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Introduction

The intensity profile of the fundamental mode of lasers is generally Gaussian. Although

it is sometimes useful, there are some applications for which a different shape may be

desired, thus posing the need for complex light (structured light) modes. Structured light

today represents an established section of the wider field of modern optics and photonics.

Several classes of complex light shapes have become an experimental fact and are success-

fully applied in many fields of optics. The success of each application depends strongly on

the understanding of the special characteristics of the propagation of the laser mode such

as the beam shape, the beam quality, as well as how the beam will change after propa-

gating a certain distance. Scientists and engineers are still working to further understand

and improve laser mode characteristics that allowing for new more applications.

The work presented in this thesis is focused on the diffractive properties of higher-order

Gaussian beams that passing through different optical elements.

In the first chapter, we give a brief introduction to the paraxial wave equation starting from

Maxwell’s equations with mentioning its particular beams solutions (the fundamental one

and the higher-order ones); As well, we present a quick definition of the most commonly

used and powerful tool for the experimental generation of these beams that is the spatial

light modulator (SLM).

Following in chapter 2, we show, theoretically and experimentally, how the spatial proper-

ties, such as the beam propagation factor M² and the focal shift effect, of the higher-order

Laguerre Gaussian (LG) beams change when they are passing through an aperture and

1
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an opaque disk. In which, we find that the aperture reduces the beam propagation fac-

tor M² and strongly provokes the focal shift, while the opaque disk keeps almost all of

these characteristics unchanged that reveals, supported by the spatial frequency filtering

concept, the self-healing property of such beams.

In the same context and for the importance of the opaque disk in several imaging ex-

periments, such as microscopy, chapter 3 presents a new way to theoretically model the

LG beam when is partially blocked by an opaque disk in order to calculate its far-field

intensity distribution, including the aperture case.

In chapter 4, we study analytically the non-diffracting properties of Cosine Gaussian

beams, which are one-dimensional counterparts of Bessel beams, of fundamental and

higher-order. The latter is generated from the interference of two oppositely oblique

higher-order Hermite-Gaussian beams.

Finally, in chapter 5, we demonstrate quantitatively and qualitatively, based on asymp-

totic formulas, that the elegant higher-order Gaussian beams are perfectly identical to

the pseudo-nondiffracting beams, we also show that they provide the same characteristics

that make them a good alternative to the second one in many situations.

In general, the results presented in this thesis, relating the study and measurements of

the propagated laser beam through different optical elements, can offer better perfor-

mance for many applications such as optical communication (recording and transporting

information with required resolution, secure communication, ...), optical trapping and

micromanipulation, and microscopy.

The experimental work found in this thesis have been done in the structured light labo-

ratory of South Africa.



Chapter 1

Backgrounds and basics

1.1 Introduction

Since the invention of the laser, the description of the spatial structure of the different

beam modes has been the object of theoretical and experimental analysis. The usual

starting point for the derivation of laser beam propagation modes is solving the scalar

Helmholtz equation within the paraxial approximation. The paraxial approximation is

used to describe laser beam propagation as the divergence angle of the beam is considered

to be small. There exist many solutions to the paraxial Helmholtz wave equation, whose

amplitude distribution is described by either a Gaussian, Laguerre Gaussian, Hermite

Gaussian, Bessel, Airy or Mathieu functions.

In this chapter, we will not discuss all of these solutions; instead we will focus on three

classes of solutions that have been studied in this thesis. We will first discuss Gaussian

beams as this is the fundamental solution beam. Following, the three classes of solu-

tions that will be discussed are standard Gaussian, elegant Gaussian, and non-diffracting

beams. In the last, we will describe an effective method, which is an electronic device

knows as a spatial light modulator (SLM), to generate the different laser beams.

3
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1.2 The Helmholtz wave equation

The Maxwell’s equations [2] in a vacuum, which form the foundation for the derivation

of the paraxial Helmholtz wave equation [3], are defined as

→
∇ ·

→
E = 0, (1.1)

→
∇ ·

→
B = 0, (1.2)

→
∇×

→
E = −∂

→
B

∂t
, (1.3)

→
∇×

→
B = ε0µ0

∂
→
E

∂t
. (1.4)

where
→
E and

→
B are the electric and magnetic fields, ε0 and µ0 denote the permittivity

and permeability of free space, respectively. These two latter parameters are related to

the light velocity (the speed of light) in a vacuum as follows: c = 1/
√
ε0µ0

In order to obtain (form) the wave equation, we simplify Eq. 1.3 using the vector identity
→
∇× (

→
∇×

→
E) =

→
∇(
→
∇ ·

→
E)−

→
∇

2→
E, , resulting in:

→
∇(
→
∇ ·

→
E)−

→
∇

2→
E = −∂(

→
∇×

→
B)

∂t
. (1.5)

Substituting Eqs. 1.1 and 1.4 into Eq. 1.5 forms the wave equation

→
∇

2→
E = ε0µ0

∂2
→
E

∂t2
⇒
→
∇

2→
E − 1

c2
∂2
→
E

∂t2
= 0. (1.6)

The Helmholtz equation, which represents a time-independent form of the wave equation,
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results by applying separation of variables on the electric field into its spatial and time

domains:

E(x, y, z, t) = A(x, y, z)T (t). (1.7)

Substituting Eqs. 1.7 into Eq. 1.6 yields

T (t)∇2A(x, y, z)− A(x, y, z)

c2
∂2T (t)

∂t2
= 0⇒ T (t)∇2A(x, y, z) =

A(x, y, z)

c2
∂2T (t)

∂t2
(1.8)

∇2A(x, y, z)

A(x, y, z)
=

1

c2T (t)

∂2T (t)

∂t2
(1.9)

Since the left and right sides of Eq. 1.8 are not dependent on the same variable, then this

equation is true if both sides are equal to the same constant, −k2

∇2A(x, y, z)

A(x, y, z)
= −k2 (1.10)

and

1

c2T (t)

∂2T (t)

∂t2
= −k2 (1.11)

Eq. 1.10 becomes

(∇2 + k2)A(x, y, z) = 0 (1.12)

Eq. 1.12 describes the Helmholtz wave equation, where k is the wave number defined as

k = 2π/λ.
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The electric field propagating in the z-direction can be expressed as follows

A(x, y, z) = u(x, y, z)exp(ikz) (1.13)

Substituting Eq. 1.13 into Eq. 1.12, results in

∇2(u(x, y, z)exp(ikz)) + k2(u(x, y, z)exp(ikz)) = 0

∂2u(x, y, z)exp(ikz)

∂x2
+
∂2u(x, y, z)exp(ikz)

∂y2
+
∂2u(x, y, z)exp(ikz)

∂z2
+ k2u(x, y, z)exp(ikz) = 0

exp(ikz)

(
∂2u(x, y, z)

∂x2
+
∂2u(x, y, z)

∂y2
+
∂2u(x, y, z)

∂z2
+ 2ik

∂u(x, y, z)

∂z

)
= 0

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
u(x, y, z) + 2ik

∂u(x, y, z)

∂z
= 0 (1.14)

The assumption, known as a slowly varying approximation, under which the paraxial

approximation is valid, given by :

∣∣∣∣∂2u(x, y, z)

∂z2

∣∣∣∣ << k

∣∣∣∣∂u(x, y, z)

∂z

∣∣∣∣ (1.15)

The paraxial form of the Helmholtz equation is found by substituting the above condition
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into Eq. 1.14 as follows:

(
∂2

∂x2
+

∂2

∂y2

)
u(x, y, z) + 2ik

∂u(x, y, z)

∂z
= 0 (1.16)

Many solutions to the above equation (1.16), the paraxial Helmholtz wave equation, there

exist. In the following, we only will focus on the solutions which have been studied in this

thesis.

1.3 Fundamental Gaussian beam

Before moving on to higher-order types of solutions to the paraxial Helmholtz wave equa-

tion, we first describe the simplest and fundamental solution to such equation that is

the Gaussian beam [4]. The amplitude E and intensity I of the Gaussian beam can be

expressed in the forms

u(r, z) =
w0

w(z)
exp

(
−r2

w2(z)

)
exp

(
−i kr2

2R(z)
− iΦ(z)

)
(1.17)

I(r, z) = |u(r, z)|2 =

(
w0

w(z)

)2

exp

(
−2r2

w2(z)

)
(1.18)

where w(z) =
√
w2

0 (1 + z2/z2R) is the beam radius at distance z, R(z) is the radius

of curvature defined as R(z) = z (1 + z2R/z
2), and Φ(z) is the Gouy phase given by

Φ(z) = arctan (z/zR). zR = πw2
0/λ is the Rayleigh range, w0 is the radius at the beam

waist, and λ is the wavelength.

The shape of the Gaussian beam as it propagates along the z-axis is shown in Fig. 1.1,

illustrating the width evolution represented by the black line. The maximum intensity
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occurs on-axis at z = 0.

Figure 1.1: The Gaussian propagation parameters; The waist, at z = 0, has radius w0.
The distance at which the beam has spread to double the area at the waist is the Rayleigh
range, zR.

The transverse intensity of a Gaussian beam is displayed in Fig. 1.2 (b). The intensity

has a Gaussian distribution, with the maximum occurring at r = 0 and decreasing mono-

tonically with an increase in r, clearly seen in Fig. 1.2(a).

Figure 1.2: (a) Transverse intensity profile and (b) cross-sectional intensity profile of a
Gaussian beam.
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1.4 Higher-order Gaussian beams

1.4.1 Standard Gaussian beams

Hermite-Gaussian (HG) and Laguerre-Gaussian (LG) beams are higher-order solutions of

the paraxial wave equation that are separable in Cartesian and cylindrical coordinates,

respectively. Standard HG beam mode and LG beam mode are the eigenmodes of this

equation, in which the Gaussian part has a complex argument while the Hermite or La-

guerre part is real [4].

The complex field amplitude of the HG mode is given in cartesian coordinates by [4]

um,n(x, y, z) =
w0

w(z)
Hm

(√
2x

w(z)

)
Hn

(√
2y

w(z)

)
exp

(
−(x2 + y2)

w2(z)

)
× exp

(
i
k(x2 + y2)

2R(z)

)
exp(−iΦ(m,n, z))

(1.19)

w(z) and R(z) are defined as for the Gaussian beam and Φ(m,n, z) is the Gouy phase for

the HG mode given by Φ(m,n, z) = (m + n + 1) arctan (z/zR). Hm and Hn are Hermite

polynomials. The indices m and n are the transverse electric field distribution mode index

in the horizontal and vertical direction, respectively.

The transverse intensity profiles of the HG beam for various values ofm and n is exhibited

in Fig. 1.3. The lowest beam mode is the Gaussian beam when m = n = 0.
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Figure 1.3: Transverse intensity profiles of higher order Hermite Gaussian beams with
different mode indices.

The complex field amplitude of the LG mode is given in cylindrical coordinates by [4]

up,l(r, θ, z) =
1

w(z)

√
2p!

π(|l|+ p)!

(√
2r

w(z)

)|l|
exp

(
−r2

w2(z)

)
L|l|p

(
2r2

w2(z)

)
× exp

(
i
kr2

2R(z)

)
exp(ilθ) exp(−iΦ(p, l, z))

(1.20)

w(z) andR(z) are defined as for the Gaussian beam and Φ(p, l, z) = (2p+l+1) arctan (z/zR)

is the Gouy phase for the LG mode. L|l|p is the Laguerre polynomial.

The LG modes are characterized by two indices l and p corresponding to the azimuthal

and radial indices respectively. ul,p has a central dark spot,whos radius increases with
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increasing l, and p dark nodal rings.

Examples of the LG beams intensity profiles are plotted in Fig. 1.4. The lowest beam

mode is the Gaussian beam when p = l = 0.

Figure 1.4: Transverse intensity profiles of higher order Laguerre Gaussian beams with
different radial and azimuthal mode indices.
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Figure 1.5: (a, c) Cross-sectional profile and (b, d) transverse profile of intensity of
(a, b) a Hermite Gaussian beam (n = m = 10) and (c, d) a Laguerre Gaussian beam
(p = 5, l = 0).

1.4.2 Elegant Gaussian beams

Alongside the well-known solutions of standard Hermite and Laguerre Gaussian beams,

elegant Gaussian beams have been introduced, with a more symmetrical form, as alter-

native solutions to the paraxial wave equation [5–7]. In the elegant version, both the

Gaussian function and Hermite or Laguerre polynomials have a complex argument, in

contrast to the standard version, leading the transverse beam profile to change during the

propagation.

The following Fig. 1.6 presents an exemple of the cross-sectional (Fig. 1.6 (a, c)) and

transverse intensity profiles (Fig. 1.6 (b, d)) for the elegant HG beam of orderm = n = 10

in Fig. 1.6 (a,b) and the elegant LG beam of order p = 5, l = 0 in Fig. 1.6 (c, d) .
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Figure 1.6: (a, c) Cross-sectional profile and (b, d) transverse profile of intensity of (a,
b) an elegant HG beam (n = m = 10) and (c, d) an elegant LG beam (p = 5, l = 0).

1.4.3 Free-diffraction beams

Free-diffraction beams or non-diffracting beams, whose transverse intensity profile and

scale remain unchanged in the longitudinal direction, are also solutions to the Helmholtz

wave equation.

Ideal non-diffracting beams carry an infinite energy and their transverse intensity re-

mains constant from −∞ to +∞, thus they cannot be exactly realized. For that reason,

a modified version of the non-diffracting beams by adding a Gaussian factor, known as

pseudo-nondiffracting beams, has been introduced, which can be realized experimentally

to a very good approximation with the same properties of the idealized version over some

finite region (finite power).

One of the simplest solutions, in circular cylindrical coordinates, is the Bessel Gauss (BG)

beam, which is in the form of a Bessel function enveloped by a Gaussian profile. Its field
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is described as [8]

u(r, θ, z) =
w0

w(z)
exp

[(
−1

w2(z)
+

ik

2R(z)

)(
r2 +

k2rz
2

k2

)]
Jl

(
krr

(iz/zR)

)
× exp

[
iz

(
k − k2r

2k

)
+ ilθ − iΦ(z)

] (1.21)

Another pseudo-nondiffracting solution in Cartesian coordinates is the cosine-Gauss (CG)

field, given by [9]

u(y, z) = cos (kyy) exp

(
−y2

w2(z)

)
exp (−ikzz) (1.22)

Jl is the lth-order Bessel function, kr (ky) and kz are the transverse and longitudinal wave-

vectors and w0 is the initial beam waist. The parameters w(z), zR, R(z) and Φ(z) have

the same definition as for those presented above. The propagation constant k and the

parameters kr and kz are related by k2 = k2r + k2z .

The cross-sectional (Fig. 1.7 (a, c)) and transverse intensity profiles (Fig. 1.7 (b, d))

of the BG beam and the CG beam are illustrated in Fig. 1.7 (a,b) and Fig. 1.7 (c, d),

respectively.

Figure 1.7: (a, c) Cross-sectional profile and (b, d) transverse profile of intensity of (a,
b) a Bessel Gaussian beam and (c, d) a Cosine Gaussian beam.
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1.5 Spatial Light Modulator (SLM)

The SLMs [10–12] are opto-electronic devices that impose a transverse spatial modula-

tion, as the name implies, on a beam of light using either phase, amplitude, or both.

Such a device, which implements liquid crystal (LC) technology for the construction of

digital holograms, is a pixelated display formed by several hundreds of thousands of in-

dividual liquid crystal filled cells that can be controlled independently. The advantage of

these devices is the ease of using it, where they can be controlled by a computer using

appropriate programs. A computer generated grey-level images (holograms) are used to

engineer arbitary light fields digitally. There are two distinct types of SLMs; an optically

addressed and an electrically addressed SLM. The image in the latter, which was used in

our case, is created and altered electronically, where the input is typically received from

a VGA (Video Graphics Array) or DVI (Digital Video Interface) input.

