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َبءَ ف َخَوَ ًَ ه َكَ 

َ
طارق  رالبروفٌسو الغالً روح أستاذي هذا العمل إلىهدي أ

لم تكتحل للأسف عٌناه  الذيالواسعة، الله  ةرحمعلٌه  بوكثير

بثمرة هذا المجهود، إذ وافته المنٌة والرسالة تشارف نهاٌتها. 

العلمٌة منذ كان هذا البحث فً مسٌرتً  لً سندخٌر كان  لقد

ر إلى أن صار مشروعا مكتملا قائما على مجرد فكرة تختم

 ه  نا م  لمن  ع  ل ت  ً الفاض  رب  الم  ستاد الأحقا لقد كان نعم  سوقه.

فلم ٌذخر فً ذلك جهدا بتقدٌم التوجٌهات  الكثٌر، الكثٌر

عنً خٌر الجزاء،  الله   زاه  ج  فٌدة. ف  وٌمات الم  السدٌدة والتق  

علٌم  ٌع  م  س   ه  ن  . إ  غفر الله له بكل حرف منهحسناته ووجعل الله ثمرة هذا البحث فً مٌزان 

  .وبالإجابة جدٌر

                                           

 

 ةــواســالطالب: سهٌل م 
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PREFACE 

 

Due to the rapidly developing of electric power system across the world in response to 

technical, economic and environmental developments, modern power systems often operate 

proximate to their maximal limits, engendering voltage instability risks in electric grid. On the 

other hand, excessive penetration of renewable energy sources into electrical grids may lead 

to many problems and operational limit violations, such as over and under voltages, active 

power losses and overloading of transmission lines, power plants failure, voltage instability 

risks and users discomfort. These problems happen when the system exceeds maximal 

operational capability (MOC) limit. In this thesis, firstly, various meta-heuristic optimization 

techniques have been developed and implemented to deal with different power system 

problems, such as single and multi-objective optimal reactive power dispatch problem. Since 

the characteristics of optimal reactive power dispatch (ORPD) in nature non-linear and non-

convex and are consisting of mix of discrete and continuous variables; some non-conventional 

optimization techniques are developed and adopted to deal with discrete ORPD problem in 

large-scale electric grids.  

Technology advancement for green energy and its integration to the electric power system 

(EPS) has gathered substantial interest in the last couple of decades. Incorporating such 

resources has proven to reduce power losses and improve the reliability of electrical network. 

However, hyper-production or hypo-production of these resources in electric grid has 

imposed additional operational and control issues in voltage-regulation, system stability, and 

feasibility of solutions. Renewables incorporation into electric grid has led to significant 

changes in the types of consumption as well as dramatic and direct changes in the needs of 

optimal planning and operation of electric grids. To assess the suitability of the nonclassical 

optimization techniques for modern power systems, stochastic optimal power flow (OPF) 

problem with uncertain reserves from renewable energy sources was studied under different 

scenarios, including valve pointe effect and gas emission. Simulation results demonstrated 

that with hybrid generation system we could benefit with 2.4 % per hour cost reduction 

compared to traditional grid that based only on thermal generations as power sources.َ In 

addition, a new application of slim mould algorithm for practical optimal power flow with 

integration of renewables was conducted on Algerian electricity grid (DZA114-220/60 kV). 

Different cases were studied, where the feasibility of solutions and all control variables are 
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deeply discussed. Hence, hybrid generation system is more effective and viable than classical 

system.  

In smart grid, efficient load management can help balance, reduce the burdensome on the 

electric network, and minimize operational electricity-cost. Robust optimization is a method 

that is used increasingly in the scheduling of household loads through demand side control. 

To this end, demand side management (DSM) scheme based on Meta-heuristic optimization 

techniques is proposed for home energy management system. The main objective behind this 

study is to adjust the peak demand and offering the total energy required at minimum cost 

with high quality. More precisely, in order to make consumers aware of their effective and 

essential contributions to helping the operator system during emergency cases (requests 

during peak hours). Simulation results showed that the proposed DSM scheme based meta-

heuristic algorithms enrolling higher reduction in the total energy cost up to 26% compared to 

the base case and peak average ratio is curtailed by 55 %. In overall, the obtained results 

demonstrate significant improvement in energy quality, electric power system security, and 

notable reduction of peak demand in offering total energy required at minimum cost. 
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Chapter  1 

INTRODUCTION 

1.1. Overview of the Thesis 

Due to the constant expansion of the configuration of modern power systems (loads, lines, 

generators, etc.), and the urgent need to use more efficient elements and procedures and 

environmental concerns, the power system is currently subject a rapid transformation through 

the application of different types of strategies to reduce power losses in transmission lines. 

Optimal planning energy imports from multiple sources, increase energy efficiency in the 

presence of rapidly growing energy demand with the assurance of economic viability, and the 

reliability improvement against grid outages is a must, in modern power systems. 

Consequently, the traditional electric grid could no longer cope with this increase in global 

consumption, so it needs to evolve to become a smart electricity grid in order to correct some 

major shortcomings. 

Smart Grid is a concept in which the infrastructure of pre-existing power grids is 

upgraded with the integration of several technologies such as distributed generation, dispatch 

loads, demand response programs, communication systems and storage devices operating in 

mode network-connected or isolated. These electric grids upgrades aim to improve energy 

quality and system security, and reduce the environmental impact, allowing consumers to play 

an important role in load balancing by their contribution to generate, transport, distribute and 

consume energy in efficient ways. 

The smart grid is an electric grid that attempts to intelligently predict and respond to the 

behavior and actions of all consumers of electrical energy, providing reliable, economical and 

sustainable electrical services. In other words, it is a vision of future technology for the 

electrification of rural zones. In short, there is no universal definition of smart grid, but there 

are some concomitant features in the definitions or simply defined as an ‗intelligent‘ grid [1]. 

The smart grid has three economic objectives: improve reliability, reduce peak demand 

and offering the total energy required at minimum cost with high quality. To achieve these 

objectives, various technologies have been developed and integrated into the electric grid. 

Peak load is one of the main factors of risk in the AC transmission systems. Due to the 

untimely variation of energy demand throughout the day and year, it is more likely that some 
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generation plants will operate in extremely critical situations in an effort to meet the demand, 

which may affect: [2] 

 Voltages instability in which in turn causes voltage collapse, 

 Increase in active power losses, 

 Increase in the total cost of production, (producer / consumers), which threatens the social 

and individual welfare of subscribers. 

 Network security constraints. 

In order to mitigate these risks, optimal power flow (OPF) analysis should be considered 

when planning and real-time operation of power grids. Unlike static planning, where the 

calculation of the static optimal power flow may no longer be important, in dynamic analysis, 

real-time tools are of great importance to cope with changing consumption. 

OPF is one the important tools in the area of operation and control of modern power system, 

since with each variation in load demand, a set of optimal settings of control variables are 

updated with complying of grid constraints (hard and soft ) to maintain a balance between 

supply and demand. Generally, that operation is performed each 15 minutes. Meanwhile, if 

the system constraints leave its allowable limits, emergency measures must be applied to 

drive the operating state of the network away from the points of insecurity. 

 In the last decade, with the emergence of unconventional optimization techniques (meta-

heuristic techniques), and deregulation of electricity markets along with integration of 

renewable energy sources (RES), OPF studies becomes more complex and need a special 

effort to define optimal planning and operations management of electric power system. In this 

context, development new and efficient strategies to deal with this problem, is necessity. 

Further, this challenge has attracted wide attention in academia and research communities, 

especially with advent of computational intelligence which has also gained enormous 

popularity within the scientific and engineering communities due to its ability to solve hard 

problems. 

This thesis is mainly based on the development of new and efficient artificial 

intelligence techniques for evaluating and continuous control of installed power in an effort to 

balance the load during peak hours and to improve the planning of the power generated from 

the whole electric system (thermal power stations, wind and solar generators (smart Grid). 

More importantly, the feasibility of findings obtained in this study may be recommended even 

with practical power system. 
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1.2. Problem statement 

Optimal power flow calculation (automated load control) in the fields of modern power grid 

operation and planning is becoming increasingly more important. Classical optimal of power 

flow has been based only on thermal generators, which consume mainly fossil fuels. At this 

end, it is often difficult to use conventional optimization methods due to the lack of flexibility 

to cope with stochastic optimal power flow problem, especially in the practical electric grids. 

The calculus of optimal power flow with the presence of renewable energy sources (RES) is a 

very difficult problem due to their intermittent nature. The biggest issue facing operating with 

hybrid generation system is that renewable energy generators could not be scheduled in the 

same manner to the conventional ones due to their intermittent nature. 

In addition, Large-scale integration of renewable energy sources (RES) into power grids 

is very challenging issue for system operators, since the climatic factors such as solar 

irradiation and wind speed are uncertain. 

The fulfilling results are encouraging, but not very effective due to the complex nature 

of the OPF problem. Furthermore, these methods typically face the difficulties of identifying 

optimal solutions, especially when it comes to solve complex conflicting objectives in the 

large-scale or a real-sized electric power grid. In this context, choosing a right optimization 

approach for a specific problem is also a challenge. In addition, optimal planning energy via 

an optimal scheduling of a hybrid power generation system (Thermal generator+WG+PV) 

may effectively facilitate various missions of electric power system operator, brought many 

benefits to prosumer including the reliability against grid outages, quality and efficiency of 

the energy produced, ultimately reducing total generation electricity cost. 

In the last two decades, many optimization methods have been employed to define the 

optimal control variables of the single / multi-objective dynamic problem of power flow with 

and without incorporation of RES, to obtain a good performance in the evaluation of the 

analysis and operation of power grids. The achieved results have been encouraged but not 

very effective due to the complex nature of the OPF problem. Furthermore, these methods 

typically face the difficulties of identifying optimal solutions, especially when it comes to 

solve complex conflicting objectives in the large-scale or a real-sized power grid particularly 

for large-scale power systems. In this context, choosing a right optimization approach for a 

specific problem is also a challenge. 
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Demand side management (DSM) is one of the most important aspects in smart grids 

and micro-grids which include programs of demand response (DR) and energy efficacy (EE). 

Also, it has an important part in minimizing the gap between supply and demand. This is can 

be adjusted by introducing load flexibility instead of only making adjustments on production 

levels, which reduces dependency on electricity expensive imports during peak hours. 

Consequently, the electricity prices requested will be very reasonable, which is keeping up 

consumers‘ loyalty. However, application of these programs for improving load control, while 

ensuring the security of system is still a challenge nowadays. Various optimization algorithms 

have been applied for demand side management schemes and the results exhibit better results 

due to its flexible nature allowing the implementation of load models according to the 

lifestyle of individuals in an effort to maximize comfort of users. At the end of this work, 

efficient power scheduling in smart homes using unconventional optimization techniques 

considering two pricing schemes is conducted.  

1.3. Major contributions of the Thesis 

The main contributions of this dissertation can be summarized in the following points: 

 Different nature-inspired optimization algorithms were proposed to deal with different 

single aims optimal reactive power dispatch (ORPD) formulations in large-scale power 

systems.  ALO and AEO algorithms are the two bright techniques that provide competitive 

results with other existing ones in the literature. 

 

 The proposed non-conventional optimization methods have been extended to solve mixed-

integer optimization problems with discrete variables, which reflect real nature of 

variables. We have also employed multi-objective ant lion optimization (MOALO) 

algorithm to solve large-scale multi-objectives optimal reactive power dispatch test system, 

(IEEE 300-bus). 

 

 Acknowledging the evolution of smart grid, some new approaches and formulations are 

proposed for solving OPF and ORPD problems incorporating stochastic renewable 

sources. To this end, a modified version of slime mould algorithm to solve optimal power 

flow problem incorporating stochastic wind and solar power is presented. Furthermore, 

superiority of feasible solutions constraint handling method is merged with artificial 

ecosystem optimization (AEO) algorithm. 
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 Unconventional optimization techniques based demand side management (DSM) scheme 

is developed for the home energy management system. The framework may define an 

optimal electric load curve which aims at minimizing the electricity bill while shift all 

peak-loads to off-peak hours.  

1.4. Outline of the Thesis 

The outline of this thesis is aptly listed with the chart in Figure 1.1  Chapter 2 

introduces a thorough literature review on the meta-heuristic algorithms applied in the 

research work and optimization problems that have been resolved in electric power system. 

Chapter 3 describes the optimal reactive power dispatch (ORPD) study, followed by Single 

ORPD and muti-objective ORPD solutions using newly meta-heuristics optimization 

algorithms considering large-scale test system as well practical electrical network. Classical 

OPF study and a new version of slime mould algorithm to obtain OPF solutions with 

application to practical electric grid incorporating renewable generators sources are provided 

in Chapter 4. Efficient power scheduling in smart homes using a novel artificial ecosystem 

optimization technique considering two pricing schemes is described in Chapter 5. The 

conclusion and future-works are discussed in Chapter 6. 
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Chapter  2 

META-HEURISTIC OPTIMIZATION ALGORITHMS AND POWER SYSTEM PROBLEMS 

2.1. Meta-heuristic optimization algorithms 

―Optimization‖ is selecting inputs of a physical system that will lead to the best possible 

outputs. Its process is to find the best possible solution that corresponds to the maximum or 

minimum value of an objective-function (OF). Optimization is useful with the presence of 

limits or constraints restricting used variables. The need for optimization creates from the 

determination of making decisions in various applications so that are not costly, but efficient 

and optimal. The optimization has paramount importance in the topics of scientific research, 

engineering and finance as well is intrinsic software of human-life and activity. The 

optimization operation may cover a single-objective or multi-objectives. With single-

objective optimization, the process is devoted to find only one optimal solution so that a 

defined objective function is minimized or maximized. However, in case of multi-objective 

optimization, optimization process is charged to find a set of optimal solutions instead of one 

solution. 

Meta-heuristic algorithms (MHAs) have been very popular in last two decades for solving 

engineering optimization problems. These algorithms are inspired from evolution, swarm, 

biology and physics. In the last decade, numerous nature-inspired optimization algorithms 

have been applied to solve complex engineering works, we focuses only on recent published 

algorithms in this thesis such as ABC [3], BA [4], NBA [5], GWO [6], ALO [7], MFO [8], 

WOA [9], HHO [10], AEO [11] algorithms for single-objective function and on MOALO, 

MODA for multiple-objective function for optimization problems. The third section shows 

two famous constraint-handling methods are penalty method and superiority feasible solutions 

approach. The definitions and literature review on some power system optimization-problems 

are presented in the section 2.2. 
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2.2. Meta-heuristic algorithms for single-objective optimization 

During of my preparation of this thesis, there is a huge exploration of characteristics nature-

inspired optimizer techniques. Ant lion optimizer (ALO) [7] is one of these techniques, which 

considered as an efficient and powerful population-based stochastic search technique for 

solving constrained engineering optimization problems over continuous search-space. In short 

time, ALO algorithm was applied to a huge number of optimization problems due to its 

positive advantages: easy to implement, flexible, scalable, and has a good balance between 

exploration and exploitation. Recently, it has been applied to a huge number of optimization 

problems. It has many advantages: easy, scalable, flexible, and have a great balance between 

exploration and exploitation. 

2.2.1. Ant Lion optimization (ALO) algorithm 

In the last five years ago, ALO algorithm evolved as an efficient and powerful population 

based stochastic search technique for solving constrained engineering optimization problems. 

It has been applied to a large number of optimization problems in summary. A review study 

of ALO algorithm and its improved versions is presented at [12] [13]. 

The ALO algorithm mimics the hunting behavior of ant lions, i.e., the interaction between 

predator (ant lions) and prey (ant). The different steps that describe the relationship between 

ant-lions and ants are depicted in [14]. Like all other insects in nature, ants can easily detect 

the location of food by using a stochastic movement. This behavior is expressed 

mathematically by the following equations: 

         1 2(t) 0, 2 1 , 2 1 ,......., 2 1     nX cumsu r t cumsu r t cumsu r t        (‎2.1) 

where (t)X  is the random walks of ants, n  is the max_iterations, t is the step of random 

walk, and ( )r t  is a function defined as follows: 

1 >0.5
( )

0 <0.5

if rand
r t

if rand


 


                                                (‎2.2) 

where, rand is a randomly generated number uniformly distributed in the range of [0, 1].  

The following steps describe the five main phases in hunting technique of ant lions 

a) random walk of ants 

In every step of optimization, ants update their positions ib  to a random walk search 

equation 2.1. To ensure that all the positions of ants are inside the boundary of the search 
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space, they are normalized by using the following expression: 

   
 

  
 



t t t

i i i it t

i i

i i

X a d c
X c

b a
                                           (‎2.3) 

Where ,i ia b are respectively the minimum and maximum of random walk corresponding of 

thi variable. ,t t

i ic d : are respectively indicated the minimum and maximum of thi variables at 

tht  iteration. 

b) Trapping in ant-lions traps 

 The following equations describe the effect of ant-lions traps on random walks of ants: 

 t t t

i jc Antlion c                                                      (‎2.4) 

 t t t

i jd Antlion d                                                 (‎2.5) 

c) Building traps  

During optimization, the ALO use the roulette wheel selection operator, to choose antlions 

based on their fitness. This strategy gives more chance for antlions to traps prey. 

 

d) Sliding ants against toward antlion:  

According to the aforementioned mechanisms, antlions are able to construct traps 

proportional to their fitness and the ants move near to the centre of pit. Once antlions catch an 

ant in trap, they will shoot the sand outward the middle of the trap. This mechanism 

mathematically modelled as follow. 


t

t c
c

I
                                                      (‎2.6) 


t

t d
d

I
                                                       (‎2.7)   

I  is a ratio, with 10
t

w
TI  , t is the current iteration and w  is the constant which is defined as 

follows: 

w= 2 when 0.1t T , w= 3 when 0.5t T , w= 4 when 0.75t T , w= 4 if 0.9t T , w= 5 

when 0.95t T ). 

e) Catching preys and rebuilding the traps 
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The catching the ants by predator and rebuilding the pit in order to catch new prey can be 

described with the following equations. 

   , t t t t

j i i jAntlion Ant if f Ant f Antlion                           (‎2.8) 

where t

jAntlion  is the 
thj  position of the selected antlion at iteration t and t

iAnt  is the position 

of the selected ant at iteration t. 

f) Elitism:  

Elitism is one of the most important characteristic of evolutionary algorithms. In ALO 

algorithm, at any iteration the best antlion obtained (solution) is saved as elite. Since the elite 

is the fittest antlion which is able to guide the movements of the remaining ants along the 

iterations. The elitism mechanism mathematically described as follows. 

2




t t
t A E
i

R R
Ant                                                     (‎2.9) 

where t

AR  is the random walk around the ant-lion is selected by using the roulette wheel at tht  

iteration, t

ER  is the random walk around the elite at tht  iteration, and t

iAnt  denote the 

position of thi ant in tht  iteration. 

In order to return ALO able to solve Multi-objective problem, equation 2.8, should be 

modified due to the nature of multi-objective problems by the following equation 

   ,t t t t

j i i jAntlion Ant if f Ant f Antlion                              (‎2.10) 

where t

jAntlion denotes the position of the selected j
th

 antlion at the t
th

 iteration  and t

iant

denotes the position of the i
th

 ant at the t
th

 iteration. 

Another modification is for the selection of random antlions and elite. Authors utilized a 

roulette wheel and eq. 2.9 to select a non-dominated solution from the archive. The pseudo-

code of MOALO is shown in Fig 2.1 below: 
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Figure ‎2.1 Flowchart MOALO  

2.2.2. Artificial ecosystem optimization (AEO) algorithm 

Artificial Ecosystem Optimization (AEO) algorithm is a novel nature-inspired technique was 

first proposed by Weiguo Zhao et al., in [11] to efficiently tackle engineering optimization 

problems. An ecosystem is a group of living organisms such as animals, people, and plants 

live together in a particular area and it explains the correlation between them. Ecosystem is 

first divided to two parts: (i) living and (ii) non-living organisms. The living organisms 

include people, animals, plants, and bacteria and the non-living organisms include water, 

lawn, and sunlight. AEO is a population-based algorithm that mimics the behaviors of living 

organisms in nature, production, consumption, and decomposition processes on the surface of 

earth. The principal effort to maintain ecological equilibrium in an ecosystem is the flow of 
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energy and the food resources. An ecosystem classifies the living elements into three distinct 

groups of organisms, namely, producers, consumers, and decomposers. The first group is the 

producer, which is the plants (An autotroph) since they produces its own energy through 

photosynthesis. The second is the consumer like animals, which depend on the other 

organisms which depend on one another either by its family or from the producer for gets 

energy. The third class of living organisms is the decomposers, which include most bacteria 

and fungi. Once an organism is died, the decomposers starts to break down the remain matter 

and converting them into a novel energy in form of water, minerals, and carbon dioxide. 

Then, these simple molecules serve as feeding source to the producers to again produce sugar 

and oxygen through photosynthesis and the process of cycle will be repeated. 

The three kinds of living organism interact in many ways with each other in forming a food 

chain, which can guarantee a stable flow of energy within it. Some organisms feed from other 

ones proportional to the level of force and draws the path of energy in an ecosystem. 

In an ecosystem, food web is made up of numerous interconnected and overlapping food 

chains, which describes a different ways of interconnections between them. These chains sorts 

the organisms based on their energy level. The producers are located usually at the up of the 

web food, whereas, the consumers are positioned at a higher level than what it consumes and 

they considered the most complicated one compared with others organisms. Figure 2.2 depicts 

the path of energy in an ecosystem. From the Fig 2.2 it can be seen that organism with higher 

energy is assigned at the top of food grid whereas the lower energy organism is located at the 

bottom of the food grid.  

As noted earlier, main principle of operation of AEO algorithm is based on three phases, 

involving production, consumption, and decomposition. The first operator is the Producers. 

The first operator is carry to enhance the balance between the diversification and 

intensification abilities, while consumption was dedicated to exploitation process and the 

decomposition to ameliorate the exploitation process in this AEO. For each population, there 

is only one producer and one decomposer, while the remaining ones are the consumers. The 

fitness value is represented to the energy level of the each associated individual in a 

population. In other words, the individuals are sorted in a descending order according to their 

energy. Figure ‎2.3 show a graph theory of feeding behavior by omnivores. 
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(A)  (B) 

 
 

Figure ‎2.2.  Flow energy in an ecosystem; (a) food chain, (b) food web 

 

 

Figure ‎2.3.  A graph theory for an ecosystem based on the AEO 

A) production 

In this ecosystem, the candidates that have worst value of the fitness function are classified as 

the best ones, while the worst candidates correspond to the higher fitness value. The worst 

candidate 1x  associates with the highest energy level (Producer), whereas the best candidate 

nx  attached with lowest level of energy (Decomposer). The rest of candidates of the 

population are consumers: 2 5x , x defined by herbivores, 3 7x , x  omnivores and 4x with 6x  are 

carnivores. [11] 
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The producer combines carbon dioxide, water, sunlight, and organic matter resulted from the 

decomposer to produce their food (energy) as sugar and oxygen. In this algorithm, the 

producer associated with lowest fitness value is updated according to their limits in search 

space. Based on this update, the other individuals in the population will try to update their 

positions. In AEO, the production operator generates a new individual to replace the old one 

between the better candidate ( nx ) and a randomly generated candidate ( randX ) in the search 

space. Mathematically can be expressed as follows: 

       1 1 1 n randX t a X t a.X t                                         (‎2.11) 

11
iter

a r
max_iter

 
  
 

                                            (‎2.12) 

 randX lb r ub lb                                            (‎2.13) 

where ub and lb are the upper and lower bounds of control variables, respectively. 

B) Consumption 

Once the production operator is attained, the consumers start to perform the consumption 

operator in order to obtain food energy. In this phase, the consumers eat other consumer of a 

low energy or a producer or the both together. Afterwards, the Levy flight concept is utilized 

in an effort to improve the exploration patterns. The Levy flight usually mimics the real 

searching mechanism of animals. A consumption parameter treated by the Levy flight concept 

is defined as follows: 

1

2

1

2

v
C

v
                                                             (‎2.14) 

   1 20 1 0 1v ~ N , , v ~ N ,                                                   (‎2.15) 

Where  0 1N ,  is a normal distribution of {mean = 0 and standard deviation (std =1)}. This 

consumption factor is mainly very helpful for each living consumers for gaining the food by 

utilizing the possible hunting techniques.  

If a consumer is randomly picked as herbivore, it will eat only the producers. This behavior is 

expressed mathematically by eq. 2.16, 

          11 2i i iX t X t C . X t X t , i ,......,n                             (‎2.16) 

In case of a consumer is picked as a carnivore, then it will eat only consumers having lower 

fitness value. This behavior can be represented by eq. 2.17, 
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          

  

1 3

2 1

i i i jX t X t C . X t X t ,i ,......,n

j randi i

     


 

                       (‎2.17) 

With the last case of consumption phase, when the consumer is considered as an omnivore, 

then it will be able to eat other consumers having higher energy level and producers too. This 

behavior is given by eq. 2.18, 

                

 

  

2 21 1

3

2 1 2

i i i j i jX t X t C . r X t X t r X t X t

i ,......,n

j randi i ; r rand

       





        

(‎2.18) 

c) Decomposition 

Decomposition parameter is more important for the AEO, which act after each dies of any 

individual in the population to decay the residues of that individual. To gain an approximate 

mathematical model of this behavior, some parameters such as the decomposer factor D, 

weight variables e and h are considered.  

To gain an approximate mathematical model of this behavior, some parameters such as the 

decomposer factor D, weight variables e and h are considered. Then, each individual iX  

updates its coordinates based on the decomposer nX  and through predefined parameters: such 

as D, e, and h based on the following equations:  

        1 1    i n n iX t X t D . e.X t h.X t , i ,......,n                    (‎2.19) 

 3 0 1D u , u ~ N ,                                                  (‎2.20) 

 3 2 1e r .randi i                                                   (‎2.21) 

32 1 h .r                                                          (‎2.22) 
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Figure ‎2.4. Flowchart of AEO algorithm 

The optimization process in AEO starts with a population of individuals in which 

randomly generated into research space, then at each iteration the first individual (producer) 

updates its coordinates according to the eq. 2.11, while other candidates in the population will 

hence try to update their coordinates based on its own best consumer by using eqs. 2.12, 2.13, 

and 2.14, except in the case of the individual having a highest fitness value, then the  position 

of that  individual will be updated by using eq. 2.16. All aforementioned updates are repeated 

until a terminal criterion is satisfied. Finally, the optimal or near-optimal solution that 

corresponds to a best individual found so far is memorized. 
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2.2.3. Harris Hawks Optimization (HHO) Algorithm 

HHO is a novel nature-inspired optimization algorithm proposed by Ali Asghar Heidari et al., 

in [9] to efficiently tackle engineering optimization problems. Harris’ hawks are considered 

one of the most intelligent predators bird in the world. The collaborative behavior of Harris 

hawks is very noticeable because they can construct cooperative hunting during foraging 

activities in the open woodlands and semi-desert habitats. This behavior supports hawks in 

acquiring more energy throughout pursuing of the target prey. The idea of HHO algorithm is 

inspired through the hunting tactics and the cooperative behavior of hawks in nature. 

Furthermore, to that, this algorithm is motived by the hawks’ intelligent updating mechanism 

in the hunting process, which can assist the local optima avoidance. In addition, HHO can 

always carry out a good balance between exploration and exploitation phases. However, the 

original algorithm occasionally fails to find a high- quality global solution in some real-world 

problems. 

