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Notations

0.1 For abbreviations and expressions

The abbreviation The meaning
s.t. such that
iff if and only if
RHS right hand side
LHS left hand side
ONB orthogonormal basis
”i.i.d” independent identically distributed
UMD unconditional for martingale difference
PDEs partial differential equations
SDEs stochastic differential equations
SPDEs stochastic partial differential equations
FSPDEs fractional stochastic partial differential equations

The expression The meaning
x := y or y := x x is equal to y by definition

a ∧ b min(a, b)
a ∨ b max(a, b)

a−, for a ∈ R∗+ the positive number a− κ, for any, κ > 0
arg z argument of the complex number z

Eq.(n.m) an equation of number m exists in chapter n
Prb.(n.m) a problem of number m exists in chapter n
IV P.(n.m) an initial value problem of number m exists in chapter n
Est.(n.m) an estimate of number m exists in chapter n
Cond.(n.m) a condition of number m exists in chapter n
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0.2 For sets and functions

The symbol The meaning
N0 N− {0}
R+ the interval [0,+∞)
R∗+ the interval (0,+∞)
Rd

+ {t = (t1, ..., td) ∈ Rd, s.t., ti ≥ 0, ∀ i}
Domain D a non empty open set

∂D the boundary of the domain D
(a, b), For a < b ∈ R, an open interval

supp(f) support of the function f
1B the indecator function of the set B

f = O(g), as x→ x0 ∃ C > 0 s.t. |f(x)| ≤ C|g(x)|, for all x sufficiently close to x0
Γ gamma function defined by Γ(α) :=

∫∞
0 e−ttα−1dt, for all α > 0

D(A) domain of definition of the operator A
A∗ the adjoint of the operator A
IE the identity operator defined on some space E .

In chapters 6 and 7 we omit the subscript E for simplify
F and F−1 Fourier transform and its inverse respectively

0.3 For Stochastic analysis

The symbol The meaning
(Ω,F ,P) Probability space
N The normal law

F := (Ft)t∈[0,T ] Normal filtration
(Ω,F ,F,P) Filtered probability space
(βt)t∈[0,T ] Brownian motion

W := (Wt)t∈[0,T ] Wiener process
(Ω,F ,F,P,W ) Stochastic basis

E(X) :=
∫
Ω X(w) d P(w) Expectation of the random variable X

Lp(Ω, E), for a Banach space E Space of all p− th integrable
E − valued random variables on Ω

M2
T (E) Space of all continuous square integrable

E − valued martingales
P− a.s. Property holds exept for P− null sets

viii



0.4 For functional spaces

The symbol The meaning
B(E) Borel σ − algebra generated by all open sets

of the topological space E
(E, |.|E) Banach space with its norm |.|E
E
′ The dual space of E

(., .)E′×E the pairing of E and E ′

(H, 〈., .〉H) Hilbert space with its inner product 〈., .〉H
Lp Lebesgue space, for the special case p = 2

we will denote it in chapter 6 by H
C and Cm, for m ∈ N0 space of continuous functions and

space of all functions of class m respectively
Cm

0 , for m ∈ N0 space of functions of class m with compact support
Wm
p , m ∈ N, 1 ≤ p ≤ ∞ Sobolev space

W s
p , s ∈ R∗+ − N0, 1 ≤ p <∞ fractional Sobolev space
Hα

2 and Hα
0 , for α > 0 fractional Sobolev space for p = 2

and the closure of C∞0 in Hα
2 respectively

Bs
pq Besov space

Cδ, for δ ∈ (0, 1) Hölder space
Cs, for s ∈ (0, 1) Zygmund space
L(E1, E2) Banach space of linear bounded operators from E1 to E2

with its norm ‖.‖L(E1,E2). For E1 = E2 we simply write L(E1)
E1 ↪→ E2 embedding of E1 in E2

(HS(H1, H2), ‖.‖HS(H1,H2)) space of Hilbert-Schmidt operators from H1to H2
HS space of Hilbert-Schmidt operators from L2(0, 1) to it self

LN (H1, H2) space of nuclear operators from H1 to H2
S and S ′ the Schwartz space and its dual respectively

• Comment on the Constants. We employ the later C to denote any constant that

can be explicitly computed in terms of known quantities. The exact value denoted by

C may therfore change from line to line in a given computation. The big advantage

is that our calculations will be simpler looking. If we write for example C = Cd,p

this means that C depends on d and p.
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Abstract

This dissertation has provided a rigorous analysis of various numerical
schemes for a class of local and global Lipschitz nonlinear fractional stochas-
tic partial differential equations, driven by the fractional Laplacian in the
one dimensional space and perturbed by a Gaussian noise. The study
contains the elaboration of time, space and space-time schemes and their
different convergences. Specially, we express for every scheme the rate of
convergence in terms of the fractional power of the Laplacian.

The first contribution (Chapter 5) concerned the study of the fractional
stochastic Burgers-type equation in Hölder space Cδ(0, 1), with diffusion
dissipation index α ∈ (7

4 , 2]. We have proved the existence and the unique-
ness of a space-time Hölder mild solution. Moreover, we have fulfilled the
pathwise convergence of the spacial and the full approximations, where
the spectral Galerkin method has been used for the spacial approximation,
whereas the exponential Euler scheme has been used for the temporal ap-
proximation.

In the second contribution (Chapter 6), we have considered the frac-
tional stochastic nonlinear heat equation in the Hilbert space L2(0, 1),
with diffusion dissipation index α ∈ (1, 2]. By using the spectral Galerkin
method for the spacial approximation and the implicit Euler scheme for
the temporal approximation, we have established the strong convergence
in the space Lp(Ω, L2(0, 1)) of the temporal, the spacial and the full ap-
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proximations of the mild solution.

In the third contribution (Chapter 7), we have improved the diffusion
dissipation index obtained in Chapter 5 to α ∈ (3

2 , 2], by proving a weaker
convergence (i.e. convergence in probability) of the temporal approxi-
mation of the fractional stochastic Burgers equation in the Hilbert space
L2(0, 1).

Key words and phraces: Fractional stochastic Burgers-type equa-
tion, fractional stochastic nonlinear heat equation, fractional Laplacian,
Gaussian noise, multiplicative space-time white noise, additive space-time
white noise, Hölder spaces, fractional Sobolev spaces, Hilbert-Schmidt op-
erator, mild solutions, spectral Galerkin approximation, implicit Euler
scheme, exponential Euler scheme, full approximation, order of conver-
gence.
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Introduction

As early as 1695, when Leibniz and Newton had just established the classical cal-

culus (i.e. calculus of derivatives and integrals of integer order), Leibniz and L’Hôpital

had correspondence where they discussed the meaning of the derivative of order one

half. Since then, many famous mathematicians like Euler (1738), Laplace (1820), Fourier

(1822) and Lagrange (1849) have worked on this and related questions creating the field

which is known today as fractional calculus. Such calculus is a name for the theory

of derivatives and integrals of arbitrary order (fraction, rational, irrational, complex,...).

It generalizes the notions of integer-order differentiation and n-fold integration, where

the term fractional can be misleading and the fact that L’Hôpital specifically asked for

the order n = 1
2 (i.e. a fraction), actually gave rise to the name of this field of mathematics.

As well known, in the classical analysis the integer-order derivative and integral are

uniquely determined, which is not the same case for the fractional derivative and fractional

integral. Indeed, there are many different definitions that do not coincide in general, it is

due to the fact that the different authors try to keep different properties of the classical

integer-order derivative and integral. However, the fact that there are obviously more

than one way to define such notions in the fractional calculus, is one of the challenges

of this mathematical field. Generally, there are two main approaches to the fractional

culculus. Namely, the continuous and the discrete. The former is based on the Riemann-
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Liouville fractional integral, which is based also on the Cauchy integral formula, and the

latter is based on the Grünwald-Letnikov fractional derivative, as a generalization of the

fact that ordinary derivatives are limits of difference quotients. The Grünwald-Letnikov

derivative is defined as a limit of a fractional-order backward differences. For more details

on the fractional calculus we refer to [70, 80, 93].

In recent years, considerable interest in fractional differential equations has been sim-

ulated by the applications that they found in different areas of applied sciences. For

example, modelling of biological tissues [79] and modelling of neuron systems [81] in

medicine, and application of fractional calculus in continuous-time finance [94, 95] in fi-

nancial markets. Further, fractional Burgers equation has been introduced as a relevant

model for anomalous diffusions, like diffusion in complex phenomena, relaxations in vis-

coelastic mediums, propagation of acoustic waves in gaz-filled tube, see e.g. [75, 97, 98].

The analytic study for such equation has been investigated e.g. in [5, 19, 71].

The numerical study of the fractional differential equations is still a modest field, due

to the fact that the fractional operator is nonlocal, see for a short list [21, 22, 42, 100].

For example, in [42] a discretization of the fractional operator, which is represented via

an integro-differential operator, is based on the disctretization of the integral, which leads

to a slow convergence of the elaborated scheme.

In contrast to the second order differential operators, to apply the finite-difference method

we need more than three points, and all the points of the grid have to be used in every

step. Further, it is not easy to find a concrete form to the discretized fractional operator,

and the discretization has been used for the Liouville and Riemann fractional operators,

see e.g [22, 100]. However, Debbi L. in [38] introduced a new idea to discretize the frac-

tional Laplacian (−∆)α2 , by discretizing first the operator (−∆) then taking the fractional

power of the discrete operator.

The main task of numerical study for stochastic partial differential equations (briefly

SPDEs) is to elaborate schemes, generally based on the deterministic numerical methods,

4



such as finite difference and Galerkin methods, in order to provide approximations with

respect to time, to space or to both simultaneously, and proving convergence of such

schemes with or without rates. The classical results state that space or time discretiza-

tion schemes convergence strongly in the case of coefficients are globaly Lipschitz and/or

have linear growth property, see e.g. [38, 73, 87]. Wereas, the weak convergence has been

proved when the coefficients are only locally Lipschitz or have nonlinear growth see e.g.

[56, 58] for time discretization and see e.g. [54, 55] for space and full discretizations.

One of the first results about the pathwise convergence for the stochastic Burgers equation

known to us is [2]. In this work, the authors used the finite difference method and proved

that the discretized trajectories converge almost surely to the solution in CtL2−topology

with rate γ < 1/2.

Recently, the field of numerical approximations for the stochastic differential equa-

tions (briefly SDEs) attracts another attention, due to the strange phenomena particu-

larly emerging in this case. For example in [60], Hairer et al. constructed a SDE for

which, nevertheless, the rate 1 is well known for the Euler approximation for the de-

terministic version, the Euler approximation for the stochastic version converges to the

solution, in the strong and in the numerically weak sense without any arbitrarily small

polynomial rate. In [62] the authors showed that different finite difference schemes to

stochastic Burgers equation driven by space-time white noise converge to different limit-

ing processes. Divergence of schemes can also occur if the stochastic noise is rougher than

the space-time white noise. One of the explanations for such strange behaviours is the

loss of regularity of the solutions of the stochastic differential equations (briefly SDEs),

which arises due to the roughness of the random noise. This loss of regularity even yields

for some cases the illposedness of the equations, see [59, 60, 61, 62]. Furthermore, a new

tendency for the numerical study of the SDEs has been developed, based on the idea to

elaborate numerical approximations for an abstract SDE with coefficients satisfying some

conditions, and then to show that this study covers some specific equations. For example,

in [12] the authors used Galerkin approximation to prove the wellposedness of an abstract

evolution stochastic differential equation, and calculated the rate of convergence to the
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solution in abstract spaces. The authors applied this abstract theory on the multidimen-

tional heat equation, reaction diffusion equation and on classical Burgers equation deriven

by additive space-time white noise. In particular, they proved that the rate of the path-

wise convergence of the Galerkin approximation is of order γ < 1/2 in the CtCx−topology.

The numerical study of the nonlinear fractional SPDEs has been affected by many

factors. For example, in the case of Burgers equation driven by the fractional Laplacian

and perturbed by a space-time white noise, we are going to face extra problems than the

classical deterministic case. Namely, on the one hand, the fractional dissipation is not

even strong enough to control the steepening of the nonlinear term, and on the other

hand, there is a difficulty to approximate the fractional operator, besides the negative

effects of the stochastic noise not only on the convergence of the schemes but on the rates

of convergences as well.

Our first contribution in this thesis makes part of this direction of study. In fact, we

consider a class of the fractional version of the stochastic Burgers-type equation studied

in [12, 59, 61, 62], which is given by the following evolution form{
du(t) = (−Aαu(t) + F (u(t))) dt+ dW (t), t ∈ (0, T ],
u(0) = u0,

(1)

where Aα := (−∆)α2 , for α ∈ (1, 2] is the fractional power of the minus Laplacian

on D := (0, 1) with homogeneous Dirichlet boundary conditions, F is a nonlinear op-

erator given by F (u(t, x)) := ∂xf(u(t, x)), x ∈ (0, 1) with f being locally Lipschitz.

Specially, the case when f is a polynomial; f(x) := a0 + a1x + a2x
2 + ...anx

n, with

a0, a1, ..., an 6= 0 ∈ R, n ∈ N. It is easily seen that for n = 2 (i.e. a2 6= 0) and

a1 = 0, we recuperate the fractional stochastic Burgers equation. This fact justifies the

name of Burgers-type, W is an L2(0, 1)-valued IL2(0,1)-cylindrical Wiener process, u0 is

an L2(0, 1)-valued F0-measurable random variable and (u(t))t∈[0,T ] is an L2(0, 1)-valued

stochastic process.

By applying the method used in [12] we generalize their results. Precisely, we prove the

existence and the uniquness of the mild solution of Prb.(1) in the Cγ
t C

δ
x-topology , where

γ < α−1−2δ
2α and δ ∈ (1− α

2 ,
2α−3

2 ), for α ∈ (7
4 , 2). In addition, we prove the pathwise con-

vergence of the obtained spacial and full approximations with the orders of convergence

6



(α−1−2δ
2 )− κ in space and (α−1−2δ

2α )− κ in time, for any κ > 0.

To the best of our knowledge, this contribution is the first one proving these results in the

Hölder spaces Cδ(0, 1) not only for the fractional stochastic Burgers-type equations, but

for the fractional and classical stochastic Burgers equations as well. Moreover, the expo-

nential Euler scheme has been applied here for the first time for the fractional stochastic

equations. Recall that this method has been introduced in [69] and used in the approxi-

mation of the stochastic heat and reaction diffusion equations, see [68, 69].

In order to improve either the orders of convergence and the constraint on the diffusion

dissipation index α, we relax the condition imposed on the nonlinear term and we study

such equation in the Hilbert space L2(0, 1) instead of the Hölder space Cδ(0, 1). Precisely,

in our second contribution, we deal with the fractional stochastic nonlinear heat equation

with multiplicative noise. This means, we consider Eq.(1) with the nonlinear operator F

being globally Lipschitz with nonlinear growth condition instead of locally Lipschitz. We

prove the strong convergence in the space Lp(Ω, L2(0, 1)) of the temporal, the spacial and

the full approximations of the mild solution with orders of convergence α
2 −κ in space and

α−1
2α − κ in time, for any κ > 0. In this contribution, we fill the gap α ∈ (1, 7

4 ], but for the

heat equation only. For Burgers equation, we prove the convergence in probability, which

is weaker than the Lp and the pathwise convergences, of the temporal approximation with

the same order α−1
2α − κ provided that α ∈ (3

2 , 2].

We close this introduction by a summary of the thesis.

In chapter 1, we collect some preliminaries related to the functional analysis. First,

we gather some notions and results of the linear spaces that are used frequently in this

thesis, namely fractional Sobolev spaces and Hölder spaces. Second, we introduce some

definitions and basic results of the Linear operators such as the Hilbert-Schmidt opera-

tor, besides we give a short review on the semigroup theory. Since the classical calculus

can be regarded as a special case of the fractional calculus and some results in it should

contain the classical case in a certain way, we present the standard Laplace operator by re-

calling its definition and some of its properties before introducing the fractional Laplacian.

7



In chapter 2, some well known definitions and results about the stochastic processes

and stochastic integrals in Hilbert spaces have been collected, namely the Wiener pro-

cesses and the stochastic integrals with respect to them, because they are used in the next

chapters.

In chapter 3, we introduce some results about the classical and the fractional SPDEs.

As a starting point, we motivate our study by two important models from physics; heat

equation and Burgers equation, we move from the deterministic case to the stochastic one,

in order to introduce the stochastic nonlinear heat equation and the stochastic Burgers

equation. Next, we deal with an abstract parabolic SPDEs perturbed by a multiplicative

noise by giving different concepts of their solutions, after that we introduce the wellposed-

ness results in the two cases; globally Lipschitz and locally Lipschitz nonlinearities. We

close this chapter by one of the recent developments; the SPDEs driven by fractional

differential operators. Precisely, we deal with the SPDEs driven by the fractional Lapla-

cian, where we introduce the fractional analogs of stochastic nonlinear heat and stochastic

Burgers equations and we introduce some results about their wellposedness.

