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Abstract

Unimodal biometric recognition systems have been widely used in various fields. The use
of a single modality makes the developed system suffering from many challenges. Combination
of multiple information extracted from different biometric modalities in emergent biometric
recognition system is the best-proposed solution up till now. These systems aim to solve
different drawbacks encountered in a unimodal biometric system. The search for suitable data
sources that build a robust and secure system is ongoing.

Electrocardiogram (ECG or EKG) provides an inherent characteristic of the liveness of a
person, making it hard to spoof compared to other biometric traits. This new technology has
been recently employed in several unimodal and multimodal systems. Ear biometrics is another
emerging modality, it presents a rich and stable source of information over an acceptable period
of human life. Iris is one of the oldest biometrics that was used in literature. Because of its
higher accuracy and reliability, iris biometrics has been embedded with different biometric
modalities such as fingerprint, face and palm print.

In this dissertation, we aim to solve the existing problems encountered by the unimodal
systems by analyzing existed works and then proposing a novel multimodal biometric system.
Two contributions have been introduced. In the first contribution, we implement two systems.
Firstly, we develop an ECG biometric system based on Shifted One Dimensional Local Binary
Patterns (Shifted-1D-LBP). In this system, we investigate the impact of the preprocessing step
by applying three different techniques named Savitzky-Golay Finite impulse response (SG-
FIR), Butterworth and 1D digital filters. The second system consists of combining ear and
ECG modalities in a bimodal biometric system based on 1D Multi-Resolution Local Binary
Patterns (1D-MR-LBP).

The second contribution employs ear, ECG and iris to develop a novel multimodal system.
Local texture descriptors (1D-LBP, Shifted-1D-LBP and 1D-MR-LBP) are used to extract the
important features from the ECG signal and the converted ear and iris images to 1D signal.
An augmented vector was generated by fusing the three set features. KNN and RBF are used
for matching to classify the unknown user into genuine or impostor. The experimental results
demonstrate that the proposed approach outperforms unimodal biometric systems, our bimodal
biometric system and existing multimodal systems.

Keywords: Multimodal Biometric, ECG, Ear, Iris, Local Descriptors, 1D-LBP, Shifted-
1D-LBP, 1D-MR-LBP.



Résumé

Les systèmes de reconnaissance biométrique unimodaux sont largement utilisés dans divers do-
maines. L’utilisation d’une seule modalité fait que le système développé souffre de nombreux défis. La
combinaison de plusieurs informations extraites de différentes modalités biométriques dans un nou-
veau système de reconnaissance biométrique est la meilleure solution proposée jusqu’à présent. Ces
systèmes visent à résoudre différents inconvénients rencontrés dans un système biométrique unimodal.
La recherche de sources de données appropriées pour construire un système robuste et sécurisé est en
cours.

L’électrocardiogramme (ECG ou EKG) offre une caractéristique inhérente à la vivacité d’une
personne, ce qui le rend difficile à usurper par rapport à d’autres modalités biométriques. Cette
nouvelle technologie a été récemment utilisée dans plusieurs systèmes unimodaux et multimodaux.
L’oreille biométrique est une autre modalité émergente. Elle présente une source d’informations riche
et stable sur une période acceptable de la vie humaine. L’iris est l’une des plus anciennes biométries
utilisées dans la littérature. En raison de sa précision et de sa fiabilité supérieure, l’iris a été intégré
avec des différentes modalités biométriques tels que l’empreinte digitale, le visage et la paume.

Dans cette thèse, nous visons à résoudre les problèmes existants rencontrés par le système unimodal
en analysant les travaux existants puis en proposant un nouveau système biométrique multimodal.
Deux contributions ont été introduites. Dans la première contribution, nous implémentons deux
systèmes. Tout d’abord, nous développons un système biométrique pour l’ECG basé sur Shifted
1D-LBP. Dans ce système, nous étudions l’impact de l’étape de prétraitement en appliquant trois
techniques différentes (SG-FIR, Butterworth et filtres numériques 1D). Le deuxième système consiste
à combiner l’oreille et l’ECG dans un système biométrique bimodal basé sur 1D-MR-LBP.

La deuxième contribution utilise l’oreille, l’ECG et l’iris afin de développer un nouveau système
multimodal. Des descripteurs de texture locaux (1D-LBP, Shifted 1D-LBP et 1D-MR-LBP) sont
utilisés pour extraire les caractéristiques importantes du signal ECG et des images converties de
l’oreille et de l’iris en signal 1D. Un vecteur augmenté a été généré en fusionnant l’ensemble des trois
caractéristiques. KNN et RBF sont utilisés pour l’appariement afin de classer un utilisateur inconnu
comme un authentique ou un imposteur. Les résultats expérimentaux démontrent que l’approche
proposée surpasse les systèmes biométriques unimodaux, le système bimodal proposé et les systèmes
multimodaux existants.

Mots-clés: Biométrie Multimodale, ECG, Oreille, Iris, Descripteurs Locaux, 1D-LBP, Shifted-
1D-LBP, 1D-MR-LBP.



 

 ملخص

   

 ٌجعل واحدة بٌومترٌة صفة استخدام. المجالات مختلف فً واسع نطاق على النمط وحٌدة البٌومترٌة الأنظمة تستخدم

 مختلفة بٌومترٌة صفات من المستخرجة المعلومات من العدٌد بٌن الجمع ٌعد. التحدٌات من العدٌد من ٌعانً المطور النظام

 الأنظمة تواجهها التً المختلفة العٌوب حل إلى النظام هذا ٌهدف. الآن حتى مقترح حل  أفضل هو جدٌد بٌومتري نظام فً

...  العٌن وقزحٌة الأصابع وبصمات الوجه مثل البٌومترٌة الصفات من العدٌد بٌن الدمج تم وقد. النمط ةوحٌد البٌومترٌة

 .مستمر مازال وآمن قوي نظام تبنً التً المناسبة البٌانات مصادر عن البحث. إلخ

 المحاكاة صعب ٌجعله مما الشخص، حٌاة فً متأصلة خاصٌة( EKG أو ECG ) للقلب الكهربائً التخطٌط ٌوفر 

. الأنماط ومتعددة وحٌدة أنظمة عدة فً مؤخرًا الحدٌثة التقنٌة هذه استخدمت لقد. الأخرى البٌومترٌة الصفات مع مقارنة

. الإنسان حٌاة من مقبولة فترة خلال وثابتة مهمة معلومات على تحتوي فهً. أخرى واعدة صفة هً البٌومترٌة الأذن

 مع القزحٌة دمج تم فقد ، وموثوقٌتها العالٌة دقتها بسبب. استخدمت التً البٌومترٌة الصفات أقدم من واحدة هً القزحٌة

 . الٌد راحة وطبعة والوجه الأصابع بصمات مثل أخرى بٌومترٌة صفات عدة

 الأعمال تحلٌل خلال من النمط وحٌد النظام ٌواجهها التً القائمة المشاكل حل إلى نهدف نحن ، الأطروحة هذه فً

 نظام بتطوٌر نقوم أولا،. نظامين ذينفت تم الأولى،بالنسبة للطريقة  .الأنماط متعدد جدٌد بٌولوجً نظام اقتراحثم   الحالٌة

 خطوة تأثٌر من نتحقق ، النظام هذا فً(. المحلٌة ثنائٌة أنماط)  Shifted-1D-LBP أساس على ECG القلب تخطٌط

 الثانً لنظاما تمثلٌ 1D-digital). و SG-FIR) ،  Butterworth مختلفة تقنٌات ثلاث تطبٌق خلال من المسبقة المعالجة

 (.الدقة متعدد( 1D-MR-LBP ىعل ٌعتمد ثنائً بٌومتري نظام فً ECG و الأذن دمج فً

 واصفات استخدام ٌتم حٌث والقزحٌة ،الأذن ECG دمج  على قائم الأنماط متعدد نظام تطوٌر تم ،ثانٌةالطرٌقة الفً  

 من وكذا  ECG إشارة من الهامة المٌزات لاستخراج (1D-MR-LBP, Shifted 1D-LBP, 1D-LBP) المحلٌة الملمس

 مجموعة دمج طرٌق عن جدٌد شعاع إنشاء  ٌتم. واحد بعد ذو شعاع الى صور من  تحولٌهما بعد العٌن وقزحٌة الأذن

 أظهرت. محتال أو أصلً إلى معروف الغٌر المستخدم لتصنٌف للمطابقة RBF و  KNN  استخدام تم كما. الثلاثة المٌزات

 الأنظمة، والنظام الثنائً المطور وكذا النمط وحٌدة البٌومترٌة نظمةالأ على ٌتفوق المقترح النظام أن التجرٌبٌة النتائج

 .الحالٌة الأنماط متعددة

 D-LBP1، المحلٌة الواصفات ، القزحٌة ، الأذن ،  ECGالقلب تخطٌط ، الأنماط متعددة البٌومترٌة: مفتاحية كلمات

، Shifted-1D-LBP ، 1D-MR-LBP. 
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General Introduction

In the past several decades, the human being a source of inspiration for many researchers. His
intelligence and his way of thinking and making decisions in addition to how he interacts

with the external environment, stimulated scientists to develop machines that will be able to
mimic his actions and behaviours. Understanding human falls under the science of Artificial
Intelligence (AI) that builds smart machines. Defining all rules and data that an AI-based
expert system needs is quite impossible especially if the data changed over time.

A possible solution to the problem at hand is to give machines a set of data and try to
make it able to learn from it which is known as Machine Learning (ML). The latter is sub-field
of AI. It is based on mimicking the human brain. ML makes machines capable to learn data
and make rules by its self through its experiences instead of giving it all possible data which is
sometimes impossible. Machine learning has a high potential to analyze, interpret and secure
large data. For these reasons, pattern recognition and in particular biometric recognition was
considered as one of the biggest beneficiaries of this progress.

For a long time, one of the most popular ideas in literature is allowing access to only autho-
rized personnel. Password, tokens, keys, access card and other types of authorization methods
have been invented and used for decades. There are different attacks that can be launched
against authentication systems based on these traditional methods. Hence it is necessary to
find other advanced techniques to solve these problems. Recently, the biological, behavioural
and morphological characteristics of humans can be used to find the identity of an individual
which is known as biometric traits. Biometrics is a technique that allows the identification of
a person based on his body measurements and calculations.

There are some properties that can be distinguished for determining the suitability of
biometric traits such as uniqueness, universality and permanence. These properties may be
changed from one biometric traits to another which makes it more reliable. The choice of the
appropriate modality depends on various factors such as the nature, requirements, variety of
issues and the matching performance of an application. Several biometric characteristics have
been already integrated. Based on the natures of the extracted biometric features, the latter
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can be subdivided into three main types including the biological (i.e. DNA, EEG, ECG...etc.),
morphological (i.e. fingerprint, face, ear...etc.) and behavioural characteristics (i.e. gait, voice,
keystroke dynamics...etc.).

These human characteristics are used in many civilian and commercial applications for
recognition purpose. It can be adopted in the forensic domain which helps in criminal investi-
gations, financial transactions, airport check-in and homeland security or access control. The
high-security level achieved based on this type of authentication reassures privacy and safety of
clients. Accordingly, numerous countries exploit their different strengths on critical fields such
as voter registration and national ID such as India’s national ID program called Aadhaar.

The biometric system can perform in verification or identification mode depending on the
application contexts. In verification mode, the biometric systems validate the user’s identity
by comparing the input traits with one template that exists in the database. Whereas, in
identification mode, the biometric systems validate the user’s identity by comparing the input
traits with all templates that exist in the database. The first use of the biometric system by
a client is called enrolment. In this stage, the user must introduce his biometric information
using a suitable sensor (e.g. cameras for face image). The captured data will be processed and
stored as a template in the database.

The biometric system consists of three major steps. The first step called preprocessing
step which has the aim of improving and enhancing the quality of collected data and removing
deferent artifacts and noises that can be accrued during the acquisition. Secondly, a set of
features will be extracted from the preprocessed data. This step called features extraction step,
it is considered as the heart of the biometric system. The more the extracted features were
accurate and unique for each individual, the better the system performs.

Global, local or even both features can be extracted. Both approaches were widely applied
in the literature. For the global approaches, PCA (Principal Component Analysis) and LDA
(Linear Discriminant Analysis) are the most used in this field. Whereas LBP, LPQ (Local Phase
Quantization) ,BSIF (Binarized Statistical Image Features) and other techniques were applied
for detecting the local features. Finally, the extracted pattern will be compared with the stored
templates to identify the claimed identity. This process will be performed by estimating the
distance between them based on a chosen classifier such as hamming distance. This phase is
called classification.

Local texture descriptors have proven their efficiency in Biometric domains which have been
applied in a 3D shape, 2D image and also recently 1D signal. Researchers have demonstrated
the robustness of local texture descriptors in the multimodal biometric system especially in real-
world applications as well as easy data acquisition. In this dissertation, we have investigated
more on the extraction step which aims to reduce the data and select the significant features.
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The extracted set must be invariant against multiple issues that may appear in biometric task.
Furthermore, feature extraction is one of the crucial steps of the biometric system. It is related
to dimensionality reduction and abstraction data (i.e., image, signal, etc.) to get features that
will be useful in the decision and identification of subjects.

Although many studies on handcrafted features have appeared in recent years, local bi-
nary patterns remain an interesting feature extraction technique. LBPs keep attracting the
researchers particularly after its remarkable performance on biometric applications such as
face, iris and ear. In this purpose, three local texture descriptors namely 1D-LBP, Shifted 1D-
LBP and 1D-MR-LBP have been implemented and detailed in this document in an attempt to
evaluate our unimodal and multimodal biometric systems.

When a biometric system uses a single biometric modality, it holds the name of monomodal
biometric system. Many mono-modal biometric systems have been proposed in various areas,
providing only one biometric trait. A single biometric trait does not have the ability to meet
all the requirements of an application. However, every separate biometric remains facing the
problems of improving accuracy, robustness, security and privacy. It can be affected during its
acquisition by noises or illumination changes which lead to a poor quality of collected data.
These problems will decrease the performance of the system. Further efforts are needed to
develop efficient approaches that can be used for personal identification in different contexts
and applications.

To date, state-of-the-art methods for biometric authentication are being incorporated into
various access control and personal identity management applications. Physically-based bio-
metrics has been the most commonly used technology. There is a growing evidence that the
combination of different biometric traits can be used for solving the pitfalls faced by unimodal
system and building reliable person recognition. The fusion of two or more biometric modalities
in the same biometric system falls under the name of a multimodal biometric system.

In this dissertation, we aim to overcome the challenges encountered by unimodal biometric
systems by developing a robust and secure multimodal system. The use of multiple sources of
data implies its fusion at a defined level. In the biometric field, the information of the biometric
traits can be merged at different levels of fusion: sensor-level fusion, feature extraction-level
fusion, score-level fusion and decision level fusion. Moreover, the first two stages occur before
the matching stage and the remaining ones take place after the matching stage. The nature of
the merged data and the requirements of the system determine the appropriate level. In this
present work, feature extraction level fusion is performed.

Latterly, ear biometric has received many attentions in various domains, especially in foren-
sic science. The human ear has a stable structure a little change with age and no change
with the pose and facial expression over an acceptable period of human life. Ear is larger
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than conventional modalities like iris or fingerprint providing more important information in-
creasing efficiency and therefore is more easily captured from a distance. In some cases, the
system may suffer from difficulties during the acquisition of ear modality. It can be hidden by
hair, headphones, a scarf or curls. Additional research has been applying 2D ear images for
recognition.

In the biomedical engineering field, biological or behavioral data may be captured directly
from diverse sensors (ECG sensor, microphone for voice, etc.). To capture high-quality data,
quite a few capturing sensors have been developed. Early sensors were generally less comfortable
and expensive. Indeed, they required a high degree of cooperation from the users. With
the development and popularization of healthcare technology, ubiquitous smart sensors have
become more compact, affordable and friendly. They make it possible to embed them in
smartwatches, mobile phones and wearable devices (e.g., Google glass 6).

To solve serious challenges, recently, mobile health objects and the Internet of Things (IoT)
provide new concepts involving the use of smart mobile devices to create efficient healthcare/smart-
life services and solutions. Thus, we intend to investigate the benefit of these emerging biometric
methods. These include a number of advantages which allow us to improve the overall perfor-
mance of a biometric system while maintaining strong user authentication and is biometrically-
based smart and replaceable as a privacy concern.

In contrast to the approaches found in the literature and detailed above, analysis of elec-
trocardiogram (ECG) is a new biometric measure for human identity recognition. The activity
recorded by the ECG comes from extracellular currents related to the propagation of a depolar-
ization front (atrial P wave, then ventricular QRS complex) across the heart. The strength of
ECG based biometric authentication systems is that ECG can be directly utilized as a liveness
detector. A remote login process by ECG signal captured from a finger, which improves security
and privacy. This promising biometric is chosen to be one among the three used modalities in
this dissertation.

To the best of our knowledge, among the most popular biometric technologies, the iris recog-
nition system is considered to be one of the most confident techniques for security in numerous
fields. The use of the iris as the third biometric modality makes our system more robust and
achieves a high level of security. Iris has unique characteristics that can differentiate between
individuals, twins or even between the left and right irises of the same person. Despite its
promising performance for these biometric tasks, iris-based biometric requires full cooperation
on the part of the user and also has often not been fully accepted by them.

Due to the unimodal biometric systems limitations, as well as problems concerning missing
data and unreliable identification, some challenges commonly encountered by such systems
remain. These include:
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• Environmental (e.g. it may affect the system during authentication due to changes in the
prevailing conditions).

• Noise in sensed data (e.g. dirty sensor, poorly illuminated or problems modalities like
several ear or face poses ).

• Intra-class variations (e.g. multiple differences between enrolled and authenticated tem-
plates).

• Interclass similarities (e.g. significant similarity between data acquired from different
subjects).

• Non-universality (e.g. some people may do not have the desired modality due to disabil-
ities or illness).

• Spoof attacks (e.g. the use of a single biometric modality makes it easier to mimic, also
some biometric modalities are easy to spoof because of their use in public like face).

• Upper bound on identification accuracy (e.g. cannot continuously improve the recognition
rate).

To overcome these problems, we propose a new multimodal recognition system integrating
ear, iris and ECG biometric technologies. Our approach was implemented using local texture
descriptors in order to extract features from each modality and fuse the extracted features at
features level fusion. There have been considerable variants of multi-biometric strategy schemes
proposed for human identification and recognition. As for ECG with conventional biometric,
there are fewer studies. For this reason, a comparison was done with existing multimodal
systems that use one or two out of three modalities. The overall goal of this work is to develop
a multimodal biometric system that will be able to:

• Take advantage of the strengths and reduce the chance of the false alarm of each approach
while increasing the accuracy of the biometric authentication process.

• Achieve better performance and high-security level (minimum Equal Error Rate).

• Reduce the complexity weaknesses of a multimodal system by applying 1d-LBPs.

• Hard to imposer to spoof ear, iris and ECG traits at the same time.

• The uses of liveness measurements are not easily mimicked.
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• Remote login process by ECG signal captured from a finger which improves security and
privacy.

• Combination of hidden (ECG) and visible (ear and iris) modalities in a multimodal system
leads to form a robust and secure system.

• Make our biometric system become more robust against many various factors where are
usually linked to diseases factors, accident, age and life conditions.

• Meet the specific requirements expected in different contexts such as border control,
mobile application, IoT and healthcare application.

Dissertation outline
The manuscript is divided into two parts; the first part presents a state of the art for biometric

recognition and basic concepts of pattern recognition. It also describes a background for each
modality used in our approaches. The second part presents the proposed contributions. Each
part contains the following chapters:

Part I: BACKGROUNDS AND LITERATURE REVIEW

Chapter 1: STATE OF THE ART
This chapter presents the basic concepts of biometric recognition including its definition,

types and properties besides describes both identification and verification mode of a biometric
recognition system. The structure of the biometric system will be explained starting from the
sensor module to the database module. We also present basic concepts of multimodal system
and its fusion techniques.

Chapter 2: PATTERN RECOGNITION
We present in the second chapter a second state of the art for pattern recognition. This

chapter is subdivided into three main parts. The first part consists of giving the definition of
Artificial Intelligence, an overview of its history besides a discussion on its application areas.
Secondly, we talk about machine learning which is considered as a branch of AI. The last part
will be reserved for giving the necessary background of pattern recognition by presenting its
based structure followed by some of the well-known pattern recognition techniques.

Chapter 3: Ear BIOMETRIC
We present through this third chapter the essential elements for ear based recognition by
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explaining its external anatomy and reviewing the existing works related to the application of
ear on unimodal systems on both 2D and 3D. Beside to present the limitations that lead us to
use the 1D space in this dissertation. We discuss some of the well-known used algorithms on
ear biometrics. In the last part, we mention some of the recent multimodal systems that merge
ear biometric with other modality.

Chapter 4: ECG BIOMETRIC
The fourth chapter presents a state of the art for ECG biometric. We firstly give a definition

of this novel modality besides its anatomy. Next, we present the motivation of using this
biometric modality as the main biometric traits in our dissertation by giving the different
ECG strengths and advantages. Thereafter, we detail the ECG biometric system architecture
starting from preprocessing step to the matching.

Chapter 5: Iris BIOMETRIC
This chapter followed the same structure of the previous two chapters by giving a definition

of the iris as biometric recognition beside its anatomy. We also talk about the challenges of iris
biometric and its influence on the cost-effectiveness of the system. We review in the next part
some of the related researches. Where the iris is widely used in recognition, we present some
multimodal systems where iris is fused with other modalities.

Part II: PROPOSED MULTIMODAL BIOMETRIC SYSTEMS

Chapter 6: Ear-ECG BASED MULTIMODAL SYSTEM
This chapter is subdivided into three main sections. Firstly, an explanation of the proposed

local descriptors will be described which will be used to extract features from data. The next
part will present the first approach which consists of developing two biometric systems. The first
represents an ECG biometric system using shifted 1D-LBP, where we will study the importance
of the preprocessing step by applying different normalization techniques and investigating its
impact on the performance of the system. Part two will present an ear-ECG based multimodal
biometric system based on 1D-MR-LBP descriptor.

Chapter 7: ECIREA MULTIMODAL BIOMETRIC SYSTEM
The last chapter will present the second approach which consists of a novel multimodal

biometric system. ear, ECG and iris biometric modalities were combined together at features
fusion level. Three local descriptors namely 1D-LBP, Shifted 1D-LBP and 1D-MR-LBP tech-
niques will be introduced. The extracted features will be normalized and fused in a single
vector aiming to provide a more robust representation for persons. Statistical comparisons will
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be performed to see how far the proposed multimodal system overcomes the unimodal system
weaknesses.

By the end of this dissertation, we will summarize our proposed work in a general conclusion.
In addition to the limitatons encountered by our approaches besides to some perspectives that
will be also presented. The last part is dedicated to the used bibliography.
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CHAPTER 1

STATE OF THE ART

1.1 Introduction

In this chapter, a state of the art will be presented, including basic concepts and terminolo-
gies of biometric technology. A biometric definition was introduced, including the biometric

system. Besides an explanation in details about the difference between identification and verifi-
cation modes will be introduced. Also, the different characteristics that make human biometric
traits being able to use for a recognition purpose were discussed, in addition, to mention the
biometric applications domains. The different modules of the biometric system architecture
will be discussed in details.

Another point consists of the performance measures that allow computing error rates and
plotting curves which make the comparison and the evaluation of a biometric system easier. A
considerable portion is dedicated to explain the definition of an unimodal biometric system, its
robustness and its weakness. An introduction to the multimodal biometric system as a solution
to problems faced by the unimodal biometric system will be presented. Subsequently, fusion
techniques have considerable importance in a multimodal biometric system. For this reason,
we concentrate on the existed level fusion and clarify the robustness and the weakness of them.
Finally, some of related works will be analyzed.

1.2 Biometric Definition
The etymology of the term biometric is taken from two Greek words “bio” which means life

and “metrics” which mean measure. Idiomatically, biometric is a quantitative study of biolog-
ical, morphological or behavioral human traits. It can be defined also as a set of measurable,
robust, distinctive and uniquely human features. These traits can be used to identify or verify

10



Chapter 1. STATE OF THE ART

the claimed identity of an individual.
Because of the different attacks that can be launched against authentication systems based

on passwords and tokens, Biometric recognition is considered as a real alternative to passwords,
signatures and other identifiers. Biometric has the ability to solve several problems faced by
authentication systems based on traditional methods. For example, an imposter can guess
passwords or stealing tokens. Many modalities were used for recognition such as blood, DNA,
ECG, urine, odor, saliva which they are used as biological features. Fingerprint, face, iris, hand
geometric or ear can be used as morphological features. In addition to behavioral features
like signature, voice, gait, keystroke dynamics. . . etc (Jain et al., 2007). Figure 1.2.1 shows the
biometric type’s.

Figure 1.2.1: Examples of biometric features types (Jain et al., 2007).

1.3 Identification versus Verification
Many techniques were proposed theoretically for security, even thousands of years ago. Last

decades, Biometric has big attention due to its efficiency and its power especially in security
and forensic domains. Because of computer’s processing advance, various automated biometric
systems were available and many techniques were investigated. Obviously, biometric systems
are made to identify or verify certain individuals automatically based on their biometric data.

Biometric systems may run in two modes: verification and identification. In the verification
mode, the system must answer the question: “are you who you are claiming?”; by comparing
the input data with its own biometric template (s) stored in the system database. A one-to-
one comparison is applied to validate the person’s identity and check if the claim is true or
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not. Whereas, in the identification mode, the system must answer a different question: “who
are you?”; by comparing the input data with all biometric template(s) stored in the system
database. A one-to-many comparison is applied to achieve the individual’s identity (Lumini
and Nanni, 2007). Figure 1.3.1 shows the two modes steps.

Figure 1.3.1: The verification and identification modes (Maltoni et al., 2003).

1.4 Biometric Properties
The biometric human data are referred to as traits, indicators, identifiers or modalities. It

must be noted that each biometric modality has its strengths and its drawbacks which means
that no biometric is reliable at 100%. To use our biological, morphological or behavioral features
as modalities to be exploited on automated recognition system, they must respect seven factors
that determine its suitability:

• Universality (user’s application must have the proposed modality).

• Uniqueness (each user has its unique traits compared with other individuals).

• Permanence (the stability of the biometric trait over a period of time).

• Measurability (the acquisition of the biometric trait using the adequate device in order
to extract the representative feature sets).

• Performance (the constraints imposed by the application should be accepted when calcu-
lating the recognition accuracy).
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• Acceptability (users do not disturb presenting their biometric trait to the system).

• Circumvention (the possibility of imitating trait of individual using fake traits).

Biometric systems demonstrate its effectiveness and robustness to various types of malicious
attacks in various areas in modern society. The most used biometric characteristics are the face,
fingerprint, Palm print, iris, Keystroke, Signature, Voice, Gait. . . etc. The choice of a biometric
modality depends on its strength and weakness besides to the application’s requirements (Jain
et al., 2007).

1.5 Applications of Biometric
The need for reliable automatic identification and authentication systems was always the

purpose of most applications. With the development of technology, smartphones, social network
and communication, achieving high security were required in order to protect user privacy.
Using biometric as a technique for authentication or identification was investigated by several
applications in the place of traditional authentication methods to increase performance and
security. While the biometric has used in various domains that need high security, ensuring the
security of the biometric template is of utmost importance (Benaliouche and Touahria, 2014).
These applications can be divided into 3 types; cited as bellow:

1. Forensic applications: used in a criminal investigation, to recognize the corpse of
someone, to determine the parenthood of persons.

2. Government applications: used in many cards that allows the recognition of the
cardholder such as national ID card, passport, driver’s license or social security. Also in
monitoring operations: border control, passport control or camera control.

3. Commercial applications: used in control access to an application or devices such
as e-commerce (Jain et al., 2011), computer network login, Internet access, Automated
Teller Machine (ATM) or credit card, mobile phone, medical records management and
company login.
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Table 1.1: Some application areas of biometrics (Jain et al., 2007).

FORENSICS GOVERNMENT COMMERCIAL
Corpse Identification National ID Card ATM
Criminal Investigation E-passport Drivers Licence Access Control

Parenthood Determination Voter Registration Computer Login
Missing Children Illegal Immigration Mobile Phone

Border Crossing and Control E-commerce
Surveillance in Critical Infrastructures Telephone Banking

Ambient Intelligence Internet Banking
Physical Access to Military Facilities Smart Card

Hospitals
Nuclear Power Stations

1.6 Biometric System Structure
The biometric system is based generally on four modules. The first module, named sensor

module, consists of the acquisition of biometric personal data. The acquired biometric data was
scanned and read using an adequate electronic device. This latter depends on the used biometric
modality (for example camera for face and ear, fingerprint sensor, electrodes for ECG. . . etc.).
The scanned data will be processed to generate a biometric template. A biometric template is
a collection of discriminant information that will be used for recognition.

The sensor module has a critical impact on the system; any effect in the captured data may
reduce the performance rate of all the system. Therefore, it is important to improve the quality
of the scanned biometric data and remove any irrelevant and redundant information presented
or noisy and unreliable traits which were due to sensor problems. The next module consists
of preprocessing the captured data. Several techniques can be applied such as normalization,
transformation, filtering and segmentation and other algorithms of enhancement.

The third module named feature extraction. In this stage, the discriminants traits exist in
the preprocessed data were extracted. Recently, many algorithms were developed and proposed
depending on the used biometric modality in order to extract the representative characteristics
which will be used to identify or verify the claimed identity. As long as the extracted charac-
teristics are more discriminant in identification or verification purpose, the system will be more
reliable with high performance. For all these reasons, features’ extraction module considered
as the heart of the biometric system.

The matching is the next module. It consists of comparing the extracted features of the
input data against the stored templates existing in the database. Then, a final decision will

14



Chapter 1. STATE OF THE ART

be generated depending on the achieved match score to validate the claimed identity. Many
algorithms can be applied in this stage such as K-Nearest Neighbors (KNN), Neural Network
(NN) or deep learning. . . etc.