In HHO algorithm, the position vector of each Harris-hawk is defined for searching in a D-

dimensional space, where D is number of control variables. The population of HHO X will 

defined of NH hawks with D-dimensions. Therefore, the vector of population is made by an N 

× D-dimensional matrix, as given in eq. 2.23. 

1 1 1

1 2

2 2 2

1 2

1 2

 
 
 
 
 
 

H

D

D

i

NN N

D

x x x

x x x
X

x x x
 

(‎2.23) 

HHO consists of three searching phases. Firstly is the exploration-phase which is the process 

of observing and monitoring the desert site to explore the prey. In HHO, the prey is the target 

location of all Harris-hawks. Hence, the position of predator is recalculated through eq. 2.24, 

       

         

1 2

3 4

2 0 5
1

0 5

rand rand

rabbit m

X t r . X t r .X t q . a
X (t ) .

X t X t r . lb r . ub lb q . b

   
  

    

 (‎2.24) 

where 1X (t )  indicates the position-vector of a predators in the next-iteration,  rabbitX t is 

the position of prey (rabbit) and  X t  indicates the current position vector of hawks, 

1 2 3 4r ,r ,r ,r , and q are the random number between 0 to 1, which were updated in each 

iteration, lb. and ub  are respectively the lower and upper limits of variables. Although 3r  is 

determined randomly, it has to be different from 4r  to avoid the similar distribution schemes. 
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 randX t  is the hawk which randomly selected from the novel-population, and  mX t  is the 

average position of the present-population of hawks.  

Eq. 2.24 shows that the Hawks updates its position based in either respect of perching strategy 

that focuses on the position of other family members and rabbit, or on random position 

created inside group home range. 

 mX t  is the average-position of the present-population of hawk which is  expressed as 

follows: 

   
1

1



 
N

m i

iH

X t X t
N

 

(‎2.25) 

Where the location of each hawk is denoted by  iX t  in the 
thi  generation and NH is the 

total-number of hawks. 

The second phase summarizes a passing from exploration- to exploitation-. It is evident that 

prey's energy will be decreased through the process of hunting. This behavior is modeled by 

eq. 2.26. 

02 1n

t
E E

T

 
  

   
(‎2.26) 

where nE  denotes the escaping-energy of the rabbit, T indicates max-number of iterations, 

and 0E  is the primary-state to energy of prey. 0E
 
Randomly varies in [-1, 1].  

The steps of transition can be briefly summarized by the following two points: For the 

condition of (|E| ≥ 1) the exploration step occurs and for the condition of (|E| <1), the 

exploitation step happens. 

The last-step is that of exploitation-phase. The predators start to launch the surprise attacks 

using some tactics, whereas, the preys usually attempt to escape from such dangerous 

situations. Four steps are suggested to explain the attacking scheme. Here, r is refers to all 

possible chance of escape from hawks. 

Step 1: Soft besiege is happened when r ≥ 0 .5 and | E | ≥ 0.5. This behavior can be 

represented by eq. 2.27 

       

     

 5

1

2 1

    


 


 

rabbit

rabbit

X t X t E . J * X t X t

X t X t X t

J r





    

(‎2.27) 
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where  X t  indicates to available distance between the position-vector of prey and the 

present position in iteration t, J  indicates the random leap-strength of the prey (rabbit) during 

the course of escaping procedure−which randomly changes with   iteration to feign the real 

movement of rabbit, 5r  is a random number [0, 1]. 

Step 2: Hard-besiege is occurred if r  0.5 and | E | < 0.5. In this step, the target-prey 

becomes wearied and its energy exhausted due to the intensive jumps during escapement 

process. Meanwhile, the Harris hawks encircle the target using a hard besiege. This behavior 

is expressed mathematically by eq. 2.28: 

     1 rabbitX t X t E X t  
 

(‎2.28) 

Step 3: Soft-besiege with progressive prompt dive are realized if the following conditions are 

met: |E| ≥ 0 .5 and r <0.5. The target have enough energy to escape from claws of hawks, 

however, the hawk should persists to perform further move which is modeled by eq. 2.29. 

     rabbit rabbitY X t E J * X t X t  
 

(‎2.29) 

   Z Y S LF D  (‎2.30) 

where D  is the problem dimension and S  is a random vector of 1 D  size, LF  define the 

levy-flight function, which is estimated by the following equation: [9] 
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  

 
(‎2.31) 

where   and v  are two randomly values with a range of [0. 1],   is a constant equal to 1.5. 

Thus, as the last step used to update the positions of hawks in the present phase is executed by 

eq. 2.32 

 
    

    
1

Y if F Y F X t
X t

Z if F Z F X t

 
  

  

(‎2.32) 

Step 4: Hard besiege with progressive rapid dives is done if | E | < 0 .5 and r < 0.5. In this 

stage, the prey exhausted all of its energy so that the chance for escaping becomes small or 

almost-null. This step is given by eq. 2.33. 
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 
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      
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rabbit rabbit mX t E J * X t X t , if F Y F X t
X t

Y S LF D , if F Z F X t

   
 

    

(‎2.33) 

2.3. Multi-objective optimization problems 

As mentioned earlier, multi-objective formulation framework is able to find the Pareto optimal 

set in just one run. The objectives in multi-objective optimization are often conflicting, which 

means one objective cannot be bettered without worsening one or more other objectives. 

 

Figure ‎2.5.   Presentation of decision-making process in buying flight-Ticket 

In this schematic, the best solution (the extreme solution) for each objective functions required a 

compromise solution(s). Hence, chose of a solution based only on the one objective may be 

prohibitive. Herein, we present an experience of buying a flight-ticket for travel where the price 

of ticket and time of travel are decision-making criteria. The black points 1, 2, 3, 4, 5, and 6 in 

Fig. 2.5 represent different choices for flying between two cities: Kuala Lumpur and New York. 

 Its recognized generally in flight companies that a travel time is bind to the waiting time or 

connecting flight at transit, i.e., if the waiting time is long the price may be lower and vice 

versa. Choice "1" is the most expensive with ticket price of 3500 $, but with the least travel of 

15 hours, meanwhile, the cheapest ticket of 1800 $ with travel time of 30 hours if one prefer 

choice "5". Here the decision making process of flight booking is not a single objective of either 

price or travel time. 

The traveller has limited choice since he should compromise between price and travel time. If 

select "choice 2" instead of first choice, he will be affect his comfort by spending more time in 

transit but he saving a ticket price. Again, if the traveller selects fourth choice instead of third 
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one, he has to shell out more money for buying the ticket, but he gaining few hours. Then, if we 

move along available choices 1, 2, 3, 4, and 5, we cannot better one objective without 

worsening the other. However, the situation is not the same for sixth choice; this is because he 

is completely losing. In preference, he can select second choice at the same price with lesser 

travel time or fourth choice of same travel duration at a lesser price. Regarding to the choice six 

can be improved on both the objectives. The points 1, 2, 3, 4, and 5 are named as Pareto optimal 

front relative to the Italian scientist. Pareto-solutions are also known as non-dominated solutions 

where improvement of one objective leads to degradation of at least one other objective. The 

solution given by choice 6 is a dominated solution. This example is adopted only for two 

objective functions, but for multi-objective optimization problem, there are more than two 

objectives. The general mathematical formulation of multi-objective optimization is expressed 

as follows: 

Min F=       1 2, ,......, nMinimize F X F X F X                                  (‎2.34) 

Subject to: 
 

 

0, 1,2,.....,

0, 1,2,.....,

  


 

j

j

g X j M

h X j N
                                      (‎2.35) 

where F is vector of objective functions. n is the number of objective function,   0jg X , 

  0jh X  are equality and inequality constraints, respectively. The constraints denote the 

feasible region and vector X at feasible region reflects a feasible solution. 

2.3.1. Pareto optimality 

In multi-objective optimization (MOO) solution provides a set of control (decision) variables, 

 1 2 3, , ,......, nX X X X X , in the set of all vectors F which provides optimal objective 

functions eq. 2.34, while satisfying equality and inequality constraints eq. 2.35. We consider 

two vectors of solution X1 and X2, at least one dominates to other or no solution dominates the 

other. X1 is said dominate X2 if both of the following conditions are met: 

(i)      1 21,2 :  i ii F X F X

     

and (ii) 
 

     1 21,2 :  j jj F X F X        (‎2.36) 

The solution X1 is named the non-dominated solution and the set of the non-dominated 

solutions form the so-called Pareto front optimal, in which represents the trade-off between 

the conflicting objectives. 

The Pareto optimality means that X is Pareto optimal solution if there is no feasible vector of 

control variables able to improve at least some objective function without deterioration at the 
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same time any. In other words, any improvement in a Pareto optimal solution in one objective 

function must lead to deterioration of at least one other objective. 

2.4. Constraint handling (CH) methods 

There are several and different constraint handling methods for meta-heuristic optimization in 

the literature, which can be classified into six categories, as follows: 

1) Preserving feasible solution method:  The key concept of this approach is to place the 

solutions into feasible research-space and keeping within by updating process that 

produces only feasible ones. 

2) Penalty function method: [16] In this technique a penalty terms is added to the objective 

function once any constraint violation happens. 

3) Rejection of infeasible solutions: Also called death penalty, in which rejects any infeasible 

solution as soon as they are generated. In addition, it has an efficient computational, 

because with any violate solution, it is assigned a fitness of zero. 

4) Solution repair method: in this approach, infeasible solution is repaired with feasible 

solution to become a valid one, but the approximation process consumes much time. In 

addition, the repaired solution may be considerably different from originally generated 

solution. 

5) Superiority of feasible solutions method [17]: This approach is based on the assumption of 

the superiority of feasible points over infeasible ones.  

6) Stochastic ranking method: first introduced by Runarsson and Yao in 2000 [18]: In this 

technique a control factor Pf (0 < P  < 1) is  predefined by the user to check a balance 

between objective optimization value (feasibility) and whole of constraint violation 

(infeasibility points). The process is to determine whether the objective function value or 

the all constraint violation is used to rank a solution. The ranking process is performed as 

follow: 

If both solutions are feasible or rand < Pf , rank is performed only on the objective value. 

Otherwise, rank is conducted on the constraint violations only. 

Since the selecting of the suitable constraint handling method is highly depending on the 

problem's nature. The problem formulation treating in this dissertation confirm that both of 

penalty function (PF) method and superiority of feasible solutions (SF)  method are more 

appropriate than other ones. In other words, due to their relative success and the most 

commonly used ones in the power system optimization.[19] To this context, we give more 
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detail of these methods, and how to handling with different formulation of OPF and ORPD 

problems in guarantying the feasibility of solutions.  

2.4.1. Penalty function method (PF) 

Penalty function method is the simplest and oldest handling technique which transform a 

constrained problem into an unconstrained one throughout discarding infeasible solutions 

during the search process even after sufficient number of feasible solutions. Also known as 

static penalty function method, values of the penalty factors are chosen by trial and error 

process. Because this method requires proper adjustment of the penalty factors, a small 

penalty factors over-explores the infeasible region, thus delaying the process of finding 

feasible solutions, and may prematurely converge to an infeasible solution. On the other hand, 

large penalty factors may not explore the infeasible region properly, thereby resulting in 

premature convergence [20]. For this reason, it is preferable to choose the trial to start with 

the small values of factors until the suitable coefficients will be properly selected that ensure 

at the same time the convergence rate with feasibility of solution. 

Among different formulations of the penalty method, the Powell-Skolnik [16] method where 

incorporates all the constraints with feasibility [21]: 
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(‎2.37) 

Where the constant 0  is fixed, so this approach is a static penalty method. 

The penalty-based method transforms the objective function  f x  to a modified objective 

function modiF in the following from, 

       modiF objective Penalty x f x P x                                (‎2.38) 

Where the penalty term  P x  may take different forms, depending on the actual ways or 

variants of constraint handling techniques. For instance, 

      
22

1 1

max 0,
 

  
M N

i i j i

i j

P x g x k h x                                (‎2.39) 

Where 0i and 0ik are penalty factors. In order to avoid too many penalty factors, a 

single penalty constant λ > 0 can be used as follows:  
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      
22

1 1

max 0,
 

 
  

 
 
M N

i i

i j

P x g x h x                                (‎2.40) 

Where λ is fixed factor, independent of iteration t, this basic form of penalty is the well-

known static penalty method. Some studies show that it may be beneficial to vary λ over the 

course of iterations [22], 

  t


 
                                                     

(‎2.41) 

Where 0.5  and 1.2  

In short, there are other forms of penalty approaches such as adaptive penalty and death 

penalty. 

2.4.2. Superiority of feasible solutions (SF) 

This approach was first proposed by Powell and Sklonick (1993) to deal infeasible solutions, 

afterwards Deb in [23] propose similar technique by eq. 2.42 and transform the equality 

constraints to inequality constraints with aid of a tolerance factor epsilon   by using eq. 2.43. 

Mathematically described as follows: 

 
   

 
1

if 0 1,2,......,

fitness
,



   


 





i

N

worst i

i

f x h x i N

x
f h x otherwise

            (‎2.42) 

  0 ig x                                                             (‎2.43) 

where worstf  is the objective function value of the worst feasible solution in the population and 

if there are no feasible solutions in the population, then worstf is set to zero.   is a tolerance 

parameter for the equality constraints.  

Other mathematical expression of SF method is presented as follows: 

 
  

  

max ,0 1,....,

max ,0 1,....,

 
 

  

i

i

i

h x i N
T x

g x i N M                                  
(‎2.44) 

Therefore, the aim is to minimize a desired objective function  iF X so that the optimal 

solution subjected to all inequality constraints  iT X . The overall constraint violation for an 

infeasible individual is a weighted mean for all the constraints, which is presented as, 

  
 

1

1





  
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



N

i i

i
i N

i

i

w T x

v x

w

                                                    (‎2.45) 
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When we compare two solutions Xi and Xj, Xi is said superior to Xj under the following 

conditions: 

a) A feasible point is preferred over an infeasible one 

b) Between two feasible solutions, solution that has a smaller objective value in a 

minimization case (greater objective value in case of maximization) is preferred. 

c) Between two infeasible solutions, the one that has a smaller constraint violation is 

chosen. 

More detail on different constraint-handling techniques for meta-heuristic optimization can be 

found in [21,24]. 

2.5. Power system optimization problems 

This research work titled as "Optimal power flow solution with non-conventional methods in 

smart grids". Over the last few decades, some power-system optimization problems have been 

solved using meta-heuristic methods. This section reports a survey on OPF and ORPD 

problems available in the literature, which attempted in our research work. 

2.5.1. Optimal power flow problem (OPF) 

Despite passing more than half of century from its inception, the optimal power flow (OPF) 

still one of crucial topic among power system research in academia and research communities 

across the globe due to the intriguing mixed challenges it poses. The OPF can be formulated 

as a single or a multi-objective problem, it main purpose is minimizing fuel cost, emission, 

voltage deviation, active power losses in transmission lines, etc. with constraints on generator 

capability, line capacity, bus voltage and power flow balance. OPF program runs in 

determining optimal control variables include generated active powers, generators output 

voltages, transformer tap settings, and VARs of compensation units while the physical system 

constraints involve load bus voltages, generated reactive powers, thermal limits in 

transmission line. In short, OPF involves multiple calculations with different variables, where 

determining optimal solutions while satisfying all imposed constraints at the same time is a 

challenge that one encounters. 

Earlier, conventional optimization methods were used to solve the OPF problem such as 

Newton method, linear programming, non-linear programming, Quadratic programming and 

the interior point. The principal disadvantage of these optimization methods is that often 

trapped in local optima due to the gradient-based search method it utilises. Lack of flexibility 
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with respect to practical systems, i.e., each method is suit for a specific problem formulation 

in its proper objectives and/or constraints. They also encounter a huge difficult to set of 

uncertain and stochastic problems, such as OPF with insertion of renewable generation. A 

review of these classical methods can be found in Refs [25,26]. To overcome the above-

mentioned shortages of conventional optimization techniques, several intelligence 

optimization techniques have been introduced in the field of numerical optimization in last 

two decades. 

The stochastic search techniques of meta-heuristics can efficiently explore the search-space in 

pursuit of global optima. Intelligence optimization methods are inspired from multiple 

concepts such as evolution, swarm, biology and physics. Among the earliest stochastic 

population-based methods proposed to solve OPF were genetic algorithm (GA) [27], 

evolutionary programming (EA) [28]. In recent years, many meta-heuristic optimization 

techniques have been applied to the OPF problem. Some standard objectives of OPF were 

optimized in [29] for different IEEE test systems using moth swarm algorithm (MSA), an 

effective technique for  real-complex optimization problems. Wenlei Bai et. al. [30] proposed 

an improvement on basic artificial bee colony (ABC) algorithm based on orthogonal learning 

to perform study on OPF. Chaib et. al. [31] applied backtracking search optimization 

algorithm (BSA) to perform OPF calculation with  valve-point effect  and multi-fuel options 

in thermal generators. Also, Improved colliding bodies optimization (ICBO) [32] algorithm 

was proposed to solve a variety of cases OPF problem with complex objective functions, 

security constraints, prohibited zones and different test systems. Ramzi et. al [33] proposed 

and applied ant lion optimizer (ALO) on different cases study of OPF for practical power 

system considering static  VAR compensator to improve voltage  profile. Powell‘s pattern 

search method was incorporated in invasive weed optimization (IWO) algorithm to improve 

exploitation ability of basic IWO technique in [34] and security-constrained OPF 

incorporating the FACTS device was solved. Proposed modified algorithm was applied on the 

medium-test systems IEEE 30-bus and IEEE -57 bus. To enhance convergence property and 

exploration capability of modified Jaya optimization algorithm (MJaya). A quasi-oppositional 

modified Jaya was suggested in [35] and applied to multi-objective OPF problem. Dynamic 

adjustment of control parameters in adaptive multiple teams perturbation-guiding Jaya 

(AMTPG-Jaya) technique [36] showed higher convergence speed and better accuracy than 

original Jaya for diverse single goal optimum power flow (OPF) forms. Again, however, it 

applied only on medium-sized test system IEEE 30-bus. Improved social spider optimization 

algorithm (ISSO) for solving OPF problem was introduced in [37] and applied to optimize 
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various objectives. Improved version has presented a new updating scheme for movement of 

spiders, and applied on a larger test system IEEE 118-bus. Salp swarm algorithm (SSA) [38] 

and its variant hybrid salp swarm (HSSA) algorithm [39,40] have also been popular in finding 

OPF solutions. Harris Hawks Optimization (HHO) [41] and hybrid Harrison hawk 

optimization based on differential evolution (HHODE) algorithm [42] have also show 

promising results for OPF as reported in respective papers. Modified imperialist competitive 

algorithm (MICA) and teaching learning algorithm (TLA) were hybridized (MICA-TLA) in 

[43] to improve local search and convergence of original ICA algorithm in finding OPF 

solutions. From this literature, we can see that either original or the improved version of an 

algorithm was tried. OPF problem is often solved for many different objective formulations 

and sometimes are contradicting. In this context, multi-objective formulations for OPF 

solutions are also available in the literature. One widely used approach to deal with multiple 

objectives OPF is the weighted sum method in which a predetermined weight point is 

assigned to each objective. While aforementioned references are mostly dealing with single 

objective cases. A few approaches based- weighted sum methods are summarized in the 

following: backtracking search optimization algorithm (BSA) [31], A black-hole-based 

optimization approach [44], An Enhanced Self-adaptive Differential Evolution [45], Adaptive 

group search optimization algorithm [46], and differential search algorithm (DSA) [47]. 

However, weighted sum approach leads to only Pareto solution with a set of weight factors in 

a full run of the algorithm. In point of view of accuracy, it is obvious a set of solutions with 

multi-objective algorithms is preferred to a single solution with weighted sum method. 

Moreover, the above references performed the optimization process with two or more 

objectives on single or multiple power systems, but they dealt with only thermal generators. 

However, a modern power system consisting of thermal and wind power and solar generators. 

In studying OPF or MOOPF problem, in modern power system, i.e., with incorporation of 

intermittent sources, there are also a limited number of publications such as Partha Biswas et 

all [48] proposed success history based parameter adaptation technique of differential 

evolution (SHADE) to solve OPF problem in a system involving renewable power generators. 

Also, forecasting model is well designed to report renewable power generators outputs. In 

addition, the feasibility of results were discussed and checked that all control variables fell 

inside the allowed limits. Thus, findings clearly show the efficacy of the proposed model, but, 

unfortunately, it was applied only on medium-sized test system, IEEE 30-bus. In another 

publication [49], Ehab E.Elattar proposed modified version of the moth swarm algorithm to 

solve OPF problem of combined heat and power system with presence stochastic wind farm. 
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The model is well presented and results were discussion but only for IEEE 30-bus system in 

which feasibility of solution of large-scale test system IEEE 118-bus were not discussed. As 

well the application in a real power system is not realized. Zia Ullah et al [50] provide a new 

hybrid optimization algorithm PPSOGSA for OPF solution considering renewable energy 

generators. The model of stochastic behavior is based of PDF scheme. The results amply 

show the superiority of proposed hybrid method against basic PPSO and GSA. Again, 

however, the algorithm was not examined by applying it to real/ large-sized power system. In 

Yu-Cheng Chang et al [51], evolutionary particle swarm optimization (EPSO) algorithm was 

used for solving OPF problem in a wind-thermal power system. The suggested wind model is 

based on the up-spinning reserves and down-spinning reserves of the production units. Also, 

EPSO algorithm based proposed model was evaluated only on modified IEEE 30-bus system 

A modified cuckoo search optimization technique employed for OPF solution incorporating 

wind power was proposed in Chetan Mishra el al in [52]. The proposed stochastic model of 

wind generation is based on the Weibull PDF. Again, however, the simulation was also 

conducted only on standard medium-sized test systems. In summary, optimal power flow 

study in a network consisting of thermal, wind power generators and photovoltaic (PV) needs 

further attention. 

2.5.2. Optimal reactive power dispatch (ORPD) 

Optimal reactive power dispatch (ORPD) solution is the principal key for modern electric grid 

control, as well as, operation. ORPD is a well-known complex combinatorial optimization 

problem with nonlinear characteristics. It is a sub-case of optimal power flow (OPF) problem. 

The principal mission of the ORPD solution is to determine steady condition operation 

parameters of all electrical equipment‘s of power system except the power of generators [48]. 

Efficient adjustment of control variables provide benefits advantages to Electric Power 

System Operators (EPSO) like help to convey energy to all existing loads at the network with 

a minimum loss of power while satisfying various physical and operational constraints 

imposed. Consequently, all electric elements operate under service voltage. Reactive power 

dispatch cannot be avoided in the system as most of system loads are inductive and elements 

such as transformers and transmission lines consume reactive power. Principal objective in 

ORPD is to minimize total real power losses with the basic concept that reactive power flow 

incurs active (real) power loss. In a typical network, can be achieved by identification of 

optimal solution of control variables, which consists of generator bus voltages as continuous 

variables, tap position of tap-changing transformers, and required number of shunt capacitors 
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as discrete variables. Total voltage deviation of load buses in the grid is also considered as an 

objective function in ORPD problem. This objective ensures that voltages at load buses are 

closed to the unit (1 p.u.) with control of reactive power flow. However, this objective does 

not ensure lowest real power loss of the system. Improvement of voltage stability index is also 

set an objective in ORPD problem. This objective ensures that provide the sufficient 

information‘s about the voltage instability and/or to quantify the vicinity of an electric grid of 

voltage collapse. This can be achieved by the minimization of  voltage stability indicator L-

index (
jL ) at every bus of the electric network, and consequently the total power system (L-

index), basing on information of  normal load flow analysis of which the operating range of 

indicator L is set between 0-1 [53]. Several papers studied the ORPD problem for systems 

consisting of conventional thermal generators. The recently published of the last decade can 

be summarized in this section. Basic form stochastic fractal search (SFS) and its modified 

version (MSFS) [54,55] were applied to optimize ORPD objectives. Gravitational search 

algorithm (GSA) [56] was employed to propose solutions for ORPD on standard bus systems 

with conventional generators. The Gaussian bare- bones approach was incorporated in 

teaching–learning-based optimization (GBTLBO) in [57] in order to balance global searching 

and increase convergence speed. The hybrid algorithm applied to solve ORPD problem with 

discrete and continuous control variables in the standard IEEE power systems for reduction in 

power transmission loss. Gaussian bare-bones water cycle algorithm (GBWCA) in [58], the 

same philosophy of Gaussian bare bones was infused in water cycle algorithm (WCA). A 

Novel fuzzy adaptive configuration of PSO was applied in [59] to minimize single-objective 

functions of ORPD considering large-scale power systems. Also ant lion optimizer (ALO) 

was proposed in [11] to cope with different objectives of ORPD considering larger test 

system. A recently surfaced nature-inspired optimization technique called moth flame 

optimization (MFO) was applied in [12] to minimize single-objective functions of ORPD. 

Mohd Herwan Sulaiman et. al. [60] tried to establish efficacy and robustness of grey wolf 

optimizer to solve ORPD problem in a standard IEEE test systems.  Novel design of fractional 

particle swarm optimization gravitational search algorithm (FPSOGSA) [61] showed 

competitive results for solutions of ORPD. Furthermore, a review study on meta-heuristic 

techniques applied to the ORPD field can be found in [62].  

Multi-objective formulation and solutions of ORPD problem has also a part in literature 

review, in which many published algorithms have been proposed for solving the MOORPD 

problem. For example, in [63] the authors proposed a modified NSGA-II considering the 

strategies of controlled elitism and dynamic crowding distance to improve the diversity of 
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non-dominated solutions. The method was applied on the medium-sized test systems IEEE 

30-bus and IEEE 118-bus, but voltage deviation and large-scale test systems were not taken 

into consideration when validating the technique. An enhanced version of multi-objective 

PSO to optimize power losses and voltage deviation in power systems was proposed in [64]. 

However, the reported control variables were outside admissible boundaries because the 

constraint handling method was not properly introduced. The authors in [65] proposed a new 

hybrid fuzzy multi-objective evolutionary algorithm (HFMOEA) to solve the complex 

nonlinear multi-objective ORPD problem. Again, however, the robustness of the algorithm 

was not tested on a large-scale test system. In [66], an improved version of the MOPSO 

method was proposed for MOORPD, but the solutions control variables were not discussed. 

In [67], the authors proposed a chaotic improved PSO-based multi-objective optimization to 

minimize power losses and the voltage stability index, but it was applied only on medium-

sized systems, and in addition, almost all the results of the control variables fell outside the 

imposed limits. In [68] the authors derived a new multi-objective algorithm called chaotic 

parallel vector evaluated interactive honey bee mating optimization (CPVEIHBMO) 

algorithm to solve the MOORPD problem, but the feasibility of dependent variables was not 

satisfied. In [69] an improved version of the firefly algorithm to solve the multi-objective 

active/reactive ORPD problem was presented with load and wind generation uncertainties in a 

standard IEEE 30-bus system. This test system is insufficient however to confirm the 

consistency of the proposed algorithm. Again, the optimal control variables were not 

discussed. The formulation and solutions of single and multiple objectives of ORPD problem 

considering large scale test systems and practical power system are presented in Chapter 3. 