The liquid crystal display (LCD), which is the crucial component in the SLM of our case,

composes of 2D-array of spacing pixels. This little spacing makes the LCD operates as a

2D grating, leading the light to be diffracted into many orders.

As with any tool, the SLM users face efficiency problems due to its LCD structure. This

latter causes loss of a part in the illuminated light (the absorbed part by the space between

pixels so the incident beam doesn’t all diffracted), where the quality of the diffracted

order (the first order) is affected because of its overlap with the un-diffracted one (the

zero order). In order to overcome this problem, a grating is added onto the computer-

generated hologram so as to separate the diffracted from un-diffracted order and avoid

the interference between the two components. This grating might be a blazed grating (a

linear phase ramp) that makes 100% of the light is diffracted into the desired order or

sinusoidal grating, which diffract light almost evenly across all orders[10–12] .
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Figure 1.8: (a) Illustration of an individual pixel in the liquid crystal display. The pixel
(liquid crystal filled cell) is electrically adjusted with an applied voltage. (b) Holoeye
SLM. The number of pixels is determined by the resolution of the SLM screen.

1.5.1 Digital holograms

The generation of any arbitrary complex optical field is based on the use of computer-

generated holograms displayed by the SLM.

Consider an incoming optical field, written in terms of amplitude and phase, u1(x) =

ua(x) exp(iφ1(x)), will be transformed into a new field, say u2(x) = ub(x) exp(iφ2(x)).

The optical element executing this change have a transfer function [12] , given by

T =
u2(x)

u1(x)
=
ub(x)

ua(x)
exp[i(φ2(x)− φ1(x))] (1.23)

where x denotes the transverse spatial coordinates that could be (x, y) for Cartesian

coordinates or (r, θ) for cylindrical coordinates.

Phase-only holograms

When ua(x) = ub(x), the amplitude term of the transmission function is 1, indicating

that only the phase of the incoming beam is altered whilst leaving the original amplitude
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untouched. The SLM applies the following transmission function to the incoming field u1,

T (x) = exp(iΨ(x)) (1.24)

where Ψ = φ2 − φ1 is the phase screen that we display on the SLM.

For phase-only modulation, we need to look at the far-field to obtain the desired modulated

field (u1(x) · T (x)), which is most easily accomplished by looking at the focal plane of a

lens.

Complex amplitude holograms

The used SLM in the experimental work found in this thesis is a phase-only device, (1.8),

while the studied beam field, experimentally, has both amplitude and phase terms; Thus

requiring complex amplitude modulation to convert one beam’s amplitude and phase into

that of another (convert from a phase-only device response to full amplitude-phase re-

sponse).

The complex amplitude modulation using a phase-only SLM is proposed by Arrizón et

al. in [13]. The idea is to encode amplitude information in a phase screen, where it be a

function of the desired beam’s amplitude and phase, as follows

T (x) = exp(iΨ(A,ψ)) = A(x) exp(iψ(x)) (1.25)

where A(x) ∈ [0, 1] and ψ(x) ∈ [−π, π].

The encoded phase modulation Ψ(A,ψ) is determined from the following ansatz Ψ(A,ψ) =

f(A) sin(ψ), where the function f(A) is obtained by numerical inversion of J1[f(A)] =

0.58A with J1 is the first-order Bessel function. This technique allows the generation of

modes with purity higher than 0.96 as demonstrated by Ando et al. in [14].
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As opposed to phase-only modulation where the desired field is obtained at the far-field,

in complex amplitude modulation the desired field is created at the plane of the SLM

screen.



Chapter 2

Characterizing the diffraction of the

Laguerre-Gauss beams by an aperture

and an opaque disk

The present chapter contains extracts from a publication by Chabou et al [15].

2.1 Introduction

The natural phenomenon that occurs when the waves encounter obstacles is called diffrac-

tion defined as the bending of waves around the edges of an obstacle. Spatial characteris-

tics of the diffraction pattern depend on the incident wave field, as well as on the geometry,

the kind, and the size of the obstacle.

In this chapter, we will describe the diffraction properties of LG beams passing through

two kinds of circular obstructions; an aperture, in which the outer part of the beam is

blocked, and an opaque disk, in which the central part of the beam is blocked, based on

two key parameters; the focal shift effect and the beam propagation factor M². The focal

shift phenomenon occurs when an optical beam is focused by a lens, or truncated by an

obstacle, and the usual geometric focal plane shifts toward the incoming beam, where the

19
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amount of this shift is strongly related to the focusing lens or to the obstacle size [16–21].

While the M² factor is strongly related to aberrations and diffraction effects [22–31] which

in turn affects the overall propagation characteristics of the beam. We will perform a full

theoretical and experimental study, by measuring transverse and axial intensities, focal

plane shifts, beam radius and beam quality factor M², where we will demonstrate that

the type of obstruction significantly influences the beam’s features. Furthermore, we will

demonstrate that the diffraction of LG beams by an opaque disk can reveal an interesting

feature, which is the self-healing ability that will be explained by borrowing concepts from

image analysis, not usually associated with self-healing of structured light.

2.2 LG beam diffraction

In this section, we introduce the studied optical system for describing the diffracted LG

beams, outline the concept of the self-healing property, and the concept that we present

to evaluate this property, which is the spatial filtering (Abbe experiment).

In order to examine the effect of the aperture and the opaque disk on the LG beam

propagation, we simulated the optical system shown in Figure 2.1. In which, we are

interested in the propagation of the beam after the lens, particularly at the Fourier plane

(z = f), and the so-called shifted plane at z = z0.

In this chapter, the shifted plane is defined as the plane corresponding to the position of

minimum beam width, that is, the waist position of the distorted beam. Both planes are

shown in Figure 2.1 as dashed vertical lines.
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Figure 2.1: Schematic Conceptualizing the diffraction of radial LG beam by (a) an
aperture and (b) an opaque disk, and then focused with a lens. The incident beam is
partially blocked at the lens plane (z = 0) by an obstruction of some radius, selected to
coincide with the zeros of the initial beam. The output beam is investigated both at the
geometrical focal plane (Fourier plane) of the lens and at the shifted focal plane (shifted
plane in short), which corresponds to the plane where the second moment width of the
output beam is minimum.

The electric field of an incident LG beam of radial index p and azimuthal index l can be

written in the cylindrical coordinates, at its waist z = 0, as

uin(r, θ, z = 0) =
1

w(z)

√
2p!

π(|l|+ p)!

(√
2r

w(z)

)|l|
exp

(
−r2

w2(z)

)
L|l|p

(
2r2

w2(z)

)
exp(ilθ) (2.1)

where w2(z) = w2
0[1 + (z/zR)2] is the beam width, zR = πw2

0/λ is the Rayleigh length,

w0 is the Gaussian waist radius, and Llp is a Laguerre polynomial of order p and l. We

visualize the radial LG beam (of radial index p and azimuthal index l = 0) bypass two

obstructions, which are with a circular structure, characterized by transmittance functions

τAP (r) =


1 r ≤ a

0 r > a

, (2.2)

and

τOD(r) =


0 r ≤ a

1 r > a

, (2.3)

with a the radius of the obstruction for the aperture (AP) and opaque disk (OD), respec-
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tively. In the case of the aperture, a corresponds to the radius of the hole, and in the case

of the opaque disk, to the radius of the obstruction itself.

In all our study cases, radii were chosen to coincide with the zeros of the beam’s intensity

with the aim to keep the disturbance of spatial frequencies to a minimum, acting as a

filter for some predetermined number of rings, or equivalently, some predetermined spatial

frequencies.

From the Fresnel-Kirchhoff diffraction theory, the propagated electric field at a distance

z is given by [32]

uout(ξ, η, z) =

(
1

iλz

)1/2

exp(ikz)

∫ +∞

−∞

∫ +∞

−∞
uin(x, y, z = 0) exp

[
ik

2z

(
(ξ − x)2 + (η − y)2

)]
dxdy.

(2.4)

By setting x = r cos θ, y = r sin θ, ξ = ρ cosφ, η = ρ sinφ; Eq. 2.4 becomes

uout(ρ, φ, z) =
1

iλz
exp(ikz)

∫ ∞
0

∫ 2π

0

uin(r, θ, z = 0) exp

[
ik

2z

(
ρ2 + r2 − 2ρr cos(θ − φ)

)]
rdrdθ.

(2.5)

Using the following integral formula [33, 34]

∫ 2π

0

exp

[
ik

z
ρr cos(θ − φ)

]
exp(−ilθ)dθ = 2πJ0

(
k

z
ρr

)
exp(−ilφ) (2.6)

with k = 2π/λ and J0 is the Bessel function of order zero.
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Figure 2.2: Diffraction geometry, showing the object plane and the image plane.

The propagation of the studied LG beam at a distance z in cylindrical coordinates system

can be given by

uout(ρ, z) =
i2π

λz
exp

(
i
2π

λ

(
z +

ρ2

2z

))∫ ∞
0

uin(r, z = 0)τ(r)J0

(
2π

λz
ρr

)
exp

[
iπr2

λ

(
1

z
− 1

f

)]
rdr,

(2.7)

where ρ is the radial distance to the propagation axis. exp (−ikr2/2f) is the transmit-

tance function of the lens, with f is the focal length of the lens.

Figure 2.3 shows density plots in the ξz-plane of the propagated beam for unobstructed

(Figure 2.3a), obstructed by an aperture (Figure 2.3b) and obstructed by an opaque disk

(Figure 2.3c). The vertical axis corresponds to the transverse ξ-axis, normalized to the

beam’s Gaussian waist (w0), while the horizontal axis is the propagation z-axis, normal-

ized to the focal length, f . For all images, the Fourier plane is marked by a vertical blue

dotted line. Figure 2.3 presents on the bottom the transverse cross-sections at the shifted

plane z = z0, where the unobstructed beam is shown in black and the obstructed one in

red. By comparing Figures. 2.3b and c to Fig. 2.3a, it can be seen that while the beam
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shape and width are significantly affected by the aperture, the beam is barely modified by

the opaque disk at the shifted plane. This is further illustrated in the intensity profiles,

where it is seen that the beam recovers its shape only when obstructed by an opaque disk.

This indicates clearly that the type of obstruction greatly influences the effect it has on

the beam.

Figure 2.3: Numerical simulation for an LG50 beam. Density plots in the ξz-plane (top
row) and profiles along the ξ-axis (bottom row) of the intensity distribution of the beam
for (a) an unobstructed beam, the beam after passing through (b) an aperture, and (c)
an opaque disk.

2.3 Self-healing concept

One of the most fascinating properties of diffraction-free optical fields is their ability to

reconstruct if they are partially obstructed in their propagation path, both classically and

in the quantum regime. In this section, we introduce an overview of the concept behind

the self-healing process.
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Figure 2.4: Self-healing principle of BG beams. Conical waves, that formed by refracting
plane waves incident on axicon, form a BG beam in the region zmax. An opaque obstruc-
tion placed at1/2zmax blocks a part of waves while allowing the other part (unblocked
waves) to interfere at a short distance behind the obstruction, i.e., after zmin. The region
where the beam is predicted to self-heal totally is the plane z0.

The self-healing ability has been explained as the interference of unobstructed conical

waves [35, 36]. The mechanism underlying this process is simple and can be seen in Fig-

ure. 2.4. In which the conical waves bypass the obstruction producing a shadow region,

after this region the conical waves that missed the obstruction (not affected by the ob-

struction) overlap, and by interference reconstruct the original Bessel beam, albeit it with

less power and over a limited range in both the transverse and propagation planes.

Self-healing has been long time considered as a distinctive feature of nondiffracting beams

[37]; most prominently of Bessel beams [38–41], although also Airy [42], caustic [43],

and Mathieu and Weber [44] beams have been examined. It was subsequently realized

that some diffracting beams, including the whole family of scaled propagation invariant

beams [45], as well as angular self-healing of orbital angular momentum(OAM) beams [46],

polarization self-healing of vector beams [47, 48], and even the recovery of entanglement

in quantum states [49, 50], can self-reconstruct.

There is a good reason for the extensive studies that persist even today: self-healing
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beams have used in a variety of applications including multiple plane micro-manipulation

[51], robust optical communication [52], reduced scattering in imaging microscopy [53],

enhanced laser machining [54] and quantum key distribution through obstacles [49, 50].

In this chapter, our study reveals the LG beam ability to self-heal, where we adopt the

beam profile and the beam spatial characteristics (beam propagation factor and focal shift

effect) to evaluate this ability. As well as introducing its physical interpretation based on

spatial frequency filtering following Abbe.

2.4 Abbe experiment and spatial filtering

In this section, we outline a well-known concept in optics, which is spatial filtering, in

order to qualitatively explain the physics behind the self-healing of LG beams. The spa-

tial filtering [55, 56] was done almost one hundred years ago by Ernst Abbe’s when he

performed his famous experiments in support of his Fourier theory of image formation,

Figure 2.5, where he found that the resolution of the image depends on the number of

spatial frequencies that are passed through the imaging system [57]. Based on this, in

the image processing context, it is conventionally to perform spatial filtering by removing

specific frequency ranges (blocking the components of a diffraction pattern at the trans-

form plane). For instance, a low-pass filter will reduce high-frequency noise and has an

overall “smoothing” effect, while a high-pass filter will emphasize fine details in the image

and enhance edges.
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Figure 2.5: Spatial filtering. 4f optical imaging system perform a Fourier transform
followed by an inverse Fourier transform. The Fourier components of the object are
separated by the first lens into spatial fraquencies at the Fourier plane. The object Fourier
transformed is multiplied by the transmittance of the spatial filter, then the second lens
reconstructs the image (inverse Fourier transform of the filtred version).

We now consider this in the context of complex light rather than imaging. The spatial

filtering process allows us to hypothesize that the most of the beam’s information is found

in the high-frequency content, that is, in the outermost region. This implies that removing

this spatial frequency content will have a stronger effect on the beam in comparison to

removing the lower frequency content. In other words, an obstruction of the higher

frequencies (an aperture) will have a severe impact on the beam, while obstruction of

the lower frequencies (an opaque disk) will have less of an effect. This is precisely the

behavior we observe in the numerical simulations in Figure 2.3.

2.5 Experimental realisation of diffracted LG beams

An established and ubiquitous tool for the realization of complex beams that have been

introduced in the previous chapter is spatial light modulators (SLMs). Our experimental

realization of an LG beam involved encoding on the SLM a hologram of the following
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form

ΨSLM = fLG sin(ψLG +GxX +GyY ) (2.8)

Where fLG is obtained by numerical evaluation as

J1[fLG] = ALG (2.9)

with ALG and ψLG are the amplitude and the phase, respectively, of LG beam as follows

ALG =
1

w(z)

√
2p!

π(|l|+ p)!

(√
2r

w(z)

)|l|
exp

(
−r2

w2(z)

)
L|l|p

(
2r2

w2(z)

)
(2.10)

ψLG = exp

(
i
kr2

2R(z)

)
exp(ilθ) exp (−i(2p+ |l|+ 1) arctan (z/zR)) (2.11)

J1 the first order Bessel function. G = 1/L is the grating frequency, where L is the grating

period (in the x and y directions).

It’s worth noting that for encoding this hologram we use a blazed grating, exp(i2πGxx),

so that the desired beam is generated in the first diffraction order of the grating[58].

Besides the generation of LG beams, the SLM can also be used for the realization of any

chosen kind of obstacle (aperture and opaque disk an our case) of defined radius a in the

z = 0 plane. Examples of the encoded image onto the SLM is shown in Figure 2.6, the two

first row, which was incorporated into the experimental set up as described in Figure 2.7.
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Figure 2.6: Holograms encoded on the SLM (top) and experimental intensity profiles
(bottom) of Laguerre-Gaussian beam of order p = 5. The first column presents the un-
obstructed case, the first and third row show the obstruction case by an aperture, and
the second and fourth row show the obstruction case by an opaque disk.