System database module is the final stage in the biometric system. In the enrollment mode,
a database will be generated by storing a template for each client. It contains the extracted
features of the client with some personal information like name, address, Personal Identification
Number (PIN), etc. The stored template, called also gallery images, will be used next time
for comparison on matching step with the input data, called also probe images, of the claimed
client.

It must mentioned that all hardware (sensors, camera. . . etc.) and software (algorithms,
databases. . . ) have its impact and influence on the biometric system (Jain et al., 2011). Each
one possesses its own advantages and limitations which will produce a good (increase perfor-
mance, decrease the different errors rate. . . etc) or bad (decrease performance, increase errors
rate, more computational, more time. . . etc.) influence on the obtained results. Figure 1.6.1
shows the architecture of a biometric system.

15



Chapter 1. STATE OF THE ART

Figure 1.6.1: Enrollment, verification and identification steps of a biometric system (Jain et al., 2011).
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1.7 Performance Measures
It is very important to perform quantitates studies in computing the different performance

measures of any developed system. These measures allow us to know how far can we rely on
this system. Also, it helps to reply to the asked question: does the system reply to the proposed
question or no? Moreover, it used to compute the efficiency and reliability of the developed
biometric system. For the biometric system, the different metrics should be referred to before
addressing how to calculate them.

In the matching module, the input biometric features set of a user will be compared with the
biometric template’s features stored in the database and a similarity score will be calculated.
If the input features find its similar template than the user will be known as a genuine. If not,
then the user will be known as an imposter. Different errors rates can be distinguished. These
measures are related to different factors like the correct/incorrect classification, complexity,
processing time, memory occupancy and depending also on the executed module. Two different
metric types can be used to validate a biometric system and compute its performance efficiency
named error rate metrics and performance curve.

1.7.1 Error Rate Metrics

Some of the most types of failure are listed below:

Failure To Acquire (FTA) rate: denotes that the sensor is not able to capture the desired
biometric traits from the user (Das, 2018). This kind of problems may be faced with sen-
sors when the presented biometric trait possesses a poor quality (such as a contaminated
or infected finger, occluded ear images with hair).

Failure To Enroll (FTE) rate: denotes that the biometric system is not able to enroll a
user. This can happen when the user has not the required biometric traits. There are
many cases prevents a person to present their biometric data. It can be found a person
who has lost his finger due to an accident, or genetic reason. In some cases, users are
unaware of how to register and provide the correct information and present the desired
biometric traits correctly (Jain et al., 2007). To avoid this problem, developers must
design interactive user interfaces which facilitate the enrollment stage thus decrease the
FTE rate.

False Accept Rate (FAR): denotes that the biometric system considers an imposter as a
genuine user.
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False Reject Rate (FRR): denotes that the biometric system rejects a genuine user and
considers him as an imposter.

Genuine Accept Rate (GAR): denotes the proportion of users that the biometric system
considers as genuine and they are already well. Where:

GAR = 1− FRR (1.7.1)

Equal Error Rate (EER): denotes the point where the FAR is equal to FRR which means:

FRR− FAR = 0 (1.7.2)

Correct Recognition Rate (CRR): denotes the accuracy of the biometric system. It can
be calculated by:

CorrecteRecognitionRate = 100− (FRR + FAR)/2 (1.7.3)

FAR and FRR are linked together inversely according to a decision threshold. Depending
on the application, if a minimum FAR is required so a high threshold must be assigned. In
this case, the system will reject genuine users but it will be robust to imposters. Whereas, a
low threshold for minimum FRR leads the system to accept genuine users and also imposters.
Figure 1.7.1 illustrates the thresholding of FAR and FRR.

Generally, EER is commonly used to evaluate and test biometric systems’ performance.
In many cases, the use of EER alone is sufficient to compare and validate biometric systems’
performance. This can be performed if these systems have different errors rate so it can easily
determine which of these systems outperform the other systems (Giot et al., 2011). But in other
cases, the EER become insufficient to use it alone as a metric performance where the compared
systems have similar values. Such case entails applying additional performance metrics (FAR,
FRR. . . ) to make the comparison meaningful.

18



Chapter 1. STATE OF THE ART

Figure 1.7.1: The thresholding of FAR and FRR (Jain et al., 2007).

1.7.2 Performance Curves

Another performance measures can be used called performance curves. Curves and schemes
are known to be easier than tables and numerical values when analyzing and interpreting results.
The most commonly used curves are:

Receiver Operating Characteristic (ROC) curve: it is the most used to evaluate the
global performance of a biometric system. This curve allows visualizing its reliability
and comparing several models to know the best one. ROC curve consists of representing
the relation between FAR and FRR at various threshold values on a linear scale. If a
logarithmic or semi-logarithmic scale is used than the ROC curves plots GAR against
FAR (Ross et al., 2008). Figure 1.7.2 shows two examples for ROC curves one using the
relation between FAR and FRR where the second plots GAR against FAR.

Figure 1.7.2: Examples of ROC curves.
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Detection Error Tradeoff (DET) curve: there is a small difference between the ROC and
DET curves. Where a ROC curve plots FRR against FAR at various threshold values
on a linear scale, DET curve plots them on a normal deviate scale. This curve is used
to comparing different biometric systems performances. It allows also achieving the EER
value of the evaluated system which is obtained by the intersection of the curve with the
line (x=y). An example of a DET curve is illustrated in subfigure 1.7.3 (a).

Cumulative Match Characteristic curve (CMC): in biometric systems, especially in
the identification mode, with E represents the number of the enrolled users. The system
generates a set of identities corresponding to the top k matches (1 ≤ k >=E). CMC
can presented Rank-k performance by plotting Rk against k. CMC curves are used to
compare biometric systems performances which they are based on identification mode.
Subfigure 1.7.3 (b) shows an example of CMC curve.

Figure 1.7.3: An example of a DET (a) and CMC (b) curves.

1.8 Unimodal Biometric System
When the biometric system uses a single biometric modality is called a unimodal biomet-

ric system. Many unimodal biometric systems have been proposed (Vezzetti and Marcolin,
2012)(Anwar et al., 2015)(Czajka et al., 2017)in various areas in modern society providing only
one biometric trait. Each biometric modality has its advantages and inconvenient. No bio-
metric is ideal which decreases the performance and makes the system still in need for more
improvement.
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• Environment: it may affect the system during authentication due to the different available
conditions.

• Noise in sensed data: dirty sensor, poorly illuminated or problems modalities like several
ear or face poses and while the performance of the biometric system is highly sensitive to
the input data qualities, a significant reduction in performance rate can occur.

• Intra-class variations: Multiple differences between enrolled and authenticated templates
which increase the FRR.

• Interclass similarities: traits extracted from different clients can be quite similar which
increase the FAR.

• Non-universality: some people may do not have the desired modality due to disabilities
or illness which increase the FTE.

• Spoof attacks: the use of a single biometric modality makes it easier to mimic, also some
biometric modalities are easy to spoof because of their use in public such as the face.

• Unacceptable error rates using a single biometric in most of the cases.

• Fake biometric: an imposter can log in as a genuine to a system by using spoofed charac-
teristics especially if the system uses behavioral features such as voice or gait which are
more easier to mimic than biological features (Ross and Jain, 2003).

• Upper bound on identification accuracy: it cannot improve continuously the recognition
rate (Wübbeler et al., 2007).

1.9 Multimodal Biometric System
The search for a perfect biometric system was the aim of many researchers. The first question

posed was how these problems posed by a unimodal biometric system can be solved. The use
of multiple sources of information for authentication can help to solve the majority of these
limitations. These kinds of systems are appointed as Multimodal biometric systems. Generally,
a multimodal biometric system uses two or more biometric modalities for recognition in order
to overcome the drawbacks imposed by the unimodal system.

Multimodal systems are expected to be more reliable because most of the challenges suffered
from using the unimodal biometric system can be overcome using multi-biometric information
simultaneously. They address the problem of non-universality using more than one biometric,
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which decreases FTE error and increases the population coverage (Ross and Jain, 2003). Spoof-
ing multiple biometric modalities will be very hard to an imposter which improves recognition
accuracy and reduce FAR. It must be noted that the term multi-biometrics has several meanings
not just the use of multiple modalities. It can be also referred to multiple sensors, multiple al-
gorithms, multiple instances and multiple samples. Figure 1.9.1 shows different multi-biometric
types.

Each term has its own mechanism and they are explained as below:

Multiple sensors: the use of diverse sensors to scan and capture the same biometric modality
will be able to improve the recognition performance. For example, a multi-biometric sys-
tem employs two sensors (cameras). If the captured biometric image from the first sensor
has poor quality, while a better quality is captured with the second sensor. Therefore,
the noisy data limitation will be eliminated and the matching accuracy can be enhanced.

Figure 1.9.1: The various multi-biometric types.

Multiple algorithms: applying multiple algorithms on extracted features/matching module
will be able to improve the system performance. Several algorithms can be applied for ex-
tracting features from the same biometric data. Then, a fused template will be generated
to fuse all the extracted features from each algorithm. Another way consists of applying
the first algorithm to extract features from the preprocessed biometric data. Then, a
second algorithm will be applied to the obtained features of the first algorithm and so on.
The same process can be applied for matching module by applying multiple algorithms
on the same features data. This technique reduces the cost of the system. At the same
time, adding new features and algorithms can increase the computational complexity.
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Multiple instances: the use of many instances of the same body biometric data such as left
and right ear or left and right iris. This technique increases the cost of the system if the
person uses multiple sensors. Various discriminant features were extracted which improve
the identification rate. The repetition of the same process several times may increase the
computational complexity.

Multiple samples: the use of many samples for the same underlying biometric with different
variations poses, sides, angles or lighting conditions depending on the application context
which makes a system have a complete image of the processed biometric data. This
technique imposes the use of a single sensor which reduces the cost system. Moreover, a
high recognition rate can be achieved.

Multiple modalities: the use of two, three or more biological, morphological or behavioral
traits for identification was investigated from several researchers. The massive diversity
of the studied traits make the system more robust, secure, difficult to spoof, universal,
high security and recognition rate. But a high cost will be obtained because of the use
of different sensors depending on the chosen modalities. Besides to more computational
complexity due to the variance applied algorithms, especially on preprocessing modules
where we find that each modality has its own process and techniques.

Hybrid system: it consists of emerging different types of the multi-biometrics system dis-
cussed above on a single system. For example, use iris and face as a multimodal biometric
system, besides applying many algorithms to extract features from iris biometric and use
many samples for the face (Chang et al., 2005) (Jain et al., 2007). In this example, the
hybrid system integrated three types namely: multimodal, multiple instances and multi-
ple samples together. This term was introduced firstly by Chang et al. Many researches
have been developed in this approach.

primary-soft biometric: it consists of fusing primary biometrics such as fingerprints, face,
ECG which they respect the factors discussed above with soft biometric attributes such
as height, weight or eye colour which cannot be used as a biometric identifier for individ-
uals. The combination of identifier and non-identifier biometric traits on a multimodal
biometric system can enhance the performance of the recognition system. The use of soft
biometrics can reduce computational complexity using indexation. In place of compar-
ing the input data with all database, soft biometric can shrinking search with just those
that they have the same information which shortens a lot of time, especially with a large
database.
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Despite the different improvements included by the multimodal system, these systems suffer
from some weaknesses such as complexity and cost that are increased because of the use of
multiples sensors, besides to disturbance of using several modalities (Wübbeler et al., 2007).
Recently, many studies have been proposed to solve these problems and achieve high accuracy
and security and less complexity of multi-biometric systems.

1.10 Fusion Techniques
While different modalities are used in a multimodal biometric system, a fusion technique will

be required to fuse various information in order to obtain the final decision. Different levels of
fusion are possible. There are many rules have been proposed to fuse the heterogeneous and
homogeneous data. Five fusion levels can be distinguished as shown in figure 1.10.1.

1.10.1 Sensor Fusion Level

Starting with the sensor level, which consists of fusing the captured biometric data in a single
raw biometric. The raw data contains all the representative and richest information that can
be used for recognition purpose. The acquired data captured from various sensors must be
compatible. This imposed condition makes the fusion at this level does not choosed too much.
It can be used just if the scanned data from many sensors are homogeneous or are from the
same traits biometric. Also in the case of a multi-sample system and the multi-instance system
which uses many samples from the same biometric modality and uses the same sensor.

1.10.2 Features Fusion Level

The second type of fusion named feature level. The features extracted from different ex-
tractions methods of the same biometric modality or multiple modalities are concatenated
together. Various rules and techniques can be used to generate a single fusion vector feature.
In this level, the extracted traits must be compatible and in some case, it must have the same
size. The fused data may become a larger size which implies the use of redaction dimensionality
techniques to avoid the problem of system performance degradation. Frequently, the features
extraction requires normalization algorithms which increase the complexity of the biometric
system (Yang and Zhang, 2012). The fused data preserve its discriminants and power which
leads to considering feature level the best-used technique.
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1.10.3 Score Fusion Level

Next fusion level named Score level. After extracting the discriminant characteristics form
each biometric modality using the same extraction method, a comparison of two features sets
gives the match score as a result. In this level, each biometric modality has its match score.
A new match score will be generated by a combination of them. It must distinct two terms
which are similarity score and distance score. While the first term’s tests if the two comparative
features are identical, the second term’s tests if they are not. No data compatibility has required
at this level. Simple algorithms can be used in this level for computing the match score which
makes it very exploited and preferred in many multimodal biometric systems.

1.10.4 Rank Fusion Level

Another fusion level named rank level. In identification mode, the output of each matcher can
be transformed as a set of possible matching identities sorted in decreasing order of confidence.
Each unimodal subsystem generates a rank to each enrolled client. A combination of ranks
obtained from all unimodal subsystems is performed to assign a new rank for each identity. The
newly generated rankings are compatible which simplify its comparison and the normalization
process will be not required.

1.10.5 Decision Fusion Level

Finally, the decision level named also the abstract fusion level. Each unimodal subsystem
executes all steps Independent of other unimodal subsystems. Then, a final decision is assigned
using fusion decision methods such as: “AND” and “OR” rules, majority voting, weighted
majority voting or Bayesian decision fusion (Jain et al., 2007). This level is mostly used.

In most cases, the choice of fusion level depends on the nature of used biometric data. Im-
provement of discussed fusion levels for a multimodal biometric recognition system has attracted
a lot of attention in our day in order to solve different existing drawbacks of unimodal systems.
Hong and Anil (Hong and Jain, 1998) have developed a prototype biometric authentication
system using faces and fingerprints at decision fusion level.

Ross and Jain (Ross and Jain, 2003) propose a Multimodal biometrics system that includes
the face, fingerprint and hand geometry at the matching score level. After that, many modal-
ities were fused to full varied application needs (Annapurani et al., 2015) (Pietikäinen et al.,
2011) (Barpanda et al., 2018). Ear, ECG or iris biometric modalities fusions are introduced
with different modalities and different fusion strategies using various levels of fusion in several
works in litterateur because of their various advantages and strengths. For these reasons, this
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dissertation presents our contributions that introduce a novel multimodal biometric system
based feature level fusion.

Figure 1.10.1: The different types of fusion level.

1.11 Conclusion
This chapter summarizes the basic concepts of a biometric system. A definition of biometric

was given, besides the different conditions and properties that make human biometric traits
can be used for recognition purpose were explained. We have presented also the architecture
of the biometric system and explained each module.

The unimodal system gained much attention in several applications domains but it faced
some challenges which decreased the performance of the developed system. The multimodal
system was the solution to solve these problems and deal with its weaknesses.

While the multimodal biometric system used multiple modalities, instances, algorithms,
samples or sensors, a technique of fusion was irreplaceable. Techniques of fusion can be applied
on different modules (sensors/ feature extraction/matching) depending on the biometric data
nature. The next chapters are reserved to discuss biometric traits used in our dissertation.
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CHAPTER 2

PATTERN RECOGNITION

2.1 Introduction

For decades, researchers develop machines in several fields which help humans in their
life. The invention of computers offers various devices and many manual machines had

been automatized. With the revolution of digital computing, many physical and mathematical
systems have been available. Recently, scientists have passed the stage of developing systems
that can reason only on numbers, they aim to build systems that can also reason on symbols.
In other words, they aim to translate human intelligence to AI.

In this chapter, an overview of AI will be presented; starting with defining the meaning of
artificial intelligence besides a discussion will be introduced about its history will be introduced.
Another part will be reserved for talking about the different artificial intelligence branches and
applications. A state of the art for both machine learning and pattern recognition will be also
presented.

2.2 Artificial Intelligence

2.2.1 Definition

AI is the science that makes the machine works like human intelligence processes. In other
words, AI attempts to make the machine able to use a language, to form a concept, to learn
information, to solve problems that are usually done with human intervention, perceive, reason
and act beside to improve themselves. This science aims to solve real-world problems utilizing
artificial intelligence based on the representation and the use of knowledge. AI is based on
four concepts or ideas: Thinking humanly, Thinking rationally, Acting humanly and Acting
rationally. It should be noted that humans were and still the most intelligent creators.
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We can define AI as the context of human. It is the study that allows the simulation of
human thinking intelligently with learning. The goal of AI is to create systems that can function
intelligently and independently. It is based on developing smart agents (computers). AI aims
to get systems thinking rationally by developing techniques that include automated reasoning,
proof planning, constraint solving and case-based reasoning. Another goal consists of making
programs have the ability to learn, discover and predict by developing techniques which include
machine learning, data mining (search) and scientific knowledge discovery (Panesar, 2019).
Artificial Intelligence gained much attention because it is related to several fields that need
human’s behavioral simulation.

2.2.2 History

After the invention of the programmable digital computer in the 1940s, many questions were
posed by mathematicians and philosophers about how the machine can learn, think and im-
prove itself. The first use of the term Artificial Intelligence was in the Dartmouth College
Artificial Intelligence Conference in 1956. The conference was organized by John McCarthy
at Dartmouth College, Hanover, New Hampshire, United States. Ten researchers who par-
ticipated in the conference were considered as the fathers of AI are John McCarthy, Marvin
Minsky, Claude Shannon, Ray Solomonoff, Alan Newell, Herbert Simon, Arthur Samuel, Oliver
Selfridge, Nathaniel Rochester and Trenchard More (Moor, 2006). The main points processed
in this meeting were describing every aspect of learning and every feature of intelligence that a
machine can be made to simulate it.

From 1956 to 1980 was considered the golden period for AI. Researchers faced many prob-
lems and difficulties of some of the remaining tasks. Many algorithms and techniques were
developed in order to solve complex problems such as the Geometry Theorem Prover, made
machines able to learn to speak English (1968) and LISP language. This latter was defined by
John McCarthy and considered as the second oldest language. The belief network formalism
was invented. It produces efficient reasoning about the combination of uncertain evidence.
The proposed technique solves the probabilistic reasoning problems. Various approaches and
architectures in the fields of speech recognition were introduced since 1970. But they were
demonstrated in limited examples

A few years later, Hidden Markov Models (HMM) have gained many attentions especially
rigorous mathematical theory based aspect. Beside another aspect that generates speech re-
searchers based on a process of training on a large corpus of real speech data. In 1975, many
representation languages were developed (LUNAR, PLANNER...etc). Since 1980, various suc-
cessful commercial expert systems were developed. Microwords was the term introduced to the
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limited problems that need intelligence. After the years 1990s, AI achieved the majority of
selected goals and researchers start applying intelligent behavior in different ways (Russell and
Norvig, 1995). AI becomes international in several fields.

In our days, AI has emerged in many applications and systems such as IBM’s question
answering system in 2011. The proposed system combines information retrieval and Natural
Language Processing (NLP) fields. It consists of giving an answer to a question posed by human
using natural language. In 2012, deep learning gained more attention and its methods which
based on the artificial neural network become a solution to multiples difficulties. A few years
later, Google has seen a qualitative leap by increasing the number of software projects based on
AI to more than 2,700 projects while it was used sporadically before (Wikipedia contributors,
2018). Improvement algorithms and techniques based AI were greatly increased. Figure 2.2.1
shows the main developments of AI.

Figure 2.2.1: The main developments of AI (Panesar, 2019).

2.2.3 Artificial Intelligence Applications

AI research has been divided into subfields that often fail to communicate with each other.
Each field has the goal of mimicking some human behaviors. AI is a broad branch of computer
science. humans can speak and listen to communicate through language. This is known as
speech recognition field. Much of speech recognition have a statistically base, hence, it’s called
statistical learning. Humans can write and read the text in a specific language; this is the field
of NLP.

Humans can see with their eyes and process what they see; this is the field of computer
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vision. This latter fold under the symbolic way for computers process information. Recently,
there has been another way which outcomes to the later, named image processing. This field
is not directly related to AI, but is required for computer vision. It based on what humans see
around themselves through their eyes which create images of that world. Using the assumption
that humans can understand their environment, advanced robotic arms and other industrial
robots were widely proposed in modern factories. They can learn from experience how to move
efficiently.

The tradition of the ability of persons to see different patterns and group these objects
into different groups according to specific conditions falls under the field of pattern recognition.
Machines considered even better than humans in pattern recognition because they can use more
data and dimensions of data, we talk now about machine learning. Another important field is
the Neural Network. This field aims to produce the same structure and functions of the human
brain that may be able to get cognitive capabilities in machines (Gero, 2012). When we have
more complex data to learn and the networks will be more complex and deeper, then we talk
about deep learning.

There are many types of deep learning in the machine which are essentially different tech-
niques that simulate what the human brain does such as CNN and Recurrent Neural Network
(RNN). CNN is most commonly applied to analyze visual imagery that can be used to solve
problems in computer vision and object recognition is accomplished through AI (Panesar, 2019).
From figure 2.2.2, it can be noticed that AI works in two different ways. One is symbolic learning
and the second is machine learning or database.

Figure 2.2.2: AI main fields (Gero, 2012).
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2.3 Machine Learning

2.3.1 Definition

The term of machine learning was introduced by Arthur Samuel of IBM. In 1959, Arthur
Samuel proposed the possibility of teaching computers to learn what they need to know about
their environments and how to carry out tasks for themselves (Panesar, 2019). Moreover, this
type of machine can learn to perform the desired tasks without the intervention of the human.

ML can also define the techniques that program computers to learn from data. It is working
to solve problems that require many long lists of rules to find the solution by simplify the
implemented algorithms and improving the performance. ML was used especially in unstable
environments’ where requirements were variable (Russell, 2018). The objective of such type of
machine is the application of practical and scientific consideration and bases in order to develop
techniques and algorithms so that systems approach human performance in several tasks.

It is necessary to distinguish between artificial intelligence and machine learning terms.
Where the first is based on developing intelligent machines using multiple approaches, the
second term consists of using one approach making machines learn how to perform tasks (Rebala
et al., 2019). So there are AI approaches that were not based on learning such as expert systems.

2.3.2 Types of Machine Learning systems

Learning algorithms can be categorized according to the used learning model. As shown in
figure 2.3.1, four categories can be distinguished depending on whether they have been trained
with humans or not:

• Supervised Learning

• Unsupervised Learning

• Semi-supervised Learning

• Reinforcement Learning

Before detailing each learning model, we must clearly differentiate between labels and unlabels
terms. Labeled pattern referred to the desired solution of the new input data which means that
it is correctly predicted or classified (Rebala et al., 2019). Whereas the unlabeled pattern
referred to the false result of the new input data which means that the machine learning has
failed to predict which category belongs to it.
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Figure 2.3.1: Learning methods (Panesar, 2019).

2.3.2.1 Supervised Learning

The stored representative information of the used data in the database called labeled data
or training data. ML aims to learning a set of rules that generate a model through the training
dataset. Based on this model, the machine will be able to predict the new input data point,
called data test points, which they are not in the dataset. In the case of associating the data
to multiple classes with a probability of belonging to each class, the type of machine learning
called supervised probabilistic learning.

Classification and regression are the most used form in the supervised learning category.
The classification problem predicts the class of the new input data (output) based on the build
models which they are created using the trained dataset. A class is a set of objects having some
important properties in common. This problem emerges in virtually any pattern recognition
task. For example, the recognition of number exists in an input image into ‘0’ to ‘9’. The task is
to find a function which maps this input image to their corresponding class (our example finds
the number of the input image by assigning it to one of the ten classes). The regression problem
is very similar to classification. The only difference between them is that regression predicts a
numeric value. In other words, the output variable in the regression form is in the form of real
values like the price of a flat, body temperature and weight or number of transactions for an
e-commerce site. It is possible to use some regression algorithms for classifications as well and
vice versa.

The most important supervised algorithms are KNN, linear regression, NNs, Support vector
machines (SVM), Decision trees and random forests.
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2.3.2.2 Unsupervised Learning

In unsupervised learning, the system must learn from themselves. There are no models
or prerequisites which allow the prediction of the output. The learning algorithms of this
category have the role of finding the structure from the input data. Where the supervised
learning uses the term ‘class’ to classify the dataset which means that it has known categories,
the unsupervised learning has the term ‘cluster’ which means that it has unknown categories.
This type of machine learning uses unlabeled data. The algorithm must extract the attributes
and the hidden structure of objects. Next, it groups the objects that share the same structure
in the same cluster (Herbrich, 2001). When the similarity of objects that belong to the same
cluster is much greater than the similarities among objects from different clusters, then the
used unsupervised algorithm was successfully grouping the data.

Revisiting the example of recognizing the number in an input image, suppose that a machine
is given a set of images that have the numbers ‘1’, ‘3’ and ‘8’. The data is not labeled to identify
which number is in the image. The task is to find the similarity of these images. Then, images
that have the same structure and much similarity will be grouped on the same cluster. The
machine could successfully identify all inputs numbers and groups it in 3 different clusters. But,
it must be noticed that the machine still not know which group is ‘1’, which group is ‘3’ and
which group is ‘8’. It will just know that there are three distinct groups or clusters.

2.3.2.3 Semi-Supervised Learning

Semi-supervised Learning is a hybrid where the machine uses a mixture of labeled and un-
labeled data in the input. This type of learning is most applied where we have a very high
number of unlabeled data points, compared to the labeled data points. This technique is less
computationally expensive and doesn’t spend a lot of time and effort in labeling each data
point which can be a highly manual process. The algorithm consists of applying clustering
techniques to identify groups within the given dataset. The few labeled data points will be
used within each group to provide labels to other data points in the same cluster. So that all
similar data points will get the same label derived from the labeled data points (Rebala et al.,
2019). Finally, all data points in the machine have labeled to be used in future learning.

2.3.2.4 Reinforcement Learning

If you give an algorithm a goal and expect the machine through error and feedback to
achieve that goal, then it’s called reinforcement learning. Reinforcement learning consists of
learning what to do to maximize a given reward. In this type of problem, the machine must map
situations to action from it because the used learning algorithm is not told which actions to take
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in a given situation. The machine learns by itself based on previous actions and observations.
By learning behaviors that will maximize the reward, the machine (agent) will decide the best
and the optimal actions. This category is mostly used for robotics which attempts to learn
how to walk, speak, avoid collisions, work or other tasks until its success (Herbrich, 2001).
Reinforcement learning is also used in multiplayer games, driving or game of chess.

2.4 Pattern Recognition

2.4.1 Definition

The definition of pattern recognition can be deduced from the definition of each term “pat-
tern” and “recognition” separately. The word “pattern” could be an object, process or event
that can be given a name. Typically, it represented by a vector x of numbers. Whereas, the
recognition term can be referred to as classification by assigning given objects to prescribed
classes (Koutroumbas and THEODORIDIS, 2018). In other words, pattern recognition is the
classification of objects, which can be images, signals or any types of data, into a number of
categories or classes.

Due to AI and ML technologies’ emergence and evolution, various data became available
in more credible sources and can be analyzed and understood. For these reasons, pattern
recognition was considered as one of the biggest beneficiaries of this progress. It is an integral
element of machine learning technology. One or two or even 3D is easy for humans to understand
and learn, the machine can learn in many more dimensions like even hundreds or thousands.
That is why a machine can look at a lot of high dimensional data and determine patterns. One
machine learns these pattern, they can make a prediction that human comes even close to.

2.4.2 Pattern Recognition Applications

With the development of computers and their application, pattern recognition has gained
much attention. Furthermore, pattern recognition has crucial importance in several fields and
areas. It used in the machine vision system that has the aim of analyzing a captured image
and extracting descriptions for it. This system needs to locate and recognize different objects
and classify them. Character recognition such as printed character recognition systems (i.e.
machine reading of bank checks, automatic mail sorting by zip code, recognize whether an
e-mail is a spam or not, automated check scanners at ATMs or handwriting recognition) where
the system needs to identify letters or numbers is another field. It is based essentially on pattern
recognition.
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Pattern recognition was also applied in Computer-aided diagnosis domain. The medical
data are not easily interpretable. The interpretation is changed from doctor to others depend-
ing on his skill. For this reason, computer-aided diagnoses work on interpreting this data using
computer techniques to obtain a fast and uniform diagnosis. In many cases, pattern recog-
nition systems were used as a second opinion in order to increase confidence in the diagnosis
(Koutroumbas and THEODORIDIS, 2018). Recently, researchers develop various techniques
and algorithms that allow using the obtained diagnosis as a first opinion.

It also used for remoting sensing, monitoring, camera & video recorder, Junk mail filter-
ing, internet research, telephone directory assistance, forecasting crop yield, sequence analysis,
searching for a meaningful pattern. Pattern recognition has gained many attentions in personal
identification based on human biometric such as (face, iris, ear, voice, fingerprint, gait, ECG...).
Others computationally demanding applications include:

• Bioinformatics: develop methods and techniques to understand biological data(e.g., DNA
sequence analysis to detect genes related to particular diseases, analysis of RNA and
protein sequences).

• Data mining: extracts significant and useful data from a large data set in order to solve
different problems such as fraud detection, financial forecasting and credit scoring.

• Speech recognition: create intelligent machines in an attempt to recognize «spoken the
information ». This type of machine is used in numerous potential applications such as
helping handicapped patients to talk with machines to control them, improving efficiency
in a manufacturing environment, communicating with computers and entering data to it
using a microphone.

