ≤ √y +
√

2y ≤ 3y1/2, assuming also Ψ (v) ≥ 1, we get

% (Ψ (v)) ≤ 3Ψ (v)1/2 . Then by Corollary 3.1.1, we have

δ (v) ≥ Ψ (v)

2% (Ψ (v))
≥ 1

6
Ψ1/2,

which finishes the proof.

Remark 3.1.1. If Ψ (v) ≥ 1, by (3.14) we have

δ (v) ≥ 1

6
. (3.16)

3.1.3 Growth behavior of the barrier function

During the algorithm, the largest values of Ψ (v) occur just after the updates of µ. In this section, we

obtain an estimate of the effect of an update of µ on the value of Ψ (v). We begin with an important

theorem that is valid for all kernel functions ψ (t) that are strictly convex (a), and satisfy (c).
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Theorem 3.1.3. (Theorem 5.1 of [40]) Let % : [0,∞[ → [1,∞[ the inverse function of ψ in [0,∞[ .

Then for all positive vector v and β > 1 we have

Ψ (βv) ≤ nψ

(
β%

(
Ψ (v)

n

))
. (3.17)

Corollary 3.1.2. (Corollary 5.2 of [40]) Let 1 < θ < 0 and v+ = v√
1−θ . Then

Ψ (v+) ≤ nψ

%
(

Ψ(v)
n

)
√

1− θ

 . (3.18)

Remark 3.1.2. Assuming that the update parameter θ and the threshold value τ are given, at the

beginning of each outer iteration, we have Ψ (v) ≤ τ. We define

L = L (n, θ, τ) = nψ

(
%
(
τ
n

)
√

1− θ

)
. (3.19)

L is an upper bound of Ψ (v+) which is the value of Ψ (v) after the µ-update.

3.2 Analysis of the algorithm

After a step with size α the new iterates are

x+ = x+ α∆x =
x

v
(v + αdx) ,

y+ = y + α∆y =
y

v
(v + αdy) .

Recall that during an inner iteration the parameter µ is fixed. Hence, after the step the new v-vector

is given by

v+ =

√
x+y+

µ
=
√

(v + αdx) (v + αdy)

then

v2
+ =

x+y+

µ
= (v + αdx) (v + αdy) . (3.20)

In the sequel we use the following notations

ν = min
i∈I+

vi, δ = δ (v) , σ+ =
∑
i∈I+

dxidyi , σ− = −
∑
i∈I−

dxidyi . (3.21)
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Since {M,N} is P∗(κ)− pair and −M∆x+N∆y = 0, for (∆x,∆y) ∈ Rn × Rn then

(1 + 4κ)
∑
i∈I+

∆xi∆yi +
∑
i∈I−

∆xi∆yi ≥ 0,

where I+ = {i ∈ I : ∆xi∆yi ≥ 0} , I− = I − I+.

Because dxdy = v2∆x∆y
xy

= ∆x∆y
µ

and µ > 0, we get

(1 + 4κ)
∑
i∈I+

dxidyi +
∑
i∈I−

dxidyi ≥ 0 = (1 + 4κ)σ+ − σ− ≥ 0. (3.22)

The following lemma gives an upper bound of σ+ and σ−.

Lemma 3.2.1. One has σ+ ≤ δ2 and σ− ≤ (1 + 4κ) δ2.

Proof. By definition of σ+ and σ−, we have

σ+ =
∑
i∈I+

dxidyi ≤
1

4

∑
i∈I+

(dxi + dyi)
2 ≤ 1

4

∑
i∈I+

(dxi + dyi)
2

=
1

4
‖dx + dy‖2 = δ2.

Using (3.22), we get

(1 + 4κ)σ+ − σ− ≥ 0.

Then

σ− ≤ (1 + 4κ)σ+ ≤ (1 + 4κ) δ2.

Which finishes the proof.

The following lemma gives an upper bound of ‖dx‖ and ‖dy‖ .

Lemma 3.2.2. One has ∑
i∈I+

(
d2
xi

+ d2
yi

)
≤ 4 (1 + 2κ) δ2,

‖dx‖ ≤ 2
√

1 + 2κδ

and

‖dy‖ ≤ 2
√

1 + 2κδ.

Proof. According to definitions (3.11) and (3.21), we have

δ =
1

2
‖dx + dy‖ and

∑
i∈I

dxidyi = σ+ − σ−.
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Then

2δ = ‖dx + dy‖ =

√√√√ n∑
i=1

(dxi + dyi)
2

=

√√√√ n∑
i=1

(
d2
xi

+ d2
yi

)
+ 2 (σ+ − σ−).

Using (3.22) and Lemma 3.2.1 we get

2δ ≥

√√√√ n∑
i=1

(
d2
xi

+ d2
yi

)
+ 2

(
1

1 + 4κ
σ+ − σ−

)

=

√√√√ n∑
i=1

(
d2
xi

+ d2
yi

)
− 8κ

1 + 4κ
σ−.

Then we get

4δ2 +
8κ

1 + 4κ
σ− ≥

n∑
i=1

(
d2
xi

+ d2
yi

)
,

by using Lemma 3.2.1 again, we have

‖dx‖ ≤

√√√√ n∑
i=1

(
d2
xi

+ d2
yi

)
≤ 2
√

1 + 2κδ.

Similarly, we can prove that

‖dy‖ ≤ 2
√

1 + 2κδ.

So the lemma follows.

Our goal is to find an upper bound for

f (α) = Ψ (v+)−Ψ (v) = Ψ

(√
(v + αdx) (v + αdy)

)
−Ψ (v) ,

where Ψ : Rn → R is given by

Ψ (v) =
n∑
i=1

ψ (vi) . (3.23)

It is clear that f (α) is not necessarily convex in α. To simplify the analysis we use a convex upper
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bound for f (α). Such a bound is obtained by using that ψ (t) satisfies the condition (b). This implies

Ψ (v+) = Ψ

(√
(v + αdx) (v + αdy)

)
≤ 1

2
[Ψ (v + αdx) + Ψ (v + αdy)] .

Then we have f (α) ≤ f1 (α) , where

f1 (α) =
1

2
[Ψ (v + αdx) + Ψ (v + αdy)]−Ψ (v) .

f1 (α) is a convex function in α, because Ψ (v) is convex. Obviously, f(0) = f1(0) = 0. The

derivative of f1 (α) in α

f ′1 (α) =
1

2

n∑
i=1

(ψ′ (vi + αdxi) dxi + ψ′ (vi + αdyi) dyi) .