In chapter 4, some numerical approximations and results concerning the abstract

parabolic SPDEs introduced in Chapter 3 have been collected. In the first part, we deal

with the full approximation of the deterministic version of such problem by using the

finite difference method for temporal discretization and the spectral Galerkin method for

spacial discretization. In the second part, we use the same methods to approximate spa-

cially and temporally the stochastic term of the problem, after that we introduce different

notions of convergence in the probability context. We close this chapter by showing an

important results concerned the spacial approximation of the fractional sthochastic heat

equation.

In chapter 5 (our first main contribution), we consider the fractional stochastic

Burgers-type equation with additive noise in the Hölder space Cδ(0, 1). The scheme
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obtained by using the spectral Galerkin method, on the one hand, is used to prove the

analytic result concerns the wellposedness, the pathwise existence and uniqueness of the

mild solution, and on the other hand, to give the space approximation of the mild solution.

Moreover, we prove the pathwise convergence of such spacial approximation with a precise

order of convergence. The second numerical result concerns the space-time approximation,

which converges almost surely with precise orders of convergence. Such approximation is

achieved by combining spectral Galerkin and exponential-Euler methods.

The results of this chapter make the subject of the following paper:

• Arab Z. and Debbi L., Fractional stochastic Burgers-type equation in Hölder space

-Wellposedness and Approximations-. Math Meth Appl Sci. Vol. 44, Issue .1,

pp.705-736. (2021).

In chapter 6 (our second main contribution), we deal with the full approximation for

the fractional stochastic nonlinear heat equation in the Hilbert space L2(0, 1), perturbed

by a multiplicative noise. Precisely, we establish the temporal, the spacial and the full

schemes by using the semi-implicit scheme in time and the spectral Galerkin method in

space. After that, we prove the strong convergence (i.e. in the space Lp(Ω, L2(0, 1)) ) of

such schemes with orders of convergence.

In chapter 7 (our third main contribution), we consider the fractional stochastic

Burgers equation in the Hilbert space L2(0, 1). We prove the convergence in probability

of the temporal approximation obtained via implicit Euler scheme, with the same order

of convergence obtained in Chapter 6.

The results of Chapter 6 and Chapter 7 make the subject of the following manuscript:

• Arab Z. and Debbi L., Numerical approximations for some fractional stochastic

partial differential equations. To be submitted.

We close this thesis by some appendices. In Appendix A.1, we deal with several

versions of Grönwall Lemma. In Appendix A.2, we collect some useful results. Some

elementary inequalities have been gathered in Appendix A.3. In Appendix A.4, we recall

some basic definitions on functional spaces.
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Chapter 1

On some functional aspects

The purpose of this chapter is to collect some concepts and results concerning various

aspects of functional analysis. In Section 1.1 we gather some notions and results of linear

spaces, especially some of the more important linear spaces such as Banach spaces, Hilbert

spaces, and certain functional spaces that are used frequently in this thesis. Namely,

fractional Sobolev spaces and Hölder space. In Section 1.2 we introduce some definitions

and basic results of Linear operators such as Hilbert-Schmidt operator. Section 1.2.2

focuses on some generalities of the semigroup theory. The standard Laplace operator is

postponed to Section 1.2.3 for introducing it specifically in order to present the fractional

Laplace operator in Section 1.2.4 which is our case of interest in this thesis. The main

references of the presented chapter are [83, 92, 105, 106, 107].

1.1 Functional spaces and some of their properties.

We define functional spaces on R and on bounded domain D ⊂ R. Let 0 < p, q ≤ ∞, s ∈

R, for simplicity reasons, we sometimes restrict these parameters for the required cases.
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1.1.1 Functional spaces on R and on bounded domain

For the following definitions see [92, Section 2.1.2, ps. 11-12] and [105, Section 2.2.2, ps.

35-36], we omit R from the notations for the sack of simplicity.

Definition 1.1 (Lebesgue space). The Lp-Lebesgue space is defined by:

Lp := {f measurable s.t. |f |pLp :=
∫
R
|f(x)|pdx <∞},

for 0 < p <∞ and by

L∞ := {f measurable s.t. |f |L∞ := ess supR|f(x)| <∞},

where " ess sup " means the essential supremum, i.e.

ess supf := inf
c∈R
{c, µ(f−1(c,+∞)) = 0},

with µ the Lebesgue measure.

Definition 1.2 (Sobolev spaces). For 1 ≤ p ≤ ∞ and m ∈ N, we define the Sobolev

space:

Wm
p := {f ∈ Lp, s.t. |f |pWm

p
:=

m∑
k=0
|Dkf |pLp <∞},

where Dkf represents the derivative of f of order k in the distributional sense.

Definition 1.3 (Fractional Sobolev space). Let 1 ≤ p < ∞ and 0 < s 6= integer,

with [s], {s} are respectively the integer and the fractional parts of s. The fractional

Sobolev space (also called Aronszajn, Gagliardo or Slobodockij space) is given by:

W s
p := {f ∈ W [s]

p , s.t. |f |pW s
p

:= |f |p
W

[s]
p

+
[s]∑
k=0

∫
R

∫
R

|Dkf(x)−Dkf(y)|p
|x− y|1+{s}p dx dy <∞}.

Remark 1.4 Let us mention here that for p = 2, the spaces Wm
2 and W s

2 are Hilbert

spaces and we will denote them by Hm
2 and Hs

2 respectively.
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In order to introduce Besov spaces we need first the following definition.

Definition 1.5 (Systems of functions), [92, Definition 1, p.7]. Let φ = (φj)∞j=0 ⊂ S

be a system s.t.

1. for every x ∈ R, ∑∞j=0 φj(x) = 1,

2. there exist constants c1, c2, c3 > 0 with

suppφ0 ⊂ {x ∈ R : |x| ≤ c1},

and

suppφj ⊂ {x ∈ R : c2 2j−1 ≤ |x| ≤ c3 2j+1}, for j = 1, 2, ...

3. for every nonnegative integer k there exists ck > 0 s.t.,

sup
x∈R

sup
j=0,1,...

2jk|Dkφj(x)| ≤ ck.

Definition 1.6 (Besov spaces), [92, Convention 1., p.11]. Let s ∈ R and 0 < p, q ≤

∞, we define the Besov space:

Bs
pq := {f ∈ S ′, s.t. |f |qBspq := |2sjF−1[φjFf ](.)|lq(Lp) <∞},

where (φj)∞j=0 is given by Definition 1.5, and lq is the space of q-summable real sequences.

Definition 1.7 (Besov spaces on Bounded domain D), [92, Section 4.1.2, Defini-

tion 2., p.74]. For s ∈ R and 0 < p, q ≤ ∞,

Bs
pq(D) := {f ∈ D′(D), ∃ g ∈ Bs

pq with g|D = f, s.t. |f |Bspq(D) := inf |g|Bspq <∞},

where D′(D) is the collection of all complex-valued distributions on the domain D.

Definition 1.8 (Spaces of continuous functions). The space of continuous func-

tion is defined by:

C := {f bounded and continuous, s.t. |f |C := sup
x∈R
|f(x)| <∞}.
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Definition 1.9 (Spaces of differentiable functions of order m). Let m ∈ N. The

spaces of differentiable functions of order m is defined by:

Cm := {f ∈ C s.t. dαf ∈ C, for all α ≤ m},

endowed with the norm

|f |Cm :=
∑
α≤m
|dαf |C ,

where dα means the classical derivative of order α, with the convention C0 = C. The

notation Cm
0 is reserved for the space of all functions in Cm with compact support.

Definition 1.10 (Hölder spaces). For δ ∈ (0, 1), we define the Hölder space by

Cδ := {f ∈ C, s.t. |f |Cδ := |f |C + sup
x,y∈R,x 6=y

|f(x)− f(y)|
|x− y|δ

<∞}.

Definition 1.11 (Zygmund spaces). Let s ∈ (0, 1), the Zygmund space is defined

by:

Cs := {f ∈ C s.t. |f |Cδ := |f |C + sup
h∈R,h6=0

|h|−s|∆2
hf |C <∞},

with ∆2
hf(x) := ∑2

l=0(−1)l C2
l f(x+ (2− l)h), with C2

l := 2!
l!(2−l)! .

Definition 1.12 (Zygmund spaces on Bounded domain D), [106, Section 5.3.2]

& [106, Section 1.10.3]. Let D be a bounded C∞-domain, then for s > 0, we define

Cs(D) := Bs
∞∞(D). In particular, for s ∈ (0, 1)

Cs(D) := {f ∈ C(D) s.t. |f |Cδ(D) := |f |C(D) + sup
h∈R,h 6=0

|h|−s|∆2
hf(., D)|C(D) <∞},

with

∆2
hf(x,D) :=

{ ∆2
hf(x), if x+ jh ∈ D for j = 0, 1, 2,

0, otherwise.

1.1.2 Some properties of the functional spaces

In this subsection, we present the relationship between the differential spaces and we

study under which conditions a space can be a multiplicative algebra, and how to check

spaces that are relevant to gather, in order to deal with the factorisation of the pathwise

product.
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Lemma 1.13 We have:

• The identities, see e.g. [92, p.14] and [105].

– For 0 < s 6= integer, Cs = Bs
∞∞ = Cs.

– For 0 < s 6= integer and 1 ≤ p <∞, Bs
pp = W s

p .

– For 1 ≤ p ≤ ∞, W 0
p = Lp.

• The continuous embeddings:

Bs
pq0 ↪→ Bs

pq1 , (1.1)

for s > 0, 0 < p ≤ ∞ and 0 < q0 < q1 ≤ ∞, see e.g. [92, Proposition 2.2.1, p.29].

Bs0
p0q0 ↪→ Bs1

p1q1 , (1.2)

provided s1 < s0, s0 − 1
p0
> s1 − 1

p1
and p0 ≤ p1, see e.g. [92, Remark 2, p.31].

• As a consequence of Embedding (1.2), we have for s1 < s0

Bs0
∞∞ ↪→ Bs1

22, (1.3)

Cs0 ↪→ Hs1
2 , (1.4)

and for s0 >
2−α

2 and s0 6=integer,

Cs0 = Cs0 ↪→ H
1−α2
2 . (1.5)

• [105, Theorem 2.8.3, ps. 145-146], for 0 < p, q ≤ ∞, s > 1
p
, Bs

pq is a multiplication

algebra. In particular, for s > 0, Cs is a multiplication algebra.

Theorem 1.14 . Let s ∈ R, 0 < p, q ≤ ∞ and δ > max(s, ( 1
min(p,1) − 1)− s). Then for

every f ∈ Cδ and every g ∈ Bs
p,q there exists C > 0 s.t.

|f g|Bsp,q ≤ C |f |Cδ |g|Bsp,q . (1.6)

Proof.See [105, Theorem 3.3.2].

Theorem 1.15 The results of Theorem 1.14 are still valid for bounded domains, see, e.g.

[105, Section 3.3.2] and [106, Section 5.4].
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Moreover, we have

Corollary 1.16 Let 0 < s 6= integer and δ > s (in our study δ ∈ (0, 1)), then for

f ∈ Cδ(D) and every g ∈ Hs
2(D) there exists a positive constant C such that

|f g|Hs
2
≤ C |f |Cδ |g|Hs

2
. (1.7)

Proof.The result is obtained by application of Theorem 1.14 and [92, Proposition

2.1.2 P.14].

Theorem 1.17 . Let D ⊆ R be an extension domain for W r
p with no external cups and

let p ∈ [1,∞), r ∈ (0, 1) s.t. r > 1
p
. Then ∃ CD,p,r > 0 s.t.

|f |
C
r− 1

p
≤ CD,p,r|f |W r

p
, for any f ∈ Lp(D). (1.8)

Proof.See [40, Theorem 8.2].

1.1.3 UMD Banach Space & Banach Space of Type p

In this subsection we recall some notions concerning the UMD Banach Space and Banach

Space of type p, because they have properties like Hilbert spaces and Banach spaces.

Let (Ω,F , (Fn)n≥0,P) be a filtered probability space, (εn)n≥1 be a sequence of "i.i.d"

symmetric {+1,−1}-valued random variables and let E be a given Banach space.

Definition 1.18 (Martingale difference sequence, [4, 18, 85]). A sequence (dn)n≥1

of Bochner-integrable E−valued random variables is amartingale difference sequence

relative to the filtration (Fn)n≥0, if for all n ≥ 1, the function dn is Fn−measurable and

E(dn/Fn−1) = 0.

Definition 1.19 (UMD Banach space, [18, 85, 109, 110]). The Banach space E is

called UMD Banach space if for some (or equivalently for every) p ∈ (1,∞), there

exists Cp,E ≥ 1, s.t. ∀n ≥ 1, for all martingale differences (dj)nj=1 and for all (εj)nj=1

defined above, we have

(
E|

n∑
j=1

εjdj|pE
) 1
p ≤ Cp,E

(
E|

n∑
j=1

dj|pE
) 1
p . (1.9)
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Definition 1.20 (Banach space of type p , [4, 85, 109, 110]). A Banach space E

is called of type p, with 1 ≤ p ≤ 2 if there exists a constant C > 0, s.t. for each finite

sequence (xi)ni=1 ⊂ E and for all (εj)nj=1 defined above,

(
E|

n∑
j=1

εjxj|2E
) 1

2 ≤ C
( n∑
j=1
|xj|pE

) 1
p . (1.10)

Remark 1.21 Well known examples of UMD Banach spaces are; all Hilbert spaces,

The Lebesgue spaces Lp(S,B, µ), 1 < p < ∞, with µ being a σ−finite measure and

Lp(S;E), 1 < p < ∞, with E being an UMD Banach space. The Hilbert spaces and the

Lp−Lebesgue spaces, with 2 ≤ p <∞ are also Banach spaces of type 2, but Lp−Lebesgue

spaces, with 1 ≤ p < 2 are not. More precisely, an UMD Banach space can not be a

Banach space of type 2 and vise virsa, see [4, 85, 109, 110].

1.2 Some useful operators

In this section, we deal with some useful operators like Hilbert-Schmidt operator, which

plays an important role in the construction of the stochastic integrals and the fractional

Laplacian which is our case of interest in this thesis. For this end, we fix two real-

Banach spaces (X, |.|X), (Y, |.|Y ) and two separable real-Hilbert spaces (U, 〈., .〉U , |.|U),

(H, 〈., .〉H , |.|H).

1.2.1 Basic notions and some useful results

Definition 1.22 (Bounded operator). Let A : D(A) ⊆ X → Y be a linear operator.

Then, we say that A is bounded if there exists C > 0 s.t.

|A(x)|Y ≤ C|x|X , ∀x ∈ D(A).

Definition 1.23 We denote by L(X, Y ) for the Banach space of all linear bounded oper-

ators defined from X to Y endowed by the norm

‖A‖L(X,Y ) := sup{|x|−1
X |A(x)|Y , x ∈ X, x 6= 0}.

If X = Y , we write L(X,X) = L(X). Moreover, if Y = R we call A a linear bounded

functional on X. We denote the collection of all such functionals by X ′, which is the
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dual space of X. The symbols ‖.‖X′ and (., .)X′ ,X denote the norm in X ′ and the duality

(pairing) of X ′ and X respectively.

Definition 1.24 (Compact operator). An operator A ∈ L(X, Y ) is said to be com-

pact if for all bounded subset B ⊂ X, the closure of A(B) is compact.

Definition 1.25 (Closed operator). We say that, a linear operator A : D(A) ⊆ X →

Y is closed if its graph is a closed subspace of X × Y .

Theorem 1.26 Every linear bounded operator A on X satisfies D(A) = X. Moreover,

A is closed.

Definition 1.27 (Pseudo-inverse). Let A ∈ L(U,H). Then, we define the pseudo-

inverse of A as

A−1 := (A|ker(A)⊥)−1 : A(ker(A)⊥) = A(U)→ ker(A)⊥,

where ker(A) denotes the kernel of A and ker(A)⊥ its orthogonal complement.

Definition 1.28 (Nonnegative operator). We say that, the linear operator A : D(A) ⊆

U → U is nonnegative if

〈Au, u〉U ∈ [0,+∞), ∀ u ∈ D(A).

Definition 1.29 (Symmetric operator). A densely defined linear operator A : D(A) ⊆

U → U is said to be symmetric if

〈Au, v〉U = 〈u,Av〉U , ∀ u, v ∈ D(A),

where 〈., .〉U denotes the inner product in U .

Lemma 1.30 [45, Lemma 13.3, p.488]. Let A : D(A) ⊆ U → H s.t. D(A) is dense in

U . Then, A admits a closed operator A∗ called the adjoint, which is defined on D(A∗)

into U where

D(A∗) := {v ∈ H, s.t. D(A) 3 u 7→ 〈Au, v〉H is continuous},

such that for all u ∈ D(A) and all v ∈ D(A∗) it holds

〈u,A∗v〉U = 〈Au, v〉H .
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Definition 1.31 (Self-adjoint operator). Let A : D(A) ⊆ U → U be a densely

defined linear operator. Then, we say that A is self-adjoint if D(A) = D(A∗) and

A = A∗.

Corollary 1.32 [114, p.199]. Let (A,D(A)) be a symmetric operator on the Hilbert space

U . If D(A) = U , then A is self-adjoint.

Next, we introduce a useful result concerning a linear, self-adjoint and nonnegative

operator and its spectrum. It is necessary to define first such spectrum.

Definition 1.33 (Resolvent set of an operator). Let the operator A ∈ L(U). The

resolvent set of A denoted by ρ(A) is defined by

ρ(A) := {λ ∈ C s.t. (A− λIU) is invertible}.