Figure 2.7 is a schematic representation of the experimental setup used to confirm the

numerical predictions. Light from a He-Ne laser operating at a wavelength of λ = 632.8 nm

was expanded and collimated using a telescope (lenses L1, f1 = 50 mm, and L2, f2 = 500

mm) for illumination of a phase-only spatial light modulator (SLM - HOLOEYE PLUTO)

displaying a computer-generated hologram (CGH). The CGHs were created by complex

amplitude modulation [11, 12], as referred above, and designed to simultaneously encode

the LG beam, the lens (f = 250 mm) and the obstruction (aperture or opaque disk). A

4f system (lenses L3, f3 = 250 mm, and L4, f4 = 250 mm) imaged the SLM plane to the

back focal plane of lens L4, and simultaneously filtered out unwanted diffraction orders

with an iris at the Fourier plane of L3. Finally, a CCD camera (Point Grey Firefly) was

mounted onto a guiding rail along the propagation axis to obtain a series of images of

the beam intensity at different propagation distances. Crucially, encoding the lens into

the hologram enabled us to measure the beam intensity near z = 0 without any physical

limitation.
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Figure 2.7: Schematic of the experimental setup used to study the diffraction of an LG
beam (p = 5) by an aperture or an opaque disk. The SLM simultaneously generates the
obstructed beam and encodes the lens.

2.6 Experimental results versus numerical simulations

2.6.1 Diffraction patterns

In order to study the diffraction behavior of LG beams, illustrative examples of the inten-

sity patterns and their profiles for the obstructed LG beam of order p = 5 are presented

in this section.

With the aim of having a reference point to compare the obstructed beams against, we

start by showing the beam intensity of the unobstructed beam at the shifted (Figure 2.8

(a)) and Fourier (Figure 2.8 (b)) planes. It can be seen they are very similar, since, in

this particular case, the above-mentioned planes are very near to each other (Figure 2.3

(a)).
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Figure 2.8: Experimental and theoretical (insets) intensity patterns and the correspond-
ing cross-sectional profiles for non-obstructed LG beam of order p = 5, at (a) the shifted
plane and (b) the geometric focal plane (Fourier plane).

We begin with an LG beam of order p = 5 as an illustrative example and consider the

diffraction patterns evolution to examine the beam’s self-healing ability. The experimental

results for the aperture are shown in Figure 2.9 at both the shifted (top row) and Fourier

(bottom row) planes, for three different aperture radii. It is worth noting that the position

of the shifted plane strongly depends on the aperture size, therefore the specific value for

z0 is different for each case. The insets show the corresponding theoretical predictions to

experimental measurements. While below each image we show the cross-sectional intensity

profile.
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Figure 2.9: Experimental and theoretical (insets) intensity patterns (top) and the cor-
responding cross-sectional profiles (bottom) for an obstructed LG50 beam by an aperture,
on (a), (d) its second intensity zero, (b), (e) third intensity zero, and (c), (f) fifth intensity
zero, at the shifted plane (a), (b) and (c) and at the Fourier plane (d), (e) and (f).

One notices that the obstructed intensity patterns differ from the unobstructed ones,

particularly when a large portion of the beam is blocked. The beam never recovers its

initial profile at any plane, even in the far field, revealing that the beam does not self-heal
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after it is blocked by an aperture.

In contrast to this is the more conventional case of obstruction by an opaque disk, with

experimental results shown in Figure 2.10. The intensity distributions are shown at a

plane just after the opaque disk z = 10 mm, and at the shifted plane z = z0; note that

for these beam parameters the Fourier plane and the shifted plane are very close and

therefore their intensity patterns are almost identical, hence we only show the intensity

at the shifted plane. As before, we used an LG beam of order p = 5 and the opaque

disks blocked the beam up to its second, third and fifth intensity zeros (counting from

the beam’s center). Figures 2.10 (a)-(c) clearly show the effect of the opaque disk on the

beam in the near-field, in such a way that the inner rings disappear as the disk radius

increases, as one would expect. On the other hand, comparing the unobstructed beam

from Figure 2.8 against the blocked beam in Figures. 2.10 (d)-(f), it can be seen that the

the blocked part is reconstructed at the shifted plane in all examples. The reconstruction

is almost perfect in the first case, good in the second, and differences are more noticeable

in the third. However, considering the extent of the obstruction in the latter case, it is

remarkable how similar the propagated beam is to the unobstructed one at the shifted

plane.

As it is well-known, it is worth noting that it has been point out in many previous works

[35, 59] that the distance of the self-healing process depends on the opaque disk size,

which means that the quality of the reconstructed beam in the second and the third case

will be better after the shifted plane when the self-healing process is completed.
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Figure 2.10: Experimental and theoretical (insets) intensity patterns (top) and associ-
ated cross-sectional profiles (bottom) for an obstructed LG50 beam by an opaque disk, on
(a), (d) its second intensity zero, (b), (e) third intensity zero, and (c), (f) fifth intensity
zero, at the near field z = 10 mm (a), (b) and (c) and at the shifted plane (d), (e) and
(f).

To quantify the diffraction patterns evolution in terms of reconstruction degree, we mea-

sure the similarity, which has been used extensively in the context of self-healing Bessel
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beams [59], between the behavior of the un-obstructed LG beam of radial index p = 5 and

the behavior of the obstructed one along the propagation path. The optical fields of the

beam with and without obstruction are denoted by u1(ξ, η, z) and u2(ξ, η, z) , respectively.

In Hilbert space u1(ξ, η, z) and u2(ξ, η, z) can be considered as two infinite-dimensional

complex vectors. The angle between the two infinite-dimensional complex vectors is de-

scribed mathematically as the division between their inner product and the product of

the norm, which is the length, of each one.

cos(u1, u2) =
(u1, u2)

||u1||||u2||
, (2.12)

with (u1, u2) =
∫ ∫

u1(ξ, η, z)u∗2(ξ, η, z)dξdη and ||u|| =
√∫ ∫

u(ξ, η, z)u∗(ξ, η, z)dξdη. u∗

denotes the complex conjugate of u.

The used similarity, named S, in this study can be defined as

S = cos(|u1|, |u2|) =
(|u1|, |u2|)
||u1||||u2||

=

∫∞
0
u1out(ρ, z)u

∗
2out(ρ, z)ρdρ√∫∞

0
u1out(ρ, z)u∗1out(ρ, z)ρdρ

√∫∞
0
u2out(ρ, z)u∗2out(ρ, z)ρdρ

,

(2.13)

Numerical simulations of Eq. 2.13 are shown in Figure 2.11, where the similarity of both

apertured and blocked LG50 beams are plotted at the plane z = z0, corresponding to

the shifted plane of the unobstructed beam as a function of obstacle sizes. As seen from

Figure 2.11, the similarity degree for the blocked beam at the plane z = z0 decreases as

the opaque disk size increases. While the similarity degree for the apertured beam at the

same plane (z = z0) increases with increasing of the aperture size.
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Figure 2.11: Similarity, S, of both blocked (opaque disk) and apertured LG50 beams as
a function of the normalized obstruction size, a/w0. The red dots indicate the positions
of the intensity zeros of the LG50 beam.

2.6.2 Diffraction spatial characteristics (beam propagation factor

and the focal shift effect)

This section provides a deep quantitative analysis of the obstructed LG beams perfor-

mance, specifically the self-healing, through two important parameters are the beam

propagation factor, M2, and focal shift.

The M2 factor, sometimes called the beam quality factor or beam propagation factor, is

one of the most common parameters describing the overall propagation features of a laser

beam, encompassing both the beam width and its divergence, which in turn can be used

to define the brightness of the beam, and how tightly it might be focused. It is easily

calculated as [60, 61]

M2 =
π

λ
wρθρ (2.14)

where the beam width, wρ, and divergence, θρ, are defined as second moments of the
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intensity [62, 63]:

〈w2
ρ〉 =

2π

P0

∫ ∞
0

τ(r)|uin(r, 0)|2r3dr , (2.15)

〈θ2ρ〉 =
2π

k2P0

∫ ∞
0

τ(r)|u′in(r, 0)|2rdr +
32π

3k2P0

|uin(a, 0)|2 , (2.16)

where P0 is the total power contained in the beam

P0 = 2π

∫ ∞
0

τ(r)|uin(r, 0)|2rdr , (2.17)

and u′in(r, 0) is the first derivative of the amplitude uin(r, 0) of the LG beam at plane

z = 0, given by

|u′in(r, 0)|2 =
2

w2
0

p∑
b1=0

p∑
b2=0

(−1)b1+b2
(p!)2

(p− b1)!(p− b2)!(b1!)2(b2!)2((
2
r2

w2
0

)2

− 2(b1 + b2)

(
2
r2

w2
0

)
+ 4b1b2

)(
2
r2

w2
0

)b1+b2−1
exp

(
−2

r2

w2
0

)
,

(2.18)

Using the following integral formulae, and the series expansion of Laguerre function [64]

∫ a

0

xν exp(−sx)dx =
ν!

sν+1
− exp(−as)

ν∑
h=0

ν!

h!

ah

sν−h+1
(2.19)

Lp

(
2
r2

w2
0

)
=

p∑
b=0

(−1)b
p!

(p− b)!(b!)2

(
2
r2

w2
0

)b
(2.20)

After tedious integral calculations, Eq. 2.15, which corresponds to the beam width, be-
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comes

〈w2
ρ〉 =

w4
0π

2P0

p∑
b1=0

p∑
b2=0

g(b1, b2, p)

(
exp(−2δ21)

N+1∑
h=0

(N + 1)!

h!
(2δ21)h−

exp(−2δ22)
N+1∑
h=0

(N + 1)!

h!
(2δ22)h

)
,

(2.21)

And Eq. 2.16 that corresponds to the divergence, becomes

〈θ2ρ〉 =
2π

k2P0

p∑
b1=0

p∑
b2=0

g(b1, b2, p)

((
exp(−2δ21)

N+1∑
h=0

(N + 1)!

h!
(2δ21)h − exp(−2δ22)

N+1∑
h=0

(N + 1)!

h!
(2δ22)h

)

−2N

(
exp(−2δ21)

N∑
h=0

N !

h!
(2δ21)h − exp(−2δ22)

N∑
h=0

N !

h!
(2δ22)h

)
+ 4b1b2×(

exp(−2δ21)
N−1∑
h=0

(N − 1)!

h!
(2δ21)h − exp(−2δ22)

N−1∑
h=0

(N − 1)!

h!
(2δ22)h

)
+

16

3

((
2(δ22 − δ21)

)N
exp

(
−2(δ22 − δ21)

))))
,

(2.22)

where the total power contained in the beam, P0,

P0 = πw2
0

p∑
b1=0

p∑
b2=0

g(b1, b2, p)

(
exp(−2δ21)

N∑
h=0

N !

h!
(2δ21)h − exp(−2δ22)

N∑
h=0

N !

h!
(2δ22)h

)
,

(2.23)

Based on Eqs. (2.14),(2.21), and (2.22), the analytical expression for the beam propagation

factor M² of an LG beam diffracted by an annular aperture as a function of the beam
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truncation parameters δ1, δ2 is given as follow

M2 =

[
p∑

b1=0

p∑
b2=0

g(b1, b2, p)

(
exp(−2δ21)

N∑
h=0

N !

h!
(2δ21)h − exp(−2δ22)

N∑
h=0

N !

h!
(2δ22)h

)]−1
×

[
p∑

b1=0

p∑
b2=0

g(b1, b2, p)

(
exp(−2δ21)

N+1∑
h=0

(N + 1)!

h!
(2δ21)h − exp(−2δ22)

N+1∑
h=0

(N + 1)!

h!
(2δ22)h

)] 1
2

×[
p∑

b1=0

p∑
b2=0

g(b1, b2, p)

((
exp(−2δ21)

N+1∑
h=0

(N + 1)!

h!
(2δ21)h − exp(−2δ22)

N+1∑
h=0

(N + 1)!

h!
(2δ22)h

)

−2N

(
exp(−2δ21)

N∑
h=0

N !

h!
(2δ21)h − exp(−2δ22)

N∑
h=0

N !

h!
(2δ22)h

)
+ 4b1b2×(

exp(−2δ21)
N−1∑
h=0

(N − 1)!

h!
(2δ21)h − exp(−2δ22)

N−1∑
h=0

(N − 1)!

h!
(2δ22)h

)
+

16

3

((
2(δ22 − δ21)

)N
exp

(
−2(δ22 − δ21)

)))] 1
2

(2.24)

where g(b1, b2, p) = (−1)b1+b2 ((p!)2/(p− b1)!(p− b2)!(b1!)2(b2!)2), δ1 = a1/w0, and δ2 =

a2/w0. N = b1 + b2.

For the extreme case (un-diffracted case) of a1 → 0 and a2 →∞, Eq. 2.24 reduces

M2 =

[
p∑

b1=0

p∑
b2=0

g(b1, b2, p)N !

]−1 [ p∑
b1=0

p∑
b2=0

g(b1, b2, p)(N + 1)!

] 1
2

×

[
p∑

b1=0

p∑
b2=0

g(b1, b2, p) ((N + 1)!− 2NN ! + 4b1b2(N − 1)!)

] 1
2

(2.25)

When a1 → 0, Eq. 2.24 reduces to the M² expression of the diffracted LG beam by a



Characterizing the diffraction of the Laguerre-Gauss beams by an aperture
and an opaque disk 40

circular aperture of radius a2

M2 =

[
p∑

b1=0

p∑
b2=0

g(b1, b2, p)

(
N !− exp(−2δ22)

N∑
h=0

N !

h!
(2δ22)h

)]−1
×

[
p∑

b1=0

p∑
b2=0

g(b1, b2, p)

(
(N + 1)!− exp(−2δ22)

N+1∑
h=0

(N + 1)!

h!
(2δ22)h

)] 1
2

×[
p∑

b1=0

p∑
b2=0

g(b1, b2, p)

((
(N + 1)!− exp(−2δ22)

N+1∑
h=0

(N + 1)!

h!
(2δ22)h

)

−2N

(
N !− exp(−2δ22)

N∑
h=0

N !

h!
(2δ22)h

)
+ 4b1b2×

(
(N − 1)!− exp(−2δ22)

N−1∑
h=0

(N − 1)!

h!
(2δ22)h

)
+

16

3

((
2δ22
)N

exp
(
−2δ22

)))] 1
2

(2.26)

When a2 →∞, Eq. 2.24 reduces to the M² expression of the diffracted LG beam by

an opaque disk of radius a1

M2 =

[
p∑

b1=0

p∑
b2=0

g(b1, b2, p)

(
exp(−2δ21)

N∑
h=0

N !

h!
(2δ21)h

)]−1
×

[
p∑

b1=0

p∑
b2=0

g(b1, b2, p)

(
exp(−2δ21)

N+1∑
h=0

(N + 1)!

h!
(2δ21)h

)] 1
2

×[
p∑

b1=0

p∑
b2=0

g(b1, b2, p)

((
exp(−2δ21)

N+1∑
h=0

(N + 1)!

h!
(2δ21)h

)

−2N

(
exp(−2δ21)

N∑
h=0

N !

h!
(2δ21)h

)
+ 4b1b2

(
exp(−2δ21)

N−1∑
h=0

(N − 1)!

h!
(2δ21)h

))] 1
2

(2.27)

On the other hand, the amount of the focal shift, which is mentioned above in the intro-
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duction, can be given by :

∆z = f − z0 (2.28)

with f is the geometric focal length and z0 denotes the shifted plane.