This gives, using the equation dx + dy = −∇Ψ (v) and (3.10),

f ′1 (0) =
1

2
∇Ψ (v)t (dx + dy) = −1

2
∇Ψ (v)t∇Ψ (v) = −2δ (v)2 ,

f
′′

1 (α) =
1

2

n∑
i=1

(
ψ′′ (vi + αdxi) d

2
xi

+ ψ′′ (vi + αdyi) d
2
yi

)
.

The next lemma gives an upper bound of f1 (α) in terms of δ and ψ′′ (t) .

Lemma 3.2.3. (Lemma 5.4 of [40]) One has

f
′′

1 (α) ≤ 2 (1 + 2κ) δ2ψ′′
(
ν − 2α

√
1 + 2κδ

)
,

since f1 (α) is convex, we will have f ′ (α) ≤ 0 for any α less than or equal to the value where f1 (α)

is minimal, and vice versa.

Lemma 3.2.4. (Lemma 5.5 f [40]) we have f ′1 (α) ≤ 0 if α satisfies

− ψ′
(
ν − 2αδ

√
1 + 2κ

)
+ ψ′ (ν) ≤ 2δ

(1 + 2κ)
. (3.24)

Lemma 3.2.5. (Lemma 5.6 [40]) The largest value of the step α which satisfies (3.24) is given by

ᾱ =
1

2δ
√

1 + 2κ

[
ρ (δ)− ρ

(
1 +

1√
1 + 2κ

δ

)]
,
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furthermore

ᾱ ≥ 1

(1 + 2κ)ψ′′
(
ρ
(

1 + 1√
1+2κ

δ
)) . (3.25)

We define

α̃ =
1

(1 + 2κ)ψ′′
(
ρ
(

1 + 1√
1+2κ

δ
)) (3.26)

as a default step size. From Lemma 3.2.5, α satisfies (3.26). From (3.25) we have ᾱ ≥ α̃.

Lemma 3.2.6. (Lemma 5.9 of [40]) Let h (t) be a convex function twice differentiable with h (0) =

0, h′ (0) < 0 and h (t) reaches its (global) minimum at t∗ > 0. If h′′ (t) is increasing for t ∈ [0, t∗]

then

h (t) =
th′ (0)

2
, 0 ≤ t ≤ t∗.

Lemma 3.2.7. (Lemma 5.10 of [40]) If α satisfies (3.25) then

f (α) ≤ −αδ2. (3.27)

Theorem 3.2.1. Let ρ be defined in (3.13) and α in (3.25). Then

f (ᾱ) ≤ − δ2

(1 + 2κ)ψ′′
(
ρ
(

1 + 1√
1+2κ

δ
))

≤ − ψ
p

2(p+1)

6 (9p+ 4πp2)
(

8
p

+ 12p
)2

(1 + 2κ)
.

Proof. First,

f (ᾱ) ≤ − δ2

(1 + 2k)ψ′′
(
ρ
(

1 + 1√
1+2κ

δ
))

is evident. To get the inverse function t = ρ (y) of −1
2
ψ′ (t) such that t ∈ (0, 1] , we need to solve the

equation

2y = −
[
pt+

4ph′ (t)

π

(
1 + tan2 h (t)

)
tanp−1 h (t)

]
= −pt− 4ph′ (t)

π
sec2 h (t) tanp−1 h (t)

= −pt− 4ph′ (t)

π
csc2 h (t) tanp+1 h (t)
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which implies

csc2 h (t) . tanp+1 h (t) = (2y + pt)

(
− π

4ph′ (t)

)
= (2y + pt)

(
(t+ 1)2

2p

)
.

For t ≤ 1, we have
(t+ 1)2

2p
(2y + pt) ≤ 2

p
(2y + p) ,

which implies

csc2 h (t) tanp+1 h (t) ≤ 2

p
(2y + p) .

Let

t = ρ

(
1 +

1√
1 + 2κ

δ

)
,

which is equivalent to

2

(
1 +

1√
1 + 2κ

δ

)
= −ψ′ (t) ,

because 1 + 1√
1+2κ

≤ 2, for κ ≥ 0, and sin2 h (t) ≤ 1, one has

tanh (t) ≤
(

2

p
(4δ + p)

) 1
p+1

.

Since : sec2h (t) = 1 + tan2 h (t) , then

tan2 h (t) ≤
(

2

p
(4δ + p)

) 2
p+1

, tanp−1 h (t) ≤
(

2

p
(4δ + p)

) p−1
p+1

,

tanp−2 h (t) ≤
(

2

p
(4δ + p)

) p−2
p+1

, tanp h (t) ≤
(

2

p
(4δ + p)

) p
p+1

,

and

h′′ (t) =
π

(t+ 1)3 ≤ π, (h′ (t))
2

=

(
−2π

4 (t+ 1)

)2

≤ π2

4
, ∀t ∈ (0, 1] ,
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and using
(

8
p
δ + 2

)
≥ 1, we get

ψ′′ (t) ≤ p+
4p

π

(
1 +

(
8

p
δ + 2

) 2
p+1

)
 (p− 1)

(
8
p
δ + 2

) p−2
p+1

+

(p+ 1)
(

8
p
δ + 2

) p
p+1

 π2

4
+

π
(

8
p
δ + 2

) p−1
p+1


≤

(
p+

4π

p
(2) + π

)(
8

p
δ + 2

) p+2
p+1

≤
(
9p+ 4πp2

)(8

p
δ + 2

) p+2
p+1

.

So from (3.25) we have

ᾱ ≥ 1

(1 + 2κ) (9p+ 4p2π)
(

8
p
δ + 2

) p+2
p+1

,

using δ ≥ 1
6
, we get

ᾱ ≥ 1

(1 + 2κ) (9p+ 4πp2)
(

8
p

+ 12
) p+2
p+1

δ
p+2
p+1

,

then

f (ᾱ) ≤ − δ2

(1 + 2κ) (9p+ 4πp2)
(

8
p

+ 12
) p+2
p+1

δ
p+2
p+1

≤ − δ
p
p+1

(1 + 2κ) (9p+ 4πp2)
(

8
p

+ 12
)2 ,

and since δ ≥ 1
6
ψ

1
2 , we get

f (ᾱ) ≤ −
(

1

6
ψ

1
2

) p
p+1

.
1

(1 + 2κ) (9p+ 4πp2)
(

8
p

+ 12
)2

≤ − ψ
p

2(p+1)

6 (9p+ 4πp2)
(

8
p

+ 12
)2

(1 + 2κ)
.

which ends the proof.