2.6. Conclusion 

This chapter has presented for the first time basic concepts of optimization term and 

three recent meta-heuristic optimization algorithms used to evaluate the common power 

system problems in this research work. Then, some constraints handling techniques employed 

for control variables treatment are presented. Afterwards, definition of OPF and ORPD 

problems and its important role in power system field are presented, following  by literature 

review on the meta-heuristic algorithms applied to solve single and multi-objective 

formulations of optimal power flow (OPF) and optimal reactive power dispatch (ORPD) 

problems, with critical explanation.   
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Chapter  3 

OPTIMAL REACTIVE POWER DISPATCH STUDY 

3.1.  Introduction to optimal reactive power dispatch 

In recent years, Electric Power System Operators (EPSO) are constantly seeking out 

new strategies to meet operational planning challenges for reducing power losses and 

ensuring continuity of services with less damages on electrical equipment‘s. In the modern 

power system operation, each variation for demand-load, results a proper adjustment of 

reactive power generations for keeping the balance between supply and demand with 

minimum real power loss. Hence, the stability of electric grid is preserved. This is can be 

accomplished locally by proper reactive power management. 

Optimization of reactive power flow in electric grid is a key factor for stable and secure 

operation as the reactive power supports grid voltage which needs to be maintained within 

allowable ranges for system reliability. This chapter presents a formulation and solution 

procedure for single / multi-objective optimal reactive power dispatch (ORPD/MOORPD) 

problem with practical and large-scale power systems. Active power losses and cumulative 

voltage deviation of load buses as well as voltage stability index in the electric grid are first 

independently set as the objective functions of optimization, and then, they are set as 

conflicting objective functions of optimization. The constraints in ORPD problem are handled 

using penalty function (PF) handling method. M.S. Saddique et. al.[70] assessed the 

performance of four meta-heuristic techniques like differential evolution (DE), particle swarm 

optimization (PSO), Novel bat algorithm (NBA) and sine cosine algorithm (SCA) with a 

status and technological review to ORPD solution considering penalty function method as 

handling method. We adopt ALO, AEO, NBA algorithms in this study. Simulations results 

are analysed in detail and the feasibility of solutions were fully verified and discussed. 

The rest of the chapter is organized as follows: Section 3.2 covers the problem definition, 

objectives and mathematical formulation of ORPD problem with the constraints involved. 

The description of proposed method is presented in Section-2 of Chapter 2. Detailed analyses 

of results and comparison are performed in section 3.2.4 Section 3.2.5 reveals statistical 

results and the chapter ends with conclusion in Section-3.3. 
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3.2. Mathematical models for ORPD study 

The mathematical formulation of the ORPD problem is amply described as objective 

functions and constraints, where these functions are minimized while fulfilling equality and 

inequality constraints. The general formulation of ORPD is: 

Min   F , ObjMinimize F x u
                                                  

(‎3.1) 

Subject to:  
 

 

, 0

, 0

g x u

h x u

 




                                                        (‎3.2) 

where  ,objF x u  is the objective function,  ,ug x
 
equality constraints,  ,uh x inequality 

constraints;  

x : is the vector of dependent variables, consisting of load bus voltages, reactive power of 

generators, and transmission lines loading. Mathematically, it is written as follows: 

, ,1 , 1... , ... , ...
PQ PV

T

L L N g g N NTLx V V Q Q S S 
 

                                     (‎3.3) 

u: is the vector of control variables or independent variables, comprising the mixed control 

variables involving voltages of the PV-bus as (continuous variables), transformer tap settings 

and switching shunt capacitor banks as (discrete variables). Hence, u  is written as follows: 

continuous Discrete

,1 , 1 1 ,.... , .... , ......,
PV

T

g g N NT C C NCu V V T T Q Q
 

  
  

                                (‎3.4) 

In this chapter, three different objective functions are considered: 

 Minimization of total real power losses; 

 Minimization of total voltage deviation (TVD); and  

 Minimization of voltage stability index (VSI) 

3.2.1. Objective fonctions 

In the ORPD, the active power of all generators are fixed and known, except that of the slack-

bus. In the power flow study, total generation must be equal to the sum of all demand-loads 

connected and losses in the grid. Generator connected in the slack bus balances the active 

power and reactive power flow in the whole of grid. 

a) Objective 1: minimization of total active power losses  
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In general, the ORPD aims to minimize the total real power losses via an optimal adjustment 

to the control variables of the power system [71]. Mathematically, it is characterized as 

follows: 

   2 2

1 Loss

1

F ,u min 2 cos


       
NTL

k i j i j ij

k

x P G V V V V                          (‎3.5) 

b) Objective 2: minimization of total voltage deviation (TVD) 

This objective function is introduced for ensuring the security of electric power system. This 

case aimed to reduce the load-bus voltages gap resulting from specified value and those 

obtained from calculations. 

   2

1

F ,u min ,u 1.0

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Npq

i

i

x VD x Minimize V                                   (‎3.6) 

c) Objective 3: Minimization of voltage stability index (VSI) 

Liberalization of energy market lead to increasing demand for electricity, which makes 

operation of an electric power grids become close to their stability limits. Therefore, the 

continuous monitoring and control of power system via voltage stability enhancement is 

necessity in order to get more information on the voltage drops. The operating interval of 

index L was set in [ 0, 1] [72] The objective function to be minimized is defined as follow: 

where jL  of the thj  bus is given by the following expression: 
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(‎3.7) 

    with       ji ji jiF F  ,  i i iV V  ,    j j jV V 
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 jiF Y Y

      
(‎3.8) 

Y1, Y2, Y3, and Y4 : are the sub-matrices of the system busY  obtained after rearranging the PQ 

and PV-bus bar parameters as shown in eq. 3.9. 

1 2

3 4
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PQ PQ

PVPV

I Y Y V

Y Y VI
                                                 (‎3.9) 

3.2.2. System-Constraints 

The equality and inequality constraints applied on ORPD problem are presented herein. 

a) Equality constraints: are the power flow equations which are given below: 
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b) Inequality constraints represent the limits applied on the following variables. 
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In this work, the concept of penalty functions is used, where only the violating variables such 

as ( , ,andi G lV Q S ) are added to the objF  in order to discard any unfeasible solution obtained 

during the optimization process. Then, the modified objective function is written as follows: 
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  (‎3.12) 

where , ,and V Q l   are the penalty factors; limit

iX  are the limit value of the dependent 

variables. 
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3.2.3. Test systems 

This chapter considers different test systems involving medium-sized and large-scale test 

systems to perform selected cases of ORPD and the compare the findings of those cases with 

previously reported results in the literature. 
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Table ‎3.1. A summary of IEEE 30 and IEEE 57 bus test systems 

Items IEEE 30-bus system  [14] IEEE 57-bus system   [64] 

 Quantity     Details Quantity     Details 

Buses 30 See inَ[14] 57 See in  [64] 

Branch 41 See inََ[14] 80 See in  [64] 

Generator 6 
Buses: 1 (swing), 2, 5, 8,  

11 and 13 
7 

Buses: 1 (swing), 2, 3, 6,  

8, 9 and 12 

Shunt VAR  

compensation 
9 

Buses: 10, 12, 15, 17, 20, 

21, 23, 24 and 29 
3 Buses: 18, 25 and 53 

Transformer with 

tap changer 
4 

Branches: 11, 12, 15 and 

36 
17 

Branches: 19, 20, 31, 35,  

36, 37, 41, 46, 54, 58, 59,  

65, 66, 71, 73, 76 and 80 

Control variables 19  33  

Connected load  283.4 MW, 126.2 MVAr  1250.8 MW, 336.4 MVAr 

Allowable range 

for PV bus 

24 [0.95 – 1.1] p.u 50 [0.94 – 1.06] p.u. 

Base case for PLoss, MW. 5.880 28.46 

Base case for VD, p.u. 1.4942 1.2336 

Base case for L-index 0.1798 0.3099 

Table ‎3.2. A summary of IEEE 118 and DZ 114 bus test systems 

Items IEEE 118-bus system   [73] DZ 114-bus system  [74] 

 Quantity     Details Quantity     Details 

Buses 118 See in [74] 114 See in [74] 

Branch 186 See in [74] 175 See in [74] 

Generator 54 
Buses: 1 (swing), the rest 

see in Annex 
15 

Buses: 4 (swing), 5, 11, 

15, 17, 19, 22, 52, 80, 83, 

98, 100, 101, 109 and 111 

Shunt VAR  

compensation 
14 

Buses: 5, 34, 37, 44, 45, 

46, 48, 74, 79, 82, 83, 

105, 107 and 110 

7 
Buses: 50, 55, 66, 67, 77, 

89 and 93  [74] 

Transformer with 

tap changers 
9 

Branches: 8, 32, 36, 51, 

93, 95, 102, 107 and 127 
16 Branches: 160 -175 

Control variables 77  38  

Connected load  4242 MW, 1438 MVAr  3727 MW, 2070 MVAr 

Allowable range 

for PV bus 

109 [0.95 – 1.05] p.u 99 [0.90 – 1.10] p.u. 

Base case for PLoss, MW. 132.863 67.447 

Base case for VD, p.u. 1.43933 3.82 

Base case for L-index 0.0694   0.3421 
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Table ‎3.3. A summary of large test system IEEE 300 

Items IEEE 300-bus system   [14] 

 Quantity     Details 

Buses 300 

See in [58] Branch 411 

Generator 69 

Shunt VAR  

compensation 
14 See in  [75] 

Transformer with tap changer 107  

Control variables 190  

Connected load  23525.8 MW, 7787.97 MVAr 

Allowable range for load-bus 

 voltage 

231  

Base case for PLoss, MW. 408.316 

Base case for VD, p.u. 5.4286 

Base case for L-index 0.4135 

Table ‎3.4 Control variables settings for all power systems 

Test system Variables Lower Upper Step 

IEEE 30-bus [14]  

VPV and VPQ 0.95 1.1 

Continuous T 0.9 1.1 

Q-shunt (9) 0 5 

IEEE 118-bus  

VPV and VPQ 0.95 1.05 

Continuous T 0.9 1.1 

Q-shunt (14) See in [73] 

IEEE 300-bus [76] 

VPV and VPQ 0.9 1.1 

Continuous T 0.9 1.1 

Q-shunt See in [75] 

DZA 114-bus [74] 

VPV and VPQ 0.9 1.1 Continuous 

T 0.9 1.1 0.01 

Q-shunt See in [74] Discrete 

3.2.4. Numerical Results and Discussions 

An empirical study was conducted to select the population size, i.e., we study the effect of 

population size on the performance of the AEO technique, in which 30 trial runs have been 

performed under different population sizes  like 20, 30, 40, and 70. The results of this study 

not introduced, but we only indicate that 30 individuals of population give best results for all 

case studies. For that reason, in all simulation cases, population size is specified as 30 

individuals and maximum number of iteration is fixed 100 for IEEE 30-bus, 200 for DZA 

114-bus, IEEE 118-bus and IEEE 300-bus test systems. For the purpose of comparison, in all 
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simulation cases, we considered all control variables as continuous except those of Algerian 

power system DZA 114-bus. 

3.2.5. IEEE 30-bus test system [58][77] 

This test system has 6 generators (PV buses) at buses 1, 2, 5, 8, 11, 13 while the rest are the 

load buses (PQ buses), 4 Transformers with off nominal tap ratio at the branches 11, 12, 15, 

and 36, as well as 9 shunt compensators at bus bars 10, 12, 15, 17, 20, 21, 23, 24, and 29 

taken from [78]. The load demand is (2.834+j 1.262) p.u; its full data is given in [79]. In 

IEEE 30-bus test system, the upper and lower voltages bounds of all buses are chosen to be 

1.1 p.u. and 0.95 p.u., respectively. The limits for other decision variables are taken from 

[54][80]. 

In this part, the adopted objective function is the real power loss minimization by means of 

the AEO, ALO, and NBA algorithms. Figure 3.1 shows the convergence curves of the 

considered optimizers and, as noticeably, the AEO algorithm converges to high quality 

solutions in the first quarter of iterations. Based on the convergence plot presented in Figure 

3.1, it can be seen that AEO algorithm achieve the global optimal power losses in only 35
th

 

iteration.  

 In addition, it can be seen that the AEO technique outperforms the NBA and ALO methods 

in terms of convergence characteristic as well as solution merit. The best settings of the 

control variables obtained via the implemented techniques AEO, NBA, and ALO are 

reported in Table 3.5. In the 30 independent runs performed, proposed AEO found the best 

solution. It can be seen that the real power loss achieved via AEO, NBA, and ALO 

algorithms are is 4.5262 MW, 4.5529 MW and 4.5919 MW, respectively. Figure 3.2 

illustrates the performance of AEO for 30 independent run of executions. It can be observed 

that the best and worst solutions are very close, with a difference of 0.3%. Noticeably, it was 

explored that a number of optimizers published seem to have violated the feasibility 

boundaries, rendering the solutions infeasible.  

Compared recalculated results with obtained ones provided in Table 3.5, It clearly  appears 

that all of implemented algorithms such as ALO, NBA, and proposed AEO gives exact 

values and insure the feasibility of solutions by keeping all state variables within the 

specified limits. The voltage profile at load buses-(PQ buses) for IEEE 30-bus is illustrated 

in Figure. 3.3. 
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Figure ‎3.1. Convergence characteristic of IEEE 30-bus system for PLoss minimization 

Table ‎3.5. Solution of minimum power losses (MP) for IEEE 30-bus test system 

Control 

variables 

FA 

[77] 
DE 

 [71] 

QOTLB 

[81] 
TLBO 

[81] 
BBO  

[82] 
ALO 

[80] 
GSA 

[77] 
MFO 

[60] 
NBA ALO AEO 

Generator Voltage (p.u) 

V1 1.1000 1.1000 1.1000 1.1000 1.1000 1.1000 1.0999 1.1 1.1 1.1000 1.1000 

V2 1.0644 1.0931 1.0942 1.0936 1.0944 1.0953 1.0743 1.0943 1.0951 1.0953 1.0944 

V5 1.0745 1.0736 1.0745 1.0738 1.0749 1.0767 1.0749 1.0747 1.0775 1.0764 1.0751 

V8 1.0869 1.0756 1.0765 1.0753 1.0768 1.0788 1.0768 1.0766 1.0792 1.0787 1.0770 

V11 1.0916 1.1000 1.1000 1.0999 1.0999 1.1000 1.0999 1.1 1.0960 1.0916 1.1000 

V13 1.0999 1.1000 1.0999 1.1000 1.0999 1.1000 1.0999  1.1 1.0998 1.0862 1.1000 

Tap ratio (p.u)  

T11 1.00 1.0465 1.0664 1.0251 1.0435 1.01 1.00 1.0433 1.0313 1.0333 1.0392 

T12 0.94 0.9097 0.9000 0.9439 0.9011 0.99 0.93 0.9 0.9424 1.0004 0.9000 

T15 1.00 0.9867 0.9949 0.9992 0.9824 1.02 0.98 0.9791 1.0009 1.0361 0.9729 

T36 0.97 0.9689 0.9714 0.9732 0.9691 1.000 0.97 0.9647 0.9854 0.9976 0.9632 

Capacitor Banks (MVAR)  

QC-10 3 5.0000 5.0000 5.0000 4.9998 4 3.7 5 4.2055 4.9477 4.9948 

QC-12 4 5.0000 5.0000 5.0000 4.987 2 4.3 5 5 4.8343 4.9963 

QC-15 3.3 5.0000 5.0000 5.0000 4.9906 4 3.7 4.8055 3.3446 4.5170 4.8409 

QC-17 3.5 5.0000 5.0000 5.0000 4.997 3 2.2 5 5 4.7030 4.9985 

QC-20 3.9 4.4060 4.45 4.57 4.9901 2 3.1 4.0623 4.3974 3.5384 4.2895 

QC-21 3.2 5.0000 5.00 5.00 4.9946 4 3.9 5 4.9844 4.5841 5 

QC-23 1.3 2.8004 2.83 2.86 3.8753 3 4.2 2.5193 4.8984 4.8054 2.6464 

QC-24 3.5 5.0000 5.00 5.00 4.9867 5 4.4 5 3.7526 4.9123 4.9998 

QC-29 1.42 2.5979 2.56 2.58 2.9098 5 2 2.1925 2.8649 2.8453 2.2293 

PLoss  
(MW) 

4.5691 4.5550 4.5594 4.5629 4.5511 4.59 4.54 4.534 4.55293 4.5919 
4.5262 

PLoss  
Calculated 

 4.532 4.535 4.538 4.532 4.590 4.952(a) 4.527 4.553 4.592 4.526 

VD 1.7752 1.9589 1.9057 1.8760 NA NA 1.92 NA 1.5270 1.2210 1.83 

L-index NA 0.5513 0.1273 0.1278 NA 0.1307 NA NA 0.1285 0.1323 0.1250 

CPU   (s) NA NA NA NA 110 98 NA NA 65 85 116 
Bold results are the Best one achieved by AEO  
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Figure ‎3.2. Performance of 30 individuals for 30 independent execution runs 

3.2.6. IEEE 111-bus test system [79] 

IEEE 118-bus test system consists of one hundred eighty-six branches, fifty four generators, 

sixty four load buses, nine branches under load tap-changing transformers and fourteen 

reactive power sources. The load demand is (42.42+j 14.38) p.u., under base power of 100 

MW. The complete data can be found in [76]. The minimum and maximum limits of 

variables can be found in [60]. Two cases are considered as follows: 

Case 1: minimization of PLoss. 

Case 2: minimization of VD. 

Case 1: Minimization of active power losses 

Table 3.6 shows the obtained findings of active power losses minimization case and the 

corresponding control variables settings for IEEE 118 bus test system. The results confirm 

that the proposed AEO is able to provide the best result than other optimization techniques 

listed, both with respect of the solution quality and validity. From the results of this case, 

AEO reduces the power losses to 115.302 MW, i.e., 3.78 % less than ALO, 6.14 % less than 

NBA 0.97 % less than MFO, 4.63 % less than GWO, 10.13 % less than OGSA, 13.57 % less 

than PSO, 10.81 % less than GSA. These significant values reflect substantial improvement in 

the achieved findings. Figure 3.3 shows the bus voltage profiles for the best obtained 

solutions. Remarkably, the magnitude of voltages is exactly inside the defined range which 

affirm the feasibility of solutions the AEO algorithm. The convergence curves of real power 

loss for IEEE 118-bus system for three implemented algorithms AEO, NBA and ALO is 

presented in Figure. 3.4. According to the Figure. 3.4, it is clearly that proposed algorithm 
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converges to optimal real power loss after 80
th

 iteration. Moreover, the proposed AEO takes 

lesser execution time as compared to CPVEIHBMO, GSA, PSO, OGSA, GWO, and MFO. 

However, ALO and NBA solvers require less time to complete the simulation. Figure 3.5 

discloses the performance of AEO for 30 independent execution runs. It observed that the best 

and worst results are 115.3027 MW and 116.938 MW, respectively in which difference 

between them is no longer than 1.64 MW. 

 

Figure ‎3.3. Voltage profile at load buses-(PQ buses) for IEEE 30 & 118-bus systems 

 

Figure ‎3.4. Comparative convergence curves for PLoss minimization of the 118-bus 
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Table ‎3.6. Solution of minimum power losses for power system 118-bus system  

Cont 

varia 

CPVEIH

BMO[83] 
GSA 
[79] 

PSO 

[83] 
OGSA 

[83] 
GWO 

[73] 
MFO 

[60] 
NBA ALO   AEO 

Generator Voltage (p.u)  

V1 0.9926 0.9600 1.0332 1.035 1.0204 1.0173 1.0429 1.0242 1.0090 

V4 1.0108 0.9620 1.055 1.0554 1.0257 1.0402 1.0415 1.0439 1.0388 

V6 1.0037 0.9729 0.9754 1.0301 1.0208 1.0292 1.0495 1.0349 1.0248 

V8 0.9976 1.0570 0.9669 1.0175 1.0419 1.0600 1.0457 1.0269 1.0366 

V10 1.0215 1.0885 0.9811 1.025 1.0413 1.0374 1.0313 1.0608 1.0419 

V12 1.0093 0.9630 1.0092 1.041 1.0232 1.0250 1.0429 1.0348 1.0241 

V15 1.0075 1.0127 0.9787 0.9973 1.0207 1.0268 1.0317 1.0363 1.0313 

V18 1.0259 1.0069 1.0799 1.0047 1.0270 1.0298 1.0406 1.0530 1.0363 

V19 0.9943 1.0003 1.0805 0.9899 1.0204 1.0275 1.0337 1.0402 1.0338 

V24 1.0179 1.0105 1.0286 1.0287 1.0137 1.0483 1.0388 1.0500 1.0469 

V25 1.0177 1.0102 1.0307 1.06 1.0270 1.0600 1.0453 1.0664 1.0768 

V26 0.9990 1.0401 0.9877 1.0855 1.0386 1.0600 1.033 1.0465 1.0858 

V27 1.0084 0.9809 1.0157 1.0081 1.0188 1.0267 1.0298 1.0365 1.0403 

V31 0.9838 0.9500 0.9615 0.9948 1.0138 1.0101 1.0408 1.0352 1.0229 

V32 0.9827 0.9552 0.9851 0.9993 1.0135 1.0226 1.0479 1.0302 1.0325 

V34 1.0065 0.9910 1.0157 0.9958 1.0261 1.0556 1.0284 1.0409 1.0453 

V36 1.0190 1.0091 1.0849 0.9835 1.0261 1.0548 1.0336 1.0374 1.0442 

V40 1.0267 0.9505 0.983 0.9981 1.0125 1.0419 1.0239 1.0215 1.0210 

V42 0.9865 0.9500 1.0516 1.0068 1.0233 1.0429 1.0322 1.0147 1.0228 

V46 1.0084 0.9814 0.9754 1.0355 1.0272 1.0450 1.042 1.0367 1.0419 

V49 1.0035 1.0444 0.9838 1.0333 1.0401 1.0589 1.0413 1.0582 1.0567 

V54 0.9806 1.0379 0.9637 0.9911 1.0230 1.0284 1.046 1.0179 1.0431 

V55 0.9969 0.9907 0.9716 0.9914 1.0221 1.0289 1.0438 1.0111 1.0459 

V56 0.9881 1.0333 1.025 0.992 1.0226 1.0283 1.0501 1.0147 1.0456 

V59 1.0197 1.0099 1.0003 0.9909 1.0379 1.0512 1.0466 1.0494 1.0548 

V61 0.9956 1.0925 1.0771 1.0747 1.0241 1.0534 1.0467 1.0526 1.0459 

V62 1.0064 1.0393 1.048 1.0753 1.0199 1.0506 1.0446 1.0505 1.0474 

V65 0.9883 0.9998 0.9684 0.9814 1.0465 1.0596 1.0529 1.0436 1.0532 

V66 1.0101 1.0355 0.9648 1.0487 1.0378 1.0600 1.0389 1.0669 1.0626 

V69 0.9931 1.1000 0.9574 1.049 1.0501 1.0600 1.0417 1.0568 1.0717 

V70 1.0127 1.0992 0.9765 1.0395 1.0243 1.0600 1.0338 1.0185 1.0462 

V72 1.0145 1.0014 1.0243 0.99 1.0187 1.0526 1.049 1.0462 1.0480 

V73 1.0174 1.0111 0.9651 1.0547 1.0397 1.0600 1.0467 1.0090 1.0437 

V74 1.0025 1.0476 1.0733 1.0167 1.0170 1.0600 1.032 1.0230 1.0395 

V76 0.9842 1.0211 1.0302 0.9972 1.0080 1.0390 1.0316 1.0272 1.0269 

V77 0.9914 1.0187 1.0275 1.0071 1.0192 1.0502 1.0407 1.0316 1.0465 

V80 1.0257 1.0462 0.9857 1.0066 1.0329 1.0600 1.0413 1.0372 1.0535 

V85 0.9876 1.0491 0.9836 0.9893 1.0224 1.0600 1.0421 1.0421 1.0499 

V87 1.0213 1.0426 1.0882 0.9693 1.0361 1.0599 1.0519 0.9965 1.0555 

V89 1.0069 1.0955 0.9895 1.0527 1.0558 1.0600 1.0427 1.0657 1.0679 

V90 1.0298 1.0417 0.9905 1.029 1.0290 1.0431 1.0385 1.0289 1.0378 

V91 0.9839 1.0032 1.0288 1.0297 1.0127 1.0496 1.0266 1.0353 1.0341 

V92 1.0021 1.0927 0.976 1.0353 1.0360 1.0600 1.0369 1.0576 1.0552 

V99 0.9853 1.0433 1.088 1.0395 1.0297 1.0551 1.0262 1.0453 1.0454 

V100 1.0281 1.0786 0.9617 1.0275 1.0360 1.0584 1.0445 1.0507 1.0523 

V103 0.9802 1.0266 0.9611 1.0158 1.0232 1.0442 1.0404 1.0425 1.0461 

V104 1.0187 0.9808 1.0125 1.0165 1.0180 1.0333 1.0314 1.0430 1.0467 

V105 1.0209 1.0163 1.0684 1.0197 1.0176 1.0281 1.0345 1.0459 1.0389 

V107 1.0234 0.9987 0.9769 1.0408 1.0201 1.0161 1.0517 1.0848 1.0271 

V110 0.9842 1.0218 1.0414 1.0288 1.0207 1.0215 1.0313 1.0366 1.0326 
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V111 1.0000 0.9852 0.979 1.0194 1.0261 1.0280 1.0419 1.0591 1.0418 

V112 0.9930 0.9500 0.9764 1.0132 1.0066 1.0042 1.0311 1.0185 1.0190 

V113 1.0200 0.9764 0.9721 1.0386 1.0251 1.0350 1.0476 1.0398 1.0410 

V116 1.0016 1.0372 1.033 0.9724 1.0342 1.0484 1.0372 1.0261 1.0522 

Tap ratio setting of transformers  

T8 1.0255 1.0659 1.0045 0.9568 1.0208 1.0136 1.032 0.9700 0.9933 

T32 0.9891 0.9534 1.0609 1.0409 1.0279 1.1000 0.99874 1.0217 1.0999 

T36 0.9932 0.9328 1.0008 0.9963 1.0323 1.0038 0.99845 1.0035 0.9896 

T51 0.9873 1.0884 1.0093 0.9775 1.0209 0.9826 1.0059 0.9642 0.9762 

T93 0.9868 1.0579 0.9922 0.956 1.0091 0.9843 0.97775 0.9696 0.9641 

T95 1.0235 0.9493 1.0074 0.9956 1.0366 1.0139 0.99487 1.0059 1.0145 

T102 1.0090 0.9975 1.0611 0.9882 1.0301 1.1000 1.0052 1.0204 0.9569 

T107 1.0075 0.9887 0.9307 0.9251 1.0234 1.1000 0.99449 0.9827 0.9464 

T127 0.9872 0.9801 0.9578 1.0661 1.0211 0.9683 1.0055 1.0440 0.9792 

Reactive power of shunt resources (MVAR)  

QC-5 0 0 0 −33.19 −39.76 0 −17.747 −3.2410 −8.9587 

QC-34 6.0111 7.4600 11.714 4.8 13.7900 0 1.8726 1.7198 6.4884 

QC-37 0 0 0 −24.9 −24.73 −0.0312 −5.5757 −12.8228 −8.8591 

QC-44 6.0057 6.0700 9.8932 328 9.9571 10 0 0.4357 5.6581 

QC-45 3.0001 3.3300 9.4169 3.83 9.8678 0 8.5929 1.4848 7.0815 

QC-46 5.9838 6.5100 2.6719 5.45 9.9186 0 5.6952 3.2751 4.9572 

QC-48 3.9920 4.4700 2.8546 1.81 14.8900 0.00084 7.3115 6.3305 7.0284 

QC-74 7.9862 9.7200 0.5471 5.09 11.9720 0.22054 5.0436 1.1433 1.8367 

QC-79 13.9892 14.2500 14.853 11.04 19.6490 20 15.242 10.8565 16.778 

QC-82 17.9920 17.4900 19.427 9.65 19.8900 0 16.258 1.1730 14.582 

QC-83 4.0009 4.2800 6.9824 2.63 9.9515 10 6.6489 1.4741 4.9715 

QC-105 10.9825 12.0400 9.0291 4.42 19.9680 0 5.6212 16.9174 0.0077 

QC-107 2.0251 2.2600 4.9926 0.85 5.9136 6 3.8228 3.5582 2.7109 

QC-110 2.0272 2.9400 2.2086 1.44 5.8834 6 3.0696 0.3696 2.3012 

Ploss 124.098 127.76 130.96 126.99 120.65 116.4254 122. 391 119.6645 115.3027 

L-max NA NA NA NA NA NA 0.06540 0.06466 0.06373 

CPU(s) 1053 1198 1472 1101.2 1372 1419 417 568 886 
-Bold results denote best results 

 

 

Figure ‎3.5. Performance of 30 individuals for 30 independent execution runs10 
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algorithm can define the optimal solution or near-optimal solution, even with large-scale test 

system. 