Figure 2.12: The percentage change in (a) the beam quality factor and (b) focal shift
of the obstructed beam as compared to the unobstructed beam, calculated as a function
of the normalized obstruction size for an aperture and an opaque disk (blocked). All
calculations assumed an initial LG50 beam with an M2 = 2p+ 1.

Figure 2.12 shows numerical simulations for the percentage change in M2, defined as

δM2 = (M2 − (2p+ 1))/(2p+ 1), and the percentage change in the focal shift, defined as

∆z/f = (z−z0)/f for diffracted (apertured and blocked) LG50 beams as a function of the

normalized obstruction parameter (the ratio of the obstacle size to the Gaussian waist,

w0). Not surprisingly, strongly apertured beams show a large change in M2, decreases

continuously until the aperture is open and the beam becomes unobstructed, where its

propagation behavior is recovered. In contrast, the beam blocked by an opaque disk has

an oscillatory response, with small changes near the zero’s of the LG50 intensity. These

results are supported by the equivalent focal shift curves, where the rate change of the

focal shift for the blocked beam is negligible, while the rate change for the apertured beam

is very high, confirming that the beam recovers against opaque disks but not against aper-
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tures.

In order to confirm these theoretical results, we measure the full propagation of the field

along the z-axis in order to extract the M2 and the focal shift parameters. We illustrate

one such example in Figure 2.13, measured for the test LG50 beam (apertured and

blocked) on its third ring compared to the unobstructed one. From the experimental

results we can extract the M2 factor, the new waist location z0 and the new waist size w0

from [63, 65]:

w2(z) = w2
0 +M4 λ2

π2w2
0

(z − z0)2 . (2.29)

Figure 2.13 shows the measured and simulated beam radii, normalized to the Gaussian

beam width, as a function of propagation distance, z, normalized to the focal length, for

an unobstructed beam (Figure 2.13a), an obstructed beam on its third intensity zero by

an aperture (Figure 2.13b) and an opaque disk (Figure 2.13c). The predicted propagation

is in agreement with the measured dynamics. The small difference (≈ 15%) between the

theoretical and experimental results in M2 are likely due to the sensitivity of the second

moment measurement to background noise. We see that the shifted planes of the un-

obstructed beam and the blocked beam by an opaque disk lie very close to the Fourier

plane z = f , to within about 4%. However the apertured beam is significantly shifted.

Specifically, the shifted plane of the obstructed beam by an aperture is located at a posi-

tion somewhat close to the obstruction (aperture) plane. We can understand the physics

of this by considering the Fresnel number, F = a2/λf , of the system. In the truncated

case, the aperture limits the beam size so the Fresnel number changes with the aperture

size, thus affecting the focal shift. However, for the blocked case with an opaque disk,

the outer spatial beam extent remains unchanged and thus the Fresnel number remains

unchanged. For that reason, the focal shift phenomenon in apertured beams is different

from the traditional blocked cases studied yet.
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These theoretical and experimental results confirm the ability of the LG beam to self-

heal when encountering opaque disks but not when encountering apertures, where the

LG beam self-heals if the opaque disk lets some light (rings) bypass the obstruction.

By considering the outer rings as the higher spatial frequency components of the field,

this result can be interpreted based on the spatial frequency filtering argument, that any

high pass filtered image can be reconstructed by the interference of the remaining non

filtered high frequencies. Or in the context of structured light that means there is enough

information in the higher spatial frequencies to reconstruct the entire field.

Figure 2.13: Theoretical and experimental beam radius as a function of normalized
propagation distance for (a) unobstructed, and obstructed by (b) an aperture, and (c) an
opaque disk. In all cases the initial beam was an LG50 obstructed at its third intensity
zero. The measured and predicted M2 values are given in the insets.

2.7 Conclusion

In this chapter, we have studied the diffraction spatial characteristics of radial LG beams,

passing through two kinds of obstructions, that have shown the self-healing property of

such beams. Our results have illustrated that the self-healing abilities of an LG beam are

strongly dependent on the type of obstruction and less pronounced on its size. We have

noticed that the LG beams are rather robust to the opaque disk radii, where attaining

high-quality reconstruction even when a relatively large part of the beam is blocked. In
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addition, we have demonstrated that the obstructed beam by an opaque disk keeps almost

the same characteristics of the unobstructed beam, which was not the case when the beam

is obstructed by an aperture. Altogether, our results have shown that the LG beam is

more capable of self-healing when obstructed by an opaque disk than when blocked by an

aperture.

Moreover and considering the nature of the obstacle from a high-pass filter to a low-pass

filter, we have adopted an elegant way to interpret physically the diffraction behavior or

rather the self-reconstruction of these beams based on the concept of spatial frequency

filtering; considering the LG beams as images and the different rings of the beam as dif-

ferent spatial frequencies (since these beams are scaled propagation invariant). We have

found that when the beam is blocked by an aperture, it loses its high-frequency informa-

tion, and when it is blocked by an opaque disk, it losses its low-frequency information.

Therefore, based on the spatial filtering concept, the beam is able to reconstruct itself

only when its higher spatial frequency content is preserved.



Chapter 3

Modeling the diffraction of the

Laguerre-Gauss beams by an aperture

and an opaque disk

The current chapter contains extracts from a publication by Bencheikh, Chabou, and

Boumeddine [66].

3.1 Introduction

The interest concerning LG beams, which are the eigenmodes of propagation where they

propagate infinitely without changing their shape, is now rising rapidly thanks several

modern applications especially in the field of optical trapping [67, 68], optical communi-

cation [69, 70], and quantum studies [71, 72].

In this chapter, we will provide, within certain conditions, a new analytical description for

the far-field of the diffracted LG beams, that was characterized in the previous one. We

will demonstrate that the Laguerre-Gaussian beams of order p (LGBp) are asymptotically

equivalent to the Bessel beams (BB) only in the inner multi-ring part. Thus, we will

45
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suggest another beam, which is a sum of what we will call "ring shifted-Gaussian beams",

that could replace its outer multi-ring part. Such peer-to-peer comparison of the LGBp

will help us to solve analytically the diffraction of such beams at the far-field, for which

no exact analytical solution is known.

3.2 Comparison between Laguerre-Gauss beam and Bessel

beam

In this section, we show the connection between the LG beam and BB based on the

previous work of Mendoza-Hernández, Job, et al [73], where it has been demonstrated

that they could be equivalent under some circumstances based on the asymptotic behavior

of the Laguerre polynomial for higher-order p given as follows

(√
2r

w(z)

)|l|
L|l|p

(
2r2

w2(z)

)
e−r

2/w2(z) ≈ Γ(p+ |l|+ 1)

p!(p+ (|l|+ 1)/2)|l|/2
× Jl

(
2
√

2p+ |l|+ 1
r

w(z)

)
.

(3.1)

where Γ(.) is the gamma function and Jl is the Bessel function of order l. p and l are the

radial and azimuthal indexes, respectively. The following study is limited only to radial

modes, it means l = 0

Eq. (3.1) determines the relation between all main parameters of both beams; LGB and

BB.

Figure 3.1 and Figure 3.2 displays, respectively, the transverse and the longitudinal inten-

sity patterns, of an LGB and the corresponding BB for (p, l) = (10, 0). It can be seen from

Figure 3.1 (a), which shows the comparison of their 1D transverse intensity distributions,
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that the transverse cross-sections of the two beams overlap only in the inner multi-ring

part in contrast to the outer multi-ring part that behaves differently. Figures 3.1 (b) and

(c) present the 3D intensity profiles of LGB and BB, respectively.

In contrast, in Figure 3.2(a), which shows the comparison of their on-axis intensity distri-

butions, the LGB and its equivalent BB are significantly different. The ideal BB continues

propagating as a nondiffracting beam for an important distance z ≥ 2zR, then it is trans-

formed into a ringed beam in the far-field (as known from BB theory). While the LGB

propagates as a scaled invariant beam, where it’s keeping its on-axis intensity important

for just one Rayleigh length zR, then it continues propagating to infinity even with a

small intensity. Figures 3.2(b) and (c), which present the propagation of LGB and BB,

respectively, in the plane ξ − z, illustrate the difference in the longitudinal plane.

The obtained results led us to truncate both beams, the LGB as well as the BB, and

examine their behavior. The second row in Figure 3.1 and Figure 3.2 depicts, respectively,

the transverse and the longitudinal intensity patterns of the truncated two beams. It is

evident that the LGB and the BB are perfectly the same and are indistinguishable. That

means we can use one rather than the other.
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Figure 3.1: The transverse cross sections and the intensity profiles of the LGBn and its
equivalent BB (top), for a beam order p = 10, showing the truncated versions (bottom).
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Figure 3.2: The on-axis intensty (first column) and the propagation in the ξ−z (second
and third column) of the LGBp and its equivalent BB (top), for a beam order p = 10,
showing the truncated versions (bottom).

The electric fields, that will be used next, of the LGBp and its equivalent the BB at the

initial plane z = 0, can be written as follows

uLGBp(r, z = 0) = Lp

(
2
r2

w2
0

)
exp

(
− r

2

w2
0

)
, (3.2)

uBB(r, z = 0) = J0

(
2
√

2p+ 1
r

w0

)
. (3.3)

In order to investigate the truncation effect on the similarity between the LGBp and the

BB, we present in Figure 3.3 the variation of the similarity degree S as a function of the

truncation parameter δ = a/w0 for different beam orders p. As mentioned in the previous
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chapter the similarity between two functions is given by

S = cos(|u1|, |u2|) =
(|u1|, |u2|)
||u1||||u2||

(3.4)

with u1 and u2 , for this chapter, denotes the optical fields of the LGBp and BB (Eq. 3.2

and Eq. 3.3), respectively, for this chapter.

Eq. 3.4 becomes

S =

∫ a
0
uLGBp(r, z = 0)u∗BB(r, z = 0)rdr√∫ a

0
uLGBp(r, z = 0)u∗LGBp

(r, z = 0)rdr
√∫ a

0
uBB(r, z = 0)u∗BB(r, z = 0)rdr

, (3.5)

(∗) denotes the complex conjugate.

For (0 ≤ δ ≤ 2), S = 1, the two beams overlap perfectly for all beam orders p. In the

following sections, based on this result, we will consider the LGBp and the BB as the

same, which will allow us to evaluate the Kirchhoff-Fresnel diffraction integral that have

referred to in the previous chapter of the diffracted LGBp, analytically.

Figure 3.3: The similarity degree between LGBp and its equivalent BB as a function of
the truncation parameter δ, for different beam orders p.
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As a last part of the comparison between the LGBp and the BB, we exhibit in Figure 3.4

the intensity profiles of the LGB10 and its equivalent BB, for different cases. Figures 3.4(a-

b) show the LGB10 and BB for no truncation or obstruction, while Figures. 3.4(c-d) show

the LGBp and BB with truncation (δ = 2,). It can be seen that after truncation the

two beams become indistinguishable. Figures 3.4(e-f) show the remaining parts from the

truncated beams.

Figure 3.4: The LGBp versus the BB. (a) and (b), represent respectively the un-
obstructed LGB10 and BB. (c) and (d), represent respectively the truncated LGB10 and
BB. (e) and (f), represent the remaining outer multi-ring part of the truncated LGB10

and BB shown in (c) and (d).

The significant difference between the LGBp and BB in the outer multi-ring part, moti-

vated us to seek another peer to the LGBp. Figure 3.5(a) shows the outer multi-ring part

of the LGB10, while Figures 3.5(b) shows the new beam we suggest to replace the outer

multi-ring part of the LGB10, it is composed of many rings represented by different colors.

The details regarding the new beam will be discussed in the next section.
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Figure 3.5: The new modeling representation of the outer multi-ring part of the LGB10.
(a) The outer multi-ring part of the LGB10, (b) A sum of rings represented by different
colors located at the same LGB10 rings. The white profiles correspond to the LGB10

intensity distribution.

3.3 Analytical description of diffracted LG beam

In this section, we describe the far-field (the focal plane of a lens) of the diffraction of

LGBs focusing on the opaque disk case, analytically, where we base on the comparison

performed in the previous section.

The Fresnel Khichhoff diffraction integral, mentioned in the previous chapter, of the

propagated field at a focal plane of the lens (z = f) in cylindrical coordinates system can

be written as follows

uout(ρ, z) =
i2π

λz
exp

(
i
2π

λ

(
z +

ρ2

2z

))∫ ∞
0

uin(r, z = 0)τ(r)J0

(
2π

λz
ρr

)
rdr, (3.6)

with τ(r) is the transmittance function of the obstacle.

It’s worth noting that using a lens means making a Fourier transform. The Fourier
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transform in the cylindrical coordinates is known as the Hankel transform.

3.3.1 Far-field of the diffracted LGB by small apertures

As we demonstrated above, the LGB is similar to BB only in the truncated version of

small obstacles. Thus we consider the BB in place of the LGB in order to obtain the far-

field of diffracted LGB by an aperture, which has no analytical expression in contrast to

the BB. The analytical expression for the far-field of truncated BB has been demonstrated

before by many authors, it is given by [74–76]

∫ a

0

uLGBp(r, z = 0)J0

(
2π

λf
ρr

)
rdr =

∫ a

0

uBB(r, z = 0)J0

(
2π

λf
ρr

)
rdr

= a2
βJ1(β)J0(D)−DJ1(D)J0(β)

β2 −D2

(3.7)

where r and ρ are the transverse field amplitude coordinates at the input and Fourier

planes, respectively. β = 2
√

2p+ 1× a/w, D = 2πaρ/λf . 2a is the aperture diameter, λ

the wavelength, and f is the focal length of a lens.

The expression in Eq. (3.7) allows as to describe the far-field of diffracted LGB by small

apertures analytically (δ < 2).

Figure 3.6 presents the far-field intensity distributions of the diffracted LGB by an aper-

ture having a diameter lying between δ = 0.60 in Fig. 3.6(a), and δ = 2.04 in Figure 3.6(f),

where the blue line corresponds to the numerical simulation of LGB and the red line cor-

responds to the analytical expression of BB. It’s visible that the two beams are practically

the same for the three first truncation parameters (Figure 3.6(a), (b), and (c)), while for

the other three ones (Figure 3.6(d), (d), and (f)), in general, they good overlap.
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Figure 3.6: The intensity distribution at the focal plane of a lens (f = 100mm) of the
apertured LGB10, from, on its second intensity’s zero in (a) to on its sixth intensity’s zero
in (i); numerical integration (in red) versus analytical expression (in blue).

3.3.2 Far-field of the diffracted LGB by an opaque disk

In this section, we study the analytical description of the diffracted LGB by an opaque

disk through two parts, wherein for small sizes we adopt the BB approximation shown

above while for the big ones the remaining part of the beam will be considered as a sum

of ring shifted-Gaussian beams.

Considering LGB as BB for small opaque disks

The far-field of the diffracted LGB beam by an opaque can be obtained via the Babinet

principle [32] which states that the sum of the diffracted fields by two complementary

obstacles is the propagated field without obstacle, as follows

∫ ∞
a

uLGBp(r, z = 0)J0

(
2π

λf
ρr

)
rdr =∫ ∞

0

uLGBp(r, z = f)J0

(
2π

λf
ρr

)
rdr −

∫ a

0

uLGBp(r, z = f)J0

(
2π

λf
ρr

)
rdr.

(3.8)
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The Hankel transform of the propagated LGBp without obstacle (un-diffracted LGBp) is

straightforward, which can be obtained from the table of integrals, it is given by [77]

∫ ∞
0

uLGBp(r, z = 0)J0

(
2π

λf
ρr

)
rdr = (−1)p

(
w2

0

2

)
Lp

(
2

ρ2

(λf/πw0)2

)
exp

(
− ρ2

(λf/πw0)2

)
.

