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ABSTRACT

In this thesis, an acousto-optic technique based-beam shaping is presented through
an analytical and a numerical analysis, which converts an input Gaussian beam into
different output beam shapes, such as Flat-top, Doughnut, and Airy-like beams. A
deep characterization that reveals the generated beam properties is also performed and
discussed. As a result, flexible converting a Gaussian beam into a defined shape will

have a significant impact on a myriad of current laser applications.
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(GENERAL INTRODUCTION

The perfect computer has been developed.

You just feed in your problems and they never come out again.

Al Goodman

OWADAYS, lasers are every where, in our daily life, we use lasers in electronics
N devices remote control, in DVD lectures, etc.... Lasers are also are extensively
used in industry, communication, meteorology and almost in every field. The main
keys for the lasers usage are the intensity (power) and the spatial structure of the laser
beam. For that reason the hot topic of structured light becomes of a big interest. As
it is commonly known, the transverse profile of laser beams is theoretically modeled by
the Gaussian function, hence its name the fundamental Gaussian beam|[!]. Since lasers
are applied in a variety of fields, the Gaussian beams model becomes less enough to
achieve all laser’s applications. For that reason, laser beams with customized profiles
and structures are needed|?, 3|, to be used in optical communication|!], optical tweez-
ing [5], material processing [0, 7], and even in quantum experiments [3]. It is worth
noting, that laser beam shaping consists on transforming a given Gaussian beam into a
customized beam shape, using different techniques[9—15] The main technique used for
shaping laser beams is based on diffractive optics[16—18|, where an optical diffractive
element (of phase or amplitude) is used to structure a given input Gaussian beam into
another well shaped beam [19-21]. The present thesis is dedicated to a Gaussian laser

beam shaping using another type of diffractive elements, here we use instead the usual



General introduction

optical elements, we will use an acoustooptics cell to shape the laser beam[22-25]. The
acoustic-optic cell consists on a liquid medium (water), in which an ultrasound wave
is propagating and creating an elastic wave, the latter is manifested as a refractive
index variation (sinusoidal). The phase transmittance created by the ultrasound wave
allowed the manipulation of the input laser beam structure, by tuning the different
parameters of the couple (laser beam and acousto-optic cell) we can shape the input
laser beam at will. Throughout this thesis, we will demonstrate many beam shaping
of an input Gaussian beam, into flat top, doughnut, and accelerated beams.

The thesis is organized as follows:

Chapter 1 is dedicated to Gaussian beam and acoustic waves theory, to understand
the theoretical basics of acousto-optical interaction, the beam shaping and light guiding.
Chapter 2 is reserved to the parametric characterization of the diffracted Gaussian
beams by the acousto-optic cell. In this chapter we use mainly the Kurtosis parameter
for the beam flatness characterization. Chapter 3 is dedicated to the theoretical study of
the generation of hyperbolic tunable Airy-like beams using a truncated acousto-optical
effect. Chapter 4 focuses on the generation of a variety of combined Airy beams (Dual

and Quad) using a dynamic standing ultrasound wave.

The thesis is resumed by a general conclusion and future perspectives.
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CHAPTER 1

BACKGROUNDS AND BASICS

I constantly sought knowledge and truth, and it became my belief
that for gaining access to the effulgence and closeness to God,
there is no better way than that of searching for truth and knowledge

Hasan Ibn al-Haytham

1.1 Introduction

NE of the most important point in the laser science is the description of the spa-
O tial structure of laser beams. Which became opportunity for the theoretical and
experimental scientific community. The usual starting point for the derivation of laser
beam propagation modes is solving the scalar Helmholtz equation within the paraxial
approximation|l, 2|. In this chapter, we start by describing the spatial profile of laser
beams. Then, the derivation of the spatial profile of laser beams will be reviewed fun-
damental Gaussian beam profiles and its parameters. Secondly, fundamental principles
of the ultrasound will take place. Where, the acoustic parameters will be well detailed
in this section. Finally, acousto optic interaction theory will be illustrated by giving
the theoretical and physical principles of the interaction between acoustic waves and

laser beam in a liquid medium.



Chapter 1 : Backgrounds and basics

1.2 Gaussian beam theory

In this section, we will derive the governing equation for the electric field of a laser
beam. A basic equations of electricity and magnetism can be used as a starting point

for advanced development. The four Maxwell equations in vacuum are expressed as:

VxE %%—?:0, (1.1)
ﬁxﬁ—%%:@, (1.2)
V-D=0, (1.3)
V-B=0, (1.4)

Where E and H are electric and magnetic fields. In addition, D and B are electric

and magnetic flux densities defined as

D = eE +4nP and B = poH + 47M . (1.5)

Where ¢y and o are the electric permittivity and the magnetic permeability respec-

tively.

Polarization and magnetization densities (15 and M ) are then introduced to define

the electric and magnetic flux densities as follows:
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P = xE and M = nH (1.6)
Where x and 7 are the electric and the magnetic susceptibility

As such, the electric and magnetic flux densities can be simply expressed as

(1.7)

The general wave equation for the electric field that governs the propagation of the
electric field in free space. As for a linearly x-polarized electric field, the electric field

propagating in the z-direction can be expressed in Cartesian coordinate as

~

E (F) = 1Ey (z,y, 2) exp (ikz) . (1.8)

We will only consider the electric field because all characteristics for the magnetic
field are the same as those for the electric field, except for the magnitude of the field.
Because the source-free region is considered, the divergence of the electric field is zero

(6 B () = 0>. Finally, the expression for the electric field is given by

— = —

V-VE + k*E (7) = 0. (1.9)

Where £ is light wave number.

By substituting Eq. (1.8) into Eq. (1.9), the equation becomes
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0> 0*  9*\ . N
(— + o5+ @> iEy (z,y, 2) exp (ikz) + ik*Ey (z,y, z) exp (ikz) = 0. (1.10)

Eq. (1.10) is referred to as a homogeneous Helmholtz equation, which describes the
wave propagation in a source-free space. By differentiating the wave in the z-coordinate,

we obtain

E
%EO (x,y, z)exp (ikz) = ikEy (x,y, 2) exp (ikz) + Wexp (tkz), (1.11)
and
2
E
%EO (z,y, 2) exp (ikz) = —k*Eq (z,y, 2) exp (ikz) + 22’]{:Mexp (1kz)
z

O*Ey (x,y,
| PEo(2,3.2)

9. exp (ikz). (1.12)
z

In many cases, the electric field slowly varies in the propagation direction (z-

direction). The slow variation of the electric field in z-direction can make possible

the following approximation (slowly varying approximation):

a2E0 (l’, Y, Z)

k_aEO ([E, Y, Z)
022

5 (1.13)

<]

By inserting Eq. (1.12) into Eq. (1.10) and using the assumption of Eq. (1.13),
Eq. (1.10) becomes

2 2
8 EO (I,y,Z) + a EO (I,’y,Z) + 2ZkaEO (.T,y,Z)

o 37 S =0. (1.14)

10
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Scribes how the linearly polarized electric field propagates in the z direction in the

Cartesian coordinate.

The solutions of the paraxial wave equation are known. This solution is as follows :

Ey (x,y,2) = Aexp [—i (Aqb (2) + 2in) (2 + yQ))] (1.15)

A¢ (z) phase shift
q (z) represents a radius of curvature, or the transverse variation of the amplitude and

curvature of the wavefront.

This particular solution, called « Gaussian fundamental mode ». We substitute

the expression FEj in the paraxial wave equation, we get that for all (z,y):

{qgk(z) (=* +v°) (% - 1) — 2k (ddAf + 2)} A=0 (1.16)

We deduce that ¢(z) and A¢(z) be verified :

Ezléq(z):qm—z (1.17)

With ¢o = ¢(0).

If A¢(0) =0, we find:

— = A¢(z) =—iln
do

dA¢ — —i qo + 2
= ( ) (1.18)

11
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Moreover, we pose

- — (1.19)

We then have:

exp [—iA¢ (2)] = = (1.20)

Where the index 0 indicates the values in z = 0 and wy is the waist. If we choose
2
at the origin an infinite radius of curvature ( plane wave), we have ¢g = @% We can

then easily show that :

2
TWq

1 2
1 1 1 1/ A A
_ T . _( ZQ) — i (1.21)
q(z) @tz 147, 4 n <£) z \ mw§ Twd
On the other hand, where tanf (z) = /- and Zp is the Rayleigh distance

exp [~id ()] = 5 = — e (i0(2)) (1.22)

Finally, we obtain the fundamental expression of the Gaussian spherical wave:

E(z,y,2) = %exp [—ikz] exp [i0 (2)] exp [Zk(qu——Ezy))] (1.23)

12
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Figure 1.1: The Gaussian beam propagation parameters

The intensity profile of the Gaussian beam is :

I(2,y,2) = Ipexp [%&592)}

The wave front curvature radius is:

=1+ (25))

The size of the Gaussian mode at any spatial plane is expressed as:

13

(1.24)

(1.25)

(1.26)
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1.3 Acoustic wave basics: fundamental principles of

the ultrasound

The ultrasounds are acoustic waves,with a frequency greater than the upper limit of
human hearing, about 15kHz|3|.Ultrasound are mechanical vibrations that propagate,
through various media including gases, liquids and solids, but cannot travel through a
vacuum|1]. The ultrasonic wave propagates thanks to the elasticity of the medium that

the propagation medium is submitted to a succession of pressure and depression|5].

1.3.1 Ultrasound parameters

Acoustic waves are governed by the same physical laws as electromagnetic waves. We
consider an acoustic wave as the displacement of an infinitely small perturbation with
respect to the conditions prevailing in the undisturbed medium. The particles move
back and forth on either side of their position of equilibrium. They induce zones of
compression and decompression moving through the elastic medium. An acoustic wave

is characterized by many parameters:

1.3.1.1 Celerity and impedance

The celerity of the acoustic wave is the propagation speed of the pressure variation
in the medium.The behavior of medium with respect to ultrasound is expressed by a
constant called acoustic impedance Z. The acoustic impedance depends on the density
and the compressibility of the medium or its ability to return to its original shape after

deformation:

14
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z=]2 (1.27)

With Z , x. and p corresponding respectively to the mechanical impedance, the

compressibility of the medium and the density.

The acoustic celerity is related to the mechanical impedance Z and the density of

the medium by:

A
Po

1.3.1.2 Frequency and wavelength

Sounds are classified into four categories according to their frequency f, or number

of pressure per second 1Hz = leycle/s

Sounds Frequency
infra-sound 0 to 20 Hz
audible sounds | 20 Hz to 20 kHz
ultrasound 20 kHz to 1 GHz
hyper-sons > 1 GHz

Table 1.1: The range of sound according to their frequencies

The distance separating at a given moment two points of the path of the wave
where the pressure is the same corresponds to the wavelength \,.that related to the

frequency by the formula :

15
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Ao = — (1.29)

With f, and A, are respectively the frequency and the wavelength.