• Astronomy: develop systems that help on searching and recognizing the different celestial
objects and phenomena that originate outside the Earth’s atmosphere such as classifying
galaxies based on their shapes, automated searches such as the Search for Extra-Terrestrial
Intelligence (SETI) which aims to locate signals that might be artificial in origin by
analyzing radio telescope data (Dougherty, 2012).

2.4.3 Pattern Recognition System Based Structure

The classic scheme of a pattern recognition process can be performed based on a set of steps.
It must be noticed that some of the described steps may thus be obsolete or obscure in other
types of pattern recognition systems (Cornelius, 1998). Figure 2.4.1 shows a diagram of a
pattern recognition system that includes all steps that can be needed to.
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Figure 2.4.1: A diagram of a pattern recognition system (Cornelius, 1998).

2.4.3.1 Data Collection

Data collection is the first step of any pattern recognition system. This step consists of
converting and digitizing the used measurements using an adequate sensor to a numerical
form that allows the generation of pattern vector. Each type of data has its sensor (e.g.
such equipment includes video cameras and scanners in case of image analysis or character
recognition, electrodes in case of ECG, microphones in case of speech recognition . . . etc.). The
quality of collected data has a big influence on the obtained results and the performance of
the developed system which means that any noise will decrease the recognition rate. For these
reasons, the acquired data should be recorded with the highest-fidelity available to build a
robust system. Various types of sensors depending on the type of data in the case of biometric
recognition system were shown in figure2.4.2.

Figure 2.4.2: Various types of sensors depending on the type of data.
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2.4.3.2 Registration

The registration step attempts to fix the internal coordinates of the recognition system to
the actual data acquired. This process is performed based on some of a priori knowledge about
the world surrounding the system besides the conditions used during the collection of data.
The external information will determine the answers of many questions such as the way of
production of data, the time and the positioning of sensible input data interval.

2.4.3.3 Preprocessing

The preprocessing step has the aim of removing noises and improving the quality of registered
data. Many techniques and filter methods can be applied in this stage in order to enhance this
data. In the case of image recognition, the preprocessing step filters images to remove spurious
point noise which might hamper the segmentation process. For signal recognition, it aimed at
removing the base frequency and to enhance the higher frequencies.

2.4.3.4 Segmentation

Most of pattern recognition systems need the segmentation step that can be applied as an
independent process or either interwoven with previous (preprocessing) or following (normal-
ization) processes. This step consists of detecting some objects or important parts and splitting
them which make meaningful entities for classification.

2.4.3.5 Normalization

The variance of the objects that will be recognized is one of the most challenges in pattern
recognition systems. Therefore, it must define a method that can account for these variances.
The normalization step works on reducing the dimensionality increase caused by noises.

2.4.3.6 Feature Extraction

Features extraction considered the main important step in most pattern recognition systems.
It attempts to select the most relevant data and representative information that can be extracted
from raw data which can be used in the next stage that is called classification. The applied
techniques in this step must maximize the inter-class pattern variability and minimize the intra-
class pattern variability simultaneously. The more the extracted characteristics are varied, the
better the system is effective. In most cases, reduction methods can be applied to reduce the
dimensionality of data in order to decrease the complexity of the system. Subsequently, it will
allow savings the memory and the time consumptions besides improving its accuracy.
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2.4.3.7 Classification

Another crucial step in pattern recognition is named classification. In this step, the quan-
titative input data will be transformed into qualitative output information that can be one
of the predefined classes or likelihood values of the selected class. The achieved results and
the success on this step depended on each of the previous steps as we precise formerly. Many
algorithms were proposed to assign the extracted features to the correct output.

2.4.3.8 Post-processing

Post-processing step has quite the same target as the preprocessing step. It has the goal of
helping systems to produce better results, understanding the environment of the system and
its surrounding world and improving the overall classification accuracy (Cornelius, 1998). This
step is applied to solve the problem of interdependencies between individual classifications.

2.4.4 Pattern Recognition Techniques

Different techniques and algorithms were proposed for pattern recognition. It can be divided
into four groups namely statistical, structural, Syntactic and hybrid pattern recognition. Each
group has its advantages and limitations and it possesses various ways in order to present
patterns and classes besides different algorithms for learning and recognition.

2.4.4.1 Statistical Pattern Recognition

This category is a classical method of pattern recognition. It was found out during a long
developing process and it has been commonly used in pattern recognition. It based on numerical
descriptions of objects by generating feature vector distributing. This vector was getting from
probability and statistical models which are defined by using a family of class-conditional
probability density functions Pr(x|ci) (probability of feature vector x given class ci). The
statistical decision focused on individual descriptions. This class ignores the relations between
features so only features were used. A fully automated processing was used.

Various algorithms were developed to manipulate numerical values. The extraction of in-
dependent features for each object and the discard of the relation between them may lead to
poor descriptions. It also makes this model unable to describe complex pattern structures and
sub-pattern relations.
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2.4.4.2 Structural Pattern Recognition

This class describes objects based on two types of description, namely numerical and sym-
bolic description of objects. Unlike statistical pattern recognition system and besides to the
extraction of independent features for each object, the structural pattern recognition gives also
considerable importance to the relation between these objects. It also emphases on the way
of the composition of one pattern based on sub-patterns which make it quite better to the
statistical concept.

Algorithms based on manipulating numerical values cannot be used in this class because of
the used complex structure (Graphs, Strings). It can distinguish two main methods in structural
pattern recognition called syntax analysis and structure matching. While the former based on
the theory of formal language, the latter based on some special technique of mathematics based
on sub-patterns (Liu et al., 2006),(Tsai and Fu, 1980). To allow structural pattern recognition
dealing with more complex problems of pattern recognition, statistic classification or neural
networks were associated.

2.4.4.3 Syntactic Pattern Recognition

Syntactic pattern recognition is derived from structural pattern recognition. In other words,
it is a special kind of structural pattern recognition. This category based on the rules of
composition which can be used in the case of finishing the customization of a series of rules
which describe the relationships among the parts of the object. Because of its suitability for
dealing with recursion, syntactic pattern recognition gained many attentions (Liu et al., 2006).
But it must be noticed that this pattern recognition type is weak in handling noisy patterns
and numerical semantic information.

2.4.4.4 Hybrid Pattern Recognition

While each class has its strengths and weakness. The disadvantages of a class may be the
advantage of another class. The hybrid class combines the strengths of each category which
makes it more useful for real applications. Hybrid methods emphasis on enriching the set of
combined methods by exploiting its strengths in order to build a robust structure that can deal
with the addressed problems. Recently, this category is very used and many techniques were
applied.
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2.5 Conclusion
AI is the science of simulating human intelligence in a machine. It may outperform humans

at whatever its specific task is. While AI aims at making an intelligent and independent
machine that can reason, interact with a human, understand requests, observe and plan based
on mimicking human abilities, machine learning is a specific subset of AI that trains a machine
on how to learn data and make predictions.

In Information Technology (IT), pattern recognition is a subfield of machine learning. It
can be defined as the identification of objects by extracting the representative information or
features from these objects. The goal of pattern recognition is to classify unfamiliar objects
very quickly even when partly hidden based on learning from data. Until now, AI which can
outperform humans is designed to perform limited tasks. Many researchers work on developing
AI for unlimited tasks and goals in futures in order to help civilization flourishing as long as
keeping this technology beneficial.

In this chapter, we have introduced an overview for AI, ML and pattern recognition. A
definition and application areas were presented.
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CHAPTER 3

Ear BIOMETRIC

3.1 Introduction

In this chapter, we will present the ear as a biometric. The properties of the ear which
make it acceptable for use in recognition will be detailed. Why do we use ear biometric,

besides the different strengths and limitations will be presented. The anatomy of the ear will
be also discussed. The third section includes relevant works in this field, starting with its first
proposition until nowadays. Next section was reserved for ear detection techniques and some
related researches. The different developed ear recognition approaches are presented in section
five. Most ear databases are given in the next section. Finally, some multimodal systems,
where the ear is one of the used modalities, will be cited in the last section.

3.2 Ear Biometric
Ear recognition was founded firstly by the FBI Academy and it was used for forensic domains

during many years. Ear biometric has many advantages and strengths that make it a better
choice for research in several cases to construct a robust and efficient biometric system. Ear
biometric has received many attentions in various domains, especially in forensic science. Ear
biometric has a stable structure with a little change with age and no change with the pose and
facial expression over an acceptable period of human life.

Ear is larger than conventional modalities like iris or fingerprint providing more important
information increasing efficiency (Jain et al., 2007). Therefore, it is more easily captured from
a distance and doesn’t require a high-quality camera (Woodward et al., 2001). Ear biometric
is a non-invasive biometric technique because there is no need for the assistance of persons. It
can easily capture his ear even without his knowledge. The uniformity of colour distribution
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on ear modality is more than other biometrics such as face or iris (Ibrahim et al., 2010). For
all these reasons, many researchers prefer the use of ear recognition more than other biometric
technologies.

Ear biometric has a definitive structure like the face. The shape of the outer ear consists of
the helix or it can be called outer rim. Next valleys named antihelix or inner helix which runs
roughly parallel to the outer helix but forks into two branches at the upper extremity. The
little bump on the left of the intertragic notch exactly on lower of antihelix called antitragus.
Continuing on the same curves, we find the intertragic-notch which can be exploited as a
reference point for biometric purposes because of its very sharp bend at the bottom. At
the opposite (right) side of helix and where the helix intersects with the lower branch of the
antihelix can distinguish the crus of the helix. Alfered Iannerelli uses this point among the
12 measurement points on his biometric system. The point in the centre of ear shape called
concha (Iannerelli, 1989). This point contains the ear hole. Figure 3.2.1 shows the external
anatomy of the ear.

Figure 3.2.1: The anatomy of ear (Iannerelli, 1989).

3.3 Literature Reviews
The french criminologist Alfrid Iannerelli proved that the ear possesses the most stable and

unique characteristics after fingerprints that can be used for identification purpose. Alfered
Bertillon considers that the shape of the ear, its valleys and hills can be applied as the most
significant factors point for recognition. Besides that, there are no two identical ears. Several
studies have proved the uniqueness and the robustness of ear. Imhofer, in 1906, uses only 4
features to identify 500 ears. He could easily distinguish between ears on his studies which
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demonstrate the robustness and efficiency of the ear as a biometric modality for recognition
(Ross and Byrd, 2011).

In California 1989, 10,000 ears captured from random persons.The achieved studies have
proven that all the ears were distinguishable and no ears are the same. The anthropomet-
ric technique was developed by Iannarelli to identify ears. The “Iannarelli System” uses 12
measurements in his studies. A total of 12 measurements are illustrated in figure 3.3.1

Figure 3.3.1: Iannarelli’s manual ear measurement system (Ross and Byrd, 2011).

A medical report shows that ear has a stable structure and a noticeable variation can be
viewed from four months to eight years old and over 70 years old which mean that ear has a
fixed structure from eight years to 70 years. Because of the stability of ear and predictable
change of its structure, it becomes one of the most used modalities for human identification.
Due to the various strengths of this modality, many researchers have used ear as a biometric
either alone or merged with other modalities on 2D and 3D domains.

Recently, different ear recognition systems have been developed in various areas. These
systems aim to achieve a secure and robust system based on extracting a set of features. The
extracted set of points represents the input ear using local approaches, global approaches,
geometrical approaches or hybrid approaches. The methods of extraction are applied to 2D or
3D ear images.

Starting with 2D ear recognition system, here, the ear images are captured from different
hardware such as commercial off-the-shelf cameras or surveillance systems cameras. In this
system, the hardware detects a profile face as an input image. Next, an automated or manually
segmentation is performed by the captured image. The segmented ear will be then normalized to
account for potential variability in illumination. Next step is considered as the important phase
in the whole system which named feature extraction step. Different techniques are proposed to
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extract the discriminant feature from the preprocessed ear. Finally, an adequate classifier was
used in the matching step to identify the input ear image by comparing it with all templates
which exist in the database.

A 2D ear recognition system was developed in (Boodoo-Jahangeer and Baichoo, 2013) that
could be helpful in the medical domain. Especially, where the face of the patient injured and
it’s hard to recognize him. Local Binary Pattern was used to extract the discriminant features
from 2D ear image. This method consists of dividing the image into cells of 3 × 3 pixel blocks.
An LBP code was computed for each centre pixel xcof each block based on a comparison with
its neighbors P according to the following formula:

LBP =
P∑

K=1
sg(xk − xc).2k−1 (3.3.1)

Where xkis the kth neighbor. And sg represents the sign function and it is defined as:

sg(x) =

1 if x ≥ 0

0 if x < 0
(3.3.2)

The next step consists of computing the histogram of the frequency of each occurring number
. The achieved results have been compared with PCA. The proposed ear recognition system
was performed on the Indian Institute of Technology (IIT-Delhi) ear image database which
contains 125 subjects with 3 images for each one. A recognition rate of 93% was obtained
which proves the power of LBP descriptor.

An automated personal identification system based on ear biometric was introduced by
(Benzaoui et al., 2015). They have the objective of decreasing the recognition performance
under unconstrained conditions like partial occlusion, illumination or pose variation. The pro-
posed system was based on three steps. The first step is the normalization of ear image to
a standard size and direction according to the long axis of outer ear contour. The long axis
represents the max distance between two points of the ear contour. Then, the different detected
max axes from all ear images were normalized to the same length and same direction.

The discriminant features were extracted in the next step to represent successfully the input
ear image. LBP, LPQ and BSIF were applied on 2D ear image to extract the representing
features. In order to solve the problem of sensitivity of LBP to blur, LPQ was applied. This
method based on quantizing the Fourier Transform phase in local neighborhoods. An LPQ
code is computed by quantizing the Fourier transform phase in local neighborhoods. It is
represented by a convolution between the image intensity and a point spread function (PSF).
A blur invariant LPQ code will be generated for each pixel. Then, a histogram was computed
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by collecting the occurrences of these LPQ codes.
In BSIF method and after convolving the image with a set of linear filters, each bit in

the generated BSIF code was computed by binarizing the response of a linear filter with a
threshold at zero. The number of filters used was determined based on the length of the bit
string. Independent Component Analysis (ICA) was applied to learn the filters from statistics
of natural images. A significant performance has achieved especially with BSIF.

ADWT-SIFT hybrid approach for ear features extraction was developed in (Ghoualmi et al.,
2015). The proposed approach combines global approach named Wavelets with a local ap-
proach named SIFT. Different performance measures were calculated to evaluate their pro-
posed method. Higher accuracy and less time consumption were achieved by the proposed
authentication system better than each authentication system taken separately.

A recognition ear system was proposed based on Multi-scale Local Binary Pattern (MLBP)
descriptor for the extraction step (Youbi et al., 2016). Instead of computing a single scale of
the basic LBP, MLBP extracts features computed at different scales. Then, it combined the
collected histograms which will be able to detect the dominant texture characteristics and solve
the problems of image rotation and translation. The Kullback Leibler (KL) distance was used
for the matching step.

Hassaballah et al develop a comparative study of ear recognition using local binary patterns
variants. In this study, the authors aim to analyze and compare these extractors to determine its
efficiency and robustness on ear biometric. Besides the traditional LBP variants, they develop
a new modified LBP named Average Local Binary Patterns (ALBP). This comparative study
is tested and validated based on five (5) databases called IIT Delhi (I), IIT Delhi(II), AMI,
WPUT and AWE (Hassaballah et al., 2019). A CRR reaching up to 99% in case of constrained
databases. But the performance of the system decreases in case of unconstrained databases
which require more studies and improvements.

Researchers found that the use of 3D images instead of 2D images is useful in many cases to
construct a recognition system. It can be a solution to many difficulties faced with biometric
system that uses 2D images. The captured 2D ear image can be affected by noise because of
the different condition of illumination or scale variation. Another challenge was the sensitivity
towards pose. These limitations can be avoided using 3D images. Moreover, the cost of 3D
scanners has been drastically reduced. All of these reasons motivate researchers to develop a
robust biometric system based on 3D images.

The structure of ear possesses rich information. Its helix and valleys make them more sig-
nificant for identification than other biometrics modality (Prakash and Gupta, 2015). 3D ear
provides more textures and information thus improve performance and enhance the recogni-
tion of the developed system. Many researchers exploited the 3D technique either alone or
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concatenated with the 2D technique.
Yan et al introduced a powerful search and retrieval methods using ICP with PCA to find

the relevant points in an ear shape volume (Yan and Bowyer, 2005). Four approaches are
developed including PCA for 2D ear images with a recognition rate of 63.8%, PCA for 3D
ear images with a lower recognition rate of 55.3%. The third approach consists of applying
Hausdorff matching of edge images from range images, achieving 67.5%. The last and the best
approach was ICP matching of the 3D data achieving 84.1%. 3D-ICP shows good robustness
and scalability with the size of the dataset. The proposed techniques are validated and tested
using UND database. The collected data are acquired from the University of Notre Dame
(UND) from 2003 to 2004 assembling left ear images from 302 subjects.

Bhanu et al successfully use 3D data to represent significant features in ear images(Chen
and Bhanu, 2007). New algorithms are presented for segmentation step, identification and
verification modes. Firstly, a new technique is proposed to detect the shape of the ear using a
single reference 3D ear shape mode. Then, a helix/antihelix representation is generated which
will be used for ear identification and verification. Another representation consists of using a
Local Surface Patch (LSP) which based on neighborhood information. These representations
compare between a gallery-probe pair by computing the initial rigid transformation between
them. A modified Iterative Closest Point ICP algorithm is employed for final probe and gallery
image matching. University of California Riverside (UCR) database, which contains 902 images
captured from 155 subjects, and UND database of 302 subjects are chosen for the validation
step of the proposed ear recognition system. A recognition rate of 96.8%, 94.4 % are achieved
with UND, UCR databases respectively.

Local and holistic features were used for multi-biometric 3D ear recognition (Zhou et al.,
2011). In this study, after segmenting the 3D ear automatically, features are extracted from
them based on two extraction methods. In the first extractor named local features, an extended
descriptor called Surface Patch Histogram of Indexed Shapes (SPHIS) has been applied for
surface patch representation and matching. Holistic features are used as a second extractor. In
this technique, a robust representation is generated by voxelizing the ear surface. Score level
fusion has performed. Then, a match score for the input ear image is generated. A recognition
rate of 98.60% is obtained on the UND-G dataset, with an EER of 1.60%.

A new ear biometric system based on 3D ear images with co-registered 2D ear images was
presented in (Prakash and Gupta, 2014). It is started with locating local 2D feature points from
co-registered 2D ear images. Then, salient 3D data points were computed from 3D ear images
which will be used in the next step for recognition purpose. Generalized Procrustes Analysis
(GPA) and Iterative Closest Point (ICP) based matching techniques (GPA-ICP) are proposed
for the matching step. To validate the implemented system and the proposed techniques, the
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UND-Collection J2 (UND-J2) database has been exploited. UND-J2 database contains 1780
3D and co-registered 2D profile face images with scale and poses variations captured from 404
subjects. Each subject has at least two samples. A verification rate of 98.30% has been achieved
with an EER of 1.8%.

A theoretical framework for a novel intelligent technique using 3d ear models was produced
in (De Tré et al., 2016). This technique allows to forensic expert identifying precisely victims
using their ears. Automated segmentation is proposed to extract the ear from the photographs.
A normalization and enhancement of the detected ear are performed and an ear model will be
generated using geometric and photometric corrections. Two features sets, Post Mortem (PM)
and Ante Mortem (AM), which are extracted from ears models using shape fitting approach,
are compared. Minkowski distance beside a new method named bipolar satisfaction degrees
are proposed for matching.

Ganapathi et al implement a new technique based on both 2D and 3D ear images for human
recognition (Pflug and Busch, 2012). The first step consists of applying curvilinear structures
on 2D ear image in order to detect a salient features key-points. New techniques based on
using curvilinear features to 3D were proposed. In the second step, the located features key-
points are mapped onto the co-registered 3D ear image. Next step consists of extracting a
feature descriptor vector for each mapped key-point computing rotational projection statistics
(RoPS). RoPS technique adversely affects the performance of the system in the case of using
highly similar objects like ear biometric. Iterative Closest Point (ICP) is coupled with RoPS to
solve this limitation and improve the recognition of the proposed system. The developed work
achieves a verification rate of 98.69% with an EER of 1.53%.

3.4 Ear Detection
The first proposition of using the shape of the ear for recognition was discovered by the

French criminologist Bertillon. Then, Iannarelli developed the first ear recognition system
(Pflug and Busch, 2012). Ear detection is considered one of the most important phases in the
ear recognition system. Before the extraction step, it is necessary to locate the shape of the ear
from the whole the input profile face image. This step requires a robust and optimal algorithm
for segmentation. The detected ear will be used next to the extracted representatives features.
The extracted features were matched with templates exist in the database. So, the detection
of result has an influence on the whole next steps which will directly affect the performance of
the recognition system.

In fact, the shape of the human ear is not elliptical for all individuals which make the
ear detection stage more difficult (Prakash and Gupta, 2012). Figure 3.4.1 shows the different
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shapes that can be founded. Moreover, ear detection techniques can face other problems related
to scale and pose variations. Ear detection remains a real challenging problem until now. For all
these reasons, many researchers that focus on recognition use manually cropped ears technique
and have not used automatic ear detection and segmentation. The use of manually cropped
ears Ensures that the performance of the developed system is not affected by the detection
phase. It also allows focusing more on the extraction technique and this is the case in our work.
Many algorithms are developed to construct efficient automated ear detection from 2D or 3D
profile face image.

Figure 3.4.1: Ear shapes (Prakash and Gupta, 2012).

Burge and Burger in (Burge and Burger, 2000) capture profile grayscale images using CSD
camera. The first step consists of locating the ear using a deformable contour on a Gaussian
pyramid representation of the image gradient. Then, canny operator was applied to compute
the edge of the located ears with specific thresholding.

An automatic detection system based on the shape of the ear was developed in (Abdel-
Mottaleb and Zhou, 2006). The ear region was located from a colour profile face image following
three steps. The first step named Skin-Tone Region Segmentation consists of generating a skin
map image by applying Flek’s method in order to locate the face region. The second step
named Edge Detection on Skin Region applied canny edge detection on the located region. An
edge size filter was used to improve the detection and remove noises. The next step consists
of locating the ear region using a template matching. This technique was a part of an ear
recognition system which recognized the ear after its detection.

Two main steps were presented by (Yuan and Zhang, 2009) to build robust ear detection
from a video. The first step consists of following the profile face in the video frame sequences
based on a modified Continuously Adaptive Mean Shift (CAMSHIFT) algorithm. Canny edge
detection works on smoothing the image to eliminate noise and finds edge strength of the
gradient and the edge direction. Ellipse fitting based on the least-squares method was applied
to segment the ear due to the shape of the ear which is similar to the ellipse. The developed
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technique can be used in real-time under a practical situation.
Two approaches for human ear detection from side face range images were proposed in (Chen

and Bhanu, 2007). The first approach includes template matching based ear detection method
where the second based on the ear shape model. Principal curvatures compute an averaged
histogram of shape index which represents the model template. Whereas, a set of discrete
3D vertices corresponding to ear helix and anti-helix parts were computed to represent the
ear shape model. The proposed approaches are tested on 312 side face range images captured
from 52 subjects. Each subject has six images. A detection rate of 92.6% and 92.4% and
a detection time equal to 6.5 and 5.2 sec was achieved applying Ear shape model, template
matching respectively.

In (Bhanu and Chen, 2008), they introduce a third approach based on the fusion of colour
and range images and global-to-local registration based detection. In order to isolate the side
face in an image, skin colour classifier is applied to generate a mixture of Gaussians. This latter
allows modeling the skin colour and non-skin colour distributions. The fusion step consists of
combining the edges from the 2D colour image with the step edges from the range image
to locate regions-of-interest (ROIs) that may contain an ear. The proposed approaches are
validated using UCR dataset and the UND dataset. The detection rate increase to 99.3% on
the UCR dataset and 87.71% on UND by fusing colour and curvature information.

A robust ear detection method is proposed based on a bank of curved and stretched Gabor
wavelets, known as banana wavelets (Ibrahim et al., 2010). The input image is convolved
with eight filters. Then, response magnitudes are calculated to find the positions where this
magnitude has local maxima. To test the proposed ear detection method, XM2VTS database
with 252 profile images from 63 subjects was used and a detection rate of 100% is achieved.
The developed method has succeeded in detecting the shape of the ear on all images in the
database. A comparison between Gabor wavelet technique and the proposed Banana wavelet
filters are performed using the same parameters. The obtained results proved that Banana
wavelet filters can capture the curved structures better than Gabor wavelet filters.

The application of the Cascaded AdaBoost (Adaptive Boosting) approach to detect ear
images from 2D profile face images was performed in (Islam et al., 2011). For training the
cascade, the deferent stages were defined in order to help classifier to reject rapidly the false
positives using a small number of features. So, AdaBoost is used to select good weak classifiers
and then to combine them into strong classifiers. All the stages are used to construct in
a cascaded manner the final ear detector. The proposed detector is scanned over an input
image in different sizes and locations. If the test image is detected as positive (ear) by the
classifier of the previous stage and accepted finally only when it passes through all of them,
then, the classifier in the cascade can be used. The proposed work uses Collection F of the UND
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database to validate the results. A detection rate of 99.9% was obtained. AdaBoost approach
demonstrates its efficiency and robustness even if ears have occluded with hair, ear-rings, or
ear-phones.

In the purpose of solving some challenges encountered by ear detection and recognition
such as rotation, scale and pose variations, a new technique was developed in (Prakash and
Gupta, 2012). This technique exploits images in YCbCr space because it is more used in video
compression standards. As an initial step, a conversion of RGB colour space to YCbCr colour
space is applied. Based on information colour, a segmentation of skin and non-skin regions
was performed, after separating luminance from it. A Gaussian model is applied to compute
the likelihood of skin for each pixel which can be used to segment skin and non-skin regions.
Skin segmentation is achieved by thresholding the skin likelihood image using appropriate
thresholding generated by applying an adaptive thresholding process. Canny edge operator
extracts all edges on skin segmented image. Each edge represents a sequence of pixels. To
conserve only the important pixels exist in edge, line segments are fitted to it. The proposed
technique is tested on IITK and UND databases with a detection rate of 95.61% and 96.63%,
respectively.

A snake model was applied to detect the object in an image (Anwar et al., 2015). The
initial position of the snake is selected manually by clicking on the image and selecting control
points. The next step consists of specifying the different parameters of the model, the number
of iterations. Then, in the purpose of removing noise, a median filter was used. After the
binarization of the filtered image, the canny edge detector was applied to find edges. Finally,
only strong edges and weak edges which they are connected to strong edges are collected. The
proposed ear recognition system achieves 94% on the term of accuracy with IIT Delhi ear
database.

3.5 Ear Recognition Approaches
In an ear recognition system, there are three main steps. The first step, namely the pre-

processing step, includes segmentation of ear from the whole input image. Besides to different
techniques of normalization which reduce noise and illumination, fixes the size and converts
the colour level. . . etc. The second step considered as the important phase in the recognition
system. In this step, the important traits were extracted applying an adequate extractor. The
extracted features will be used in the last step, namely matching, to find its similar features in
the database. Many techniques were proposed to build a robust and efficient feature extraction
method as observed in Table 3.1. Depending on the used feature extraction method, 2D ear
recognition approaches can be divided into four types: geometric, holistic, local and hybrid
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methods as shown in Figure 3.5.1.

Figure 3.5.1: Ear recognition approaches (Emeršič et al., 2017b).

3.5.1 Geometric Approach

This technique, which introduced by Iannarelli in 1989, is based on the geometrical traits
that can be extracted from the ear biometric such as the shape and its various edges and
valleys, inner and outer of the helix, height line, the position of specific parts of the ear and
the relation between these parts. The geometric approach is largely used due to the enormous
discriminant information contained in the ear shapes and the stability of this information and
the ability to use it in ear recognition system. Because of the large area of the ear, high
features dimension can be obtained which decreases the performance of the recognition system
and therefore increases the complexity. Moreover, geometric methods are sensitive to rotation
and scale variations. Figure 3.5.2 illustrates the architecture of a geometric ear approach.
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Figure 3.5.2: The architecture of geometric ear approach (Anwar et al., 2015).

A novel geometrical features extraction method was introduced for the extraction of specific
geometrical points of ear biometric by (Islam et al., 2011). Image preprocessing was performed
using a Gaussian filter. Then, Canny edge operator was applied to detect ear helix. The
extracted geometrical features represented on the combination of maximal Ear Height Line
(EHL) and minimum EHL. For maximal EHL, it can be determined by selecting the maximum
distance between two edges points. Minimum EHL will be determined by selecting the shortest
distance between the upper and the lower region. Other traits are added to these two features
such as its summation and ratio where these features are invariant to scale changes. The
proposed method is validated using USTB1 and IIT Delhi databases with an accuracy of 98%
and 99% respectively

An efficient ear authentication system was developed by (Annapurani et al., 2015). In the
presented work, an enhanced edge detection method was applied to extract tragus features from
the ear biometric. For more robustness and efficiency, the shape of the ear is also extracted.
Then the tragus and the shape of the ear are fused together at feature fusion level. IIT Delhi
and AMI databases are used to test and validate the proposed system. An authentication rate
of 100% was achieved from both AMI and IIT Delhi databases.

3.5.2 Holistic Approach

This approach called also global technique. It is based on features taken from the whole
ear image and attempt to correlate various features for biometric verification (Emeršič et al.,
2017b). Unlike the geometric approach, holistic approach extracts information based on the
global appearance of the ear. This approach is sensitive to pose and illumination variations.
Hence the preprocessing step should be taken into account. Normalization techniques must be
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applied to solve these problems to allow extracting the correct features in the next step. A
simple architecture of holistic ear approach is presented in figure 3.5.3.

Many algorithms are proposed in this field. Force Field transformation, PCA, LDA, Inde-
pendent Component Analysis (ICA), all of these cited algorithms and others were exploited
successfully for ear recognition. A PCA technique was used for face and ear recognition system
separately with a recognition rate of 71.6 %, 70.5 respectively (Chang et al., 2003). Where a
multimodal recognition system based on both ear and face increases the recognition rate to
90.9% using UND E database with 114 subjects.