3.2.1 Algorithmic complexity

Let K be the number of inner iterations. An upper bound for the total number of iterations is obtained

by multiplying K by the number of the barrier parameter updates, which is bounded by 1
θ

log n
ε
.
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Lemma 3.2.8. (Lemma 6.1 of [40]) Let t0, t1, ..., tk, a sequence of positive numbers that satisfies

tk+1 ≤ tk − βt1−γk , k = 0, 1, ..., K − 1,

where β > 0 and 0 < γ ≤ 1, then : K ≤
⌊
tγ0
βγ

⌋
.

Lemma 3.2.9. One has

K ≤ 6
(
9p+ 4πp2

)(8

p
+ 12

)2

(1 + 2κ) Ψ
2+p

2(1+p)

0 .

Proof. The definition of K implies that ΨK−1 > τ and ΨK ≤ τ and Ψk+1 ≤ Ψk − β (Ψk)
1−γ , k =

0, 1, 2, ..., K−1, with β = 1

6(9p+4πp2)( 8
p

+12)
2
(1+2κ)

and γ = 2+p
2(1+p)

. Applying the previous lemma with

tk = Ψk, gives the desired inequality.

Using ψ0 ≤ L, where the number L is given by (3.19) and the previous lemma we obtain the next

upper bound on the total number of iterations:

6 (9p+ 4πp2)
(

8
p

+ 12
)2

(1 + 2κ)L
2+p

2(1+p)

θ
log

n

ε
. (3.28)

Large-Update methods

We have just established that (3.28) is an upper bound for the total number of iterations, using (3.9)

and t = % (y) ≤ 1−
√

2y, by substitution in (3.19) we obtain

L ≤ n

(
%( τn)√

1−θ

)2

− 1

2

≤ n

2 (1− θ)

(
θ + 2

√
2
τ

n
+

2τ

n

)
=

(
θ + 2

√
2τn+ 2τ

)
2 (1− θ)

.

Using (3.28), the total number of iterations is bounded by

K

θ
log

n

ε
≤

6 (9p+ 4πp2)
(

8
p

+ 12
)2

(1 + 2k)

θ
(

2 (1− θ)
2+p

2(1+p)

) (
θn+ 2

√
2τn+ 2τ

) 2+p
2(1+p)

log
n

ε
.

For large-update methods we use τ = O (n) and θ = O (1) . The algorithmic complexity is then of

order O
(
p2 (1 + 2κ)n

2+p
2(1+p) log n

ε

)
.

Remark 3.2.1. With a special choice of the parameter p
(
p = O

(
(log n)

1
2

))
the algorithm has
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O
(
(1 + 2κ)

√
n log n log n

ε

)
iteration complexity. It is the best known iteration bound for P∗(κ)-

HLCP.

Small-Update Methods

We have τ = O (1) and θ = O
(

1√
n

)
. Using

ψ (t) <
1

2
ψ′′ (1) (t− 1)2 , t > 1,

with

ψ′′ (1) = 2p+
π

4
p2,

we get

L ≤ n

2

(
2p+

π

4
p2
)( %

(
τ
n

)
√

1− θ
− 1

)2

≤ n (8p+ πp2)

8 (1− θ)

1 +
√

2 τ
n
−
√

1− θ
√

1− θ

2

.

Using 1−
√

1− θ = θ
1+
√

1−θ ≤ θ, we find

L ≤ n (8p+ πp2)

8 (1− θ)

(
θ
√
n+
√

2τ
)2

.

We conclude that the total number of iterations is bounded by

K

θ
log

n

ε
≤

6 (9p+ 4πp2)
(

8
p

+ 12
)2

(1 + 2k) (8p+ πp2)
2+p

2(1+p)

θ (8 (1− θ))
2+p

2(1+p)

(
θ
√
n+
√

2τ
) 2+p

1+p
log

n

ε
,

hence an algorithmic complexity of order O
(
(1 + 2κ)

√
n log n

ε

)
.

3.3 Numerical results

In this section, we present some comparative numerical results that are derived by applying our algo-

rithm with the new proposed kernel function and some kernel functions described in table (3.2). We

have chosen the parameters of the algorithm for all the considered kernel functions as : ε = 10−6, τ =

O (n) and θ = 0.9. Note that for all experiments, the value of the step size in the inner iterations has

been chosen by a dynamic procedure introduced in [50] and based on an approximate value of the
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ψi (t) kernel functions h (t) step-size

ψ1 (t) p
(
t2−1

2

)
+ 4

π
(tanp h (t)− 1) , t > 0, p ≥

√
2 π

2t+2
1

(1+2κ)(9p+4πp2)( 8
p

+2)
p+2
p+1

ψ2 (t) [51] t2−1
2
− log t+ 1

8
tan2 h (t) , t > 0 π(1−t)

2+4t
1

(1+2κ)5020δ
4
3

ψ3 (t) [12] t− 1 + t1−q−1
q−1

, t > 0, q ≥ 2 - 1

(1+2κ)q(2δ+1)
1
q (4δ+1)

ψ4 (t) [3] t2−1
2

+ q
1
t−1

q log q
− q−1

q
(t− 1) , q > 1 - 1

(1+2κ)(log q+2)(1+4δ)(2+
log(1+4δ)

log q )

ψ5 (t) [14] t2−1
2

+ 4
pπ

(tanp h (t)− 1) , t > 0, p ≥ 2 π
2t+2

1

(1+2κ)(9+4pπ)(8δ+2)
p+2
p+1

Table 3.2: Some kernel functions

default step size in the related references. The dynamic step-size is defined as follows:

αd =


2α, ‖∆x‖ ≥ n

5α, 1 < ‖∆x‖ < n

10α, ‖∆x‖ < 1,

where α is the theoretical step-size. The number of inner iterations and outer iterations are denoted

by ”Inn” and ”Out”, respectively.