1.3.1.3 Pressure and intensity

At each point, the acoustic pressure p varies according to the frequency of the ultra-
sonic wave. The energy delivered depends on these pressure variations which subject
the particles of the medium to vibratory movements. Ultrasonic intensity is the energy
that crosses the unit area perpendicularly during the unit of time. It is related to the

acoustic pressure by the formula :

= (1.30)

1.3.2 Ultrasound propagation modes

Ultrasound energy used in flaw detection travels in different wave modes based on the
direction of the wave and the corresponding motion of molecules in the test piece.
The most commonly used modes are longitudinal waves, transverse waves, and surface

waves(Rayleigh waves)

16
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1.3.3 Propagation equation

In this development we use a sinusoidal plane ultrasonic wave which propagates in
a medium along the x direction. The particles of the medium vibrate around an
equilibrium position with the same frequency of ultrasonic wave . Differential equation

that describes this vibration is:

X (x,t) 5 0°X (1)

Where: X (z,t) is the position of the particle, x is the propagation direction, v is the

celerity of ultrasonic wave.

The solution of equation Eq. (1.31) is:

X (z,t) = X sin (Qt — kyx) (1.32)

Where: X the amplitude of vibration, k, Ultrasonic wave module, {2 Ultrasonic wave

pulsation.

The particle velocity is then given by:

dX (z,t)

X' (z,t) =
(:C, ) dt

= Xy Qo cos (Ut — k,x) (1.33)

The ultrasonic pressure variation in a given point is related to the particle velocity

in the medium by equation:

17
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Ap(x,t) = po v X' (2,t) (1.34)

The ratio of the pressure to the velocity at a given point is then equal to the product

of the initial density of the medium by the wave velocity, this ratio is constant

—’)) =po v (1.35)

This equation is often called the Ohm law, in acoustics, and the preceding ratio is

called the acoustic impedance Z of the medium

Ap(z,t) = Z Xy Qo cos (Qt — k,x) (1.36)

1.4 Acousto optic interaction theory

Propagation of an ultrasonic wave in a medium, creates zones of expansion and zones
of compression which leads to a change in the refractive index of the medium. As a
result an optical phase grating is created. The propagated light is then diffracted to

different orders.

1.4.1 Diffraction regime

For acousto-optic interactions in liquids, an equation for the diffraction light intensity

was obtained in terms of Klein Cook parameter Q[0, 7|, in which an apprecia-

18
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ble amount of light is transferred out of zero order into diffracted orders and can be

examined by using the Kelin and Cook parameter, Eq. (1.37) shows the expression:

k2L  27A\L
A 1.37

Where L and ng are the interaction distance and the medium index respectively.

1.4.1.1 Bragg Regime @ >1

The Bragg regime is observed at high acoustic frequencies usually exceeding 100 MHz.
The diffraction pattern of this regime even at large acoustic power, consists of two
diffraction maxima of zero and first orders. At Bragg angle of incidence 6g only one
diffraction order is produced while the others are annihilated by destructive interfer-

ence, the angle of deviation of the light beam is then equal to:

A
§ = arcsin (2n0)\a> (1.38)

1.4.1.2 Raman-Nath Regime (@ <1

The Raman-Nath regime is observed at relatively low acoustic frequencies at small
acousto-optic interaction lengths. This type of diffraction takes place at an arbitrary
incident angle of light roughly normal to the acoustic beam and the diffraction pattern
contains many diffraction orders of symmetrically distributed light intensity given by

Bessel functions, the diffraction angle of each order is given by:

19
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0 = m— (1.39)

Fig. 1.2 shows the different regimes:

I_d
|

I . Acoustic Acoustic _ 1st order
wave wave T [—— diffracted
) -/ 2nd order I beam
Incident ;’ vt
light | SLOTECT T | — h
—_— 4 0 order y /
—_— - \ Incident
\\ 1st order light 'S
‘ 2nd order o
Through
- [ e
— B Piezoelectric — I
transducer L
(a) Raman-Nath regime (b) Bragg regime

Figure 1.2: Tllustration of Raman Nath and Bragg regimes
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CHAPTER 2

PARAMETRIC CHARACTERIZATION

Finding the truth is difficult, and
the road to it is rough

Hasan Ibn al-Haytham

2.1 Introduction

NTERACTION of a Gaussian laser beam with an acoustic wave, could be evaluated
Iby analytical methods as well as by numerical ones. However when an analytical
solution is possible, it becomes more interesting, it allows the evaluation of the electric
field distribution in the transverse and longitudinal directions. It is worth noting, that
more we know about the beam, more we can use it in different fields. This chapter
is dedicated to study analytically the interaction of an incident Gaussian beam with
a dynamic transmittance. The latter is generated by an acoustic wave propagating
in a liquid medium (water). By using the Kirchhoff-Fresnel diffraction integral, we
demonstrate the analytic expression of the resulting field (of the Gaussian beam after
diffraction by the transmittance) as well as the transverse intensity at any propagation
distance z. In addition, by acting on the different parameters of the incident Gaussian

beam and the acoustic wave, we demonstrated some beam shapes. Furthermore, based

22
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on the intensity’s expression of the output beam (shaped), we demonstrate a parametric
characterization of the resulting beam using the famous statistical quantity, known as
Kurtosis parameter. The latter is usually used in beam optics to assess the flatness
of laser beam. In this chapter we demonstrate the analytic expression of the Kurtosis
parameter for a given Gaussian beam, diffracted by an acoustic wave propagating in
water. In addition, we use some numerical simulations to relate the Kurtosis to the

corresponding intensity’s distribution.

2.2 Beam’s parameters

It is well known from the theory of laser beam that the beam propagation factor M? is a
very useful parameter that characterizes the focusability of any laser beam. However,
to achieve an optimum control of industrial processes accomplished by using higher
power lasers, a precise description of laser beams is required. To this end, the kurtosis
parameter is also employed to describe the flatness or the sharpness of such beams, it

is given by the following expression|l—1|:

(@)
K = . 2.1
(@) .

where (z*) et (x?) are the irradiance moments, fourth and second order respectively,

in the spacial domain, and are expressed as follows:

fj;o 2t (z) dz (2.2)
[T (x)dx ‘

o

(«") -

T2 (2) dx

(«*) =

23
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2.3 The field expression of the (GGaussian laser beam

intensity profile modified by the acoustic wave

1-Input: Gaussian beam (x,y)
2-Acoustic cell 4

3-Lens
4-Output: Shaped beam ({,n)

Figure 2.1: The optical layout of the transformation of an incident Gaussian beam

into a Flat-top beam using an acousto-optical cell.

In this part we will present the expression of the intensity diffracted by an acoustic
wave. Firstly, we present the expression of Gaussian beam Eq. (2.4), then the expression
of the refractive index given by Eq. (2.5) created by the propagation of the acoustic

wave|5, 0]:
Ey (xz) = A.exp

@]

In what follows the amplitude is normalized A = 1.

n(z,t) =ng+ An-sin (Q — k,z) . (2.5)
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The expression of the field before the lens,(the output face of the cell), is given by:

Ey(xz,t,z=L) = Ey(z) - exp[—ikL (ng + An - sin (2t — k,x))], (2.6)

Applying the Fresnel Kirchhoff integral|7]:

xp (—k k
Eout (C) = %exp (_Zicz)

X /+OO Ey (z) - exp (z%:ﬁ) exp (—z’%ﬁ) exp <zi—7;§x) dz, (2.7)

Using this transformation:

exp {—ikLAn - sin (Qt — k,x)} = f I (KLAN) exp {—im (Ut — k,x)} . (2.8)

m=—0o0

After some transformation the filed expression is given by:

. —+o0
E,ut (¢) = %exp [—im&Qt] exp [—ik Lng) exp <_22_k,;'€2> Z I (V)

e (e 5) - (3 )

Where, ¢ = kLAn is the Raman-Nath parameter.

+oo B 42
/ e~ (P Far) gy — \/%64?. (2.10)

S p
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Using the expression given by Eq. (2.10),[%], ignoring all phase factors
(exp (—ikz)exp [—imQt] exp [—ikLng| exp (—i2:¢*)) not concerned by the integration
and squaring the amplitude, We find the final expression of the transverse intensity at

any propagation distance z [9, 10]:

1 T
I(C):(E> <w+)2+%< _§>>
SO W) esp )] )

With, k, = ?\—” is the acoustic wave number.
a

The transverse distribution of the intensity in the focal plane z = f is given by:

I1(¢, z=f)= (7;—1;,(2)) ZJ,% (¢) exp _<<\/§)\7;w0> ¢+ %ka m) . (212)

To generalize the intensity expression to two dimensions we use the following equation:

E(¢n) =E () x E(n) (2.13)
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2.4 The Kurtosis parameter K for a Gaussian beam
shaped by an acousto-optic cell at a lens focal

plane

In this section we will evaluate the Kurtosis parameter of an incident Gaussian beam
shaped by an acoustic-optic cell, as it is well known that the Kurtosis parameter is z
dependent, here we have fixed z = f to obtain an analytical expression for the K in

the focal plan.

To calculate the Kurtosis parameter, we firstly calculate the fourth and second moments

of the intensity distribution.

2.4.1 Calculation of <:1:4>

We begin by the calculation of the zero order moment of the intensity, which represents

the intensity power.

+oo
To calculate the integral [ I (z)dz ,The following relation was used [3]:

—00

+o0 a2
/ e~ (PP rar) gy — \/%6472. (2.14)

S p

Several changes should be made in order to apply the relation to the intensity equation:

400 400 _ 2z L Q_L
/ e_(”QmQJrqx)dx:/ e {(p =2 4p2]dw. (2.15)

o0 —0o0
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/+OO el 8) N gy = g- (2.16)

Finally,

—+00

/ I(2)dz = (7%’?) f mw%. (2.17)
kS = T

To calculate the second part of the integral of the fourth moments of the intensity

distribution, a variable change is necessary and we rename the parameters a and b :

y=azr+0b and a=Y2mwo and p = wm

)‘f \/5)\0,'
T w2\ I 400 )
/ 21 (z) dw = <)\_fo) Z an(w)/ zte™ (@@ gy, (2.18)
Then,
T 4 Twg — 2 L[ 4, —y?
o'l (@)do = (52 D)= [ (=0 dy, (2.19)

After some algebra we have obtained the expression shown in Eq. (2.20):
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[ rwan = (52) fﬂ (¥

“+00
X / (v*

Using the formulas [3]:

/ " phementgy = LR /2

Where, I' represents the Gamma function.