Figure 3.5.3: The architecture of holistic ear approach (Yuan and Mu, 2007).

ICA method was applied in (Dewi and Yahagi, 2006) on the processed ear images to extract
a set of representative points which will be matched in the next step by applying Radial Basic
Function (RBF) classifier. The experimental results are conducted on Carreira-Perpinan ear
database and their own databases with 17 and 60 subjects, respectively. A performance rate of
94.1% was achieved with CP databases, where 88.3% was obtained with the second database.
Another ear recognition system was developed based on Full-space Linear Discriminant Analysis
(FSLDA) technique (Prakash and Gupta, 2013). FSLDA extracts the robust features set from
the normalized ear image with different rotation variations. The experimental results carried
out on USTB II ear image database which contains 77 subjects. A recognition rate of 90% was
achieved.

A force field transform was applied to the detected ear region (Abdel-Mottaleb and Zhou,
2006). The detection step was explained previously in section 4. Features were extracted from
the transformed image in order to obtain a set of point that can be used for representing ear in
the next step. They use their own database by collecting profile face images from 103 subjects.
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3.5.3 Local Approach

Local approach based ear recognition focuses on local areas of an image. Where geometric
approach based on the localization of points and the relation between them, the local approach
based on the description of a specific area in the image. In this approach, the shape of the
ear, in general, had not the same importance in the geometric approach where each part has a
meaningful description and location. The representative set of features can be founded in any
area in the image. An example of a local ear approach architecture is shown in figure 3.5.4.
Recently, the local approach is largely used due to its deferent advantages such as:

• Low computational complexity.

• Ease of implementing many techniques in this context.

• Insensitive in several cases to rotation and illumination variations.

Figure 3.5.4: The architecture of local ear approach (Pflug et al., 2014).

Two types of techniques can be distinguished in this category. The first type consists of two
sub-steps. Firstly, key-point locations must be detected in the image. Next, separate descriptors
were computed for each detected key-point. Many techniques based on this group are presented
in the literature. (Dewi and Yahagi, 2006) apply Scale Invariant Feature Transform (SIFT)
to extract scale-invariant keypoints from ear image. The proposed ear recognition system
outperforms PCA and forces field transform techniques.

Another technique, names Speeded Up Robust Features (SURF), was proposed in (Prakash
and Gupta, 2013). The developed ear recognition system aims to work out on pose, poor
contrast, change in illumination and lack of registration challenges faced by ear biometric.
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SURF was applied to the enhanced ear images to obtain robust features. The experimental
results have been evaluated on two public databases, namely IIT Kanpur ear database and the
UND ear database (Collections E).

The second type does not detect key-points; it computes local descriptors in a dense manner
from the whole image (Emeršič et al., 2017b). Different techniques have been proposed in this
group such as Gabor filters, LBP, LPQ, BSIF and others. A Gabor Filters technique was used
to extract the discriminant features from the training data of each subject (Benzaoui et al.,
2014). The achieved results carried out on the UND collection G dataset with a rank-one
recognition rate of 98.46%. LBP was applied to extract the important features from 2D ear
images (Boodoo-Jahangeer and Baichoo, 2013). The obtained results were compared with other
methods. LBP prove its efficiency against global illumination changes and low computational
cost.

Three different texture descriptors: Histograms of Oriented Gradients (HOG), LBP and
LPQ descriptors were applied to construct a robust ear recognition system (Nosrati et al.,
2007). An automated unsupervised classification technique is applied in the matching step
to compare the experimental results. Implement BSIF descriptor was developed to extract
representative features that can be used to recognize the individual’s ear (Ying et al., 2014).
Two publicly available databases, which are IIT Delhi-1 and IIT Delhi-2 ,were used to validate
and test the proposed ear recognition system.

3.5.4 Hybrid Approach

The combination of different techniques from the three previously discussed approaches cre-
ates the hybrid approach. The first proposition of this approach was introduced by (Nosrati
et al., 2007) by fusing 2D Wavelet and PCA methods. The developed ear recognition system
applies 2D wavelet on the normalized ear image. Then, the PCA technique was applied to the
generated feature matrix in order to reduce features dimension. The introduced work carried
out on USTB II and CP benchmark databases. A CRR of 90.5% and 95.05% was achieved
with USTB II and CP, respectively.

Recently, the hybrid approach beside to local approach has gained many attentions in the
fields of ear recognition and most competitive results have been achieved. A combination of
Weighted Wavelet Transform and DCT techniques are performed to construct an improved ear
recognition system (Sun and Liu, 2010). Two-dimensional Discrete Wavelet Transform (DWT)
was applied to the human ear images as a first step. The next step consists of extracting DCT
coefficients of the image using both blocks Discrete Cosine Transform (DCT) and weighted
high-frequency components. In comparison with related works, they approve that the proposed
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hybrid approach outperforms ear recognition system based only on low-frequency components
of the wavelet transform. A performance of 75 98.1 was obtained with their own database
which contains 75 subjects.

Another proposition was introduced by (Morales et al., 2015). In this work, authors explore
the discriminant properties and powers of local descriptors and global descriptors for earprint
based automatic biometric recognition system. The implemented system extracts from the
enhanced ear image the local and global features independently. SIFT technique was used in
the purpose of extracting the local traits of the ear where the global traits were extracted based
on matching binary or grey masks obtained from the whole earprint shape. A large database
is used namely FEARID which contains 7364 prints obtained from 1229 donors collected from
three different forensic laboratories.

A three-dimensional ear recognition system was developed by (Liu et al., 2016)based on
a combination of local and global descriptors. Points, lines and area features represent the
local features where the empty centres and angles were defined for the global features. A large
dataset was collected using their own laser scanner designed for online 3D ear acquisition which
contains 2,000 samples. An EER of 2.2% was achieved.

3.6 Ear Benchmark Databases
There are several benchmark databases that can be used to validate and analyze an ear

recognition system. In case of adding an ear detection technique, it will be possible to use some
face databases which contain a profile face images. Some of profile face databases which were
used for ear recognition are introduced from Indian Institute of Technology Kanpur (IITK),
UND, FERET, Pose Illumination Expression (PIE), West Virginia University (WVU) . . . etc.
There is another type of ear database such as FEARID ear print database. This database does
not contain ear images but it collects ear prints. Ear prints were collected using a specific
scanning hardware.

We focus on our dissertation in constrained and unconstrained ear databases. Each con-
strained database captures ear images in specific conditions of lighting, rotation, resolution,
illumination, left/right side, the distance between camera and subject, the quality and size of
the collected ear images. Besides that, each ear database possesses a different set of subjects.
In this section, we provide the most used ear databases chronologically sequenced.
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3.6.1 CP Ear Database

The CARREIRA PERPIŇÁN (CP) database was collected in 1995. It is considered as the
oldest ear database in order to build an automatic personal ear identification for a master’s
degree (Carreira-Perpinan, 1995). CP ear database captures images from 17 subjects. Each
subject has six records which mean that there got 102 images in total. A high degree of
uniformity presented by the images, due to the process of the collection followed. The same
controlled conditions were performed for all captured images in the database. Some samples
for CP constrained database were presented in figure 3.6.1

Figure 3.6.1: Samples from CP database (Carreira-Perpinan, 1995).

3.6.2 USTB Ear Database

Three ear databases were created by the University of Science and Technology in Beijing
(USTB) (Zhichun Mu, 2004). The collected images were recorded from Students and teachers
from the Department of Information Engineering, USTB.

For the first USTB I database in 2002, the right ear was captured with a digital camera. It
contains 180 images from 60 subjects, three images of the right ear for each subject. The images
collected through the databases were taken with different angle rotation and under different
lighting condition. A few examples of images from this database are given in figure 3.6.2.

Figure 3.6.2: Samples from USTB I database (Zhichun Mu, 2004).

For the second database USTB II in 2004, 308 images were photographed from 77 subjects,
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four images of the right ear for each subject. Unlike USTB I which possesses a cropped ear
images, USTB II provides profile images under illumination variations and angle variations.
Figure 3.6.3 shows some examples for USTB II database.

Figure 3.6.3: Samples from USTB II database (Zhichun Mu, 2004).

USTB III database was created in 2004. While, in the two previous USTB I and USTB II
databases, there is no need to ear detection techniques, USTB II was addressed especially for
this purpose. Besides that, it will be helpful in face and ear multi-biometric recognition. All
right profile face images were captured under specific angles and occlusions. USTB III contains
1600 images of 79 subjects. Figure 3.6.4 illustrates ear images for USTB III database.

Figure 3.6.4: Samples from USTBIII database (Zhichun Mu, 2004).

3.6.3 IIT Delhi Ear Database

Two ear databases were introduced by the Biometrics Research Laboratory at Indian Institute
of Technology, Delhi (Kumar and Wu, 2012). The ear images were collected from the students
and staff at IIT Delhi. For IIT Delhi I ear database, ear images were collected from 121 subjects.
Each subject has at least 3 sample images with a resolution of 272*204 pixels for all images.
While IIT Delhi II database collects ear images from 212 subjects with 754 ear images in total.
The second version is automatically cropped and normalized. All images in IIT Delhi possess
the same dimension, centred and mutually aligned and under different lighting conditions. Some
ear images from both IIT Delhi I and IIT Delhi II were shown in figure 3.6.5.
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Figure 3.6.5: Samples from IIT Delhi database (Kumar and Wu, 2012).

3.6.4 AMI Ear Database

Mathematical Analysis of Images (AMI) ear database was created by Esther Gonzalez in
order to use it in his research to obtain Ph.D degree in Computer Science (Esther Gonzalez
and Mazorra, 2008). 700 ear images are collected using a Nikon D100 camera from 100 subjects
including students, teachers and staff of the Computer Science department at University of Las
Palmas of Gran Canaria (ULPGC), Las Palmas, Spain. Each subject has seven profile images
where six images were from the right ear and one for left ear. These images were acquired under
the same lighting conditions with a resolution of 492 x 702 pixels. Some ear images examples
of this database are shown in figure 3.6.6.

Figure 3.6.6: Samples from AMI database (Esther Gonzalez and Mazorra, 2008).

3.6.5 WPUT Ear Database

A large database was created by West Pomeranian University of Technology (WPUT), in
2010, aiming at reducing some challenges founded in the existed databases (Frejlichowski and
Tyszkiewicz, 2010). WPUT took images from 501 subjects including 254 women and 247 men
and achieving 2071 ear images in total. Each subject has at least two (profile and half-profile)
ear images. In most cases, four ear images per individuals have been photographed. 166
individuals have possessed ear images occluded with hair. 147 individuals have ear images
with earring. Others ear deformations have been also included in this database such as glasses,
headdresses, noticeable dirt, dust, birth-marks, ear-pads ...etc. Ear images were taken under
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different indoor lighting conditions. WPUT was the first ear database that has 15,6% photos
photographed outdoor and others were taken in the dark. Figure. 3.6.7 shows some examples
of images from WPUT database.

Figure 3.6.7: Samples from WPUT database (Frejlichowski and Tyszkiewicz, 2010).

3.6.6 AWE Ear Database

While the others discussed databases contain images captured in controlled laboratory con-
dition with limited variability. Annotated Web Ears (AWE) database (Emeršič et al., 2017a)
contains images taken from the web with different lighting condition and angle rotation, un-
controlled poses, different quality and sizes and uncontrolled environments. This unconstrained
database introduced the notion of “images captured in the wild” and was created in 2016. The
collected images were obtained from politicians, actors, musicians and other people who have
various images on the web. AWE database contains 1000 ear images from 100 subjects. Each
subject has 10 images for both left and right ear sides. Some ear images examples of this
database are shown in figure 3.6.8.

Figure 3.6.8: Samples from AWE databasev(Emeršič et al., 2017b).

3.7 Ear in Multimodal Systems
Ear was widely used for biometric recognition systems. Table 3.1 shows some of the existed
works in this field. Extraction methods and approach type were mentioned. Benchmark ear
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databases which were discussed above have been used. Some studies use their own ear databases.
A CRR varies from 70% to 99%. It can be noticed that geometric and holistic approaches have
mostly used at the beginning of the development of the ear Biometrics. Recently, many studies
focus on applying local approaches and also hybrid approaches.

Because of the successful results achieved using ear biometric in unimodal systems, re-
searchers turned out to exploit ear in multimodal systems. Ear biometric was fused with
various biometric modalities especially with face which seems more relevant to surveillance
applications.

A multimodal biometric system was developed by (Chang et al., 2003). PCA standard
algorithm was applied to extract features from both normalized ear and iris. Ear and face
images were collected from 197 subjects from the university of South Florida. The captured
images were taken under the same conditions at the same image acquisition session. Close
results were obtained for ear and face unimodal system with recognition rate 70% and 71%,
respectively, whereas a significant improvement was noticed after the fusion of ear-face data
with recognition rate of 91%.

The fusion of ear and iris was proposed in (Nadheen and Poornima, 2013). An automated
algorithm was introduced for ear modality. PCA technique is used to extract features from
preprocessed ear and iris biometric data while ear and iris images are incompatible in nature,
a min-max normalization scheme was employed. Then, the extracted sets of points were fused
in feature level fusion. IIT Delhi ear database and CASIA-V1 for ear and iris respectively are
used to validate the proposed system. An accuracy of 86% has been achieved for both ear
and iris system separately, whilst an accuracy of 93% was obtained with the proposed ear- iris
multimodal biometric system.

Human ear and palmprint were fused in a multimodal biometric system (Hezil and Boukrouche,
2017). Local texture descriptors namely LBP, weber local descriptor (WLD) and BSIF were
applied to extract homogeneous features from the 2D ear and palmprint imaging. The Canon-
ical Correlation Analysis (CCA) was applied in the purpose of finding the linear combinations
between ear and iris features vectors which have a maximum correlation with each other. Se-
rial feature fusion was utilized to generate a single features vector. The implemented system
was carried out on IIT Delhi-2 and IIT Delhi databases for ear and palmprint respectively.
A recognition rate of 98.19%, 80.53% and 100% was achieved applying LBP, WLD and BSIF
respectively.
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Table 3.1: A comparison of 2D ear recognition approaches.
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3.8 Conclusion
More than other biometric modality such as face, fingerprint and hand-geometry, ear biomet-

ric has larger unique features and stable shape during human live. It considered as the future
of biometric. Ear biometric is an excellent example for passive biometrics which does not need
much cooperation from the subject. It also can be captured easily from a distance.

In this chapter, we have presented an introduction concerning the use of ear for recognition.
The first section is a definition of ear biometric. Besides, it included ear properties. The last
part of this section presented the anatomy of the ear and its measurements. Some of the existed
works based ear recognition were discussed in the second section. The next section explained
the detection of ear and presented the most used algorithms and proposed techniques. We have
focused on section 4 on ear recognition approaches. We have detailed each presented approach
giving a simple architecture to facilitate the annotation process. The most benchmark databases
used to validate the developed ear biometric systems were cited with some samples examples
for each database.

Based on the reviews and strengths of the existing techniques, we find that the geometrical
approach faced some problems with edge detectors. This latter is very sensitive to variation
lighting conditions or a small change of ear orientation during the capture images. The holistic
approach has also some disadvantages related to changes in contrast or in brightness because it
deals with the whole image. Unlike geometrical and global approaches, the local approach has
proven to be more robust in real-world applications. It deals with small regions of the image
which allows computing features efficiently. In particular, LBPs has gained many attentions and
applied to numerous modalities. Its advantages and robustness in 2D and 3D biometric domains
give successful results in a significant number of studies. Their invariance to monotonic grey
level changes caused by illumination variations makes it a way out of many challenges. LBPs
are also easy to implement with less computational. All of these powerful points motivated us
to apply this technique in our proposed multimodal systems.
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CHAPTER 4

ECG BIOMETRIC

4.1 Introduction

In this chapter, an ECG biometric will be presented. In the first section, the properties that
make ECG acceptable for recognition will be described. Then, the anatomy of the human

heart will be discussed. The different strengths and challenges are also explained in this section.
A detailed section was reserved for the structure of ECG recognition system including all steps
that can be used. Another section talks about the existed ECG recognition system mentioning
its efficiency, its robustness. . . etc. As any biometric modality, ECG has some publicly available
databases which will be discussed in the seventh section. The last section consists of presenting
some existed multimodal systems that integrate ECG biometric.

4.2 ECG as Biometric
Biometric has largely used, in our day, due to its effectiveness and robustness to several types

of spoofing in various fields. Face, fingerprint, Palm print, iris, Keystroke, Signature, Voice,
Gait and others have been mostly used. The choice of a biometric modality depends on its
strengths and weaknesses besides the application requirements (Regouid and Benouis, 2018).
The exploitation of a selected biometric modality to identify individuals depends on a set of
properties and conditions: universality, uniqueness, permanence, measurability, performance,
acceptability and circumvention which are detailed in the first chapter.

The security plays a crucial role in most application, especially in the authentication phase.
Biometric modalities such as fingerprint, face, iris, voice can be mimicked easily, especially in
our day with the addiction to social media which provides photos and information everywhere
and for everyone. The need for achieving more security obliged researchers to resort to a
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biometric trait that must be hard to spoof. One of the proposed biometric that solves this
challenge is the Electrocardiogram (ECG).

Nowadays, ECG or in sometimes referred to EKG biometric has been gaining more at-
tention from many research laboratories because of their strengths especially in the security
domain, e-health medical, diseases prevention. . . etc. Analysis of electrocardiogram describes
the electrical activity of the heart. The activity recorded by the ECG comes from extracellular
currents related to the propagation of a depolarization front (atrial P wave, then ventricular
QRS complex). Many studies have been developed to exploit the electrocardiogram (ECG) as
a biometric modality that can be used for recognition. The first study was established by the
physiologist Augustus (Waller, 1887). His main objective is to demonstrate that the electri-
cal variation of the heart is physiological traits and not just mechanical alteration of contact
between the electrodes. Next, ECG has been used widely in the medical field to solve and
diagnose heart problems.

Researchers prove that ECG respects most of the discussed biometric properties which
allow using it for recognition purpose. ECG analysis, or the heartbeat variability, has been
studied in many fields such as medical science, psychology, robotics and Cardiovascular disease
for decades(Biel et al., 2001; Shen et al., 2002; Belgacem et al., 2013). Recently, numerous
research works have been published tackling the problem of ECG based recognition as the new
key parameter to biometric identification. For example, in (Fratini et al., 2015; Coutinho et al.,
2013) we can find a survey on this problem recapitulating some of the most popular approaches.
Some of them use explicit morphological models of heartbeat variability (P-QRS-T), whereas
others use either Spatio-temporal or frequency-domain features of the ECG signal.

4.3 ECG Anatomy
The ECG is known to contain characteristics originating from the geometrical features of

the individual body and heart that might be utilized for biometrical applications (Wübbeler
et al., 2007). ECG can be used as a liveness detector, universality, remote login process by
ECG signal captured from a finger which improves security and privacy (Islam and Alajlan,
2017). Presenting liveness measurements to the system have the ability to protect it from
spoof attacks and therefore more security will be achieved (Louis et al., 2014). Emotion, diet,
physical exercises, diseases or position of the electrodes have the ability to change the human
ECG signal.

An ECG signal is generated by a simple impulse of the heart that creates the heartbeat
segments. The human heart contains four chambers: the right and left atrium and the right
and left ventricle. The electrical impulse starts from a small node called the Sinoatrial node
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(SA) located in the right atrium causing the P wave. SA node launches the contraction of the
atrium causing the passage of blood into the ventricle, the electrical signal then propagates
through the node artio-ventricular (AV). AV node stops the signal for short time duration to
complete ventricular depolarization causing the QRS complex. Then, the electrical signal is
then sent to the ventricles through the AV chamber causing T waves. Finally, the ventricular
repolarization is completed by sending the signal out of the ventricles (Kalaskar, 2018). The
whole process of generating an ECG signal is presented in figure 4.3.1.

Figure 4.3.1: The electrical activity of the heart (Kalaskar, 2018).

4.4 ECG Strengths and Drawbacks
In fact, no biometric modality is reliable 100%. Each biometric modality has its own ad-

vantages and disadvantages. The selection of biometric modality depends on the application
context. For the ECG modality, it has been used largely in hospitals to diagnose and detect
various types of cardiac pathologies. So, they have an ECG signal for their patient. For this
reason, the use of this ECG for identification of patient reduces the time and the cost of using
other biometric modalities not collected yet. The liveness measurement of ECG makes it more
universal. Moreover, The ECG recognition system is more robust and secure because it is very
hard to spoof a life indicator. The use of ECG biometric helps people with different disabilities.
Compared with other biometric modalities, ECG generates lower templates size and minimal
computational requirements . It is easy to acquire it from any part of the body from fingers,
hand or other places.
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Like any biometric modality, ECG has some limitations which must be taken into consider-
ation during the developing of the system. Started with ECG acquisition, different artifacts can
affect the ECG signal in this step such as Electromyogram interference, Power-line interference,
Baseline wander interference, Contact noise. . . etc. Compared with other biometric modalities,
ECG takes more time on its acquisition which negatively affects the recognition rate of the
system (Louis et al., 2014). Furthermore, the size of the ECG segment or the number of used
ECG heartbeats segments must be reduced. The use of segmentation technique allows achiev-
ing an acceptable identification rate. Subsequently, it may have a significant influence on the
cost. The nature of the ECG signal is also sensitive to diseases, diet, physical exercise, emotion
and position of the electrodes.

4.5 ECG Biometric System Architecture
An ECG biometric recognition system can be divided into three main steps. Started with

the preprocessing step, which aims to remove noises and the different artifacts that can face
the ECG signal during the acquisition stage. Next step consists of extracting the representative
set of points which can be used to identify users. After extracting the information from the
input ECG signal, a matching with those signals exist in the database are performed in order to
find the corresponding template. Figure 4.5.1 shows a global architecture for ECG recognition
system.

4.5.1 Preprocessing Techniques for ECG Signals

In this step, the ECG signal obtained from different databases publicly available is frequency
normalized using simple linear interpolation. The preprocessing step aims at reducing the noise
from the ECG signal. Moreover, it removes various artifacts and improves the signal equality
derived from muscular interference or more commonly from the power grid (50 Hz or 60 Hz).
Various methods and filters can be exploited in the preprocessing step. These proposed methods
work for the elimination of noises that can influence the acquisition of data.

There are different types of noises such as baseline wander which is appeared because of
respiration. Electromyogram caused by muscles contractions. Other noises can affect the signal
such as DC offset, power-line interference and high-frequency interference which has a relation
with the country in which the ECG is collected. Contact noise which appeared because of
electrode movements and baseline drift may impact the ECG signal (Louis et al., 2014). Many
techniques, which they introduced to preprocess the ECG signals, were discussed in section 3.6.
Figure 4.5.2 illustrates an example showing the difference between noised and preprocessed
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ECG signal.

Figure 4.5.1: ECG recognition system based architecture (Lee and Kwak, 2019).

Figure 4.5.2: ECG signal before (a) and after preprocessing step (b).
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4.5.2 Segmentation Module

The segmentation step is mostly used in the case of extracting non-fiducial features. Seg-
mentation techniques based on extracting various fiducial points (QRS). Many algorithms were
developed to detect QRS points. The most used technique is Pantompkin algorithm (Pan and
Tompkins, 1985). These fiducial points were used to collect all heartbeats exist in the ECG
signal. Based on the R peak which considered as the centre of the heartbeat, ECG heartbeat
will be aligned by adding a set of samples for both left and right side of the R peak. Figure
4.5.3 shows the first sub-step of the segmentation technique which consists of detecting the
R-peaks.

Segmentation step can be added to remove the noises that can affect the ECG signal due to
the movement of electrodes as an example. Consequently, the use of heartbeats only improves
the recognition rate. Some works didn’t apply any segmentation techniques, they extract the
features from the whole ECG signals (Biel et al., 2001; Bassiouni et al., 2018). On the other
hand, some authors based segmenting the ECG signal and use all the detected heartbeats
(Tseng et al., 2016) (Lee and Kwak, 2019)(Choi et al., 2019) whereas in other researches only
a specific number of ECG heartbeats were used for recognition(Shen et al., 2002; Louis et al.,
2014; Dar et al., 2015). The next figure 4.5.4 presents the alignment ECG heartbeat of a
preprocessed ECG signal.

Figure 4.5.3: The detection of R-peaks using Pantompkin technique.
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Figure 4.5.4: Alignment of the segmented ECG heartbeats based on the detected R-peaks.

4.5.3 Features Extraction from ECG Signals

Feature extraction step is considered the main important operation in the biometric recog-
nition system. The extractor method depends on the biometric modality and the requirements
of the system. In ECG recognition, we can extract 2 kinds of features which are fiducial points
and non-fiducial points. Fiducial points referred to P-Q-R-S-T waves which are shown in figure
4.3.1. Based on these points, a set of features can be generated by computing the distance be-
tween these points. Various intervals will be produced such as RR interval, angles, amplitudes,
durations, indexes . . . etc. Figure 4.5.5 shows the localization of the fiducial points on an ECG
heartbeat segment.

Fiducial approach is the most used in the literature (Biel et al., 2001; Shen et al., 2002;
Israel et al., 2005). Detecting the R peaks from ECG signal was the first step in localizing
fiducial features. The ECG heartbeats can be easily aligned based on R peaks. Two methods
could be applied to localize the remaining fiducial points either finding the maximum in the
surrounding area (P and T) or with the radius of curvature. After the localization of these
points, temporal distances between them can be computed.

The non-fiducial based approach extracts features from the whole ECG signal or ECG
heartbeats segment in place of using some interest points. Many techniques can be applied
to extract non-fiducial features (Louis et al., 2014; Chakraborty et al., 2016). In other works,
holistic approaches based on the combination of fiducial and non-fiducial points were introduced
(Dar et al., 2015).
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Figure 4.5.5: Fiducial features in ECG signal (Biel et al., 2001).

4.5.4 Matching

The matching step consists of classifying the input ECG signal with templates stored in the
database. Many techniques can be applied in this step. The extracted points will be matched
against those exist in the database and similarity values will be computed. The decision of
whether the input ECG segment is a client or imposter was performed based on the computed
similarity.

4.6 Literature Reviews
In recent years, ECG has gained much attention in the biometric recognition domain due

to its different advantages discussed in section 3.4. A new approach was proposed in (Biel
et al., 2001). They have proposed a new approach by using 12- electrocardiogram leads (six
limb leads and six chest leads) recorded for human identification where it was carried out on
ECG-ID database. ECG measurements were collected from 20 subjects including both men and
women in the experiments. Each individual has four to ten records. Fiducial features mainly
capture the holistic patterns from the ECG waveform signal and may be represented as the
distances, amplitudes and angle deviation and so on.

In this works, 30 temporal features were extracted from the analyzed ECG including PQRST
wave onset, amplitude, wave duration, wave deflection, wave morphology, wave area . . . etc.
Each subject has 30 features for each lead. So, 360 features (30*12) will be achieved per subject
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for identification. Authors propose the use of one lead in order to reduce data. The experiments
have been shown that there is no difference between using limb leads or chest leads. While
the variation in positioning of the chest electrodes has a negative influence on the collected
ECG records, the limp electrodes have been used. Moreover, the limp electrodes are easier to
attach them compared to the chest leads. Applying this reduction decreases the size of features
to 180. To obtain more optimal results, the correlation matrix is computed again in order to
reduce and remove features have a high correlation with other features. Finally, a number of 12
features were achieved. For matching, Soft Independent Modeling of Class Analogy (SIMCA)
was applied. The experimental results demonstrate the possibility of identifying a person using
features extracted from only one lead achieving a recognition rate of 98%.

An ECG biometric verification and identification system was developed by Wübbeler et al
(Wübbeler et al., 2007) based on fiducial features. The developed work aims at studying the
long-term stability of the individual ECGs. In the preprocessing step, a moving median of 1
s width was applied on the three ECG recorded with a length of 10s for each one. Another
preprocessed technique was applied. It consists of using a low-pass filter with a cut-off frequency
of 75 Hz. Next step consists of heartbeat segmentation based on the localization of R-peaks.
A low-pass filtered based on threshold procedure was applied for each ECG signal in order
to determine the R-peaks. The identification and verification were performed based on ECG
characteristics by computing the distance measure between the ECGs. This is based on the
evolution of the corresponding heart vectors during the QRS interval. ECG-ID database was
used for testing and validating the proposed approaches. An EER of 2.8% was achieved for
verification mode and a recognition rate of 98% was achieved for identification mode.

An ECG based human identification system using random forests was introduced (Belgacem
et al., 2013). Adaptive Filters were applied to remove the different kinds of noises and artifacts
faced during the acquisition of ECG signal beside to select its heartbeats. The averaged of the
first 100 segmented heartbeats from each ECG signal has been computed. Then, DWT tech-
nique was applied on these ECG heartbeats to extract the coefficients which will be considered
as features in the next step. Random Forest was proposed in this work for the matching step
and as a measure of identification. The developed system was carried out on four benchmarks
databases named MIT-BIH, ST-T, NSR and PTB. Beside these benchmark databases, authors
validate their achieved results with their own database. The introduced ECG database was
collected from 40 students and staff at Paris Est University.

1D-MR-LBP technique was proposed for the purpose of extracting regular ECG waveforms
(Louis et al., 2014). In the preprocessing step, working on reducing baseline wander, higher
frequencies of power line interferences and edge effects by applying the fourth-order band-pass
Butterworth filter with cutoff frequencies of 1-40Hz and a low order filter. The segmentation
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step consists of the detection of QRS waves. Then, ECG heartbeats are aligned with their
R peaks. Each heartbeat was centred with the detected R peak with length duration of 1
second. For features extraction, a novel method named 1D-MR-LBP was introduced. The
main objective of using this method is to detect the regular and irregular ECG heartbeats
which represent healthy and non-healthy ECG heartbeats, respectively.