Problem 3.1. Consider an HLCP problem with the following setting:

M =



1.5 10.5 1.05 1.05 2 0 0

2 1.5 6 6 1.5 1.5 2

1.5 3.5 55 9.5 100 1500 −5

5 1.5 3.5 1 0 3 40.5

3 3 8.25 2.5 2.25 0 2.5

1.5 5 5 0 0 1.05 0

1.5 1.05 1 1.05 1 2 1000


,

N =



0.5 9.5 0.95 0.95 2 0 0

2 0.5 6 6 0.5 0.5 2

0.5 2.5 4.5 8.5 100 1500 −5

5 0.5 2.5 1 0 3 39.5

3 3 7.75 1.5 1.75 0 1.5

0.5 5 5 0 0 0.95 0

0.5 0.95 1 0.95 1 2 1000


,

q = (−16.4, 23, 3206, 79, 13,−1.1, 2004.8)T .
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The exact solution is x∗ = (0, 0, 2, 2, 2, 2, 2)T and y∗ = (2, 2, 0, 0, 0, 0, 0)T . The numerical results are

summarized in table 3.3.

ψ1 (t) ψ2 (t) ψ3 (t) ψ4 (t) ψ5 (t)
Inn 5 282 10 16 5
Out 8 8 8 8 8

Time 0.07 0.18 0.062 0.06 0.06

Table 3.3: Numerical results of problem 3.1.

Problem 3.2. For c ≥ 0, the P∗(κ)-HLCP is given by

M =


0 1 + 4κ 0

−1 0 0

0 0 c

 , N = I and q = (0.01, 0.501,−0.49)T .

The pair {M,N} is a P∗(κ) for all κ ≥ 0 (see [19]). For example if κ = 1 and c = 1, then the HLCP

(a non monotone HLCP) is given by

M =


0 5 0

−1 0 0

0 0 1

 , N = I and q = (0.01, 0.501,−0.49)T .

The exact solution x∗ = (0, 0, 0.49)T and y∗ = (0.01, 0.5, 0)T . The numerical results are summarized

in table 3.4.

ψ1 (t) ψ2 (t) ψ3 (t) ψ4 (t) ψ5 (t)
Inn 7 167 12 19 10
Out 8 8 8 8 8

Time 0.06 0.10 0.06 0.063 0.07

Table 3.4: Numerical results of problem 3.2.

Problem 3.3. The data (M,N, q) of the HLCP is given by

M = (mij) =


−6 if i = j

2 if |i− j| = 1 ∀i, j = 1, ..., n.

0 otherwise

,

N = (nij) =

 −4 if i = j ∀i, j = 1, ..., n.

0 otherwise
,

q = (4, 2, ..., 2, 4)T .
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The exact solution is x∗ = (1, ..., 1)T and y = (0, ..., 0)T . The numerical results are summarized in

the table bellow

n = 3 n = 100 n = 150
Inn Out Time Inn Out Time Inn Out Time

ψ1 (t) 4 8 0.06 12 9 0.45 18 10 3.06
ψ2 (t) 179 8 0.11 70 9 9.07 1447 10 11.6
ψ3 (t) 15 8 0.06 52 9 0.19 77 10 0.91
ψ4 (t) 14 8 0.063 − − − − − −
ψ5 (t) 8 8 0.068 23 9 0.63 28 10 2.30

Table 3.5: Numerical results of problem 3.3.

Problem 3.4. The P∗(κ)-HLCP is given by

M =



5 1 1 1 0

1 5 1 1 0

1 1 5 1 0

1 1 1
. . . ...

0 0 0 · · · 5


, N = nI, q = (21, 28, ..., 28, 21)T ,

The exact solution is x∗ = (0, ..., 0)T and y∗ = (3, 4, ..., 3)T . We have the table:

n = 3 n = 50 n = 150
Inn Out Time(s) Inn Out Time(s) Inn Out Time(s)

ψ1 (t) 3 8 0.07 10 9 0.12 19 10 1.73
ψ2 (t) 259 8 0.15 615 9 0.67 1301 10 13.96
ψ3 (t) 16 8 0.05 215 9 0.45 71 10 0.64
ψ4 (t) 18 8 0.05 − − − − − −
ψ5 (t) 12 8 0.07 18 9 0.15 39 10 2.47

Table 3.6: Numerical results of problem 3.4.

The results obtained in Tables 3.3,3.4, 3.5 and 3.6 justify that the performance of the proposed

kernel function seems quite promising. From the use of dynamic choice, it is clear that the iteration

numbers presented in these tables can be reduced significantly compared to theoretical choice of the

step-size.

3.4 Conclusion

In this chapter, we have proposed a primal-dual interior-point method with trigonometric kernel func-

tion to solve the P∗(κ)-HLCP. The corresponding algorithm processes the best known upper bound
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complexity for large and small-update methods. We have provided computational experiments to

confirm the efficiency of our approach. To accelerate the process of the algorithm, we have proposed

the use of dynamic choice of the step-size. In this case, the algorithm produces better iteration num-

bers than the case of theoretical choice and significant decrease in the calculation time. For further

research, this algorithm may be possible extended to other classes of problems.
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Chapter 4

A Mehrotra type predictor-corrector

interior-point method for P∗(κ)-HLCP

The denomination prediction-correction comes from the field of algorithms for solving differential

equations, there is also a prediction step and a correction step. The principle of the prediction-

correction method is to seek to achieve two objectives: to remain central and to approach the op-

timum using two type of different iterations. On the other hand the small-update methods seek to

achieve these two objectives simultaneously. The predictor-corrector algorithm proposed by Mehro-

tra requires less computational effort than the other methods. In addition, the correction step uses

some information from the prediction step. The idea of Mehrotra is to determine the parameter of

centering adaptively and no longer according to a value fixed in advance as in path-following algo-

rithms realizing the difficulty of improving proximity to the central path and reduction of the duality

measure in a single step. The algorithm alternates between two different types of iterations, a predic-

tion step to reduce the duality measure and a correction step to bring the iterate into the central path

neighborhood.

4.1 Predictor-corrector algorithm for P∗(κ)-HLCP

Recalling the HLCP as follows

−Mx+Ny = q, xy = 0, (x, y) ≥ 0, (4.1)

where M,N ∈ Rn×n, x, y, q ∈ Rn and xy denotes the componentwise product of vectors x and y,

with

F = {(x, y) ∈ Rn × Rn : Ny −Mx = q, x ≥ 0, y ≥ 0}

66



F0 = {(x, y) ∈ F : x > 0, y > 0}

Assumption 1 We assume that the HLCP satisfies the interior-point condition i.e, there exists a pair

of vectors (x0, y0) such that −Mx0 +Ny0 = q, (x0, y0) > 0.