Definition 1.34 (Spectrum of an operator). Let the operator A ∈ L(U). The

spectrum of A, denoted by σ(A) is the complement of the resolvent set in C.

The spectrum of A is subdivided as follows

Definition 1.35 Let the operator A ∈ L(U).

1. The discrete spectrum of A consists of all λ ∈ σ(A) s.t. (A − λIU) is not one-

to-one. In this case λ is called an eigenvalue of A.

2. The continuous spectrum of A consists of all λ ∈ σ(A) s.t. (A− λIU) is one-to-

one but not onto and range(A− λIU) is dense in U .

3. The residual spectrum of A consists of all λ ∈ σ(A) s.t. (A− λIU) is one-to-one

but not onto and range(A− λIU) is not dense in U .

Lemma 1.36 [104, Chapter 7; Est.(7.5) and Est.(7.6), p.112]. Let A be a linear (not

necessarily bounded), self-adjoint and nonnegative operator defined on D(U) ⊆ U , which

has eigenvalues {µj}Nj=1, for 1 < N ≤ ∞ corresponding to a basis of orthogonormal
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eigenfunctions {ϕj}Nj=1. Then, for an arbitrary function G defined on the spectrum σ(A) =

{µj}Nj=1 of A, it holds

G(A)v =
N∑
j=1
G(µj)〈v, ϕj〉Uϕj, ∀v ∈ U. (1.11)

and

‖G(A)‖L(U) = sup
1≤j≤N

|G(µj)|. (1.12)

Definition 1.37 (Nuclear operator). Let A ∈ L(X, Y ), if there exist two sequences

(xn)n∈N ⊂ X
′ and (yn)n∈N ⊂ Y s.t.

∑
n∈N0

‖xn‖X′ |yn|Y < +∞.

Then, A defined by

A(x) :=
∑
n∈N0

yn × xn(x), ∀ x ∈ X

is called a nuclear operator, where "×" denotes the scalar multiplication operation.

We denote by LN (X, Y ) the space of all nuclear operators from X to Y , which is a

Banach space (see [31, Appendix C., p. 436]) endowed with the norm

‖A‖LN (U,H) := inf
(xn)n∈N⊂X′ , (yn)n∈N⊂Y

{
∑
n∈N
‖xn‖X′ |yn|Y , ∀ x ∈ X}.

Definition 1.38 (Finite trace operator). Let (en)n∈N0 be an ONB of U , and let

A ∈ L(U) if

trA :=
∑
n∈N0

〈Aen, en〉U < +∞.

Then, we call A a finite trace operator, where trA is called the trace of A, which is

independent of the choice of the ONB (en)n∈N0.

Proposition 1.39 [31, Proposition C.1, p.436]. Let A ∈ LN (U). Then, A is finite trace

operator satisfies

|trA| ≤ ‖A‖LN (U),

Proposition 1.40 [101, Proposition.6.6, p.497]. Let A ∈ L(U) be a compact and self-

adjoint operator. Then, the spectral theorem for compact and self-adjoint operators ensures

the existence of an orthonormal basis (en)n∈N of U and a sequence of nonnegative real

numbers (λn)n∈N s.t. Aen = λnen, ∀n ∈ N, with only 0 as an accumulation point.
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Definition 1.41 (Hilbert-Schmidt operator). Let (en)n∈N0, be an ONB of U. An

operator A ∈ L(U,H) is said to be Hilbert-Schmidt if

∑
n∈N0

|Aen|2H < +∞.

We denote by HS(U,H) the set of all Hilbert-Schmidt operators from U to H. In the

special case U = H we shortly write HS(U,U) = HS(U). The definition of a Hilbert-

Schmidt operator and the induced Hilbert-Schmidt norm in HS(U,H)

‖A‖HS(U,H) := (
∑
n∈N0

|Aen|2H) 1
2 , (1.13)

are independent of the choice of the basis (en)n∈N0 (see [86, Remark. B.0.6(i)]).

Proposition 1.42 [86, Prop. B.0.7]. The space HS(U,H) endowed with the inner prod-

uct

〈Ψ,Φ〉HS(U,H) :=
∑
n∈N0

〈Ψen,Φen〉H , ∀ Ψ,Φ ∈ HS(U,H)

is a separable Hilbert space.

In the next proposition we collect some important properties of such type of operators,

for more details see for instance [86, Remark. B.0.6].

Proposition 1.43 [86]. Let Ψ ∈ HS(U,H) be a Hilbert-Schmidt operator. Then, the

following statements hold

1. ‖Ψ‖L(U,H) ≤ ‖Ψ‖HS(U,H).

2. Let V be another separable Hilbert space and Ψ1 ∈ L(H,V ), Ψ2 ∈ L(V, U) and

Ψ ∈ HS(U,H). Then, Ψ1 ◦Ψ ∈ HS(U, V ) and Ψ ◦Ψ2 ∈ HS(V,H). Moreover

‖Ψ1 ◦Ψ‖HS(U,V ) ≤ ‖Ψ‖HS(U,H)‖Ψ1‖L(H,V ),

‖Ψ ◦Ψ2‖HS(V,H) ≤ ‖Ψ2‖L(V,U)‖Ψ‖HS(U,H).

Regarding the importance of the finite trace operators and their role in the construction

of the stochastic integral, we add the following results.
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Proposition 1.44 [86, Proposition. 2.3.4, p.28]. Let Q ∈ L(U) be a symmetric and

nonnegative operator. Then, there exists a unique symmetric and nonnegative operator

Q
1
2 ∈ L(U) satisfies Q 1

2 ◦ Q 1
2 = Q. Moreover, if Q with finite trace, then Q

1
2 ∈ HS(U),

s.t. ‖Q 1
2‖2

HS = trQ and for all Ψ ∈ L(U,H) it holds Ψ ◦Q 1
2 ∈ HS(U,H).

Corollary 1.45 Let Q ∈ L(U) be a symmetric and nonnegative operator and {en, n ∈ N}

be an ONB of U , consisting of eigenvectors of Q with corresponding eigenvalues {λn, n ∈

N}. Then, the operator Q 1
2 admits the family {(en, λ

1
2
n ), n ∈ N} as an eigenpairs.

Proof.Let {en, n ∈ N} be an ONB of U , consisting of eigenvectors of Q with corre-

sponding eigenvalues {λn, n ∈ N}. Let A ∈ L(U) defined by Aen := λ
1
2
nen, for any n ∈ N.

The operator A is symmetric. Indeed, for all u, v ∈ U we have

〈Au, v〉U = 〈A
∑
n∈N
〈u, en〉Uen,

∑
m∈N
〈v, em〉Uem〉U =

∑
n,m∈N

〈u, en〉U〈v, em〉U〈Aen, em〉U

=
∑

n,m∈N
〈u, en〉U〈v, em〉U〈λ

1
2
nen, em〉U =

∑
n∈N

λ
1
2
n 〈u, en〉U〈v, en〉U .

By the same manner it holds that

〈u,Av〉U =
∑
n∈N

λ
1
2
n 〈u, en〉U〈v, en〉U ,

In Addition, A is nonnegative since we can get easily for all u ∈ U ,

〈Au, u〉U =
∑
n∈N

λ
1
2
n 〈u, en〉2U ≥ 0.

Moreover, for any ∈ N we have

(A ◦ A)en = A(λ
1
2
nen) = λ

1
2
nA(en) = λnen = Qen.

Consequently, for all u ∈ U it holds (A ◦ A)u = Qu. Thus, by virtue of Proposition 1.44

we obtian that A = Q
1
2 .

The next proposition introduce an important linear subspace of U , namely the image

of Q 1
2 , which is also a separable Hilbert space when equipped with an appropriately chosen

inner product.

Proposition 1.46 [31, p.96] and [86, Proposition. C.0.3, p.147]. Let Q ∈ L(U) be a

symmetric, nonnegative and finite trace operator and let {en, n ∈ N} be an ONB of U ,
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consisting of eigenvectors of Q with corresponding eigenvalues {λn, n ∈ N}. We define

S := {n ∈ N, λn > 0} the index set of non-zero eigenvalues. Then, the space U0 := Q
1
2 (U)

defined by

U0 = {u ∈ ker
(
Q

1
2
)⊥
,
∑
n∈S

λ−1
n 〈u, en〉2U < +∞},

is a Hilbert space endowed with the following inner product

〈u, v〉U0 := 〈Q− 1
2u,Q−

1
2v〉U =

∑
n∈S

λ−1
n 〈u, en〉U 〈v, en〉U , ∀ u, v ∈ U0,

where Q−
1
2 is the pseudo-inverse of Q 1

2 . In addition, the space U0 admits the family

{λ
1
2
nen, n ∈ S} as an ONB.

Corollary 1.47 For any A ∈ HS(U0, H), it holds

‖A‖HS(U0,H) = ‖A ◦Q 1
2‖HS(U,H).

Moreover, let the space L0(U,H) :=
{
A|U0 , A ∈ L(U,H)

}
. Then, we have L0(U,H) ⊂

HS(U0, H).

Proof.Let A ∈ HS(U0, H). Then,

‖A‖HS(U0,H) :=
∑
n∈S
|A(λ

1
2
nen)|2H =

∑
n∈S
|A(Q 1

2 en)|2H .

As {Q 1
2 en, n ∈ S} is an ONB of U0 and Q 1

2 en = 0U for all n not in S yields,

‖A‖HS(U0,H) =
∑
n∈S
|A ◦Q

1
2 (en)|2H +

∑
n not in S

|A ◦Q
1
2 (en)|2H = ‖A ◦Q 1

2‖HS(U,H).

Moreover, from the statement 2. in Proposition 1.43 it holds

‖A‖HS(U0,H) ≤ ‖A‖L(U,H)‖Q
1
2‖HS(U).

The fact that ‖Q 1
2‖2

HS(U) := ∑
n∈S ‖Q

1
2 en‖2

U = trQ <∞ leads to A ∈ HS(U0, H).

1.2.2 Generalities on the semigroup theory

The semigroup theory became an essential tool in a great number of areas of mathematical

analysis. The aim of this section is to present basic notions and useful results on this

theory. Throughout this section we fix a Banach space (X, |.|X) and a linear operator

(A,D(A)).
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Definition 1.48 (Semigroup). A collection (S(t))t∈R+ in L(X) is called a semigroup

if

1. S(0) = IX , where IX is the identity operator on x.

2. S(t+ s) = S(t)S(s), for all t, s ∈ R+.

Further, if the family satisfies the above conditions for all t ∈ R, we call it a group.

Definition 1.49 (Uniformly continuous semigroup). A semigroup (S(t))t∈R+ on

X is said to be uniformly continuous if

lim
t→0+

S(t) = IX ,

where the limit is taken in the topology of L(X).

Definition 1.50 (Strongly continuous or C0-semigroup). A semigroup (S(t))t∈R+

on X is called strongly continuous or C0 for short if for every x ∈ X it holds

lim
t→0+

S(t)x = x.

The limit is taken with respect to the norm |.|X .

Theorem 1.51 Let (S(t))t∈R+ be a C0-semigroup. Then, there exist two constants a ≥ 0

and C ≥ 1 s.t.

‖S(t)‖L(X) ≤ C eat, for all t ∈ R+.

Proof.See [83, Theorem 2.2, p.4].

Definition 1.52 (Semigroup of contraction). We call (S(t))t∈R+ a semigroup of

contraction if

‖S(t)‖L(X) ≤ 1, for every t ∈ R+.

Definition 1.53 (Analytic semigroup). Let θ > 0. A collection (S(z))z∈Z ∈ L(X),

where

Z := {z ∈ C, |argz| < θ},

is said to be analytic semigroup if
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1. S(0) = IX and S(z1 + z2) = S(z1)S(z2), for all z1, z2 ∈ Z.

2. limz→0 S(z)x = x, for every x ∈ X.

3. z 7→ S(z) is analytic in Z.

Definition 1.54 (Infinitesimal generator of semigroup). Let (S(t))t∈R+ be a semi-

group. We define an operator A as the infinitesimal generator of (S(t))t∈R+ by

Ax := lim
t→0+

t−1(S(t)x− x),

where, D(A) = {x ∈ X, s.t. limt→0+ t−1(S(t)x− x), exists in X}.

Remark 1.55 Due to the fact that D(A) contains at least zero, it is evidently non-empty.

Theorem 1.56 Let A be a linear operator on X. Then, A is an infinitesimal generator of

uniformly continuous semigroup (S(t))t∈R+ iff A is bounded, (see [83, Theorem 1.2, p.2]).

Moreover, any A ∈ L(X) is a generator of unique uniformly continuous semigroup, (see

[83, Theorem 1.3, p.3]).

Theorem 1.57 (Hille-Yosida) Let (A,D(A)) be a linear (not necessarily bounded)

operator on X. Then, the following assertions are equivalent

1. (A,D(A)) generates a C0-semigroup of contraction (S(t))t∈R+.

2. (A,D(A)) is densely defind, closed and for every λ > 0 one has λ ∈ ρ(A) and

‖λ(λIX − A)−1‖L(X) ≤ 1. (1.14)

Proof.See [83, Theorem 3.1, p.8].

Proposition 1.58 [101, Proposition 9.4, p. 519]. Let (A,D(A)) be a nonnegative and

self-adjoint operator. Then, (−A) is an infinitesimal generator of semigroup of contraction

(S(t) := e−tA)t∈R+.
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1.2.3 Laplace operator

In this section, we deal with the Laplace operator (or Laplacian). The Laplacian

is a differential operator represents the simplest elliptic operators occur in differential

equations that describe many physical phenomena, such as the diffusion equation for heat

and fluid flow. It is denoted by ∆ and is given in the d-dimensional case by

∆u(x) :=
d∑
i=1

∂2u(x)
∂x2

i

, x ∈ D ⊆ Rd,

where the derivatives are given either in the classical sense for a class of sufficiently smooth

function or in the weak sense for a class of less smooth functions.

In our study we will concentrate on the one-dimensional case, for this let D := (0, 1),

and let the space H1
0 (D), which is the closure of C1

0(D) in H1
2 (D) (see [14, Section 8.3,

p.217]). Now, let us denote the minus Laplacian on D with homogeneous Dirichlet

boundary conditions (i.e., the function is nul on the boundary ∂D) by A := −∆. Then,

we can define A as an operator from D(A) := H1
0 (D) ∩H2

2 (D) to L2(D).

Proposition 1.59 [14]. The Laplacian A : D(A) → L2(D), is unbounded, nonnegative

and self adjoint operator.

Proposition 1.60 [101, Section 5.1, ps. 303-304]. The Laplacian A : D(A) → L2(D),

is an isomorphism, its inverse A−1 is self-adjoint and compact on L2(D).

Proposition 1.61 [101, Proposition 6.6, p. 497] and [14, Theorem 6.1, p. 167]. There

exists an orthonormal basis (ej)j∈N0 of L2(D) consisting of eigenfunctions of A−1 and such

that the sequence of eigenvalues (λ−1
j )j∈N0 with λj > 0, converges to zero.

Moreover, (ej)j∈N0 is also a sequence of eigenfunctions of A corresponding to the eigen-

values (λj)j∈N0.

Remark 1.62 Throughout this thesis, we choose the basis (ej(.) :=
√

2 sin(jπ.))j∈N0.

Then the corresponding eigenvalues of the operator A are given by (λj = (jπ)2)j∈N0.

1.2.4 Fractional Laplacian

The presence of the long range interactions appear in various applications like nonlocal

heat conduction allows to arise the nonlocal diffusion operators to replace the standard

25



Laplace operator. The new operators act by a global integration with respect to a singular

kernel instead of acting by pointwise differentiation, in that way the nonlocal character

of the process is preserved. The fractional Laplacian denoted here by Aα := (−∆)α2 ,

for α > 0 is one of the famous nonlocal diffusion operators. We can find in the literature

many definitions of Aα which reflects its extensive use in applications. Throughout this

section we let α ∈ (0, 2].

Fractional Laplacian on R

The fractional Laplacian can be defined in several equivalent ways in the whole space R,

see for example [76]. However, when these definitions are restricted to bounded domains,

the associated boundary conditions lead to different operators. Here, we introduce two

equivalent definitions of the fractional Laplacian, the first is represented via Fourier trans-

form and its inverse, whereas the second is based on the singular integral representation.

Definition 1.63 (Pseudo-differential representation, [40, 76]). The fractional Lapla-

cian Aα is defined as a pseudo-differential operator,

Aαu(x) := F−1(|ξ|αF(u(x); ξ);x), (1.15)

where u ∈ Lp(R), for p > 1.

Definition 1.64 (Singular integral representation, [40, 76]). We define the frac-

tional Laplacian Aα as a singular integral operator

Aαu(x) := Cα lim
r→0+

∫
R\B(x,r)

kα(x, y)(u(x)− u(y))dy, (1.16)

for any u ∈ S, where kα(x, y) := |x − y|−(α+1) for any x ∈ R and any y ∈ R \ B(x, r),

with B(x, r) is the open ball of center x and radius r, and Cα := α2α−1Γ(α+1
2 )

π
1
2 Γ(1−α2 )

is a constant

with Γ is the gamma function.

Theorem 1.65 The two defintions Identity.(1.15) and Identity.(1.16) of the fractional

Laplacian Aα are equivalent.