The experimental results prove the efficiency of 1D-MR-LBP on tolerating noise, discovering
local and global features and preserving the morphology of ECG heartbeats. For matching,
SVM and Bootstrap Aggregating (bagging) with a decision tree are applied. The extracted
regular ECG waveforms are passed through to a biometric system and the irregular ECG wave-
forms are filtered out. The proposed approach is validated using PTB benchmark database. An
EER and accuracy of 0.09% and 91% respectively were obtained which demonstrates the ability
of 1D-MR-LBP technique of extracting high discriminants features which allow distinguishing
between regular and irregular ECG heartbeat correctly.

DWT of the cardiac cycle and Heart Rate Variability (HRV) based features were proposed
for the purpose of developing an ECG recognition system (Dar et al., 2015). Curve fitting was
applied with 6th order polynomial to preprocess the ECG signals and make the detection of
R-peaks easier. ECG signal was detruded in order to remove DC baseline wandering followed
by normalization. Kubios HRV analysis software technique was applied to remove HRV arti-
facts. A simple technique based on local maxima and thresholding was used to detect R-peaks.
Then, based on localized R-peaks, ECG heartbeats were segmented. Only 25 heartbeats were
extracted for each subject.

Another technique named Interquartile Ranges (IQR) was applied to remove extreme val-
ues. Next step consists of extracting discriminating features from each beat based on DWT
algorithm. A technique of reduction called Greedy Best First Search (BFS) is introduced
to select features which are highly correlated and belong to the same class and in the same
time having a less inter-class correlation. The developed system was validated using publicly
available databases like MIT-BIH/Arrhythmia, MIT-BIH/Normal Sinus Rhythm (NSR) and
ECG-ID database including all subjects. Random Forests technique was applied for the classi-
fication stage achieving an accuracy of 100% using MIT-BIH/NSR database and 83.88% for a
challenging ECG-ID database.

A single pulse ECG was used for authentication assuming that there is no access to other
ECG signals (Chun, 2016). For the enrollment phase, a guided filter (GF) method was ap-
plied to reduce the noise of a single ECG pulse. In the preprocessing step, while ECG can be
suffered from several types of noise, different preprocessed techniques were adopted. Wavelet
drift correction was applied for baseline wander, adaptive band-stop filter for power-line inter-
ference and low-pass filter and smoothing for high-frequency noise. The R-peaks were detected
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based on both Pan-Tompkin algorithm and matched filter. Two simple similarity measures,
Euclidean distance and DWT, between the enrolled ECG and the input signal were computed
that they may be applicable to both small scale and large scale authentication systems. A
comparison with PCA based authentication system was performed achieving an EER of 2.4%.
GF with Euclidean distance and DTW demonstrate that it is a robust ECG denoising method
for improving the performance of an authentication system.

Another work was presented by (Bassiouni et al., 2018) for the purpose of developing an
ECG biometric identification system. Wavelet decomposition (DWT) was applied to the pre-
processing step in order to correct the base-line drift noise. High-frequency noise was removed
by using a low-pass Butterworth filter. The last sub-step consists of smoothing the ECG signal.
For the features extraction step, three approaches have been exploited. The first non-fiducial
approach is applied the Auto-Correlation/Discrete Cosine Transform (AC/DCT) on the prepro-
cessed ECG signal. The purpose of using DCT is to reduce the dimensionality of the produced
features.

The second approach was based on fiducial features involving duration, amplitude differ-
ences, along with angles between (PQRST...). Thus, fiducial points (QRS, P-QRS, QRS-T
and P-QRS-T) were detected. A final sub-step in the second approach consists of selecting
discriminant fragments, based on a set of conditions, which provide robust and representative
information that can be used for recognition. The third approach fused both the P-QRS-T
fragments and ECG features decomposed by the wavelet transform as a unique feature. Three
different types of classifiers SVM, ANN and KNN were used to generate the much score used
for identification. Data were acquired from ECG-ID and MIT-BIH Arrhythmia databases. Re-
ported total classification accuracy of 98% and 100% was achieved for ECG-ID and MIT-BIH
databases, respectively.

4.7 ECG Databases
Some databases are available for ECG analysis. While ECG has used largely for medical do-

main, especially for diagnostic and detection of cardiac pathologies, the most available database
may not be useful for biometric. In the case of biometric ECG databases, the need for multi-
ple acquisitions in different timestamps for each subject was required. This allows evaluating
and testing the developed ECG recognition system. A large number of users that make the
experimental results more reliable are needed. Furthermore, the morphology of the ECG signal
can be affected by emotion (happiness, angry, scare...etc), Exercises and physical stress, diet
and others. For these reasons, ECG signals must be collected in different environments (Louis
et al., 2014). Many researchers have used their own ECG databases. In our day, because the
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ECG has been used successfully in the biometric domain, some databases are available and can
be exploited for biometric.

4.7.1 PTB Database

The Physikalisch Technische Bundesanstalt (PTB) database collects ECG data from 290
healthy and non-healthy subjects for medical diagnosis. It is a publicly available database. A
total of 549 records were acquired from 209 men and 81 women (Bousseljot et al., 1995). The
ages range from 17 to 87 years. Each subject has at least one to five records maximum. PTB
database uses 12 leads (i, ii, iii, avr, avl, avf, v1, v2, v3, v4, v5, v6) besides to 3 Frank lead
ECGs. The collected ECG signals were sampled at 1KH with Resolution of 16 bit with 0.5
mV/LSB and duration between 2 to 3 minutes. This database includes header files contained
detailed information for 268 subjects such as gender, age, diagnosis, data on medical history
and other information. PTB database has 52 healthy persons and 216 non-healthy. The most
cardiac pathology that non-healthy persons suffered from it was Myocardial infarction. Some
signals of the database are shown in Figure 4.7.1.

Figure 4.7.1: Signals samples from PTB database (Bousseljot et al., 1995).

4.7.2 MIT-BIH Arrhythmia Database

The MIT-BIH Arrhythmia Database (MIT-BIH-A) was created from laboratories at Boston’s
Beth Israel Hospital (now the Beth Israel Deaconess Medical Centre) and at MIT (Moody
and Mark, 2001). MIT-BIH-A was used firstly for the purpose of evaluating the arrhythmia
detectors and for basic research into cardiac dynamics. It contains 47 subjects. Each record
was digitized at 360 samples per second per channel. The resolution is 11-bit over a 10 mV
range. A detailed file was created by two or more cardiologists which offer various information
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attached to each record including date of registration, age, gender and prescribed medications.
Some signals of the database are shown in Figure 4.7.2.

Figure 4.7.2: Signals example from MIT-BIH-A (Moody and Mark, 2001).

4.7.3 INCART Database

This database collects ECG data from patients undergoing tests for coronary artery disease.
INCART public database created by the St-Petersburg Institute of Cardiological Technics (IN-
CART) and it is available online (Goldberger et al., 2000). This database contains 75 annotated
recordings extracted from 32 Holter records. 12 standard leads were attached. Each record was
digitized and sampled at 257 Hz with duration of 30 minutes. The ages range from 18 to 80
years including 17 men and 15 women with a mean age of 58.

Different cardiac ECG problems have been included focusing on individuals who have ECGs
with ischemia, coronary artery disease, conduction abnormalities and arrhythmias. Header files
have been included. It contains the patient’s age, sex, diagnoses, a summary of features of the
ECG and a patient number (1–32) that identifie the source recording. Some signals of the
database are shown in Figure 4.7.3.

4.7.4 Normal Sinus Rhythm Database

MIT-BIH Normal Sinus Rhythm Database (NSR) contains different long-term ECG record-
ings from 18 subjects (Goldberger et al., 2000). This dataset has been used in many studies
focusing on different problems. One record for each of 18 healthy persons was required for about
20 hours referred to the Arrhythmia Laboratory at Boston’s Beth Israel Hospital. The included
subjects have a regular rhythm at a rate of 60-100 bpm, no diagnosed cardiac abnormalities,
with beat annotations. Some signals of the database are shown in Figure 4.7.4.
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Figure 4.7.3: Some signals from INCART database (Goldberger et al., 2000).

Figure 4.7.4: Some signals samples from NSR database (Goldberger et al., 2000).

4.7.5 ECG-ID Database

ECG-ID database contains different ECG signals from 90 subjects. This database contains
310 ECG recordings where each subject has at least two records and at most 20 records (Lu-
govaya, 2005). ECG data were collected from students, colleagues and friends of the author.
The ages range from 13 to 75 years from 44 men and 46 women. ECG-ID database uses ECG
lead I, recorded for 20 seconds. The resolution is 12-bit over a nominal ±10 mV range. ECG
recordings were digitized at 500 Hz. ECG recordings includ both noisy and filtered ECG sig-
nals. Header files were added to the database containing age, gender and recording date. Some
signals of the database are shown in Figure 4.7.5.
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4.7.6 QT Database

QT database contains more than 105 two-leads ECG recordings. Each ECG record has
duration of 15 minutes (Zhang et al., 2005). The most used recordings are excerpted from
other databases. This database includes onset, peak and end markers for P, QRS, T and U
waves from 30 to 50 selected beats in each recording. Each record was presented by a header
file, a signal file and up to 9 annotation files. Figure 4.7.6 shows some signal obtained from QT
database.

Figure 4.7.5: Some signals obtained from ECG-ID database (Lugovaya, 2005).

Figure 4.7.6: Example signals from QT database (Zhang et al., 2005).
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4.8 ECG in Multimodal Systems
In recent years, ECG has gained many attentions. Fiducial and non-fiducial features have

been extracted. Table 4.1 presents some important studies in this field. In can be seen that in
the first proposed ECG recognition systems, only fiducial points were used for identification.
Lately, researchers turn out to non-fiducial points. They proved its efficiency and robustness.
Hybrid approaches were also introduced which combine both fiducial and non-fiducial features.
Because the ECG databases are limited, most studies use their own database for test and
validation. The accuracy of the developed ECG systems have reached to 100%.

The various strengths of ECG biometric motivated researchers to combine these advantages
with other biometric modalities. Implementation of a multimodal system by (Al-Hamdani
et al., 2013) is proposed combining three modalities at score level fusion. this system aims to
reach a higher security level. Fusion of speech, ECG and phonocardiography (PCG) with sum
score fusion is performed.

Fusion of fiducial features (peaks) from the first lead (I) of the electrocardiogram (ECG) with
spectrum features from six different bands of the electroencephalogram (EEG) was introduced.
This fusion has a goal of constructing a robust and secure multimodal biometric recognition
system (Barra et al., 2017). The extracted fiducial points from ECG signal will be combined
with spectrum features of the EEG. Based on simple peak detection method, the local minima
and local maxima from a given signal were selected. The fusion step was performed based on
sum, product and weighted sum operators. Then, Euclidean Norm Distance was applied to
match the fused features. An ERR of 0.93 was achieved .

Face and ECG are incorporated for based authentication system. The same process was
followed for both biometric modalities (Chakraborty et al., 2016). As regards the ECG, three
consecutive R peak as extracted from the normalized ECG signal by the square derivative-
based method. Then, ECG shape was computed from shape response function. For the side
of face, many techniques are applied based on edge detector. Next, face shape was calculated
from shape response function in order to extract the representative features that can be used
for authentication. On Feature level fusion, the extracted features from both preprocessed face
and ECG have been concatenated into a new signature template. The last step consists of
matching the fused template with templates existed in the database using the mean square
deviation algorithm. An accuracy of 97.5% was obtained.
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Table 4.1: A comparison of some of the existed ECG recognition systems.
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Another multimodal authentication system was developed in (Derawi and Voitenko, 2014)
based ECG and gait biometric at score level fusion. A wireless ECG sensor was used to collect
ECG signals based on two led ECG signals attached on the breast. The same techniques were
applied for both modalities with some modification. A linear time interpolation algorithm was
applied to obtain a linear observation. Then, the average cycle length is computed. The next
step applied a Dynamic Time Warping (DTW) to remove cycles that are very different from
the others. Before the fusion data, score normalization technique was used to map the achieved
scores of ECG and gait biometric into one common domain. Simple Sum, Minimum Score
and User Weighting fusion techniques were applied. An EER of 1.26% was achieved based on
Simple Sum fusion technique.

To enhance the advantages for ECG and fingerprints biometric, hence minimizing their
weakness, a multimodal authentication system fusing both modalities was proposed in (Arteaga-
Falconi et al., 2018). For ECG signal, they extract eight fiducial features from segmented ECG
heartbeat. The extracted features represent the distance in time between peaks and valleys and
amplitudes distances. The SVM classifier was applied for matching. MINDTCT algorithm was
used to extract the minutiae of the normalized fingerprint. Then, a score value was generated
applying BOZORTH algorithm. Fusion at the decision level was performed. An EER of 0.46%
was achieved.

81



Chapter 4. ECG BIOMETRIC

4.9 Conclusion
With the great security requirement that the system needs nowadays, the search for ideal

biometric traits that prevent imposter from accessing the system is still in progress. ECG is
now one of the most biometric modalities that researchers are trying through to find radical
solutions to this kind of problems. The uniqueness and the liveness measurement of the ECG
signal make it hard to spoof.

In this chapter, we have been explained carefully the effectiveness of ECG biometric that can
make it a robust biometric trait based on discussing the different ECG strengths and drawbacks.
The architecture of ECG recognition system was presented explaining each module separately.
The main important module is the extraction of representative traits from the preprocessed
ECG signal. It can be distinguished two approaches namely fiducial and non-fiducial features.
Whilst the former based on the local trait of the heartbeat, the latter based on the overall
morphology of ECG trace. In the first proposed systems, the fiducial approach was widely
used. Fiducial points can be easily affected by noise and artifacts, inverted or abnormal waves
or signal slopes. For these reasons, recently researchers focus on the second approach. Many
techniques have been proposed and applied to extract non-fiducial points of a preprocessed
ECG signal.

We have also referred to some of the existent ECG-based recognition systems. Based on the
achieved results that have been obtained with ECG biometric, it had been also combined with
other modalities developing multimodal biometric recognition systems. Depending on all these
strengths, we have chosen ECG as the main biometric modality in our proposed recognition
systems.
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CHAPTER 5

Iris BIOMETRIC

5.1 Introduction

With the uniqueness and robustness that can be found in the iris in the purpose of identi-
fying or verifying human identities, iris recognition expected to become a fundamental

component of modern society. In this chapter, we will present an introduction to iris recognition.
In the first section, a definition of iris will be introduced including a brief history. Then, the
anatomy of the human eye will be explained. The different strengths besides the encountered
challenges of an iris-based biometric system will be detailed in section 4. Section 5 consists of
listing some of the existed iris applications. The whole architecture of an iris-based recognition
system will be presented and detailed in the next section. After that, we will discuss some of
the related works. The most used iris benchmark databases will be explained in section 8. We
conclude the chapter by presenting some of the multimodal biometric systems which combine
iris with other biometric modalities.

5.2 Iris as Biometric
Biometric is largely used in recognition systems for the purpose of authentication or identifi-

cation. Nowadays, the developed countries use biometric for recognition in their authentication
systems, in many domains such as banks, airport, hospital and forensic.They have the goal of
ensuring more security and robustness. Besides that, there is no biometric reliable at 100%, a
lot of modalities were proposed and tested aiming at exploiting the different advantages and
solving the existed challenges for each modality.

Iris of the eye is one of the firstly proposed modalities; it received great interest from
researchers. Furthermore, Iris has been used in several critical applications. In 1936, the
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ophthalmologist Frank Burch proposes the use of iris in recognition system. A year later, John
Daugman was the pioneer in this field. He developed the first iris-based identification method
called Iriscode (Benaliouche, 2018). Iris presents an important texture, significant information,
variability, stability and uniqueness. So, many researches were introduced where most of these
works based on Daugman’s method. Daugman algorithm has been tested under numerous
studies with a failure rate of 0% in the most cases. Its experimental results demonstrate the
reliability of iris authentication system. Typical iris recognition system consists mainly on
image acquisition, localization, preprocessing, features extraction and matching stages which
they will be detailed clearly in section 6.

5.3 Iris Anatomy
Iris defined as an annular part located between the pupil and the sclera region. Iris takes

its final form before a few months from the birth of a person. The different parts exist in the
coloured circle that surrounds the pupil of each eye generate random patterns which are unique
for each individual. Ophthalmologists propose the use of iris for identification or authentication
based on its clinical reports and experiences. They prove that iris has a highly detailed and
discriminant traits. These unique textures are stable and still unchanged in clinical photographs
which spanning decades (Daugman, 1993). Besides that, the phenotypic expression of two irises
has uncorrelated textures even if they had the same genetic genotype or in the case of iris of
the same subject.

Many idiosyncratic features could be distinguished from a captured eye image. The main
important components that could be noted are eyelashes, eyelid, sclera, iris and pupil. Iris
component differentiates between pupil and sclera. A set of patterns can be detected and
used as robust features for recognition such as freckles, furrows, ridges, corona, serpentine
vasculature, fibers, rings, rifts. Figure 5.3.1 shows the important parts of the eye image.

Figure 5.3.1: Anatomy of iris (Jain et al., 2011).
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5.4 Advantages and Challenges
Iris is one of the first biometric modalities that were used for recognition. It has unique stable

traits according to the lifetime of a person. Iris as biometric was demonstrating its efficiency
by producing rich and distinctive information. It possesses a robust and stable structure which
make it hard to mimic. Furthermore, iris rarely suffers from damage. Since the report intro-
duced by Daugman, many researchers were highly exploited the uniqueness of human iris in
various domains based on Daugman’s algorithm (Bowyer and Burge, 2016). Its research con-
sists of using 632 500 different iris images, spanning 152 nationalities. The Daugman algorithm
can achieve a false match rate of less than 1 in 200 billion. Like other biometric modalities, Iris
suffers from some problems.

• One such research problem is the use of contact lenses and their effects on iris recognition
accuracy. Daugman proposes an algorithm which allows verifying whether or not a person
is wearing a cosmetic contact lens that obscures the natural iris texture. This problem
could decrease the accuracy of the iris recognition system. Iris images 1 with contact
lenses were illustrated in figure 5.4.1.

Figure 5.4.1: Example iris images exhibiting texture from a cosmetic contact lens.

• Another problem can be faced caused by accidents which could be able to damage the
shape of the whole eye especially the iris region. From figure 5.4.2, it can be noticed that
the shape of iris doesn’t take a circular shape which provokes a failure of segmentation of
iris from the eye image 2.

Figure 5.4.2: Example iris images showing accidental damage that destroys its shape.
1https://en.wikiquote.org/wiki/I_Origins
2https://www.wjgnet.com/2218-6239/full/v4/i1/WJO-4-1-g001.htm
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There are several eye conditions that obstruct the iris identification or authentication system
and in particular, the segmentation step which considered a crucial operation in iris recognition
system (Bowyer and Burge, 2016). A set of eye conditions examples with its influence on the
developed system are listed below:

• In rare cases, the remains of a fetal membrane can still appear in the eye. This type of
condition, called persistent pupillary membrane, has no effect on the person’s sight. But,
it can make the segmentation step more difficult. Figure 5.4.3 presents an example of two
irises having this kind of condition 3.

Figure 5.4.3: Example iris image illustrating effects of persistent pupillary membrane.

• There are other problems for eye conditions that strongly decrease the efficiency of iris
segmentation algorithms. One of them was illustrated in figure 5.4.4 which showing a
dense cataract in the pupil region causing a catastrophic segmentation failure 4.

Figure 5.4.4: Example iris image having a dense cataract in the pupil region.

• Another eye condition could make the iris segmentation impossible referred to corneal
disease impacting the pupil region. Figure 5.4.5 shows this type of eye condition 5.

3https://www.studyblue.com/notes/note/n/pathology-eye-terms/deck/6428079
4https://www.slideshare.net/sunnymumu/cataract-easy-ppt-for-nursing-students
5https://www.researchgate.net/publication/7214271_Toxic_anterior_segment_syndrome/figures?lo=1
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Figure 5.4.5: Example iris image having a dense cataract in the pupil region.

5.5 Iris Applications
The achieved results of many reports were encouraging iris to become an indispensable tool for

many high-security applications (Manasa et al., 2014). Patterns extracted from human iris have
an abundance of invariance. Moreover, iris biometric presents reliable and unique information
compared with DNA. These strengths made from iris a good choice for an authentication
system in a corporate or enterprise environment. It also exploited in several public applications
in various fields especially in the e-commerce, the core of banking, government and forensics.

The United Arab Emirates (UAE) launches Homeland Security Border Control system.
This system includes over 330,000 persons. All foreign nationals who need a visit visa to
enter the UAE are enrolled (Daugman, 2006). The government of India develops an iris-based
identification system named AADHAAR, which means ‘foundation’ in Hindi, has adopted iris
recognition. This system includes 1.2 billion individuals with a rate of around 99% of the
adult population are enrolled (Manasa et al., 2014). Another iris-based recognition system was
exploited by Hashemite Kingdom of Jordan. This government introduced the first ATM on the
world based on iris biometric. Individuals don’t provide a bank card or pin. They must just
present their eye to the iris recognition camera on the ATM.

In our day, the human iris was largely used and exploited in many countries such as Mo-
bile Offender Recognition and Information System for police forces across America, Restricted
Area Identity Card (RAIC) program in Canada, an "Iris on the Move" system for U.S. Govern-
ment clients. Recently, Microsoft produces two Lumia phones using iris-based authentication
(Wikipedia contributors, 2018). World Food Program (WFP) started to deploy iris recognition
in its food distribution system for the first time in Uganda.

5.6 Iris based Recognition System
The various strengths of iris biometric make it an attractive modality in several fields. A

height recognition rate was achieved in most developed researches. In general, the iris recogni-
tion system can be divided into four main modules: image acquisition, preprocessing including
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segmentation and normalization, features extraction and matching stages. Figure 5.6.1 shows
a simple architecture of iris-based recognition system.

Figure 5.6.1: The architecture of iris based recognition system (Barpanda et al., 2018).

5.6.1 Preprocessing Step

5.6.1.1 Segmentation

In this step, the detection of the iris was performed by locating two circles on the eye image.
One consists of isolating the iris from the sclera. The second circle, which is located within
the first circle, corresponds to separate the pupil region. There are many artifacts making iris
segmentation more difficult and can decrease the robustness and the efficiency of the proposed
segmentation algorithm. Besides the differences challenges detailed in section 4 related to
contact lenses and eye conditions, specular reflections can also occur within the iris region
corrupting the iris pattern. Furthermore, the eyelids and eyelashes can, in many cases, occlude
some parts of the iris region. The quality of the acquired eye images has also an influence on
the applied segmentation technique.

The segmentation step is a crucial and critical phase on the CRR of the developed iris-
based recognition system. Some of the techniques mostly used for iris segmentation and have
been achieved a successful result, there are Integro-differential Operator, Hough Transform,
Active Contour Models and Eyelash and Noise Detection (Masek et al., 2003).(Daugman, 1993)
developed an Integro-differential Operator algorithm which allows the location of the circular
iris, pupil regions and the arcs of the upper and lower eyelids. (Ritter et al., 1999) propose
Active Contour Models which allows the location of the pupil region.
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(Wildes et al., 1994; Masek et al., 2003)and others employ Circular Hough Transform (CHT)
technique for an automated segmentation algorithm in order to detect the iris and pupil bound-
aries.

5.6.1.2 Normalization

The human eye can face variations of illumination during the acquisition phase. These varia-
tions have a relation with the rotation of the camera, head tilt, rotation of the eye within the eye
socket and also the imaging distance which causes a pupil dilation of the eye. Consequently, the
segmented iris images will have different sizes and dimensions. The normalization step consists
of solving this problem by fixing all segmented iris regions on the same size in order to allow
comparisons. In other words, the circular segmented iris was transformed from cartesian coor-
dinates into a fixed rectangular image size which means using a polar representation. This step
aims at minimizing the difference between two iris images of the same subject and maximizing
the similarity between them even if they are captured under different conditions.

Many techniques were proposed in the literature. The first algorithm was proposed by
Daugman named Daugman’s Rubber Sheet Model (Daugman, 1993) which based on remap-
ping each point within the iris region to a pair of polar coordinates. This model takes into
consideration the problem of pupil dilation and non-concentric pupil displacement. Another
method called Image Registration was introduced by (Wildes et al., 1994). This technique is
based on aligning the input iris image with a selected template from the database. (Boles,
1998) developed a normalization technique, called Virtual Circles, where scaling is at match
time and is relative to the comparing iris region.

5.6.2 Features Extraction

Iris biometric possesses rich and unique information that can be used to identify persons. In an
iris-based recognition system and after the preprocessing step where the iris was segmented and
normalized. The next step consists of extracting the discriminant textures that can be used
for identification or verification. Several studies have proposed on this stage such as Gabor
Filters which was introduced firstly by Daugman, different Wavelet techniques, LBP and SIFT
(Manasa et al., 2014; He et al., 2011; Hamouchene and Aouat, 2016).

5.6.3 Matching

The matching step consists of comparing the extracted features of the segmented input iris
with the templates exist in the database. In other words; it computes the similarity between
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the input iris with all templates in the database in the case of the identification mode. In the
verification or the authentication mode, it will be compared with one template. The largely
used methods are KNN, NN (like RBF, GRNN, MLP), SVM. . . etc. Recently, Deep learning
has also exploited.

5.7 Related works
Daugman was the pioneer in this field. Its proposed techniques are used in most iris recog-

nition systems till the current day. The first idea of using iris for biometric recognition was
introduced by the ophthalmologist Frank Burch. Next, many reports were studied from two
other ophthalmologists dr.Leonard Flom and Aran Safir. They demonstrate that each iris has
its unique textures, two different subjects can’t have the same iris features. In their last studies,
they propose iris biometric for human identification.

After these analyses, Daugman in 1993 proposed a complete iris system based on a mathe-
matical model. He developed the first iris-based recognition system. While the outer and the
inner boundaries of the iris have not a circular shape, Daugman in his works, proposes applying
a homogeneous rubber sheet model for the segmentation and the normalization step. In this
model, pair of dimensionless real coordinates were assigned to each pixel in the iris. This pseudo
polar coordinate system is not concentric according to the assumption that the pupil and the
iris have not the same centre in most cases. For the extraction step, the two-dimensional (2-
D) Gabor wavelets technique was exploited to encode iris patterns. The used 2D-filters were
introduced by Daugman (Daugman, 1993). To match two IrisCodes, Hamming distances has
computed across a population of unrelated IrisCodes. The proposed method, called Iriscode,
was applied later on many researches (Benaliouche, 2018).

Recently, various researches were introduced to exploit the different strengths and advan-
tages of iris biometric in order to construct a robust iris-based recognition system. The work
presented in (Birje and Krishnan, 2011) presents an iris-based recognition system based on
Daugman’s methods. Because iris recognition systems are widely used in various domains, the
need for large iris databases is growing. In this work, Authors introduce compression techniques
in order to reduce the storage space, cost and time. In the segmentation step, the circular iris
regions and the pupil were located by applying the CHT method which computes the radius
and centre coordinates of both circles.

Daugman’s Rubber Sheet Model was exploited to normalize the segmented iris aiming at
achieving a constant radius. The IrisCodes were generated by convolving the normalized iris
pattern with 1D Log-Gabor (LG) wavelets. The discriminant features were encoded into bi-
nary templates and stored in the database to be used in the matching step applying the Ham-
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ming distance algorithm. Two images compression techniques were applied named SPIHT
and JPEG2000. The proposed system was validated using CASIA iris image database. The
obtained results demonstrate that JPEG2000 provides better results than SPIHT.

A new segmentation technique was proposed for robust and efficient online iris recognition
system in (Tan and Kumar, 2013). The proposed approach consists of exploiting a random
walker algorithm to efficiently estimate coarsely segmented iris images. Because iris segmen-
tation is a crucial stage in the iris recognition system, authors applied some normalization
operations including Retinex algorithm and Gaussian filter to eliminate the noise and enhance
the quality of images to make the segmentation more accurate. Binary iris mask was generated
by applying the random walker (RW) algorithm. Circular model was used to localize limbic
and pupillary boundaries by applying a canny edge detector. The localized limbic coordinates
(centre and radius) were exploited to detect the upper and lower eyelid regions using adaptive
eyelid model. The implemented iris segmentation and recognition system was carried out on
three publicly available databases: UBIRIS.v2, FRGC and CASIA.v4-distance databases.

In the work presented in (Tan and Kumar, 2014) for the same authors, an iris recogni-
tion system was proposed using unconstrained iris images which are captured under different
conditions and at a distance. Authors develop a new approach by extracting the geometrical
information from local region pixels. For iris segmentation and normalization, the automatic
segmentation presented in (Tan and Kumar, 2013) was used. For the extraction step, a new
approach, named GeoKey encoding scheme, which based on localizing geometrical information
from the local region iris pixels was presented. Then, simple transformation operations, which
can’t be applied on iris image, will be applied on the encoded GeoKey. Log-Gabor was applied
to extract the global iris features. A fusion of both localized and global iris texture was per-
formed at matching scores by using weighted sum method in the purpose of achieving better
accuracy. UBIRIS.v2, FRGC and CASIA.v4 databases were exploited to test and validate the
proposed approach. An EER of 0.16% was achieved with UBIRIS database, 0.19% with FRGC
database and 0.03% for CASIA database.

Multiple feature descriptors were extracted from segmented iris captured at distance in (Ali
et al., 2016). The proposed iris recognition system uses random walk algorithm to localize
the iris from distantly acquired facial images. Daugmans rubber sheet model was applied to
normalize the segmented iris image. The presented work focuses on the extraction step applying
multiple extractors which are LG, Contourlet Transform (CT), Gradient Local Auto-Correlation
(GLAC) and CNN descriptors. The selected extractors were applied on the normalized iris and
on the contextual eye image. KNN, SVM and Kernel Extreme Learning Machine (KELM) were
used for the matching step. The best recognition rate was obtained by CNN extractor with
92.00% , which is computed with KELM classifier.
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Near-infrared (NIR) images and visible wavelength (VW) images were considered as a major
problem that may occur in iris recognition systems during the acquisition step. Many techniques
were proposed to handle these challenging issues. An iris recognition system was developed
based on two segmentation techniques in order to solve both NIR and VW challenges (Umer
et al., 2019). The first technique, which is in the case of NIR images, consists of detecting inner
boundary using the CHT followed by outer boundary using inversion transform followed by
CHT. For VW images contrary to the first case, the introduced approach based on detecting
the outer boundary followed by the inner boundary.