(3.9)

While the diffracted LGBp by a small aperture is given above by the Eq. 3.7 using the

approximation of LGBp to BB.

By substituting Eqs. (3.9) and Eqs. (3.7) into Eq. (3.8), the far-field of the diffracted

LGBp by an opaque disk can be written analytically as follows

uLGBp(ρ, z = f) ≈(−1)p
(
w2

0

2

)
Lp

(
2

ρ2

(λf/πw0)2

)
exp

(
− ρ2

(λf/πw0)2

)
− a2βJ1(β)J0(D)−DJ1(D)J0(β)

β2 −D2
.

(3.10)

In order to validate the obtained analytical expression, some simulations of the Eq. (3.10)

are shown in Figure 3.7. As an example, we plot the diffracted LG10 by different opaque

disks having a diameter lying between δ = 0.60 in Figure 3.7(a), and δ = 3.87 in Fig-

ure 3.7(i). It can be seen, from Figure 3.7(a) to Figure 3.7(e)(δ = 2.04), that the obtained

LGB10 far-field intensities using the analytical expression of Eq. (3.10) (in blue) overlap

perfectly with that obtained by the first integral of Eq. (3.8) (in red) in the case of small

opaque disks (δ ≤ 2). These presented simulations are consistent with those demonstrated

by the similarity degree shown in Figure 3.3.
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Figure 3.7: The intensity distribution at the focal plane of a lens (f = 100mm) of the
obstructed LGB10, from, on its second intensity’s zero in (a) to on its last intensity’s zero
in (i); numerical integration (in red) versus analytical expression (in blue).

Considering LGB as BB for big opaque disks

In this section, we investigate the LGBp that undergoing big opaque disks, where the BB

is not a good approximation. The remaining rings after the similar rings to BB could

be modeled as a sum of a ring shifted-Gaussian beams expressed by (−1)iaiexp[−((r −

r0i)/w0i)
2]. Each ring of the un-equivalent LGBp part to BB corresponds to one ring

shifted-Gaussian beam. Here r0i is the center position of the i ring and w0 represents the

ring width. The (−1)i term ensures a pi phase shift between two consecutive rings (as in

LGBp), and ai expresses the pic intensity ratios between the different i rings compared to

those of real LGBp.
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To model the remaining rings of the LGBp by ring shifted-Gaussian beams, we adopt

the zeroes positions of the LGBp intensity (here ri is the ith zero of the LGBp intensity

calculated numerically using Mathematica). We consider the difference between two con-

secutive zeroes as the width w0i = (ri+1 − ri)/2 = ∆ri of the ring i, and the quantity

r0i = (ri+1 + ri)/2 stays for the half diameter of the i ring. The ai values of i ring

shifted-Gaussian beams could be extracted directly from the peak’s intensity ratios of

ideal LGBp. Figure 3.8 presents an illustrative schema for the different parameters of ring

shifted-Gaussian beams.

Figure 3.8: Schema illustrating the different parameters of ring shifted-Gaussian beams.

In order to test the validity of our new modeling concerning the sum of ring shifted-

Gaussian beams, we simulate in Figure 3.9 the obstructed LGB10 by two opaque disks

having two different sizes. Figure 3.9 (a) shows the sum of five rings using the model of ring

shifted-Gaussian beams, the latter was plotted employing the LGB10 profile. Figure 3.9(b)

shows simultaneously the intensity profile of the diffracted LGB10 by an opaque disk

and its equivalent two rings shifted-Gaussian beam, where it’s visible that they overlap

perfectly. Figure 3.9(c) displays the density plot of two rings modeled using two ring
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shifted-Gaussian beams, where it’s overlap with the LGB10 intensity profile (white plot).

Figure 3.9(d) shows the intensity profiles of the obstructed LGB10 by an opaque disk and

its equivalent two ring shifted-Gaussian beams, evident they are perfectly the same.

Figure 3.9: Density plots (a,c) and transverse intensities (b,d) of obstructed LGBp
(in blue) modeled as a sum of ring shifted-Gaussian beams (in red). The white curve
represents LGB10 profile, while the yellow five rings are ring shifted-Gaussian beams
located at the same positions as the LGB10 rings.

As Figure 3.9 is demonstrated, the obstructed LGBp by an opaque disk and its equivalent

ring shifted-Gaussian beams are almost the same at a given input plane z = 0. In

Figure 3.10, we plotted the on-axis intensity as a function of the normalized propagation

distance for the same beams of Figure 3.9. It seems that the obstructed LGB10, and their

equivalent, the ring shifted-Gaussian beams, sustain their overlapping during propagation.
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Figure 3.10: The on-axis intensity of the obstructed LGB10 as a function of the normal-
ized propagation distance. (a) obstructed LGB10 (in blue) with its equivalent five ring
shifted-Gaussian beam (in red), (b) the obstructed LGB10 with its equivalent two rings
shifted-Gaussian beam.

In order to quantitatively validate the suggested model, the ring shifted-Gaussian beams,

Figure 3.11 presents a quantitative (Figure 3.11 (a)) and qualitative (Figure 3.11 (b))

comparison between the obstructed LGB10 and the corresponding ring shifted-Gaussian

beams. In Figure 3.11 (a), whatever the number of the remaining rings, the similarity

degree S ≈ 1, indicates that the two beams are the same. As well, Figure 3.11 (b) shows

that they are completely identical. Thus, that confirms that this second approximation

can be used for all obstacle sizes greater than the central peak. It is worth noting that

there is no constraint related to the beam order, for that reason we have plotted the

similarity degree for just one beam order p = 10.
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Figure 3.11: (a)The similarity degree between the obstructed LGB10 and its equivalent
ring shifted-Gaussian beams for a different number of the remaining rings. (b) The trans-
verse cross-sections of the obstructed LGB10 on its centrale lobe and the corresponding
ring shifted-Gaussian beams.

The far-field or rather the Hankel transform of the diffracted LGBp by an opaque disk

using the ring shifted-Gaussian beams approximation is given by

∫ ∞
a

uLGBp(r, z = 0)J0

(
2π

λf
ρr

)
rdr ≈

∫ ∞
0

p∑
i

(−1)iaiexp

[
−
(
r − r0i

∆ri

)2
]
J0

(
2π

λf
ρr

)
rdr.

(3.11)

In order to evaluate the integral of Eq. (3.11), we use the properties of the Delta Dirac

function and the convolution operator [55], so, it can be written as follows

∫ ∞
a

uLGBp(r, z = 0)J0

(
2π

λf
rρ

)
ρdρ ≈

p∑
i

FT (−1)iai

[
exp

[
−
(

r

∆ri

)2
]
∗ δ(r − r0i)

]
.

(3.12)
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The sum of Eq. (3.12) is calculated as follows

FT

[
exp

[
−
(

r

∆ri

)2
]
∗ δ(r − r0i)

]
= FT

[
exp

[
−
(

r

∆ri

)2
]]

FT [δ(r − r0i)] . (3.13)

Using Hankel transform, of the Gaussian and the shifted Delta Dirac functions, Eq. (3.13)

becomes

FT

[
exp

[
−
(

r

∆ri

)2
]]

FT [δ(r − r0i)] =
1

λf
r0i∆riJ0[krρ]exp

[
−
(

ρ

w0f

)2
]
, (3.14)

where kr = 2πr0i/λf and w0f = λf/π∆ri.

The far-field of the diffracted LGBp by an opaque disk, using the ring shifted-Gaussian

beams approximation, can be written analytically as follows

∫ ∞
a

uLGBp(r, z = 0)J0

(
2π

λf
rρ

)
rdr ≈

p∑
i

(−1)iai
1

λf
r0i∆riJ0[krρ]exp

[
−
(

ρ

w0f

)2
]
.

(3.15)

To investigate the far-field intensity of the diffracted LGBp by an opaque disk, we use

the ring shifted-Gaussian beams plotted with their equivalent LGB10 in Figure 3.12. The

intensity distributions of the input diffracted LGB10 by an opaque disk are presented on

the left column and their corresponding far-field intensities on the right column. It can be

seen that for bigger obstructions, where few LGBp rings remain, the ring shifted-Gaussian

beams and their equivalent obstructed LGBp are almost the same. The slight difference

that appears in Figs. 3.12(h) and (j) results from the cumulative error of the contribution

of many rings.
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Figure 3.12: The intensity distributions of the obstructed LGB10 (blue line) and the
shifted-ring Gaussian beams (red line), at the input plane on the left and the Fourier
plane on the right.
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3.4 conclusion

In this chapter, we have provided mathematical modelings of the diffracted LGB by an

aperture and opaque disks of defined sizes; at the far-field. We have demonstrated based

on an asymptotic formula that the LGB is identical to BB only in the inner part, where

they have similar truncated behavior. Therefore, we have suggested a new similar beam

structure for the outer rings of the LGB (the remaining rings that are not similar to BB)

that we have called ring shifted-Gaussian beams. These two approximations of LGB led

to split its modeling study into two parts; BB for small sizes and ring shifted-Gaussian

beams for big sizes. The obtained analytical modelings are in good agreement with the

numerical simulations.



Chapter 4

Spatial and propagation properties of

the Cosine-Gauss beams

The present chapter contains extracts from a publication by Bencheikh, Chabou, et al

[78].

4.1 Introduction

Diffraction of light was first reported by Leonardo da Vinci (1452–1519) [79]. Grimaldi ob-

served systematically the diffraction of light about 1660 and coined the word “diffraction”

[80, 81]. So, the first steps to its understanding were only made in the 17th ( Huygens,

Hook, Newton) and 18th centuries (Fresnel, Young) [32, 82–86]. Then, Stratton first de-

rived expressions for invariant beams [87]. In 1987 Durnin [37, 88] was the first to point

out that one could obtain a set of solutions for the free-space scalar wave equation that

was diffraction free (propagation invariant), called Bessel beam.

So the Bessel beam which has cylindrical symmetry was the first non-diffracting beam

introduced. Since then, many other geometries [89–91], including arbitrarily shaped non-

diffracting fields [92], have been exploited. Later, one-dimensional and two-dimensional

Cosine beams were introduced as a nondiffracting beam in Cartesian coordinates. The

64
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Cosine beams nondiffracting nature was demonstrated for the first time in 1994 [93, 94].

These beams, as Bessel beams, are of infinite transverse extent and energy and thus can

not be generated experimentally. For that reason, in 1997, Jiang proposed the truncated-

Cosine beams and an apodized version of CB (the super-Gaussian-Cosine beams) [95], in

order to overcome the infinite energy problem. Later in 2005, Gutierrez et al demonstrated

theoretically that Cosine-Gauss (CG) beams belong to a more general wave family, which

is the nondiffracting Helmholtz-Gauss waves [9]. Due to their nondiffracting and self-

healing natures, Cosine beams have attracted a large community of researchers, where

they have been used in light sheet microscopy [96–99], optical wireless communication

[100–102], Plasmonics [103], and even in hydrodynamics for studying water waves [104].

In this chapter, we discuss theoretically, providing analytical expressions, the spatial and

propagation properties of the Cosine-Gauss beams of fundamental and higher-order.

4.2 Theory of Cosine beam

The ideal Cosine beam, which is an exact solution to the Helmholtz equation in cartesian

coordinates, is a standing wave that could be obtained from the superposition of two

oppositely oblique plane waves. Its complex amplitude can be expressed as follows

u(y, z) = cos (kyy) exp (−ikzz) , (4.1)

where kz and ky are, respectively, the longitudinal and the transverse wave vectors, they

are related by
√
k2y + k2z = k = 2π/λ, and λ is the wavelength.

The intensity distribution of the CB is proportional to |u(y, z)|2 and is independent of

the propagation distance z; therefor, the CB is a nondiffracting beam. However, as in

the case of the Bessel beam, the total energy and the extent at any transverse plane
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is infinite, and thus the ideal CB beam can not be physically realized. The physically

practical approximation of this beam is generated using apodization functions. In the

present section, we discuss the propagation of the apodized CB by a window function

(rectangular) and a gaussian function, which are expressed as follows

Prect(y) = rect
(y
a

)
=


1 |y| ≤ a

0 |y| ≥ a,

(4.2)

PGauss(y) = exp

(
− y

2

w2
0

)
, (4.3)

where 2a is the window width, and 2w0 is the Gaussian function width.

By applying an apodization, the CB becomes of limit energy and extent, it is given by

uAC(y, z = 0) = cos (kyy)P (y), (4.4)

AC indicate the apodized Cosine beam.

The most simple and effective way of the fundamental Cosine beam generation is using

an illuminated Fresnel biprism by a Gaussian beam. An alternative method for the CB

generation is the use of diffractive optical elements (DOE). Figure 4.1 shows a schematic

of the CB generation. The finite distance, zmax, after the axicon, in which a Cosine

beam is found, is determined from the wave vectors of the CB. This maximum distance

(non-diffracting range of the beam) can be estimated geometrically to be

zmax = a
k

ky
, (4.5)

where 2a is the apodized Cosine beam width.
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Figure 4.1: Cosine beams Generation using (a) an axicon [1] and (b) a diffractive optical
element (DOE) or a Spatial light modulator (SLM). (b) and (d) Numerical simulations.
sin(ϑ) = ky/k and tan(ϑ) = a/zmax

It is worth recalling that the schematic shown in Figure 4.1 is the same as that used in

reference [105], where it seems that for the DOE (SLM) the nondiffracting range is greater

than that of the axicon. In reality they are the same and the nondiffracting range given

by Eq. (4.5) depends only on the initial spatial extent and the beam wavelength.

The numerical simulations in this chapter are based on Gaussian beam waist of w0 = 1mm

and a wavelength of λ = 1.064µm.

4.3 Diffraction-free nature of Cosine-Gauss beams

Most laser beams tend to spread due to diffraction as they propagate, causing the beam

radius to increase. One of the things that make the non-diffracting beams of great interest

is that it is to a large extent resistant to this diffractive spreading, where they keep its

initial size and shape. For pseudo-nondiffracting beams, it retains these only up to some

maximum distance zmax, illustrated in Figure 2.4 of the second chapter, at which point
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the beam begins to deteriorate. Up until the vicinity of zmax is reached, the field is

approximately transverse-invariant along the z-axis. This means that any transverse

plane should look like any other transverse plane.This transverse-invariant is another way

of saying that the beam is diffraction-free; the beam does not spread or become distorted in

the transverse direction. In this section, we investigate this property for the fundamental

and higher-order Cosine-Gauss beams by examining the zmax region, referred to in the

previous section, analytically.

4.3.1 Propagation characteristics of apodized-Cosine beam

In this section, we investigate the spatial properties of apodized Cosine beam by focusing

on that apodized by a Gaussian function, where we define analytically the range where the

Cosine-Gauss beam being non-diffracting starting from its spatial extent (beam width).

The propagated field of the apodized Cosine beam can be described using the Kirchhoff-

Fresnel diffraction integral, referred in the second chapter, given by

uout(η, z) =

√
1

iλz

∫ +∞

−∞
uAC(y, z = 0) exp

(
iπ

λz
(η − y)2

)
dy, (4.6)

Figure 4.2 displays the propagation of apodized Cosine beam showing its characteristics.

Figure 4.2 (a) shows the Cosine beam apodized by a rectangular window, where it can

be seen that the sharp truncation of the window causes some ripples manifested at the

vicinity of the window edges, as well as during propagation. While Figure 4.2(b) shows

the Cosine beam apodized by a Gaussian function (Cosine-Gauss beam), in which the

smooth apodization ensures a smooth beam profile during propagation (no ripples). The

same spatial extent (a = w0) for two apodized beams gives the same zmax distance.
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Figure 4.2: Propagation characteristics of apodized Cosine beam. (a) Windowed-Cosine
beam. (b) Cosine-Gauss beam. (Both beams have the same width w0 = 1mm).