Proof.See [40, Proposition 3.3, p.530] and [76, Theorem 1.1, p.9].
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Fractional Laplacian on bounded domains

On bounded domains there are many non-equivalent definitions of the fractional Lapla-

cian, according to the particular boundary conditions used. However, it still of great

importance, not only from the mathematical point of view, but from the applied sciences

part as well. To shed further light on this operator, we deal in this subsection with the

fractional Laplacian represented via the spectral approach. Precisely, we focus on the

case of homogeneous Dirichlet boundary conditions, because it is our case of interest in

this thesis. The case of inhomogeneous versions is considered recently in the literature,

e.g., [1, 7].

Let us mention that, the spectral approach to define the fractional Laplacian onD := (0, 1)

is based on the spectrum of A and Lemma 1.36 . To this end, first we need some additional

functional spaces.

Definition 1.66 Let α ∈ (0, 2]. Then, we have

Ĥα
2 (D) := {u ∈ Hα

2 (R), s.t. supp(u) ⊂ D̄}, (1.17)

and

Hα
2 (D) := {u ∈ L2(D), s.t. |u|2Hα(D) :=

∑
j∈N0

λαj 〈u, ej〉2L2(D) <∞}, (1.18)

where (λj, ej)j∈N0 are the eigenpairs of the operator A.

In Addition, the space denoted by Hα
0 (D) is the closure of C∞0 (D) in the Hilbert space

Hα
2 (D).

Theorem 1.67 It holds that, the two spaces Hα
0 (D) and Hα

2 (D) are equals iff α ≤ 1
2 .

Proof.See [107, Theorem 1.4.3.2].

As noted in [107, Section 4.4.3], the following relationship exists between the spaces

Hα
2 (D), Hα

0 (D), H1
0 (D), Ĥα

2 (D) and Hα
2 (D).

Lemma 1.68 Let α ∈ (0, 2]. Then

Hα
2 (D) =


Hα

2 (D), if 0 < α < 1
2 ,

Ĥα
2 (D), if α = 1

2 ,
Hα

0 (D), if 1
2 < α ≤ 1,

Hα
2 (D) ∩H1

0 (D), if 1 < α ≤ 2.

(1.19)
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Definition 1.69 (Spectral fractional Laplacian, [1, 7]). The spectral fractional

Laplacian is an operator Aα : D(Aα) := Hα
2 (D) → L2(D) defined in terms of eigen

expansion,

Aαu :=
∞∑
k=1

λ
α
2
k 〈u, ek〉L2(D)ek, for all u ∈ D(Aα). (1.20)

From the definition (1.20), it can easily see that for all n ∈ N0,

Aαen =
∞∑
k=1

λ
α
2
k 〈en, ek〉L2(D)ek = λ

α
2
n en,

and so, (en, λ
α
2
n )n∈N0 represents the eigenpairs of the fractional Laplacian Aα.

Remark 1.70 The spectral fractional Laplacian coincides with the standard Laplacian if

α = 2. Indeed, for all u ∈ D(A2) = D(A) we have,

Au =
∞∑
k=1

λk〈u, ek〉L2(D)ek. (1.21)

Lemma 1.71 [47]. The operator Aα, for α ∈ (0, 2] is the infinitesimal generator of an

analytic semigroup (e−tAα)t≥0 on L2(D) satisfies for all v ∈ L2(D),

(e−tAαv)(x) =
∞∑
k=1

e−λ
t α2
k 〈v, ek〉L2(D)ek(x). (1.22)

Furthermore, such semigroup on the bounded interval (0, T ], for T > 0 be fixed, has

the following no classical results.

Lemma 1.72 Let α ∈ (1, 2] and t ∈ (0, T ]. Then

• For all β ≥ 0, there exists Cα,β > 0, s.t.

‖A
β
2 e−tAα‖L(L2(D)) ≤ Cα,βt

− β
α , (1.23)

• For all ζ ∈ [0, α], there exists Cα,ζ > 0, s.t.

‖A−
ζ
2 (I − e−tAα)‖L(L2(D)) ≤ Cα,ζt

ζ
α . (1.24)

Proof.For the first estimate, let β ≥ 0, the use of Identity.(1.12) in Lemma 1.36, and

Lemma A.8 (with γ = β
α
), leads to

‖A
β
2 e−tAα‖L(L2(D)) = sup

1≤j≤∞
|λ

β
2
j e
−tλ

α
2
j | = t−

β
α sup

1≤j≤∞
|(tλ

α
2
j )

β
α e−tλ

α
2
j | ≤ Cα,βt

− β
α .
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About the second estimate, we argue as above. Then, we use Identity.(1.12), and Lemma

A.9 (with β = ζ
α
), to get

‖A−
ζ
2 (I−e−tAα)‖L(L2(D)) = sup

1≤j≤∞
|λ−

ζ
2

j (1−e−tλ
α
2
j )| = t

ζ
α sup

1≤j≤∞
|(tλ

α
2
j )−

ζ
α (1−e−tλ

α
2
j )| ≤ Cα,ζt

ζ
α .
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Chapter 2

Introduction to stochastic calculus
on functional spaces

We start this chapter by some useful preliminaries. In Section 2.2 we recall some basic

notions and facts about the stochastic processes in Hilbert spaces. In Section 2.3 we give

definitions of the stochastic Itô integral in Hilbert spaces, which allows us to introduce

the concept of stochastic differential equations in the next chapter. The main references

for the material presented here are [31, 86].

2.1 Preliminaries

Let (Ω,F ,P) be a probability space, (E, |.|E) be a separable Banach space and B(E) be

the σ-field of its Borel subsets. We fix T > 0.

Definition 2.1 (Normal filtration). Let F := (Ft)t∈[0,T ] be a filtration (i.e., an in-

creasing family of σ-fields defined on (Ω,F ,P)). We say that (Ft)t∈[0,T ] is a normal

filtration or say that, it satisfies the usual conditions if

• for all B ∈ F s.t. P(B) = 0, then B ∈ F0.

• for all t ∈ [0, T ], Ft+ := Ft = ∩s>tFs.
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Moreover, we call the space (Ω,F ,F,P) a filtered probability space.

Definition 2.2 (E-valued random variable). Let the mapping X : (Ω,F)→ (E,B(E)).

We say that X is an E-valued random variable if it is measurable, i.e. for any

B ∈ B(E) it holds X−1(B) ∈ F .

Definition 2.3 (Gaussian random variable). Let (U, 〈., .〉U) be a separable Hilbert

space. An U-valued random variable X on Ω is said to be Gaussian if the R-valued

random variable 〈X , u〉U , for any u ∈ U is Gaussian.

Hence, ∃ m ∈ U called the mean and a nonnegative and symmetric operator Q : U → U

called the covariance operator s.t. the law PX := P ◦ X−1 : B(U) → [0, 1] of X is

denoted by N (m,Q).

Definition 2.4 (Stopping time). Let Θ be an R+-valued random variable defined on

the filtered probability space (Ω,F ,F,P). Then, we say that Θ is an Ft-stopping time

if

{w ∈ Ω, Θ(w) ≤ t} ∈ Ft, for every t ∈ [0, T ]. (2.1)

Definition 2.5 (p-th integrability). Let p ∈ [1,∞) and X be an E-valued random

variable defined on Ω. We say that X is p-th integrable if,

E (|X |pE) :=
∫

Ω
|X (w)|pE d P(w) <∞.

The space of all p-th integrable E-valued random variables on Ω is denoted by Lp(Ω, E)

and it is a Banach space equipped with the norm ‖X‖Lp(Ω,E) := (E (|X |pE))
1
p . For the spe-

cial cases p = 1 and p = 2 we say that X is integrable respectively square integrable.

Definition 2.6 (Stochastic process). A family X := (Xt)t∈[0,T ] of E-valued random

variables Xt, t ∈ [0, T ] defined on Ω is called a stochastic process.

The stochastic process X depends on two variables, the temporal variable t ∈ [0, T ]

and the probabilistic variable w ∈ Ω.

Definition 2.7 (Trajectory). Let X be an E-valued stochastic process. The sample

path X.(w) := X(., w) depends on t ∈ [0, T ], for fixed w ∈ Ω is called the trajectory of

X.

31



Definition 2.8 Let X := (Xt)t∈[0,T ] and Y := (Yt)t∈[0,T ] be two E-valued stochastic pro-

cesses defined on the same probability space (Ω,F ,P). Then,

• the process Y is called a modification of X if,

P{w ∈ Ω, s.t. Xt(w) 6= Yt(w)} = 0, ∀ t ∈ [0, T ],

• The processes X and Y are indistinguishable if,

P{w ∈ Ω, s.t. Xt(w) = Yt(w), ∀ t ∈ [0, T ]} = 1.

Of course, the last property implies the first one.

Definition 2.9 (Adaptation, continuity and measurability of stochastic pro-

cess.) Let F := (Ft)t∈[0,T ] be a normal filtration and X = (Xt)t∈[0,T ] be a stochastic

process.

1. X is F-adapted (or simply adapted) if each Xt is measurable with respect to Ft for

every t ∈ [0, T ],

2. X is continuous with probability one if its trajectories are continuous almost surely,

i.e.

P{w ∈ Ω, t→ Xt(w)is continuous on [0, T ]} = 1,

3. X is measurable if the mapping X(., .) : ([0, T ] × Ω, B([0, T ]) ⊗ F) → (E,B(E))

is measurable with respect to B([0, T ]) ⊗ F (which is σ-algebra generated by the

product).

The regularity of stochastic process has been first studied by Kolmogorov in the 1930’s,

and extended by Centsov in the 1950’s, as the following Kolmogorov-Centsov theorem

stated.

Theorem 2.10 (Regularity Theorem). Let X = (Xt)t∈[0,T ] be an E-valued stochastic

process which satisfies for some C, γ > 0 and β > 1,

E
(
|X(t)−X(s)|βE

)
≤ C|t− s|1+γ, for every t, s ∈ [0, T ].

Then, X has a modification X̃ satisfying for every δ ∈ (0, γ
β
), P-a.s.

|X̃(t)(w)− X̃(s)(w)|E ≤ C|t− s|δ, for every t, s ∈ [0, T ].
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Proof.See [33, Theorem. 3.3, p.73].

Definition 2.11 (Gaussian process). Let (U, 〈., .〉U) be a separable Hilbert space. An

U-valued stochastic process X on Ω is called Gaussian if for any k ∈ N0 and any

t1, ..., tk ∈ [0, T ], the Uk-valued random variable (Xt1 , ..., Xtk) is Gaussian.

Definition 2.12 (Predictable σ-field). Let ΩT := [0, T ]× Ω endowed with the σ-field

B([0, T ])⊗F . The σ-field PT generated by the sets of the form

((s, t]× Fs; 0 ≤ s < t ≤ T, Fs ∈ Fs) and ({0} × F0) , F0 ∈ F0,

is called a predictable σ-field and its elements are called predictable sets.

Definition 2.13 (Predictable process). An arbitrary measurable mapping Y : (ΩT , PT )→

(E,B(E)) is called a predictable process.

Definition 2.14 (p-integrable process). An E-valued stochastic process X = (Xt)t∈[0,T ]

is called p-integrable, for p ≥ 1 if the random variable X(t), for all t ∈ [0, T ] is p-th

integrable.

Definition 2.15 (Martingale). An E-valued stochastic process M := (Mt)t∈[0,T ] is

called an F-martingale (or simply martingale), ifM is F-adapted, integrable and satisfies

E[M(t)|Fs] = M(s), P− a.s for all 0 ≤ s < t ≤ T,

whith E[M(t)|Fs] is the conditional expectation.

Definition 2.16 (Submartingale/Supermartingale). An F-adapted and integrable

stochastic process M = (Mt)t∈[0,T ] is called submartingale (respectively, supermartin-

gale) if

E[M(t)|Fs] ≥M(s), P− a.s for all 0 ≤ s < t ≤ T,

respectively

E[M(t)|Fs] ≤M(s), P− a.s for all 0 ≤ s < t ≤ T.
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Proposition 2.17 [86, Proposition.2.2.9, p.24]. The space of all continuous square in-

tegrable E-valued martingales denoted by M2
T (E) is a Banach space endowed with the

norm

‖M‖M2
T (E) := sup

t∈[0,T ]
‖M(t)‖L2(Ω,E). (2.2)

Definition 2.18 (Random field). A family X := (Xξ)ξ∈Rd of E-valued random vari-

ables Xξ, ξ ∈ Rd defined on Ω is called a random field.

Definition 2.19 (Strongly continuous operator). Let (U, 〈., .〉U , |.|U), (H, 〈., .〉H , |.|H)

be two separable Hilbert spaces, and let G : H → L(U,H) be an operator. We say that

G is strongly continuous, if for any u ∈ U , the mapping h 7→ G(h)(u) is continuous

from H to H.

2.2 Wiener processes on Hilbert spaces

There are many types of stochastic processes, among them Wiener process, Markov pro-

cess and Poisson Process. However, Wiener process without any doubt is one of the most

important processes both in the theory and in the applications. Originally it was intro-

duced by the mathematician Norbert Wiener in 1920 as a mathematical model of the

Brownian motion 1. The current section gives a short review on such process which is

a generalization of Brownian motion taking values in a general functional space. To do

so, we need first to fix some tools; let T > 0, (U, 〈., .〉U , |.|U) be a separable real Hilbert

space and (Ω,F ,P) be a complete probability space.

2.2.1 Q-Wiener processes

Fix Q ∈ L(U) be a symmetric, nonnegative and finite trace operator.

Definition 2.20 (Standard Q-Wiener process). LetW := (Wt)t∈[0,T ] be an U-valued

stochastic process on (Ω,F ,P). Then, W is said to be a standard Q-Wiener process

if the following holds

1. P (W (0) = 0) = 1,
1The Brownian motion is named after the biologist Robert Brown who observed in 1827 the irregular

motion of pollen particles floating in water.

34



2. the trajectories of W are continuous,

3. for any finite increasing sequence (ti)ki=0 ⊂ [0, T ], the increments (Wti+1 −Wti)k−1
i=0

are independent,

4. for any 0 ≤ s ≤ t ≤ T , it holds P(Wt−Ws) = N (0, (t− s)Q).

Remark 2.21 Let us mention that, the R-valued random variable 〈W (t)−W (s), u〉U , for

all 0 ≤ s < t ≤ T and all u ∈ U is Gaussian, with mean zero and variance (t−s)〈Qu, u〉U ,

and so E (|W (t)|2U) = t trQ. Hence, this is a reason why the assumption trQ < ∞ is

essential.

Proposition 2.22 [31, Proposition 4.3.(i), p.81]. An U-valued Q-Wiener process, W =

(Wt)t∈[0,T ] is a Gaussian process with mean zero and covariance operator tQ, ∀ t ≥ 0.

Proposition 2.23 [31, Proposition 4.4., p.82]. For any symmetric, nonnegative and

finite trace operator Q ∈ L(U), there exists a Q-Wiener process on U .

A question may arises here about the construction of such Q-Wiener process. The next

proposition answers to this question. Moreover, it gives the presentation of the Q-Wiener

process.

Theorem 2.24 Let (en)n∈N be an ONB of U consisting of eigenvectors of Q corresponding

to the nonnegative eigenvalues (λn)n∈N, and let S := {n ∈ N, λn > 0} be the index set of

non-zero eigenvalues. Then, an U-valued stochastic process W , is a Q-Wiener process iff

it can be written for any t ∈ [0, T ] as

W (t) =
∑
n∈S

√
λnβn(t)en, (2.3)

where (βn)n∈S is a sequence of independent R-valued Brownian motions on (Ω,F ,P) s.t.

βn(t) := 1√
λn
〈W (t), en〉U , for any n ∈ S. (2.4)

The series in (2.3) converges in L2(Ω, C([0, T ], U)), where C([0, T ], U) is equipped with

the supremum norm.
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Proof.See [86, Proposition 2.1.10, p.17].

In the case of filtered probability space (Ω,F ,F,P), we need to know how the Q-

Wiener process behaves in connection with the filtration F. This is leads to the next

definition.

Definition 2.25 (Q-Wiener process with respect to a filtration). Let F = (Ft)t∈[0,T ]

be a normal filtration on (Ω,F ,P), and let W be an U-valued Q-Wiener process. We say

that W is a Q-Wiener process with respect to F if the following statements hold

1. W is F-adapted,

2. for all 0 ≤ s ≤ t ≤ T the increment (W (t)−W (s)) is independent of Fs.

Theorem 2.26 Every U-valued Q-Wiener process with respect to a normal filtration F

on (Ω,F ,P) is an element in the spaceM2
T (U).

Proof.See [86, Proposition 2.2.10, p.25].

Definition 2.27 (Stochastic basis). Let (U, 〈., .〉U , |.|U) be a separable Hilbert space.

We call (Ω,F ,F,P,W ) a stochastic basis if, (Ω,F ,F,P) be a filtered complete probabil-

ity space with respect to the normal filtration F := (Ft)t∈[0,T ], and (Wt)t∈[0,T ] be a U-valued

Wiener process on it.