CHT was used after a set of operations and thresholding to mark the outer border. The
inner was localized by extracting boundary points from the grey-level histogram information’s
and morphological boundary extraction algorithm. Then, the centre and radius coordinates
were computed using CHT. Daugman’s rubber sheet model was applied to normalize the seg-
mented iris. The textons with the bag-of-words model were used to extract the discriminant
features. The experimental results have been demonstrated using ten benchmark iris databases,
namely MMU1, UPOL, IITD, UBIRIS.v1, CASIA-Interval-v3, CASIA-Iris-Twins, CASIA-Iris-
Thousand, CASIA-Iris-Distance, CASIA-Iris-Syn and UBIRIS.v2. An accuracy ranging from
93% to 100% and an EER from 0.01% to 0% were achieved.

5.8 Iris Databases
At the large scale of using iris as a biometric modality that can be exploited successfully

in recognition system, many benchmarks publicly databases are presented. Some of the most
used databases are mentioned the following:

5.8.1 CASIA Database

Institute of Automation, Chinese Academy of Sciences (CASIA) developed many versions
of iris images since 2002 to the present day. Each version has its own characteristics and
environmental conditions. Beside different devices were used to collect data. Until now, CASIA
professors and teams develop fourth versions of iris databases. Recently, they include the first
version of iris mobile database and iris subject ageing database. These databases and the
following figures ,which present some samples as examples, are available in (Tan, 2010).

5.8.1.1 CASIA-Iris V1

The first version of iris image database (CASIA-Iris V1) includes images from 108 eyes. Each
eye has seven images with 756 in total. Iris images were collected into two sessions at different
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times. Three images exist in the first folder and four in the second one. The resolution of
CASIA-Iris V1 images is 320x280 with their self-developed device CASIA close-up iris camera.
All images are saved as BMP format. Iris images in this database are faintly covered with
eyelids and eyelashes. Also, they are preprocessed by applying an automatic algorithm to
detect the pupil regions of all iris images with a circular region of constant intensity. This
database is one of the most used iris databases. Samples images of the database are shown in
Figure 5.8.1.

Figure 5.8.1: Samples images from CASIA v1 database (Tan, 2010).

5.8.1.2 CASIA-Iris V2

The second database version CASIA-Iris V2 was used firstly in a conference on biometrics
recognition in 2004. CASIA-Iris V2 uses two different devices to collect iris images. The first
subgroup includes iris captured with OKI camera where the second uses their self-developed
device CASIA-IrisCamV2. Each subgroup contains 1200 images collected from 60 classes. A
total of 2,400 iris images were obtained from both subgroups with a resolution of 640x480.
Figure 5.8.2 shows some samples images of the database.

Figure 5.8.2: Samples of iris images obtained from CASIA-Iris V2 database (Tan, 2010).

5.8.1.3 CASIA-Iris V3

For more progress on iris recognition and in order to support researchers to hold out the
occurred issues, a third version named CASIA-IrisV3 was presented. Three subgroups were
included named CASIA-Iris-Interval, CASIA-Iris-Lamp and CASIA-Iris-Twins. More than 700
subjects are participating in the collection of this database with a total of 22,034 grey-level
iris images. All iris images are stored with JPEG format. The collected data are captured
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under NIR illumination. For the first subgroup CASIA-Iris-Interval, data were captured using
CASIA close-up iris camera. This database includes 2639 iris images obtained from 249 indi-
viduals. The resolution is 320x280. CASIA-Iris-Lamp database contains the largest number
of individuals compared with the two other data sets which include 411 subjects with 16,212
iris images. Besides a resolution of 640x480 was used. Two hundred individuals participated
in the last subgroup (CASIA-Iris -Twins) presenting 3,183 iris images captured outdoor. The
same resolution of CASIA-Iris-Lamp database was used. It is considered as the first publicly
available iris image dataset for twins. Figure 5.8.3 shows iris samples images for each subgroup
CASIA-Iris-Interval, CASIA-Iris-Lamp and CASIA-Iris-Twins, respectively.

Figure 5.8.3: Samples eye images from CASIA-Iris V3 database for CASIA-Iris-Interval, CASIA-Iris-
Lamp and CASIA-Iris-Twins, respectively (Tan, 2010).

5.8.1.4 CASIA-Iris V4

In the fourth version of CASIA is a combination of the three subsets of CASIA-Iris V3
(CASIA-Iris-Interval, CASIA-Iris-Lamp and CASIA-Iris-Twins) and three new subsets namely
CASIA-Iris-Distance, CASIA-Iris-Thousand and CASIA-Iris-Syn. CASIA-Iris V4 database in-
cludes 54,601 iris images which were acquired from more than 1,800 genuine subjects and 1,000
virtual subjects under near infrared illumination. All the captured iris images are gray level
and saved on JPEG format. Because the three subsets of CASIA-Iris V3 (CASIA-Iris-Interval,
CASIA-Iris-Lamp and CASIA-Iris-Twins) were illustrated in figure 5.8.3, figure 5.8.4 shows iris
samples images for the new added subgroups.

Figure 5.8.4: Example eye images from CASIA-Iris V4 database for CASIA-Iris-Distance, CASIA-
Iris-Thousand and CASIA-Iris-Syn, respectively (Tan, 2010).
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5.8.2 UPOL

UPOL (University of Palackeho and Olomouc) database contains 384 iris images captured
from 64 subjects. Each subject presents 3 left iris images and 3 right iris images (Dobeš et al.,
2006). All iris images are on PNG format with a resolution of 576x768. TOPCON TRC50IA
optical device connected with SONY DXC-950P 3CCD camera was used to scan irises. The
images were taken at near distance with human subject cooperation as shown in figure 5.8.5.

Figure 5.8.5: Samples eye images from UPOL iris database (Dobeš et al., 2006).

5.8.3 BATH

NIR iris images were collected from the university of Bath using a limited smart sensor. A
total of 32,000 iris images for both left and right eye with high quality were captured from over
800 subjects. The resolution is 1280×960 (Monro, 2008). Some samples are shown in Figure
5.8.6.

Figure 5.8.6: Samples eye images from BATH iris database (Monro, 2008).

5.8.4 UBIRIS

In this database, noisy images were collected in the purpose of validating and testing the
robustness of iris algorithm under unconstrained environments (Proença and Alexandre, 2005).
It is considered as one of the noisiest iris databases. UBIRIS database was created by the
university of Beira. It has two distinct versions. The first version includes 241 individuals with
total iris images of 1877 collected on two sessions with a two weeks’ interval. Images were
taken using Nikon E5700v1.0 camera. More than 11000 images were captured in the second
version. These images were collected at-a-distance and on-the-move providing more realistic
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noise factors. Figure 5.8.7 illustrates two examples of iris samples for the first and the second
version, respectively.

Figure 5.8.7: Some eye images from UBIRIS database (Proença and Alexandre, 2005).

5.9 Iris in Multimodal Systems
The robustness and the efficiency of iris modality have proved in a significant number of

unimodal biometric recognition systems. Table 5.1 represents a comparison between some
iris unimodal systems. The segmentation and features extraction techniques were mentioned.
The accuracy ranges from 89% to 100%. The achieved results made iris a good resource for
identification. These advantages stimulate many researchers to fuse iris with other modalities
developing multimodal biometric recognition.

Face and iris biometrics are combined together in many researches to benefit from the
strengths of each modality and construct a robust, secure and efficient recognition system.
The work introduced in (Eskandari and Toygar, 2014), LBP was applied to extract the local
features from face biometric. The global features were extracted from iris biometric using LDA.
A normalization method was applied to generate a match score for each modality separately.
Then, Weighted Sum Rule fuses the computed scores. Another work based on using two fusion
levels. Feature fusion level was employed to fuse features extracted from iris biometric applying
PCA, subspace LDA, sub-pattern-based PCA, modular PCA and LBP. For face biometric, LBP
was applied. Weighted Sum Rule was used to fusing the normalized face and iris scores.

Iris and fingerprint are also fused in many studies such as in (Vishi and Yayilgan, 2013),
(Benaliouche and Touahria, 2014) and (Khoo et al., 2018). The proposed multimodal biometric
authentication system in (Vishi and Yayilgan, 2013) fuses iris and fingerprint at score level. The
presented system consists of combining the obtained scores from both modalities using a three
score normalization techniques (Min-Max, Z-Score, Hyperbolic Tangent) and four score fusion
approaches (Minimum Score, Maximum Score Simple Sum and User Weighting).

96



Chapter 5. Iris BIOMETRIC

Table 5.1: A comparison of some of the existed iris recognition systems.
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Chapter 5. Iris BIOMETRIC

While in (Benaliouche and Touahria, 2014), the developed multimodal biometric system
fuses iris and fingerprint at the matching score and the decision levels. Besides the sum rule and
the weighted sum rule matching algorithms, a new matching technique was proposed. Itconsists
of applying a fuzzy logic method for the matching scores combinations at the decision level.
The achieved results demonstrate the robustness of the proposed technique. It outperforms
the classical fusion techniques with FAR of 0%. The developed multimodal biometric system
introduced in (Khoo et al., 2018) presents a new approach for the feature fusion level based on
Indexing-First-One (IFO) hashing and integer value mapping strategy. In the work presented in
(Gandhe and Jawale, 2016), authors develop a multibiometric system including iris, signature
and gait. Global features, Local features and Transition features were extracted and matched.

5.10 Conclusion
The iris was used since the first exploitation of biometric for recognition. Many techniques

were developed with the aim of constructing a robust and secure iris-based recognition system.
Until our day, the iris is still considered one of the most powerful biometric that can be used
to identify individuals. It presents rich information which is hard to falsify. In some cases, iris
may suffer from damages that distort its shape and consequentially influence negatively the
extracted biometric traits used for recognition and reduce the accuracy of the system.

In this chapter, we have presented a state of the art on iris biometric. Starting with
a definition of iris, beside a brief history about the use of iris in recognition purpose was
presented. We have discussed in the next section about the anatomy of iris and its important
parts that could be used for the identification of persons. Iris strengths and drawbacks were
also detailed. Then, the iris based system architecture was presented. The iris segmentation
step is considered a critical phase in the development of the iris recognition system. Many
techniques such as Integro-differential Operator, Hough Transform and Active Contour Models
were proposed. Daugman was the pioneer in this filed. His techniques are used in several kinds
of research. In our work, we decide to use the circular Hough transform technique for the iris
and pupil boundaries detection. Some of the developed iris based recognition systems were
explained.

Because of the encouraging results achieved by proposed unimodal iris-based recognition
systems, combining iris with other biometric traits has the ability to improve the recognition
rate. Moreover, this combination develops secure and robust multimodal recognition systems.
We conclude this chapter by referring to some existed iris-based multimodal recognition systems.
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CHAPTER 6

Ear-ECG BASED MULTIMODAL SYSTEM

6.1 Introduction

With the evolution of technology, the implementation of secure personal identification
protocols has been increased. In our day, biometric can be considered as the optimal

solution for this purpose. For this reason, many biometric systems were developed with the
intention of achieving a high level of security using suitable and acceptable biometric modalities
from users.

Each biometric trait has some limitations which make it not able to accomplish all system
requirements. Accordingly, the use of a single hardware modality for recognition makes systems
sufferer from many problems such as noisy data, intra-class variations, non-universality, spoof
attacks and distinctiveness. Most of these challenges can be addressed by deploying multimodal
biometric systems. This latter merges more than one biometric trait in a single scan. The use
of multiple biometric modalities works on exploiting the strengths of the combined modalities
to improve the performance of the multimodal system and increase the security level.

The main characteristic that made ECG very recommended is its universality. The heart-
beat is a necessary sign of life. Moreover, different hardware are available to record the ECG
signal with minimum inconvenience to the individual. For these reasons, there is an increasing
interest in using the ECG in biometric identification.

There’s real power in using the appearance of an ear for computer recognition. Ear shape
has played a significant role in forensic science and it was used by law enforcement agencies for
many years. Many studies for ear photographs of thousands of people have been performed for
decades. These researches have the purpose of checking the possibility of use ear for recognition
and how much is suitable. It is found that the ear has a unique shape even in the case of twins.
It has also a stable structure which does not change radically over time.
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This chapter subdivided into three parts. Firstly, we will present local descriptors methods
used in our contributions so as to extract the representative features of our used modalities. In
the second part, we will explain our proposed ECG unimodal system based on shifted 1D-LBP
for the cause of analyzing and testing the power of using ECG in recognition. Finally, our
proposed multimodal biometric system based on combining ECG and ear using 1D-MR-LBP
methods will be also explained. A discussion of the experimental results will be performed.

6.2 Local Descriptors
Features extraction is the main phase of the biometric recognition system. Numerous methods

have been developed such as local descriptors. The latter is widely applied on various 2D and
3D biometric modalities like face (He et al., 2009), fingerprint (Nikam and Agarwal, 2008), iris
(Singh and Kaur, 2014). These algorithms based on finding specific key points in the image.
Then, the characteristics are extracted around these specific points. Local features have proved
its efficiency and robustness under unconstrained environments. During the last few years,
Local Binary Patterns (LBP) has proven its efficiency and robustness in image processing and
computer vision. LBP is a non-parametric method which is applied to the 2D image. It was
originally proposed for texture analysis in order to describe local structures.

In our contribution, we fuse ear and ECG in a multimodal biometric system. As the
dimensionality of these modalities is large, their fusion by concatenation is difficult, inefficient
and lacks of robustness. It is well known in the literature that if the feature space has very
high dimensionality, it is susceptible to the curse of dimensionality. This problem can be solved
by feature extraction and dimensionality reduction phases. Local texture descriptors, namely
1D-LBP (One-Dimensional Local Binary Patterns), Shifted-1D-LBP (Shifted One-Dimensional
Local Binary Patterns) and 1D-MR-LBP (One-Dimensional Multi-Resolution Local Binary
Patterns) are used in this study for features extraction purpose from 1D signals and 2D images
after projecting these images into 1D space.

6.2.1 Basic LBP

The local binary pattern, proposed by (Ojala et al., 1996), is considered one of the famous
approaches used for the feature extraction task. Therefore, it has been successfully applied in
several fields of machine vision. The original version of the local binary pattern operator is
applied on a 3 × 3 pixel block of an image which means 8 neighborhoods. The neighborhoods
of each block are threshold by its centre pixel value to generate an LBP-code for the centre
pixel (Pietikäinen et al., 2011). The formulation of LBP for a centre pixel xc is given as:
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LBP (xc) =
7∑

p=0
S(xp − xc).2p (6.2.1)

Where the S() indicates the sign function and is defined as:

S(x) =

1 if x ≥ 0

0 if x < 0
(6.2.2)

A value of 1 was assigned to the S() function if the input parameter are grater or equal to
0. Otherwise, a value of 0 was assigned. Figure 6.2.1 illustrates the basic LBP operator.

Figure 6.2.1: An example of the basic LBP operator.

6.2.2 1D-LBP

LBP method has gained great popularity since its first proposal by (Ojala et al., 1996) due to
its efficiency of extracting important textures that exist in the processed image using its local
neighborhood (Pietikäinen et al., 2011). LBP generates a binary code by thresholding each
value of neighborhood with the value of the centre pixel of an image based on the assumption
that texture has locally two complementary aspects, a pattern and its strength.

While LBP method was used to process pixels of a 2D image, 1D-LBP was used to process
samples data for the 1D signal. The first proposition of 1D-LBP method was introduced by
(Chatlani and Soraghan, 2010) for the purpose of extracting features from a speech signal and
identifies the voiced and the unvoiced components. 1D-LBP generates a binary code, which
named 1D-LBP code, by thresholding each value of neighborhood with the value of each centre
samples from a signal. The formulation of 1D-LBP on the ith sample of processed signal x[i] is
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given as:

1DLBP (x[i]) =
p
2 −1∑
j=0

{
S [x [i + j − p/2]− x [i]] .2j + S [x [i + j + 1]− x [i]] .2j+ p

2
}

(6.2.3)

Where the S() indicates the sign function as mentioned in equation (6.2.2). P is the number
of neighboring samples. The input parameter of S() is the result of the difference between
each neighboring sample and the centre sample. Its output parameter is a thresholding binary
number which will be converted to an LBP code by applying a binomial weight. i represents
the ith sample where i=[(P/2)+1:N-P/2], N is the length of processed signal x. An example
of the 1-D LBP operator is given in figure 6.2.2 where P = 8 and the centre sample PC is
mentioned.

Figure 6.2.2: An example of 1-D LBP operator.

6.2.3 Shifted 1D-LBP

Shifted 1D-LBP method was adapted from a 1D-LBP method which was introduced by
(Chatlani and Soraghan, 2010). Both methods are applied to sensor signals for the purpose of
extracting features or segmentation. They are inspired by the 2D-LBP method proposed by
(Ojala et al., 1996). The same process will be applied using 1D-LBP or Shifted 1D-LBP methods
at each sample of signal. While 1D-LBP method uses constant left and right neighbors of the
central sample and obtained a limited macros patterns. Shifted 1D-LBP method use shifted
left (PL) and right (PR) neighbors of the central sample Pc (Ertuğrul et al., 2016). After the
selection of neighborhoods, Shifted 1D-LBP generates a binary code, which named a Shifted
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1D-LBP code, by thresholding each value of left and right neighborhood with the value of each
centre samples from a signal x[i]. The formulation of Shifted 1D-LBP of centre sample Pc of
the processed signal x[i] is given as:

Shifted1DLBP (Pc) =
p∑

j=1
S(Pj − Pc).2j−1 (6.2.4)

Where the S() indicates the sign function as mentioned in equation (6.2.2). Pc and Pj
represent the centre sample and number of neighbors, respectively. An example of Shifted-
1D-LBP operator is given in figure 6.2.3 where PL = 5 and PR=3, the centre sample Pc is
mentioned.

Figure 6.2.3: An example of Shifted-1D-LBP operator.

6.2.4 1D-MR-LBP

1D-MR-LBP methods, which is applied on a 1D signal, was proposed by(Louis et al., 2014)to
solve the problem of passing irregular signals to the biometric system and of an unknown
amplitude of a signal and achieve better performance.1D-MR-LBP methods were inspired by
the 2-dimensional Local Binary Patterns. While 1D-LBP and Shifted 1D-LBP based on just
the selection of neighbors on both left and right side for extraction, 1D-MR-LBP based on two
variables p and d. Where the first paramater represents the number of selected samples that
are used for 1D-MR-LBP feature extraction from both sides, which considered by neighbors on
1D-LBP method. The second one represents the distance between the centre sample xc and
the last/first selected sample pi used for 1D-MR-LBP feature extraction from left/right side.
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The formulation of 1D-MR-LBP on the ith sample of processed signal x[i] is given as:

1DMRLBP (x[i]) =
p∑

j=1
S(x(i+j−p−d)−x(i)).2j−1 +S(x(i+j +d−1)−x(i)).2j+p−1 (6.2.5)

Where the S() indicates the sign function by adding epsilon (e) as a new parameter which
makes ECG signals less influenced by noises beside to take on consideration the quantization
error (Louis et al., 2014). The S() function defined as:

S(x) =

1 if x + ε ≥ 0

0 if x + ε < 0
(6.2.6)

And where p and d are defined above. The input parameter of S() is the result of the
difference between each sample pj where j=[1,2,..,p] and the centre sample. Its output parameter
is a thresholding binary number which will be converted to an LBP code by applying a binomial
weight. i represents the ith sample where i=[p+d:N-p-d+1], N is the length of the processed
signal x. An example of a 1-D-MR-LBP operator is given in figure 6.2.4 where P = 3 and d=3
and the centre sample PC is mentioned.

Figure 6.2.4: An example of 1D-MR- LBP operator.

6.3 Motivation and Goals
With the development of technology, the need for security has increased to control the ac-

cess to systems. The biometric systems were a real alternative to passwords, signatures and
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other identifiers. It defined as the quantitative study of biological, behavioral or morphological
characteristics of the human. Face, fingerprint, hand geometry and other modalities have been
applied. While each modality has its limitations and weaknesses, the search for new modalities
and combinations is the aim of researchers in our day.

The human heartbeat (ECG) is considered as a new biometric technology characterized by
his liveliness measurement , which makes it hard to spoof. Human ear is also a promising
biometric modality. It presents a rich and stable structure which may be considered as a
perfect source of information for identification or verification purpose. Ear recognition is a
new biometric technology that largely used in recent years. Combining these two biometric
modalities in a multimodal biometric system is an effective strategy for recognition purpose.
Our main objectives discussed in this chapter are:

• Identify the extent of the impact of the preprocessing stage on the whole ECG biometric
system.

• Examining the robustness of ECG biometric traits by developing a new ECG based bio-
metric system.

• Developing a multimodal system by combining the developed ECG unimodal system
with ear based system based on local descriptors for the sake of avoiding the unimodal
biometric systems limitations.

6.4 Related Works
Multimodal biometric recognition systems have attracted recently significant research atten-

tion, as they offer a method of solving the different drawbacks of unimodal systems. (HONG
et al., 2008)developed a prototype biometric authentication system using faces and fingerprints
at decision fusion’s level. (Ross and Jain, 2004) proposed a multimodal biometrics system
which includes face, fingerprint and hand geometry, using a matching score fusion’s level. Sub-
sequently, many modalities have been fused to fulfil various application requirements. Ear,
ECG or iris biometric modalities have been introduced in different combinations and fusion
strategies, using various levels of fusion by these researchers.

A multimodal biometric system (Monwar and Gavrilova, 2013), has been constructed which
integrates face, iris and ear data. Fisher image technique wa applied to face and ear recognition
and Hough transform and Hamming distance techniques to iris recognition. A novel method
based on Markov chain was then used for rank fusion’s level. In order to improve on the
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accuracy and reliability of other rank fusion methods, they also suggested a new Markov chain
approach for fusing rank information in a multimodal biometric system.

Different rules (min rule, max rule, product rule and sum rule) were applied in decision fu-
sion’s level for ECG-face multimodal biometric system (Boumbarov et al., 2011). ECG features
were extracted via KPCA (Kernel Principal Component Analysis). PCA was used to extract
features from face modality. Spectral Regression (SR) algorithms are applied to combine ECG
and face features. It has as aim to treat the problem of combining different biometric modalities
in intelligent video surveillance systems.

An implementation of a multimodal system by (Al-Hamdani et al., 2013) combining three
modalities using score fusion’s level to reach a higher security level. The fusion of speech, ECG
and PCG with sum score fusion was performed. SIFT (Scale Invariant Feature Transform)
technique was exploited in order to extract features from both ear and iris data. The fusion at
the feature level was applied. A FAR of 0% was achieved (Ghoualmi et al., 2014).

The fusion of fiducial features (peaks) from the first lead (I) of the ECG, with spectrum
features from six different bands of the EEG was developed in (Barra et al., 2017). They aim
to construct a robust and secure multimodal biometric recognition system. Sum, product and
weighted sum operators were used. Then, the Euclidean norm distance was applied to match
the fused features. An ERR of 0.93% was achieved.

In (Tahmasebi and Pourghassem, 2017), game theory was used to combine ear, palm-print
and signature features. Gabor filter was applied for the extraction step to obtain optimal
logistic regression weights for rank-level fusion. Face and ECG were also incorporated for an
authentication system (Chakraborty et al., 2016). Both modalities were also fused together for
person identification in (Israel et al., 2003), at feature fusion’s level.

6.5 Proposed ECG based Unimodal System
ECG analysis has been investigated as promising biometric in many fields especially in medi-

cal science and cardiovascular disease for the last decades. It aims to exploit the discriminative
capability provided by these liveness measures developing a robust ECG based recognition sys-
tem. In this section, an ECG biometric recognition system was proposed based on shifted
1D-LBP. Shifted 1D-LBP operator was applied to extract the representative non-fiducial fea-
tures from preprocessed ECG heartbeats. The current section is an extension of our paper
published in (Regouid and Benouis, 2018). The proposed approach consists of three stages
namely preprocessing, features extraction and matching. Figure 6.5.1 shows the architecture
of the proposed system.
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Figure 6.5.1: The architecture of ECG unimodal biometric system.

6.5.1 Preprocessing

The preprocessing step is subdivided into two sub-steps: Normalization and segmentation.

6.5.1.1 Normalization

In the normalization step, we have applied three techniques to reduce the noise from the
ECG signal and remove various artifacts and improve equality of the signal. We will compare
the effectiveness of each algorithm so as to apply the good technique on the proposed ECG
biometric recognition system.

The first algorithm is SG-FIR which proposed by Savitzky and Golay. SG-FIR smoothing
filter is based on local least-squares polynomial approximation. It works on reducing noise
while maintaining the shape and height of waveform peaks. This method is more attractive
and useful in ECG processing where the peak shape preservation property is very important
(Savitzky and Golay, 1964). Subfigure 6.5.2 (a) and subfigure 6.5.2 (b) show about 10 seconds
from the original and the normalized ECG signal using SG-FIR filter for signal obtained from
ECG-ID database. The normalized ECG signal for NSR database is shown in subfigure 6.5.3
(b)

The second technique consists of applying a fifth-order bandpass Butterworth filter combined
with a zero-phase filter which is a special case of a linear-phase filter. Butterworth filter is a
type of signal processing filter designed to have a frequency response as flat as possible in the
passband. It can be also called a maximally flat magnitude filter. This filter has the ability
to achieve successively closer approximations with increasing numbers of filter elements of the
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right values. Subfigure 6.5.2 (a) and subfigures 6.5.2 (c) show about 10 seconds from the original
and the normalized ECG signal using SG-FIR filter for ECG-ID respectively. Whilst for NSR
database, the normalized ECG signal is shown in subfigure 6.5.3 (c).

The third technique based on applying a 1D digital filter. This technique has the aim of
filtering the input signal using a rational transfer function. Subfigure 6.5.2 (a) and subfigure
6.5.2 (d) show about 10 seconds from the original and the normalized ECG signal using a 1D
digital filter for ECG-ID respectively. For NSR database, the normalized ECG signal is shown
in subfigure 6.5.3 (d).

Figure 6.5.2: The original (a) and the normalized ECG signal using SG-FIR filter (b), Butterworth
filter (c) and 1D digital filter (d) from ECG-ID database.

6.5.1.2 Segmentation

The second step consists of segmenting the normalized ECG signal. This step can be per-
formed by locating the fiducial points “QRS” adopting Pan-Tompkins algorithm (Pan and
Tompkins, 1985). It aims to isolate the fiducial points (P, Q, R) for each beat segment. Each
detected R-peak determines the centre of the QRS complex.

Then, to isolate the heartbeat, we take 94 samples before the R-peak and 150 samples
after the R-peak. This means that each ECG heartbeat has 245 samples with 490 ms segment
duration for ECG-ID database. Whereas, we take 50 samples before and after the R-peak
obtaining 101 samples for NSR database.
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An alignment of segmented heartbeats for the same subject from both used ECG databases
is illustrated in figure 6.5.4 and figure 6.5.6. Figure 6.5.5 and 6.5.7 shows segmented heartbeats
for different subjects aligned with the R peak from both ECG-ID and NSR databases.

Figure 6.5.3: The original (a) and the normalized ECG signal using SG-FIR filter (b), Butterworth
filter (c) and 1D digital filter (d) from NSR database.
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Figure 6.5.4: Segmented heartbeats for the same subjects aligned with the R peak using SG-FIR
filter (a), Butterworth filter (b) and 1D digital filter (c) from ID database.

Figure 6.5.5: Segmented heartbeats for different subjects aligned with the R peak using SG-FIR filter
(a), Butterworth filter (b) and 1D digital filter (c) from ID database.
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Figure 6.5.6: Segmented heartbeats for the same subjects aligned with the R peak using SG-FIR
filter (a), Butterworth filter (b) and 1D digital filter (c) from NSR database.

Figure 6.5.7: Segmented heartbeats for different subjects aligned with the R peak using SG-FIR filter
(a), Butterworth filter (b) and 1D digital filter (c) from NSR database.
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6.5.2 Features Extraction

For features extraction step, Shifted 1d-LBP was applied to extract the non-fiducial features
from the ECG heartbeats. After many experiences to select the best combination of param-
eters, a number of 5 neighbors from the left side and 3 neighbors from the right side (PL=5,
PR=3). To visualize the difference between the extracted features using different techniques of
normalization which is explained above, diagrams were generated. This is illustrated in figure
6.5.8 and figure 6.5.9 for ECG-ID and NSR databases, respectively.

6.5.3 Matching

In the matching step, we have assessed the performance of our proposed approach by us-
ing KNN classifier. The performances of the classifiers were evaluated in terms of accuracy
presented in equation (1.6.3).

Figure 6.5.8: Shifted 1D-LBP features extraction diagram of an ECG heartbeat using SG-FIR filter
(a), Butterworth filter (b) and 1D digital filter (c) from ID-ECG database.
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Figure 6.5.9: Shifted 1D-LBP features extraction diagram of an ECG heartbeat using SG-FIR filter
(a), Butterworth filter (b) and 1D digital filter (c) from NSR database.

6.6 Results and Discussion
Our proposed ECG biometric system was carried out two benchmark databases namely ECG-

ID and NSR databases with regard to test and validate our work. ECG-ID database contains
different signals from 90 subjects. In our experiments, two records were used per subjects,
one for the training set and the second as a testing set. MIT-BIH NSR Database contains
different long-term ECG recordings from 18 subjects. In our experiments, each ECG signal
was divided into two sub-signals, about 20 seconds were used from the first sub-signal for the
training set and 20 seconds were used from the second sub-signal for testing set. More details
were presented in chapter 4 section7 for both ECG databases.

In our approach, the studied ECG signal was firstly preprocessed in order to get an enhanced
ECG signal. In this step, three techniques which are widely applied in literature have been used
called SG-FIR filter, Butterworth filter and 1D digital filter algorithms. To more distinguish
between these methods, we have applied and illustrated each step using each of the three filters.
From the obtained results, it can be observed that this step has a significant impact on even
the segmentation or the features extraction step as shown in figures 6.5.4 to figure 6.5.9 and
subsequently on the CRR of the system.