/Ooe_ngdle T
0 2V yg

— 4By + 6b%y”

—4by® +yt) eV dy, (2.20)

i D)2 (2.21)

(2.22)

If h is an odd number the result of integral from (—oo to + 00) is equal to zero

%]

r
If h is an even number the result of integral from (—oo to 4+ 00) is equal to 2 x -

We obtain,

/ o*1 (z) da

—00

(S [rg

.

2c

60°T (%)

é) b
2
i Eﬁ + 5 | (2.23)

Finally, the fourth order intensity moment (x?) is given by the expression
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6b2r( )

fiJi(w){ G v my

T2 () 2T
(5)

(2.24)

(') =

2.4.2 Calculation of <:132>

As well in this part we exploit the same variable change used in the last part ( calculate

the fourth moments), We began by Eq. (2.25):

o 2 7TQU0 2 Foo ]
/ 71 (x)dx ZJ / (y—b)e¥dy (2.25)
Then,
+o00o
2 7””0 2 LR —y?
/x I (z)dx Z J( / (y> 4+ 0% — 2yb) eV dy (2.26)
Finally, we find the expression of integral:
“+oo
3 2
W 5 b
/xQI (z) d ( 0) Zﬁ [ ;) + ﬁﬁ] (2.27)

The final equation of the integral will be represented for (x?) in the above formula :

) |+ A
(z*) = )L (2.28)

p
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Finally, the expression of the kurtosis parameter is given as follows:

K = : (2.29)
e J%(w)[r(f)#’iﬁ]

a- a

ST 2 ()4

2.5 The kurtosis for the transverse distribution of the

intensity at any point of propagation z

In this section, we consider the generalization of the previous one, where we demon-
strate a more general expression for the Kurtosis parameter K as a function of the
propagation distance. So, we can follow the intensity profiles along z axis. Follow-
ing the same step as in the previous section, and after a lengthy but straightforward

algebra, the final expression of K is given by:

K (2.30)

Where the parameters a; and b; are given by:
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<—\/§7er) Lok, m
a; = X and by = vz (2.31)

) ™ ()

2.6 Numerical simulation

In this section we present the numerical simulation of the Gaussian laser beam inter-
action with an acoustic wave. By considering a laser wavelength of A\ = 633nm and
a beam waist of wy = 1mm. The lens back focal length used is f = 100mm. We
start by presenting the result of the Flat top beam then the Doughnut beam and fi-
nally Doughnut beam with a flat inside. All the results presented in this section are
obtained by considering 2D acousto-optic interaction where the laser beam interacts

with two orthogonal acoustic beams in the medium A.O cell.

2.6.1 Flat top beams generation

In this section, we demonstrate the generation of different shapes of Flat-top beams by
adjusting the acoustic power, so the effect of the Raman-Nath parameter ¢ variation is
given. We present the intensity patterns and profiles of each output beam as a function
of the Raman Nath parameter ¢. Fig. 2.2 shows the intensity patterns (a, b, ¢, d) and
their corresponding profiles (al, bl, cl, d1) of the generated Flat-top beam, at the
plane z = f, for different Raman-Nath parameters ¢ (¢» = 60 in Fig. 2.2(a) and (al),
Y = 70 in Fig. 2.2(b) and (bl), ¢» = 80 in Fig. 2.2(c) and (cl), ¥ = 90 in Fig. 2.2(d)
and (d1)) with an acoustic wave number k, = 0.5m~1. It’s obvious from Fig. 2.2 (al,
b1, c1, d1) that the flatness of the obtained beam is improved by the increasing of the
Raman-Nath parameters ¥. And that’s also clear from the 3D representation shown

in Figs. 2.3 and 2.4, which represent the 3D intensity distribution of the generated
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Flat-top beam in the plane ( —7 and the plane ( — z, respectively. Furthermore, Fig. 2.4
illustrates that the Flat-top beam is generated only close to (around) the focal plane

of the lens (z = f), where z = 100mm.
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Figure 2.2: The intensity patterns (a, b , ¢, d) and profiles (al, bl, cl, d1) of the
generated Flat top beams, at the plane z = f, for different Raman-Nath parameters v

with an acoustic wave number k, = 0.5m ™.
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Figure 2.3: 3D intensity distribution in the plane { — n of the generated Flat top
beams, at the plane z = f, for different Raman-Nath parameters ¢ with an acoustic

wave number k, = 0.5m .
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Figure 2.4: 3D intensity distribution in the plane { — z of the generated Flat top

beams, at the plane z = f, for different Raman-Nath parameters ¢ with an acoustic

wave number k, = 0.5m~".
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2.6.2 Doughnut (petal) beams generation

In this section, we show the generation of different shapes of Doughnut (petal) beams
for different acoustic wave number k, and with a Raman-Nath parameter v equal
to 2.3, the value for which the zero order (the central lob) of the Bessel function is
disappeared. We present the intensity patterns and profiles of each shape as a function

of the acoustic wave numberr k,.

Fig. 2.5 displays the intensity patterns (a, b, ¢, d) and their corresponding profiles
(al, bl, cl, d1) of the different generated Doughnut (petal) beam, at the plane z = f,
for different acoustic wave number k, (k, = 1.2m~! in Fig. 2.5(a) and (al), k, = 2m™!
in Fig. 2.5(b) and (b1), k, = 2.6m™" in Fig. 2.5(c) and (cl), k, = 4m™" in Fig. 2.5(d)
and (d1)) with a Raman-Nath parameter ¢» = 2.3. It can be seen from Fig. 2.5 that
the Doughnut (petal) beam can be generated by the increasing of the acoustic wave
number k,, which means increasing the shifts between the orders. And that’s evident
from the 3D representation shown in Figs. 2.6 and 2.7, which represent the 3D intensity
distribution of the generated Doughnut (petal) beam in the plane ( —n and the plane
¢ — z, respectively. Fig. 2.4 illustrates that the Doughnut beam is also generated close

to (around) the focal plane (z = f).
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Figure 2.5:  The intensity patterns (a, b, ¢, d) and profiles (al, bl, cl, d1) of the
generated Doughnut (petal) beams, at the plane z = f, for different acoustic wave

number £k, with a Raman-Nath parameter ¢ = 2.3.
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Figure 2.6: 3D intensity distribution in the plane ( — n of the generated Doughnut
(petal) beams, at the plane z = f, for different acoustic wave number £k, with a

Raman-Nath parameter 1) = 2.3.
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Figure 2.7: 3D intensity distribution in the plane ( — z of the generated Doughnut
(petal) beams, at the plane z = f, for different acoustic wave number £k, with a

Raman-Nath parameter ¢ = 2.3.

38



Chapter 2 : Parametric characterization

2.6.3 Doughnut (petal) beams with a flat inside generation

In this section, we present the intensity patterns and profiles of the generated Doughnut
(petal) beam, with a certain flatness degree inside, as a function of the Raman Nath

parameter 1.

Fig. 2.5 shows the intensity patterns (a, b, ¢, d) and their equivalent profiles (al, b1,
cl, d1) of the different generated Doughnut (petal) beam that showing a flatness inside,
at the plane z = f, for different Raman-Nath parameters ¢ (¢» = 10 in Fig. 2.8(a) and
(al), ¥ = 15 in Fig. 2.8(b) and (bl), ¥ = 20 in Fig. 2.8(c) and (cl), v = 25 in
Fig. 2.8(d) and (d1)) with an acoustic wave number k, = 0.5m~'. It can be seen
that the flatness degree inside the generated Doughnut (petal) beam increases as the

Raman-Nath parameter ¢ increases.
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Figure 2.8: The intensity patterns (a, b , ¢, d) and profiles (al, bl, cl, d1) of the
generated Doughnut (petal) beams that showing a flatness inside, at the plane z = f,

for different Raman-Nath parameters 1) with an acoustic wave number k, = 0.5m ™!
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Figure 2.9: 3D intensity distribution in the plane ( — n of the generated Doughnut

(petal) beams that showing a flatness inside, at the plane z = f, for different Raman-

Nath parameters v with an acoustic wave number k, = 0.5m~!.

Figure 2.10: 3D intensity distribution in the plane ( — 2z of the generated Doughnut
(petal) beams that showing a flatness inside, at the plane z = f, for different Raman-

Nath parameters 1 with an acoustic wave number k, = 0.5m~!.
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2.6.4 Analysis of the obtained shapes using the Kurtosis pa-

rameter

We recall that the Kurtosis parameter allows to characterize the flatness of surfaces, it
was used also extensively to characterize laser beam shapes [11, 12]. In this section we
will numerically simulate the results of the equation Eq. (2.30). To relate the obtained
shaped beams (using the acousto-optic cell) to the Kurtosis parameter, we will use as
a reference for a flat top beams, a super Gaussian beam with different orders n. It
is worth noting that more n increases more the super Gaussian becomes a perfectly
flat-topped. The ideal value of the kurtosis parameter that we will take as a reference

is K = 1.81 corresponding to an index of the super Gaussian n = 100.

Fig. (2.11) shows the standard curve we designed to relate the profiles to their
Kurtosis degree. We have considered the case of the Super-Gaussian profile with n =
100 as a reference for flat-topped shape, corresponding to K = 1.8. However, it seems
that more the profile becomes non flat, more the Kurtosis becomes greater than the

standard value.
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Figure 2.11: The Standard curve for the Kurtosis parameter. (left) Profiles of the
super-Gaussian profile for different orders s, here more the order n increases more the
profile becomes a perfect flat-topped. (Right) The Kurtosis curve corresponding to

different profiles, from Gaussian to super-Gaussian n = 100.

Fig. (2.12) presents the evolution of the Kurtosis parameter as a function of the
Raman-Nath parameter in Fig. (2.12)(a) and of the truncated parameter in Fig. (2.12)(b).
It can be seen from Fig. (2.12)(a) that the Kurtosis evolution is divided into two
levels illustrated by the dashed lines, so for small values of Raman Nath parameter
(8 <1 < 33), where K < 1.8, the shape of the generated beam be a Doughnut (petal)
showing a certain degree of flatness inside, then when the Raman Nath parameter in-
creases, a perfect Flat-top shape is obtained and the Kurtosis degree keeps its value
equal to 1.81. In Fig. (2.12)(b), for a Raman-Nath parameter ¢» = 2.3, the kurtosis
degree is > 1.8 and the shape of the obtained beam be a Doughnut (petal).
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Figure 2.12: The Kurtosis parameter evolution (a) as a function of the Raman-Nath
parameter v, for k, = 0.5m~1, and (b) as a function of the acoustic wave number k,,

for ¢ = 2.3.