2.2.2 Cylindrical Wiener processes

Cylindrical Wiener process appears in many models in infinite dimensional spaces as a

source of random noise or random perturbation. In this subsection, we introduce by fol-

lowing [86] a result which ensures the existence of such type of processes. To do so,

let (U, 〈., .〉U) be a separable Hilbert space, Q ∈ L(U) be a symmetric and nonnegative

operator, possibly with trQ = +∞ and let (en)n∈N be an ONB of U that consists of eigen-

vectors of Q with corresponding eigenvalues (λn)n∈N. Additionally, let (U1, 〈., .〉U1 , |.|U1)

be an arbitrary separable Hilbert space with U ⊂ U1 embeded continuously and let

J : (U0, 〈., .〉U0) → (U1, 〈., .〉U1) be a Hilbert-Schmidt embedding, besides we define the

operator Q1 := JJ∗ : U1 → U1.
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Remark 2.28 It is important to note here that the space U1 and the operator J as above

always exist as explained in [86, Remark 2.5.1].

Proposition 2.29 [86, Proposition 2.5.2, p.50]. Let Q1 := JJ∗. Then, Q1 is a linear,

bounded, nonnegative, symmetric and finite trace operator on U1, and the operator J :

U0 → J(U0) = Q
1
2
1 (U1) is an isometry, i.e.

‖u0‖U0 = ‖Q−
1
2

1 J(u0)‖U1 = ‖J(u0)‖
Q

1
2
1 (U1)

, for all u0 ∈ U0.

Moreover, let ẽn := Q
1
2 en, where (en)n∈N be an ONB of U and let (βn)n∈N be a sequence

of independent, real-valued Brownian motions. Then

W (t) :=
∞∑
n=1

Bn(t)J(ẽn), ∀ t ∈ [0, T ], (2.5)

is a Q1-Wiener process on U1 with trQ1 < +∞, where the series in (2.5) is convergent

inM2
T (U1).

Remark 2.30 Let us mention that, in Proposition 2.29 we distinguish two cases, namely

if the operator Q is finite trace, and so Q
1
2 is Hilbert-Schmidt operator, we can choose

U1 = U to arrive at the classical concept of the Q-Wiener process. Whereas, in the case

if trQ = +∞ (e.g. Q = IU) we will call the constructed process a cylindrical Wiener

process on U .

2.2.3 Some notions in the one dimensional case

In this subsection we recall two usefull notions of real-valued processes.

Definition 2.31 (White noise). Let (E ,B(E), µ) be a σ-finite measurable space and

let the random set function W defined on {B ∈ B(E), s.t., µ(B) <∞}. Then, we call W

a white noise 2 if it satisfies

1. for any B ∈ B(E), W(B) is a Gaussian (or normal) random variable with mean 0

and variance µ(B).
2The term "white noise" arises from the spectral theory of stationary random processes, according to

which white noise has a "flat" power spectrum that is uniformly distributed over all frequencies like white
light.
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2. for any two disjoint sets B1, B2 ∈ B(E), the random variables W(B1) and W(B2)

are independent and W(B1 ∩B2) = W(B1) + W(B2).

Definition 2.32 (Brownian sheet). Let d ∈ N0, E = Rd
+ := {t = (t1, ..., td), s.t., ti ≥

0, ∀ i ∈ {1, ..., d}} and µ be a Lebesgue measure on Rd. The process (βt)t∈Rd+ is said to be

Brownian sheet if it is defined by

βt = W(
d∏
i=1

]0, ti]),

where W is a white noise. This means that, it is a zero-mean Gaussian process with

covariance function defined for t = (t1, ..., td) and s = (s1, ..., sd) by

E(βtβs) =
d∏
i=1

ti ∧ si.

Remark 2.33 There is another way to define white noise. In the special case; E = R

and µ is Lebesgue measure, it is informally described as the weak derivative of Brownian

motion, since such motion is nowhere-differentiable in the classical sense. Such descrip-

tion is also possible in higher dimensions, but it involves the Brownian sheet instead of

Brownian motion.

2.3 Stochastic integrals in Hilbert spaces

In this section, we deal with the stochastic integral in Hilbert spaces with respect a Q-

Wiener process and a cylindrical Wiener process. We take a close look at these notions

by following the approach of Section 4.2 in [31] and Chapter 2 in [86].

2.3.1 Stochastic integral with respect to Q-Wiener process

Throughout this subsection, we fix T > 0 and a filtered probability space (Ω,F ,F,P).

Further, we consider two separable Hilbert spaces (U, 〈., .〉U , |.|U) and (H, 〈., .〉H , |.|H). Let

Q ∈ L(U) be a symmetric, nonnegative and finite trace operator and letW = (W (t))t∈[0,T ]

be a U -valued Q-Wiener process with respect to the normal filtration F. In order to shed

a light on the notion of stochastic integral with respect toW , we give first the meaning

of an elementary process.
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Definition 2.34 (Elementary process). Let ϕ = (ϕ(t))t∈[0,T ] be a L(U,H)-valued

process defined on (Ω,F ,F,P). We say that ϕ is an elementary process if there exists

a partition 0 = t0 < t1 < ... < tm = T, m ∈ N and a sequence (ϕk)m−1
k=0 of L(U,H)-valued

random variables that are taking only a finite number of values in L(U,H) s.t. ϕk is Ftk-

measurable for any k ∈ {0, ...,m− 1} and ϕ(t) = ϕk, for t ∈]tk, tk+1] with the convention

ϕ(0) = 0. Mathematically, we write

ϕ(t) =
m−1∑
k=0

ϕk 1]tk,tk+1](t), for t ∈ [0, T ].

We denote the class of such processes by E.

Now, we are ready to give the meaning of the stochastic integral on E.

Definition 2.35 (stochastic integral on E). Let ϕ ∈ E. Then, the stochastic integral

I(ϕ) := ((I(ϕ))(t))t∈[0,T ] of ϕ with respect to W is an H-valued stochastic process defined

for all t ∈ [0, T ] by

(I(ϕ))(t) :=
∫ t

0
ϕ(s)dW (s) :=

m−1∑
k=0

ϕk (W (tk+1 ∧ t)−W (tk ∧ t)) , (2.6)

such that ϕk is acting on (W (tk+1 ∧ t)−W (tk ∧ t)) as an operator in L(U,H).

Proposition 2.36 Let ϕ ∈ E. Then, the stochastic integral I(ϕ) defined by (2.6) belongs

to M2
T (H) (see [86, Proposition 2.3.2, p.26] and [31, Proposition 4.20, p.96]), where its

norm is given by

‖(I(ϕ))‖2
M2

T (H) = E
(∫ T

0
‖ϕ(s) ◦Q 1

2‖2
HS(U,H)ds

)
, (2.7)

see [86, Proposition 2.3.5, p.29]. Moreover, if ϕ be a L0(U,H)-valued elementary process,

then according to Corollary 1.47 it holds that

‖(I(ϕ))‖2
M2

T (H) = E
(∫ T

0
‖ϕ(s)‖2

HS(U0,H)ds

)
. (2.8)

Remark 2.37 The mapping defined on the class E by

‖ϕ‖2
E := E

(∫ T

0
‖ϕ(s) ◦Q 1

2‖2
HS(U,H)ds

)
, for any T > 0,

is just a seminorm.
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In order to define a norm on E we define the equivalence relation R between two

elementary processes ϕ and ψ as ϕ R ψ iff ‖ϕ − ψ‖E = 0, and for simplicity sake, we

denote the space of equivalence classes on which ‖.‖E is norm by E as well, and we

write ϕ for its corresponding equivalence class. With this norm on E the linear mapping

I : E→M2
T (H) defined for any ϕ ∈ E by

I(ϕ) :=
∫ .

0
ϕ(s) dW (s),

is an isometry (see [31, Remark 4.21, p.97]).

It is well known that, since I is linear and bounded operator, then it admits an unique

extension defined on the closure Ē, which is also isometric.

Our object now is to make precise the right representation of Ē. We remark from

Identity.(2.8) in Proposition 2.36 that the integrand must be a random variable defined

on ΩT := [0, T ] × Ω endowed with the product σ-field B([0, T ]) ⊗ F , without forgetting

its adaptability. For this, the best guess is to take the integrand to belong in to the

predictable σ-field PT . Hence, the convenient choice of the class of integrands is the space

of the HS(U0, H)-valued predictable processes, let us denote it by P2
W . Then

P2
W := {ϕ : ΩT → HS(U0, H); s.t. ϕ is predictable with ‖ϕ‖E <∞} .

The fact that (HS(U0, H), 〈., .〉HS(U0,H)) is a Hilbert space ensures that, the space P2
W is

also a Hilbert space its inner product defined for all ϕ, ψ ∈ P2
W by

〈ϕ, ψ〉P2
W

:= E
(∫ T

0
〈ϕ(s), ψ(s)〉HS(U0,H)

)
,

Moreover, P2
W represents the closure of E (i.e. P2

W = Ē) as it is proved in the following

result.

Proposition 2.38 [31, Proposition 4.22, ps.97-98].

1. Let ϕ ba an elementary process defined from ΩT into L(U,H). If ϕ is predictable

then it is HS(U0, H)-valued predictable process as well.

2. For any ϕ ∈ P2
W there exists a sequence (ϕn)n∈N of L0(U,H)-valued elementary

processes s.t. ϕn → ϕ as n→∞ with respect to the norm ‖.‖E.
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Definition 2.39 (stochastic integral on P2
W ). Let ϕ ∈ P2

W . Then, the stochastic

integral of ϕ with repect to W is defined for every t ∈ [0, T ] by

(I(ϕ))(t) :=
∫ t

0
ϕ(s)dW (s) := lim

n→∞

∫ t

0
ϕn(s)dW (s), (2.9)

where the limit is taken with respect to the norm ‖.‖M2
t (H).

Theorem 2.40 Let ϕ ∈ P2
W . Then, I(ϕ) ∈M2

T (H).

Proof.See [31, Theorem 4.27, p.103].

Last but not least, by following [31, Section. 4.2, ps.99-100]) we introduce the defini-

tion of the stochastic integral for a richer class of HS(U0, H)-valued predictable processes

which satisfy the following weak condition

P
(∫ T

0
‖ϕ(s)‖2

HS(U0,H)ds <∞
)

= 1. (2.10)

Let us denote such class by PW .

Lemma 2.41 [31, Lemma. 4.24, p. 99]. Fix T > 0. Let Θ be an Ft-stopping time s.t.

P(Θ ≤ T ) = 1 and let ϕ ∈ P2
W . Then, the following equality holds P-a.s.

∫ t

0
(1[0,Θ]ϕ)(s)dW (s) =

∫ Θ∧t

0
ϕ(s)dW (s), for all t ∈ (0, T ].

Let ϕ ∈ PW and let for all n ∈ N the sequence of stopping time

Θn := inf{t ∈ [0, T ],
∫ t

0
‖ϕ(s)‖2

HS(U0,H)ds ≥ n},

such that

E
(∫ t

0
‖(1[0,Θn]ϕ)(s)‖2

HS(U0,H)ds
)
<∞.

Then, for all n ∈ N the process
(
(1[0,Θn]ϕ)(t)

)
t∈[0,T ]

is an element in P2
W , and so for

all t ∈ (0, T ] the following stochastic integral
∫ t

0
(1[0,Θn]ϕ)(s)dW (s),

is well defined for all n ∈ N.
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Definition 2.42 (Stochastically integrable process). Let ϕ ∈ PW . Then, the

stochastic integral of ϕ with respect to W is defined for every t ∈ [0, T ] by∫ t

0
ϕ(s)dW (s) :=

∫ t

0
(1[0,Θn]ϕ)(s)dW (s), (2.11)

on the set {Θn ≥ t}, for every n ∈ N, and we say that ϕ is stochastically integrable.

The consistency of definition (2.11) is ensured. Indeed, let m ∈ N s.t. m > n. If

Θm ≥ t, then ∫ t

0
(1[0,Θn]ϕ)(s)dW (s) =

∫ t

0

(
1[0,Θn]

(
1[0,Θm]ϕ

))
(s)dW (s).

According to Lemma 2.41 we have∫ t

0
(1[0,Θn]ϕ)(s)dW (s) =

∫ Θn∧t

0
(1[0,Θm]ϕ)(s)dW (s),

and since Θn ≥ t we get∫ t

0
(1[0,Θn]ϕ)(s)dW (s) =

∫ t

0
(1[0,Θm]ϕ)(s)dW (s),

for every n,m ∈ N s.t. m > n.

2.3.2 Stochastic integral with respect to cylindrical Wiener pro-
cess

Let W be a cylindrical Wiener process given by (2.5), and let (H, 〈., .〉H) be a separable

Hilbert space. A predictable process ϕ will be integrable with respect to W if it takes

values in HS(Q
1
2
1 (U1), H) and

P
(∫ T

0
‖ϕ(s)‖2

HS(Q
1
2
1 (U1),H)

ds

)
= 1.

Lemma 2.43 Let (ẽk)k∈S be the ONB of U0. Then, (Jẽk)k∈S is an ONB of J(U0) =

Q
1
2
1 (U1). Further, for all ϕ ∈ HS(U0, H) it holds

‖ϕ‖HS(U0,H) = ‖ϕ ◦ J−1‖
HS(Q

1
2
1 (U1),H)

.

Proof.Let (ẽk)k∈S be the ONB of U0 and let u, v ∈ U0. Then, owing to the polarization

identity (A.14) besides the isometry property of J it holds

〈u0, v0〉U0 = 1
4

(
‖J(u0 + v0)‖

Q
1
2
1 (U1)

− ‖J(u0 − v0)‖
Q

1
2
1 (U1)

)
= 〈Ju0, Jv0〉

Q
1
2
1 (U1)

.

42



Consequently, the orthogonormality of the family (Jẽk)k∈S is ensured. To prove that such

family is ONB of J(U0) it remains to prove that is generated it. To do so, let J(u0) ∈ J(U0)

where u0 := ∑
n∈S〈u0, ẽn〉U0 ẽn ∈ U0. The linearity of J yields

J(u0) =
∑
n∈S
〈u0, ẽn〉U0J(ẽn).

In addition, let ϕ ∈ HS(U0, H) then

‖ϕ‖2
HS(U0,H) =

∑
k∈S
‖ϕẽk‖2

H =
∑
k∈S
‖ϕ ◦ J−1(Jẽk)‖2

H = ‖ϕ ◦ J−1‖2
HS(Q

1
2
1 (U1),H)

.

Thus, it follows that ϕ ∈ HS(U0, H) is equivalent to ϕ ◦ J−1 ∈ HS(Q
1
2
1 (U1), H).

By the help of Lemma 2.43, we are able to introduce the notion of stochastic integral

with respect to cylindrical Wiener process as follows

Definition 2.44 Let ϕ ∈ PW . Then the H-valued stochastic integral of ϕ with respect to

W the Q-cylindrical Wiener process is defined by∫ t

0
ϕ(s)dW (s) :=

∫ t

0
ϕ ◦ J−1(s)dW (s), ∀ t ∈ [0, T ], (2.12)

where the RHS of (2.12) is understood as the stochastic integral of ϕ with respect to W

the Q1-Wiener process defined by (2.11).

Remark 2.45 All the stochastic integrals introduced in this thesis are called stochastic

Itô integrals since all have a Wiener process as integrator.

We close this chapter by an important result; the Burkholder-Davis-Gundy in-

equality, which is very useful in the estimation of higher moments of stochastic integrals.

Theorem 2.46 . Let p ≥ 2, and let T > 0. For any 0 ≤ s < t ≤ T , and any ϕ ∈ P2
W , it

holds

‖
∫ t

s
ϕ(r)dW (r)‖pLp(Ω,H) ≤ Cp E

(∫ t

s
‖ϕ(r)‖2

HS(U0,H)dr
) p

2
, (2.13)

where Cp :=
(
p
2(p− 1)

) p
2
(

p
p−1

)p( p2−1)
.

Proof.See [74, Proposition 2.12, p.24].

There is another version of Burkholder-Davis-Gundy inequality, as the following result

proves.
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Theorem 2.47 Let p ≥ 2, and let t ≥ 0. For any ϕ ∈ P2
W , we have

E
(

sup
s∈[0,t]

|
∫ t

0
ϕ(s)dW (s)|pH

)
≤ cp

(∫ t

0

(
E‖ϕ(s)‖pHS(U0,H)

) 2
p ds

) p
2
, (2.14)

where cp :=
(
p(p−1)

2

) p
2 .

Proof.See [31, Theorem 4.37, p.114].
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Chapter 3

Stochastic differential equations in
infinite dimensions

In this chapter, we deal with the stochastic differential equations in infinite dimensions.