In the following, we will adopt the Gaussian apodization function that yields from the

Gaussian spatial extent of laser beams, it is more practical. So, let’s start examining the

non-diffracting range zmax of the Cosine-Gauss beam, to do that we need first to calculate

the beamwidth using the second-order moment, which is useful to mathematically define

the radius of an arbitrary laser beam profile. In the second-order moment, the beamwidth

is defined by

WCG = 2

√√√√∫ +∞
−∞ y2I(y, z)dy∫ +∞
−∞ I(y, z)dy

, (4.7)

where I(y, z) = uAC(y, z = 0)u∗AC(y, z = 0) is the intensity distribution of CG beam in

our case, and the asterisk being for the complex conjugate.

Substituting the intensity expression of CG beam in Eq. (4.7), with

cos(x) = (exp(ix) + exp(−ix)) /2 [64]

WCG = 2

√√√√∫ +∞
−∞ y2 (exp (ikyy − y2/w2

0) + exp (−ikyy − y2/w2
0))

2
dy∫ +∞

−∞ (exp (ikyy − y2/w2
0) + exp (−ikyy − y2/w2

0))
2
dy

, (4.8)
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After simplification Eq. (4.8) becomes:

WCG = 2

√√√√∫ +∞
−∞ y2 (exp (2ikyy − 2y2/w2

0) + exp (−2ikyy − 2y2/w2
0) + 2 exp (−2y2/w2

0)) dy∫ +∞
−∞ (exp (2ikyy − 2y2/w2

0) + exp (−2ikyy − 2y2/w2
0) + 2 exp (−2y2/w2

0)) dy
,

(4.9)

By using the following integrals formulas [64] for the numerator of Eq. (4.9)

∫ +∞

−∞
xνexp(−px2 + 2qx)dx =

1

2ν−1p

√
π

p

dν−1

dqν−1
[
q exp(q2/p)

]
. (4.10)

and

∫ +∞

−∞
x2νexp(−qx2h)dx =

Γ(ν)

hqν
. (4.11)

and the following one for the denominator [64]

∫ +∞

−∞
exp(−p2x2 + qx)dx =

√
π

p
exp(q2/4p2), (4.12)

The CG beam width WCG, of a transverse wave number ky and a Gaussian beam width

w0, can be expressed as follows

WCG(ky, w0) = w0

√
1− k2yw2

0 + exp(k2yw
2
0/2)

1 + exp(k2yw
2
0/2)

. (4.13)

In order to simplify Eq. (4.13), we use the dimensionless parameter α = kyw0 and we

normalize the CG beam width to the Gaussian beam width W (α) = WCG/w0. Eq. (4.13)
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becomes

W (α) =

√
1− α2

1 + exp(α2/2)
. (4.14)

Eq. (4.14) show that the normalized beamwidth of the CG beam is always less than one.

It seems that the Gaussian envelope modulation with another higher frequency varying

function reduces the width (based on the second-order intensity moment) of the resulting

modulated function. Its value depends only on the CG beam parameter α = kyw0.

Since the range of nondiffracting Cosine-Gauss beam depends on the beam width, we sub-

stitute Eq. (4.14) into Eq. (4.5) and divided by the Rayleigh range zR, the final expression

of normalized zmax is given by

zmax
zR

=
2

α

√
1− α2

1 + exp(α2/2)
. (4.15)

Figure 4.3 displays the normalized CG beam width variation W (α) and the normalized

distance zmax/zR, as a function of the parameter α. Figure 4.3(a) indicates that the

normalized beam widthW (α) shows an interesting behavior. In which one can distinguish

two stages, at first where 0 ≤ α ≤ 4 the W (α) decreases with increasing of the parameter

α until it reaches a critical value equal to 1.6. This value is calculated from the derivative

of W (α). Then, W (α) increases to reach a saturated value, at α ≥ 4, equals 1.

In Figure 4.3(b) the normalized nondiffracting range zmax/zR is always decreasing when

α parameter is increasing.
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Figure 4.3: (a) The normalized CB width and (b) the normalized nondiffracting distance,
as a function of CG parameter α.

As it is shown above, from the W (α) curve, it is possible to reduce the Gaussian beam

width by modulating it using oscillating functions. For our case, a Gaussian beam having

a width w0 could be reduced to 0.67w0 using a cosine modulating function.

To illustrate the effect of ky on the spatial extent of CG beam, we plot in Figure 4.4 the

CG beam intensity profiles for different values of ky. As shown in Figure 4.3, the Gaussian

beam (obtained for ky = 0) has the largest normalized beam width equals 1. However, at

the critical value α = 1.6, the CG beam resulting from two superposed oblique Gaussian

beams shows the smallest spatial extent, and the beam width W (α) = 0.67. The spatial

extents for all ky values are lying between these two critical values (0.67 and 1).
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Figure 4.4: CG beam intensity profile showing the effect of ky on its spatial extent
(width).

In order to investigate the α parameter effect on the CG beam propagation, we suggest

some density plots showing the CG beam behavior. Figure 4.5 depicts the propagation of

CG beam in (η − z) plane for α different values, their choice was based on the curves of

the Figure 4.4. From Figure 4.5(a), for α = 0, the CG beam reduces to a Gaussian beam
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and propagates without spreading throughout one Rayleigh range zR. In Figure 4.5(b),

the CG beam, for the critical value α = 1.6, gives the tightest CG beam width according

to Figure 4.4. The value of this latter is smaller than that of the standard Gaussian beam

given by w0. In Figures. 4.5(c,d), the propagation of CG beam is shown for α = 5 and

α = 10 respectively. It can be seen that the more α increases, more the nondiffracting

range of the CG beam decreases, as predicted in Figure 4.3(b). All results concerning the

beam range presented in Figure 4.4 and Figure 4.5 are in good agreement.

Figure 4.5: CG beam propagation in (η − z) plane for different values of α; (a) α = 0,
(b) α = 1.6, (c) α = 5, and (d) α = 10.

4.3.2 Propagation characteristics of higher-order Cosine-Gauss

beam

In this section, we present an efficient but straightforward method for generating higher-

order Cosine-Gauss beams from the interference of two oppositely oblique higher-order

Hermite-Gauss beams of order n (HGn) using a prism. The resulting interference pattern

gives rise to a standing wave. The latter is nondiffracting in a range defined by the beam

width and the angle between the two interfering beams. Moreover, we extend the per-

formed analysis in the previous section to these higher-order beams.

To simulate physically the superposition of HGn beams and the birth of the standing
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wave, we use a prism of apex angle Θ. The schematic layout is presented in Figure 4.6.

Figure 4.6: Generation of higher order Cosine-Gauss HCGn beam with n = 10 using a
prism.

To mathematically describe the propagation of the Hermite-Cosine-Gauss beams of order

n (HCGn) created by a prism, we use the Fresnel Kirchhoff diffraction integral. Thus, the

propagated electric field is given as follows

uHCGn(η, z) =

∫ 0

−∞
uHGn(y) exp(−ikηy) exp

(
− ik

2z
(y2 − 2yη)

)
dy

+

∫ +∞

0

uHGn(y) exp(+ikηy) exp

(
− ik

2z
(y2 − 2yη)

)
dy,

(4.16)

with uHGn(y) = Hn(
√

2y/w0) exp(−y2/w2
0), Hn is the Hermite polynomial of order n, and

w0 stays for the Gaussian beam width.

The amplitude of the output electric field could be approximated by a Hermite-Cosine-

Gauss beam, inferring from a previous work that demonstrated the Gaussian beam con-

version into cosine beam using axicon [95], as follows

uHCGn(η, z = 0) = Hn

(√
2
η

w0

)
cos(kηη) exp

(
− η

2

w2
0

)
. (4.17)



Spatial and propagation properties of the Cosine-Gauss beams 76

Figure 4.7 illustrates a simulation for HCG10 beam propagation in (η−z) plane using; (a)

the numerical calculation of Eq. (4.16) and (b) the expression of Eq. (4.17). The two pat-

terns of Figure 4.7 are the same in the region where the superposition of the two oblique

beams occurs. In what follows, we will use the HCGn beam function given by Eq. (4.17),

where it’s more practical when implemented on a spatial light modulator (SLM). The

latter ensures that HCGn beam patterns start from z = 0, however, in the case of axicon

the HGCn beam occurs only in the region where the two beams are superposed. Therefor,

Figure 4.7(b) depicts the case of DOE (diffractive optical element) that simulated usually

on SLMs.

Figure 4.7: Simulations of generated higher order Cosine-Gauss beam using: (a) prism
and (b) DOE.

The HCG beam depends on three key parameters; the beam order n, the Gaussian beam

width w0, and the Cosine function parameter kη. It is a standing wave resulting from the

superposition of two traveling oblique waves. Thus, It exhibits a nondiffracting behavior

in some regions that depends on the angle between the two skewed beams and on the

spatial extent of the HCGn beam.

As mentioned in the previous section above, the spatial extent or rather the beam width
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is calculated using the second-order intensity moments. So, we substitute Eq. (4.17) in

Eq. (4.7)

WHCGn = 2

√√√√∫ +∞
−∞ η2

(
Hn

(√
2η/w0

))2
(exp (ikηη − η2/w2

0) + exp (−ikηη − η2/w2
0))

2
dη∫ +∞

−∞

(
Hn

(√
2η/w0

))2
(exp (ikηη − η2/w2

0) + exp (−ikηη − η2/w2
0))

2
dη

,

(4.18)

The nominator of Eq. 4.18 becomes

∫ +∞

−∞
η2H2

n

(√
2η/w0

)
exp

(
2ikηη − 2η2/w2

0

)
dη︸ ︷︷ ︸

I1

+

∫ +∞

−∞
η2H2

n

(√
2η/w0

)
exp

(
−2ikηη − 2η2/w2

0

)
dη︸ ︷︷ ︸

I2

+

∫ +∞

−∞
2η2H2

n

(√
2η/w0

)
exp(−2η2/w2

0)dη︸ ︷︷ ︸
I3

,

(4.19)

Applying a partial integration, for I1 and I2,
∫
udv = uv −

∫
vdu, with

u = η2 −→ du = 2η

dv = H2
n

(√
2η/w0

)
exp

(
2ikηη − 2η2/w2

0

)
−→ v =

∫
H2
n

(√
2η/w0

)
exp

(
2ikηη − 2η2/w2

0

)
,

(4.20)

Then, applying a change of variables

η′2

w2
0

=

(√
2
η

w0

∓ iα√
2

)2

=⇒ η′

w0

=
√

2
η

w0

∓ iα√
2

=⇒
√

2
η

w0

=
η′

w0

± iα√
2

(4.21)
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and using the following recursion formulae of Hermite polynomials and Laguerre poly-

nomials [106]

Hn+1(x) = 2xHn(x)− 2nHn−1(x), (4.22)

(p+ 1)Llp+1(x) = (2p+ l + 1− x)Llp(x)− (p+ l)Llp−1(x), (4.23)

Llp(x) = Ll+1
p (x)− Ll−1p−1(x), (4.24)

where Llp are Laguerre polynomials of order p and index l.

also, using the following integral formula [107]

∫ +∞

−∞
exp(−x2)Hm(x+ y)Hn(x+ z)dx = 2nπ1/2m!zn−mLn−mm (−2yz), (4.25)

while, using the following integral formula, for I3, [107]

∫ +∞

−∞
x2exp(−x2)Hn(x)Hn(x)dx = 2nπ1/2n!(n+ 1/2), (4.26)
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On the other hand, the denominator of Eq. 4.18 becomes

∫ +∞

−∞
H2
n

(√
2η/w0

)
exp

(
2ikηη − 2η2/w2

0

)
dη︸ ︷︷ ︸

I4

+

∫ +∞

−∞
H2
n

(√
2η/w0

)
exp

(
−2ikηη − 2η2/w2

0

)
dη︸ ︷︷ ︸

I5

+

∫ +∞

−∞
2H2

n

(√
2η/w0

)
exp(−2η2/w2

0)dη︸ ︷︷ ︸
I6

,

(4.27)

Applying a change of variables of Eq. 4.21 and using the integral formula of Eq. 4.25, for

I4 and I5.

and using the following integral formula, for I6, [64]

∫ +∞

−∞
exp(−x2)Hn(x)Hn(x)dx = 2nπ1/2n!, (4.28)

After tedious but straightforward calculations, the analytical expression of the normalized

HCGn beam width (Wn = WHCGn/
√

2n+ 1w0) is obtained, which depends only on the

CG parameter (α = kηw0) and the beam order n, it’s given by d the beam order n, it’s

expression is given by

Wn(α) =

√
1− (α2L0

n(α2)− 2α2(L1
n(α2)− L2

n(α2)))

(2n+ 1)(L0
n(α2) + exp(α2/2))

. (4.29)

In order to study the α parameter effect on the normalized HCGn beam width, we plot in

Figure 4.8 the Wn(α) variation for different beam order n values. Two important levels

could be noticed; For the first, there is always a dip or rather a minimal value in the
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Wn(α) variation, which depends on the beam order n, then the variation becomes oscilla-

tory around the unity. In the second, the normalized beam reaches a saturated value equal

to 1, for also a critical value of α that depends on the beam order n. From Figure 4.8,

it can be seen that when α reaches a minimum value depends on the beam order, the

HG beam width could be reduced approximately by half due to the interference (yielding

a cosine function).That influences significantly the zmax range of the non-diffracting beam.

Figure 4.8: The normalized HCGn beam width as a function of α parameter.

Since the expression of the HCG beam width (the HCG beam spatial extent) is obtained,

the zmax range could be deduced, substituting Eq. 4.29 into Eq. 4.5, after some algebra

as follows

zmax
zR

=
2

α

√
(2n+ 1)− α2L0

n(α2)− 2α2(L1
n(α2)− L2

n(α2))

L0
n(α2) + exp(α2/2)

. (4.30)

To investigate the nondiffracting range of HCGn beam, the zmax/zR variation is plotted as

a function of CG parameter α for different beam order values (n = 1, n = 5, and n = 10),

shown in Figure 4.9 . Then we choose four values of α to present the density plots of

HCG10 in (η−z) plane illustrated in Figure 4.10. The influence of α on the beam range is
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evident and it is consistent with the previous results which indicate that the HCGn beam

behavior depends on this value.

Figure 4.9: The normalized HCGn beam range as a function of α parameter for different
beam order n values.

Figure 4.10: HCG beam propagation in (η−z) plane for different values of α; (a) α = 0,
(b) α = 1, (c) α = 5, and (d) α = 10.

4.4 Self-healing property

A peculiar feature of non-diffracting beams is their extreme self-healing properties, dis-

cussed in the second chapter, allowing them to reconstruct their original shape, some

distance after, even after rather devastating perturbations. This distance is termed the

healing distance, it can be determined via simple geometric arguments [35]. To evaluate
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the self-healing ability of our studied beams of this chapter, an opaque obstacle is placed

at the initial plane, blocking a specific part of the beam, as shown in Figure 4.11. In what

follows, we consider the fundamental mode CG beam as a particular case of higher-order

HCG beams (HCGn). Figure 4.11 presents the propagation of obstructed HCGn, of fun-

damental order n = 0 and of beam order n = 10, in the (η − z) plane. The influence

of the obstruction size, on the beam propagation including the non-diffracting range, is

clearly seen from Figure 4.11 (a), (c), and (b), (d).

Figure 4.11: Self-healing ability investigation of the HCGn beams. (a) n = 0 with
obstruction size 0.25,(b) n = 0 with obstruction size 0.5, (c)n = 10 with obstruction size
1, and (d)n = 10 with obstruction size 2.5.