Assumption 2 The pair {M,N} is a P∗(κ)-pair.

To solve the system (4.1) approximately, the following parameterized system is established
Ny = Mx+ q

xy = µe

x, y > 0,

(4.2)

where µ > 0. It’s known that under our assumptions [37], the system (4.1) has a unique solution for

any µ > 0. If µ → 0, {(x (µ) , y (µ)) |µ > 0} approaches the solution of (4.1). Our algorithm will

restrict the iterates to the negative infinity norm neighborhood of the central path:

N−∞ (γ) =
{

(x, y) ∈ F0 : xiyi ≥ γµ, ∀i = 1, .., n
}

;

where γ ∈ ]0, 1[ and µ = xT y
n

. In the predictor step the algorithm computes the affine scaling search

direction (∆xa,∆ya), which is the solution of the following linear system −M∆xa +N∆ya = 0,

y∆xa + x∆ya = −xy,
(4.3)

then we compute the maximum predictor step length such that

αa = max {α : (x+ α∆xa, y + α∆ya) ≥ 0, 0 ≤ α ≤ 1} .

However, this algorithm does not make a new iteration in the direction (∆xa,∆ya). The algorithm

uses some information from the prediction phase to calculate the corrector search direction (∆x,∆y)

by solving the system  −M∆x+N∆y = 0

y∆x+ x∆y = µ̂e− xy − α2
a∆x

a∆ya,
(4.4)

where

µ̂ =
γ

1− γ
µ.
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The new iterate is defined by

(x (α) , y (α)) = (x+ α∆x, y + α∆y) ,

with α is the corrector step length defined by

α = max
{
α ∈ [0, 1] : (x (α) , y (α)) ∈ N−∞ (γ)

}
.

The Mehrotra-type predictor-corrector algorithm for P∗(κ)-HLCP is as follows:

Algorithm

Input

A proximity parameter γ ∈ [0, 1] ;

A starting point (x0, y0) ∈ N−∞ (γ) ;

An accuracy parameter ε > 0;

Set k = 0;

Begin

While xkyk ≥ ε do

solve (4.3) to get (∆xa,∆ya) ;

solve (4.4) to get (∆x,∆y) ;

compute α the corrector step size;

set
(
xk+1, yk+1

)
=
(
xk, yk

)
+ α

(
∆xk,∆yk

)
;

set k = k + 1;

end while

end

4.2 Algorithmic analysis

In this section, we mainly characterize the polynomial complexity of Algorithm 1. We list some

lemmas and theorems, which will play an important role in the complexity analysis.
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Lemma 4.2.1. Let (∆xa,∆ya) be the solution of (4.3), then

∆xai∆y
a
i ≤

1

4
xiyi,∀i ∈ J+

∑
i∈J+

∆xai∆y
a
i ≤

xTy

4
,

where J+ = {i ∈ J : ∆xai∆y
a
i ≥ 0} , J− = {i ∈ J : ∆xai∆y

a
i < 0} and J = {1, 2, ..., n}.

Proof. From (4.3), for i ∈ J+, we have

yi∆x
a
i + xi∆y

a
i = −xiyi,

dividing by xiyi
∆xai
xi

+
∆yai
yi

= −1,

then using

0 ≤
(

∆xai
xi
− ∆yai

yi

)2

=

(
∆xai
xi

)2

+

(
∆yai
yi

)2

− 2
∆xai∆y

a
i

xiyi
= 1− 4

∆xai∆y
a
i

xiyi
,

we get

∆xai∆y
a
i ≤

xiyi
4
.

Since xi > 0 and yi > 0, then, using previous inequality, we get

∑
i∈J+

∆xai∆y
a
i ≤

∑
i∈J+

xiyi
4
≤ xTy

4
.

Lemma 4.2.2. Let (M,N) be a pair of matrices defining a P∗(κ)-HLCP, (x, y) ∈ N−∞ (γ) and

(∆x,∆y) be the solution of (4.4) with µ̂ > 0, then

‖∆x∆y‖ ≤

√(
1

4
+ κ

)(
1

2
+ κ

)∥∥∥µ̂ (xy)−
1
2 − (xy)

1
2 − α2

a (xy)−
1
2 ∆xa∆ya

∥∥∥2

.

Proof. First, we prove that

∑
i∈J+

∆xi∆yi ≤
1

4

∥∥∥(xy)
−1
2
(
µ̂e− xy − α2

a∆x
a∆ya

)∥∥∥2

, (4.5)
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by dividing the second equation in (4.4) with (xy)1/2 , we get

D∆x+D−1∆y = (xy)
−1
2
(
µ̂e− xy − α2

a∆x
a∆ya

)
,

where D = X
−1
2 Y

1
2 is a diagonal matrix. From previous relation, we get

0 < 4∆xi∆yi ≤
(µ̂− xiyi − α2

a∆x
a
i∆y

a
i )

2

xiyi
,∀i ∈ J+,

with the sum over i ∈ J+, we get the desired inequality. On the other hand, since the problem is a

P∗(κ)-HLCP, we have

(1 + 4κ)
∑
i∈J+

∆xi∆yi ≥ −
∑
i∈J−

∆xi∆yi,

so that

‖∆x∆y‖∞ ≤ (1 + 4κ)
∑
i∈J+

∆xi∆yi

and

‖∆x∆y‖1 ≤ (2 + 4κ)
∑
i∈J+

∆xi∆yi,

using (4.5), we find

‖∆x∆y‖∞ ≤
(

1

4
+ κ

)∥∥∥(xy)
−1
2
(
µ̂e− xy − α2

a∆x
a∆ya

)∥∥∥2

and

‖∆x∆y‖1 ≤
(

1

2
+ κ

)∥∥∥(xy)
−1
2
(
µ̂e− xy − α2

a∆x
a∆ya

)∥∥∥2

,

that implies

‖∆x∆y‖2 ≤

√(
1

4
+ κ

)(
1

2
+ κ

)∥∥∥(xy)
−1
2
(
µ̂e− xy − α2

a∆x
a∆ya

)∥∥∥2

.