For the extraction step, our proposed ECG recognition system extracts the non-fiducial
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features from the segmented ECG heartbeats applying Shifted 1D-LBP.
From Table 6.1, the achieved results are subdivided based on the used ECG database and

the applied normalized techniques. Our purpose is analyzing and visualizing the influence of
normalized technique on the final performance results of the proposed system. The obtained
results are exanimated using the following performance measures of CRR, EER, FAR and FRR
which they explained in chapter 1_section 7.

As it can be seen from Table 6.1, for ECG-ID database, we have achieved a CRR of 96.67
when applying SG-FIR filter beside to 2.68%, 2.02%, 2.22% for EER, FAR and FRR, re-
spectively. These results are decreased when applying Butterworth algorithm with all used
performance measures where the CRR had become 94.44% and 3.66%, 2.8%, 4.4% for EER,
FAR, FRR, respectively. Contrarily to the results applying a Butterworth filter, when we nor-
malized the ECG signal using a 1D digital filter, the CRR is increased to 95.56%. The results
had been decreased with remaining performance measures.

For NSR database, as we can observe from Table 6.1, the CRR and FRR were not affected
by the used normalized algorithms where we obtain a rate of 100% for CRR and FRR of 5.6. An
EER of 2.61% and a FAR of 0% with both SG-FIR and 1D digital filter were attained. These
metrics have changed with a Butterworth filter to 3.1%, 0.6% for EER and FAR, respectively.
Figure 6.6.1 and figure 6.6.2 show the ROC curve for the proposed approach using ECG-ID
and NSR databases which allow us to visualize easier the accuracy of our results.

Table 6.1: Comparison of the performance evaluation of the proposed approach to the other
existing systems

Authors Extraction method Database CRR EER FAR FRR
(Biel et al., 2001) Fiducial features ECG-ID 98 — — —
(Shen et al., 2002) Fiducial features NSR 100 — — —
(Nemirko et al., 2005) Fiducial features ECG-ID 96 — — —
(Wübbeler et al., 2007) Fiducial features ECG-ID 98 2.8 — —
(Louis et al., 2014) 1D-MR-LBP PTB 91 0.09 0.09 0.09

(Dar et al., 2015) DWT and HRV ECG-ID 83.8 — 16.1 0.3
NSR 100 — 0 0

(Barra et al., 2017) Simple Peak Detection PTB 96.1 1.33 — —
(Bassiouni et al., 2018) Fiducial features +DWT ECG-ID 98 — — —

Shifted 1D-LBP ECG-ID 96.67 2.68 2.02 2.22
+ SG-FIR filter NSR 100 2.61 0 5.6

Our proposed ECG Shifted 1D-LBP ECG-ID 94.44 3.66 2.8 4.4
biometric system + Butterworth filter NSR 100 3.1 0.6 5.6

Shifted 1D-LBP ECG-ID 95.56 3.92 3.4 4.4
+ 1D digital filter NSR 100 2.61 0 5.6
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Figure 6.6.1: ROC curve for the proposed approach using ID-ECG databases applying three different
normalization techniques.

Figure 6.6.2: ROC curve for the proposed approach using NSR database applying three different
normalization techniques.
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6.7 Proposed Ear – ECG Multimodal Biometric System

Ear biometric is considered as new biometric technology as well as compared to the con-
ventional biometric (iris, face. . . etc.). Indeed, Ear modality has fixed anatomy. It provides
important information that increases efficiency and robust texture that can be used for identi-
fication or verification system. Alfred Iannarelli (1989) was the pioneer in this field; his work
is considered the most reported work in the ear biometrics. His results have shown that the
ear has the most unique external design. Also, he demonstrates that ear constitutes important
characteristic features and peculiarities that can be used for identification purpose (Iannerelli,
1989). Moreover, many works have been proposed to further improve the confidence of this
biometric technology (Anwar et al., 2015; Benzaoui et al., 2014; Ying et al., 2014; Bustard and
Nixon, 2010; Kumar et al., 2003).

In order to get better results and increase the performance of our system and overcome
the weakness of the unimodal system, we propose a new multimodal system that combines our
proposed ECG unimodal system which was explained in the previous section with ear modality.
This section is an extension of our work presented in (Regouid Meryem, 2018).

6.7.1 Motivation and Goals

Benefiting from the encouraging results obtained from our proposed ecg biometric system by
fusing this modality with ear biometric.

• Exploiting the robustness of local descriptors on 1D domain.

• Increasing the CRR which leads to offering better security.

• Accomplishing better compromise between the (FRR) and the (FAR) and minimizing
EER simultaneously.

6.7.2 Architecture of Ear – ECG based Multimodal System

We propose to combine ECG and ear biometric modality in a multimodal system in further-
ance of the obtained ECG biometric results and to see the extent of multimodal systems power.
The architecture of the proposed approach is detailed as below and depicted in figure 6.7.1.
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Figure 6.7.1: The proposed Ear – ECG based recognition system.

6.7.2.1 Preprocessing Stage

This stage includes two sub-steps for each biometric modality which consists of normalization
and segmentation for both ECG signal and ear image.

With regard to ECG, we maintained the same process for the preprocessing step. SG-FIR
filter was applied. it proves its efficiency and power of reducing noises and preserving the ECG
signal structure depending on the obtained results on terms of CRR, EER, FAR and FRR from
both ECG-ID and NSR databases.

For ear preprocessing, the ear is manually cropped from different artifacts that reduce the
accuracy and maximize the EER such as hair and skin areas. Next step consists of converting
the different cropped ear images size to a fixed size of 50 x 50 pixels. The resized images were
converted then to grayscale images. The preprocessed ear image can be shown in figure 6.7.2.
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Figure 6.7.2: The ear preprocessing process.

6.7.2.2 Extraction Features

We have applied 1D-MR-LBP method on each of the preprocessed modalities, ECG signal
and ear images. The ear image must be converted to 1D data as well as to extract from
them the significant features. We have done many experiences to select the best combination
of parameters p (p=5) and d (d=4) for ECG and ear biometric. Figure 6.7.3 and figure 6.7.4
show the features results of the 1D-MR-LBP method for ear image and ECG signal, respectively.

Figure 6.7.3: Ear images after applying 1D-MR-LBP.

Figure 6.7.4: Features extraction diagram from an ECG heartbeats using 1D-MR-LBP
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6.7.2.3 Fusion Features

Once the features data for each modality are successfully generated. We have used a simple
rule to fuse both features of modalities as new signature data into a new vector as shown in
figure 6.7.5. The generated vector is simply computed as follows:

V (New data) = VEAR, VECG (6.7.1)

Figure 6.7.5: The fusion of ECG-EAR features process.

6.7.2.4 Classification

In this step, we have assessed the performance of our proposed approach by using two classifier
KNN and RBF (Radius Basis Function) network (Haykin et al., 2009). The performances of
the classifiers were evaluated in terms of accuracy by equation (1.6.3).

6.7.3 Experimental Results

AMI and ECG-ID public databases are used to validate and test our proposed work. The
used AMI and ECG-ID databases are described in detail in chapter3_section 6 and chapter
4_section 7, respectively. In our experiments, for ECG biometric, two records were used per
subject, one for the training set and the second as a testing set. Whereas, AMI database
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was divided into six images per subject as a training set and one image as testing set for ear
biometric.

Our discussions will be based on the same performance measures that were used in the
first approach. We carry out a comparison between the results achieved from the proposed
multimodal system and the results attained from each unimodal system separately.

Table 6.2: Performance evaluation of the proposed EAR-ECG approach.

Modalities CRR EER FAR FRR
ECG-based recognition system (Chun, 2016) 99 2.4 — —
ECG-based recognition system (Bassiouni et al., 2018) 98 — — —
EAR-based recognition system (Ghoualmi et al., 2015) 97.15 — 0.85 4.84
EAR-based recognition system (Benzaoui et al., 2017) 90.26 — — —
Our ECG-based recognition system 98 3.10 1 6
Our ear-based recognition system 100 4.01 0.24 6,67
The proposed fusion approach 100 1.51 0.7 3.33

Figure 6.7.6: Roc curve for multimodal system and ECG-EAR unimodal system separately.

From Table 6.2, our ECG unimodal system gets a CRR of 98% where a CRR of 96.67%
has been achieved with shifted 1D-LBP. This is demonstrating that 1D-MR-LBP outperforms
1D-shifted-LBP descriptor in terms of CRR and FAR. Unfortunately, it did not maintain its
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superiority regarding the EER which is increased to 3.1%. For ear unimodal system, a CRR
of 100% was achieved beside to a FAR of 0.24%. Whilst a rate of 4.01%, 6.67% was obtained
for EER, FRR, respectively. On the other hand, the proposed EAR-ECG multimodal system
demonstrates its efficiency by achieving a CRR of 100%. The EER rate was decreased from 4%
in the unimodal system to 1.51% in the proposed multimodal system. The FAR was decreased
from 1% to 0.7% and FRR from 6% to 3%.

These statistical comparison results showed that our multimodal system can effectively
outperform the ECG an ear unimodal system separately in term of CRR, ERR, FAR and FRR.
Figure 6.7.6 shows the ROC curve for the proposed approach besides the two ECG and ear
unimodal system to more visualize and compare the accuracy of our results.

6.8 Conclusion
We propose in this chapter a novel ECG unimodal biometric system based on Shifted 1D-

LBP. We have taken en consideration the importance of each step of the proposed system and
analyze its influences on the obtained performance. Three preprocessed technique namely SG-
FIR filter, Butterworth filter and 1D digital filter were applied separately on the ECG signal to
allow us choosing the best technique in the next proposed multimodal system. Shifted 1D-LBP
was applied to extract the non-fiducial features from the segmented heartbeats. The obtained
results demonstrate that SG-FIR algorithm outperforms the other applied techniques.

The second proposed approach combines the developed ECG biometric system with ear
biometric. 1D-MR-LBP was used to extract the representative patterns from the preprocessed
ECG signal and ear image after converting this latter to 1D space. Comparison of the results
between ear and ECG multimodal biometric system against each unimodal system separately
shows the robustness and the efficiency of 1D-MR-LBP in the extraction of discriminant fea-
tures.

Based on the observation and results obtained besides the performed analysis, the next
chapter will present our contribution of a multimodal biometric system based on ear, ECG
and iris biometric. Local descriptors were applied with the purpose of constructing a robust
multimodal system with a high-security level. Moreover, it is used to exploit the benefit of
local descriptors in the 1D domain.
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CHAPTER 7

ECIREA MULTIMODAL BIOMETRIC SYSTEM

7.1 Introduction

Multimodal biometric systems have gained many attentions at a recent time and become
an emerging trend. These systems can be defined as the fusion of more than one physi-

ological or behavioral characteristic for verification or identification purpose. Some of the most
important reasons to combine multiple biometric traits are to increase security and improve
the recognition rate. As security is a vital importance in several domains, many multimodal
biometric systems have been proposed.

In recent years, newly emerging biometric technologies have been used extensively for both
human identification and security tasks. The use of multiple biometric traits from the same
person at the same time minimize the chance of spoofing because it is very hard for a hacker
to mimic multiple types of biometric traits at once. Consequently, the security level will be
increased. Another power point is the universality of multimodal systems. When a user is
unable to provide a form of biometric due to disability or illness, the system can take other
forms of biometric for authentication.

In a multimodal biometric system, single or various sensors can be employed to capture the
input data depending on the nature of the used modalities. It must be mentioned that the use
of multiple devices to take biometric data will increase the cost of the system. Take advantage
of all the discussed benefits and decrease the cost of the developed systems depends on many
factors. The main factor is the choice of the fused biometric modalities.

Implementing a multimodal biometric system overcomes the weaknesses of unimodal sys-
tems and offers these additional benefits:

• The use of various types of data increases significantly the accuracy of identification. It
is rare that all measurements will be affected at once by the aforementioned conditions
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in which they have been captured.

• Sufficient population coverage will be ensured by capturing multiple biometric traits.
Therefore, this can address the problem of non-universality.

• Spoof various biometric traits of an enrolled or legitimate user simultaneously is very
difficult for an intruder.

Each modality has considerable strengths and weaknesses. The combination of suitable
modalities depends on the requirements of the environment. For this reason, there is no one-
size-fits-all solution. The choice of appropriate modalities, extraction methods, fusion level,
matching techniques and other factors are crucial steps during the development of the multi-
modal system. Many multimodal biometric systems have introduced. Various techniques have
proposed taking into consideration the factors above to ensure the success of these systems for
human identification.

Iris is considered one of the oldest used biometric. Its advantages such as the uncorrelated
nature of the iris codes for unrelated persons and its uniqueness lead the system to achieve a
high level of security. Analysis of electrocardiogram is considered a new biometrics measure
for human identity recognition. Nowadays, ECG biometric has been gaining more attention of
many research laboratories because of its strengths especially in the security domain, e-health
medical and diseases prevention. Another emerged biometric trait is ear. This last feature is
simpler and more accepted by people. Also, it may be easier to acquire data using a simple
camera. In this chapter, we will propose a new multimodal biometric system, named ECIREA,
based on combining three biometric traits, which are ear, ECG and iris using local descriptors.

7.2 Motivation and Goals
Biometric systems demonstrate its effectiveness and robustness to various types of malicious

attacks in various areas in modern society and organizations. The fingerprint is one of the oldest
biometric that was used and applied for identification for decades. Recently, many biometric
modalities such as face, iris or geometry of hand have been introduced, tested and validated.

This chapter presents our new contribution that fuse ear, ECG and iris in a multimodal
biometric system based on local descriptors. We named our system as ECIREA. Monomodal
systems based on single biometric traits suffer from some limitations as well as problems con-
cerning missing data and unreliable identification problems. Some of the challenges commonly
encountered by the use of each biometric characteristic separately are that this latter can be
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easily affected by ambient conditions changes. The quality of the used sensor has an influence
on the quality of the acquired data, poorly illuminated or variations poses for some modalities.

Because the main objective on authentication system is achieving high security level, hackers
find it easier to sneak into a monomodal biometric system. Moreover, some biometric traits
are publicly used which makes its spoofing easier. In some cases, the enrolled data can differ
from the data during the recognition (identification or verification) which is the problem of
intra-class variations besides to interclass similarities also. Another challenge consists of the
non-universality where some users may do not have the applied biometric modality. All of these
limitations will influence negatively on the developed monomodal biometric system and leads
to a limited accuracy. Subsequently, the performance will be decreased.

7.2.1 Motivation

Overcome the pitfalls of unimodal biometric systems by proposing a new multimodal bio-
metric system fusing ear, ECG and iris modalities. The developed system as we have named it
ECIREA biometric recognition system aims to get better and robust results.

7.2.2 Goals

• Combining the advantage of each proposed unimodal system.

• Increase the system security level using three biometric modalities. Moreover, fusing
biological (ECG) and morphological (ear, iris) biometric traits make it hard to spoof.

• Decreasing EER and maximizing CRR simultaneously.

• Exploiting the benefits of local descriptors (LBPs) on our proposed modalities in 1D
space where this method is on 2D in nature with the intention of reducing the complexity
weaknesses of a multimodal system.

• Reviewing the results obtained from each proposed 1D-LBPs and the impact of given
1D-LBPs parameters on the achieved results to determine the suitably used parameters.

7.3 Proposed ECIREA Multimodal Biometric System
In this contribution, a new fusion approach of three modalities, namely ECG, ear and iris,

was proposed in an attempt to develop a secure and robust multimodal biometric recognition
system. The proposed modalities used in the proposed approach were fused with other biometric
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modalities in many researches (Lumini and Nanni, 2007; Ghoualmi et al., 2014; Tahmasebi and
Pourghassem, 2017; Monwar and Gavrilova, 2013; Boumbarov et al., 2011; Al-Hamdani et al.,
2013). Until now, there is no system fuses the three biometric modalities together. This section
is an extension from our work published in (Regouid et al., 2019).

1D-LBP, Shifted 1D-LBP and 1D-MR-LBP are applied with the aim of getting high-
frequency information of ECG signal and ear and iris images. Furthermore, we attempt to
enhance the recognition accuracy rate and reduce the EER. Since the nature of biometrics
modalities, local texture features impose its existence in several approaches (He et al., 2009;
Chatlani and Soraghan, 2010; Louis et al., 2014; Ertuğrul et al., 2016). In our study, 1D-MR-
LBP will be applied for the first time on ear and iris biometrics after projecting each image
into a 1D signal. We seek to demonstrate its efficiency compared with 1D-LBP and shifting
1D-LBP methods. The proposed recognition process is divided into four phases as described
in figure 7.3.1.

7.3.1 Preprocessing Step

7.3.1.1 ECG Preprocessing

The ECG signal can be recorded using a set of electrodes placed on specific places in the
human body like chest, neck, arms and legs. The number of attached electrodes has a significant
influence on the system. More electrodes improve the accuracy of the developed system but
sequentially, more expensive. Therefore, the correct positions of the attached electrodes and
its movement during the acquisition have also an impact on the performance of the system.

Generally, there is no fixed number of electrodes; it is depending on the acquisition method.
The most largely used acquisition method is the standard 12-lead ECG system placing three
electrodes on the surface body (Sörnmo and Laguna, 2005). But there are ECG recognition
systems which use only one or two electrodes (Shen et al., 2002). Nowadays, attaching sensor
contact on any two points across the heart, ECG can be easily acquired. For real-world and
remote login access, hands or fingers can be used to present the ECG of users(Chun, 2016;
Coutinho et al., 2010; Zhao et al., 2012; Lourenço et al., 2011; Da Silva et al., 2013).

In the first step, the ECG signal obtained from different databases publicly available is
frequency normalized using simple linear interpolation. The preprocessing step aims at remov-
ing the noise from the ECG signal and improving the signal equality, derived from muscular
interference or more commonly from the power grid (50 Hz or 60 Hz). SG-FIR recursive digital
has shown a powerful role in the achieved results.
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Figure 7.3.1: The proposed recognition process.

In the first step, the ECG signal obtained from different databases publicly available is fre-
quency normalized using simple linear interpolation. The preprocessing step aims at removing
the noise from the ECG signal. The second purpose is to improve the signal equality derived
from muscular interference or more commonly from the power grid (50 Hz or 60 Hz). SG-FIR
technique has shown a powerful role in the achieved results.

The ECG waveforms contain a lot of information. They were located by either on fiducial or
non-fiducial techniques. The QRS complex was considered one of the most important fiducial
features that might be used to learn the local and global variation of the ECG signal. Therefore,
it used to facilitate the heartbeat segmentation task. In this fact, in our paper, we have used

127



Chapter 7. ECIREA MULTIMODAL BIOMETRIC SYSTEM

Pan-Tompkins algorithm (Pan and Tompkins, 1985) to isolate the fiducial point (P, Q, R, S
and T) for each beat segment. Due to the non-stationary and aperiodic nature of ECG signal,
beat lengths for all of the ECG records are not equalized. Each signal has different numbers of
waveforms. The same process applied to our proposed ECG unimodal system described in the
previous chapter (chapter 6_ section5) is used for our ECIREA system.

7.3.1.2 Ear Preprocessing

For the preprocessing step, the ear image was manually cropped. We apply the same step
proposed in the ear-ECG multimodal system that has been detailed in the previous chapter
(chapter 6 _ section 7). Figure 7.3.2 shows the original and the preprocessed ear image.

Figure 7.3.2: The original and the preprocessed ear image.

7.3.1.3 Iris Preprocessing

Two sub steps can be distinguished in this stage: segmentation and normalization.
For iris Segmentation step, several algorithms were proposed in the literature for segmenta-

tion procedure. (Daugman, 1993) developed an Integro-differential Operator algorithm which
allows the location of the circular iris, pupil regions and the arcs of the upper and lower eye-
lids. (Ritter et al., 1999)proposed Active Contour Models which allows the location of the
pupil region. (Wildes et al., 1994), (Masek et al., 2003) and others employed a Circular Hough
Transform technique for an automated segmentation algorithm in order to detect the iris and
pupil boundaries. We decide to use a Circular Hough Transform technique for the iris and pupil
boundaries detection (Masek et al., 2003). As shown in figure 7.3.3, this can be realized in the
following phases:

1. Detection of centre coordinates and radius of the detected iris/pupil boundaries using
Canny edge detection and Hough Transform.
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2. The use of linear Hough Transform to isolate Eyelids by fitting a line to the upper and
lower eyelid.

3. The use of thresholding technique to isolate eyelashes .

The next step consists of the normalization process of the segmented image. The main ob-
jective of this step is to solve the different problems that can face iris during the acquisition
phase such as pupil dilation caused by varying levels of illumination or camera rotation. The
normalized image will have the same constant by unwrapping the circular region into rectan-
gular block dimensions. A technique based on Daugman’s rubber sheet model was applied. In
figure 7.3.4, the difference between noised and normalized iris images were illustrated.

Figure 7.3.3: The iris segmentation steps.

Figure 7.3.4: Example of noised and normalized iris image.
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7.3.2 Features Extraction

Local texture descriptors have proven their efficiency in biometric domains which have been
applied in a 3D shape, 2D image and also recently 1D signal. Researchers demonstrate the
robustness of local texture descriptors in multimodal biometric systems especially in real-world
applications as well as easy data acquisition. LBP method has gained great popularity since
its first proposal by (Ojala et al., 1996) due to its efficiency of extracting important textures
that exist in the processed image using its local neighborhood. LBP generates a binary code
by thresholding each value of neighborhood with the value of the centre pixel of an image. It
based on the assumption that texture has locally two complementary aspects, a pattern and its
strength. While LBP method was used to process pixels of a 2D image, 1D-LBP was used to
process samples data for the 1D signal. The first proposition of 1D-LBP method was introduced
by (Chatlani and Soraghan, 2010)for the purpose of extracting features from a speech signal
and identifies the voiced and the unvoiced components.

The two major steps involved in the biometric system are feature extraction and classifica-
tion step. In this work, we have more investigated the first step. Feature extraction step aims
to reduce the data and select the significant features which must be invariant against multiple
issues that may be appeared in the biometric task. Furthermore, feature extraction is one of
the crucial step of the biometric system. As well as, it is related to dimensionality reduction
and abstraction data (i.e., image, signal, etc.) to get features that will be useful in decision
and identification of subjects. Although, many studies on handcraft features have appeared
in recent years, LBP remains an interesting feature extraction technique. It keeps attracting
researchers particularly after its performance’s results on biometric applications such as face,
iris and ear. In this purpose, three local texture descriptors, namely 1D-LBP, Shifted 1D-LBP
and 1D-MR-LBP, have been implemented and detailed in this dissertation in an attempt to
evaluate our multimodal biometric system.

We have implemented 1D-LBP, Shifted-1D-LBP and 1D-MR-LBP methods. Next, we ap-
plied these methods on each preprocessed modality (ECG signal and preprocessed ear and iris
images) to extract the local features. We must mention that we have firstly converted ear
and iris images to 1D space. Many experiences have been performed to determine the suitable
parameters for each proposed method and for each modality. Table 7.2 presents some of the
tested cases in the aim of choosing the optimal parameters for ECG signal.

We have set the number of neighbors p to 6 in ear and iris features extraction and to 5 in
ECG features extraction for 1D-LBP operator. Regarding the number of the obtained bins,
which they are related to the choice of neighbors (p), will be equal to 22xp. In our case, we
have 4096 bins for ear and iris converted signals and 1024 for ECG signal. Subfigure 7.3.5 (a)
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and subfigure 7.3.6 (b) show ear, iris images and ECG features extraction diagram applying
1d-LBP method. The following algorithm 7.1 summarizes the process of 1D-LBP descriptor.

Algorithme 7.1 1D-LBP descriptor
Inputs:

Img, P;
Output:

1D_LBP_feat;
Begin

Iv ← Img(:); (Convert the matrix Img to a vector Iv)
Pc←(P/2)+1;
Insert P/2 zeros value for left /right side of the vector Iv;
For i from (P/2)+1 to (size( Iv)+P/2), do

H ← Iv (i-P/2 to i+P/2 );
Pc ←H(Pc);
Feat = 0;
for k= from 1 to size(H), do

if ( k not equal to Pc ) then
if ((H(k)-Pc) >= 0 ) then

Sing(k) = 1;
else

Sing(k) = 0;
endif;
Feat = Feat + (Sing(k) * 2^(k-1));

endif;
Endfor;
LBP_feat (i-P/2) ←Feat;

Endfor;
end;

On Shifted-1D-LBP operator, we have set the number of left PL and right PR neighbors to
6 and 2, respectively for both ear and iris converted signals. A number of 5 and 3 were assigned
to left PL and right PR neighbors respectively for ECG signal. The number of the obtained bins
is equal to2P L+P R, therefore, in our case, we have 256 for ear, iris and ECG signals. Subfigure
7.3.5 (a) and subfigure 7.3.6 (b) show ear, iris images and ECG features extraction diagram
applying Shifted-1d-LBP method. Algorithm 7.2 explains the mechanism of Shifted 1D-LBP
descriptor.
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Algorithme 7.2 Shifted-1d-LBP descriptor
Inputs:

Img, PL,PR;
Output:

Shifted_1D_LBP_feat;
Begin

Iv ← Img(:); (Convert the matrix Img to a vector Iv)
Pc= PL+1;
Insert PL/ PR zeros value for left /right side of the vector Iv;
For i from PL+1 to (size( Iv)+PL), do

H ←Iv(i-PL to i+PR);
Pc ←H(Pc);
Feat = 0;
for k from 1 to size(H), do

if (k not equal to Pc) then
if ((H(k)-Pc) >= 0) then

Sing(k) = 1;
else

Sing(k) = 0;
endif;
Feat = Feat + (Sing(k) * 2^(k-1));

endif;
Endfor;
Shifted _LBP_feat (i-PL) ← Feat;

Endfor;
end;

On 1D-MR-LBP operator, the two variables p and d are assigned to 5 and 4 respectively for
the three preprocessed ECG, ear and iris signals. Like 1D-LBP, the number of bins obtained
was 1024. Subfigure 7.3.5 (c) and subfigure 7.3.6 (c) show ear, iris images and ECG features
extraction diagram applying 1D-MR-LBP method. This latter is more detailed in Algorithm
7.3.
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Algorithme 7.3 1D-MR-LBP descriptor.
Inputs:

Img, P,d;
Output:

1D_MR_LBP_feat;
Begin

Iv ← Img(:); (Convert the matrix Img to a vector Iv)
Insert P+d zeros value for left /right side of the vector Iv;
New_sz ← the size of updated Iv;
k=New_sz;
e=0.01;
For t from P+d to ( New_sz – (P+d) + 1), do

Feat = 0;
i = 0;
Bln = false;
do

if ( ( (t+i+d) > k ) OR ( (t+i) < (p+d) ) ) then
Feat = 0;
Bln = true;

Else
if ( ( ( Iv(t+i–p–d+1 ) – Iv (t) ) + e) >= 0) then

Sing(k) = 1;
else

Sing(k) = 0;
endif;
Feat = Feat + (Sing(k) * 2^i);
if (( ( Iv(t+i+d ) – Iv (t) ) + e) >= 0) then

Sing(k) = 1;
else

Sing(k) = 0;
endif;
Feat = Feat + (Sing(k) * 2^(i+p));

endif
i = i+1;

While ( ( i < P ) AND (Bln = false) ) ;
1D_MR_LBP_feat (t-(P+d) +1) ←Feat;

Endfor;
end;

For the ECG signal, the extracted non-fiducial features for each heartbeat, applying the
three methods described above, were post-processed. This phase consists of dividing the ex-
tracted features on the addition of heartbeat length and its maximum value. Each constructed
features vector was stored for the matching process. The proposed normalization features vector
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is given as:
F (i) = F (i)

N + max(F ) (7.3.1)

Where F represents the ECG features vector. N is the length of ECG heartbeat.

Figure 7.3.5: Ear and iris images after applying (a) 1d-LBP (b) Shifted-1D-LBP (c) 1d-MR-LBP ,
respectively.

Figure 7.3.6: Features extraction diagrams from ECG heartbeats using (a) 1d-LBP with parameters
p=6. (b) Shifted -1d-LBP with parameters pl=6 and pr=2. (c) 1d-MR-LBP with parameters d=4
and p=5.

7.3.3 Features Fusion

Numerous identification systems based on different modalities have been proposed. The
combination of these modalities can be performed at different levels. It can be fused at five
scenarios i.e. sensor level, feature-extraction level, matching-score level, rank level and decision
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level. Fusion at the match score, rank and decision levels have been extensively studied in the
literature as shown in Table 7.1.

The ease of these levels made them widely used in various multimodal systems, whereas
the fusion at the feature level can face some difficulties. The integration of features that are
extracted from multiple information sources may not feasible in some cases. Richer information
can be found in the features’ set compared with the match score or decision. Thus, better results
are expected to be achieved. Many sets reduction, normalization and transformation techniques
are applied during the concatenation of features sets in order to generate the fused vector.

In practice, the following pitfalls make feature fusion level difficult to achieve:

• Non-homogeneous feature, this is caused by two cases. Either by using multiple modalities
where the nature of fused data may be incompatible for example, hand geometry and face.
Or by applying different techniques of extraction on the same data.

• In certain situations, it may be not possible to know the relationship between the feature
spaces of different biometric systems.

• Another problem, called the curse of dimensionality, can be appeared during the concate-
nation of multiple features set. In other words, the new fused vector may have a large
dimensionality.

• To classify the generated features vectors, a robust and more complex matcher might be
required.

In feature extraction level fusion, a new feature vector is formed by the concatenation of
different feature sets extracted from multiple biometric sensors. Sometimes, Feature level fusion
employs some feature selection and normalization technique to perform feature selection on the
concatenated feature vector.

The selected technique has the purpose of deleting useless information that lead to misclassi-
fication. Except, the important and representative characteristics must be selected. Although,
the features normalization has the aim of change the location and scale parameters of individ-
ual feature values. This modification allows the transformation of the value into a common
domain. Several types of normalization schemes can be applied like Z-score, tanh or min-max
(Ross and Govindarajan, 2005).
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Table 7.1: Various fusion levels for multimodal biometric systems discussed in literature.