Fig. (2.13)-Fig. (2.15) show the evolution of the kurtosis parameter throughout the
propagation for different interaction parameters. In each sub-figure, included on the
corner, we present the transverse intensity distribution of the resulting beam after the
interaction at the a specific position (z = 100mm), which corresponds to the focal
of the lens (z = f). From Fig. (2.13)-Fig. (2.15), the beam shaping occurs around
the focal plane of the lens, corresponding position to a minimum value of the kurtosis
parameter. In Fig. (2.13), the kurtosis degree at the focal plane is approximately equal
to 1.8, which corresponds to the super-Gaussian beam, and the generated beam after
the interaction in the transverse direction (z = 100mm) has a Flat-top shape. While,
in Fig. (2.14), the shape of the generated beam for a minimum values of the Kurtosis
degree (1.8 < K < 2.3) transforms to a Doughnut(petal). In Fig. (2.15), the Doughnut

(petal) shape shows a certain degree of flatness inside when K < 1.8.
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Figure 2.14: Kurtosis parameter for Doughnut(petal) beams
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Figure 2.15:  Kurtosis parameter for Doughnut(petal) beams with a flat inside

2.7 Conclusion

In this chapter, we have used the Kurtosis parameter to characterize the transverse
intensity distribution, obtained after the diffraction of a Gaussian beam by an acousto-
optic cell. We have derived the analytical expression that gives the propagation behav-
ior of the interaction between the Gaussian beam and the acousto-optic cell, using the
Kirchhoff-Fresnel integral. In addition, we have described analytically the Kurtosis pa-
rameter K starting from the second and fourth order intensity moments as a function of
the laser beam-acousto-optic cell interaction. Furthermore, we have introduced a new
standard curve for the Kurtosis parameter to characterize the flatness of laser beams.
The obtained results show that for flat shapes the Kurtosis degree is approximately
equal to 1.8, which is agree with that of the super Gaussian beam, while for Doughnut

shapes with a flatness inside, the kurtosis value is < 1.8.
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CHAPTER 3

(GENERATION OF HYPERBOLIC TUNABLE
AIRY-LIKE BEAMS USING A TRUNCATED

ACOUSTO-OPTICAL EFFECT

The true Logic for this world

is the Calculus of Probabilities, which

takes account of the magnitude of the probability
James Clerk Maxwell

3.1 Introduction

N the previous chapter we have studied the diffraction of an input Gaussian beam
Iwith a sinusoidal ultrasound wave propagating in water. This latter creates a sinu-
soidal variation of the refractive index, giving rise to a sinusoidal phase transmittance.
The latter diffracts the input Gaussian beam into many diffraction orders. We have
shown in the previous chapter, that a good choice of the couple parameters of the Gaus-
sian beam and the acoustic-optic cell allowed us to shape an input Gaussian beam into

a flat top or doughnut beam. In this chapter, by considering some asymptotic ap-
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proximation we will show a very interesting beam shaping, where a Gaussian beam is
converted into a tunable Airy beam. The latter belongs to the family of nondiffracting
beams, it propagates for a long distances without spreading. In addition to this fea-
tures of free-diffraction, Airy beam propagates in a curved path, it belongs also to the
family of accelerated beams. Accelerating Airy beams were introduced theoretically in
the framework of quantum mechanics by Berry et all in 1979 [1]. In 2007, Siviloglou
et al proposed Airy beams in the framework of optics, theoretically and observed them
experimentally [2—1]. Since that time, the field of accelerating beams and especially
Airy beams attracted many researchers’ interest. They were studied in different lin-
ear |[5—7] and nonlinear mediums [%, 9], and even in the turbulent atmosphere [10-12].
Many techniques were used for their generation [13-16]. They were applied in differ-
ent fields, in plasma physics [17], guiding particles |[1&], microscopy [19-21], and in
wireless communication |22, 23]. Throughout this chapter we demonstrate analytically
and numerically the shaping of a given Gaussian beam into a tunable Airy-like beam
using an acoustooptic cell. The latter is a glass cell filled with a water, in which an
ultrasound wave propagates and creates a standing sinusoidal variation of the refrac-
tive index, giving rise to a truncated sinusoidal transparent transmittance. The good
choice of the parameters related to the incident Gaussian beam and the acoustooptic
cell allowed us to generate a tunable dynamic Airy-like beam with a hyperbolic path.
Based on the Fresnel Kirchhoff diffraction integral, and the expansion of the truncation
as a weighted sum of Gaussian functions, we demonstrate an analytic expression of the
electric field amplitude, obtained after the diffraction of an incident Gaussian beam
having a waist wy with the truncated sinusoidal transmittance of the acoustooptic cell
having a square aperture width 2a, a wavelength A, and an acousto-optic parameter
1. The obtained analytic expression is a superposition of a weighted sum of shifted
Airy-Complex-Gaussian functions. Based on numerical simulations, we study the ef-
fect of each parameter of the acousto-optic interaction on the behaviour of the resulting

dynamic Airy-like beam.
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3.2 Gaussian laser beam interaction by a truncated

acoustic waves

In this chapter we demonstrate that under some conditions, a Gaussian beam could
be converted into an Airy-like beam, using a truncated sinusoidal phase created by
acoustic effect in a liquid medium (water). Fig. 3.1 shows the schematic description,
of an incident Gaussian beam with a width 2wy. The latter passes through an acoustic
cell, in which a sinusoidal phase mask is created. The spatial extent of the latter is
truncated using a square aperture with 2a as a width, the resulting beam propagates

in a curved path, where its transverse pattern could be described by the Airy function.

<

AR A

.

4
X

Figure 3.1: Interaction of an incident Gaussian beam with a truncated sinusoidal trans-

mittance created par an acoustic wave propagating in a liquid medium (water)

The incident Gaussian beam is described by the electric field amplitude Ej in 1-D

Cartesian coordinates as follows

@]
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Where; wy is the Gaussian beam waist at the Acoustic cell plane, and the amplitude

is normalized A = 1.

In the other hand, the acoustic cell is filled by a liquid (water) and excited by a standing
acoustic wave, along the x axis, normal to the incident Gaussian beam. The resulting

acoustic wave pressure is described by a sinusoidal variation as follows:

pr (z,t) = po + Ap [sin (k,z)cos(Q)], (3.2)

Here Fy; is the average acoustic pressure, Ap; is the acoustic pressure amplitude, k;

acoustic wave number and € is the angular frequency.

The sinusoidal variation of the pressure on water, creates a proportional elastic wave,

giving rise to a sinusoidal variation of the refractive index as follows

ny (z,t) = ng + An [sin (k,z).cos(Qt)] (3.3)

With ng is water refractive index, An is the refractive index amplitude owing to the

acoustic pressure.

The refractive index variation is considered as a thin progressive sinusoidal phase

grating given by

T (x,t) = exp [—ikL (ng + An.sin (k,x).cos(Qt))] , (3.4)

Where L is the acoustic cell length, and £ is the light wave number.
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By choosing wy < A,, and considering the relative location of the incident Gaussian
beam laying on the sinusoidal phase nodes, (generated by the piezoelectric transducer),
the latter can be approximated by a cubic phase, using Taylor expansion of the sine

function near zero (sin(x) ~ x — 2%/3!). The phase transmittance function becomes

T (x,t) =exp [—z’kL (no + An.cos (Qt) (kaa: - @) >] : (3.5)

To evaluate the electric field amplitude of an incident Gaussian beam diffracted by a
truncated progressive sinusoidal transmittance, we use the Fresnel-Kirchhoff diffraction

integral given as follows|[24]

E (¢ t) = %exp (—ikLng) exp (z’%@)

x /_ + exp [—w (m _ <ka6x)3> cos(Qt) | exp [— (wioﬂ

k k
X exp (i—x2 - i—(x) dzx. (3.6)
2z z

With, ¢ = kLAn is the Raman-Nath parameter.

After using a lens with a focal length f the previous integral becomes

E((,t) = %exp (—tkLng) exp (i%@)

a 3 2
X /_+ exp [—w (kax — @) cos(Qt) | exp [— <w£0> ]
X exp (22—12@2 — iﬁmj - Zggx) dx. (3.7)

2f
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Since the bounded integral of Eq. (3.7) has no analytical solution, we overcome this
problem by expanding the aperture into a finite sum of weighted Gaussian function

given as

N
B,
= ZAnexp (——23:2) , (3.8)
n=1 a

Here A, and B,, are complex coefficients that could be calculated using an optimization

method like the Root Square Error method |25, 20]

By substituting Eq. (3.8) into Eq. (3.7) and ignoring all phase factors
(exp (—ikz)exp [—ikLng| exp (—z’%@)) not concerned by the integration, we obtain

=z

E((,t) = Wexp( ikLng) exp ( ) ZA”

g /_:O o (—%:ﬁ) exp [—i (kax - (kag)g) exp [— (%)2]

k k k
X exp (—zﬁm —|—z—x —i— Cx) z (3.9)

Using the variable change h = < ¥ wc%(m)ko x , and after some algebra the integral

of Eq. (3.9) is written in a more simplified form as follows

exp (—ikz) k al oo h3
E((t) = Texp (—tkLng) exp (iif) ZA"/ exp [2 (? +gh® + oh)l dh

Where
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1 Bp s Z
(-B-£(-2) _ (onskg
q= 5 , 0=

< 3 wco;(Qt) k, < 3 wcoz(ﬂt) ka)

The integral of Eq. (3.10) is a famous integral known as Airy integral given by [27]
+o0 h3
/ exp [z <§+ah2+bh>} dh = 2mei®(39°0) 4 (b—a?). (3.11)

Applying the integral formula of Eq. (3.11), the expression of the propagating electric

field amplitude takes its final form as follows

E(Ct) = %e}cp( ikLng) exp ( ) Z A, exp [zq ( - 0)] Ai (0 — ¢?)
(3.12)

N.B : as the acoustic field propagates in 2D dimensions (,n we generalize our

development to the y axis as follows:

E(Cn,t) = E(C) x E(n) (3.13)

3.3 Numerical simulation

In this section we study in detail the result shown by Eq. (3.12). Firstly we began
by some numerical examples to check the analytical results of Eq. (3.12) with the

numerical integral (numerical results) using a standing sinusoidal phase Eq. (3.4).
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3.3.1 Acoustic wavelength parameter effect on the Airy beam
intensity distribution: analytical versus numerical simu-

lations

In this part we consider some numerical simulations, to check the validity of our analyt-
ical modeling versus the numerical calculation of the diffraction integral. We began by
studying the effect of the acoustic wavelength on the profile of the resulting Airy beams.
And we have fixed for the numerical simulations the following parameters; beam waist
wo = Imm, back focal length of the used lens f = 200mm, L = 20mm, ¥ = 20 which

corresponds to An = 107* | and different acoustic wavelengths (\, = 2, 3,4 and 5mm).