Lemma 4.2.3. If (x, y) ∈ N−∞ (γ), and (∆x,∆y) is the solution of (4.4) with µ̂ = γ
1−γµ, then

‖∆x∆y‖ ≤
√

(1 + 4κ) (2 + 4κ)Anµ,

such that

A =
γ

4 (1− γ)2 +
29

64
+
κ

4
.
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Proof. From previous lemma we have

‖∆x∆y‖ ≤

√(
1

4
+ κ

)(
1

2
+ κ

)∥∥∥µ̂ (xy)−
1
2 − (xy)

1
2 − α2

a (xy)−
1
2 ∆xa∆ya

∥∥∥2

,

where

∥∥∥µ̂ (xy)−
1
2 − (xy)

1
2 − α2

a (xy)−
1
2 ∆xa∆ya

∥∥∥2

= µ̂2

n∑
i=1

1

xiyi
+

n∑
i=1

xiyi − 2nµ̂

+α4
a

n∑
i=1

(∆xai∆y
a
i )

2

xiyi
− 2µ̂α2

a

n∑
i=1

∆xai∆y
a
i

xiyi

+2α2
a

n∑
i=1

∆xai∆y
a
i ,

we have xiyi ≥ γµ, then

µ̂2

n∑
i=1

1

xiyi
≤ µ̂2n

γµ
,

and from

(x+ αa∆x
a) (y + αa∆y

a) ≥ 0,

we have

−α2
a∆x

a∆ya ≤ xy,

and since the problem is a P∗(κ) and from Lemma 4.2.1, we get

α4
a

n∑
i=1

(∆xai∆y
a
i )

2

xiyi
= α4

a

∑
i∈J+

(∆xai∆y
a
i )

2

xiyi
+ α4

a

∑
i∈J−

(∆xai∆y
a
i )

2

xiyi

≤
∑
i∈J+

(
xiyi

4

)2

xiyi
+
∑
i∈J−

(
−α2

a

∆xai∆y
a
i

xiyi

)(
−α2

a∆x
a
i∆y

a
i

)
≤ xTy

16
−
∑
i∈J−

∆xai∆y
a
i

≤ xTy

16
+ (1 + 4κ)

∑
i∈J+

∆xai∆y
a
i

≤ xTy

16
+ (1 + 4κ)

xTy

4

=

(
5

16
+ κ

)
nµ,

and

−2µ̂α2
a

n∑
i=1

∆xai∆y
a
i

xiyi
≤ 2µ̂n,
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and
n∑
i=1

∆xai∆y
a
i ≤

∑
i∈J+

∆xai∆y
a
i ≤

xTy

4
=
nµ

4
, (4.6)

combining results, the lemma holds.

Lemma 4.2.4. Let (∆xa,∆ya) be the solution of (4.3), then

∆xaT∆ya ≥ −κxTy.

Proof. Since the problem is P∗(κ), then

−M∆xa +N∆ya = 0⇒ (1 + 4κ)
∑
i∈J+

∆xai∆y
a
i +

∑
i∈J−

∆xai∆y
a
i ≥ 0

⇒
∑
i∈J+

∆xai∆y
a
i +

∑
i∈J−

∆xai∆y
a
i + 4κ

∑
i∈J+

∆xai∆y
a
i ≥ 0

⇒ ∆xaT∆ya ≥ −4κ
∑
i∈J+

∆xai∆y
a
i .

From Lemma 4.2.1

∆xaT∆ya ≥ −4κ
xTy

4
= −κxTy.

Lemma 4.2.5. Let (x, y) ∈ N−∞ (γ) , (∆x,∆y) be the solution of (4.4) and α be the corrector step-

size, then

α ≤ γ

(1 + γ)n
√

(1 + 4κ) (2 + 4κ)A
,

where

A =
γ

4 (1− γ)2 +
29

64
+
κ

4
.

Proof. We search α the corrector step-size such that α ∈ (0, 1) and the new iterate (x (α) , y (α)) ∈

N−∞ (γ), i.e xi (α) yi (α) ≥ γµ (α) ,∀i ∈ I = 1, ..., n .

xi (α) yi (α) = (xi + α∆xi) (yi + α∆yi)

= xiyi + α (xi∆yi + yi∆xi) + α2∆xi∆yi

= xiyi + α
(
µ̂− xiyi − α2

a∆x
a
i∆y

a
i

)
+ α2∆xi∆yi,
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we have xiyi ≥ γµ, and using Lemma 4.2.1 and Lemma 4.2.3 we get

xi (α) yi (α) ≥ γµ

(
1− α− αα

2
a

4

)
+ α

γ

1− γ
µ− n

√
(1 + 4κ) (2 + 4κ)Aµα2,

and

µ (α) =
(x+ α∆x)T (y + α∆y)

n

= µ+ αµ̂− αµ− αα2
a

∆xa
T
∆ya

n
+ α2 ∆xT∆y

n
,

using Lemma 4.2.3 and Lemma 4.2.4, we get

µ (α) ≤ µ+ α
γ

1− γ
µ− αµ+ αα2

aκµ+ n
√

(1 + 4κ) (2 + 4κ)Aµα2,

to find α, we put

γµ

(
1− α− αα

2
a

4

)
+ α

γ

1− γ
µ− n

√
(1 + 4κ) (2 + 4κ)Aµα2 ≥

γ

(
µ+ α

γ

1− γ
µ− αµ+ αα2

aκµ+ n
√

(1 + 4κ) (2 + 4κ)Aµα2

)
and

(1 + γ)n
√

(1 + 4κ) (2 + 4κ)Aα ≤ γ

(
1− α2

a

4
− α2

aκ

)
≤ γ

then

α ≤ γ

(1 + γ)n
√

(1 + 4κ) (2 + 4κ)A
= ᾱ

we define ᾱ as a default corrector step-size.

Theorem 4.2.1. The algorithm will stop in O
(
nA
√

(1+4κ)(2+4κ)

Γ
log 1

ε

)
iteration complexity, where

A =
γ

4 (1− γ)2 +
29

64
+
κ

4
,

Γ =

(
γ

1 + γ

)(
1− κ− 2γ

1− γ2

)
.

Proof.