After some motivation, we introduce in Section 3.2, two important models from physics;

heat and Burgers equations in the one dimensional case. We deal in Section 3.3 with the

stochastic analog of nonlinear heat and Burgers equations. In Section 3.4, we introduce a

class of SPDEs perturbed by a cylindrical Wiener process, namely an abstract parabolic

stochastic partial differential equations. As a start point, we give different concepts of

solutions for such class of equations. After that, we introduce its wellposedness result in

Subsection 3.4.1. Regarding the importance of the results in [12], and its relationship with

our results, we cite [12, Theorem 3.1.] in Subsection 3.4.2. We close this chapter by one

of the recent developments; the FSPDEs. Precisely, we deal with SPDEs driven by the

fractional Laplacian. In Subsection 3.5.1 we deal with the wellposedness and regularity

of the fractional stochastic nonlinear heat equation in the random-field setting. Whereas,

in Subsection 3.5.2, we deal with the wellposedness of the fractional stochastic Burgers

equation in the functional-spaces setting.
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3.1 Motivation

Partial differential equation (briefly PDE), is a mathematical equation that involves two or

more independent variables, an unknown function, and partial derivatives of such function

with respect to the independent variables. It is used to model many phenomena, such

as the physical ones. In most cases, the coefficients of such PDE and/or initial data are

not known with complete certainty, due to the lack of information and/or incertainty

in the measurements. Hence, if we allow for some randomness in those coefficients, we

often obtain a more realistic mathematical model of the phenomenon, and the resulting

equation becomes a stochastic partial differential equation (briefly SPDE).

3.2 Deterministic heat and Burgers equations

The analysis of the physical phenomena has remained up to the present day one of the

fundamental concerns of the development of PDEs. In this section, we restrict ourselves

with two examples of PDEs that appear in fundamental applications; the heat and Burgers

equations in the one-dimensional case. For more examples and their role in applied

sciences we refer to [46].

3.2.1 Heat equation

The heat equation was introduced by Fourier J. in his celebrated memoir " Théorie an-

alytique de la chaleur" (1810-1822). It is a linear parabolic PDE which describes the

distribution of heat (or variation in temperature) over time in a given region D ⊂ Rd. For

example, in the time interval [0, T ], for T > 0 be fixed, and in a one-dimensional rod of

length L (i.e., D := [0, L]) made of single homogeneous conducting material, the diffusion

of the heat over the time from regions of higher temperature to regions of lower temper-

ature without external force, is modelled by the following homogeneous heat equation

∂u(t, x)
∂t

= ν∆u(t, x), (t, x) ∈ (0, T ]× [0, L], (3.1)

where ∆ is the Laplacian and ν = κ
Cρ

is called the diffusivity of the rod, with κ is the

thermal conductivity, C the thermal capacity and ρ the density of the rod.

To make use of the heat equation, we need more information:
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1. The initial temperature distribution in the rod, which described as an initial con-

dition u(0, x) = u0(x) .

2. The temperature of the rod is affected by what happens at the ends, x = 0, L, which

must be specified and described as a boundary conditions. Here we consider two

simple cases for the boundaries.

• Dirichlet type: represents the temperature prescribed at the boundary. Math-

ematically, we write u(t, 0) = u1(t), and u(t, L) = u2(t) for t ∈ (0, T ] (see the

figure taken from the website: math.libretexts.org).

• Neumann type: represents the tempreture which is specified via surrounding

medium, for the special case of insulated boundaries; the system is not allowed

to have any exchange with the medium, i.e. the heat flow can not pass through-

out the boundaries. Mathematically, we write ∂u(t,x)
∂x
|x=0 = ∂u(t,x)

∂x
|x=L = 0, for

t ∈ (0, T ] (see the figure taken from the website: math.upenn.edu).
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3.2.2 Forced nonlinear heat equation

In the heat equation Eq.(3.1), the thermel conductivity of the medium is assumed to be

constant. In some medium such as gases, this parameter is connected to the temperature

of the medium, which allows to arrise a nonlinear heat equation. After adding an external

force B : (0, T ] × [0, L] → R, the homogeneous Dirichlet boundary conditions, and the

initial condition, this equation can be written as follows
∂u(t, x)
∂t

= ν∆u(t, x) + f(u(t, x)) +B(t, x), ∀ (t, x) ∈ (0, T ]× (0, L),
u(t, 0) = u(t, L) = 0, ∀ t ∈ (0, T ],
u(0, x) = u0(x), ∀ x ∈ [0, L],

(3.2)

where f : R→ R be a nonlinear globally Lipschitz function.

3.2.3 Forced Burgers equation

If the nonlinear term in Eq.(3.2) is only locally Lipschitz, precisely for f(u(t, x)) =

u(t, x)∂u(t, x)
∂x

, we obtain the forced Burgers equation, where u : (0, T ] × [0, L] → R

is the velocity field and ν := µ
ρ
is the coefficient of kinematic viscosity, with µ and ρ

denote respectively the viscosity and the density of the fluid.

Burgers equation was first introduced by Bateman [11] who gave its steady solutions. It

was later treated by Burgers [17] as a mathematical model for turbulent fluid motion, later

on the equation has been referred to Burgers equation. Moreover, it has been found to

describe various kinds of phenomena such as the approximation theory of flow through

a shock wave traveling in a viscous fluid. It can also be considered as the celebrated

Navier-Stokes equation in the one-dimentional case.

3.3 Stochastic nonlinear heat and stochastic Burgers
equations

The theory of the SPDEs is very complicated, due to the fact that its study is based on

the concept of stochastic integration, which can be treated by different approaches. For

example, the martingale approach is based on Walsh’s theory [111], where it emphasizes

integration with respect to martingale measures, and leads to the concept of random field

solutions; which means that, the solution u = {u(t, x), (t, x) ∈ (0, T ] × D} is seen as a
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real-valued function of the two variables (t, x).

To see that, we consider the forcing term as a random perturbation, especially as a space-

time white noise which is realized as the weak derivative of the Brownian sheet β(t, x)

(see Subsection 2.2.3), i.e., B(t, x) = ∂2β(t, x)
∂t∂x

. Then, we can write the stochastic analog

of forced nonlinear heat and forced Burgers equations as follows
∂u(t, x)
∂t

= ν∆u(t, x) + f(u(t, x)) + ∂2β(t, x)
∂t∂x

, ∀ (t, x) ∈ (0, T ]× (0, L),
u(t, 0) = u(t, L) = 0, ∀ t ∈ (0, T ],
u(0, x) = u0(x), ∀ x ∈ [0, L],

(3.3)

where f : R → R is a nonlinear globally Lipschitz function in the case of heat equation.

Whereas, in the case of Burgers equation we have f(u(t, x)) = u(t, x)∂u(t, x)
∂x

. The initial

condition u0 is supposed to be F0 × B(R) measurable.

In otherwise, we can consider the solution as a random function of time, with values

in an appropriate (infinite dimensional) functional space. This is called the semigroup

approach, which is based on the theory of integration with respect to Hilbert space-valued

processes, as expounded in [31]. Here, we consider the Hilbert space L2(D). Besides, we

write (−∆) with the homogenuous Dirichlet boundary conditions as an abstract operator

A defined from H2
2 (D) ∩ H1

0 (D) into L2(D) (see Subsection 1.2.3). Then, Prb.(3.3) can

be rewritten by the following evolution form
du(t)
dt

= −νAu(t) + F (u(t)) + dW (t)
dt

, t ∈ (0, T ],
u(0) = u0(x), ∀ x ∈ D,

(3.4)

where the initial condition u0 is supposed to be F0-measurable L2(D)-valued random

variable. The term dW (t)
dt

is called an additive noise, with (W (t))t∈[0,T ] be a L2(D)-valued

cylindrical Wiener process, and F : H → X is a nonlinear operator, where (X, ‖.‖X) be

a Banach space.

In this case, the solution u = {u(t), t ∈ [0, T ]} is an L2(D)-valued stochastic process.

Thus, such SPDE can be considered as a SDE in the functional space L2(D).

3.4 Abstract parabolic stochastic partial differential
equations.

In this section, we give by following [90], a short review about the theory of solvability for

a class of SPDEs with globally Lipschitz nonlinearities. To do so, let (H, 〈., .〉H), |.|H) and
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(U, 〈., .〉U , |.|U) be two real separable Hilbert spaces, and let (Ω,F ,F,P,W ) be a stochastic

basis, where W = (Wt)t∈[0,T ] be a U -valued cylindrical Wiener process. We consider the

following stochastic partial differential equation, perturbed by a multiplicative noise,


du(t)
dt

= Au(t) + F (u(t)) +G(u(t))dW (t)
dt

, t ∈ (0, T ],
u(0) = u0,

(3.5)

where

• A : D(A) ⊂ H → H, is in general an unbounded Linear operator (not necessary the

Laplacian),

• F : H → H is B(H) \ B(H)-measurable operator,

• G : H → L(U,H) be an operator,

• u0 be an H-valued, F0-measurable random variable.

There are different concepts of the solutions, namely strong, weak and mild.

Definition 3.1 (Strong solution), [90, Definition G.0.1, p.167]. Let u := (u(t))t∈[0,T ]

be an D(A)-valued predictable process. We say that u is a strong solution of Prb.(3.5)

if

• for all t ∈ [0, T ], (0, t) 3 s 7→ (Au(s) + F (u(s))) ∈ H is P-a.s. Böchner integrable,

• G(u) : ΩT → HS(U,H) is continuous predictable s.t.

P{
∫ T

0
‖G(u(s))‖2

HS(U,H)ds <∞} = 1, (3.6)

• the following equality holds P-a.s. in H,

u(t) = u0 +
∫ t

0
(Au(s) + F (u(s))) ds+

∫ t

0
G(u(s)) dW (s), (3.7)

for every t ∈ [0, T ].

Definition 3.2 (Weak solution), [90, Definition G.0.5, p.168]. Let u := (u(t))t∈[0,T ]

be an H-valued predictable process. We say that u is a weak solution of Prb.(3.5) if
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• for all t ∈ [0, T ], and all ξ ∈ D(A∗), (0, t) 3 s 7→ (〈u(s), A∗ξ〉H + 〈F (u(s)), ξ〉H) ∈ R

is P-a.s. Lebesgue integrable,

• the following equality holds P-a.s. in R,

〈u(t), ξ〉H = 〈u0, ξ〉H +
∫ t

0
(〈u(s), A∗ξ〉H + 〈F (u(s)), ξ〉H) ds

+
∫ t

0
〈G(u(s))dW (s), ξ〉H , (3.8)

for every t ∈ [0, T ], and every ξ ∈ D(A∗).

Definition 3.3 (Mild solution), [90, Definition 5.1.1, p.115]. Let u := (u(t))t∈[0,T ] be

an H-valued predictable process. We say that u is a mild solution of Prb.(3.5) if

• for all t ∈ [0, T ], (0, t) 3 s 7→ S(t− s)F (u(s)) ∈ H is P-a.s. Böchner integrable,

• for all t ∈ [0, T ], 1[0,t[(.)S(t− .)G(u(.)) : ΩT → HS(U,H) is continuous predictable

s.t.

P{
∫ T

0
‖1[0,t[(s)S(t− s)G(u(s))‖2

HS(U,H)ds <∞} = 1, (3.9)

• the following equality holds in H, P-a.s.,

u(t) = S(t)u0 +
∫ t

0
S(t− s)F (u(s)) ds+

∫ t

0
S(t− s)G(u(s)) dW (s), (3.10)

for every t ∈ [0, T ], where (S(t))t∈[0,T ] is the semigroup generated by the operator A.

Remark 3.4 For more results on the relationship between the above concepts of solutions

we refer to [90, Appendix G., p.167 ].

It is worth noticing here to introduce the notion of the mild solution in a general

framework as in [109].

Definition 3.5 Let X be an UMD-Banach space of type 2 and H be a Hilbert space.

Assume that u0 : Ω → X is strongly F0−measurable. A strongly measurable Ft−adapted

X-valued stochastic process, (u(t), t ∈ [0, T ]), is called a mild solution of Prb.(3.5) if

• (i) for all t ∈ [0, T ], s 7→ S(t− s)F (u(s)) is in L0(Ω, L1(0, t;X)),
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• (ii) for all t ∈ [0, T ], s 7→ S(t − s)G(u(s)) is H−strongly measurable Ft−adapted

and a.s. in the γ−Radonifying space; R(H,X),

• (iii) ∀t ∈ [0, T ], the equality (3.10) holds in X, P− a.s.

The following defintion, gives us the meaning of the unicity of the solution.

Definition 3.6 We say that a pathwise uniqueness holds for Prb.(3.5) if for any two

solutions (u1(t))t∈[0,T ] and (u2(t))t∈[0,T ] starting from the same initial data u0, we have

P
(
u1(t) = u2(t), ∀ t ∈ [0, T ]

)
= 1. (3.11)

Next, we give an important result in order to understand the stochastic term in the

RHS of Eq.(3.10), but first we have to introduce the so-called stochastic convolution.

Definition 3.7 (Stochastic convolution). Let ϕ := (ϕ(t))t∈[0,T ] be an L(U,H)-valued

predictable process and let (S(t))t∈[0,T ] be the strongly continuous semigroup generated by

the operator A s.t. the following integral

Wϕ
S (t) :=

∫ t

0
S(t− s)ϕ(s)dW (s), for every t ∈ [0, T ],

is well defined. Then, the processWϕ
S := (Wϕ

S (t))t∈[0,T ] is called stochastic convolution.

Theorem 3.8 (factorization-method). Let ϕ be an L(U,H)-valued predictable process

and let (S(t))t∈[0,T ] be the strongly continuous semigroup generated by the operator A. If

for some ν ∈ (0, 1),

S(t− s)ϕ(s) is HS(U,H)− valued for all t ∈ [0, T ],

and ∫ t

0
(t− s)ν−1

(∫ s

0
(s− r)−2νE

(
‖S(t− r)ϕ(r)‖2

HS(U,H)

)
dr
) 1

2
ds < +∞.

Then,

Wϕ
S (t) = sin νπ

π

∫ t

0
(t− s)ν−1S(t− s)Yν(s)ds, t ∈ [0, T ],

where,

Yν(t) =
∫ t

0
(t− s)−νS(t− s)ϕ(s)dW (s), t ∈ [0, T ].

Proof.See [31, Theorem 5.10, p.130] and [16].
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3.4.1 Wellposedness of the problem

In this subsection, we introduce the result concerning the existence and the uniqueness

of the mild solution of Prb.(3.5), for more details see [90, Section. 5.1]. First, we need to

give the precise formulations of the assumptions which are sufficient for the wellposedness

of the problem.

Assumption HA. (Linear operator A). A : D(A) ⊂ H → H is an infinitesimal

generator of a C0-semigroup (S(t))t∈[0,T ] on H.

Assumption HF . (Drift term F ). The nonlinear operator F : H → H satisfies, there

exists a constants CF > 0 s.t.

|F (x)− F (y)|H ≤ CF |x− y|H , ∀ x, y ∈ H.

Assumption HG. (Diffusion term G). G : H → L(U,H) is strongly measurable.

Moreover, for any t ∈ (0, T ] and x ∈ H, it holds

S(t)G(x) ∈ HS(U,H)

and there exists a square integrable mapping K : [0, T ]→ [0,∞) s.t.

‖S(t)G(x)‖HS(U,H) ≤ K(t)(1 + |x|H) and ‖S(t)(G(x)−G(y))‖HS(U,H) ≤ K(t)|x− y|H ,

for all x, y ∈ H and all t ∈ (0, T ].

Assumption Hu0. (Initial condition u0). Let p ≥ 2. The initial condition u0 is an

element in the space Lp(Ω,F0,P;H).

We need also to introduce the space where the mild solution is living.

Definition 3.9 Let T > 0 and p ≥ 2. We denote by Hp
T (H) the space of all H-valued

processes v which have a predictable version, equiped with the norm

‖v‖HpT (H) := sup
t∈[0,T ]

‖v(t)‖Lp(Ω,H) <∞.

Theorem 3.10 Assume that the Assumptions HA, HF , HG and Hu0 are fulfilled. Then,

there exists a unique mild solution (u(t))t∈[0,T ] of Prb.(3.5). Moreover, there exists a

constant CT,p > 0 independent of u0 s.t.

‖u‖HpT (H) ≤ CT,p(1 + ‖u0‖Lp(Ω,F0,P;H)).

Proof.See [90, Theorem 5.1.3, p.118].
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3.4.2 Blömker et al.’s Theorem

Theorem 3.10 ensures the wellposedness of the stochastic nonlinear heat equation intro-

duced in Section 3.3. However, it does not cover the stochastic Burgers equation, for this

reason, and regarding the importance of the results in [12], we cite [12, Theorem 3.1.] in

this subsection.

Theorem 3.11 . Let T be fixed, V, U be two R−Banach spaces and let PN : V → V be a

sequence of linear bounded operators. Assume that the following assumptions are fulfilled:

• Assumption 1. Let S : (0, T ]→ L(U, V ) be a continuous map satisfying

sup
t∈(0,T ]

(
tα|S(t)|L(U,V )

)
<∞, (3.12)

sup
N∈N

sup
t∈(0,T ]

(
Nγtα|S(t)− PNS(t)|L(U,V )

)
<∞, (3.13)

where α ∈ [0, 1) and γ ∈ (0,∞) are given constants.

• Assumption 2. Let F : V → U be a mapping which satisfies

sup
|u|V , |v|V ≤ r, u6=v

|F (u)− F (v)|U
|u− v|V

<∞. (3.14)

• Assumption 3. Let O : [0, T ] × Ω → V be a stochastic process with continuous

sample paths and

sup
N∈N

sup
t∈(0,T ]

(
Nγ|(I − PN)Ot(ω)|V

)
<∞, for every ω, (3.15)

where γ ∈ (0,∞) is given in Assumption 1.