Table ‎3.7. Comparison of loss reduction percentage for IEEE 118-bus test system 

Algorithms Case 0 PSO WCA CLPSO GSA OGSA 
CPVEIH-

BMO 
DE 

PLoss MW 132.86 131.99 131.83 130.96 127.76 126.99 124.098 122.36 

Loss reduction 

(%) 
– 0.66 0.77 1.43 3.84 4.42 6.60 7.90 

 
Algorithms WOA NGBWCA ABC GWO ALO GA MFO AEO 

PLoss MW 122.39 121.47 120.42 120.65 119.77 119.30 116.42 115.30 

Loss reduction 

(%) 
7.88 8.57 9.33 9.19 9.85 10.95 12.37 13.21 

Case 2: Voltage deviation minimization 

In this case, the minimum, average, and maximum results of active power losses achieved by 

AEO, NBA and ALO and some other algorithms reported in the literature are tabulated in 

Table 3.8. Due to the space reasons, the corresponding optimal control variables of this case 

are not listed here. The value of VD for AEO is better than other optimizers. From Table 3.8, 

it can be pointed that proposed AEO is able to reduce the voltage deviation index by 86.8% 

with respect to initial losses, compared to 86.7 % with QOTLBO, 84.1 % with TLBO, 72.7 

% with PSO-TVAC, 85.5% with SPSO-TVAC, and 83.6 % with PGSWT-PSO. The voltage 

profiles of all load buses-(PQ buses) for this case are depicted in Figure. 3.3. It is clear from 

this figure that the voltage profile has been significantly improved.  In case 2, the active 

power loss is slightly increased to 155.94 MW, while the VD is reduced from 3.41 to 0.1898 

p.u, compared with case 1. 

Table ‎3.8. Comparison of voltage deviation minimization percentage for IEEE 118-bus system 

Algorithms 
PSO-TVIW 

[84] 

PSO-TVAC 

[84] 

SPSO-TVAC 

[84] 

PGSWT-PSO   

[84] 

TLBO 

 [81] 

QOTLBO 

[81] 
AEO 

Min VD 0.1935 0.3921 0.2074 0.2355 0.2237 0.1910 0.1898 

Average VD 0.2291 0.4724 0.2498 0.2755 0.2306 0.2043 0.2122 

Max VD 0.2809 0.5407 0.3012 0.3239 0.2543 0.2267 0.2346 

Standard 

deviation 
0.0206 0.0316 0.0215 0.0205 0.0384 0.0356 0.0117 

PLoss 176.45 179.79 146.81 150.5609 NA NA 155.94 

L-max 0.0672 0.0667 0.0650 0.0671 NA NA 0.0672 

Bold result denote the best findings 
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3.2.7. Large-scale test system IEEE 300-bus [14] 

To examine the scalability of the proposed AEO algorithm in solving large-scale ORPD 

problem, the IEEE 300-bus has been also analyzed [75,76]. This system consists of sixty-

nine generators, forty  hundred eleven transmission-lines of which hundred-seven branches 

with off nominal tap ratios, and fourteen parallel reactive power sources [14]. The total load 

is (235.258 + j77.8797) p.u. The limits of the control variables are given in Table 2 and from 

[85]. This test system exhibits very large voltage drops [86], making it harder to ensure the 

feasibility of solutions. Two cases are considered with this test system: 

Case 3: minimization of PLoss;   Case 4: Voltage Deviation (VD). 

Due to numerous variables and/or for sake of brevity, only the optimal solutions of reactive 

powers of the best results of three implemented algorithms are presented in the Table 3.9. 

From this table, it can be observed that reactive powers of parallel compensators are within 

admissible limits. The results demonstrate that applying AEO algorithm has led to highest 

reduction of power loss up to 10.62% compared with that achieved by other solvers, which is 

to 5.19% with ALO and 3.45% with NBA. Figure 3.6 illustrates comparison between voltage 

profiles of case 3 and case 4. It is clear from this figure that voltage profile has been 

significantly improved while guarantying the feasibility of solutions. The convergence plots 

of the algorithms are shown in Figure. 3.7, AEO algorithm has better convergence rate 

compared with NBA and ALO algorithms. Hence, it can be concluded that AEO algorithm 

has the best performance among all rival techniques. 

Table ‎3.9  Reactive power outputs of reactive power sources for IEEE 300-bus system 

Reactive power  Qmin  MW Qmax  MW ALO NBA AEO 

Q96 0 450 156.1047 310.5364 265.9470 

Q99 0 59 42.3299 46.6332 56.0155 

Q133 0 59 43.1910 13.6233 13.7380 

Q143 -450 0 -366.3272 -213.1504 -138.9393 

Q145 -450 0 -313.4199 -22.31805 -0.011484 

Q152 0 59 26.7216 24.8115 27.3465 

Q158 0 59 1.7599 29.6067 50.6618 

Q169 -250 0 -43.947 -65.5245 -190.8406 

Q210 -450 0 -441.0207 -206.2088 -171.7650 

Q217 -450 0 -125.9645 -242.5776 -144.7891 

Q219 -150 0 -17.3397 -26.4242 -52.5704 

Q227 0 59 11.8801 52.9413 43.0150 

Q268 0 15 10.4662 2.5657 2.8092 

Q283 0 15 7.7908 3.8356 7.37052 

min PLoss  MW PLoss
0    

=   408.316 387.1207 394.2322 364.9162 

L-index (p.u) L-index
0  

=  0.4135 0.40816 

 
0.3900 0.38952 
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Table ‎3.10. Comparison of the results for case 3 and 4 of  IEEE 300-bus system 

Table 3.10, summarizes the comparison results of optimum power losses and voltage 

deviation obtained by employing different algorithms for both cases. From Table 3.10 we 

can see that proposed AEO achieves high quality solutions compared to other approaches. 

Again, according to numerical findings, lower voltage deviation value by AEO in 

comparison with other algorithms is observable which achieved to 1.97 (p.u), i.e., minimized 

by 63.7% compared to the initial value, whereas, is minimized up to 50% with A-CSOS, 

16.3% [85] with SOS, 35.4% [85] with ALO, and 28.28% with NBA. Consequently, the 

proposed AEO algorithm not only benefits from high quality solutions, but also by guarantee 

the feasibility of solutions of both cases for large-scale test system.  

 

Figure ‎3.6. Voltage profile for both cases of IEEE 300-bus test system 
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Voltage profile of Case 3

Voltage profile of Case 4

Vmax =1.1 p.u

Vmin = 0.90 p.u

Algorithms MVMO 

[31] 

DEEPSO 

[31] 

SOS 

[85] 

A-CSOS 

[85] 

GM 

[85] 

ALO NBA AEO 

Case 3:  PLoss minimization 
Min PLoss  

(MW) 
385.62 394.434 409.964 367.1255 372.26 384.922 394.2322 364.9162 

 L-index   NA NA NA NA NA 0.3663 0.3900 0.3895 

Reduction 

(%) 
5.55 3.4 –0.40 10.08 8.83 5.72 3.44 11.32 

Case 4: VD minimization 
 SOS [85] A-CSOS [85] NBA ALO AEO 

Min VD  

(p.u) 
4.5420 2.7113 3.8929 3.5033 1.9718 

 PLoss  (MW) NA NA 553 .168 469.533 423.243 

L-index   NA NA 0.4177 0.3945 0.4045 

Reduction 

(%) 
16.33 50.05 28.28 35.46 63.67 
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Figure ‎3.7. Comparative convergence curves for PLoss minimization of the 300-bus 

3.2.8. Algerian power grid DZA 114-bus 

In order to give a practicability aspect, the Algerian power system DZA 114-bus [74] has 

been considered as test system. The Algerian electricity grid topology is depicted in Figure A 

in the Annex. This system comprises 175 transmissions lines, 15 generators, and 16 branches 

with off-nominal tap ratio. In addition, buses nos. 50, 55, 66, 67, 77, 89 and 93 have been 

selected as reactive power sources. The total load demand is (37.27+ j 20.70) p.u at 100 

MVA base. Bus 4 is selected as the slack-bus. Therefore, the system has a total of 38 

variables to be optimized, including fifteen generators, 16 transformers and seven reactive 

power sources. Also, this power system presents undesirable voltage drops. The upper and 

the lower operating limits of the control variables are given in Table 3.2.  

a) Case 5: minimization of PLoss 

Table 3.11 summarizes the optimal control variables of DZA 114-bus, obtained by AEO, 

NBA and ALO. From the results, the smallest active power losses are obtained using the 

AEO technique. The proposed algorithm can find the losses as 53.204 MW in continuous 

variables case and 53.244 MW with discrete variables case. The results confirm that the 

AEO algorithm is able to find the best solution for both kinds of control variables 

(continuous and discrete) in comparison to the results of NBA and ALO algorithms. The 

evolution of losses across iterations for three algorithms are given in Figure 3.8. The 

performance of AEO for 30 independent execution runs is shown in Figure 3.9. From this 

figure, it can be seen that the difference between worst and best solution doesn‘t exceed 1.61 
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MW. It can be noted that best, worst solutions for all test systems after 30 runs are extremely 

close, which clearly reflects the stability and robustness of AEO algorithm in terms of 

exploring the optimal solution in each trial. 
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Figure ‎3.8. Comparative convergence curves for PLoss minimization of the 114-bus 
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Figure ‎3.9. Performance of 30 individuals for 30 independent execution runs 

 

 

 

 

 

 

 



CHAPTER 3 | OPTIMAL REACTIVE POWER DISPATCH STUDY 

Page | 48  

 

Table ‎3.11. Solution of minimum Ploss for Algerian Electricity Grid- DZA 114-bus 

Control 

variables 

Continuous variables 
 

Discrete variables 

ALO NBA AEO ALO NBA AEO 

Case 5 

Generator Voltage (p.u) 

V4 1.099960 1.1 1.099999 

 

1.1 1.099994 1.1 

V5 1.099750 1.1 1.099833 1.099999 1.099562 1.0997 

V11 1.096232 1.1 1.099999 1.099981 1.099991 1.1 

V15 1.093981 1.098069 1.091310 1.098029 1.092537 1.0935 

V17 1.1 1.1 1.099999 1.1 1.1 1.0999 

V19 1.055576 1.066200 1.082310 1.017579 1.022780 1.0936 

V22 1.062448 1.071543 1.087102 1.023613 1.020059 1.0985 

V52 1.042803 1.050259 1.087556 1.023684 1.032393 1.0932 

V80 1.093085 1.091932 1.091039 1.098850 1.091589 1.0926 

V83 1.099997 1.099171 1.099837 1.1 1.1 1.0999 

V98 1.0995280 1.099086 1.099271 1.099999 1.1 1.1 

V100 1.1 1.1 1.099995 1.1 1.099999 1.0999 

V101 1.1 1.1 1.1 1.1 1.099745 1.0999 

V109 1.0998462 1.1 1.099947 1.1 1.099999 1.1 

V111 1.0975876 1.1 1.099976 1.1 1.099286 1.1 

Tap ratio (p.u) 

T80-81 1.0074685 1.039184 0.901745 

 

1.03 0.99 0.90 

T81-90 1.0581378 1.029146 0.946162 1.04 1.04 0.96 

T86-93 1.0735973 1.015320 0.963416 1.05 1.06 0.99 

T42-41 1.0668528 1.013559 0.980564 1.04 1.08 0.98 

T58-57 1.0716278 0.993079 0.965906 1.07 1.02 0.97 

T44-43 1.0878220 1.022719 0.974318 1.05 1.06 1.00 

T60-59 1.0518370 1.044176 0.989930 1.08 1.03 0.98 

T64-63 1.0938053 0.973303 0.959374 1.03 1.02 0.97 

T72-71 1.0395981 0.982745 0.955683 1.01 1.06 0.96 

T17-18 1.0023307 0.994556 0.989024 1.05 1.03 0.98 

T21-20 1.0379620 1.022736 0.998976 1.09 1.05 0.99 

T27-26 1.0416436 0.975391 0.961404 1.09 1.03 0.96 

T28-26 1.0933018 1.050337 1.029924 1.06 1.06 1.02 

T31-30 1.0676910 1.027098 0.989257 1.04 1.05 0.99 

T48-47 1.0972839 1.024613 0.984472 1.09 1.1 0.99 

T74-73 1.0648045 0.948207 1.014127 1.08 1.07 1.08 

Capacitor Banks (MVAR) 

QC-50 22.509200 16.09386 24.35864 

 

13 24 25 

QC-55 14.801860 12.77946 10.15448 23 15 10 

QC-66 24.509874 24.32149 19.44356 18 23 22 

QC-67 21.278427 20.83231 25 19 25 25 

QC-77 23.289257 20.41054 14.309846 24 25 16 

QC-89 21.607676 8.110358 7.539387 21 15 7 

QC-93 24.973281 25 24.95138 13 25 25 

PLoss  

(MW) 
57.02444 55.122041 53.2043026 57.412317 55.9677 53.244609 

L-index 0.312056 0.31199 0.278219 0.315175 0.302761 0.278153 

Psave (%) 15.4 18.27 21.11 14.8 17 21 

Case 6 

Algorithms ALO NBA AEO  ALO NBA AEO 

VD (p.u) 1.2179 1.28439 1.04515  1.2183 1.43166 1.07067 

PLoss  

(MW) 
65.611 74.478 71.779  

66.710 75.592 72.679 

L-index 0.3233 0.3177 0.31822  0.31817 0.319307 0.31791 
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b) Case 6 Voltage deviation minimization 

In this case, the proposed algorithm is also applied to minimize the total voltage deviation. 

Case 6 of Table 3.11 gives the simulation results obtained by three algorithms with either 

discrete or continuous variables. The VD value obtained by the AEO algorithm is better than 

those accomplished by the NBA and ALO algorithms for both kinds of variables. It can be 

seen that also with discrete control variables AEO converge to the optimal solutions. In case 

6, the active power losses is slightly increased, while the voltage deviation VD is reduced 

from 7.024 to 1.045 with continuous variables and from 6.84 p.u to 1.07067 p.u with discrete 

variables compared with case 5, respectively. For ALO and NBA algorithms the optimized 

voltage deviation is 1.2179 and 1.28439 p.u, for continuous variables and 1.2183 and 

1.43166 p.u., for discrete variables. Hence, it can be drawn that AEO algorithm is better than 

all other listed algorithms in terms global search capacity and efficacy to solve large-sized 

and nonlinear optimization problems. Fig. 3.10 presents a comparison between voltage 

profiles of case 5 and case 6 for Algerian electricity grid DZA 114-bus. It can be seen that all 

bus voltage magnitudes are within the admissible limits. 
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Figure ‎3.10. Voltage profile for DZA 114-bus power system 

3.2.9. Statistical test of one-way ANOVA 

Due to the stochastic nature of meta-heuristic optimization algorithms, it is evident must be 

run each technique several times on the same objective function in an effort to get the best 

result values, which probably vary to each execution. Instead of relying on the statistics of the 

aforementioned results in terms of best, worst solution and standard deviation, one-way 

analysis of variance (ANOVA) has been performed to observe the statistical significance of 

the difference between the performance of AEO algorithm and other implemented 
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approaches. This study gives certain level of confidence to the present work 95% and to 

evaluate which techniques could be potentially suitable to cope with ORPD problem in large-

scale systems. The one-way ANOVA results obtained from experimented algorithms on three 

test systems (IEEE 30-bus, IEEE 118-bus and DZA 114-bus) are listed in Table 3.12.  In this 

experiment, assumption of homogeneous variances is considered, it can be seen that the p-

value is less than significance level of 0.05. It can be declared that the null hypothesis can be 

rejected. There is statistically significant difference between the means of the different 

groups. Thus, it is strong evidence that the mean values in the groups differ. Hence AEO is 

statistically different from ALO and NBA. 

Table ‎3.12 One way ANOVA stats for active power losses of IEEE 30-bus system 

Null hypothesis         All means are equal 

Alternative hypothesis  At least one mean is different 

Significance level      α = 0.05 

       

Test ANOVA IEEE 30-bus 

 

Source of 

variance 
SS df MS F P-value F-crit 

Between groups 0.18868 2 0.09434 136.23 1.5785 e-27   3.1012 

Within groups 0.06025 87 0.00069    

Total 0.24893 89     

       

Test ANOVA IEEE 118-bus 
 

Source of 

variance 
SS df MS F P-value F-crit 

Between groups 956.14 2 478.07 205.69 1.0604 e-33   3.1012 

Within groups 202.21 87     2.324    

Total 1158.35 89     

       

Test ANOVA DZA 114-bus 

 
Source of 

variance 
SS df MS F P-value F-crit 

Between groups 209.827 2 104.914 77.18 5.2785 e-20   3.1012 

Within groups 118.256 87     1.359    

Total 328.083 89     

3.3. Multi-objective optimal reactive power dispatch (MOORPD) 

In the section 3.1 of this Chapter, many single objective cases of ORPD are solved. In present, 

the electric power is facing increasing substantial developments due to fundamental changes 

in both supply and demand, which increase the total power losses in affecting the security-

constraints. These developments oblige transmission system operators to modify their applied 
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optimization strategies in order to ensure both economic scheme and guarantee the 

satisfaction of all security constraints. Therefore, consideration of more than one objective in 

ORPD formulation and solution becomes necessary. Statutory developments of modern power 

system regarding quality of service have increased importance of guarantee the satisfaction of 

all security constraints. Maintaining high level of power quality requires minimal voltage 

deviation from the rated value and reduction of transmission loss to any extent signifies 

commercial benefit to the utilities. 

The ORPD is formulated as a non-linear multi-objective optimization problem, which aims at 

simultaneously minimizing either the active power losses and index of voltage stability (L-

index) or the active power losses and the total voltage deviation. Solution of multi-objective 

ORPD necessitates effective optimization techniques, as the objectives are often highly 

conflicting. In the vast majority of published papers, however, the ORPD problem is dealt 

with as a single-objective optimization problem [58–60,80,88] using various conversion 

methods, such as the weight sum method, epsilon-constraint method and others. These are 

popularly known as a priori methods. Single-objective optimization approaches are 

recognized as useful for finding only one best solution to the problem in one program 

execution or multiple executions to generate a set of Pareto-optimal solutions [89]. However, 

these optimization methods generally encounter some difficulties in identifying the complete 

or exact Pareto-optimal solutions, especially when it comes to solving complex conflicting 

objectives (Deb and Saxena, 2006). Furthermore, they are often computationally costly. These 

difficulties make these methods unsuitable for solving multi-objective optimization problems. 

In contrast, posterior methods can easily identify a set of Pareto optimal solutions in a single 

execution and are always capable of determining any kind of Pareto front. However, they are 

also computationally expensive. On the basis of the detailed literature surveys in [90,91], the 

multi-objective particle swarm optimization (MOPSO) algorithm, the Non-dominated sorting 

genetic algorithm (NSGA) and their improved versions are the most widely used ones for 

solving the MOORPD problem. 

In recent years, the ORPD problem has attracted considerable attention in the research 

community in an effort to ensure the stable and secure operation of electric power systems. At 

the present time, many published algorithms have been proposed for solving the MOORPD 

problem [63][69]. Accordingly, the major impediment of these algorithms resides in the 

inability of dominance to converge to the Pareto frontier while maintaining sufficient 

diversity. Moreover, due to the complexity of the objective functions used (ORPD problem), 

they continue to converge towards the local optimum. On the other hand, it obvious to note 
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that is not only interesting to find optimal solution or near optimal solution of such problem, 

but the most important is to assure the safety constraints and to guarantee that the control 

variables are within the admissible limits. In this study of MOORPD, multi-objective 

algorithm based on the ALO technique is applied on several multi-objective cases of standard 

IEEE 30-bus and IEEE 57-bus test systems as well as large-scale test system IEEE 300-bus.  

The algorithm is discussed in detail in Chapter 2, Section 2.2.1. The computation complexity 

of MOALO is less than multi-objective particle swarm optimization (MOPSO) and non-

dominated sorting genetic algorithm-II (NSGA-II). 

The contribution reported in this section is as follow: 

The ALO algorithm was originally developed for unconstrained multi-objective ORPD 

problem. Constraints in MOORPD have been handled by penalty function method. 

Thereafter, results of study cases and feasibility of the obtained and reported outcomes are 

analyzed, discussed and compared with MOPSO and NSGA II. Furthermore, results of all 

cases study are fully verified with the use of power flow calculations. 

The MOALO algorithm is used to solve MOORPD problem, which aims to find the set of 

optimal solutions of controlled variables by which the solutions found correspond to a 

minimum value of the selected objective function. The following steps describe the 

computational procedure for solving the MOORPD problem using the MOALO algorithm and 

the flowchart of proposed algorithm is shown in Figure.2.1. In the proposed algorithm, the 

solution vectors are antlions and ant and their positions represent the output of each control 

variables at the MOORPD problem. 

Step 1: Define input power system data (line data + bus data) and identify the control 

variable limits, number of variables, number of search agent, maximum number of iterations, 

number of Pareto archive. 

Step 2: Initialize random values of ants and antlions populations i.e. for each search agent 

in population is a randomly generating a string of real values within their control variable 

limits. Set the generation count (gen = 1). 

Step 3: Run power flow algorithm based on the Newton Raphson method for each search 

agent (ant and antlion) in an effort to evaluate fitness values corresponding to both objective 

function (Ploss and VSI or Ploss and VD) as well as constraint violations. 

Step 4: Find the best antlion and store it as an elite. 

Step 5: For each ant, select an antlion by using Roulette wheel mechanism 

Step 6: Search space coverage, i.e., limit of ORPD control variables towards selected 

antlion 
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Step 7: Create random walk for ants (the position of ants here, indicates the control 

variables of MOORPD problem) in order to promote the control variables. 

Step 8: Update the control variables (position of ant). 

Step 9: Check if a limit of promoted control variables is within the admissible limit (search 

space); if so, go to step 11; otherwise go to step 5. 

Step 10: Run power flow algorithm based on the Newton-Raphson method by utilizing the 

set of promoted variables to calculate of both objective function values (Ploss and VSI or Ploss 

and VD). 

Step 11: Replace antlion with better ant than current antlion. 

Step 12: Update elite and archive maintenance to realize best Pareto optimal front. 

Step 13: Check the stop criterion, i.e., if gen= max generation count, then stop; otherwise 

increment generation count (gen=gen+1) and go to step 3. 

Step 14: Generate the Pareto optimal front and extract the best compromise solution from 

the Pareto optimal front using fuzzy set theory. 

3.4. Objectives, case studies for MOORPD and input for MOALO  

In order to assess the performance of MOALO, standard IEEE 30 and IEEE 57-bus test 

systems as well as large-scale IEEE 300- bus test system are selected and several case studies 

with multi-objectives have been performed. The summaries of systems data along with real 

power losses, Voltage deviation, and voltage stability index in the initial conditions have 

already been provided in Tables 3.1–3.3. 

The multi-objective cases are formulated with two objectives. The case studies are 

summarized as follows: summarized as follows: 

 Case 1: minimization of PLoss and VD in IEEE 30-bus [64]. 

 Case 2: minimization of PLoss and VD in  IEEE 57-bus [64]. 

 Case 3: minimization of PLoss and VSI in the IEEE 57-bus [67]. 

 Case 4: minimization of PLoss and VD in the IEEE 300-bus; 

 Case 5: minimization of PLoss and VSI in the IEEE 300-bus. 

The algorithm were developed in MATLAB 7.10 programming language and the simulation 

conducted on a computer Core (TM) i5 a 1.90 GHz with 4 Go RAM. 
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Table ‎3.13 Control parameter settings of MOALO algorithm for test power systems 

Parameter 
Setting Value 

IEEE 30-bus IEEE 57-bus IEEE 300-bus 

No of search agents (NSA) 50 50 60 

No of iterations 100 100 200 

Search domain  (rand) [0 1] 

Number of  Pareto archive 50 50 100 

3.4.1. Results and comparisons of MOORPD case studies 

a) Best Pareto front and the best compromise solution 

Each case study is run 20 times independently. Thereafter, from 20 Pareto fronts, we select 

the best Pareto front. Once having the set of Pareto optimal solutions has been obtained, fuzzy 

set theory is implemented to extract so-called the best compromise solution that will satisfy 

the different goals to some extent. In this approach, the membership function j

i  for i
th

 

objective function iF  of non-dominated solution j is calculated by using the equation below: 

[92,93].  
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min max
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                                    (‎3.16) 

where max

iF and min

iF  are respectively the maximum and the minimum values of the i
th

 

objective function among all the non-dominated solutions. The membership function reflects 

the degree of achievement of the original objective function as a value within [0, 1], i.e., with 

j  = 1 wholly satisfactory and with j  = 0 as not satisfactory. For each non-dominated 

solution j, the membership function is normalized as follows: 

1

1 1
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i
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





                                                    (‎3.17) 

where Nobj is the number of objective functions, and M is the number of non-dominate 

solutions. The solution with the maximum membership can be considered as the best 

compromise solution. 
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b) IEEE 30-bus and IEEE 57-bus test systems 

In first two cases (cases 1, 2), two competing objective functions, i.e., active power losses 

and voltage deviation are optimized simultaneously using MOALO algorithm. The best 

solution of control variables with results of minimum power loss, minimum voltage 

deviation, and power loss reduction in percentage, as well as CPU time, are listed in Tables 

3.14– 3.16. In addition, under the same variable limits and constraints, the results obtained 

using MOALO are compared with those reported with the MOPSO and MOEPSO 

algorithms. From this comparison, it can be seen that MOALO is much more efficient than 

MOPSO and MOEPSO in terms of solution quality and computation time: with MOALO, the 

active power losses and voltage deviation for case 2 decreased by about 0.7198 MW and 

0.0352 (p.u) compared to those reported with the MOEPSO algorithm. The distribution of 

the Pareto optimal front for the IEEE 30-bus test system is shown in Fig. 3.11. 