µ (α) =
xTy

n
+
α

n

(
µ̂n− xTy − α2

a∆x
aT∆ya

)
+

∆xT∆y

n
,
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using Lemma 4.2.3, Lemma 4.2.4 and Lemma 4.2.5, we get

µ (α) ≤ µ+ α

(
γ

1− γ
µ− µ+ αaκµ

)
+ α2nA

√
(1 + 4κ) (2 + 4κ)µ

≤ µ

(
1− α

(
1− κ− γ

1− γ
− αn

√
(1 + 4κ) (2 + 4κ)A

))
≤ µ

(
1− α

(
1− κ− 2γ

1− γ2

))
≤ µ

(
1−

(
1

n
√

(1 + 4κ) (2 + 4κ)A

(
γ

1 + γ

)(
1− κ− 2γ

1− γ2

)))

= µ

(
1− Γ

n
√

(1 + 4κ) (2 + 4κ)A

)
,

such that

Γ =

(
γ

1 + γ

)(
1− κ− 2γ

1− γ2

)
,

we must get

µ (α) ≤ εµ0,

then (
1− Γ

nA
√

(1 + 4κ) (2 + 4κ)

)k

µ0 ≤ εµ0,

this completes the proof.

4.3 Numerical results

In this section, we present some numerical results where the algorithm is coded in MATLAB R2009b

and our experiments were performed on PC with the following parameters: γ = 0.01, ε = 10−5 the

tolerance and the initial point is x0 = y0 = e. In what follows, we use the dynamic step-size presented

in [50]

αd =


2α, ‖∆x‖ ≥ n;

5α, 1 < ‖∆x‖ < n;

10α, ‖∆x‖ < 1

and the practical step-size presented in [36]

αx =

 min
i

(
−∆xi

xi

)
if (∆xi) < 0,∀i = 1, ..., n

1 otherwise
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αy =

 min
i

(
−∆yi

yi

)
if (∆yi) < 0,∀i = 1, ..., n

1 otherwise

αp = min(αx, αy).

We consider the following problems:

Problem 4.1. Consider an HLCP with the following setting:

M =



1.5 10.5 1.05 1.05 2 0 0

2 1.5 6 6 1.5 1.5 2

1.5 3.5 55 9.5 100 1500 −5

5 1.5 3.5 1 0 3 40.5

3 3 8.25 2.5 2.25 0 2.5

1.5 5 5 0 0 1.05 0

1.5 1.05 1 1.05 1 2 1000


,

N =



0.5 9.5 0.95 0.95 2 0 0

2 0.5 6 6 0.5 0.5 2

0.5 2.5 4.5 8.5 100 1500 −5

5 0.5 2.5 1 0 3 39.5

3 3 7.75 1.5 1.75 0 1.5

0.5 5 5 0 0 0.95 0

0.5 0.95 1 0.95 1 2 1000


q = (−16.4, 23, 3206, 79, 13,−1.1, 2004.8)T .

The exact solution is x∗ = (2, 2, 0, 0, 0, 0, 0)T and y∗ = (0, 0, 2, 2, 2, 2, 2)T . The numerical results are

summarized in the table bellow:

Iterations Time(s)
Theoretical step-size 1796 0.61
Dynamic step-size 32 0.069
Practical step size 5 0.02

Table 4.1: Numerical results of problem 4.1.
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Problem 4.2. For c ≥ 0, the P∗(κ)-HLCP is given by

M =


0 1 + 4κ 0

−1 0 0

0 0 c

 , N = I and q = (0.01, 0.501,−0.49)T .

The problem is a P∗(κ)-HLCP for all κ ≥ 0. For example if κ = 1 and c = 1, then the HLCP (a non

monotone HLCP) is given by

M =


0 1 + 4 0

−1 0 0

0 0 1

 , N = I and q = (0.01, 0.501,−0.49)T .

The exact solution x∗ = (0, 0, 0.49)T and y∗ = (0.01, 0.5, 0)T .

Iterations Time(s)
Theoretical step-size 661 0.46
Dynamic step-size 31 0.06
Practical step size 7 0.005

Table 4.2: Numerical results of problem 4.2.

Problem 4.3 The HLCP is given by

M =



4 −1 0 0 0 0 0

−1 4 −1 0 0 0 0

0 −1 4 −1 0 0 0

0 0 −1 4 −1 0 0

0 0 0 −1 4 −1 0

0 0 0 0 −1 4 −1

0 0 0 0 0 −1 4


, N = I and q = (−1, ...,−1)T .

The exact solution is x∗ = (0.3660, 0.4639, 0.4897, 0.4948, 0.4897, 0.4639, 0.3660)T and y∗ = (0, ..., 0)T .

The numerical results are in the following table:
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Iterations Time (s)
Theoretical step-size 7180 2.81
Dynamic step-size 20 0.027
Practical step-size 4 0.007

Table 4.3: Numerical results of problem 4.3.

Problem 4.4.

M =


−4 8 −8

−3 1 −1

4 −3 2

 , N =


1 −2 3

2 1 1

−2 0 −1

 and q =


−2

1

0

 .

The exact solution x∗ = (0, 0.5, 0)T and y∗ = (0.5, 0, 0.5)T .

Iterations Time (s)
Theoretical step-size 3180 0.69
Dynamic step-size 53 0.029
Practical step-size 7 0.005

Table 4.4: Numerical results of problem 4.4.

Problem 4.5. [63] The HLCP is given by

M =



1 2 2 · · · 2

2 5 6 · · · 6

2 6 9 · · · 10
...

...
... . . . ...

2 6 10 · · · 4n− 3


, N = I, and q = (−1,−1, . . . ,−1,−1)T .

The exact solution is x∗ = (1, 0, ..., 0)T and y∗ = (0, 1, ..., 1)T .

The numerical results are in the following table:

Theoretical step-size dynamic step-size practical step-size
n Iterations Time(s) n Iterations Time(s) n Iterations Time(s)
3 171 0.16 3 9 0.05 3 2 0.01
10 619 0.92 10 12 0.09 10 2 0.014
100 6974 37.13 100 61 0.059 100 3 0.05
1000 67440 359.05 1000 130 30.25 1000 3 11.54
3000 - - 3000 - - 3000 3 284.23

Table 4.5: Numerical results of problem 4.5.
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Next, we compare our algorithm which we denoted by Algo3 using the practical step-size with

Mehrotra-type predictor-corrector algorithm proposed by Zhou et al. [63] in 2019 denoted by Algo4.

From [63], we set ε = 10−8 and γ = 0.01.

n Algorithms Iterations
10 Algo3 2

Algo4 10
20 Algo3 2

Algo4 11
30 Algo3 2

Algo4 12
40 Algo3 2

Algo4 13
50 Algo3 2

Algo4 13
100 Algo3 3

Algo4 15
150 Algo3 3

Algo4 15
200 Algo3 3

Algo4 16

Table 4.6: Numerical results of problem 4.3.