Figure 3.2 shows the different profiles of the generated Airy beams corresponding
to different acoustic wavelengths (A, = 2 — 3 — 4 — 5mm). The shown Airy-like beams
profiles obtained using a cubic phase overlap with those calculated using standing

sinusoidal phase.
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Figure 3.2: 1D Airy-beams using cubic and sinusoidal phases for different acoustic
wavelengths: (a) A, = 2mm, (b) A\, = 3mm, (c) A\, = 4mm, (d) A, = 5mm. in the z
plan: z = f = 200mm, Qt = 0 and An = 1074

the obtained profiles by adopting a standing sinusoidal phase and a cubic phase
seems overlapping, except a small variation in the amplitude without any significance

influence on the expected results, this justify the approximation made.

The corresponding 2D longitudinal Airy beams propagation as a function of the
applied acoustic wavelength are shown in Fig. 3.3. It is clear that the resulting Airy
beams follow a curved trajectory, which is considerable when the ratio between the
beam width and the acoustic wavelength decreases. By increasing the acoustic wave-

length, the trajectory becomes less curved along the propagation path.

57



Chapter 3 : Generation of hyperbolic tunable Airy-like beams using a truncated
acousto-optical effect

(b)

Figure 3.3: longitudinal Airy-beams in ({, z) plan for different acoustic wavelengths:
(a) Ag = 2mm, (b) A\, = 3mm, (c) A\, = 4mm, (d) A\, = 5mm. for a beam width of

2wy = Imm

To have a clear idea in the transverse plan (¢,n) we have done the following Figure
3.4; where the 2D transverse Airy beams at the back focal lens plane (z = f = 200mm)

are represented for different acoustic wavelengths.
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0.1 0.2 0.3 04 0.5 0.05 0.1 015 02 025 03 035 04 045

Figure 3.4: 2D Airy-beams ( analytical results) for different acoustic wavelengths:
(a) Ao = 2mm, (b) A\, = 3mm, (c) \y, = 4mm, (d) A\, = bmm. in the z plan:
z = f=200mm, Qt =0 and An = 10~%.

It is to notice that increasing the acoustic wavelength leads to confine the beam

energy on the central peak.
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3.3.2 Effect of the coefficients truncation on the generated beams

In previous section (section 3.2) we have shown that the square aperture can be ap-
proximated to a finite sum of weighted Gaussian functions as represented in Eq. (3.8).
So, we will study in this part the effect of the number of coefficient A, and B, on
the generated beams. Fig. 3.5, Fig. 3.6 , Fig. 3.7 and Fig. 3.8 represent the transverse
intensity diffracted for different coefficients A, , B, and for acoustic wavelengths

taking the values of 2, 3, 4 and 5mm .
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Figure 3.5: 1D Airy-beams ( analytical results) for each coefficient A, and B, (a):
n=1, (b): n=2, (c¢): n=3, (d): n=4, (e): n=5, (f): n=6, (g): n=7, (h): n=8, (i):
n=9, (j): n=10. (k): represents the whole coefficients varying from n = 1 to 10. (1):
represents the sum of the coefficients varying from n = 1 to 10. Acoustic wavelength
Ao = 2mm, representation plan z = f = 200mm, Qt = 0 and An = 10~
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Figure 3.6: 1D Airy-beams ( analytical results) for each coefficient A,, and B,, (a):
n=1, (b): n=2, (¢): n=3, (d): n=4, (e): n=5, (f): n=6, (g):

n="7, (h): n=8, (i):

n=9, (j): n=10. (k): represents the whole coefficients varying from n = 1 to 10. (1):

represents the sum of the coefficients varying from n = 1 to 10. Acoustic wavelength

A\, = 3mm, representation plan z = f = 200mm, Qt = 0 and An = 1074,
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1D Airy-beams ( analytical results) for each coefficient A, and B, (a):

n=4, (e):

n=>5, (f):

n=6, (g):

n=7, (h): n=8, (i):

n=9, (j): n=10. (k): represents the whole coefficients varying from n = 1 to 10. (1):

represents the sum of the coefficients varying from n = 1 to 10. Acoustic wavelength

Ao = 4mm, representation plan z = f = 200mm, Qt = 0 and An = 1074
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Figure 3.8: 1D Airy-beams ( analytical results) for each coefficient A, and B, (a):
n=1, (b): n=2, (c): n=3, (d): n=4, (e¢): n=5, (f): n=6, (g): n=7, (h): n=8, (i):
n=9, (j): n=10. (k): represents the whole coefficients varying from n = 1 to 10. (1):
represents the sum of the coefficients varying from n = 1 to 10.\, = 5mm is the acoustic

wavelength. The representation plan is z = f = 200mm, Qt = 0 and An = 107
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From the above figures (Fig. 3.5 to Fig. 3.8), it is obvious that the contribution of
the first and the third term in the summation are the most important, the remain terms
are relatively weak. In addition, the intensities’ zeroes of the different Airy-beams of
each coefficient are almost the same, as it can be seen from the cited figures. These
results help us to consider that the summation of many Airy-beams approximately as

a single Airy-beam, which is especially true from a practical side of view.

3.3.3 Effect of the Expanding coefficients on the beam trajec-

tory path as a function of acoustic wavelength

To study the trajectory of the resulting beam, which can be considered as a sum of
many weighted and shifted Airy beams, we have plotted numerically the Airy beam
paths corresponding to each couple of coefficient (A, and B,). Fig. 3.6 shows that
all paths corresponding to all coefficient (A, and B,) overlap, and the whole beams
propagates following only one path. The latter can be expressed analytically, by using

some considerations as eliminated the imaginary part and by putting wy = oo.
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Figure 3.9: Airy beam paths ( numerical results) corresponding to different coefficients
A, and B,; (a): A, = 2mm, (b): A\, = 3mm, (¢): A\, = 4mm and (d): A\, = bmm.
Qt =0 and An = 1074
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Figure 3.10: Airy beam paths ( analytical and numerical results) ; (a): A\, = 2mm,

(b): Ao = 3mm, (c): Ay = 4mm and (d): A\, = 5mm. Qt =0 and An = 107",

3.3.4 The truncation effect on the path trajectory of the gen-

erated Airy beams

In this section we will demonstrate numerically the effect of the truncation (by an
aperture or slit) on the path trajectory of the generated Airy beams. Figure 3.11(a-
d) shows the obtained trajectories for different truncation widths (from a = 0.4mm
to a = 0.8mm) according to different acoustic wavelengths \, = 2mm, A\, = 3mm,

Ag = 4dmm and A\, = dmm.
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Figure 3.11: Airy beam paths ( numerical results) corresponding to different truncated
values a, wavelength (a): A\, = 2mm, (b): A\, = 3mm, (¢): A, = 4mm and (d):

Ao = 5mm. Qt =0 and An = 1074

It can be seen from the obtained curves that the aperture doesn’t affect really the

Wo

path trajectory. This can be explained physically as follows; as the ratio o

(ratio
between the Gaussian beam waist and the acoustic wavelengths) is smaller than the
critical value which is 0.2 , so even we truncate the Gaussian beam, we are always
in the region where the approximation (Sine function to cubic phase function) exists

always, and consequently the output beam is an Airy-like beam. Small fluctuations in

the near field due to diffraction are observed which disappear in the far-filed.
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3.3.5 Effect of the refractive index increment An on the gen-

erated Airy beams

In this part we study the effect of the refractive index increment An on the generated
Airy beam profiles and there trajectories along the propagation direction z. Fig. 3.12
shows the results of a numerical simulation, where the 2D transverse Airy beam distri-
bution was presented within Fig. 3.12(a) to Fig. 3.12(c), and the 2D longitudinal Airy
beam distribution from Fig. 3.12(d) to Fig. 3.12(f). As well, we present the 1D profile
and the path trajectory respectively in Fig. 3.12(g) and Fig. 3.12(h).
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Figure 3.12: 2D transverse Airy beams in (¢,n) plan; (a): An = 10739 (b): An =
107*% and (c): An = 107*!, 2D longitudinal Airy beams in (z,¢) plan; (d): An =
10739, (e): An =10"*% and (f): An =10"*!, (g): 1D profile Airy beams for different
An in the z plan z = f = 200m , (h): Airy beam path for different An. A\, = 2mm

It seems clear, from Fig. 3.12(g), that the intensities of the Airy beams is increased
and its distribution is shifted to left by decreasing the An parameter. However,

the path trajectory became more curved by increasing An parameter, according to
Fig. 3.12(h).

For this study we remark that the Airy beams are shifted towards x and y
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directions as shown in the above figure Fig. 3.12(a)-Fig. 3.12(c) and Fig. 3.12(g). On
the other hand the effect of An on the path trajectory is important, where the Airy

beams are more curved when the An increases as shown in Fig. 3.12(d)-Fig. 3.12(f)

and Fig. 3.12(h).

3.3.6 Effect of the time evolution of the ultrasound wave: the

dynamic study

In this section, we exploit the dynamics property of the acousto-optic cell, where, we

we study some additional cases as a function of the time evolution. Three values of €t

<%’ %’

7) are chosen. Fig 3.13(a-c) shows the 2D transverse intensity of the obtained
Airy beams. It seems clear that, when 7 < 2t < 7, we are in the anti-symmetric case
of the Airy beam and the intensity distribution becomes inverted. Fig 3.13(d-f) shows
the 2D longitudinal Airy beams, while Fig. 3.13(h) shows the 1D path trajectory. It
can be observed that the phase (due to time evolution) has a direct effect on the path
trajectory. When, 0 < Qt < 7 the path is more curved if Qt is smaller and when
7 < Qt < 7 greater is the phase, more curved is the beam. Fig. 3.13(g) shows the
intensity profile for different time phases, it can be seen that the profile is shifted with

a decrease in intensity if we move from 0 to § and from 7 to 5, where the profile

direction becomes inverted after 5
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Figure 3.13: (a)-(b): 2D transverse Airy and (d)-(f): 2D longitudinal Airy beam beams
for different time positions parameter (2t = w\4); (2t = 37\ 4); (U = 7) respectively,
(g): 1D profile Airy beams and (h): Airy beam path for different times position (Qt = 0)
(Qt =7\ 4); (U =37\4); (2 = 7) respectively.