Table ‎3.14 Comparison of simulation results of MOPSO and MOALO for case 1 

Variables 

 

MOPSO [64] MOALO 

 Min PLoss Min VD BCS Min PLoss Min VD BCS 

VG1 0.900

0 

0.9003 1.0957 1.0984 1.0560 1.0802     

VG2 1.100 1.1000 1.1000 1.0914 1.0350 1.0719     

VG5 1.100 1.1000 1.1000 1.0683 1.0152 1.0438     

VG8 1.100 1.1000 1.1000 1.0766 0.9964 1.0481     

VG11 1.100 1.1000 1.1000 1.0703 1.0356 1.0614     

VG13 1.100 1.1000 1.1000 1.0398 1.0139 1.0304   

T6-9 1.04 1.10 1.08 1.0963 1.0272 1.0759 

T6-10 0.90 0.90 0.90 1.0368 0.9487 1.0140 

T4-12 0.98 1.10 1.04 1.0928 1.0007 1.0677 

T28-27 0.96 0.98 0.98 1.0310 0.9630 1.0085 

QC10 5.00 0.50 0.00 4.6403 4.6017 4.6279 

QC12 5.00 5.00 5.00 3.2946 3.7432 3.4322 

QC15 5.00 5.00 5.00 4.1006 4.2643 4.1182 

QC17 5.00 5.00 5.00 2.9287 3.1922 2.9951 

QC20 5.00 5.00 5.00 4.9652 4.9082 4.9045 

QC21 5.00 5.00 5.00 3.3647 3.6315 3.4059 

QC23 5.00 5.00 5.00 3.4841 3.6185 3.4882 

QC24 5.00 5.00 5.00 3.2282 3.5834 3.2965 

QC29 3.50 2.50 2.50 4.9953 4.9441 4.9157 

PLoss (MW) 5.1089 5.2069 5.1450 4.7633 

 

5.4267 

 

4.9201 

 

VD (p.u) 0.6130 0.1885 0.2821 0.6371 0.1599 0.3880 

% Psave_loss 10.10 8.37 9.46 16.81 4.50 13.42 

CPU (s) 53.2 56.1 
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Figure ‎3.11 Pareto optimal front of MOALO, Case 1 

Table ‎3.15 Comparison of simulation results of MOEA and MOALO for case 2 

Variables MOEA [94] 

 

VEPSO [94] MOALO 

VG1 1.050 1.0403 1.0759 

 VG2 1.044 1.1000 1.0638 

 VG5 1.023 1.0231 1.0395 

 VG8 1.022 0.9500 1.0434 

 

 
VG11 1.042 1.0551 1.0415 

 VG13 1.043 0.9500 1.0386 

 T6-9 1.090 1.0329 1.0442 

 T6-10 0.905 0.9913 1.0377 

 T4-12 1.020  0.9974 1.0431 

 T28-27 0.964 1.0165 0.9892 

QC10 Fixed at 19.0 15.056 21.957 

 QC24 Fixed at 4.3 3.7842 9.6227 

 PLoss (MW) 5.1995 5.0941 4.9818 

VD (p.u) 0.2512 0.1374 0.3742 

 
 

For case 3, the optimum values of power losses and voltage stability index (L-index) obtained 

with MOALO were 26.3952 MW and 0.2854, i.e. 16% and 1.02% less than those reported 

with MOPSO. 

Table ‎3.16 Comparison of simulation results of MOEPSO and MOALO for case 3 

Objectives 

 

MOEPSO [64] MOALO 

Min PLoss Min VD BCS Min PLoss Min VD BCS 

PLoss   (MW) 27.3128 27.7258 27.4268 26.593 27.967 27.2131 

VD     (p.u.) 1.0724 0.8459 0.89635 1.1039 0.8107 0.8909 

CPU      (s) 531.07 115.02 
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Furthermore, the computational time for MOALO was less than for the MOPSO and 

MOEPSO algorithms for case 2 and case 3, but a little worse for case 1. The reactive power 

outputs of generators corresponding to the MOORPD solution obtained by the proposed 

MOALO for cases 2, and 3 are presented in Figs 3.12–3.13. Figure 3.14 depicts the voltage 

profile of case 2. These results amply confirm the capability of the proposed algorithm to 

handle the equality and inequality constraints of the MOORPD problem.   

Table ‎3.17 Comparison of simulation results of MOPSO and MOALO for 57-bus system 

Variables 

 

MOPSO [67] MOALO 

Min PLoss Min VSI BCS Min PLoss Min VSI BCS 

VG1 1.10000 1.10000 1.10000 1.0638 1.0456 1.0550 

VG2 0.90000 0.90000 0.90000 1.0486 1.0298 1.0381 

VG3 1.10000 1.10000 1.10000 1.0510 1.0297 1.0383 

VG6 1.10000 0.99771 1.05681 1.0570 1.0336 1.0424 

VG8 0.90000 0.90000 0.90000 1.0967 1.0764 1.0830 

VG9 1.08959 0.96893 1.05494 1.0666 1.0462 1.0552 

VG12 1.10000 1.10000 1.10000 1.0805 1.0642 1.0701 

T4-18 0.90000 0.90000 0.90000 1.0195 0.9978 1.0053 

T4-18 0.97000 1.00000 1.01000 1.0340 1.0112 1.0210 

T21-20 1.01000 1.10000 1.04000 1.0990 1.0952 1.0983 

T24-25 0.90000 0.90000 0.90000 0.9909 0.9642 0.9735 

T24-25 1.10000 1.10000 1.10000 1.0128 0.9844 0.9934 

T24-26 1.10000 1.10000 1.10000 1.0998 1.0947 1.0977 

T7-29 0.91000 0.91000 0.91000 0.9973 0.9693 0.9799 

T34-32 0.90000 0.90000 0.90000 1.0305 1.0029 1.0136 

T11-41 0.90000 0.9000 0.90000 1.0260 1.0057 1.0138 

T15-45 0.92000 0.9200 0.92000 0.9904 0.9642 0.9737 

T14-46 0.90000 0.9000 0.90000 0.9828 0.9579 0.9672 

T10-51 0.90000 0.9000 0.90000 0.9963 0.9759 0.9853 

T13-49 1.10000 1.1000 1.10000 1.0084 0.9902 0.9988 

T11-43 0.91000 0.9100 0.91000 0.9987 0.9738 0.9825 

T40-56 1.10000 1.1000 1.10000 1.0291 1.0038 1.0140 

T39-57 0.97000 1.0300 1.01000 0.9995 0.9765 0.9864 

T9-55 0.92000 0.9200 0.92000 1.0650 1.0421 1.0525 

QC18 7.500 18.50 17.50 5.8080 5.8077 5.8632 

QC25 0.000 0.000 0.000 8.6317 8.3751 8.4914 

QC53 0.000 0.000 0.000 13.5386 13.3489 13.4402 

PLoss (MW) 31.424 31.595 31.462 26.3952 

 

27.2634 

 
26.7477 

 VSI (p.u) 0.29123 0.28834 0.28952 0.2994 0.2854 0.2885 

CPU (s) 424.59 151.55 
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Figure ‎3.12. Reactive power outputs at generators for Case 2, IEEE-57 bus system 
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Figure ‎3.13. Reactive power outputs at generators for Case 3, IEEE-57 bus system 
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Figure ‎3.14 Voltage profile for IEEE 57-bus system, case 2, Ploss and VD 
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In order to further assess the results obtained and to highlight the value of the MOALO 

algorithm in solving the constrained MOORPD problem, the accuracy of the results reported 

with the MOPSO and MOEPSO algorithms as well those obtained with the MOALO 

algorithm were checked, specifically those of the dependent variables (reactive power 

outputs of generators and load bus voltages). The outcomes were recalculated by using the 

corresponding optimal control variables of each simulation case as input data of the 

MATPOWER load flow program. 

The exact results of PLoss, VD, and L-index obtained from the power flow program for the 

three cases are summarized in Table 3.18. A meticulous observation of these results reveals a 

violation of the dependent variables‘ limits, rendering the solutions infeasible. An in-depth 

critical analysis of the reported results was carried out on the IEEE 30-bus and IEEE 57-bus 

test systems and can be summarized as follows: 

 Case 1− min PLoss: The reactive power of generators at buses 1, 2, and 8 violates their 

limits by 95.14 %, 95.26 %, and 31.81 % respectively. Also, all the voltage magnitudes at 

the load buses except buses 3 and 4 exceed the fixed limits [0.94−1.06] p.u. 

 Case 2− min VD: The reactive power of generators in all PV buses except 12 violates their 

limits by 79.26 %, 95.51 %, 94.71, 42.92, and 99.67 % respectively. Also, almost all 

voltage magnitudes at the load buses exceed the upper and lower limits [0.94−1.06] p.u. 

In addition, the exact values of power loss and voltage deviation are 134.634 MW and 

3.8182 (p.u) respectively. Therefore, there are significant differences between reported 

and recalculated results. 

 Case 3− min VSI: The reactive power of generators at all buses 1, 2, 3, 6, 8, 9, and 12 

violates their limits by 73.26 %, 97.77 %, 86.78 %, 60.93%, 39.20%, 78.46%, and 41.16% 

respectively. Furthermore, the voltage magnitudes at the load buses 7, 8, 16–18, 43–48, 51 

exceed the voltage limits [0.94 − 1.06] p.u. 

The same verifications were performed for all the remaining cases, and significant 

differences between the obtained power flow outcomes and the corresponding results 

reported in references [67] and [64] were found (see Tab. 3.18). These solutions are therefore 

judged to be infeasible due to the undesirable violation of dependent variables. On other 

hand, just a glance at Fig 3.14 and Table 3.17 is sufficient to confirm the consistency of the 

proposed algorithm of finding the best solutions while satisfying the power flow equations, 

system security, and equipment operating limits. 
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Table ‎3.18 Results of power flow for control variables given in Tables 3.14−3.16 

Algorithms 
Calculated Violating constraints 

PLoss (MW) 

 
VD (p.u)    Load buses QG 

min PLoss 

Case 1 

MOPSO 

36.993 2.137 all buses except 3 and 

4 
1,2, and 8 

min VD 36.971 1.54 
4, 6, 10, 17, 25, 27, 28, 

29 
1, 2, 3 

BCS 4.836 2.027 all buses 1 

min PLoss 

Case 2 

MOEPSO 

123.78 2.976 
12-20, 24,26, 27, 30, 

31,34-39, 55, 57 
1-3, 6, 8, 9,12 

min VD 134.63 3.818 4, 5, 13-28, 30-44, 55  all except 12 

BCS 149.62 2.964 
4, 5, 11-17, 19-26, 30-

40, 55 
all except 12 

min PLoss 

Case 3 

MOPSO 

117.98 
VSI 4, 5, 11, 13-25, 32, 33, 

36-51, 54-57  
all except 12 

0.249 

min VSI 105.44 0.273 7, 8, 16-18, 43-48, 51 1-3, 6, 8, 9,12 

BCS 109.52 0.256 
4, 8, 13,15-24, 32, 33, 

38, 41,43-48, 50, 

51,55 

all except 12 

c) Large-scale test system, IEEE 300-bus 

In order to examine the capability of MOALO algorithm to solve the MOORPD problem in a 

large-scale power system, the IEEE 300-bus [76] was used as the test system. The min/max 

of the control vector were taken from [80]. Moreover, it is important to note that this test 

system exhibits very large voltage drops [86], making it harder to ensure the feasibility of 

solutions. 

Discussion 

Under the constraints used here, the Ploss and VD were optimized simultaneously as multi-

objective functions on a large-scale IEEE 300-bus system. The Pareto optimal front obtained 

using MOALO is depicted in Figure 3.15. The optimal values of reactive power sources as 

well as the PLoss, VD, and best compromise solution (BCS) are listed in Table 3.19 that also 

satisfies system security. Power losses and voltage deviation were reduced by 3.63% and 

4.76 % respectively with respect to the base case. The average computation time required to 

attain a near-optimal solution for the large-scale power system was 23.8 seconds per 

iteration. In addition, from Figure 3.15, it can be seen that the optimal Pareto front has a 

good distribution of the non-dominated solutions, thus validating the potential of MOALO 

algorithm to solve the nonlinear multi-objective problem. 
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Table ‎3.19 Reactive power outputs of parallel compensators for IEEE 300-bus, case 4 

IEEE 300-bus system 

Variable

s 

Limits Case 4  Case 5 

Qmin Qmax Min PLoss Min VD BCS Min PLoss Min VSI BCS 
Q96 0 4.5 3.661 3.614 3.638 1.991 1.915 1.962 

Q99 0 0.59 0.4218 0.4176 0.4188 0.509 0.500 0.506 

Q133 0 0.59 0.3108 0.3087 0.3085 0.444 0.433 0.440 
Q143 -4.5 0 -4.3382 -4.2047 -4.251 -2.574 -2.621 -2.59 
Q145 -4.5 0 -2.4711 -2.3514 -2.4021 -3.377 -3.428 -3.95 

Q152 0 0.59 0.1534 0.1471 0.1503 0.1721 0.1629 0.1685 
Q158 0 0.59 0.5589 0.5539 0.5543 0.5325 0.5163 0.5274 
Q169 -2.5 0 -1.2811 -1.2306 -1.2443 -2.231 -2.262 -2.238 

Q210 -4.5 0 -3.036 -2.935 -2.989 -4.194 -4.214 -4.201 
Q217 -4.5 0 -3.991 -3.904 -3.938 -3.305 -3.386 -3.328 
Q219 -1.5 0 -0.6356 -0.5987 -0.6115 -0.8038 -0.8135 -0.807 

Q227 0 0.59 0.5059 0.4957 0.4983 0.375 0.362 0.369 
Q268 0 0.15 0.1143 0.1125 0.1131 0.1180 0.1157 0.1170 
Q283 0 0.15 0.0868 0.08560 0.0860 0.0847 0.0825 0.0839 
PLoss  (MW) 393.4646 

 

408.899 

 

398.852

7 

 

384.5104 

 

392.7140 

 
386.24

1 
 

VD  (p.u) 8.5482 5.1702 6.0169  
L-index  0.2058 0.1983 0.2010 
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Figure ‎3.15 Pareto optimal front of MOALO, Case 4 

For case 5, the optimum values for power losses and voltage stability index obtained with 

the MOALO algorithm were 384.51 MW and 0.1983 respectively, i.e. a reduction of 5.83% 

and 52% respectively compared with the base cases. It is necessary to note that the voltages 

magnitudes at all of load buses are inside the imposed boundaries. Therefore, according to 

Table 3.19, the reactive powers of the parallel compensators are within the admissible limits, 

confirming the efficiency of the proposed algorithm to obtain the feasible solutions. Figure 

3.16 shows the distribution of non-dominant solutions that correctly represent the Pareto 

optimal front. 
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Figure ‎3.16 Pareto optimal front of MOALO algorithm, Case 5 

As a result, even with the large-scale test system, the MOALO algorithm gives the best 

adjustment of control variables and converges well to the Pareto front with a good diversity 

of solutions. In other words, it has been also proven that the proposed MOALO algorithm is 

more suitable to solve MOORPD than the other algorithms of which it can not only benefit 

from good distributions of the non-dominated solutions, but also guarantee the feasibility of 

solutions obtained for three test power systems. 

3.5. Conclusion 

In this chapter, a newly introduced optimization paradigm namely AEO, has been 

proposed to cope with the nonlinear ORPD problems in the practical and large-scale power 

systems. Among these algorithms are ALO, and its version multi-objective (MOALO), 

WOA, NBA, and AEO. These optimization techniques have been extended to solve mixed 

integer optimization problems with discrete variables. Also, adopted as search strategies to 

define optimal control variables, so that desired objective functions are optimized. Medium-

size and large scale as well as Practical Algerian power system are selected as test systems. 

The conflicting objectives, namely real power loss, voltage deviation, and voltage stability 

index were successfully minimized under various constraints. An in-depth analysis on the 

both obtained and reported results was presented, verified and approved the feasibility of 

solutions. The comparison indicates that the proposed approaches are much more effective 

than others algorithms in terms of the quality of obtained optimal solutions and simulation 

time required. At the end, on the light of detailed information given in this article, it is 

concluded that the suggested algorithm is the more suitable choice of coping optimal reactive 

power dispatch problems where it proves its efficiency even with large-scale and real power 

systems. 
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Chapter  4 

OPF STUDY INCORPORATING STOCHASTIC WIND AND SOLAR POWER  

4.1. Introduction 

Recently, the Optimal Power Flow solution in large-scale systems under uncertainties of 

intermittent energy sources has attracted considerable attention. However, despite the huge 

efforts conducted in this area since half-a-century ago, this issue is still an open subject 

nowadays. In this context, determination of the optimum operating parameters of electric grid 

with optimal scheduling of different energy sources is very important. In this chapter, we 

propose artificial ecosystem optimization (AEO) algorithm to cope with stochastic optimal 

power flow (OPF) problem in presence of renewable energy sources. The problem is 

formulated as large-scale constrained optimization problem with non-linear characteristics. Its 

degree of complexity increases with incorporation of intermittent and uncertain renewable 

sources, making it harder to be solved using conventional optimization techniques. However, 

it can be efficiently resolved by using nature-inspired optimization algorithms and solvers 

without any modification or approximation into the original-formulation. The Weibull and 

lognormal probability-distribution-functions (PDF) are used to forecast wind power and solar 

photovoltaic production, respectively. The objective function is the overall cost of system, 

including reserve cost for over-estimation and penalty cost for under-estimation of both PV-

solar and wind energy. Several numerical results of IEEE 30-bus test system and Algerian 

electricity grid DZD114-bus (220/60 kV) serve to show the performance of the proposed 

algorithm. A comparative study of the experimental results confirms that proposed AEO 

performs better than other optimizers in all studied cases for both electric grids.  

4.2. Overview and literature of stochastic OPF problem  

OPF is one of primordial tools of electric power systems, offering the electric power at 

minimum cost with high quality. In short, is therefore the backbone of electric grids due to the 

important role that its plays in facilitating operation and planning functions. Its master 

objective is to specify the optimal adjustment of control variables so that a selected objective 

function is optimized while satisfying various physical and operational constraints imposed by 

electric power grids (equality and inequality constraints). The most commonly treated 

objective function is the minimization of the overall generation cost. However, other 
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functions are minimization of gas emission, active power loss, voltage stability index, and bus 

voltage deviation [19].While the used control variables are active power of generators 

outputs, generator voltages magnitudes, positions of the transformer taps, and amount of 

reactive power sources injected by parallel compensators. These variables are a mix between 

discrete and continuous ones, the parallel compensators and tap changer transformer are 

discrete variables, whereas the remaining ones are continuous.  

In traditional electric grids, the study of OPF considers conventional power generators run on 

fossil-fuels. However, with electricity market liberalisation, and integration of renewable 

energy sources (RES), study of OPF becomes more complicated leading to increase the 

complexity of objective function significantly. This is due to the diverse functions based on 

the variability and uncertain used in its problem formulation. The prime objective behind 

incorporation of wind power and solar PV generators in the grids is to reduce the transmission 

line losses and improving the reliability and quality of electric grids. Also they reduce 

environmental pollution [95]. In addition, with increasing of injected power from RES, 

specifying optimal contribution of each generator in the system is necessity. Thus, energy 

management and optimal scheduling of different resources can effectively help diverse 

missions of electric power system operator, ultimately reducing total generation electricity 

cost. 

 In the few past decades, numerous conventional optimization techniques have been applied to 

solve different versions of OPF problem. The conventional solvers are the Newton method 

[96] [97], non-linear programming (NLP) [98] and interior point methods [99]. Despite the 

fact that some of abovementioned methods have excellent convergence characteristics and 

some of them are usually suitable for industry applications. However, they have some 

weaknesses, which are summarized as follows: 

1) Sensitivity to the initial search point, i.e., they might converge easily to local solutions as 

may converge to global ones.  

2) Lack of flexibility with respect to practical systems, i.e., each method is suit for a specific 

problem formulation in its proper objectives and/or constraints. 

3) Besides the inflexibility aspect, they also encounter a huge difficult to set of uncertain and 

stochastic problems, such as OPF with application of renewable generation. 

Therefore, developing new and effective optimization methods is necessity in effort to 

overcome the shortcomings of the traditional optimization techniques'[100]. Thanks to the 

computational intelligence, schemes and open access to optimization techniques have 
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liberated considerable researches in the field of meta-heuristic algorithms to solve complex 

optimization problems during first decade. These optimizers have ability to provide near-

global solutions and capability to escape local ones, avoiding in premature convergence. 

Many meta-heuristic optimization algorithms have been implemented to cope with classical 

OPF problem like improved version of PSO [101], moth swarm algorithm (MSA) [29], 

improved bacterial forging method (IBF) [102], teaching-learning-based optimization (TLBO) 

technique [103], backtracking search optimization algorithm (BSA) [31], improved colliding 

bodies optimization (ICBO) [32], and adaptive multiple teams perturbation-guiding Jaya 

(AMTPG-Jaya) algorithm [36]. While aforementioned references are limited on the thermal 

power generators only. In the few past years, a system with mixed resources involving 

thermal, wind and solar generators have been studied in quest of provide electrical energy at 

minimum generation-cost with high-quality. As mentioned earlier, electricity market allows 

the incorporation of renewable sources to be connected into the electric grid in order to 

minimize the environmental problems and relief transmission lines loading as well enhancing 

bus voltage profile by power losses curtailment. In that context, a few works has been 

published in literatures. For instance in [104] modified Jaya algorithm is applied to solve OPF 

incorporating RES considering four different objective functions to improve recorded results 

against other optimizers while the RES is modeled as a negative load, but any forecasting 

technique was not employed to forecast wind and solar photovoltaic power output. The results 

show outperforms of MJAYA on the basic Jaya as well on other existing algorithms. Partha 

Biswas et all [48] proposed success history based parameter adaptation technique of 

differential evolution (SHADE) to solve OPF problem in a system involving renewable power 

generators. Also, forecasting model is well designed to report renewable power generators 

outputs. In addition, the feasibility of results were discussed and checked that all control 

variables fell inside the allowed limits. Thus, findings clearly show the efficacy of the 

proposed model. In another publication [49], Ehab E.Elattar proposed modified version of the 

moth swarm algorithm to solve OPF problem of combined heat and power system with 

presence stochastic wind farm. Zia Ullah et al [50] provide a new hybrid optimization 

algorithm PPSOGSA for OPF solution considering renewable energy generators. The model 

of stochastic behavior is based of PDF scheme. In Yu-Cheng Chang et al [51], evolutionary 

particle swarm optimization (EPSO) algorithm was used for solving OPF problem in a wind-

thermal power system. The suggested wind model is based on the up-spinning reserves and 

dow-spinning reserves of the production units. A modified cuckoo search optimization 

technique employed for OPF solution incorporating wind power was proposed in Chetan 



                                     CHAPTER 4 | OPF STUDY INCORPORATING STOCHASTIC WIND AND SOLAR POWER 

Page | 66 

Mishra el al in [52]. The proposed stochastic model of wind generation is based on the 

Weibull PDF. Again, however, the simulation was also conducted only on standard medium-

sized test systems. 

From the aforementioned works point of view, the results are promising and encouraging, 

however, OPF in an electric-grid consisting thermal generators and renewable energy 

generators (wind power + solar PV) needs further attention. Despite these optimization 

methods have realised satisfactory results, but still suffer from some limitations and 

shortcomings as far as their susceptibility of falling into local optima and the difficulty of 

tuning the main intrinsic parameters. Moreover, the diversity of sub-functions used to 

formulate the objective function for OPF problem in presence of renewable energy sources 

give an opportunity to solve complex-problems by suggesting or developing effective meta-

heuristic techniques able deal different OPF formulations.  

4.3. OPF study with stochastic wind and solar power 

Traditional grid consists only of thermal-generators, wherein the study OPF is a complex 

problem with non-linear characteristics. Incorporating stochastic-nature of wind and solar 

power significantly increase the complexity of the problem. This work presents a formulation 

and solution procedure for sole-objective OPF problem incorporating RES. Total generation 

cost, total voltage deviation of load buses and voltage stability index in the electric grid are 

optimized independently as single objective functions. Case studies with valve-point loading 

effect and emission of thermal units are also considered. 

In this study, ALO, AEO, and WOA algorithms are adopted to cope with OPF problem 

merging stochastic wind energy and solar power with conventional thermal units in the 

system. The standard IEEE 30- test system is selected as test system. Herein, superiority of 

feasible solutions (SF) method is more suitable one to handle constraints of stochastic OPF 

problem, due to some limitations of static penalty function method mentioned in chapter 2. 

Simulations results are analysed in detail and the feasibility of solutions were critically 

discussed.  

The rest of the chapter is organized as following way. Mathematical formulation of OPF 

problem with different objective functions is presented in section 4.3.1. Modeling of 

uncertainties in wind and solar power is highlighted in section 4.3.2, followed by a detail on 

the data of test systems for all cases study is provided. Sections 4.3.3-4.3.5 discussed the 

feasibility of obtained results followed by its comparison with those reported in the recent 

published papers. The conclusion of this chapter is drawn in section 4.3.4. 
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4.3.1. Mathematical models of OPF involving stochastic wind and solar power 

Table 4.1 abridges basic data of the modified IEEE 30-bus test system. This system consists 

in overall on six thermal generators, but the modified one consists of three conventional 

thermal units attached at buses 1, 2 and 8; two wind generators in the buses 5 and 11 and one 

PV array installed in the bus 13. Figure 4.2 shows the diagram of this test system. There are 

two case studies, of which first, one has 11-control variables for the optimization and the 

second has 15 variables. In addition, since the outputs of wind and solar generators are 

variables, the fluctuation in power output must be balanced by merging outputs from all the 

generators and the reserve. 

Table ‎4.1. Summary of modified IEEE 30-bus test system 

Items Quantity Details 

Buses 30  

Branches 41  

Thermal generators TG1, TG2, TG3 3 Buses: 1 (swing), 2 and 8 

Wind generator (WG1, WG2) 2 Buses: 5 and 11 

PV unit (𝑃𝑉) 1 Bus: 13 

Connected load 283.4 +j126.2  

Allowable limit for load-bus voltage 24 [0.95 – 1.05] p.u. 