Authors Fused modalities Fusion level
(Frischholz and Dieckmann, 2000) Face, Voice, Lip Match score
(Ross and Jain, 2003) Face, Hand, Finger Match score
(Chang et al., 2003) Face, Ear Feature
(Kumar et al., 2003) Palm, Hand Match score, Feature
(Ross and Govindarajan, 2005) Hand, Face Feature
(Kryszczuk et al., 2007) Face, Voice Decision level
(HONG et al., 2008) Palm print, Face Decision level
(Boodoo and Subramanian, 2009) Ear , Face Decision level
(Razzak et al., 2010) Fingerprint ,Face Score level
(Gawande et al., 2012) Iris, Fingerprint Feature level
(Bokade and Sapkal, 2012) Face, Palm print Feature level
(Dhameliya and Chaudhari, 2013) Palm print, Fingerprint Score level
(Abdolahi et al., 2013) Iris, Fingerprint Decision level
(Bharadi et al., 2014) Iris, Fingerprint Decision level
(Benaliouche and Touahria, 2014) Fingerprint, Iris Score and decision levels
(Arteaga-Falconi et al., 2018) ECG, Fingerprint Decision level
(Khoo et al., 2018) Fingerprint, Iris Feature level

In our contribution, the extracted features templates from the three modalities ECG, ear
and iris for each subject are concatenated together into a new fused feature vector. We aim
that the generated vector will contain more important information which allows us identify the
person.

Results of Ross research’s have proved that feature level fusion outperforms matching score
fusion. Besides that, the merged vector represents richer information at an earlier stage of
processing (Kumar et al., 2003). A popular technique for data fusion in feature level which is
used in the proposed work is a concatenation by a union. A simple normalization technique
was applied for ear and iris features vectors where the number of templates is greater than 1
template in order to reduce the size of fused features. Our objective is to fuse the three data
in new feature vector Z.

The first step consists of normalizing and converting the ear and iris matrixes to 1D space
by applying the followed function:

Y =
∑n

i=1 V ((i− 1) ∗m + 1, i ∗m)
m− 1 (7.3.2)

Where V is the computed features matrixes (in our case, it can be either ear features matrix
or iris features matrix), n represents the number of subjects and i = 1. . . n. m is the number of
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used templates for each subject.
After applying this techniques, let F = {f1, f2, f3. . . .fk}, H = {h1, h2, h3. . . hs} and T =

{t1, t2, t3. . . tj} denote features vectors representing the information extracted via ear, ECG
and iris biometric sources. We propose to employs a simple concatenation method to fuse these
data defined as:

Z = f1, f2, f3. . . .fk, h1, h2, h3. . .hs, t1, t2, t3. . . tj (7.3.3)

This process is well illustrated in figure 7.3.7.

Figure 7.3.7: The proposed fusion scheme.

7.3.4 Matching

In the matching step, the features extracted from the three input data (ECG, ear and iris)
were fused in a new vector which will be compared with the templates collected during the
enrollment phase. KNN and RBF classifiers are used to match the input template with the
registered templates (Haykin et al., 2009).

Our neural network training algorithm did not require many parameters compared to other
neural networks (MLP, LVQ), which usually use the smoothing parameter sv to control the
fitting of training of the network. Obviously, to get a higher recognition rate, we have made a
series of experiments to choose the best smoothing parameter sv used in RBF.
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7.4 Experimental Results

7.4.1 Databases

Our proposed approach is validated by applying different public databases. We have used
AMI, USTB1 and USTB2 database for ear biometric, ECG-ID database for ECG biometric and
CASIA database for iris biometric. More details on the employed ear, ECG and iris benchmarks
databases has offered in chapter 3, 4, 5, respectively.

In our experiments, two records were used per subjects for ECG database, one as a training
set and the other as a testing set. We have taken 2 images per subject as training set and
one image as testing set from USTB 1 database and 3 images per subject as training set and
one image as testing set from USTB 2 database. Concerning the division of data from AMI
database on train/test set, we have divided it into six images per subject as a training set
and one image as testing set. Regarding CASIA Iris V1 database, six images were taken as a
training set and one as testing set.

In our ECIREA multimodal system, an equal number of subjects must be performed. Since
three databases (AMI, USTB1 and USTB2) for ear were done, three cases were considered. In
the case of validating our proposed experiments using AMI databases, 90 subjects are chosen
from ECG-ID, CASIA and AMI database. In the second case using USTB1 databases, 60
subjects are chosen from ECG-ID, CASIA and USTB1 database. The last case using USTB2,
77 subjects are chosen from the three databases.

7.4.2 Performance Measures

To validate any biometric recognition system, FRR (False Rejection Rate), FAR (False Accep-
tance Rate), ERR (Equal Error Rate), ROC (Receiver Operator Characteristic) and accuracy
must be calculated which indicate the performance measures. Accuracy can be calculated by:

CorrecteRecognitionRate = 100− (FRR + FAR)
2 (7.4.1)

Where: FRR indicates that genuine person was considered as an imposter and FAR indicate
that imposter was considered as a genuine person. EER indicates the point where: FRR-
FAR=0. We also generate ROC curves which allow evaluating and comparing our algorithms
with others and visualizing their performances.
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7.4.3 Results

In this section, to assess the performance of the effectiveness of the methods that have been
stated in this work, three experiences have been implemented and analyzed in this study. This
study is looking ahead to distinguish the different strengths and weaknesses of these proposed
methods in each unimodal system on the one hand and their effects in the multimodal system.
A comparison of our results against relevant literature, on the other hand, was performed.
MATLAB framework 2016b was used to implement the proposed multimodal biometric system
and plot the desired figures.

Figure 7.3.1 shows the architecture of the proposed multimodal biometric system. As de-
scribed above in section 4, each unimodal biometric system has three stages. The preprocessed
stage has normalization and segmentation sub-stages including the conversion of preprocessed
ear and iris images to 1D space as shown in figure 7.3.2 to figure 7.3.4. Then, the textures
descriptors namely 1D-LBP, Shifted-1D-LBP and 1D-MR-LBP were extracted from the prepro-
cessed signals, figure 7.3.5 and figure 7.3.6 illustrate the different extracted features from the
three biometric modalities. Finally, KNN and RBF were adopted for the matching step. The
results are tabulated in Table 7.3, Table 7.4 and Table 7.5 for each unimodal biometric system.
Table 7.6 summarizes the results of ECIREA multimodal systems based on local descriptor
textures.

Many experiences have been performed to select the parameters’ values for the three ex-
periments. Table 7.2 presents CRR for sixteen different parameters value’s for each descriptor
for ECG processing in order to choose the optimal cases. For 1D-LBP method, it can be seen
that the best result was obtained by assigning P to 5. These results are degraded when P takes
high values such as 15 and 16 neighbors. For Shifted D-LBP, the first best CRR is achieved by
assigning PL to 5 and PR to 3. Because 1D-LBP gives good results with P=5, we keep the same
value for 1D-MR-LBP. The parameter d is changed from 1 to 16 to visualize its influence on the
obtained results. It can be noticed from Table 7.2 that the first high CRR is given by setting d
to 4. It must be mentioned that the CRR decreases when we maximize the distance parameter
d. The same process was followed for both ear and iris biometric for assigning the parameters’
values. In addition, we plotted boxplot to visualise the CRR for the three experiments based
on different parameters’ values., results are shown in figure 7.4.1.
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Table 7.2: The three descriptors applying different parameters’ values.

1D-LBP

P 1 2 3 4 5 6 7 8
CRR 94.44 95.55 95.55 95.55 96.66 96.66 94.44 94.44
P 9 10 11 12 13 14 15 16

CRR 94.44 93.33 95.56 95.56 95.56 93.33 92.22 92.22

Shifted 1D-LBP

PL 2 3 3 4 5 3 7 4
PR 3 2 4 3 3 5 4 7
CRR 94.44 95.55 95.66 95.66 96.66 96.66 94.44 96.66
PL 6 5 2 5 8 3 9 2
PR 5 6 5 2 3 8 2 9
CRR 96.66 96.66 95.55 96.66 94.44 96.66 94.44 95.55

1D-MR-LBP

d 1 2 3 4 5 6 7 8
CRR 92.22 88.88 96.66 97.77 97.77 96.66 95.55 95.55
d 9 10 11 12 13 14 15 16

CRR 96.66 94.44 94.44 94.44 92.22 92.22 92.22 92.22

Figure 7.4.1: Boxplot for the distribution of CRR for the three experiments based on different
parameters’ values.
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In Table 7.3, the proposed unimodal ECG biometric was tested over the three experiments.
Different measures have been calculated to evaluate the performance of our unimodal system.
Locale descriptors textures, 1D-LBP, Shifted-1D-LBP and 1D-MR-LBP, extract rich and com-
plex non-fiducial information from the segmented heartbeats. For classification, we can see that
1D-MR-LBP has achieved a CRR of 98%. The same result was obtained using the two classi-
fiers (KNN and RBF) whereas less CRR of 97% has obtained by 1D-LBP and Shifted-1D-LBP.
To envisage better the difference between the applied descriptors on ECG data, a ROC curve
was generated and illustrated in figure 7.4.2.

Table 7.3: Comparison of performance measures for our proposed unimodal ECG systems with
related systems.

Authors Extraction method Database CRR EER FAR FRR
(Biel et al., 2001) Fiducial features ID-ECG 98 — — —
(Nemirko and Lugovaya, 2005) Fiducial features ID-ECG 96 — — —
(Boumbarov et al., 2011) PCA and LDA Own 95.7 — — —

(Al-Hamdani et al., 2013)
Mel-Frequency Cestrum

Own 98.5 4.5 — —
Coefficients

(Louis et al., 2014) 1D-MR-LBP PTB 91 0.09 0.09 0.09
(Dar et al., 2015) (DWT)and (HRV) ID-ECG 83.88 — 16.1 0.3
(Chakraborty et al., 2016) histogram based method Own 95 — — —

(Chun, 2016)
Guided filter + distance

ID-ECG 99 2.4 — —
measurements

(Barra et al., 2017) simple peak detection PTB 96.15 1.33 — —
(Bassiouni et al., 2018) Fiducial features +DWT ID-ECG 98 — — —
Our 1stexperiment 1D-LBP

ID-ECG
96.67 2.16 0. 71 5.56

Our 2nd experiment shifted 1D-LBP 96.67 2.16 0. 71 5.56
Our 3rd experiment 1D-MR-LBP 98 3.10 1 6
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Figure 7.4.2: ROC curve for unimodal ECG systems by the three experiments.

In Table 7.4, evaluation of the proposed unimodal ear biometric was performed over the
three experiments using USTB1, USTB2 and AMI database. After the enhancement of 2D
ear image, the conversion on 1D space was accomplished to allow the proposed descriptors
extracting features. The same results were obtained with KNN and RBF classifiers. With
USTB1 database, we got a CRR of 100% using the three methods, whilst, a lower CRR has
been acquired from USTB2. The ROC curves are shown in figure 7.4.3, figure 7.4.4 and figure
7.4.5 for USTB1, USTB2 and AMI databases, respectively. It allows us to visualize easily our
results mentioned in Table 7.4 for 1D- LBP (where p=6), Shifted-1D-LBP (where PL=6 and
PR=2) and 1D-MR-LBP (where p=5 and d=4).
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Table 7.4: Comparison of performance measures for our proposed unimodal ear systems with
related systems.

Authors Extraction method Database CRR EER FAR FRR
(Ghoualmi et al., 2014) SIFT USTB2 91.36 — 0.65 7.74
(Ghoualmi et al., 2015) SIFT USTB1 97.15 — 0.85 4.84

(Hezil and Boukrouche, 2017)
LBP

IIT Delhi-2
95.02 — — —

BSIF 98.9 — — —
(Tahmasebi and Pourghassem, 2017) Gabor filter UND — — 18 10

Our 1st experiment 1D-LBP
USTB1 100 1.05 1.33 1.60
USTB2 98.70 6.54 1 11
AMI 98 0. 77 1.09 4.9

Our 2nd experiment shifted 1D-LBP
USTB1 100 1.05 1.22 1.6
USTB2 97.40 6 1 13.5
AMI 98 0. 70 1 4.5

Our 3rd experiment 1D-MR-LBP
USTB1 100 2.03 1.05 3.33
USTB2 97.40 6.22 1 14
AMI 100 2.07 0.24 6,67

Figure 7.4.3: ROC curves for unimodal ear systems using USTB1 database.
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Figure 7.4.4: ROC curve for unimodal ear systems using USTB2 database.

Figure 7.4.5: ROC curve for unimodal ear systems using AMI database.
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In Table 7.5, we have tested the performance of our unimodal iris system over the proposed
3 experiments. CASIA database was used to validate our proposed approaches. It can be seen
that 1D-MR-LBP has proved its efficiency in terms of CRR, EER, FAR and FRR with 100%,
1.19%, 0.16% and 2.22% respectively. From Table 7.5, it can be noticed that 1D-MR-LBP
achieves better results than 1D-LBP and Shifted-1D-LBP. Figure 7.4.6 presents the ROC curve
for unimodal iris system.

Table 7.5: Comparison of performance measures for our proposed unimodal iris systems with
related systems.

Authors Extraction method Database CRR EER FAR FRR
(Daugman, 1993) 1D- Gabor filters Own 99.61 0.32 —– —–
(Ghoualmi et al., 2014) SIFT CASIA v1 95.80 —– 0.65 7.74
(Marciniak et al., 2014) LG filters CASIA v1 97 —– 3.25 3.03
(Barpanda et al., 2018) tunable filter bank CASIA v3 91.65 8.35 8.45 8.25
Our1st experiment 1D-LBP

CASIA v1
98.89 1.90 0.27 3.33

Our2ndexperiment shifted 1D-LBP 98.89 1.88 0.21 3.22
Our3rd experiment 1D-MR-LBP 100 1.19 0.16 2.22

Figure 7.4.6: ROC curve for unimodal iris systems by the three experiments.

In Table 7.6, three multimodal systems were evaluated, tested and compared with literature
works. The difference between these systems is centred in the features extraction method where
the first system use 1D-LBP, the second use Shifted-1D-LBP, while the third system extract
features using 1D-MR-LBP. Because we have used 3 databases for ear biometric, 3 cases in each
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multimodal system will be studied: the first case consists of fusing the ID-ECG, USTB1 and
CASIA v1 databases, the second case consists of fusing the ID-ECG, USTB2 and CASIA v1
databases. The last case consists of fusing the ID-ECG, AMI and CASIA v1 databases. ROC
curves for multimodal systems for the three experiments using USTB1 database are illustrated
in figure 7.4.7, figure 7.4.8 and figure 7.4.9.

Figure 7.4.7: ROC curve for multimodal systems for the first experiment using USTB1 database.

Figure 7.4.8: ROC curve for multimodal systems for the second experiment using USTB1 database.
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Figure 7.4.9: ROC curve for multimodal systems for the third experiment using USTB1
database.
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Table 7.6: Comparison of performance measures for our ECIREA system with related systems.
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In each experiment, as previously stated, the 1D-LBP, Shifted-1D-LBP and MR-LBP
were applied on each preprocessed ECG, ear and iris biometric. The extracted features were
fused together at the feature level to obtain a single vector. The main advantage of fusion,
at this level, is that our homogeneous data don’t require any normalization which reduces the
complexity that shortens the time. For the classification step, we got the same results applying
KNN and RBF classifiers. It can be observed, from Table 7.6, that the 3rd case achieves better
results than the other two cases in all experiments in terms of EER with 0.5% where the CRR
varies from 99% to 100% in the 3 experiments. From the obtained results, we can affirm that
our multimodal systems perform better than different unimodal systems. Minimum EER was
obtained with the 1st experiment using 1D-LBP descriptor in the 3rd case using ID-ECG, AMI
and CASIA v1 databases. Figure 7.4.10 to figure 7.4.15 show ROC curves for our experiments
for the two cases (USTB2 and AMI) which allow us to conjure up the obtained results clearly.

Figure 7.4.10: ROC curve for multimodal systems for the first experiment using USTB2 database.
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Figure 7.4.11: ROC curve for multimodal systems for the second experiment using USTB2 database.

Figure 7.4.12: ROC curve for multimodal systems for the third experiment using USTB2 database.
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Figure 7.4.13: ROC curve for multimodal systems for the first experiment using AMI database.

Figure 7.4.14: ROC curve for multimodal systems for the second experiment using AMI database.
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Figure 7.4.15: ROC curve for multimodal systems for the third experiment using AMI database.

7.5 Discussion
In this chapter, we presented a novel multimodal biometric system named ECIREA. The

proposed system was accomplished following four steps. Firstly, ECG, ear and iris were prepro-
cessed following two phases, named normalization and segmentation. Ear and iris images will
be converted to 1D space. After preprocessing each modality separately, three local descrip-
tors 1D-LBP, shifted 1D-LBP and 1D-MR-LBP have been applied to extract the discriminant
features. These features will be fused in the next step to generate a sole vector. We aim
that the new vector gains more robust representative characteristics that have the ability to
improve the performance of the proposed multimodal system and increase the security level.
Two learners (KNN and RBF) were applied to much the input fused vector with the stored
database templates.

Because there is no study that combines our proposed modalities in the same system, we
will discuss obtained results from each (ear, ECG or iris) unimodal biometric system separately
and compare it with our ECIREA multimodal biometric system. We can also take a look at
the related works that combine one or even two of the three used modalities.

To validate and test ECIREA multimodal system and find out the efficiency of local de-
scriptors, benchmark databases were used. We are used three databases for ear biometric which
they differ in the number of included subjects. For this reason, we must validate our ECIREA
system on three cases depended on the used ear database.

Starting with ECG unimodal system, statistical comparison results showed that the pro-
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posed 1D local descriptors can effectively recognize the majority of subjects. A CRR of 97% for
the first experiments was achieved. The second experiment obtained a CRR of 97%. The last
one has got 98%. The best result was achieved with 1D-MR-LBP. This latter recovers more
signal characteristics based on capturing multiple resolutions for the same pattern. Contrari-
wise, it can be noticed that the same results were obtained from 1D-LBP and Shifted-1D-LBP.
These results were better than the 1D-MR-LBP method on terms of EER, FAR and FRR with
a value of 2.16%, 0.71% and 5.56% respectively. Comparing the obtained results with state-of-
the-art works, we can see that the three experiments have shown its efficiency, robustness and
capability of extracting discriminative features from ECG signal.

Secondly, the proposed 1D-LBPs are carried out on three ear databases which generate
three cases (USTB1, USTB2 and AMI). For the first case, the three experiments have achieved
a CRR of 100%. A range from 1.5% to 3.3% was found with other terms. Approximately, the
same results were obtained from all cases with all experiments. AMI database which considered
as the third cases has got a better CRR of 100% with the third experiment i.e. applying 1D-
MR-LBP. Shifted-1D-LBP got a good result on term of EER by having 0.7%. 1D-MR-LBP
outperform the two experiments in most cases.Comparing our results with existing researches,
local descriptors have proved its capability of extracting the important information for ear
recognition purpose.

The last unimodal system based on iris biometric was carried out CASIA-v1 database. Good
results were obtained applying the three experiments with a range vary from 98% to 100% in
term of CRR. The achieved results in terms of EER, FAR and FRR were pretty close. 1D
LBPs have shown significant power in extracting the discriminant features from the converted
iris.

Our second contribution named ECIREA multimodal system combines these three modali-
ties in a single system. Feature fusion level was used to fuse ECG, ear and iris LBPs features in
a new vector. Comparing the obtained results from each unimodal system separately, we find
that these results were greatly improved with the ECIREA system. A CRR of 100% and 99%
were achieved for the first and the second cases, respectively with all experiments. The third
case has got 100% in term of CRR with the two first experiments, whereas 99% was achieved
with the last experiment. An EER of 0.5% was obtained with all experiments.

From the acquired results, we find that our ECIREA multimodal biometric system has the
ability to recognize almost all enrolled users. Comparing our experiments against the existing
works, it can be noticed that our ECIREA system achieved better results in terms of CRR and
FAR and partly in term of EER.

Since there is no system fulfills all the requirements or conditions, it is worth to note that
our contribution has some limitations that must be taken into consideration:
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• We have a problem with the dataset, for example, the samples used in ECG are smaller
than ear and iris. As a solution, we have reduced these sizes according to the size of ECG
data set .

• 1D-LBPs techniques seem very straightforward and its parameters can’t deal with the
data challenges that often appear in real-time applications. Until now we have considered
the proposed works as a handcart feature approach which still needs further preprocessing
tasks that consequently increase the performance of the multimodal system under realistic
environment.

• The generated feature vector combined from the three features vectors is fairly large.
Moreover, some of these features may be duplicated and noisy. This limitation will lead
to the curse of dimensionality problem. One attempt to overcome this issue is to introduce
a reduction method that will be able to select a minimal feature set that improves the
accuracy of the system.

7.6 Conclusion
In this chapter, we present a novel multimodal biometric approach. The proposed system

investigates the power and strengths of ear, ECG and iris biometrics. Besides fingerprint, iris
is the oldest used biometric. It has widely used and fused in numerous multimodal biometric
systems. whilst ear and ECG are considered as an emerged biometric. Recently, these biomet-
ric traits have been combined with many other biometric modalities. Three local descriptors
(1D-LBP, shifted 1D-LBP and 1D-MR-LBP) were applied in the objective of extracting dis-
criminant and definiteness features from the preprocessed modalities. A feature fusion level was
accomplished in the aim of exploiting the robustness of each modality beside to the efficiency
of 1D-LBPs to create representative vector features.

By making comparison of results of this work, our multimodal biometric system demon-
strates its robustness and outperforms each unimodal system separately. Moreover, 1D-LBPs
descriptors, in particular case 1D-MR-LBP have shown its power of extracting the desired
characteristic that can be used for recognition. Subsequently, the performance of the system
is increased and a high-security level can be realized which is already proved recording to the
obtained results.
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Conclusion and Perspectives

Biometric can be defined as the quantitative study of physiological or behavioral character-
istics of the human. These traits are unique for each person even for twins. It can be

used as a great alternative to traditional methods like passwords and tokens. There are a set
of properties that biometric traits must respect it to be used for recognition. Biometric system
has the ability to solve a significant number of problems affecting the authentication system
based on traditional methods.

With the evolution of technology, systems need more security and require efficient authenti-
cation protocols. For these reasons, challenges for developing robust identification or verification
biometric system have been increased. Achieving a high level of security besides to improving
accuracy are the most important concerns for all global technology markets. Biometric modali-
ties such as fingerprint, face and iris are already used. The search for new biometric traits that
can be used for recognition stills going on.

The biometric recognition system can execute depending on two modes. The first mode
named identification that aims to recognize the owner of the concerned biometric traits. The
answer to this question will be checked by comparing the input data with all templates existing
in the database. The second mode called verification which has the purpose of checking if the
claimed is the same person as in the database or no. In such situations, the response was given
by comparing the input data with one template of the database. While each modality has
specific strengths and weaknesses, the researches for optimal solutions still the goal of most
laboratories and scientists.

Biometric modality has not the ability to meet all system requirements, for this reason, the
unimodal biometric system suffers from various problems such as:

1. Different conditions may affect the system environment during authentication.

2. The poor quality of sensors can noise the captured data.

3. Illumination variations obstruct the acquiring of good data which decreases the perfor-
mance of the system.
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4. Intra-class and inter-class variations which mean that the matcher was misclassified the
input biometric data either by rejecting an enrolled user or by accepting an imposter.

5. Some people have lost the required biometric traits and hence the system becomes non-
universal.

6. Hackers find it easy to spoof a single modality especially if the used biometric traits are
visible or can be founded in public.

In order to exploit the strengths of each biometric modality and eliminate most of its weakness,
a combination of more than one biometric trait will be performed. This fusion is named a
multimodal biometric system. The latter has the goal of overcoming most of challenges faced
by unimodal biometric systems.

It can distinguish the following levels: sensor fusion, features fusion, score fusion, rank fu-
sion or decision fusion. It is not possible to use any fusion level on any multimodal system.
The choice of a suitable level depends on the nature of fused biometric data. When design-
ing a multimodal biometric system, a set of requirements must be clearly defined which they
interlinked with each other.

Iris, since its first proposition by (Daugman, 1993), was one of the first proposed modalities
used for recognition. This is depicted by the increasing number of published works for decades.
His algorithms were widely adopted in several studies. The iris of the eye is considered as the
most suitable biometric modality for a large number of applications. A highly transparent and
sensitive membrane protects the internal organ against damage which offers a robust structure.

ECG is a recording of the electrical activity generated by the human heart. It was used for
decades for the purpose of cardiac diagnostics. ECG signal is usually acquired by attaching
records (called also sensors) to the body. Studies demonstrate that each person has a unique
cardiac rhythm. From this point, it can be concluded that ECG is a powerful metric that can
be used to recognize individuals.

A new class of biometrics-based upon ear features is introduced for using it in the devel-
opment of biometric systems in numerous recent studies. Ear biometric is shown its power
and efficiency in both unimodal and multimodal biometric systems. Its unique and measurable
features beside to its stable structure over the time make from ear a good choice in many
developed works.

In this dissertation, we performed a review of considerable unimodal and multimodal bio-
metric recognition systems. Based on this analysis, we have proposed two contributions. The
first approach consists of developing two biometric systems. In the first system, shifted 1D-
LBP extracted method was applied to ECG biometric. The proposed unimodal ECG biometric
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system has been accomplished following three steps (preprocessing “normalization + segmen-
tation”, features extraction and matching). With a view to finding out how important the
preprocessing stage is for the system and its effect on the performance, we have applied three
different algorithms: SG-FIR, Butterworth and 1D digital filters. Better results were obtained
with SG-FIR so as to use it in the next approaches.

Based on the discussed results, we have proved that:

1. The normalization technique has a significant impact on the extracted features and sub-
sequently on the accuracy of the system.

2. Shifted 1D-LBP has successfully extracted the desired traits from the preprocessed ECG
signal.

The second proposed system combines ECG and ear biometric in a multimodal system based
on 1D-MR-LBP. We kept the same process for ECG biometric. The SG-FIR algorithm is applied
for denoising the ECG signal. For the ear biometric, manual segmentation was performed.
Then, the normalization of the cropped ear was applied. 1D-MR-LBP descriptor extracts the
discriminant features from both ECG and ear data. The two ECG-ear features vectors were
concatenated in a new vector. Compared the achieved results with the proposed ECG unimodal
system, we find that :

1. 1D-MR-LBP outperforms Shifted 1D-LBP techniques in terms of CRR and FAR achieved
by ECG unimodal system. Whereas, Shifted 1D-LBP gives better results in terms of EER
and FRR.

2. ECG-ear multimodal system overcomes the weakness of ECG and ear unimodal systems.

3. The proposed multimodal system increases accuracy. Besides to decreases the EER, FAR
and also the FRR .

The second contribution is based on fusing ear, ECG and iris in a novel multimodal system
named ECIREA based on three 1D local descriptors. Ear and iris preprocessed images have
been converted in 1D space to allow the 1D-LBPs descriptors extracting the desired features.
A single augmented features vector was generated by combining the extracted features from
the three modalities. The choice of this level is based on the assumption that the used data
sources must be homogeneous, which is the case of our proposed system besides the robustness
of this level. Furthermore, compared with match score or decision fusion level, the extracted
characteristics possess richer information that allows better identification of an individual. KNN
and RBF classifiers were applied for matching. ECIREA system was carried out different ECG,
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ear and iris benchmark databases to more analyzing and processes various kinds of data that
were collected in different conditions environment.

According to the presented results, we have successfully developed a multimodal system
that is able to:

• Overcome the weakness of the unimodal system.

• Increase the accuracy of the unimodal system (from 96.67% with the proposed ECG
unimodal system to 100% with the proposed multimodal system).

• Minimize EER (from 2.68% to 0.5%).

• Solve the problem of inter class similarity (FAR from 2.02% to 0%), thus the most secure
system is accomplished.

• Minimize the challenges of intra class variation (FRR from 2.22% to 1.6%).

• Identify all enrolled users in most cases (CRR=100%).

• Decrease the computational complexity which leads to reasonable execution time.

• Guarantee high security by fusing three modalities at the same time besides the liveness
measurements properties of ECG which make it almost impossible to spoof from an
imposter.

In spite of the success of our multimodal biometric system, many limitations and issues still
banding which must be taken on consideration and constitute a significant research topic in the
field of multimodal biometric system. Some of the problems that we have faced are:

• A limited dataset as in the case of ECG data which is rather restricted compared with
other biometric sources.

• Our proposed ECIREA based multimodal system still needs more improvement efforts
for the objective of increasing the performance of the multimodal system for a real appli-
cation.

• Because of the simplicity of 1D-LBPs, it may have not the ability to solve the difficulties
faced by the data challenges that appeared in a realistic environment.

• The homogeny of data sources used in this dissertation gives as the opportunity of us-
ing the feature fusion level approach and exploiting its strengths such as preserving the
biometric information and merging it in an augmented vector. But unfortunately, this
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generated vector may have mostly a high dimensionality and less important features that
can decrease the performance of the system. Applying reduction techniques that have
the ability to select only the important features set will be a solution for this challenge
and consequently increase the performance.

For many purposes detailed in this dissertation, security in particular, biometric was the
path of a tremendous amount of research. Extracting more robustness, representative and
discriminative features, improving the accuracy, achieve high-security levels were the main
objectives in biometric recognition. For our ECIREA multimodal biometric system, multiple
perspectives works are to be considered:

• Giving space to detect the different claimed emotions using bio-signal ECG will improve
security system and allows predict the psychological state of intruders (fear, anxiety,
confusion...etc.).

• Testing our work on large datasets in order to further confirm the performance of our
proposed multibiometric framework.

• Investigating our contribution to mobile and healthcare applications.

• Exploiting the deep learning framework, given its success in other domains.

• Computer science has recently started to think about quantum computing rather than
conventional computing (binary), so we suggest integrating the quantum computing into
the convention algorithms.
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