3.4 Conclusion

In summary, Airy-like beam through truncated acousto-optic cell was successfully gen-

erated. The resulted Airy beams are tunable with time characteristics. Which are
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dependent on the acoustic parameters; Raman-Nath parameter and acoustic wave-
length. The ideal intensity distribution was obtained in the focal plan. According to
2D energy distribution; higher is the An factor, higher is the curvature of the energy
flux. However, larger is the acoustic wavelength, lower is the curvature of the energy.
Further, Airy beam intensity shifted to right in transverse plane when the An param-
eter increases with decreasing in the maxima intensity . In the other hand, Larger is
the acoustic wavelength, better is the system replay. Behinds, the intensity of maxima
and specifically the main maximum increases and shifted to left in transverse plane by
the acoustic frequency decreasing. Furthermore, hyperbolic trajectory has been suc-
cessfully observed. In final step, temporal dynamic of the spatial structure was added,
which is the main advantage for the acousto-optic technique. In time instant corre-
sponding to the phase (2t = m) the trajectory inverses its direction to the other side

with perfect symmetric reflection of the beam distribution corresponding (2t = 0) .
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CHAPTER 4

(GENERATION OF COMBINED AIRY

BEAMS USING ACOUSTO-OPTIC CELL

Whosoever studies works of science must,
if he wants to find the truth,
transform himself into a critic of everything he reads

Hasan Ibn al-Haytham

4.1 Introduction

N the previous chapter, we have demonstrated analytically and numerically, under
Isome asymptotic considerations, that an input Gaussian beam could be transformed
into and interesting accelerated beams, which resembles to a single Airy-like beam. In
this chapter we will extend the previous study to generate more complex Airy beams.
We will show that under some practical considerations (the gaussian beam width is
smaller enough than the ultrasound wavelength), that a couple of Gaussian beams could
be transformed into a Dual-Airy beam (symmetric and anti-symmetric). In addition,
we will demonstrate also, that a four symmetric Gaussian beams could be converted

into a Quad-Airy beam under its two structures (Symmetric and anti-symmetric).
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Throughout this chapter, we will demonstrate analytical expressions for the transverse
intensities as well as for the path trajectories. All analytical expressions are validated
using many numerical simulations. We use these simulations to demonstrate the effect
of the acousto-optics interaction parameters (the Gaussian beam width, the acous-
tic wavelength, and the acoustic pressure or the Bessel parameter) on the generated
Airy beams spatial properties such as; the curvature (acceleration), the launched angel

(starting point), and the non diffracting range.

4.2 Theory

In this section, we provide some basics of the Gaussian beam diffraction by an ultrasonic
standing wave. The ultrasonic wave propagating in a transparent medium (water)
generates an elastic wave (wave pressure), the latter creates a variation of the liquid
refractive index, which is proportional to the initial acoustic wave. The expression of

the refractive index modulated by a standing ultrasonic wave is given as follows [1]

nr (x,t) = ng + An [sin (k,z) .cos ()], (4.1)

here ng represents the refractive index of the used liquid medium (water), An is the
refractive index increment due to the acoustic pressure generated by the piezo-electric
transducer on the liquid medium, k, is the acoustic wave number in the liquid, x is
the transverse spatial coordinate and 2 stays for the angular frequency. The refractive
index given by Eq. (4.1) gives rise to a sinusoidal transmittance function, which is
equivalent to a diffractive optical phase element (DOPE). By changing the different
parameters of this latter, we will obtain a large interesting family of accelerated Airy

beams.
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In this chapter, the idea we used to generate Airy beams from Gaussian beams
diffracted by a standing ultrasonic wave, is based on two considerations; Firstly, us-
ing the Airy function definition, Ai(t) = [explat — 2*/3]dx, (The integral equation
expresses a Fourier transform of a cubic phase). Secondly, using the asymptotic expres-
sion of the sinusoidal function near zero (using the Taylor series expansion of the sine
function near zero), where sin(z) ~ (z — 2%/3!). Based on these two considerations,

the refractive index of the medium created by the ultrasonic wave becomes

nr (z,t) =ng + An

(kax — @) cos (Qt)] : (4.2)

Consequently, the phase transmittance is written as

T (x,t) = exp [—iklno — 1 <kax - (kan)3> cos(Q2t) |, (4.3)

With ¢ = klAn is the Raman-Nath Parameter, k£ is the optical wave number, and [
is the interaction length on the acousto-optic cell. In present study, we consider the
case where the ultrasonic wave length is larger than the waist of the incident Gaussian
laser beam wy < A, (This is the main condition to consider the approximation of a sine

function with a cubic term function).

Figure 4.1 shows the schematic layout for the Airy beams family generation. It is to
notice, that the kind of the generated Airy beam depends on the number and the posi-
tions of input beams. To generate a Dual-Airy beam; two input symmetrically shifted
Gauss beams are used. To generate a Quad-Airy beam; Four input symmetrically

shifted Gauss beams are used (positioned on the vertices of a square or a lozenge).

79



Chapter 4 : Generation of combined Airy beams using acousto-optic cell

0

z=20 7=40 z=60 z=190

=0 =30 2=40 =50 2=200

Figure 4.1: Optical layout showing the conversion of input Gaussian beams into com-

bined Airy beam propagating along the z-axis.(a) Dual-Airy beam (b) Quad airy beam.

4.3 The diffraction of a Gaussian beam with a stand-

ing acoustic wave: Mathematical modelling

This section is dedicated to the modeling of the diffraction and propagation of some
input Gaussian beams converted into some combined Airy beams using the cited acous-
tooptics cell. As it is well known, the diffraction and propagation of any optical beam
could be described by the Fresnel-Kirchhoff diffraction integral, its expression in the

2-D Cartesian grid is given as follows [2]
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E(Qn&)z&/j/:@ﬂx?y)

21

X exp (—z%({ —z)’ + i)\z (n— y)2> dxdy (4.4)

By considering the input Gaussian beam and the transmittance function created by

the acoustic wave, the above Fresnel-Kirchhoff integral becomes [2]

B(Gns) = B Bln.2) = P oy (i (2 P))

+oo . k ) k}
Eo(x)T(x,t)exp —i5-T +i—Cx | dex
- 2 z

[e.9]

+o0 Tk k
/ Eo(y)T (y,t)exp (—Zng + Z;ny) dy, (4.5)

(e 9]

Here Fy and E are the amplitudes for input and output beams respectively, and (x,y) and (¢, n)

stand for the coordinates of the input and output planes.

It is to notice that the present work is a plan for future experiments, so, we will
consider the experimental conditions where the Gaussian beam size is small enough
comparing to the ultrasonic wave wavelength. These considerations allow us to avoid
truncated integrals, which becomes —oo to +o00 allowing the analytical determination
of the generated Airy beams spatial properties, such as the transverse intensity as well

as the longitudinal one (on-axis intensity) .

4.3.1 Transformation of a Gaussian beam into an Airy beam

In this section, we demonstrate analytically how input Gaussian beams are converted

into some combined Airy beams using a dynamic sinusoidal phase mask (the phase
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mask is created by the propagation of the ultrasound wave on water). We began by
the simplest case, we use 1-D counterpart of 2-D Airy beam, and applying the 1-D
diffraction integral of Eq. (4.5), the 1-D electric field of the output beam is given by

+oo x 3
E (¢ 2,t) = \/zl)\_z/ exp [(—iklng — i) (k’ax - (ka6 ) > cos(Qt))

2
2

Using the scaling variable h = kq v/ wc%(m)x and ignoring all phase factors not concerned
by the integration, Eq. (4.6) is reduced to the canonical Airy integral

E(( z,t) = \/;_Z /:o exp [z (%3 + ah® + (g¢ — o) h)} dh, (4.7)

Where

1 s

RS o 2m/A\z __ cos(Qt)

2 y 4 y O :
cos(Q 5 3/ 1pcos(2t) 3/ pcos(2t)
(w 2( t))sk?l ,/72 ka 1/72

Using the following integral formula [3]
+oo h3 )
/ exp {z (; +ah? + bh)} dh = 2 (3 0) Ai (b — a?) . (4.8)

After some algebra, we find the electric field expression of the generated 1-D Airy

beam, in the (¢, z) plane as follows

E(( zt) =

exp {ia (§a2 — (q¢ — 0))} Ai ((q¢ —0) — @) . (4.9)

1
ViAz
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To check the validity of the approximations ((sin(z) ~ (x — 23/6) and the infinite
integral), we used some simulations to compare the analytical results given by Eq. (4.9)
and those solved numerically without any approximation given by Eq. (4.6), the results
are shown in Fig. 4.2. The intensities’ profiles are almost in perfect overlap. This result
ensures us to continue using the same concept throughout the paper to generate all

varieties of combined Airy beams.

|—sinusoidal phase (.5 H—sinusoidal phase
0.6 —cubic phase n (a) —cubic phase (b)
£ 0.4
=S
% 0.2
=0.2 '
n 0.1 n
0 0
-15-1-050 05 1 15 -1.5-1-050 05 1 1.5
—sinusoidal phase —sinusoidal phase
0.4 —cubic phase (C) 0.3 .—cubic phase (d)
— .
o3
=y 0.2}
é 0.2
q -

0 0
15-1-050 05 1 15 -1.5-1-050 05 1 15
¢ [mm] ¢ [mm]

Figure 4.2: (a)..(d): Airy beams for different z positions; z = 40mm, z = 50mm, z =

60mm, z = 7T0mm respectively at t = 0.

After showing the 1-D counterpart (Ai(z)) of the 2-D Airy beam (Ai(z)Ai(y)), we
extend the previous development to the 2-D case. To generate 2-D Airy beams, we
have to choose the meridian plane, where the 2-D Airy beam would propagate. By

orienting the 2-D phase transmittance as shown in Fig. 4.3, the generated Airy beam
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can propagate in 1-D geometry as shown in Fig. 4.3(a), or in 2-D square geometry as
shown in Fig. 4.3(b), or in 2-D lozenge geometry as shown in Fig. 4.3(c). Furthermore,
it is to notice that the phase shown in Fig. 4.3(b) is obtained by crossing two phases
of Fig. 4.3(a), while the phase shown in Fig. 4.3(c) is obtained by rotating the phase
shown in Fig. 4.3(b) by 45°.

Figure 4.3: The periodic cubic phase transmittance used for the generation of all
combined Airy beams: (a) 1-D geometry, (b) 2-D square geometry, and (c) 2-D lozenge

geometry.

To generate the 2-D Airy beam we used the phase shown in Fig. 4.3(b). First,
we consider the 2-D input Gaussian beam Ey(z,y) = Eo(z)Eo(y), its field takes the

following expression

By (2,) = exp [— (%)2] exp [— <%>1 . (4.10)

Here the shifts mA, in x and y coordinates allow us to locate the input Gaussian

beam where we want in the first quadrant.