 

 

Figure ‎4.1.  Modified IEEE 30-bus system for OPF study with intermittent sources 
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 a) Cost model of thermal power plants 

The fuel cost of thermal power generators can be described as: 

  2

T0

1

  
TGN

TG i i TGi i TGi

i

C P a b P c P                                        (‎4.1) 

For more realistic pattern and precise modelling valve-point effect scheme is considered. The 

cost function C under valve-point loading rewritten as follows: 

    2 min

T

1

sin


     
TGN

TG i i TGi i TGi i i TG TG

i

C P a b P c P d e P P                       (‎4.2) 

, , , ,andi i i i ia b c d eWhere are the cost coefficients of the 𝑖-th thermal generators producing 

TGiP TGN min

TGPpower output , is the number of thermal generating and is the minimum of 

power of conventional thermal generator. The cost and emission gas coefficients for the 

4.3.conventional units used here are provided in Table  

b) Direct cost of wind energy and photovoltaic power 

Wind and solar generators require no fuel like conventional thermal generators. Therefore, if 

the installation of wind/solar power units are private, i.e., independent system operator (ISO), 

the direct cost parameter may not exist. However, in case of the renewable power plants is 

owner for private party, ISO pays a price proportional to the scheduled power contractually 

agreed. A direct cost assigned with wind power from 𝑗-th plant can be modelled as a follows: 

 , , ,w j ws j j ws jCost P g P                                               (‎4.3) 

where jg  is the coefficient of direct-cost attached with 𝑗-th wind power plant and ,ws jP  

represent the scheduled power from the same plant 

Also, direct cost pertaining to 𝑘-th PV power plant can be expressed as follows: 

 , , ,s k ss k k ss kCost P h P                                               (‎4.4) 

where kh  is the coefficient of direct-cost attached with k-th solar power plant whereas ,ss kP  

represent the scheduled-power from the same plant. 

c) Cost due to the underestimation power of wind farm (penalty-cost) 

The situation of underestimation power happens when actual power delivered by the wind 

farm is higher than the estimated value, reason to the uncertain source. This cost named 

penalty-cost, which mathematically can be expressed as follows: 
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   

   
,

,

, , , , , ,

, , , , ,

wr j

ws j

RW j wav j ws j PW j wav j ws j

P

PW j w j ws j w w j w j
P

C P P K P P

K p P f P dp

  

 
                (‎4.5) 

where ,PW jK is the penalty cost coefficient for the 𝑗-th wind power plant, ,wav jP is the actual 

available power from the same plant.  ,w w jf P is the wind power probability density function 

for j-th wind power plant. 

d) Cost due to overestimation on power of wind farm (Reserve cost) 

The overestimation of wind power happens when actual power delivered by the wind farm is 

less than the estimated value. In this situation, the utility operator needs to have a spinning 

reserve. So, the spinning reserve cost is written with following equation: 

   

   
,

, , , , , ,

, , , , ,
0

  

 
ws j

RW j wsj j avj j RW j ws j wav j

P

RW j ws j w j w w j w j

C P P K P P

K p P f P dp
                (‎4.6) 

where ,RW jK  is the reserve cost coefficient pertaining to wind power plant, ,wav jP is the actual 

available power from the same plant. 

e) Cost evaluation of uncertainties in photovoltaic power 

Like wind power generators, PV power units also have intermittent and uncertain output. 

Reserve cost for the k-th
 
solar PV plant is: 

   

   

, , , , , ,

, , , , , ,

  

       

Rs k ss k sav k Rs k ss k sav k

Rs k s sav k ss k ss k sav k ss k

C P P K P P

K f P P P E P P
          (‎4.7) 

where ,Rs kK  is the reserve cost coefficient relative to k-th solar power plant, ,sav kP  is the 

actual available power from the same plant.  , ,sav k ss kP P  is the probability of solar power 

shortage i.e. actual power below the scheduled power ( ,ss kP ),  , ,sav k ss kE P P  is the 

expectation of PV power below ,ss kP  

Penalty cost for the underestimation of 𝑘-th solar power plant is: 

   

   

, , , , , ,

, , , , , ,

  

       

Ps k sav k ss k Ps k sav k ss k

Ps k s sav k ss k sav k ss k ss k

C P P K P P

K f P P E P P P
          (‎4.8) 



                                     CHAPTER 4 | OPF STUDY INCORPORATING STOCHASTIC WIND AND SOLAR POWER 

Page | 70 

where ,Ps kK is the  penalty cost coefficient  pertaining to 𝑘-th solar power plant, 

 , ,s sav k ss kf P P is the probability of solar power surplus i.e. actual power above the 

scheduled power ( ,ss kP ),  , ,s sav k ss kf P P  is the expectation of solar power above ,ss kP . 

f) Emission and carbon tax 

Conventional thermal generators emit harmful and greenhouse gases, such as SOX, and NOx, 

and CO2 into the environment, which pollute the atmosphere. The objective function of 

emission is written as follows: 

   2

1

0.01 exp


     
 

TGN

i i TGi i TGi i i TGi

i

E P P P     )                                 (4.9

Emission cost,  E TAXC C E          20TAXC                                       (‎4.10) 

where , ,i i i   ωi , µi are the emission coefficients corresponding to the i-th generator given 

in Table 4. 2 

‎4.2. Table Cost and emission coefficients for thermal generators of IEEE 30-bus 

Gen Bus a b c d e           

TG1 1 0 2 0.00375 18 0.037 4.091 -5.554 6.49 0.0002 2.857 

TG2 2 0 1.75 0.01750 16 0.038 2.543 -6.047 5.638 0.0005 3.33 

TG3 8 0 3.25 0.00834 12 0.045 5.326 -5.554 3.38 0.002 2 

 

 g) Objectives of optimization 

All objective functions of OPF are formulated considering all the aforementioned cost 

functions. The first objective functions minimize the generation cost without including 

emission cost. 

       
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j

N
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F C P C P C P P C P P

C P C P P C P P


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      
 

      





(‎4.11) 

Where WGN  and SGN  are the numbers of wind generators and solar PVs in the grid, 

respectively. All the remaining cost components are given in eqs. 4.2 – 4.8 
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Second objective function Minimize- 

2 1  Obj Obj taxF F C E                                                        (‎4.12) 

h) Constraints 

Equality constraints include the typical load flow equations, which are given below: 

 

 

1

1
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P P V V Y

Q Q V V Y
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(‎4.13) 

where  ij i j   , is the difference of voltage angles of bus i and j, NB is the total number of 

buses, DiP and DiQ are active and reactive load demands, respectively at bus i, GiP and GiQ are 

active and reactive power generation respectively from all sources. 

Inequality constraints: include the power flow equations, which are given below: 

These constraints reflect the system operational and the security limits in the power system. 

They are described below: 

a) Generator constraints 

min max , 1,2.....  TGi TGi TGi TGP P P i N                              (‎4.14) 

min max , 1,2.....  wsj wsj wsj WGP P P j N                                 (‎4.15)

min max

, , , 1,2.....  ss k ss k ss k SGP P P k N                                 (‎4.16) 

min max , 1,2.....TGi TGi TGi TGQ Q Q i N                                    (‎4.17) 

min max , 1,2.....wsj wsj wsj WGQ Q Q i N                                     (‎4.18) 

min max

, , ,  ss k ss k ss k SGQ Q Q k N                                           (‎4.19) 

min max  Ci Ci Ci CQ Q Q i N                                             (‎4.20) 

min max , Gi Gi GiV V V                                                                 (‎4.21) 

min max  Li Li LiV V V i NL                                        (‎4.22) 

b) Security constraints 

min max  k k kT T T k NT                                       (‎4.23) 

max i iS S i NTL                                       (‎4.24)  
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Eqs. 4.14 − 4.16 represent the active power generation limits of thermal, wind and solar 

power generators, respectively. Eqs. 4.17 − 4.20 define the reactive power capabilities of 

thermal, wind, solar power generators and shunt reactive power sources. Eq. 4.21 present the 

constraint on voltage of PV buses, while eq. 4.22, defines the voltage limits imposed on load 

buses (PQ buses) with 𝑁𝐿 being the number of load buses. Constraints security of tap 

changing transformer and line capacity constraints are given by eqs, 4.23 and 4.24 

respectively. NTL is the number of lines in the electric grid. 

Convergence of power flow to a solution ensures when the equality constraints of power 

balance equations are satisfied. In addition, a feasible solution is directly depending on the 

controlling decision variables, i.e., if all decision (control) variables without exception are 

within allowable limits, then this solution is feasible; otherwise, the solution is infeasible. 

Therefore, it is worth mentioning that feasibility of generators reactive power capability is an 

important factor in OPF study. 

In the last years, the reactive power capability of wind turbines has considerably been 

enhanced. Wind turbines (WTs) featuring full reactive power capability are available already 

in market. Furthermore, authors in [105] discusses dependence of reactive Power capability of 

wind turbines based on doubly fed induction generators (DIFG) on several factor for a certain 

active power. However, the reactive power range is found to be approximately between –0.8 

p.u. and 0.8 p.u. Similarly, Ref. [106] also analyses reactive power capability of PV including 

converter and controller models. In this study the reactive power capability of the solar power 

generator is approximately considered between –0.4 p.u. and 0.5 p.u. [106]. 

In this context, active power losses in the grid and cumulative deviation of voltages of PQ 

buses are also important objectives to be optimized. The power loss in transmission lines is 

unavoidable as lines have inherent-resistances. The objective function of grid loss is 

calculated through the following equation: 

   

  

2 2
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2 2
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F ,u min 2 cos
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
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(‎4.25) 

where   ij i j    is difference in voltage angles  between bus i and bus j and kG  is the 

conductance of transfer. 
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Voltage quality in the grid is measured by voltage deviation level. The voltage deviation 

indicator is modeled as result of voltage magnitudes minimization of all load buses in the 

electric grid around nominal value of 1 p.u. Expressed as follows: 

   3

1

F ,u min ,u 1


 
   

 

Npq

Li

i

x VD x Minimize V                                   (‎4.26) 

The equations 4.25 – 4.26 to be used are same as eq. 3.5 – 3.6 and re-written here for easy 

reference.  

4.3.2. Stochastic wind/ solar and uncertainty models 

Since wind speed is a random variable, its distribution is obtained by Weibull Probability 

Density Function (PDF) with shape factor (k) and scale factor (c). Mathematically given by: 

 
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f S for S
c c c

                            (‎4.27) 

A. Wind power model 

The output wind power from a wind turbine is a function of wind speed, expressed by the 

following equation:[48] 
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                                            (‎4.28) 

Where in , r  and out  are respectively the turbine cut-in, rated and cut-out wind speeds. wrP

defines the rated output power of the wind turbine.  

B. Wind power probability for different wind  speeds 

From eq. 4.28, we can note that if   is less than in  and above out , the power output is zero. 

Also, the wind turbine produces wrP  for the condition  r out   . For these discrete zones, 

the probabilities can be written by the following equations:[107] 
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(‎4.29) 
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   1 exp exp
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(‎4.30) 

Unlike to the discrete zones, the output wind power is continuous for the condition  in r  

, Hence the probability for this region is described as follows: [107] 
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(‎4.31) 

Also, the solar irradiance to energy conversion for the PV plant also can be given by 
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                                      (‎4.32) 

where stdG , is the solar irradiance in standard environment, cR is a certain irradiance point, 

srP is the rated output of the PV power plant. 

4.3.3. Proposed optimization algorithms 

In this chapter, three meta-heuristics solvers ALO, WOA, and AEO are selected as optimizers 

to cope with stochastic OPF problem. These optimization techniques are discussed in detail in 

Chapter 2 Section 2.2. The constraints of stochastic OPF are handled by method superiority of 

feasible solutions (SF). Adapted IEEE 30-bus test system is also selected for this study as 

given in section 4.3.1. 

4.3.4. Application of AEO algorithm for OPF 

The following steps describe the application of the proposed AEO algorithm in solving the 

OPF problem considering WT and PV generation. Table 4.3 describes the process in detail of 

applicability of AEO with SF constrain approach for solving OPF problem. The flowchart of 

proposed algorithm is presented in Figure 2.4. 
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Table ‎4.3. AEO algorithm for stochastic OPF  

Step 1:  Read data of test system and AEO-SF input 

 

 

Read input data of test system configuration: bus-data, line-data, transformers data,  

and generation units-data. 

 Dimension of the problem, dim (dim =11 or 19) 

 Number of population, PN  ( PN  = 60 considered) 

 Stopping criteria, Maximum number of iterations 

 

 

Minimum and Maximum value of control (decision) variables, in vector like minX   

and maxX 1 2 dim

min min min min, ,.......,   X X X X  and 
1 2 dim

max max max max, ,.......,   X X X X
 

Step 2: Specify the desired objective function to be optimized 

Step 3: 

 

Calculate the forecasted-output power of wind turbine and PV units, as indicated in      

section 4.3.2 

Step 4: 

 
Generate initial population of size PN  individuals uniformly distributed between [ 

minX
, maxX ] 

Step 5: 

 

Evaluate objective function, constraint function and constraint violation using Eqs. 

(4.42) – (4.45) for each individual of generated population 

Step 6:    Apply the AEO operators and equations of update to create a new population of 

individuals‘ (i.e., Improved solutions of the problem). 

Step 7:     In selection phase, individuals for next population are replaced with new 

individuals if give better value of objective function according to rules of SF 

method. After each updating process, the new individuals is considered better if it 

yields lesser constraint violation or zero constraint violation along with smaller 

fitness value (minimization problem) than the respective old population individual. 

Otherwise, old population individual is retained. 

Step 8:    Repeat steps 5-7 until the stop criteria is reached, i.e., until max_iter reached? 

Step 9:    Report the optimal results with curves 

The proposed algorithms are developed using MATLAB software, simulation are conducted 

on a computer with Intel i5 CPU @ 1.90 GHz processor, and 4 GB RAM. Simulation results 

are discussed in following section. 

4.3.5. Simulation Results 

To show the effectiveness of the proposed AEO algorithm, it is examined on modified IEEE 

30-bus the test system is modified by inserting renewable energy sources. Full data of basic 

test system with limit of control variables are summarized in Table 3.1, and Table 4.1 shows 

data of modified IEEE 30-bus. Its corresponding diagram is given in Figure 4.2 above. The 
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proposed algorithm is described in Chapter 2, section 2.2.2. The input parameters  of the 

algorithm are given in Table 4.4. 

Table ‎4.4. Test-systems description  

Parameter IEEE 30-bus 

Dimension of optimization problem (dim) 24 

Population size 60 

Max Iteration 200 

4.3.5.1.  OPF study without stochastic wind and solar power 

In order to show the efficiency of the proposed AEO algorithm, the deterministic OPF cases 

for the original system configuration, i.e., without WT generators and PV units are 

considered. Five cases are considered herein, with the objective functions mentioned in 

section above, namely: Case 1– minimization of basic fuel cost; Case 2 – minimization of real 

power loss; Case 3– Emission; Case 4– minimization of voltage stability index; Case 5– 

simultaneous of minimization of fuel cost and Valve point effect. The optimal results obtained 

for each case examined are presented in Table 4.5. 

 

Figure ‎4.2.  Load bus voltage profiles for the best solutions achieved in all cases of 30-bus 

According to the figure 4.2 and Table 4.5, it appears clearly that all state or dependent control 

variables are within the admissible limits. In case 1 of optimization basic fuel cost, AEO 

algorithm lead to fuel cost of 800.51 $/h, satisfying all system constraints, especially 

constraints on generator reactive power and load bus voltage. Some of the recent published 

papers recorded better results than the proposed method in present study. However, those 

results reveals violation of voltage bounds [0.95 - 1.05] p.u., which rendering the solutions 

infeasible. 
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Table ‎4.5. Simulation results for best solutions all case studies for IEEE 30-bus 

Parameters Min Max Case 1 Case 2 Case 3 Case4 Case 5 

PG1 (MW) 50 200 177.32 51.64 64.35 102.48 193.22 

PG2 (MW) 20 80 48.62 79.79 67.48 58.19 41.78 

PG3 (MW) 15 50 21.39 50 50 45.18 22.13 

PG4 (MW) 10 35 21.29 34.97 35 34.97 10.01 

PG5 (MW) 10 30 11.88 29.95 29.99 24.76 13.79 

PG6 (MW) 12 40 12.01 39.98 40 22.60 12.56 

V1 (p.u.) 0.95 1.10 1.084 1.062 1.071 1.073 1.083 

V2 (p.u.) 0.95 1.10 1.051 1.057 1.065 1.055 1.061 

V5 (p.u.) 0.95 1.10 1.033 1.037 1.051 1.041 1.031 

V8 (p.u.) 0.95 1.10 1.038 1.044 1.043 1.039 1.034 

V11 (p.u.) 0.95 1.10 1.085 1.067 1.054 1.079 1.097 

V13 (p.u.) 0.95 1.10 1.054 1.061 1.020 1.029 1.048 

T11 (p.u.) 0.90 1.10 1.01044 0.98347 1.01299 0.99343 0.99188 

T12 (p.u.) 0.90 1.10 0.97589 1.02183 1.02684 0.94495 1.07449 

T15 (p.u.) 0.90 1.10 0.98352 1.01324 0.99092 0.92303 1.00946 

T36 (p.u.) 0.90 1.10 0.98094 0.97871 1.03189 0.95270 0.99709 

QC10 (MVAr) 0 5 0.77891 1.27792 3.39712 2.00442 2.76653 

QC12 (MVAr) 0 5 3.75751 3.96474 1.26715 3.37899 1.44351 

QC15 (MVAr) 0 5 2.73290 4.70305 2.45466 0.26529 4.26762 

QC17 (MVAr) 0 5 4.73146 4.95600 4.20280 2.12006 4.58580 

QC20 (MVAr) 0 5 4.26937 4.89976 2.65552 1.45047 4.40507 

QC21 (MVAr) 0 5 4.94533 3.26729 4.97072 1.24123 3.03849 

QC23 (MVAr) 0 5 3.16956 3.51635 1.04304 3.51498 4.38065 

QC24 (MVAr) 0 5 4.90726 4.99316 4.97170 1.26755 4.99775 

QC29 (MVAr) 0 5 3.66325 1.08584 4.27144 1.47575 3.31127 

Fuel cost ($/h) 

 

800.5141 967.5232 944.7075 872.2109 830.7276 

Emission (t/h) 0.36677 0.20730 0.20489 0.23089 0.41552 

Loss (MW) 9.0409 3.1341 3.4290 4.7808 10.0885 

VD (p.u.) 0.88470 0.7828 0.41161 0.79786 0.57932 

𝐿-index (max) 0.1389 0.1386 0.15022 0.13763 0.14187 

QG1 (MVAr) -20 150 6.07143 -0.11 3.89 23.44787 6.58482 

QG2 (MVAr) -20 60 23.56294 10.03 18.62 5.94833 19.04427 

QG5 (MVAr) -15 62.5 27.44305 24.33 34.42 36.06981 28.04491 

QG8 (MVAr) -15 48.5 30.97491 34.02 25.87 47.76979 26.77113 

QG11 (MVAr) -10 40 18.64563 9.87 14.11 15.74217 25.29394 

QG13 (MVAr) -15 77.7 3.05742 11.45 -0.82 -14.7821 9.89113 

 

These undesirable violations may be due to the use of penalty function method. Optimization of 

the basic fuel cost in first case lead the maximum power loss and voltage deviation compared with 

other optimization cases. In case 2 of minimizing active power losses, the proposed AEO 

converges to real power loss of 3.1341 MW, but the fuel cost is higher compared with the first 

case.  The high value of voltage deviation in this case can be justified by the need of increasing 



                                     CHAPTER 4 | OPF STUDY INCORPORATING STOCHASTIC WIND AND SOLAR POWER 

Page | 78 

voltage at load buses to minimize power losses in the transmission lines. In case 4, the minimum 

voltage stability indicator is achieved, AEO gives best index of 0.1376, relatively better than the 

other equivalent algorithms. Study of  case 6 reveal the results of minimization of fuel cost  

considering the valve loading effects, the value of cost being 830.76 $/h obtained by AEO 

algorithm. In short, the objective of this study is not to show only the superiority of proposed AEO 

algorithm over other approaches, but to demonstrate strict compliance with the system constraints 

by the SF technique. 

Table ‎4.6. Comparison results of different algorithms for cases studies of IEEE 30-bus 

Case no. Algorithm Fuel Cost Loss (MW) Emission L-index 

(p.u.) 

Case 1 AEO 800.5141 9.0409 0.36677 0.1389 

 AGSO [46]           801.75  – 0.36625 – 

Mod PSO [29] 800.5164 9.0354 0.36624 0.13825 

ARCBBO [108] 800.5159 9.0255 0.3663 0.1385 

SHADE-SR [95] 800.5179 9.0274 0.36625 – 

ICBO [32] 799.0353
a
 8.6132 – – 

GEM [109] 799.0463
 a
 8.6257 0.3665 0.1264 

DE [110] 799.0827
 a
 8.63 – 1.8505 

Case 2 AEO 872.2109 3.1341 0.20730 0.1386 

 Mod PSO  [29] 967.6523 3.1031 0.20727 0.13816 

SHADE-SR [95] 967.6635 3.1017 0.20726 0.13868 

ARCBBO  [108] 967.6605 3.1009 0.2073 0.1387 

GEM [109] 966.7473
a
 2.8863 a 0.2072 0.1269 

Case 3 AEO 944.7075 3.4290 0.20489 0.15022 

 SHADE-SR [95] 944.3853 3.2358 0.20482 0.13879 

ARCBBO  [108] 945.1597 3.2624 0.2048 0.1387 

GEM [109] 943.6358
a
 3.0160 0.2048

a
 0.1269 

Case 4 AEO 872.2109 4.7808 0.2389 0.13763 

 SHADE-SR [95] 819.1216 6.6860 0.27316 0.13637 

GEM [109] 816.9095
a
 6.2313 0.2802 0.1257 

DE [110] 915.2172
a
 3.626 – 0.1243 

SKH [111] 814.0100 9.9056 0.3740 0.1366 
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4.3.5.2.   OPF study with stochastic wind and solar power 

This part of the chapter focuses on application of AEO algorithm to solve optimal power flow 

incorporating stochastic wind and solar power with conventional power plants in the system. 

Weibull and lognormal probability-distribution density-functions (PDFs) are used to forecast 

wind power and solar photovoltaic output, respectively. Original IEEE 30-bus test system is 

modified by replacing three conventional thermal power plants with renewable energy 

sources, i.e., two wind farm and solar PV unit. 

The wind turbine farm connected at buses #5 and #11 are the collective output of 25 and 20 

turbines in the farms, respectively. Each turbine has a rated power of 3 MW.  The various 

wind-speed values are 16 m/s, cut-in wind speed of 3 m/s, and cut-out wind speed of 25 m/s. 

The PDF parameters for the sources wind and PV power plants are presented in Table 4.7. 

Table ‎4.7. Probability Distribution Function parameters for renewable energy sources 

Wind power generators Solar PV unit 

Wind 

farm 
no. of 

turbines 
Pwr 

(MW) 

Weibull 

PDF 

parameters 

Weibull  

mean, 

wblM  

 

Rated  

power,  

 (MW) 

Lognormal  

PDF  

parameter

s 

Lognor

mal  

mean 

1 (bus5#) 25 75 
  = 9,  

  = 2 
7.976 m/s



 

50  =6 
Gs= 

483 

W/m
 2
 

2 

(bus11#) 
20 60 

  = 10, 

   = 2 
8.862 m/s



 

  Bus13# =0.06 

To calculate the output power generated of PV unit using eq. 4.32, the solar- irradiance at 

standard test condition ( stdG ) set as 800 W/m
2
 and certain irradiance points ( cR ) is set to 120 

W/m
2
. Various cases study is performed for modified IEEE 30-bus system. Results of the case 

studies with application of AEO, ALO, and WOA algorithms are tabulated and explained in 

this section. In addition, a general scheme describing the relationships between the scheduled 

power and the variation of generation costs of wind and solar power. The rest case studies 

determine the contribution of each generator in the network. In all case study, we set 

maximum number of iterations (𝑚𝑎𝑥iter = 200) with a population size of 50 in a single full 

run. Each case has run 10 times before selecting the best value of the objective function with 

its corresponding settings control variables.  
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4.3.5.3.   Scheduled power vs. cost of WT and PV 

The Weibull PDF parameters to this case are presented in Table 4.7. Direct cost coefficients 

of wind generators are g1=1.3, g2 =1.75. Penalty cost-coefficients for not utilizing full 

produced wind power is assumed as Cpw,1 = Kpw,2 = 1.5 and reserve cost coefficient for 

overestimation is set as KRw,1 = KRw,2 = 3. The programmed power is varied between 0 MW 

and wind farm nominal power, and the variation of direct, penalty, reserve and total costs are 

drawn in Figures. 4.3 − 4.5. Total cost is the sum of aforementioned sub-costs corresponding 

to the scheduled power. From Figure 4.3, we can see that direct cost drawn a linear 

relationship with scheduled power. As scheduled power increases, necessity of larger 

spinning-reserve escalates the reserve cost and consequently the overall generation cost. The 

penalty cost rightly decreases, however at a lower rate, with the increase in scheduled power. 

 

Figure ‎4.3. Wind power cost variation against programmed-power for first WG 

 

Figure ‎4.4.  Wind power cost variation against programmed-power for second WG 
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Resemble to wind power, variation of cost for over/under-estimation of solar-power are also 

plotted vs. scheduled power in Figure 4.5 

 

Figure ‎4.5. Variation of PV power-cost against Lognormal-mean (μ) for the PV unit         

connected at bus #13 

Case 6: Minimization of generation-cost considering intermittent sources 

Case 6 performs optimization of the generation schedule for all production units (thermal, 

WT, and PV) to minimize total generation-cost given in eq. 4.11. Cost coefficients are same 

to those of first case and PDF parameters are listed in Table 4.7 

 

Figure ‎4.6.  Convergence curve of AEO algorithm for Case 1and case 6 of OPF with              

 intermittent source 
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Table ‎4.8. Optimal control or state variables for different approaches for case 6, IEEE 30-bus 

Parameters Min Max 
PSO 

[112] 

TLBO 

[112] 

SHAD

E-SF 

[95] 

JADE 

[112] 

EJADE

-SP 

[112] 

NBA ALO AEO 

PTG1 (MW) 50 140 135.014 134.84 134.90 134.90 134.93 134.907 134.907 134. 908 

PTG2 (MW) 20 80 28.880 29.063 28.564 29.105 29.105 28.13 28.201 27.7985 

PTG3 (MW)  10 35 12.1994 10.060 10.000 10.000 10.00 12.01 10.554 10.0037 

PWS1 (MW)  0 75 42.7781 44.045 43.774 44.084 44.148 42.19 41.793 42.9166 

PWS2 (MW)  0 60 35.5258 36.625 36.949 37.226 36.993 35.54 37.586 35.9806 

PSS (MW) 12 50 34.9635 34.582 34.976 33.226 33.840 36.78 36.3535 37.9418 

V1 (p.u.) 0.95 1.10 1.0718 1.0756 1.072 1.0724 1.077 1.083 1.0809 1.075 

V2 (p.u.) 0.95 1.10 0.9973 1.058 1.057 1.0575 1.062 1.061 1.0645 1.058 

V5 (p.u.) 0.95 1.10 1.0870 1.041 1.035 1.0356 1.0381 1.032 1.0442 1.035 

V8 (p.u.) 0.95 1.10 1.0612 1.0353 1.04 1.0398 1.0445 1.027 1.0357 1.038 

V11 (p.u.) 0.95 1.10 1.0962 1.0874 1.01 1.0998 1.0972 1.075 1.0397 1.100 

V13 (p.u.) 0.95 1.10 1.0379 1.0359 1.055 1.0543 1.0496 0.983 1.057 1.074 

QTG1  (MVAr) –20 150 19.7425 4.5100 –1.903 -1.8567 -1.8368 25.3384 8.06 5.97209 

QTG2 (MVAr) –20 60 –20 12.044 13.261 13.225 17.078 25.2675 26.1842 15.9173 

QTG3 (MVAr) –15 40 35 29.947 35.101 23.240 20.861 34.3249 34.999 33.7725 

QWS1 (MVAr) –30 35 40 30.734 23.181 35.109 37.264 27.1943 33.4528 25.7527 

QWS2 (MVAr) –25 30 30 27.964 30.00 30.000 28.747 29.0428 11.2807 29.8473 

QSS  (MVAr) –20 25 13.1562 11.860 17.346 17.258 14.291 -2.99593 21.5022 24.4921 

Fuel Cost 

($/h) 

 

782.340 782.676 782.50 782.35 782.242 784.038 782.811 781.3979 

Emission 

(t/h) 
– – 1.762 – – 1.76171 1.7620 1.7623 

Loss (MW) – – 5.77 – – 6.1668 5.996 5.8498 

VD (p.u.) – – 0.463 – –  0.4677 0.5279 

Wind gen cost  ($/h) – – – – – 
447.344 

 
241.752 239.0989 

Solar gen cost  ($/h) – – – – – 
100.530 

 
99.2848 104.0397 

The convergence curve of AEO algorithm is illustrated in Figure 4.6. As can be seen from this 

figure, the optimum cost is achieved in less than 55 iterations. Optimum settings of control 

variables and corresponding objective values of each algorithm are listed in Table 4.8 above, 

where the best result has been indicated in boldface. It is worth to note that PWS1 and PWS2 

indicate the scheduled powers from wind generators # WG1 and #WG2, respectively. The 

emission rate is calculated by using the optimal scheduled power of thermal generators, where 

reserve is assumed an alternate source that does not add to the emission. From Table 4.8, it 

can be seen that the proposed AEO achieved the smallest cost with 781.3979 $/h, and 
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outperformed all optimization techniques, PSO (784.3400 $/h), TLBO (782.6767 $/h), 

SHADE-SF (782.50$/h), JADE, NBA (784.038) and ALO (782.81 $/h). 