• Assumption 4. Let XN : [0, T ] × Ω → V,N ∈ N be a sequence of stochastic

processes with continuous sample paths and with

sup
N∈N

sup
t∈(0,T ]

(
|XN

t (ω)|V
)
<∞, (3.16)

XN
t (ω) =

∫ t

0
PNS(t− s)F (XN

s (ω))ds+ PN(Ot(ω)), (3.17)

for every ω ∈ Ω, t ∈ [0, T ] and every N ∈ N.
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Then there exists a unique stochastic process X : [0, T ]×Ω→ V, with continuous sample

paths s.t.

Xt(ω) =
∫ t

0
S(t− s)F (Xs(ω))ds+Ot(ω), (3.18)

for every ω ∈ Ω, t ∈ [0, T ]. Moreover, there exists a F/B(0,∞)−measurable mapping

C : Ω→ [0,∞), s.t.

sup
t∈(0,T ]

|Xt(ω)−XN
t (ω)|V ≤ C(ω).N−γ, (3.19)

holds for every N ∈ N and every ω ∈ Ω, where γ is given in Assumption 1.

Proof.See [12, Theorem 3.1].

Remark 3.12 The random variable C(ω) in Est.(3.19) is given by, see [12, Identity

(5.7)]:

C(ω) := 2(R(ω))4E(1−α)
(
TR(ω)Z(ω)Γ(1− α))

1
(1−α)

)
, (3.20)

where for r ∈ (0,∞), the function Er : [0,∞)→ [0,∞), is defined by Er(x) := ∑∞
n=0

xrn

Γ(nr+1) ,

R(ω) := sup
N∈N0

sup
0≤t≤T

|F (XN
t (ω))|U + T + sup

N∈N0

sup
0≤t≤T

(
Nγ|(I − PN)Ot(ω)|V

)
+ 1

1− α sup
N∈N0

sup
0≤t≤T

(
tα|S(t)|L(U,V )

)
+ sup

N∈N0

sup
0≤t≤T

(
Nγtα|S(t)− PNS(t)|L(U,V )

)
,

Z(ω) := L( sup
N∈N0

sup
0≤t≤T

|XN
t (ω)|V ),

L(r) := sup{|F (u)− F (v)|U
|u− v|V

: |u|V , |v|V ≤ r, u 6= v}.

3.5 Fractional stochastic nonlinear heat and fractional
stochastic Burgers equations

In the recent years, the fractional calculus and the stochastic analysis have been used

simultaneously in order to describe complex processes, such as anomalous diffusions, e.g.

diffusion in disordred or fractal medium. By this, it was created a new powerful topic

in the applied mathematics which is represented by the so-called fractional stochastic

partial differential equations. There is a large volume of literature available about

this topic, see for a short list [15, 16, 26, 28, 34, 35, 36, 37, 38, 39] and the references
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therein. In this section, we deal with the fractional stochastic nonlinear heat equation

and the fractional stochastic Burgers equation. To do this, we fix T > 0, α ∈ (1, 2], p ≥ 2.

Let H := L2(0, 1) and let (Ω,F ,F,P) be a filtered complete probability space.

3.5.1 Wellposedness of the fractional stochastic nonlinear heat
equation

As is well known, the nature of the anomalous diffusions needs nonlocal differentional

operators instead of the classical ones, like the Laplacian. In this subsection, we go one

level up in difficulty by replacing (−∆) in the stochastic nonlinear heat equation (3.3)

by its fractional counterpart (−∆)α2 defined on the whole space R (see Definition 1.15).

Moreover, we suppose that the equation is perturbed by a multiplicative noise instead of

the additive noise. Then, we write the fractional stochastic nonlinear heat equation as

follows
∂u(t, x)
∂t

= −(−∆)α2 u(t, x) + f(u(t, x)) + g(u(t, x)) ∂
2W (t, x)
∂t ∂x

, t ∈ (0, T ], x ∈ R,
u(0, x) = u0(x), ∀ x ∈ R,

(3.21)

where g : R→ R, and W = {W (t, x), (t, x) ∈ [0, T ]× R} be a space-time white noise.

To recall the results of the wellposedness of Prb.(3.21); in the random field setting we fol-

low [39], and in the L2-setting we follow [37], but first we need the following assumptions:

Assumption B. For all T > 0, ∃ Cf
T > 0 s.t. for all t ∈ [0, T ] and all x, y ∈ R

|f(x)− f(y)|R ≤ Cf
T |x− y|R, (3.22)

and

|f(x)|R ≤ Cf
T (1 + |x|R) . (3.23)

Assumption C. For all T > 0, ∃ Cg
T > 0 s.t. for all t ∈ [0, T ] and all x, y ∈ R

|g(x)− g(y)|R ≤ Cg
T |x− y|R, (3.24)

and

|g(x)|R ≤ Cg
T (1 + |x|R) . (3.25)
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Wellposedness and regularity of Prb.(3.21) on the random-field setting

Definition 3.13 Fix T > 0, and let u := {u(t, x), t ∈ [0, T ], x ∈ R} be a measurable

stochastic field. We say that, u is a mild solution of Prb.(3.21) on [0, T ], if for all

x ∈ R, the process (u(t, x))t∈[0,T ] is Ft-adapted and if u satisfies the following integral

equation

u(t, x) =
∫ +∞

−∞
Gα(t, x− y)u0(y)dy +

∫ t

0

∫ +∞

−∞
f(u(s, y))Gα(t− s, x− y)dyds

+
∫ t

0

∫ +∞

−∞
g(u(s, y))Gα(t− s, x− y)W (dyds), (3.26)

for all t ∈ [0, T ] and all x ∈ R, where Gα(t, x) = 1
2π
∫+∞
−∞ e−iξx−t|ξ|

α
dξ is the Green function

associated to Prb.(3.21).

The field {u(t, x), t ∈ [0, T ], x ∈ R} is called a global mild solution of Prb.(3.21) if, for

all T > 0, it is a mild solution of Prb.(3.21) on the interval [0, T ].

Definition 3.14 We say that, the Prb.(3.21) has a unique mild solution on [0, T ], if for

any two solutions u1 and u2 starting from the same initial data u0, it holds

P
(
u1(t, x) = u2(t, x), ∀ t ∈ [0, T ], ∀ x ∈ R

)
= 1. (3.27)

Theorem 3.15 Fix T > 0, α ∈ (1, 2] and p ≥ 2. Under Assumptions B, C and the

assumption that the initial condition u0 satisfies supx∈R ‖u0(x)‖Lp(Ω,R) < ∞, Prb.(3.21)

has an unique global solution u = {u(t, x), t ∈ [0, T ], x ∈ R}, satisfies

sup
t∈[0,T ]

sup
x∈R
‖u(t, x)‖Lp(Ω,R) <∞. (3.28)

Proof.See [39, Theorem 1.].

The following result not only ensures the temporal regularity of the mild solution, but

the spacial regularity as well.

Theorem 3.16 . Under the assumptions of Theorem 3.15, it holds

• For fixed x ∈ R, the process {u(t, x), t ∈ [0, T ]} has Hölder continuous trajectories

with exponent α−1
2α − κ, for any κ > 0, P-a.s.

• For fixed t ∈ [0, T ], the process {u(t, x), x ∈ R} has Hölder continuous trajectories

with exponent α−1
2 − κ, for any κ > 0, P-a.s.

Proof.See [39, Theorem 2.].
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Wellposedness of Prb.(3.21) on the L2-setting

It is well known that, the random valued solution is not equivalent to the function-

valued solution. However, Debbi L. in [37], has proved under the same conditions (i.e.

Assumptions B and C) that, the mild solution given in Definition 3.13 coincides with an

L2-solution has the following definition.

Definition 3.17 Fix T > 0, and let u := {u(t, .), t ∈ [0, T ]} be a L2-valued Ft-adapted

stochastic process. We say that, u is a mild solution of Prb.(3.21) on [0, T ], if it satisfies

the following integral equation

u(t, .) =
∫ +∞

−∞
Gα(t, .− y)u0(y)dy +

∫ t

0

∫ +∞

−∞
f(u(s, y))Gα(t− s, .− y)dyds

+
∫ t

0

∫ +∞

−∞
g(u(s, y))Gα(t− s, .− y)W (dyds), (3.29)

for all t ∈ [0, T ], where the equality (3.29) is taken in the L2(R).

Theorem 3.18 Fix T > 0, α ∈ (1, 2] and p ≥ 1. Under Assumptions B, C and the as-

sumption that u0 ∈ Lp(Ω,F0, L
2), Prb.(3.21) has an unique mild solution u = {u(t, .), t ∈

[0, T ]} satisfies

sup
t∈[0,T ]

‖u(t)‖pLp(Ω,L2) <∞, (3.30)

where the uniquness is taken with respect to the norm in the LHS of (3.30).

Proof.See [37, Theorem 1.].

Besides the L2-solution given by Definition 3.17, there are also another kind of solutions

of variational type of Prb.(3.21); weak solution of the first kind and weak solution of the

second kind, which are equivalent as the next theorem proves.

Definition 3.19 Let u := {u(t, .), t ∈ [0, T ]} be a L2-valued Ft-adapted stochastic process.

We say that, u is a weak solution of the first kind of Prb.(3.21) on [0, T ], if it satisfies

the condition (3.30), and the following integral equation∫ +∞

−∞
u(t, x)ϕ(x)dx =

∫ +∞

−∞
u0(x)ϕ(x)dx+

∫ t

0

∫ +∞

−∞
u(s, x)Aαϕ(x)dxds

+
∫ t

0

∫ +∞

−∞
f(u(s, x))ϕ(x)dxds

+
∫ t

0

∫ +∞

−∞
g(u(s, x))ϕ(x)W (dxds), a.s. (3.31)

for all t ∈ [0, T ], and all ϕ ∈ C∞0 .
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Definition 3.20 Let u := {u(t, .), t ∈ [0, T ]} be a L2-valued Ft-adapted stochastic process.

We say that, u is a weak solution of the second kind of Prb.(3.21) on [0, T ] if it

satisfies the condition (3.30), and the following integral equation
∫ +∞

−∞
u(t, x)Φ(t, x)dx =

∫ +∞

−∞
u0(x)Φ(0, x)dx+

∫ t

0

∫ +∞

−∞
u(s, x)∂sΦ(s, x)dxds

+
∫ t

0

∫ +∞

−∞
u(s, x)AαΦ(s, x)dxds

+
∫ t

0

∫ +∞

−∞
f(u(s, x))Φ(s, x)dxds

+
∫ t

0

∫ +∞

−∞
g(u(s, x))Φ(s, x)W (dxds), a.s. (3.32)

for all t ∈ [0, T ], and all Φ ∈ C1,∞((0, t)× R) s.t. Φ(s, .) ∈ D(Aα), for all s < t.

Theorem 3.21 For p ≥ 2, the L2-solution, the weak solution of the first kind and the

weak solution of the second kind are equivalent.

Proof.See [37, Theorem 2.].

3.5.2 Wellposedness of the fractional stochastic Burgers equa-
tion

The stochastic Burgers equation (3.5), for the special case A = −∆ on D := (0, 1) with

homogeneous Dirichlet boundary conditions, and F (v) = v dv
dx
, for any v ∈ L2(D), is used

to model many phenomena in different fields, such as fluid dynamics, hydrodynamics,

cosmology and astrophysics (see for a short list [3, 30, 82] and the references therein).

Moreover, the fractional Burgers equation can model some anomalous diffusions, like the

long time behavior of the acoustic waves propagating in a gas-filled tube and the wave

propagation in viscoelastic medium. Then, if we replace (−∆) by its fractional counterpart

Aα := (−∆)α2 (see Definition 1.69), we obtain the following fractional stochastic Burgers

equation, { du(t)
dt

= −Aαu(t) + F (u(t)) +G(u(t)) dW (t)
dt

, t ∈ (0, T ],
u(0) = u0,

(3.33)

where G is a nonlinear operator from L2(D) to L(L2(D)) defined by (G(u)(v))(x) =

G(u(x))v(x), for all u, v ∈ L2(D) and all x ∈ D, which is a Nemytski map associated

with the bounded Lipschitz continuous function G : R → R, and W := (W (t))t∈[0,T ] be
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an L2(D)-valued cylindrical Wiener process on (Ω,F ,F,P).

We are motivated here, by the tri-interaction between the wave steepening given by the

nonlinearity, and by the small dissipation given by fractional power of the Laplacian α
2

and by the irregular random perturbation given by the stochastic noise.

The following theorem ensures the wellposedness of Prb.(3.33).

Theorem 3.22 Fix T > 0, α ∈ (3
2 , 2) and p > 2α

α−1 . Let u0 be an F0-measurable random

variable satisfying u0 ∈ Lp(Ω,F0,P;L2(D)). Then, Prb.(3.33) admits an unique mild

solution (u(t))t∈[0,T ] in L2(D) s.t.

E
(

sup
t∈[0,T ]

|u(t)|pL2

)
<∞, (3.34)

where the unicity here is understood in the sense of Definition 3.6.

Proof.See [16, Theorem 1.3].

Let us mention that, the proof of Theorem 3.22 is based on different useful results,

among them Lemma 2.11 in the same paper [16], and regarding its importance in this

thesis, we recall it here.

Lemma 3.23 [16, Lemma 2.11]. For each α > 3
2 , there exists a constant Cα > 0 s.t. for

all t > 0 and for any bounded and strongly-measurable function v : (0, t) → L1(0, 1) the

following inequality holds
∫ t

0
|e−A

α
2 (t−s)∂v(s)

∂x
|L2ds ≤ Cαt

1− 3
2α sup

s≤t
|v(s)|L1 . (3.35)
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Chapter 4

Introduction to deterministic and
stochastic numerical approximations

4.1 Introduction

The real-world is defined by structure in space and time, it forever changes in complex

ways and the most of its problems which can be modelled as SPDEs are complicated.

Generally, there is no hope to find their analytical (or exact) solutions, and so to under-

stand their behavior we need the approximations of such solutions instead of the exact

ones, which can be implemented via computer simulations. To obtain such approxima-

tions we use numerical techniques, like the finite difference method and Galerkin method.

The finite difference method has been used centuries ago, long before computers were

available. It is the one of the oldest methods to solve the differential equations, it is

used in the work of Euler L., which has been published in the book Institutionum calculi

integralis in 1768. The analysis of the finite difference method for PDEs has arisen by

two works; the early work of Richardson L. F. in 1910 [89], and the work of Courant,

Friedrichs and Lewy in 1928 [24]. Such method is based on the taylor development, it has

as advantages a low cost of calculations and a great simplicity of writing. But to apply it,
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we need a high regularity of the solution, which is in general not realistic. Moreover, such

method is simple to use for problems defined on regular geometries. Then, for more com-

plicated geometry, it is preferable to use more adapted techniques, like Galerkin method,

which is one of the most popular numerical techniques for solving PDEs whith complex

geometries. The first mathematical formulation of Galerkin method appeared at the end

of 1915 by Galerkin B. in [49]. Modern numerical methods are based on the development

of principle ideas around Galerkin method, such as spectral Galerkin method that has

been widely used because of its features.

In this chapter, we deal with the full approximation of the parabolic SPDE (3.5)

introduced in Section 3.4, for A be the Laplacian endowed with the homogeneous Dirichlet

boundary conditions on the spacial domain D = (0, 1). In Section 4.2, we treat the

full approximation of its deterministic version (i.e. G = 0), by using finite difference

method for the temporal approximation and spectral Galerkin method for the spacial

approximation. In Section 4.3, we use the same methods to approximate spacially and

temporally the stochastic term of Eq.(3.5), after that we introduce a different notions

of convergence in the probability context. We close this section by showing important

results concerning the spacial approximation of the fractional stochastic heat equation.

4.2 Full approximation of the deterministic problem

In this section we deal with the full aproximation of the deterministic version of Prb.(3.5)

(i.e., G = 0), let us write it here

{ du(t)
dt

= ∆u(t) + F (u(t)), ∀ t ∈ (0, T ],
u(0) = u0.

(4.1)

4.2.1 Spacial approximation via spectral Galerkin method

Due to the fact that, Galerkin method allows greater flexibility in spacial discretization

than finite difference method, we use its approach spectral Galerkin method to discretize

spacially Prb.(4.1). Such problem represents the so-called strong form, which requires
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that the equation be satisfied point-by-point in the computational domain D. Starting

from the strong form, we define the weak form as follows.

Definition 4.1 (Weak form). Let V := H1
0 (D) = {v ∈ H1(D) | v|∂D = 0}. The

weak form of Prb.(4.1) is defined by; for a given u0 ∈ L2(D), find u ∈ L2(0, T ;V ) ∩

C([0, T ];L2(D)) s.t.
{ d

dt
〈u(t), v〉 = A(u(t), v) + 〈F (u), v〉;∀ v ∈ V,

u(0) = u0,
(4.2)

where 〈., .〉 denotes the scalar product in L2(D) and A(., .) be a bilinear form definded on

V by

A(v, w) := 〈O v,O w〉. (4.3)

Remark 4.2 The weak form is also called variational formulation because the func-

tion v varies in the space V , where v is called test function, since it tests the equation

that is satisfied by u.