To calculate the amplitude Egquare(C,n,2,t) = E((,2,t)E(n, 2,t) of the generated
2-D Airy beam, we calculate separately E((, z,t) and FE(n, z,t) following the same steps

used before for 1-D Airy beam. Here we used the variable change:
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h = ko3/(¢eos(Qt)/2)x and g = k,/(cos(2t)/2)y. The two integrals we used to

calculate F((, z,t) and E(n, z,t) are respectively

1 +o0 ' h3 )
E(( z,t) = m/ exp [z <§ +a1h® + (¢C + 01) h)} dh, (4.11)

1 +o0o . 3
E(n, zt) = \/W/ exp {z (“% +a1g” + (qn+01)g)} dg, (4.12)

wcos(ﬂt)3kamak’a2 1

6 w2 Az
Where a; = 0

3 [geos@n) .\ ’
(V=)

and

3kq (kamAg)> A
¥3ka ( am a) _22::2‘1 —1pcos(Qt)kq
01 = =

(7=)

Using the integral of Eq. (4.8), the expression of 2-D Airy beam amplitude in the

square geometry is given by

- 1 (2 |
Eﬁ;uare (Cﬂ?, Z, t) = %GXP |:Za1 (ga% — (qg — 01)):| Ai (qg — 01 — CL%)

X exp [z’al (gaf — (qn — ol)ﬂ Ai(qgn—o1 —a}). (4.13)

The expression of the generated 2-D Airy beam amplitude given by Eq. (4.13),
corresponds to an Airy beam generated by the geometry of Fig. 4.3(b). The initial

beam position at the phase transmittance is located in the first quadrant highlighted by
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the yellow dashed square. We mention that it is possible to deduce without calculation,
the expression of the 2-D Airy beam corresponding to the other quadrants (2"¢, 37, and
4. Moreover, since the optical components we used here have cylindrical symmetry,
the diffraction integrals are invariant under rotations. Consequently, the 2-D Airy beam
amplitude generated by the phase of Fig. 4.3(c), is obtained by rotating the coordinate
system by 45°, where ¢ = (1/v/2)(n — ¢), and n = (1/v/2)(n + ¢). The final expression

of 2-D Airy beam amplitude in the lozenge geometry is

1 ,
Efozzenge (Ca n, 2, t) = %eXP |:ZCL1 (_EO] C + Cll + 01>:|

x Ai (%(n—g) —o —af) exp[m1 (—\%(Hn) +2d] +ol>]
><A( (c+n)—ol—a§). (4.14)

4.3.2 Transformation of two Gaussian beams into a Dual-Airy

-

beam

After generating the simplest case of 2-D Airy-like beams, we use two input symmetric
Gaussian beams, which are converted into two types of Dual-Airy beams; the symmetric
and anti-symmetric one. The mathematics behind this conversion could be deduced
by symmetry of Eqs. (4.13-4.14) with respect to the origin (z,y) = (0,0) axis. The
amplitude of the input field is given by

o) a2
By (2. ) —exp _(M) _<$+_m> N
- - (4.15)

o B Y —m, 2_ T —m, 2
P Wo Wo
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Each Gaussian beam of Eq. (4.15) gives rise to 2-D Airy beam as described by the
Eq. (4.13), without repeating the calculation from scratch, we deduce the 2-D Airy

beam amplitude from Eq. (4.13), it is given in the square geometry as

: 1 : 2 ,
quﬂil (C,m,2,t) = %exp [zal <—QC + 01 + gaf)} Ai (q( — 0] — a%)
2
X exp {ial (—qn +o1+ ga%)} At <q77 — 0y — a%)
1 | 2 0\ . )
+ S0P |iar { ¢C+ o1+ gay )| Ad (—=q¢ — 01 — ai)

2
X exp {ml (qn + 01 + gcﬁ)} Ai(—qn— o1 —a}). (4.16)

The generated Dual-Airy beam in the Lozenge geometry could also be deduced
from Eq. (4.14) without calculation using the symmetry with respect to the y-axis, the
generated 2-D Dual-Airy beam amplitude is given by

, 1 , 2 .
BRE (G t) = e (—atr = O) 4o+ 50 ) [ 4i (gt = ) = o~ )

X exp [ial (—q(n +¢) + o1+ ;a?)} Ai (q(n+¢) — o1 — ai)
+ %exp [ial <Q(?7 +¢)+o1+ 2(1%)} Ai(q(—=n+¢) — o1 —a3})

Az 3

X exp lml <q(n — () 4o+ ga%)] Ai(g(=n+¢) —o1—af). (4.17)

4.3.3 Transformation of four Gaussian beams into a Quad-Airy

beam

In this section, the input beam is composed of four symmetric Gaussian beams posi-

tioned on the vertices of a square or a lozenge. This latter depends on the geometry of
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the Quad-Airy beam we want to generate. As an example we have chosen the squared
geometry shown in Fig. 4.3(b). The input Gaussian beams are shifted symmetrically
with respect to the centre of the Quad-Airy beam, the amplitude of the input beam is

written as

T — mA\,
o) - | (2

) (=)
() ()
)5

- (4.18)
(x—m)\a
fexp |- [ —22

Without any further calculations, using just Eq. (4.14) and by symmetry, we can
determine the four amplitude components of the generated Quad-Airy beam is a square

geometry, given by
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ua 1
quuacf”e (C>7772’t> = 3\

N

2
x exp|ta; | —qC + o1 + —a%)} Al (q( — 01 — a%)

3

X exp |taq

(
(

2 :
—qn + o1 + ga%)} Ai (qn — 01 — a})

1
Az

+

°3

2

]Az’ (—q( — 0] — a%)

X exp {z’al (—l—qC +o0,+ gal)
X exp {ial (—i—qn + 01 + %a%)] At (—qn — 01 — a%)
L]
Vidz
X exp {z’al (qC + 01 + %a%)} Ai (—q¢ — 01 — a)

2
X exp {ial (—qn + 01 + gaf)} Ai (qn — 01 — a})

1
+ -
Vidz
2
X exp {ml (—q( + 01 + gaf)} Ai (¢¢ — 01 — a})

2
X exp {ial (qn + o1+ gaf)] Ai(—qn—o1 —a}). (4.19)

4.4 Analytical expression of the path trajectory of

generated Airy beams

Determination of the Airy beams path trajectory is usually obtained by making the
argument of the Airy function equals to its local maxima. In this study we follow this
concept to determine the generated Airy beams trajectory. It is worth noting that
the trajectory is the same for all combined Airy beams (Single, Dual- and Quad-Airy

beams). For Dual-Airy beams, we just combine symmetrically the paths obtained in a
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single Airy beam. For Quad-Airy beams, we combine the paths of two crossed Dual-
Airy beams. For that reason, we limit the study for only one case to show the curved
(accelerated) path of the different generated Airy beams. Taking the argument of Airy

function given in Eq. (4.9), we can write

(e —ur) (-H-%)

(k-9 (F-%)

) ()

= Ym,

(4.20)

= Ym,

where 1, is the local maxima of the Airy function. After some algebra and us-
ing some approximations, we obtained the coordinates of Airy beam paths along the
propagation axis z for the general case of two symmetric (Anti-symmetric) Dual-Airy

beams. They are given by

P

Ak, ym\s/j/\zk'a

¢ = 21 n 2 n T
27

—mA
2 3 ay
T Ak, (4.21)
(U
ztbky ym€/iAZka
C2:_ Zw - = - 7T3 +m>\aa
2m 2T Azk,

where mJ, is the transverse shift.
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4.5 Results and discussion

After modeling the interaction of one, two and four Gaussian beams with 2-D sinusoidal
phase transmittance, the latter resulting from the propagation of crossed 2-D ultrasonic
waves in water. We continue our investigation by simulating the different results pre-
sented in the previous section. We used a wavelength A = 633nm, a Gaussian beam
width wy = 0.1mm, an acoustic wavelength A\, = 0.5mm, a cell width [ = 10mm,
Ym = —1.01879 and m = 1.25. We start our numerical simulation by a single-Airy

beam, Dual-Airy beam and we finish by Quad-Airy beam.

4.5.1 Generated single-Airy beam

Based on the analytical models developed in the previous section, we simulated our
results for an input 2-D Gaussian beam converted into an Airy-like beam, using a 2-D

transmittance shown in Fig. 4.3(b).
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Figure 4.4: 2-D accelerated Airy-like beam: for different z positions; (a) z = 20mm,
(b) z = 30mm, (c) z = 40mm, (d) z = 50mm respectively at ¢t = 0. (e): longitudinal

accelerated Airy-like beam. A\, = 0.5mm; w, = 0.1mm.

The first results are shown in Fig. 4.4, where in the first row we presented cross-
section of density plots at different propagation planes z. The obtained 2-D Airy beam
structure is perfect. In the second row, the Airy beam propagation in the ({ — z) plane
is shown. The generated Airy beam follows a curved path. It is worth noting that
the shift appearing in the direction of the two axis ¢ and z, result from the shift that
appears in the transmittance sine function, when the latter is expanded near zero (x
is an extra term added to the cubic phase). For that reason, the generated Airy beam
does not appear in the initial plane (z = 0) of the input Gaussian beam. The latter

shifts by a given amount which depends on the transmittance parameters.
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4.5.2 Generated Dual-Airy beam

In this section we extend our numerical simulations, we converted two input Gaussian
beams into 2-D Dual-Airy beam with lozenge geometry, using the transmittance shown

in Fig. 4.3(c).

112 14 16 02 04 06 08 1 12 14 16 18 02 04 06 08 1 12 14 16 18

Figure 4.5: 2-D Dual-Airy beams in ((, z) plane for different time instants: (a) ¢t = 0,
(b) t = 1/16fa, (c) t = 1/8fa, (d) t = 3/16fa, (e) t = 5/16fa, (f) ¢t = 3/8fa, (g)
t=7/16f,, (h) ¢ = 1/2f,.

In Fig. 4.5 we show density plots in (¢ — z) plane at different times ¢. The Dual-
Airy beam evolves from symmetric structures as shown in Fig. 4.5(a)-4.5(d) into anti-
symmetric ones as shown in Fig. 4.5(e)-4.5(h). In addition, the symmetric Dual-Airy
beams exhibit a dynamic auto-focusing giving birth to interference patterns evolving

with time.
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ARRR/RRYS

Figure 4.6: (a-h): Dual-Airy beams for different z positions; z = 20mm,z =

40mm, z = d0mm,z = 60mm,z = 80mm,z = 100mm,z = 150mm,z = 190mm

respectively at ¢t = 0.
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Figure 4.7:  (a-h): Dual-Airy beams for different z positions; z = 40mm,z =

50mm,z = 60mm,z = 80mm,z = 120mm, z = 140mm, 2z = 170mm,z = 190mm

respectively at t = 1/16f.
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Figure 4.8: (a-h): Dual-Airy beams for different z positions; z = 50mm,z =

60mm, z = 7T0mm,z = 80mm,z = 130mm, z = 180mm, 2z = 210mm,z = 240mm

respectively at t = 1/8f.
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QALY

Figure 4.9:  (a-h): Dual-Airy beams for different z positions; z = 70mm,z =

90mm, z = 110mm, z = 120mm, z = 130mm, z = 250mm, z = 400mm, z = 500mm

respectively at t = 3/16f.