Based on the results obtained in case 1 of Table 4.5 and Table 4.8, we can state that when 

renewable energy sources was inserted, the total generation cost decreased from  800.5141 $/h 

to 781.397 $/h, i.e., around 19 $/h. If every hour can save the cost of 19.11 $, and the 

operating time per year is supposed as 7500 h, then operating time  from the AEO algorithm 

can save 143378 dollars in total every year. It is obvious that insertion of wind generator and 

PV unit significantly contributes on the reduction of the total fuel cost compared with the 

original system configuration (i.e., without RES). 

 

Figure ‎4.7.  Convergence curve of three algorithms for case 6 of OPF with intermittent source 

Case 7: Optimized cost against reserve cost 

In this case study, all parameters are retained the same as in case 3 except reserve cost-

coefficients. These coefficients for both wind generator and solar unit are varied by discrete 

step of 1 starting from 4 to 6, i.e., ,1PWC = 4, (case7a), ,2PWC = 5, (case7b) ,3PWC = 6, (case7c). 

The penalty cost-coefficients for all intermittent sources are similar to the case 1. The optimal 

power scheduled of generators is presented by bar graph in Figure 4.8 and compared with 

those obtained for the case 6 scheme. 
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Figure ‎4.8.  Optimal scheduled active power against Reserve cost Coefficient 

 

Figure ‎4.9.  Cost curves for change in reserve cost coefficient 
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thermal power plant cost increases like shown from "ThG cost" profile in Fig 4.9. However, 

costs of wind power ("WG cost") and PV output ("PV cost") gradually decreases. 
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It can be observed that penetration of wind and solar energy is relatively higher with case 8 

when emission tax is considered than case 6 without penalty of emission. Hence, the extent of 

increase in optimum production of renewable energy sources closely depends on the emission 

volume and the rate of carbon tax imposed. Since the constraint on load bus voltage is also 

critical as optimum operating voltages of load buses are usually found closely to their bounds. 

All case studies of this chapter, the minimum and maximum load bus voltage are set into 

range of 0.95 p.u. and 1.05 p.u,. The voltage profiles of load buses are shown in Figure 4.10 

for case 6 for three implemented algorithms. 

Table ‎4.9. Optimal control and state for different algorithms on Case 8 

Parameters 
PSO 

112[ ] 

TLBO 

112[ ] 

ECHT-

112DE [ ]    

SHADE-

112SF [ ] 

EJADE-

112SP [ ] 
NBA ALO AEO 

PTG1 (MW) 124.755 124.5813 123.0251 123.0258 123.0489 123.97 123.86 123.39 

PTG2 (MW) 28.0839 31.9139 31.7458 31.7454 31.6077 31.09 33.9561 32.6891 

PTG3 (MW) 12.9998 10.0040 10.0000 10.0000 10.0006 10.28 10.0000 10.0000 

PWS1 (MW) 44.7650 45.8065 45.3393 45.3395 45.2702 46.85 44.0780 45.8828 

PWS2 (MW) 36.9547 38.5744 38.1957 38.1948 58.7695 39.14 40.2764 38.6345 

PSS (MW) 41.2310 37.8588 40.3707 40.3712 45.0761 37.38 36.6082 38.1087 

V1 (p.u.) 1.0713 1.0737 1.0702 1.0702 1.0259 1.075 1.0742 1.0732 

V2 (p.u.) 1.0529 1.0586 1.0567 1.0567 1.0567 1.059 1.0602 1.0591 

V5 (p.u.) 1.0934 1.0355 1.0355 1.0355 0.9698 1.037 1.0385 1.0374 

V8 (p.u.) 1.0743 1.0405 1.0593 1.0784 1.0046 1.040 1.0388 1.0413 

V11 (p.u.) 1.0920 1.0845 1.0990 1.0986 1.0343 1.075 1.0941 1.0950 

V13 (p.u.) 1.0748 1.0351 1.0569 1.0570 1.0101 1.065 1.0617 1.0585 

QTG1  (MVAr) 7.6496 2.0806 -2.7444 -2.7873 -3.5178 7.47584 2.58541 2.40079 

QTG2 (MVAr) -1.7011 13.7773 12.1633 12.1791 11.9775 17.07395 20.86979 18.80241 

QTG3 (MVAr) 21.8044 40.000 35.1399 35.1227 36.5460 39.79292 34.99969 39.69122 

QWS1 (MVAr) 35.0000 22.1815 22.9930 22.9884 22.6192 25.08029 27.30820 25.70393 

QWS2 (MVAr) 28.2189 26.5230 30.0000 30.0000 30.0000 22.05586 28.67070 28.80506 

QSS  (MVAr) 25.0000 11.1593 18.1392 18.1880 18.0592 22.28975 20.19591 18.77513 

Fuel Cost 

($/h) 
813.343 811.4133 811.2270 811.2270 811.2226 810.6409 810.9903 810.5886 

Emission 

(t/h) 
– – – – – 0.91484 0.90854 0.88465 

Loss (MW) – – – – – 5.3040 5.3774 5.3075 

VD (p.u.) – – – – – 0.45389 0.47623 0.47117 
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Figure ‎4.10.  Load bus voltage profiles for Case 8 

4.3.6. Conclusion 

This Chapter proposed a solution approach to optimal power flow problem incorporating 

stochastic wind and solar power. Probability density function (PDF) was used to model 

uncertainties of the intermittent renewable energy sources. Different case studies with and 

without renewable sources are discussed in detail. Total generation cost incorporating 

different production sources is optimized and the variation in generation cost with change in 

reserve cost coefficients is studied. The change in PDF parameters of intermittent sources 

leads to changes in the generation cost following a pattern dedicated by a selected PDF 

function and associated parameters. Insertion of gas emission in a case study rightly increases 

the optimum contributions of green energy sources (i.e. RES) and reduces the output of 

conventional thermal generators. More importantly, power system constraints for all the case 

studies were fully satisfied by SF constraint handling technique applied of OPF with/without 

stochastic sources. At the conclusion and in the light of the results obtained we can confirm 

the superiority and consistency of the proposed AEO technique to find best solutions of a non-

linear problem and the suitable choice of SF method of dealing all system constraints 

imposed. 
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Chapter  5 

DEMANDE SIDE MANAGEMENT IN MICRO-GRID 

5.1. Introduction 

Recently, demand-side-management (DSM) is considered one of the most solutions for the 

optimal energy management in smart homes. DSM plays an important role in the smart grid 

and smart micro-grid through scheduling loads in a smart way return multiple benefits for 

both consumers and utility. This can be done by managing loads in a smart way while keeping 

up customer loyalty. 

 In this chapter, recently published meta-heuristic techniques such as AEO, HHO, MFO, 

WOA and BAT algorithm are employed to study the optimal power scheduling of home 

appliances (OSHA). The proposed techniques are used to shift the electricity load from on-

peak to off-peak hours according to the load-curve. Moreover, the constraint of starting time 

and ending time of appliances was considered. To prove the effectiveness and capability of 

these approaches in solving OSHA problem, they tested on two different electricity pricing 

schemes: Critical-Peak-Price (CPP) and Real-Time-Price (RTP) and two operational time 

intervals (OTI) (60 min / 12 min) were considered to evaluate the consumer's demand and 

behavior of the suggested scheme. Simulation results show that the suggested model 

schedules the appliances in an optimal way, which leading to electricity-cost reduction and 

peak average ratio (PAR) curtailment. Hence, the obtained findings confirm the efficiency 

and effectiveness of the introducing AEO algorithm against remaining ones to relieve the over 

peaks problem, enhance utility performance, and meet users requirements. 

5.2. Overview on strategy of demand side management in micro grid 

The growing need for energy demand caused by population growth, and the rapid increase 

in electronic appliances in the residential areas, drives further research in development of 

effective strategies of energy management for keeping the balance between supply and 

demand with an acceptable cost [113], [114]. In addition, extensive and irregular usage of 

electric appliances leads to obtain an irregular scheme of daily consumption resulting in 

imbalance electricity load over specific time intervals especially in the On-peak periods and  

destabilizes the utility. In this context, energy management and optimal scheduling of 

essential household appliances while minimizing a total electricity cost is very important. In 
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traditional grid, many public services handle that situation by increasing generation in the 

same ratio as electricity demand increase in an effort to bridge the gap created between supply 

and demand. However, these temporary solutions or so-called half-solutions may affect the 

security constraints of electrical system giving rise to the certain critical situations, for 

instance, the maximum load-ability problem during the peak hours. Consequently, the total 

electricity cost increases also due to the tariff-related higher costs applied during on-peak 

hours. 

To manage this situation, the utility has suggested two solutions: (i) Encourage the consumers 

to adjust their consumption profile by avoiding the maximum usage related of high prices 

during on-peak hours; (ii) ask the electricity companies to develop  to develop effective 

planning activities to motivate end-users to adjust their level and model of energy usage. 

However, lack of knowledge into users about how to forecast on-peak hours as well as time 

varying-prices, has forced public utility to tackle with such problem. It is done by proposing 

effective scheduling strategies to achieve an acceptable compromise between the 

minimization of the total electricity costs and waiting time for the operation of each appliance 

in service. DSM [115,116] is one of the main parts of the Smart Grid (SG) responsible for 

ensuring balance between the supply and demand sides. It is not only used to reduce the 

electricity bills for the consumers, but also to help utility companies in preserving reliable 

electric service with the aim of ensuring users comfort [117,118]. This can be achieved with 

smart way by reducing the load demand through the Peak-periods.  

According to the International Energy Outlook (IEO2016), energy demand is expected to 

keep rising over the next two decades up to 56% [119]. In other side, about 37% of the global 

energy consumption is only due to the residential sector. This ratio has attracted considerable 

attention in most academic researchers for dealing with this consumption level. During the 

past few years, many demand response (DR) technologies have been developed to cope with 

increasing demands of power. DSM programs are designed to overcome the energy shortage 

problems, which are created due to raising demands of electricity. In this context, load 

management based on demand response (DR) is considered as the most widely DSM 

strategies used to shift the load on-peak hours to off-peak hours. All these technologies have 

the same objectives, which are focused on: minimizing electricity consumption costs, 

minimizing peak to average ratio (PAR), and improvement of user comfort (UC) or (Waiting 

time).  

To determine the optimal solutions for such problems, conventional (deterministic) and non-

conventional (meta-heuristic) optimization techniques have been proposed in the literature. 

[…..] The performance of each optimization method depends on the nature of the parameters 
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associated with the problem; the deterministic-schemes are the best problem optimizers in 

deterministic environment. In contrast, the meta-heuristic solvers are best suited to find the 

optimal solutions of problem in stochastic environment. Meta-heuristic techniques have 

ability to provide optimal solutions and the capability to escape local ones by exploration and 

exploitation mechanism, avoiding in premature convergence; however, the deterministic 

techniques make the assumption of certainty, proportionality in order to optimize problem. 

This reason makes authors prefering to use the nature-inspired optimization techniques for 

solving aforementioned problem. 

5.3. Related works 

A huge number of algorithms have been proposed in order to make residential areas smarter, 

electricity cost minimization as well as energy consumption without affecting the users 

comfort. These algorithms are inspired from nature, biology and artificial intelligence. In this 

section, the previous proposed researches are discussed. For instance, in [120], the authors 

proposed a mixed-integer-linear-programming (MILP) method to optimize the total cost paid 

by the user by reducing peaks electricity demand in order to reach balance daily load 

schedule. However, the user comfort was not reduced sufficiently. A scheduling technique 

based on GA and PSO was proposed in [121] , for home appliances scheduling in an effort to 

reduce electricity cost and PAR value. Authors worked on multiple pricing signals, ToU, RTP 

and CPP for total electricity cost optimization. The obtained findings show the efficiency of 

these approaches. On the other hand, authors in [122], proposed a novel smart load 

management technique for peak load shaving of Egyptian residential loads considering its 

daily operation performance and time shifting operation capability. The obtained results 

confirm the efficiency and effectiveness of proposed methodology to overcome posed 

problem. In [123], Bharathi et al, examine a benchmark model of DSM by using GA, in an 

effort to shave the power demand during peak times and electricity bills for residential and 

commercial users. Although the cost successfully reduced by 21% the waiting time and PAR 

value were not amply improved. In [124], authors studied the effect of scheduling of power 

demand on the life span of  battery along with energy cost is presented.  Optimization results 

show that established study achieve promising results with high level of robustness against 

other methodologies. Also, Ihsan Ullah et al. [125] developed a novel appliance scheduling 

model based on the combination of GA and BPSO algorithms. The model is designed to 

reduce the total cost of consumed electricity of different household appliances and PAR value 

under dynamic pricing environment. A load shifting technique was presented in [126], to 
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schedule household appliances using CSA. Experimental results demonstrate that Peak-load 

has been decreased by 22% compared with unscheduled case and the load-curve is balanced 

by user preference for appliances usage. In [119], a hybrid algorithm (GA-BF) was used to 

adjust the electricity bills of consumer and PAR using the load shifting technique. Authors 

also succeeded in achieving a favourable trade-off between minimizing the energy cost and 

the PAR value. In [127] a novel demand management scheme based on the min-max load 

planning technique was proposed to adjust the PAR value with maximization of the 

operational comfort level of users. They also worked to define a difficulty faced by users 

when utility companies proceed to reduce power consumption. The simulation results confirm 

ability of the technique to shave the Peak-load, the PAR value, and electricity-bills with 

acceptable comfort levels. In [128], chicken-swarm-optimization (CSO) and enhanced DE 

techniques with RTP were modeled to minimize electricity bills and to reduce peak average 

ratio taking into account user comfort. Their results demonstrate that CSO algorithm 

outperforms enhanced DE technique in terms of electricity-cost-minimization and user 

comfort. Also in [129], three recent optimization techniques were implemented as 

comparative study to deal with home−energy management−system, (HEMS). The main 

objective is to reduce PAR value using two different pricing schemes. The results show that 

IAPR algorithm reduced the PAR value to a greater degree compared with SA and SSA, were 

not significantly improved compared with unscheduled case. Elham Shirazi et al. [130] 

proposed a scheduling technique for an automatic and optimal smart home energy 

management. The home utilizes electrical and thermal energy as well as the self-storage units. 

Authors worked in to achieve a best compromise between a total energy cost minimization 

and the peak demand-load. The graphical results show a significant reduction in electricity 

costs for multiple scenarios. In [131], SSA was proposed for household appliances 

management with game theory based pricing strategy, in which every user has different tariff. 

The authors discussed how to distribute the extra generation charges onto each consumer 

basing on the electricity load profile. The simulation outcomes confirm the efficiency of 

proposed model, in which PAR is reduced to 76%, and to minimize user costs. Abushnaf and 

Rassau [132] propose an efficient model for scheduling load demand in residential areas 

integrated with a grid demand response (DR) program. The problem is formulated as single 

objective optimization with multi-variables by using genetic algorithm, which aims to 

minimize the total electricity cost while keeping the energy consumption under a demand 

limit. The obtained results show that the powerful of the proposed program of which achieved 

a significant costs-savings for both of consumers and utility. Under the vast exploration of 
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nature-inspired optimization techniques, and based on the no free lunch theorem, no universal 

technique has been capable to solve all optimization problems. Hence, there is chance to solve 

complex issues by suggesting or exploring new meta-heuristic techniques. 

In this chapter, novel approach (AEO) techniques along with other approaches are suggested 

to tackle energy consumption optimization problem in smart residence. It is also considered as 

an efficient treatment for some limitations of aforementioned techniques in the related work.  

The principal-contributions of this chapter are summarized as follow: (1) we have explored 

and analysed five new algorithms for energy optimization problem i.e., BA [4], MFO [8], 

WOA [6], HHO [10], and AEO [11]. (2) In addition, for validation of the suggested nature 

inspired techniques, we applied it in a single home under two operational time intervals (OTI) 

60 min and 12 min. 

Furthermore, both of non shiftable-appliances and non-interruptible appliances are 

constrained by starting time and ending time to ensure a maximum comfort level of end users. 

On the light of the obtained findings, we have shown that the proposed optimizer outperforms 

in terms of: 

1. Electricity-Cost (EC) minimization and Peak Average Ratio (PAR)-reduction; and 

2. Protect users comfort, by improving waiting time of their appliances. 

3. AEO based home energy management controller performs better for cost reduction and 

PAR curtailment compared with others pairs. 

In organizing rest of the chapter, Section- 5.4 describes problem description, objectives and 

mathematical formulation as well as proposed system model. Section- 5.5 covers the 

Graphical results with the details discussions. Conclusion is given in Section-5.6 

5.4. Problem description, objectives and mathematical formulation 

Recently, many optimization algorithms have been suggested to deal with HEMS-problem in 

SG. The vast majority of these approaches have specific control parameters to adjust, which 

presents the primary factor to influence on their performance, reduce computational-

complexity and to avoid getting stuck into the local optimum. In contrast, the remaining ones 

are commonly the Population-Size and the Max-number of generations. In this context, to 

selecting the right optimization approach for such problem is also a challenge. Main 

objectives of SG are electricity-bill minimization, PAR-reduction, User-Comfort-

maximization, and optimal load management. In the aforementioned literature, does not exist 

an inclusive-coverage to the benefits of SG in which some researchers’ interest on electricity 

bills minimization and PAR-reduction, while others ones focus on users comfort 
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maximization, and optimal load management. In general, the common objective is to lower 

electricity-bills with maximal satisfaction of users comfort. But, the more importantly is how 

to achieve a lower electricity bills without compromising users' comfort (maximal satisfaction 

of users comfort) and reduce the PAR value. In return, there are various pricing tariffs used by 

utility companies, amongst which the most commonly implemented tariffs are: Critical-Peak-

Price (CPP), Time-of-Use (ToU), real-Time-Pricing (RTP), and Day Ahead Pricing (DAP). 

5.4.1.  Objective function 

The main objective behind our scheduling technique is to decrease the total consumer's 

energy cost with possible peak average ratio enhancement and to protect users comfort by 

minimizing waiting time in order to avoid their frustration. The objective-function can be 

defined as: Finding an optimal scheduling of household appliances during each time interval 

to reduce Electricity-Cost paid by end-users. Each appliance is characterized with only one 

status is either ON or OFF. The mathematical model for optimization can be defined by eq. 

5.1, [133] 

  ,

1 1

min
AppT

price

app a t

t a

X t E
 

 
  

 
 

 

 

(‎5.1) 

Subject to: 

       interru shiftable fixedL t E t E t E t ,  
 

(‎5.2) 

  thL t   (‎5.3) 

Sched Unsched

total totalL L
 

(‎5.4) 

Sched Unsched

total totalC C
 

(‎5.5) 

t t t  
 (‎5.6) 

   0,1 .X t 
 

(‎5.7) 

The constraints of the optimization problem can be summarized in the equations, 5.2− 5.7. 

Equation 5.2 presents the total energy-consumed of all the appliances at the time t. Equation 

5.3 illustrates that energy consumed in specified time slot should be must be less than or equal 

to the predefined. Equation 5.4 indicates that total energy-consumption must rest the same 

both before and after scheduling. It also guarantees that length-of-operation time of any 

appliance should not be influenced by scheduling process. Constraint in eq, 5.5 denotes that 

total cost during 24-h of scheduled- load must be less than the unscheduled-load per day. 

Equation 5.6 denotes the constraint of starting time and ending time of appliances. Where t  
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is earliest starting time of each appliance ―a‖ and  t   the least finishing time of each appliance 

―a‖. Equation 5.7 denotes a Boolean variable is used to determine whether the appliance is 

OFF or ON.  

a) Energy consumption 

The mathematical form to compute energy consumption is by the following equation: 

 
1 1

AppT
consumption

app

t a

Energy X t
 

 
  

 
   (‎5.8) 

b) Load balancing 

The grid stability is necessary to ensure the service continuity and to keep up customer 

loyalty. Reduction in PAR value leads to maintain the load balancing and to help in reducing 

electricity cost. It is mathematically calculated by eq. 5.9 [133] 

 
 

max Sched

oad

Sched

oad

L
PAR

avg L


 

(‎5.9) 

5.4.2. Proposed system−model 

The Figure 5.1 showed the graphical of proposed model. The home is consists of 12 smart-

appliances, which they are classified to the nature of energy-consumption pattern. For 

electricity cost calculation, the RTP and the CPP signals are used. The primary aim is to 

decrease the total consumer's energy-cost and PAR value as well protect consumer's comfort. 

 

 

 

 

 

 

 

 

 

 

 

Figure ‎5.1. An overview of HEMS model 
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The smart home is directly connected to a grid. The smart meter is used as a bridge between 

utility company and consumer to permit the electricity utility to communicate the pricing-

signals and preventive maintenance-timings. In the present work the appliances are scheduled 

on period of 24-hour time slots. Since the length operation time (LOT) of some appliances is 

less than 60 min, a day is divided into120 equal time slots with a range-time of 12 min. 

Consequently, two kinds of decision are considered: (i) in every 1 hour of time and (ii) in 

every 12 min. 

5.4.3. Mathematical formulation 

a) Classification of Load- 

According to the patterns of energy-consumption, user-comfort and time of use, appliances 

are classified into three categories given as follows: 

 Non Shiftable−appliances; 

 Shiftable appliances; 

 Base appliances. 

Non shiftable−appliances or interruptible-appliances are those appliances that can be shifted 

to any time interval and they are also characterized by an interruption during their operation. 

We indicate set of interruptible-appliances by " edIN " and their energy-consumption denote 

with " INP ". For each interrupted-appliance " in IN ", with a factor of power rating " in "then 

total energy-consumption is formulated as follows: 

 
24

app

1

t

in in in

in IN t

E X t
 

 
  

 
 

 

(‎5.10) 

where 
app

inX  is the state of each interruptible-appliance in specified time slot "t" and it is 

written: 

 app
1 if Appliance is turn ON,

0 if Appliance is turn Off
inX t


 
     

(‎5.11) 

Shiftable-appliances are those which can be easily shifted to another time interval, but can 

never be interrupted for any length of time within their operation. For instance, washing 

machine, cloth dryer and dish washer, etc. We denote set of shiftable- appliances by "Sh " and 

their energy-consumption is represented by " shiftableE ". If shiftable-appliances sh SH have a 

power rating factor " Shiftable "; the total energy-consumed is given by eq. 5.12: 

 
24

app

1

t

Shiftable Shiftable Shiftable

sh SH t

E X t
 

 
  

 
 

 

(‎5.12) 
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where 
app

ShiftableX  is the state of each non-interruptible appliance in particular time slot "t" and it 

is written as: 

 app
1 if appliance is turn ON,

0 if appliance is turn Off
ShiftableX t



  

      (‎5.13) 

Fixed-appliances are those working continuously with zero interruption and their operation 

times are not alterable. We denote fixed-appliances by " F " with f F and its consumed 

power as " fixed ". Thus, the total power consumption FixedE  in each interval ’t ’ of a day is 

calculated as: 

 
24

app

1

t

Fixed fixed fixed

f F t

E X t
 

 
  

 
 

 

   (‎5.14) 

where 
app

fixedX  is the state of each fixed appliance in particular time slot "t" and it is given as: 

 app
1 if appliance is turn ON,

0 if appliance is turn Off
fixedX t


 
  

(‎5.15) 

Appliances specification used and their characteristics along with LOT are listed in Table 5.1. 

Table ‎5.1. Detail description of appliances used in simulations [134,135] 

Appliance 

Class 
Appliance Name 

Power rating 

(kW) 

LOT 

(hours) 
Working hours 

Base 

Oven  3 3  

Refrigerator 0.3 24 

Laptop 0.25 4 

Desktop PC 0.3 3 

Lighting 0.5 6 

Interruptible 

   Time Starts 

(hour) 

Time Ends 

(hour) 

Vacuum cleaner 1.2 2 09 17 

Water heater 1.5 3 08 23 

Water pump 1.7 4 12 21 

Dish washer 1.2 3 08 22 

Steam Iron 1 6 08 16 

Non- 

Interruptible 

Washing 

Machine 

0.7 3 09 17 

Cloth Dryer 0.8 5 08 14 

b) Price tariff 

Total electricity-cost is calculated based on the price defined by the retailer company. For 

this intent, various dynamic pricing schemes are used to decrease the total consumer's 

electricity-cost with possible peak average ratio enhancement and to protect users comfort. 

Different pricing tariffs are employed in an effort to incite the customers. There are various 
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pricing tariffs in literature, which are employed to incite the consumers to alter their 

operational time of electric appliances from ‘high-price’ hours to ‘low-price’ hours. RTP is 

one of the most dynamic price rate tariffs implemented in the world [136]. In RTP pricing 

model, the signals price is changed for different time intervals (based on the hourly usage 

of electricity) while rest constant inside every time interval.  

CPP: Critical peak events may happen on defined period of time when company of 

electricity records high market price rate or under emergency conditions that usually 

happen in hot summer weekdays, characterized by the higher electricity rates. There are 

two variants of the CPP model: one is grounded on time and duration of peak price which 

are previously defined and second, depend on the electricity needed to regulate the load in 

the peak price. The critical hours are often limited and not allowed happen up than 15 

times per year. RTP and CPP pricing tariffs are utilized to conduct simulations. Their 

graphical schemes are shown in Figure 5.2. 
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Figure ‎5.2. Histogram of pricing tariff: (a) Real time pricing, (b) Critical peak pricing. 
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Algorithm 1: Pseudo code of the proposed load scheduling using AEO algorithm 

1 
Initialization: Generation of the price signal according to the selected scheme. Length 

of operation time (LOT) of appliances, power ratings of appliances. 