The results in these tables show that the algorithm based on the practical step-size is efficient. The

number of iterations and the calculation time have significantly reduced. While the algorithm based

on theoretical step-size may leads to small step size so more iterations. In addition, the numerical

results in table (4.6) show that our algorithm performs well in comparison with the algorithm in [63].

4.4 Conclusion

In this chapter, we have proposed a new feasible version of Mehrotra’s predictor-corrector algorithm.

Whose variants have been widely used in several interior-point methods based optimization packages.

We have demonstrate the polynomial complexity of the algorithm. Also, we have presented some

numerical tests to examine its practical efficiency.
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General conclusion

In this thesis, we consider to solve horizontal linear complementarity problems (HLCPs) with P∗(κ)-

matrix. LCP is not an optimization problem. However, KKT conditions of several important optimiza-

tion problems, such as linear and quadratic programming problems (LP and QP), can be formulated

as LCP. In addition, many problems from engineering, transportation, finance, etc. can be written as

LCP. Hence, it is of significant interest to consider LCP and find efficient methods to solve it. The

class of methods that have shown to be very efficient and with polynomial worst case complexity is

called interior-point methods (IPMs). In this thesis, we consider primal-dual cental-path IPM applied

to P∗(κ)-horizontal linear complementarity problem (HLCP).

HLCP arises in different domains and also has many applications in mathematics. So, first, we have

presented a theoretical and practical study of the transformation of an absolute value equation to an

HLCP by introducing an infeasible primal-dual central path method.

Then, we have proposed a primal-dual interior-point method based on a new class of parametric kernel

functions, this approach have the advantage of starting with any strictly feasible point not necessary

close to the central path. Based on this function, a class of large and small-update primal–dual interior-

point algorithms for HLCP is proposed. The complexity analysis shows that the iteration bounds for

the small and large-update primal–dual IPMs based on this function coincide to the so far best known

iteration complexities, i.e. O
(
(1 + 2κ)

√
n log n log n

ε

)
for large-update and O

(
(1 + 2κ)

√
n log n

ε

)
for small-update methods. Moreover, we have presented some comparative numerical results to show

the practical behaviour of the new proposed kernel functions. The numerical experiments demonstrate

that the algorithm based on the new kernel function reduces the number of iterations and CPU time.

Finally, a new variant of Mehrotra-type predictor-corrector algorithm was proposed. This type of al-

gorithm is presented in all available optimization software. Indeed, this algorithm allows to improve

the convergence and to present one of the best results of the interior-point methods complexity in op-

timization. We have provided some numerical results to illustrate the advantage of our new algorithm

and we have compared our algorithm with Mehrotra-type predictor-corrector algorithm presented by

Zhou et al. [63]. This comparison reveals that for all of the selected problems our proposed algorithm
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works practically better, as well.

Several questions remain open for future work:

• The generalization of the presented algorithms to more general problems such as the sufficient

LCP and the Cartesian P∗(κ)-LCPs over symmetric cones.

• Extending the computational study of these algorithms to some wider classes of LCPs (coming

from bimatrix games, etc).

• Another important question would be how to find a general class of kernel functions which gives

interior-point algorithms with the best known complexity results for solving P∗(κ)-HLCP.
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 ملخص

في  نقدمعمال طريقة النقطة الداخلية. نهتم في هذه الأطروحة بالتحليل والدراسة العددية لحل مشكلة التتام الخطي الأفقي باست

 المسار طريقةاستعمال ب الأفقي الخطي التتام مشكلة إلى المطلقة القيمة معادلة لتحويل وعملية نظرية دراسة الجزء الأول

الداخلية المعتمدة على دالة  نواة جديدة ثم نوضح فعاليتها ببعض النتائج  خوارزمية النقط نقدم. في الجزء الثاني المركزي

مصحح حيث ندرس تكلفتها الحدودية ثم نختبر الكفاءة العملية -نبئمتيتم اقتراح بديل جديد لخوارزمية  لثالجزء الثا العددية. في

 .عض الاختبارات الحسابيةلهذه الخوارزمية عن طريق إجراء ب

مصحح، خوارزمية -نبئنواة، خوارزمية متالداخلية، دالة  ، طريقة النقطالأفقي  مشكلة التتام الخطي: المفتاحية الكلمات

   .، تكلفة حدوديةميهروترا

Résumé 

Dans cette thèse, on s’intéresse à l’analyse et l’étude numérique des méthodes de points 

intérieurs pour résoudre le problème de complémentarité linéaire horizontal (PCLH). 

Dans la première partie, nous  présentons une étude théorique et pratique de la 

transformation d’une équation en valeurs absolues à un PCLH en introduisant une 

méthode de trajectoire central primale-duale non réalisable. Dans la deuxième partie, on  

présente une méthode de points intérieurs primale-duale basée sur une nouvelle classe 

de fonctions  noyaux. La complexité algorithmique prouvée pour cet algorithme est la 

meilleure complexité connue jusqu’à présent. Ensuite, on  illustre la performance des 

fonctions noyaux proposées par quelques résultats numériques comparatifs. Dans la 

troisième partie, une nouvelle variante de l’algorithme  de Mehrotra de type prédicteur-

correcteur est proposée où sa complexité est prouvée polynomiale. Finalement, on teste 

l’efficacité pratique de l’algorithme en exécutant quelques tests numériques. 

Mots clés : Problème de complémentarité linéaire horizontal, méthodes de points 

intérieurs, fonction noyau, algorithme prédicteur-correcteur,  algorithme de Mehrotra, 

complexité algorithmique. 

Abstract  

In this thesis we are interesting in the analysis and numerical study of interior-point 

methods for solving horizontal linear complementarity problem (HLCP). In the first part, 

we  presente a theoretical and practical study of the transformation of an absolute value 

equations to an HLCP by introducing an infeasible primal-dual central path method. In 

the second part, primal-dual interior-point methods based on a new class of kernel 

functions are presented. We show that the corresponding algorithm has the best known 

iteration bound for large-update methods. Then, we illustrated the performance of the 

proposed kernel functions by some comparative numerical results. In the third part, a 

new variant of Mehrotra type predictor-corrector algorithm is proposed where we prove 

that its complexity is polynomial. Finaly, We test the practical efficiency of the algorithm 

by running some computational tests.  

Keywords: Horizontal linear complementarity problem, interior-point methods, kernel 

function, predictor-corrector algorithm, Mehrotra’s algorithm, complexity bound. 
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