The minimal distance zmin from which the beam begins its profile recovery, depicted in

Figure 2.4 of the second chapter, is proportional to the obstruction size, and the first

attempt to calculate this distance is purely geometric, as mentioned above. Since we are

considering the HCGn beam as a standing wave resulting from the superposition of two

oppositely oblique traveling waves (with angles +ϑ and −ϑ), we can easily demonstrate

an approximation for the distance zmin ≤ z0 as follows

z0 = 2δ
zR
α
, (4.31)

where δ = a/w0 is the obstacle size.

It is worth noting that the calculation of z0 expression considers that light propagates in

a straight line, ignoring the effect of the light bending due to the diffraction effect. At
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least, this is the farthest distance that zmin can reach.

To assess the self-healing quality, we use the on-axis intensity for only symmetric HCGn

beams with even order n (because the anti-symmetric HCGn beams with odd order n

posses a null on-axis intensity along propagation axis z). Since all HCGn beam orders

behave in the same manner, the concept is the same. As HCGn beam exhibits a periodic

self-imaging, we suggest using the on-axis intensity. That allows testing the conservation

degree of self-imaging periodicity against the different obstacle sizes. In Figure 4.12 we

plot the on-axis intensity versus the normalized propagation distance (to zR), for different

obstacle sizes. The conservation of the self-imaging and the periodicity (described here

by the intensity maxima) depends strongly on the obstruction size, it can be seen that

the more it increases the more intensity pics loses (corresponding to self-imaging planes).

In order to make the obstruction size effect on the on-axis intensity more evident, we

split the obstruction sizes into two categories. Figure 4.12(a) shows the effect of the small

obstruction sizes, while Figure 4.12(b) shows the effect of the big ones. It can be noticed

that for small obstruction sizes the on-axis intensity maxima sustain their loci, whereas

for big ones, the maxima shifts toward the obstruction plane.
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Figure 4.12: Self-healing of obstructed HCG10 beam with α = 10 undergone different
obstacle sizes.

The main interpretation of the Cosine beam family self-healing is based on the super-

position of the traveling waves. As long as the two traveling waves are not completely

blocked, the interference phenomenon occurs always in some regions, which depends on

the size and position of the obstruction.

The HCGn beam self-healing degree during propagation can be quantitatively described,

as a function of obstruction size, using the similarity function, discussed in the second

chapter, as follows

S(z) =

∫ +∞
−∞ uobsHCGn

(η, z)u∗HCGn
(η, z)dη√∫ +∞

−∞ | u
obs
HCGn

(η, z) |2 dη
√∫ +∞

−∞ | uHCGn(η, z) |2 dη
, (4.32)

where uobsHCGn
(η, z) and uHCGn(η, z) denote respectively, the beam field of the obstructed

and unobstructed HCGn.
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Table 4.1: The similarity degree between the obstructed and the un-obstructed
HCG10 beam, with α = 10 in different propagation distances z, for three dif-
ferent values of δ. The underlined values correspond to the distance z0

z 0.0 0.1 0.2 0.3 0.4 0.5

δ = 0.25

S 0.97 0.98 0.99 0.99 0.99 0.99

δ = 1

S 0.91 0.92 0.93 0.94 0.94 0.94

δ = 2

S 0.78 0.84 0.88 0.91 0.91 0.92

The self-healing of the obstructed HCGn beam is evaluated in Table 4.1, which presents

the similarity degree between the obstructed and unobstructed HCG10 beam, of Cosine

parameter α = 10, for three sizes of obstruction at different planes. It can be seen that

the distance z0 (Eq. (4.31)), which the self-healing process based on, strongly depends on

the obstruction size, where is increases with increasing the obstruction size, which in turn

affects the similarity degree.

4.5 Conclusion

In this chapter, we have studied the propagation features of the Cosine-Gauss beams.

We have demonstrated that the Cosine-Gauss beams from fundamental (CG) to higher

orders (HCGn) are standing nondiffracting beams in a certain region resulting from the

interference of two oppositely oblique traveling waves. We have described analytically

the zmax region where they are considered nondiffracting including their spatial extent

Wn, where we have found that they depend on the CG beam parameter α. Since the CG

beams are nondiffracting, we have demonstrated their ability to self-heal and recover when

encountering obstacles, where we have introduced a simple expression for the farthest
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distances from which CG beam would self-reconstruct.



Chapter 5

The diffraction-free nature of elegant

Gaussian beams

The current chapter contains extracts from a publication by Chabou et al [108].

5.1 Introduction

The diffraction is a limiting issue in many applications when one wishes to have propaga-

tion lengths where the transverse dimensions of the light field do not expand appreciably.

Only the non-diffracting beams have this immunity to free space diffraction, as discussed

in the previous chapter [109].

In this chapter, we will demonstrate that also the elegant Gaussian beams can be con-

sidered pseudo-nondiffracting beams under certain circumstances. In which we will show

that the elegant Gaussian beams in cartesian (elegant Hermite-Gauss) and cylindrical (el-

egant Laguerre-Gauss) coordinates are asymptotically equivalent to pseudo-nondiffracting

beams (pNDB) in the same coordinates (Cosine-Gauss (CG) and Bessel-Gauss (BG), re-

spectively). We will present a theoretical comparison of their intensities distribution at

different planes without and with obstruction, which allows discussing the diffraction-free

nature and self-healing property.

87
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5.1.1 The relationship between the pseudo-nondiffracting beams

and the elegant-Gaussian beams

In this section, we demanstrate the relation between an elegant Gaussian beam and a

pseudo-nondiffracting beam in two coordinates system, the cartesian coordinates (eHG

to CG) and the cylindrical coordinates (eLG to BG), based on an asymptotic behavior

supported by a quantitative examination.

Let our analysis comparing eGB with pseudo-nondiffracting beams (BGB, CGB) start

with the asymptotic expressions of the two famous orthonormal polynomials, the Hermite

Hn and Laguerre polynomials L|l|p .

The Hermite polynomials behave asymptotically for large values of n as a cosine function

multiplied by a Gaussian, given as follows [110, 111] :

Hn(x′) ≈ 2(n+1)/2nn/2e−n/2e−x
′2/2 cos

(√
2n+ 1x′ − nπ

2

)
(5.1)

with x′ =
√

2x/w(z).

In the other side, the asymptotic representation of the Laguerre polynomials for large p

is defined as[73, 110]:

e−r
2/w2(z)

(√
2r

w(z)

)|l|
L|l|p

(
2r2

w2(z)

)
≈

Γ(p+ |l|+ 1)

p!
(
p+ |l|+1

2

)|l|/2Jl
(

2

√
2

(
p+
|l|+ 1

2

)
r

w(z)

) (5.2)

By multiplying both sides of the two previous equations, Eqs. (5.1,5.2), by the Gaussian

factor, and after some arrangemment, we get the following asymptotic formulas:
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Eq. (5.1) becomes

Hn

(
x

w′(z)

)
e−x

2/w′2(z) ≈

2(n+1)/2nn/2e−n/2e−x
2/2w′2(z) cos

(√
(2n+ 1)

x

w′(z)
− nπ

2

) (5.3)

and Eq. ( 5.2) becomes

e−r
2/w′2(z)

(
r

w′(z)

)|l|
L|l|p

(
r2

w′2(z)

)
≈ Γ(p+ |l|+ 1)

p!
(
p+ |l|+1

2

)|l|/2
e−r

2/2w′2(z)Jl

(
2

√(
p+
|l|+ 1

2

)
r

w′(z)

) (5.4)

Here w′2(z) = w2(z)/2.

It can be noticed, from the two obtained asymptotic formulas Eqs. (5.3,5.4), that the

elegant Gaussian beams are asymptotically equal to pseudo-nondiffracting beams.

5.1.2 Propagation path comparison

In the following the Fresnel– Kirchhoff diffraction integral, discussed in the second chap-

ter, is used to investigate the beam propagation in free space and after encountering an

obstacle. Its mathematical expression in cartesian and cylindrical coordinates systems,

respectively, is given after some simplifications by

uout(ξ, z) =

(
1

iλz

)1/2 ∫ +∞

−∞
uin(x, z = 0) exp

[
iπ

λz
(ξ − x)2

]
dx (5.5)
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uout(ρ, z) =
1

iλz

∫ ∞
0

uin(r, z = 0)J0

(
2π

λz
ρr

)
exp

[
iπ

λz

(
r2 + ρ2

)]
rdr (5.6)

We consider an eHG beam and an eLG beam, respectively, as inputs (uin), of which their

optical fields can be expressed as:

ueHGin (x, z = 0) = Hn

(
x

w′(z)

)
exp

(
− x2

w′2(z)

)
(5.7)

ueLGin (r, z = 0) = L0
p

(
r2

w′2(z)

)
exp

(
− r2

w′2(z)

)
(5.8)

The optical field of their equivalent pseudo-nondiffracting beams can be expressed, re-

spectively, as follows:

uCGin (x, z = 0) = cos

(√
2n+ 1

w′(z)
x

)
exp

(
− x2

2w′2(z)

)
(5.9)

uBGin (r, z = 0) = J0

(√
4p+ 2

w′(z)
r

)
exp

(
− r2

2w′2(z)

)
(5.10)

Because the on-axis intensity plays an important role in studying nondiffracting beams, we

start by comparing it in order to investigate the obtained equality (Eq. 5.3 and Eq. 5.4)

between the elegant Gaussian beams and the pseudo-nondiffracting beams. Figure 5.1

shows the behavior of the intensity in the plane ξ − z of the compared beams in the top

row and their on-axis intensity distribution in the bottom row for the Cartesian beams on
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the left side (eHG and CG) and for the cylindrical beams on the right side (eLG and BG).

It can be seen that the behavior of the two compared beams, in both cases, is selfsame.

Figure 5.1: The density plots in the plane ξ − z (top row) and the on-axis intensity
distribution (bottom row) of the (a) eHG beam (n = 10) and the equivalent CG beam,
(b)the eLG beam (p = 10, l = 0) and the equivalent BG beam.

5.1.3 Transverse shape comparison

The equivalence of two beams can be, also, expressed in terms of the similarity of their

transverse behavior. In this section, we investigate the analogy between the elegant

Gaussian beams and the pseudo-nondiffracting beams at the waist plane (z = 0) and the

Fourier plane (z = f).

The Fourier plane corresponds to the focal plane of a lens. The optical fields of the

eGB and the pNDB at the far-field are analytically described, using Fresnel Kirchhoff
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diffraction integral ((Eq. 5.5 and Eq. 5.6)), by[77, 112–114]:

ueHGout (ξ, z = f) =

∫ +∞

−∞
ueHGin (x, z = 0) exp

[
−i2π
λf

ξx

]
dx

=
√
π

(
i2πξw′(z)

λf

)n
exp

(
−π2ξ2w′2(z)

λ2f 2

) (5.11)

uCGout (ξ, z = f) =

∫ +∞

−∞
uCGin (x, z = 0) exp

[
−i2π
λf

ξx

]
dx

=
2πw′2(z)

λ2
exp (−(4n+ 2)) exp

(
−2π2w′2(z)

λ2f 2
ξ2
)

cosh

(
2
√

2n+ 1πw′(z)

λf
ξ

)
(5.12)

ueLGout (ρ, z = f) =

∫ ∞
0

ueLGin (r, z = 0)J0

(
2π

λf
ρr

)
rdr

=
1

2
(−1)pw′2(z) exp

(
−π

2ρ2w′2(z)

λ2f 2

)
L−pp

(
π2ρ2w′2(z)

λ2f 2

) (5.13)

uBGout (ρ, z = f) =

∫ ∞
0

uBGin (r, z = 0)J0

(
2π

λf
ρr

)
rdr

= 2w′2(z) exp

(
−(2p+ 1)

4

)
I0

(√
4p+ 2πρw′(z)

λf

)
exp

(
−2w′2(z)π2ρ2

λ2f 2

)
(5.14)

whereI0(.) is the zero-order first-kind modified Bessel function.

Eq. (5.11) and Eq. (5.12) represent the far-field of both the elegant Hermite-Gauss beam

and its equivalent Cosine-Gauss beam, respectively. As Eq. (5.13) and Eq. (5.14) rep-

resent the far-fields of the elegant Laguerre-Gauss beam and its equivalent Bessel-Gauss

beam.



The diffraction-free nature of elegant Gaussian beams 93

Figure 5.2: The intensity profiles (top row) and the transverse cross-sections (bottom
row) of the eHG beam (n = 10) and its corresponding CG beam, (a) at the initial plane
(z = 0) and (b) at the far-field (z = f).
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Figure 5.3: The intensity profiles (top row) and the transverse cross-sections (bottom
row) of the eLG beam (p = 10) and its corresponding BG beam, (a) at the initial plane
(z = 0) and (b) at the far-field (z = f).

In Figure 5.2 (Figure 5.3), the transverse behavior of elegant Gaussian beams and the

equivalent pseudo-nondiffracting beams is compared at two different planes. Figure 5.2

(Figure 5.3) shows the intensity profiles (top) and transverse cross-sections (bottom) of

the elegant Hermite-Gauss beam of order n = 10 (elegant Laguerre-Gauss beam of order

p = 10) and its corresponding Cosine-Gauss beam (Bessel-Gauss beam), at the waist

plane z = 0 on the left side (Figure 5.2(a) (Figure 5.3(a))) and at the Fourier plane z = f

on the right side (Figure 5.2(b) (Figure 5.3(b))). As is visible from Figure 5.2 (Figure 5.3),

the transverse behavior of the two compared beams is identical. (Figure 5.4 (Figure 5.5))

presents the 3D intensity profiles, in which the eGB and the pNDB are indistinguishable.
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Figure 5.4: The 3D intensity profiles of the eHG beam (n = 10) and its corresponding
CG beam, at the initial plane (z = 0) on the left side and at the far-field (z = f) on the
right side.
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Figure 5.5: The 3D intensity profiles of the eLG beam (p = 10) and its corresponding
BG beam, at the initial plane (z = 0) on the left side and at the far-field (z = f) on the
right side.

5.1.4 Quantitative comparison

From previous sections, it was shown for a beam order (n and p) equals 10 that the eGBs

are similar to pNDBs. In the present section, in order to check this similarity for different

beam orders and to quantitatively describe the relationship between these two classes of

beams, we apply the similarity degree S, used in the previous chapters, as follows:

S =

∫ +∞
−∞ ueHG(x, n, z) u∗CG(x, n, z)dx√∫ +∞

−∞ ueHG(x, n, z) u∗eHG(x, n, z)dx
√∫ +∞

−∞ uCG(x, n, z) u∗CG(x, n, z)dx
. (5.15)
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S =

∫∞
0
ueLG(r, p, z) u∗BG(r, p, z)rdr√∫∞

0
ueLG(r, p, z) u∗eLG(r, p, z)rdr

√∫∞
0
uBG(r, p, z) u∗BG(x, p, z)rdr

. (5.16)

Figure 5.6: Illustration of similarity degree between the two classes of beams at z = 0

(top) and at z = f (bottom). (a) The elegant Hermite-Gauss beam and its equivalent
Cosine-Gauss beam, (b) the elegant Laguerre-Gauss beam and its equivalent Bessel-Gauss
beam. For all the presented beam orders n and in both cases, the value of similarity degree
is about 0.99.

Figure 5.6 shows the degree of similarity between the elegant Hermite-Gauss beam (ele-

gant Laguerre-Gauss beam) and its equivalent Cosine-Gauss beam (Bessel-Gauss beam)

at the initial plane (top) and at the far-field (bottom). As seen in Figure 5.6, the simi-
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larity degree, for the different beam orders, between the two compared beams is almost

reaching its maximum (S ≈ 1) in both cases, eHG (Figure 5.6(a) and (c)) and eLG

(Figure 5.6(b) and (d)). This indicates that the elegant Gaussian beams and pseudo-

nondiffracting beams are perfectly identical.