2 Input: Setting variables: PopSize, Max-iter, Dim, lb, ub 

3 Randomly initialize  first population (all patterns of appliances) 

4 Evaluate first population 

5 for  hour = 1 to H  do 

6 Find Electricity cost 

7 Evaluation: Find electricity cost for all of appliances 

8 Select best population, FBest and saved it; Find  XBest and PopFt 

9     for  Iter = 1 to Max-Iter do 

10  a (linearly decreased from 1 to 0), and Parameters: param.u, param.v, and param.C 

11  Update  the Position X1, according to Equation (2.11) 

12  for i = 3 to PopSize do  

13   if r < 1/3  or  if 1/3 < r <2/3  

14   Update  the Position Xi, according to Equations  (2.16)–( 2.18) 

15        end if 

16  Evaluate the ObjFun for eah Xi  

17      if  ObjFi  ≤  ObjF (i − 1) then 

18        replace the previous Position with the new one 

19      end if 

20  Find the BestOne so far 

21  Assign a new position by using Equation (2.1) 

22  end for 

23  for i = 1 to PopSize do 

24    Evaluate the ObjFun for eah Xi 

25      if  ObjFi  ≤  ObjF (i − 1) then 

26           replace the previous Position with the new one 

27      end if 

28    Find the best one found so far 

29  end for 

30  end for 

31  Select  the best position (solution) achieved so far and memorize it 

32 end for 

33 Return optimum solution (Xbest) and display graphs of: Cost, load, PAR. 

5.5. Simulation-result and discussion, 

In this section, an empirical simulation was performed to evaluate the performance of 

different algorithms in terms of electricity cost minimization, PAR reduction, and 

improvement the comfort of end-user by reducing the waiting time of appliances. In this 

work, the smart home consists of twelve kinds of household appliances ( 12D ), and 

handled under two operational time intervals (OTI): for one hour (60 min) and for 12 min. All 

appliances and their power rating with length of operation time (LOT) are given in Table 5.1. 
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Moreover, for comparison purpose, five heuristic techniques such as BA, MFO, WOA, HHO 

and AEO are tested to evaluate the proposed scheme by using RTP and CPP tariffs. 

The proposed DSM program was developed in MATLAB and our simulations were 

executed on a Laptop; Intel Core i5 − 4300 CPU 2.50 GHz processor, 4 GB-RAM. Due to the 

stochastic nature of meta-heuristic optimization techniques, we have taken average results of 

ten experiments. Simulation results with proper justification are explained in the following 

sub-sections. 

5.5.1. Case I (with operational time intervals of 60 min) 

a) Load consumption using RTP  
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Figure ‎5.3. Energy consumption profile 
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Figure ‎5.4- Graphical results using RTP tariff for operational time interval of 60 min: (a) 

Peak to average ratio; (b) Energy cost profile; (c) Average waiting time of electric appliances; 

(d) Total electricity cost. 
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5.1.2  Load consumption using CPP  
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Figure ‎5.5- Energy consumption profile 
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Figure ‎5.6− Graphical results using CPP tariff for operational time interval of 60 min; (a) 

Peak to average ratio;  (b) Energy cost profile; (c) Average waiting time of electric 

appliances; (d) Total electricity cost. 

5.5.2. Cost using RTP and CPP 

Load consumption patterns using RTP and CPP are shown in figures 5.3 and 5.5 for a 60 min 

OTI. Figures 5.4, 5.6 show their behaviors to: peaks reduction, electricity cost profile and 

average waiting times. 

In RTP signal, on-peak and shoulder peak hours are within 7 − 10 and 11 − 15 respectively, 

whereas off-peak hours are set between 1− 6 and 15 – 24, (Figure 5.2). Figure 5.3, shows 

daily energy consumption scheme of scheduled and unscheduled cases for a 60 min OTI.  In 

unscheduled case, energy consumption is higher during 5 − 6 hour and 13 −16 hours guiding 

to high cost and PAR. The load profile are almost same between 7 − 24 hours for all 

algorithms except AEO technique, which shows higher peak values within 12 − 13 hours. 

This is because these approaches schedules non-interruptible appliances in 13 − 17 hours 

resulting in decreases PAR values with insignificant reduction in cost electricity. However, 

the most of interruptible and base appliances are turn ON in 1 − 11 and 19 − 24 hours. Our 

suggested AEO algorithm shows most successful scheme of energy consumption as compared 
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to other algorithms. We can also see that AEO has a constant energy consumption profile 

during 1 − 15 hours except of 2 hours, which maintains a balance between high and low 

energy consuming devices in parallel to RTP. Non-interruptible appliances are scheduled 

between 1 − 9 hours with other appliances having lower consumption. In case of unscheduled 

load, the maximum peak equal to 5.05 kWh while maximum scheduled is 3.3 kWh. Hence, a 

difference of 1.75 Wh is registered, which leads to reduce PAR. Furthermore, between 9 − 13 

hours, AEO consumes less power compared to other approaches which significantly reduces 

overall cost.  Meanwhile, Within 14 − 20 hours, all techniques show the exact same curve, 

but, after 20-th hour, AEO algorithm show an increase of energy consumption, where energy 

level pass from 0.6 kWh to 2.35 kWh. Only reason that AEO technique shifts more load in 

these time slots is the lower electricity prices in end of the day. 

Table ‎5.2.  Comparison of cost 

Optimization 

techniques Cost (S1) Difference 

Savings 

percentage 

in cost 
 Cost (S2) Difference 

Savings 

percentage 

in cost 

Unscheduled 695.81 − −  2664.5 − − 

BA 673.37 22.44 3.22%  1864.8 799.7 30% 

MFO 671.94 23.87 3.43%  1948.8 715.7 26.86% 

WOA 677.18 18.63 2.67%  1882.7 781.8 29.34% 

HHO 675.76 20.05 2.88%  1916.3 748.2 28% 

AEO 619.48 76.33 10.95%  1677.2 987.3 37.05% 

S1= RTP, S2= CPP; 

In CPP signal, on-peak hours can be observed between 11− 16 hours, and off-peak hours was 

programmed within 1− 10 and 17− 24 hours (Fig 5.2). Unscheduled and scheduled energy 

consumption scheme for all implemented algorithms for 60 min OTI based on the CPP signal 

is shown in Figure 5.6 (b). We can see that for each algorithm, the electricity cost changes 

according to the consumed energy users load profile during the process of load shifting from 

on-peak hours to off-peak hours. 

In unscheduled case, load profile is higher during 5 − 9 hour and 13−19 hours leading to high 

cost and PAR. In the case of WOA and MFO algorithms, one peak is created which is 4.7 

kWh and 3.8 kWh for HHO where a maximum peak for unscheduled case is registered at 5.05 

kWh. However, with BA, and AEO techniques no peak is created during 24 hours. Our 

proposed AEO algorithm shows the most typical pattern of energy consumption behavior as 

compared to other algorithms. A constant energy consumption of all implemented algorithms 

have been envisioned during 1 − 11 hours except of HHO and BA techniques has some 
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fluctuations on their curves. However, at 12 to13-th hour, each of MFO and WOA are 

generated a maximum peak, which leading to increases PAR values and electricity cost. In 

contrast, AEO and HHO algorithms are maintain a balance between high and low energy 

consuming devices in line to CPP signal. Furthermore, between 11-16 hours where the price 

reaches its peak value by 123.4 cents/kWh, AEO consumes less power compared to other 

pairs which significantly reduces overall cost. Furthermore, if we have to calculate the cost of 

electricity in the critical period for all techniques:  is equal to1190.81 cents for BA, 1271.02 

cents for AEO,  1338.9 cents for HHO, and 1486.97 cents for each of MFO and WOA. After 

17-th hour all optimization techniques generally have the same pattern. 

Form Table 5.2, we can see that AEO algorithm has the highest percentage decrement in cost 

for both RTP and CPP tariff which is equal to 10.95% and 37.05%, respectively. However, 

WOA shows minimum saving cost, i.e., 2.67% for RTP and 26.86% for CPP with MFO. 

Simulation results show that AEO algorithm well performed than other optimization 

techniques in decreasing electricity cost when price of each hour of home is calculated using 

CPP model. Among all proposed optimization techniques, AEO reduces 37.05% cost. 

5.5.3. PAR using RTP and CPP 

The reduction of PAR is explained in Table 5.3. It can see that the proposed AEO algorithm 

surpass the other algorithms for both RTP and CPP signals. Findings in Table 5.3 shows that 

PAR for AEO technique has decreased  32.9%, on the other hand, BAT - MFO, WOA and 

HHO decrease 14.16% , 12.1%, 7.1% and 7.1% for RTP, respectively. For CPP tariff, best 

performance is also achieved of 31.25% by proposed AEO technique, whereas, is equal to 

12.1% MFO and 16.6% for WOA, HHO, and 14.5% for BA algorithm. Despite of a minor 

difference (i.e., 2 ~ 4%), it is observed between RTP and CPP price; AEO algorithm avoids 

peak formation and keeps the load on the medium level. Table 5.3 presents the comparison 

PAR for both RTP/CPP signals for a 60 min OTI. From this table it can be easily seen that 

each algorithm capable of reducing PAR value with respect to load, however, performance of 

AEO is the better one among to others. AEO algorithm has maximal savings, of which the 

PAR value is reduced from 2.4 to 1.61 with RTP and to 1.65 by using CPP. The results of 

both models utilized show that RTP policy is more convenient. Consequently, it is clearly 

remarked that AEO surpass BA, WOA, MFO, and HHO in every case, as it well performs 

even with different tariffs.  
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Table ‎5.3. Comparison of PAR 

Optimization 

techniques PAR (S1) Difference 

Savings 

percentage 

in PAR 
 PAR (S2) Difference 

Savings 

percentage 

in PAR 

Unscheduled 2.4 − −  2.4 − − 

BA 2.06 0.34 14.16%  1.98 0.42 14.5% 

MFO 2.11 0.29 12.1%  2.11 0.29 12.1% 

WOA 2.23 0.17 7.1%  1.96 0.40 16.6% 

HHO 2.23 0.17 7.1%  1.96 0.40 16.6% 

AEO 1.61 0.79 32.9%  1.65 0.75 31.25% 

5.5.4. Waiting Time (users comfort) 

The users comfort is defined as the waiting time of appliances. There is always a trade-off 

between either electricity cost minimization and waiting time of appliances or between PAR 

and electricity cost minimization [137]. Hence, user must always pay an extra cost in terms of 

appliances waiting-time when preferring to maximize its comfort. The waiting time in 

unscheduled case is equal to zero, because appliances are being started on based on the user's 

demand. Figures 5.7 (c) and 5.9 (c) illustrates average waiting time for both price tariffs. 

From these graphs, it can be seen that there is no significant difference between waiting time 

of all suggested algorithms. For RTP signal, the lowest waiting-time is 4.78 hours, which is of 

HHO algorithm and the highest waiting-time is 5.04 hours is achieved by AEO algorithm, in 

which the difference between the best and worst waiting time is only 15.6 min. For CPP, the 

highest average-time is 5 hours 16 min by AEO, and the minimum one is 4 hours 47 min 

obtained by using MFO. Moreover, it is important to note, that the total load scheduled per 

day is remained fixed before and after scheduling in all of simulation cases. 

5.5.5. Case II:  With operational time intervals of 12 min 

a) Load consumption using RTP  
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Figure ‎5.7-  - Real time electricity profile [138] 
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Figure ‎5.8- Energy consumption profile 
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Figure ‎5.9 Graphical results using RTP tariff for operational time interval of 12 min: (a) Peak 

to average ratio; (b) Energy cost profile; (c) Average waiting time of electric appliances; (d) 

Total cost 

Load profile in each time slots of 12 min OTI for RTP tariff is illustrated in Figure 5.8. From 

this figure, it is clearly that load is shifted to off-peak hours in an effort to attain the objective 

function of cost minimization. Total electricity cost in unscheduled scenario is 151.24 cents 

which is reduced to 139.5, 138.7, 138.62, 146, and 135.8 by using HHO, MFO, WOA, BA, 

and proposed AEO, respectively. So, the proposed AEO algorithm gives maximum reduction 

in cost which equal to 10.2%, while HHO, MFO, WOA, and BA reduce cost up to 7.87%, 

8.28%, 8.34%, and 3.4%, respectively.  

The cost paid to the utility company against the consumption aforementioned in Figure 5.8 is 

given in Figure 5.9 (b). Then, we can see that the curve of electricity price changes according 

to the daily consumption pattern. Results confirm that the AEO algorithm optimizes better the 

daily energy use as compared to other pairs by shifting most of the peak load from peak to 

off-peak periods. Consequently, it is important to point that the proposed control scheme 

increases the benefit through financial savings, energy savings during the peak demand and 

posted an optimal schedule for the household appliances. 

On the light of our findings, we find that our proposed DSM program based AEO algorithm 

not only shifts the load from on-peak hours to off-peak hours, but it also examines and 

guiding the load to that slots having the low-price. 

Figure 5.9(a) shows the amount of PAR value for each algorithm. With our proposed AEO 

technique, the PAR value of the total load is reduced to 36% as compared to unscheduled 

scenario, whereas, is decreased up to 29.3% for MFO, 29% for BA, 30.6 for WOA and 31.3% 
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for HHO, respectively. Simulation results show that AEO algorithm well performed than 

other optimization techniques in reducing PAR value. 

Figure 5.9 (c) illustrates average waiting time of all suggested algorithms, respectively. 

Regarding the total cost paid by end-user, we can see that AEO outperform all other 

optimization techniques and minimize cost to the lower possible value without compromising 

user comfort. 

In fact, the proposed algorithm significantly outperforms all other suggested optimization 

techniques both for waiting time of users and for computation of electricity cost. Although, 

there is a little bit difference into average waiting time between scheduling techniques, but 

can achieve tangible benefits for protecting users comfort. Comparison of PAR value and 

waiting time for different scheduling techniques are shown in Table 5.4. 

 

Table ‎5.4. Comparison of PAR, Cost, and waiting time for different techniques 

Optimization 

Techniques PAR  

Savings 

percentage in 

PAR 

Cost 

Savings 

percentage in 

Cost 

Waiting time 

Unscheduled 3 − 151.24  − − 

− BA 2.13 29% 146.05  3.4% 34 

MFO 2.12 29.3% 138.71  8.28% 33 

WOA 2.08 30.6% 138.62  8.34% 34 

HHO 2.06 31.3 139.42  7.87% 34 

AEO 1.92 36% 135.8  10.2% 31 

5.6. Conclusion 

This chapter presented unconventional optimization algorithms for scheduling 

home−energy−management−system by considering two OTIs and various operational 

constraints. These approaches are suggested under two pricing schemes RTP and CPP. In 

addition, two operational time intervals (60 min and 12 min) were considered to evaluate the 

consumer's demand and behavior of the suggested scheme. The performance of five heuristic 

algorithms: BA, MFO, WOA, HHO, and novel AEO algorithm were examined to describe the 

effect of scheduling the appliances on the:  electricity-cost, energy-consumption, PAR value, 

and users-comfort (in terms of waiting-time). Comparison results showed that AEO algorithm 

can provide both costs and peak demand reduction with acceptable comfort level to 

consumers.  

Simulation results showed that the proposed scheme giving higher reduction in the total 
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energy cost by about 26% as difference of CPP and RTP for case of 60 min OTI, whereas, in 

case of 12 min OIT- was reduced up to 10.73%. In terms of PAR reduction, the proposed 

scheme was also carried out well as compared to WOA, MFO, and BAT algorithms. In 

general, we can conclude that the proposed AEO algorithm surpass the other optimization 

techniques in terms of end-users‘ payments reduction and PAR, however, a trade-off between 

user comfort and cost was still exists to be addressed. 
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Chapter  6 

CONCLUSION 

6.1.1. Summary and Conclusion 

This thesis covers some of the optimization problems in modern power system and 

applications of non-conventional optimization techniques to solve those problems. The first 

Chapter discusses the importance of meta-heuristic optimization methods and their 

consistency to solve real and complex problems. Thereafter, main contributions of this thesis 

are highlighted, followed by outline of the thesis. In the first part of Chapter 2, three nature-

inspired optimization algorithms called, Ant lion optimizer and its version multi-objective, 

artificial ecosystem optimizer and Harris hawks optimization algorithm are presented and 

adopted for power system optimization problems. Afterwards, an overview on the multi-

objective optimization problems is described. Second part dedicated to explain a few 

constraint handling (CH) methods such as penalty function method (PF) and superiority of 

feasible solutions (SF), followed by a full definition and importance of OPF and ORPD 

problems.  

The first part of Chapter 3 is focused to study the application of three unconventional 

optimization approaches to optimal reactive power dispatch problem with various single 

objectives. Optimization approaches have been successfully applied to find the optimal 

control variables of the medium-sized and large-scale test systems (IEEE 30-bus, IEEE 118-

bus, IEEE 300-bus) as well practical power system DZA 114-bus. The obtained findings 

proved the efficiency and consistency of suggested optimizer AEO in determining better 

solutions of ORPD problem vs. existing optimization techniques in the literature. In the 

second part of Chapter 3, the application of MOALO algorithm to solve large scale multi-

objective optimal reactive power dispatch (MOORPD) problem is conducted. The importance 

of this study overcomes the shortcomes encountered when solving single objective ORPD 

problem. A critical analysis on the both obtained and reported results was presented, and 

approved the feasibility of solutions. 

The variation in optimal generation cost is studied with the change in reserve cost coefficients 

and the PDF parameters. The optimization is conducted by using AEO, ALO and NBA 

algorithms, and the simulation was carried out on the modified IEEE 30-bus test system. 
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Simulation results prove the capability and superiority of proposed AEO on all optimization 

techniques for all case studied. 

Chapter 5 presents unconventional optimization algorithms for scheduling 

home−energy−management−system considering two operation interval times (OTIs) and 

various operational constraints. Two pricing schemes-namely real time price (RTP) and 

critical peak pricing (CPP) are employed to evaluate the consumer's demand and behavior of 

the suggested scheme. The optimization of total consumer's energy cost is performed using 

AEO, HHO, WOA, BA, and MFO algorithms. The graphical results of all implemented 

algorithms are analyzed and compared. Comparison results showed that AEO algorithm can 

provide both costs and peak demand reduction with acceptable comfort level to consumers.  

The topics of optimization in modern power system are diverse and large. In the future, we 

plan to carry many more subjects related to the optimization in power systems. Herein, we 

summarize a brief overview of future works. 

6.1.2. Future work 

 

Despite of all efforts made in this marvellous research work to improve modern power system 

operation, but some short-comes still exists to be addressed. In point of view of future work, 

some numbers of issues that can be handled are summarized in the following points: 

1. We aim to solve multi-objective ORPD problem using meta-heuristics techniques in the 

cloud computing environments. 

2. Besides single and multi-objective ORPD solutions, we propose to extend of integration of 

renewable energy sources with FACTS device and inclusion of voltage stability of as 

objective. 

3. We propose the integration of storage devices such as batteries (electric vehicles) and 

pumped hydro in the OPF study considering large-scale power systems. Transient stability 

analysis of the whole system can also be incorporated for detailed study. 

4. Scheduling smart appliances is executed in a single home using some meta-heuristic 

optimization techniques. As a future work, we propose to extend this study by integration 

of renewable energy sources with electric vehicles (EVs) as charging/discharging batteries. 

This variety of production sources in smart micro-grid will facilitate to mitigate energy 

costs in smart cities. A multi-objective case of home-energy management system (HEMS) 
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with multiple contradictory objectives will also be studied in the future. 

5. The proposed algorithm in this thesis or their improved versions will also be applied to the 

new formulations of following issues: 

 Optimal coordination of directional overcurrent relays; 

 Identification and localization of faults in a power transformer winding. 
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Annexe-  

Data of Algerian Electric Grid "MATPOWER format" will be available on any official request 

from the author.  

 

Figure ‎6.1  Algerian electricity grid Topology- DZA 114-bus 
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 :ملـخـص

ًمَأَظًخَانطبلخَانحذَثخَثبنمشةَيٍَحذودهبََظشًاَنهتطىسَانسشَعَنُظبوَانطبلخَانكهشثبئُخَفٍَجًُعَأَحبءَانعبنىَاستجبثخَنهتطىسادَانتمُُخَوالالتصبدَخَوانجُئُخَ،َغبنجبًَيبَتع

انًفشطَنًصبدسَانطبلخَانًتجذدحَفٍَانشجكبدَانكهشثبئُخَإنًََتغهغمشاسَانجهذَفٍَانشجكخَانكهشثبئُخ.َيٍََبحُخَأخشيَ،َلذََؤدٌَانانمصىيَ،َيًبََؤدٌَإنًَيخبطشَعذوَاستم

طبلخَ،َويخبطشَعذوَطمَيحطبدَانانعذَذَيٍَانًشكلادَواَتهبكبدَانحذَانتشغُهٍَ،َيثمَصَبدحَوتممَانجهذَ،َوفمذاٌَانطبلخَانُشطخَ،َوانحًمَانضائذَعهًَخطىطَانُممَ،َوتع

َ،َتىَتطىَشَوتُفُزَساحخَضشستاستمشاسَانجهذَ،َو عذَذَانَانًستخذيٍُ.َتحذثَهزَِانًشكلادَعُذيبََتجبوصَانُظبوَانحذَالألصًَنهمذسحَانتشغُهُخ.َفٍَهزَِالأطشوحخ،َأولاً

َانطبلخَنهتعبيمَيعَانغُشَتمهُذَختمُُبدَانتحسٍََُيٍ َانًثهًَانفشدَخيشكهخَإسسبَ:،َيثميختهفَيشبكمََظبو ََيُهبَلَانطبلخَانتفبعهُخ َالأهذاف. َأٌويتعذدح خصبئصََوثًب

تطىَشَثعضَانخىاسصيُبدَثَلًُبفٍَانطجُعخَهٍَغُشَخطُخَوغُشَيحذثخَوتتكىٌَأَضًبَيٍَيضَجَيٍَانًتغُشادَانًُفصهخَوانًستًشح،َفمذََإسسبلَانطبلخَانتفبعهُخيشكهخَ

ذساسخَثَلًُبًخَالأسبنُتَانًمتشحخَلأَظًخَانطبلخَانحذَثخ،َئفٍَانشجكبدَانكهشثبئُخَواسعخَانُطبق.َثعذَرنك،َيٍَأجمَضًبٌَيلاَخثًتغُشادَيختهطًَشكهخانَهذَِنهتعبيمَيع

ََاحتُبطُبديعََانتذفكَالأيثمَنهطبلخَانعشىائُخَيشكهخ تمُُبدََثعضَشاحتىَالتَأخُشًا،وَسُُبسَىهبدَيختهفخ.َوتطجُمهبَعهًَعذحَغُشَيؤكذحَيٍَيصبدسَانطبلخَانًتجذدح

َظبوَإداسحَانطبلخَانًُضنُخ.َانهذفَانشئُسٍَيٍَهزَِانذساسخَهىَضجظَرسوحَانطهتَوتمذَىَإجًبنٍَانطبلخَانًطهىثخَيٍَأجمَتمُُىَعهًَإداسحَجبَتَانطهتََانتحسٍَُانمبئًخ

َنهتحكىَفٍَانتىصَعَالايثمَنهطبلخَخبصخَفٍَيسبعذحَيشغمَانشجكخَضشوسَخفعبنخَوانيٍَأجمَتىعُخَانًستههكٍَُثًسبهًبتهىَانَرنك،والأهىَيٍََ،ثجىدحَعبنُخوثألمَتكهفخَ

ََََََََََََََََََََََََََََََََََََََََََََََََََََََََََََََََََََََََََََََََََََََََََََََََأثُبءَحبلادَانطىاسئ.

َإداسحَجبَتَانطهتَتمُُخ،َانطبلبدَانًتجذدح،َتمُُبدَيعبنجخَانمُىد،َُُبدَانتحسٍَُانغُشَتمهُذَختم،َهطبلخَانتفبعهُخنَالأيثمانتخطُظََ،انتذفكَالأيثمَنهطبلخ:َكلمات مفتاحية 

Abstract: 

Due to the rapidly developing of electric power system across the world in response to technical, economic and environmental 

developments, modern power systems often operate proximate to their limits maximal, engendering voltage instability risks in 

electric grid. On the other hand, excessive penetration of renewable energy sources into electrical grids may lead to many problems 

and operational limit violations, such as over and under voltages, active power losses and overloading of transmission lines, power 

plants failure, voltage instability risks and compromising users comfort. These problems happen when the system exceeds 

maximal operational capability (MOC) limit. In this thesis, firstly, various meta-heuristic optimization techniques have been 

developed and implemented to deal with different power system problems, such as single and multi-objective optimal reactive 

power dispatch problem. As the characteristics of ORPD problem in nature are non-linear and non-convex and also are consisting 

of mix of discrete and continuous variables, some algorithms are developed to deal with discrete ORPD problem in large-scale 

electric grids. Afterwards, in order to ensure the suitability of the proposed approaches for modern power systems, stochastic 

optimal power flow (OPF) problem with uncertain reserves from renewable energy sources is studied under different scenarios. 

Finally, a demand side management (DSM) based meta-heuristic techniques is proposed for home energy management system. 

The main objective behind this study is to adjust the peak demand and offering the total energy required at minimum cost with 

high quality. More precisely, in order to make consumers aware of their effective and essential contributions to helping the 

operator system during emergency cases (requests during peak hours). 

Keywords: Optimal reactive power dispatch, Optimal power flow, unconventional optimization techniques, renewable energy 

sources, constraint handling, Demand side management.  

Résumé: 

En raison du développement rapide des réseaux électriques à travers le monde en réponse aux développements techniques, 

économiques et environnementaux, les réseaux électriques modernes fonctionnent souvent à proximité de leurs limites maximales, 

engendrant des risques d'instabilité de tension dans le réseau électrique. D'autre part, une pénétration excessive des sources 

d'énergie renouvelables dans les réseaux électriques peut entraîner de nombreux problèmes et violations des limites 

opérationnelles, telles que les surtensions et sous-tensions, les pertes de puissance active et la surcharge des lignes de transmission, 

les pannes de centrales électriques, les risques d'instabilité de tension et la compromission du confort des utilisateurs. Ces 

problèmes surviennent lorsque le système dépasse la limite de capacité opérationnelle maximale (COM). Dans cette thèse, tout 

d'abord, diverses techniques d'optimisation méta-heuristique ont été développées et mises en œuvre pour traiter différents 

problèmes de système d'alimentation, tels que le problème de répartition optimale de la puissance réactive à un ou plusieurs 

objectifs. Comme les caractéristiques du problème ORPD dans la nature sont non linéaires et non convexes et sont également 

constituées d'un mélange de variables discrètes et continues, certains algorithmes sont développés pour traiter le problème ORPD 

discret dans les réseaux électriques à grande échelle. Par la suite, afin de garantir l'adéquation des approches proposées pour les 

systèmes électriques modernes, le problème du flux de puissance optimal stochastique (OPF) avec des réserves incertaines 

provenant de sources d'énergie renouvelables est étudié dans différents scénarios. Enfin, une technique méta-heuristique basée sur 

la gestion de la demande (DSM) est proposée pour le système de gestion de l'énergie domestique. L'objectif principal de cette 

étude est d'ajuster la demande de pointe et d'offrir l'énergie totale requise à un coût minimum avec une qualité élevée. Plus 

précisément, afin de sensibiliser les consommateurs de leur contribution efficace et indispensable à l‘aide au gestionnaire de réseau 

en cas d‘urgence (les demandes durant les heures de point). 

Mots clés : Optimisation de l‘écoulement de puissance; répartition optimal de la puissance réactive; les méthodes d‘optimisation 

non-conventionnel; technique de traitement des contraintes; sources d'énergie renouvelable; la gestion de la demande.   

 