L L L

Figure 4.10:  (a-h): Dual-Airy beams for different z positions; z = 20mm,z =
30mm, z = 40mm, z = 50mm,z = 60mm,z = 70mm,z = 80mm,z = 90mm re-

spectively at t = 7.

In Fig. 4.6 we show density plots at the cross-section of a 2-D Dual-Airy beam for
a fixed time and different z planes. During their propagation, they evolve from an
anti-symmetric structure as shown in Fig. 4.6(a)-4.6(c), into auto-focusing as shown
in Fig. 4.6(d), and then it inverts its structure to a symmetric one, as illustrated in
Fig. 4.6(e)-4.6(h). For a fixed z = 60mm plane and by varying time, ¢ Fig. 4.11 shows
the generated 2-D Airy beam cross-section density plots, its structure evolves during

time evolution from anti-symmetric to symmetric patterns.
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Figure 4.11:  Dynamic Dual-Airy beams for different time instants; (a)-(h): ¢t = 0,
= 1/16f,, t = 1/8f,, t = 3/16f,, t = 5/16f,, t = 3/8f,, t = T/16f,, t = 1/2f,

respectively at z = 60mm.

4.5.3 Generated Quad-Airy beam

We follow the same method, that we used for generating Dual-Airy beams. Quad-
Airy beams are composed by two crossed Dual-Airy beams. The Quad-Airy beam is
generated by the same 2-D standing ultrasonic wave, the only difference is the input
beams, which have to be four symmetric Gaussian beams, located at vertices of a square
or lozenge, it depends on the geometry we want for the generated Quad-Airy beam. In
this work, we have chosen a square geometry as shown in Fig. 4.12. It is worth noting
that increasing the number of input Gaussian beams will increase the intensity of the
superposition of the four Airy beams. The path is the same as in a single Airy beam
and Dual-Airy beam, the only difference is the 2-D lattice (structure) of the beam,
it shows interesting periodic patterns. To illustrate the behavior of these Quad-Airy

beams, which depends on the time evolution of the ultrasonic standing waves, we have
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used density plots to show their spatial structure in the transverse plane, for a fixed
time ¢t = 0 and along propagation axis for different z planes. The resulting Quad-Airy
beam shows at the beginning an anti-symmetric structure as shown in Figs. 4.12(a)
and 4.12(b). During propagation it auto-focuses in a tight array of spots as shown in
Fig. 4.12 (c), then, it auto-inverts its structure from anti-symmetric to symmetric as

shown in Figs. 4.12(e)-4.12(h).

Figure 4.12: (a)-(h): Quad-Airy beams for different z positions;z = 30mm, z = 40mm,
z = 50mm, z = 7T0mm, z = 200mm, z = 300mm, z = 400mm, z = 600mm respectively

at t = 0.

As mentioned before, we have dynamic phase transmittance depending on time.
Fig. 4.13, shows cross-section patterns for a constant z and varying time. At fixed
z = 60mm, we have the smallest array of spots resulting from the superposition of the
four parts of the Quad-Airy beam at t = 0. After half a period the Quad-Airy beam

structure is inverted, and then repeats the cycle each one time period.
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Figure 4.13:  Dynamic Quad-Airy beams at fixed z = 60mm, and different time
instants; (a)-(d): t =0,t=1/16f,, t = 1/8f,, t = 3/16f, respectively.
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Figure 4.14: Dual-Airy beam paths corresponding to: (a)-(b) Fixed acoustic pressure
and different times: t = 0, t = 1/16f,, t = 1/8f,, t = 3/16f,, t = 5/16fo, t = 3/8f,
t ="7/16f,, t = 1/2f,. (c) Fixed time and different acoustic pressures giving rise to

different refractive index increments An.

Finally, Fig. 4.14 shows Airy beam paths at different times ¢ and for different re-
fractive index increments An. Since, the generated Airy beams (single, Dual, and
Quad) change their geometries from symmetric to anti-symmetric, when the transmit-
tance evolves from one half period to another half period. We have plotted paths in
Fig. 4.14(a) for the first half period showing symmetric geometries, and in Fig. 4.14(b)
for the other half period showing the anti-symmetric geometries. An interesting result

is shown in Fig. 4.14(a), it consists on the dynamic displacement of the crossed beams
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giving rise to a dynamic longitudinal scanning, that could be controlled and tuned by
acting on the acoustic pressure. In Fig. 4.14(c) we have plotted for a fixed time ¢, the
trajectory of generated Airy beams for different acoustic pressures giving rise to differ-
ent refractive index increments An. By increasing the acoustic pressure, the refractive
index increment An increases and the crossed Airy beams displace in the propagation

direction.

4.6 Conclusion

In this chapter we have proposed a theoretical framework for the generation of a vari-
ety of combined Airy beams; Single, Dual, and Quad Airy beams, using 2-D sinusoidal
phase transmittance created by a standing ultrasonic wave, where the latter is gen-
erated by a piezo-electric transducer. By using the asymptotic expansion of the sine
function of the transmittance, we have demonstrated analytically the amplitude ex-
pression of all generated Airy beams. We have verified our modeling using detailed
numerical simulations, and the results are consistent. By tuning acousto-optic param-
eters (acoustic pressure and acoustic wavelength) we can change all Airy beam fea-
tures, such as: curvature, path, and shape. These results could be extended using the
same phase transmittance to generate different arrayed Airy beams. We believe that
this work will serve as an applicable plan for future experiments involving accelerated

beams and lasers beam scanning.
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CONCLUSION AND OUTLOOKS

In conclusion, the work presented throughout this thesis manuscript, is dedicated to
study the interaction of an incident Gaussian laser beam with an acoustooptic cell.
The used acousto optic cell consists on an ultrasound wave propagating in a liquid
medium (here we have water), creating a sinusoidal variation on the medium refractive
index, what leads to create a sinusoidal variation of the transmittance function (of the
acoustooptic cell). Since this latter is tunable at will, we have exploited this feature
for structuring and shaping Gaussian laser beam. So, the manuscript is composed of;

an introduction, Four chapters, and a conclusion.

Chapter 1, The first part was reserved for the basic theory of Gaussian beams, how
was dismantled from the four Maxwell equations, then we determined the parameters
which characterize the Gaussian beam such as the radius and the waist. In the second
part we have studied the theory of the propagation of the acoustic waves in an aque-
ous medium and we determine its properties and characteristics such as impedance,
celerity, wavelength, frequency, pressure and intensity. once all the basic concepts have
been presented, the acousto-optical interaction is set up, where we have defined the
working regimes (Bragg regime and Raman-Nath regime). The Raman-Nath regime
was chosen for our work due to the acoustic wavelength which is of the order of the in-
put beam width. Over the course of Chapter 2, the intensity distribution diffracted by
acoucto-optical cell was caracterizated using the Kurtosis parameter. A flat top beams

were obtained successfully with high flatness degree. In the other hand, a Doughnut
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beams with a flat inside were also achieved in this study. In Chapter 3, 2D Airy-like
beam through truncated acousto-optic cell were successfully generated. Where, 2-D si-
nusoidal phase transmittance created by a standing ultrasonic wave is used. The final
field equation has been developed analytically to have the distribution of the intensity
thereafter. The truncation is expressed in the analytical computation by a finite sum
of the Gaussian sheaves with the complex coefficients A,, and B,,. We also studied the
effect of truncation on the trajectory, where a deviation has been noticed which is a
very interesting result for future application in the precision industry. And as we used
the acousto-optic cell as a diffracting element, the tunable study is highlighted. Addi-
tional parametric studies (effect of acoustic wavelength, and Raman-Nath parameter)
were added to better understand the effect of truncation on the obtained Airy beam
behavior details. In Chapter 4, the generation of a variety of combined Airy beams;
Single, Dual, and Quad Airy beams was successfully obtained based on the same prin-
ciple of interaction as the previous chapter by using the cell without truncation. The
trajectory and the tunable study were controlled for each case as a function of the

acoustic wavelength, and the Raman-Nath parameter.

Future work

Throughout this thesis, we studied the interaction between a Gaussian beam and an
acoustic wave, to generate some interesting laser beam shapes such as; flat top and
doughnut shapes as well as Accelerating beam shapes. The results achieved numerically
are interesting to encourage us to verify them on a practical level. The experimental
realization of the studies carried out will be our first next step. We would now like
to generate also other types of non-diffracting beams such as the Bessel beam and the
Mathieu beam by following the same acousto-optical principle. These results obtained
for 2D dual and quad Airy beams could be generate different arrayed Airy beams with
new distibutions. We believe that this work will serve as an applicable plan for future
experiments involving accelerated beams and lasers beam scanning. In particular, we

aim to implement using the same phase transmittance for shaping laser beams into
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new shapes using a gradient index medium where the interaction takes place instead

of the water we used. in the present work.
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Abstract: Laser beam shaping technology becomes a hot topic in recent years,
which acquired great importance for the scientific community as a result of technical
and technological development that the world has known in many fields such; mi-
cro industries, military industries, telecommunications, medicine... In this thesis, an
acousto-optic technique based-beam shaping is presented through an analytical and
a numerical analysis, which converts an input Gaussian beam into different interest-
ing output beam shapes, such as Flat-top, Doughnut, and Airy-like beams. A deep
characterization that reveals the generated beam properties is also performed and dis-
cussed. As a result, flexible converting a Gaussian beam into a defined shape will have

a significant impact on a myriad of current laser applications.

Key words: laser beam shapping, acousto optic interaction, gaussian beam.

Résumé: La technologie de mise en forme des faisceaux lasers est devenue un
sujet d’actualité ces derniéres années, elle a gagné une place importante au sein de la
communauté scientifique, en raison du développement technique et technologique, que
le monde a connu dans différents domaines tels que ; la micro industries, 1'industrie

militaires, les télécommunications, la médecine ... etc

Dans le travail présenté dans cette thése, une technique de mise en forme de fais-
ceaux lasers, basée sur I'interaction acousto-optique, est présentée a travers une analyse
analytique et numérique, par laquelle on est arrivé a convertir un faisceau gaussien a
des faisceaux de différentes formes, tels que le faisceau plat, le faisceau creux et le fais-
ceau Airy. Une caractérisation approfondie qui révéle les propriétés du faisceau généré
est également effectuée et discutée. En conséquence, la conversion dynamique d’un
faisceau gaussien au moyen d’une phase active en des formes de faisceaux bien définie

aura surement un impact significatif sur les applications futures des lasers.

Mots clés: la mise en forme des faisceaux laser, interaction acousto-optique, fais-

ceau gaussien.
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