For more clarification, the propagation features of the elegant Gaussian beams are inves-

tigated and analyzed in the following sections.

5.2 Non diffracting nature of elegant Gaussian beams

This section is devoted to investigating an important feature of the pseudo-nondiffracting

beams, which is the propagation-invariance of its transverse intensity profile, for the

elegant-Gaussian beams. Where the maximum distance within which the elegant-Gaussian

beams remain nondiffracting is estimated.

Within the framework of the connection between the elegant Gaussian beams and the

pseudo-nondiffracting beams, demonstrated above, the diffraction free rang zmax , illus-

trated in Figure2.4 of the second chapter, of the eGBs can be investigated using the

Eq. 4.5 of the previous chapter, which is given by

zmax = a
k

kξ
, (5.17)

with a is the beam width and k the wave number.

In the case of eHG the beam width can be defined from Ref [115] (Eq.(17)) as follows:

a =
√
w2
e =

√
2w′20

4n− 1

4(2n− 1)
, (5.18)
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and kξ can be deduced from the asymptotic formula of Eq.5.3 as follows:

kξ =

√
2n+ 1

w′0
, (5.19)

The final expression zmax of elegant Hermite-Gauss beams of order n, after normalization,

is given by
zmax
zR

=

√
8n− 2

(2n− 1)(2n+ 1)
. (5.20)

While the final expression zmax of elegant Laguerre-Gauss beams of radial order p and

azimuthal order l, after normalization, is given by

zmax
zR

=

√
2p− l + l2

(2p+ 1)(2p+ l)
. (5.21)

where the beam width a, using Eq.(21) of Ref [116], and kξ , from the asymptotic formula

of Eq.5.4, are defined as:

a =
√
σ2
0 =

√
w′20
2

2p− l + l2

2p+ l
, (5.22)

kξ =

√
4p+ 2

w′0
. (5.23)

As shown from Eq. (5.20) and (5.21), the diffraction-free region, as known, depends only

on the beam order. Figure 5.7 demonstrates the estimated nondiffracting range, of the

propagated eHG beam in Figure 5.7(a) and propagated eLG beam in Figure 5.7(b), for

different beam orders n. It can be seen from Figure 5.7 that the value of diffraction-free

range zmax decreases with increasing the beam order (n and p).
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Figure 5.7: The normalized nondiffracting range zmax/zR ,as a function of the beam
order, for (a) elegant Laguerre-Gauss beam and (b) elegant Hermite-Gauss beam.

With the aim to validate our results about the diffraction-free range, the density plot

in the plane ξ − z of the propagated elegant-Gaussian beams in free space is plotted

in Figure 5.8. Where Figure 5.8(a) presents a propagated eHG beam of order n = 10

whereas Figure 5.8(b) shows a propagated eLG beam of order p = 10 and l = 0.The

yellow dashed line corresponds to the calculated zmax’s value, normalized to the Raleigh

length zR. It seems that the plot corresponds to the calculation in both presented beams.

Figure 5.8: The density plot in the plane ξ − z of the propagated (a) elegant Laguerre-
Gauss beam and (b) elegant Hermite-Gauss beam, of beam order p = n = 10.
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5.3 Self-healing ability of elegant Gaussian beams

In this section, one more feature of the pseudo-nondiffracting beams, which is the self-

healing ability discussed in the first chapter, is analyzed for the elegant Gaussian beams.

In order to illustrate the elegant Gaussian beam’s ability to heal itself after encountering

an obstacle (an opaque obstruction), the density plot in the plane ξ− z, transverse inten-

sity patterns, and the corresponding profiles, of the obstructed beam, are plotted.

Before starting the analysis and since the two-beam classes are equivalent, we can obtain

zmin that defines the minimum distance before reconstruction occurs, illustrated in Fig.2.4

of the second chapter, as follows [35, 59]:

zmin = δ
k

kξ
, (5.24)

with δ is the obstacle size.

Figure 5.9 shows the behavior, in the plane ξ−z, of the obstructed elegant Hermite-Gauss

beam (n = 10) by a small size’s obstacle in Figure 5.9(a) and by a big size’s obstacle in

Figure 5.9(b), with displaying a cross-section of the obstructed beam at the plane where

the reconstruction occurs. In both cases of Figure 5.9(a) and (b) for sake of simplicity, the

obstacle size was chosen to coincide with the zeros of the beam’s intensity, where in Figure

5.9(a) the obstacle obstructs the beam on its first intensity zero while in Figure 5.9(b) it

obstructs the beam on its third intensity zero. The illustrated plane by the yellow dashed

line corresponds to the minimum distance zmin after which the self-healing process occurs.
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Figure 5.9: (color online) The density plot in the plane ξ − z of the obstructed elegant
Hermite-Gauss beam (n = 10) by (a) a small obstacle and (b) a big obstacle, with
showing the minimum distance zmin before the reconstruction occurs. The bold yellow
line at the initial plane denotes the size and the position of the obstacle, while the dotted
half-rectangle indicates the shadow region.

The same analysis is also performed for an elegant Laguerre Gaussian beam of order

p = 10 and l = 0, in Figure 5.10.
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Figure 5.10: The density plot in the plane ξ−z of the obstructed elegant Laguerre-Gauss
beam (p = 10)by (a) a small obstacle and (b) a big obstacle, with showing the minimum
distance zmin before reconstruction occurs. The bold yellow line at the initial plane
denotes the size and the position of the obstacle, while the dotted half-circle indicates the
shadow region.

The un-obstructed and obstructed on-axis intensities are plotted for the two obstruction’s

sizes; in Figure 5.11(a) for eHG beam and in Figure 5.11(b) for eLG beam. It can be

seen that the shift of the on-axis intensity maximum increases as the obstruction’s size

increases. The latter could be used as an indicator of the self-healing distance.
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Figure 5.11: The on-axis intensity distribution of unobstructed beam (green curve) and
obstructed beam by small (yellow curve) and big obstacle (black curve). (a) eHG beam
of beam order n = 10, (b) eLG beam of beam order p = 10. The plane z0 is the plane
corresponding to the on-axis intensity maximum.

Figure 5.12 shows the intensity patterns (top row) and their corresponding transverse

profiles (middle row) of the obstructed eHG beam by a small obstacle on the left side and

by a big obstacle on the right side; at the obstacle plane (Figure 5.12(a) and (c)) and at

z = z0 plane (Figure 5.12(b) and (d)). The last row presents a comparison between the

obstructed eHG beam and its initial shape (yellow curve). It can be noticed in Figure

5.12(e) and (f) that the obstructed part (inner part) of the beam is reconstructed at z = z0

plane in the case of a small obstacle and the case of a big obstacle.
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Figure 5.12: The intensity patterns and their corresponding profiles at the obstacle
plane z = 0 (a,c) and at the z = z0 plane (b,d) of obstructed eHG beam (n = 10), by a
small (a,b) and big obstacle (c,d); showing the self reconstruction process. The obstructed
eHG beam at the plane z = z0 is compared with the un-obstructed one (yellow curve);
shown in (g) and (h)

.

Figure 5.13 shows the intensity patterns (top row) and their corresponding transverse

profiles (middle row) of the obstructed eLG beam by a small obstacle on the left side and

by a big obstacle on the right side; at the obstacle plane (Figure 5.13(a) and (c)) and at

z = z0 plane (Figure 5.13(b) and (d)). The last row presents a comparison between the

obstructed eLG beam and its initial shape (yellow curve). In that case, the obstructed
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part (inner part), by a small obstacle and a big obstacle, is successfully reconstructed at

the z = z0 plane.

Figure 5.13: The intensity patterns and its corresponding profiles at the obstacle plane
z = 0 (a,c) and at the z = z0 plane (b,d) of obstructed eLG beam (p = 10), by a small
(a,b) and big obstacle (c,d); showing the self reconstruction process. The obstructed eLG
beam at the plane z = z0 is compared with the un-obstructed one (yellow curve); shown
in (g) and (h)

.

As seen from Figure 5.9 (Figure 5.10 ) and Figure 5.12 (Figure 5.13 ), the obstructed



The diffraction-free nature of elegant Gaussian beams 107

elegant Gaussian beams can be reconstructed at the plane z = z0 (which depends on

the obstacle size) in both cases; small and big obstacle. In addition, Figures 5.11 – 5.13

indicate the dependence of the self-healing process of the obstructed beam on the obstacle

size. Moreover, it can be seen from Figures 5.12(e) and (f) (Figures 5.13(e) and (f)), that

when any beam is obstructed, its inner part is always reconstructed after some propa-

gation, that also confirmed by plots presented in the Figures 5.12(g) and (h) (5.13(g)

and (h)). This result was demonstrated recently in many papers using the concept of

ray optics description of optical beams [117, 118]. When an obstructed optical beam is

analyzed using a ray optics description, the inner rays are blocked, while the outer ones

bypassing the obstacle and reconstruct (and focus) the beam, but at a further distance,

which depends on the obstacle size and position.

With a view to quantitatively assess the self-healing ability of the elegant Gaussian beams

(eHG and eLG), we calculate the power content percentage in the remaining part (un-

blocked part) of the blocked beam using the following expressions:

P =

∫ −a
−∞(ueHG(x, n, z = 0))2dx+

∫ +∞
+a

(ueHG(x, n, z = 0))2dx∫ +∞
−∞ (ueHG(x, n, z = 0))2dx

. (5.25)

P =

∫ a
0

(ueLG(r, p, z = 0))2rdr∫∞
0

(ueLG(r, p, z = 0))2rdr
. (5.26)

Table 5.1: Power content of obstructed beam

obstacle size power content (%)
elegant Hermite-Gauss beam

small obstacle 0.24w0 62.4
big obstacle 1.24w0 1.19

elegant Laguerre-Gauss beam
small obstacle 0.26w0 59.1
big obstacle 0.95w0 5.53
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Table 5.1 exhibits the power content ratio of the blocked elegant Gaussian beams in the

case of a small and a big obstacle. From Table 5.1 and Figures 5.9 and 5.10, it can

be seen that the self-healing process occurs even after encountering an obstruction that

blocks more than 95 % of their intensity.

5.4 Conclusion

In this chapter, we have studied the connection between the elegant Gaussian beams

and the pseudo-nondiffracting beams in quantitative and qualitative terms. We have

shown that the elegant Hermite-Gauss beam is equivalent to the Cosine Gauss beam as

is the case for the elegant Laguerre-Gauss and Bessel Gauss beam. Moreover, we have

discussed the diffraction-free nature of the elegant Gaussian beams by investigating their

non-diffracting region and self-healing ability. All the obtained numerical results confirm

that the two compared families are indistinguishable offering the same behavior. Thus,

we have suggested perfect alternative beams to pseudo-nondiffracting beams that can be

generated from a stable resonator.
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5.5 Conclusions

The work presented in this thesis aimed to characterize the propagation behavior of dif-

ferent laser beams that passing through diffractive optical elements; such as aperture,

opaque disk, and prism. In chapter 1, definitions for some of the solutions to the parax-

ial Helmholtz wave equation discussed in this thesis such as Gaussian and higher-order

Gaussian beams were given. We also present the spatial light modulator (SLM), the most

commonly used device for such beams generation.

In chapter 2, we showed theoretically and experimentally the behavior of LG beams after

encountering an aperture and an opaque disk. We assessed the impact of the truncation

and the obstruction on the beam shape and the beam properties, where we evaluated

two main beam characteristics that enclose the whole behavior of the beam (the beam

propagation factor and the focal shift effect). In addition, we interpreted the diffractive

effects of the two used elements on the LG beam shape based on the concept of spatial

filtering.

As an extension of chapter 2, chapter 3 described a new method to solve analytically

the far-field of diffracted LG beams, for which no exact analytical solution is known.We

demonstrated that by imposing the right conditions, the inner part of an LG beam be-

haves as the same part of a Bessel beam (the truncated LG beam is equivalent to a

truncated Bessel beam), while the outer part behaves as different ring shifted-Gaussian

beams (equivalent to a vortex beam without charge).

109
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Chapter 4 investigated the non-diffracting properties of a fundamental and higher-order

Cosine Gauss beam, where we provided, in each case, an analytical expression for the

region for which the beam being non-diffracting based on that of its spatial extent.

In chapter 5, we presented a study on the elegant Gaussian beams with particular em-

phasis on their asymptotic equivalence to pseudo-nondiffracting beams. Furthermore, we

discussed their non-diffracting properties.

5.6 Future studies

The contributions in this thesis can lead to new lines of inquiry in different laser applica-

tions such as in optical communication, optical manipulation, and optical tweezers.

For homogeneous and inhomogeneous media, the use of a customized light such as non-

diffracting and self-reconstructed modes like Bessel Gaussian and Cosine Gaussian beams

yields successful applications. Among others; in optical communications, new light beam

structures allow to increase the capacity of the carried information. In particle manipu-

lation, a customized light gives more freedom degrees for manipulating particles through

complex paths and media. In optical tweezers, such structured beams presented through-

out the thesis could be used to create multi-traps for biological structures.
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Abstract: 

Laser beam propagation has been a subject of active research for over 50 years. 

Throughout this thesis, we study the propagation behavior of different laser Gaussian beams, 

such as Laguerre Gaussian and Hermite Gaussian beams, passed through diffractive optical 

elements (aperture, opaque disk, prism). We perform an investigation into the parameters (the 

beam propagation factor, focal shift effect, beam width, free-diffraction range, ....) that 

delineate the properties of these propagated beams (non-diffracting nature and self-healing 

property ), through quantitative and qualitative measurements.  

The understanding and identification of such beam properties will be useful for various fields. 

Keywords: Gaussian beams, laser beam propagation, diffraction, laser beam characteristics.  

 

Résumé: 

La propagation du faisceau laser fait l'objet des  recherches actives depuis plus de 50 ans. 

Tout au long de cette thèse, nous étudions la propagation des faisceaux lasers Gaussiens, tels 

que les faisceaux Laguerre-Gauss et Hermite-Gauss, passés à travers des éléments optiques 

diffractifs (ouverture, disque opaque, prisme). Nous effectuons une investigation sur les 

paramètres (facteur de qualité M², l’effet du décalage focal, la largeur, la région de diffraction 

libre, ...) qui délimitent les propriétés de ces faisceaux propagés (la nature non diffractant et la 

propriété d'auto-reconstruction), par des mesures quantitative et qualitative.   

La compréhension et l'identification de ces propriétés des faisceaux seront utiles pour divers 

domaines. 

Mots-clés: Les faisceaux Gaussiens, propagation des faisceaux lasers, la diffraction, les 

caractéristiques des faisceaux lasers.  

 

:   ملخص 

.عايًا 05 نًا يزيذ عٍ بحث يىضىع انهيزر شعاع اَتشار كاٌ  

 الاَعكاسيت انبظزيت انعُاطز عبزانًارة   ، انغاوسيت انهيزر أشعتيختهف   اَتشار سهىك َذرس ، الأطزوحت هذِ خلاليٍ 

 انبؤري، انتحىل وتأثيز ،انحزيت اَتشار عايم) انًعهًاث في تحقيق بإجزاء َقىو(. انًُشىر ، انًعتى انقزص ، انفتحت)

 وخاطيت انًشتتت غيز انطبيعت) انًُتشزة انحزو هذِ خظائض تحذد انتي...(  انحز، الاَعزاج ُطقتوي انحزيت، وعزع

.وانُىعيت انكًيت انقياساث خلال يٍ ،( انذاتي انشفاء  

  .انًجالاث نكثيز يٍ يفيذًا سيكىٌ انحزيت خظائض وتحذيذ فهى

.انهيزر شعاع خظائض ، الاَعزاج ، انهيزر شعاع اَتشار ، جاوس أشعت :المفتاحية الكلمات  
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