The weak formulation represents a powerful techniqhe in the process of approxi-

mating spacially the PDEs, because we directly can approximate the space V by a fi-

nite dimensional space. Indeed, we establish the spectral Galerkin method by taking

the finite dimensional subspace VN := span{e1, ..., eN} ⊂ V for some integer N ≥ 1,

where (en)Nn=1 are the N first eigenvectors of the Laplacian corresponding the eigenvalues

−λn = −(nπ)2, n = 1, ..., N . Then, we seek uN = ∑N
n=1 ûnen ∈ VN , where ûn := 〈uN , en〉,

satisfying { d
dt
〈uN , vN〉 = A(uN , vN) + 〈F (uN), vN〉; ∀ vN ∈ VN ,

uN(0) = u0,N .
(4.4)

Equivalently, we can write Prb.(4.4) as follows
{ d

dt
〈uN , en〉 = A(uN , en) + 〈F (uN), en〉, ∀ n ∈ {1, ..., N},

uN(0) = u0,N .
(4.5)

By using the Galerkin projection PN : L2(D)→ VN definded by PNv := ∑N
n=1〈v, en〉en,

the spacial discrete version of Prb.(4.1) is given by the following evolution form
{ d

dt
uN(t) = ∆NuN(t) + PNF (uN(t)), ∀ t ∈ (0, T ),

uN(0) = PNu0,
(4.6)
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where ∆N := PN∆.

Since we have, A(uN , en) = 〈OuN ,Oen〉 = 〈uN ,∆en〉 = −λn〈uN , en〉 = −λnûn, and by

denoting 〈F (uN), en〉 =: F̂n(uN), we can also rewrite Prb.(4.5) as follows

d

dt
ûn = −λnûn + F̂n(uN), with ûn(0) = 〈PNu0, en〉, (4.7)

for any n ∈ {1, ..., N}. If we denote ÛN := (ûn)Nn=1, Prb.(4.7) gives the following system

of ODEs { d
dt
ÛN =M ÛN + F̂N(ÛN),

ÛN(0) = (ûn(0))Nn=1,
(4.8)

where F̂N(ÛN) := (F̂n(uN))Nn=1 andM := (mnn)Nn=1 is a diagonal matrix such that mnn =

−λn.

4.2.2 Temporal approximation via Finite difference method

To obtain the full approximation of Prb.(4.1), we discretize the Prb.(4.6) for uN(t) in time

by using the finite difference method. Such method is based on the Taylor expansions of

the function uN around a given time t. To do this, we first fix M ∈ N0, and let ∆t = T
M

be the time step size (or step mesh). Moreover, let the set S of all grid points (or

nodes), i.e.,

S := {tm, s.t. tm = m∆t, m ∈ {0, 1, ...,M}},

which called the grid.

Remark 4.3 The grid points defined above are equidistant, but we can define points which

are unequal spacings, where different values of ∆t between each successive pairs of nodes

are used. Often problems are solved on a grid which involves uniform spacing, because

this simplifies the programming.

Now, we assume that uN is of class C2 with respect to t. Then, for x ∈ D be fixed,

we can express the first derivative by different ways as follows
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duN(t, x)
dt

= uN(t+ ∆t, x)− uN(t, x)
∆t +O(∆t),

= uN(t, x)− uN(t−∆t, x)
∆t +O(∆t), (4.9)

Let us denote the approximate value of uN at the grid point tm by umN,M .

Now, by neglecting the remains in (4.9) we obtain the following commonly used finite

differences.

Definition 4.4 (Finite differences). The following finite quotients:

um+1
N,M − umN,M

∆t , (4.10)

and
umN,M − um−1

N,M

∆t , (4.11)

are called forward-time difference and backward-time difference respectively.

Now, to achieve the full approximation of Prb.(4.1), we use the finite differences defined

above to formulate some popular difference schemes.

Explicit scheme

In order to obtain the explicit scheme, we replace the first time derivative in Eq.(4.6)

by the forward-time difference (4.10). Then, we have

{ um+1
N,M − umN,M

∆t = ∆Nu
m
N,M + PNF (umN,M), m = 0, ...,M − 1,

u0
N,M = PNu0.

(4.12)

This difference equation can be written as

{
um+1
N,M = (I + ∆t∆N)umN,M + ∆tPNF (umN,M), m = 0, ...,M − 1,
u0
N,M = PNu0.

(4.13)

Thus, the unknown um+1
N,M at the time level tm+1 is obtained directly from the known

value umN,M at the previous time level tm, for this reason it is called explicit.

Such scheme is easy and simple in computation, besides it has low cost of calculations.

However, it is conditionally stable, for this reason it is not preferable in the temporal

approximations.
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Semi-implicit scheme

To get the semi-implicit scheme, we replace the first time derivative in Eq.(4.6) by the

backward-time difference (4.11). Hence, we obtain

{ umN,M − um−1
N,M

∆t = ∆Nu
m
N,M + PNF (um−1

N,M), m = 1, ...,M,

u0
N,M = PNu0.

(4.14)

We can write such difference equation in the following form{ (I −∆t∆N)umN,M = um−1
N,M + ∆tPNF (um−1

N,M), m = 1, ...,M,
u0
N,M = PNu0.

(4.15)

This equation is useful for proving convergence and examining theoretical properties of

the numerical method. However, we can not use it for the implementation, for this it

is convenient to write its matrix form. To this end, starting from the Prb.(4.8), and by

following the same steps above, we get{ (I −∆tM)Ûm
N,M = Ûm−1

N,M + ∆tF̂N(Ûm−1
N,M ), m = 1, ...,M,

Û0
N,M = (〈PNu0, en〉)Nn=1,

(4.16)

where Ûm
N,M is the approximate value of ÛN at the time level tm. To calculate it, we have

to solve the system of algebraic equations (4.16), for this reason this scheme is called

implicit. Moreover, it requires more calculations per time step compared to the explicit

scheme, but it is unconditionally stable.

4.2.3 Basic notions about the convergence

The convergence represents the most important criterium for the numerical approxima-

tion, due to the fact that it demands that, the approximate solution gets closer to the

exact one as the discretization is made finer. Then a difference scheme is useful only if it

is convergent. Such notion is very connected with the discretization error, which has the

following meaning.

Definition 4.5 (Discretization error). Let u be the exact solution of Prb.(4.1) and

umn its approximation obtained by a difference scheme at the time level tm. The dis-

cretization error denoted by emn , is defined by

emn := |u(tm)− umn |L2(D). (4.17)
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Definition 4.6 (Convergence). Let emn be the discretization error of a difference scheme

at the time level tm. Then, such scheme is said to be convergent with respect to the norm

|.|L2(D) if

lim
N,M→+∞

(
max

1≤m≤M
|emn |L2(D)

)
= 0. (4.18)

The speed of convergence is one of the factors of the efficiency of a numerical method.

Such speed is expressed by the so-called order of convergence.

Definition 4.7 (order of convergence). Let p, q be two positive integers and emn be

the discretization error of a difference scheme at the time level tm. If p and q are the

largest integers for which

max
1≤m≤M

|emn |L2(D) ≤ C(N−p +M−q), (4.19)

for some positive constant C independent of N and M , the scheme is said to have order

of convergence p in space and q in time.

From this definition we can conclude that, a higher order of convergence leads to a faster

convergence of the scheme.

There is a huge number of works about the numerical approximations of the PDEs, see

for example the books [6, 10, 63, 88]. In this section, we recall the results concerned

the spacial and the full approximations of Prb.(3.5), for the special case F (u(t)) = f(t),

∀ t ∈ (0, T ].

Theorem 4.8 Fix N ≥ 1. Let u be the solution of the weak problem (4.2), s.t. ∂u
∂t
∈

L1(0, T ;Hs
2(D)) and u0 ∈ Hs

2(D), for some s ≥ 1, and let uN be its approximate solution

obtained via spectral Galerkin method. For all t ∈ [0, T ], it holds

|u(t)− uN(t)|L2(D) ≤ C1N
−s, (4.20)

for some positive constant C1.

Proof.See [88, Section 11.2.2]
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Theorem 4.9 Fix N,M ≥ 1. Let uN be the solution of the spacial approximate problem

(4.6), s.t. ∂uN (0)
∂t
∈ L2(D), and let (umN,M)Mm=1 be its temporal approximation obtained via

the semi-implicit scheme. If f, ∂f
∂t
∈ L2((0, T ]×D), then for any m ∈ {0, ...,M} it holds

|umN,M − uN(tm)|L2(D) ≤ C2M
−1, (4.21)

for some positive constant C1.

Proof.See [88, Section 11.3.2]

4.3 Full approximation of the stochastic problem

In order to discretize Prb.(3.5), for the special case A be the Laplacian endowed with the

homogeneous Dirichlet boundary conditions on the spacial domain D = (0, 1), we just

discretize its stochastic term G(u)dW (t)
dt

, due to the fact that the deterministic term has

been discretized already in Section 4.2. Then, by using the Galerkin projection PN , the

stochastic term is discretized by using spectral Galerkin method as follows

PNG(uN(t))dW (t)
dt

, ∀ t ∈ (0, T ). (4.22)

As a result, from (4.6) and (4.22), the spacial discrete version of Prb.(3.5) is given by
{ d

dt
uN(t) = ∆NuN(t) + PNF (uN(t)) + PNG(uN(t))dW (t)

dt
, ∀ t ∈ (0, T ),

uN(0) = PNu0,
(4.23)

where ∆N := PN∆.

Now, we use the semi-implicit scheme to achieve the full discretization of Prb.(3.5) as

follows
{
umN,M = (I −∆t∆N)−1

(
um−1
N,M + ∆tPNF (um−1

N,M) + PNG(um−1
N,M)∆Wm

)
, m = 1, ...,M,

u0
N,M = PNu0,

(4.24)

where ∆Wm := W (tm)−W (tm−1).

4.3.1 Notions of convergence in the probability context

In the probability context, we can consider different notions of boundedness for random

variables, like the almost surely and boundedness in probability. And so, different notions

68



of order of convergence naturally arise. Regarding the importance of these notions, and

our need to use them in the approximation results, we recall them in this section.

Fix N ≥ 1, and let u be the analytic solution of Prb.(3.5), and uN be its spacial approxi-

mation obtained by some numerical scheme Σ.

Definition 4.10 (Convergence in Lp(Ω, H)). Let p ≥ 1. We say that uN converges

strongly (or in Lp(Ω, H)) to u, if

lim
N→+∞

(
E
(

sup
t∈[0,T ]

|uN(t)− u(t)|pH
)) 1

p

= 0. (4.25)

Definition 4.11 (almost sure convergence). We say that uN converges almost

surely in the space H to u, if

lim
N→+∞

(
sup
t∈[0,T ]

|uN(t)− u(t)|H
)

= 0, a.s. w ∈ Ω. (4.26)

The next notion is weaker than the previous two, but it is still connected with pathwise

approximation and corresponds to the convergence in probability.

Definition 4.12 (Convergence in probability). We say that uN converges in

probability to u, if for all ε > 0, it holds

lim
ε→0

P
{

sup
t∈[0,T ]

|uN(t)− u(t)|H ≥ ε

}
= 0. (4.27)

Their corresponding orders of convergence

Definition 4.13 (Lporder). Let p ≥ 1. We say that, the scheme Σ is of Lp order

ξ > 0 in H, if there exists a constant cp > 0 s.t.

(
E
(

sup
t∈[0,T ]

|uN(t)− u(t)|pH
)) 1

p

≤ cp τ
ξ. (4.28)

Definition 4.14 (almost surely (a.s.) order). We say that, the scheme Σ is of a.s.

order ξ > 0 in H, if for a.s. w ∈ Ω, there exists a constant C(w) > 0 s.t.

sup
t∈[0,T ]

|uN(t)− u(t)|H ≤ C(w)τ ξ. (4.29)
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Definition 4.15 (order in probability). We say that, the scheme Σ is of order in

probability ξ > 0 in H, if

lim
C→∞

lim sup
τ→0

P
{

sup
t∈[0,T ]

|uN(t)− u(t)|H ≥ Cτ ξ
}

= 0. (4.30)

Remark 4.16 If we have a temporal approximation (um)Mm=0, for some integer M ≥ 1,

which is obtained by some numerical scheme Σ̃, instead of the spacial approximation uN ,

the above notions of convergence and order of convergence are still valid, we just replace

uN by um, supt∈[0,T ] by max0≤m≤M and Σ by Σ̃.

Lemma 4.17 . Let (um)Mm=0 be the temporal approximation of u defined by some numer-

ical scheme Σ̃. If such scheme is of Lp-order β in H with p > 1
β
. Then, it is of the same

order in probability. Moreover, it is of a.s. order β̄ < β − 1
p
.

Proof.See [87, Lemma 2.8].

In the literature, we can find many results concerned the numerical approximations

of the SPDEs, see for a short list [54, 55, 56, 58, 73, 87]. The classical results state that

space or time discretization schemes convergence strongly in the case of coefficients are

globally Lipschitz and/or have linear growth property, and weakly when the coefficients

are only locally Lipschitz or have nonlinear growth. For example, in [87] the temporal

approximation achived via the semi-implicit scheme of Prb.(3.5) has been proved. More-

over, the spacial approximation is achieved by using; the finite difference method in [2],

the Galerkin finite element method in [73] and the spectral Galerkin method in [12] (see

Theorem 3.11 in Subsection 3.4.2).

We close this chapter by recalling the results concerning the spacial approximation of

the fractional stochastic heat equation, i.e. Eq.(3.21) on the spacial domain D := (0, 1),

where f = 0 and the operator g : L2(D) → L(L2(D)) is the Nemytski map associated

with the Lipschitz function g : R→ R.

First, we need to fix some parameters; for α > 1, let η ∈ (1
4 + α

4 ,
1
4 + 3α

4 ), δ ∈ (max{1
2 ,

1
4 +

α
8 },

1
4 + 3α

4 ) and p > max{ 2α
α−2 ,

α
2δ−1 ,

2α
8δ−α−2}.

Theorem 4.18 Let u be the mild solution of Prb.(3.21), and let uN be its spacial approxi-

mation obtained by the spectral Galerkin method. Under the assumptions that; g ∈ Hδ
2 s.t.
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bδ := supx∈R |(−∆)δg(x)| < ∞, and the initial condition u0 is an Hη
2 -valued Lp random

variable, i.e. u0 ∈ Lp(Ω, Hη
2 )) it holds

E sup
t∈[0,T ]

|uN(t)− u(t)|pL2(D) < C(T,|u0|Hη2
,bδ) N

−min{α2 ,2δ}. (4.31)

For α ∈ (1, 2], the order of convergence is α
2 .

Proof.See [38, Theorem 5.1].

Let us mention that, this result also ensures the spacial convergence of the stochastic

heat equation (i.e. Eq.(3.21) on the spacial domain D := (0, 1), where α = 2 and f = 0,

equivalently Eq.(3.3) where f = 0, ν = 1 and L = 1), where the order of convergence is

1. Moreover, for α > 1 the regularity of the diffusion term has been required to ensure

the convergence. However, for α > 2 the spacial convergence has been obtained without

regularity of the diffusion term as the following result proves.

Theorem 4.19 Let α > 2 and p > 2α
α−2 . Under the assumptions of Theorem 4.18, with

δ = 0. We have

E sup
t∈[0,T ]

|uN(t)− u(t)|pL2(D) < C(T,|u0|Hη2
,b0) N

−(α4− 1
2−

α
2p). (4.32)

Proof.See [38, Theorem 5.2].
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Chapter 5

Fractional stochastic Burgers-type
Equation in Hölder space

-Wellposedness and Approximations-

This chapter is our first scientific contribution in this thesis. We study a class of one

dimensional fractional stochastic Burgers-type equation given by the following evolution

form {
du(t) =

(
−Aα/2u(t) + F (u(t))

)
dt+ dW (t), t ∈ (0, T ],

u(0) = u0,
(5.1)

where Aα/2 is the fractional power of the Laplacian A = −∆ endowed with Dirichlet

boundary conditions defined in Subsection 1.2.4, F is a nonlinear operator given by

F (u(t, x)) := ∂xf(u(t, x)), x ∈ (0, 1) with f being locally Lipschitz,W is a Wiener process

and u0 is a L2−valued random variable. These equations represent typical examples for lo-

cally Lipschitz nonlinear growth equations. The fractional stochastic Burgers equation is

recuperated by taking f(u) := u2 and if in addition α = 2, we obtain the classical one. To

the contrary to the fractional and Burgers-type equations, the classical stochastic Burgers

equation has been extensively studied, see for a short list, [2, 12, 30, 32, 41, 66, 84, 87]

and the references therein. Fractional Burgers equation has been introduced as a relevant

model for anomalous diffusions such as diffusion in complex phenomena, relaxations in
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viscoelastic mediums, propagation of acoustic waves in gaz-filled tube, see e.g. [75, 97, 98].

Analytical studies for the deterministic fractional Burgers equation have been carried out

e.g. in [5, 19, 71]. The wellposedness of the L2−solution and the ergodic properties of the

fractional stochastic Burgers equation have been obtained in [15, 16], see also [108, 112].

The numerical study of the fractional equations is still at the earliest stage due to the

difficulties to approximate the fractional operator, to the complexity of the schemes and

to the control of the nonlinearity. In [99], the authors partially circumvent the first diffi-

culty, by using the Monte Carlo method. In [38], the authors constructed a concrete form

to the discretized fractional operator and used it in the approximation of the fractional

stochastic heat equation. In [52], the authors considered one dimensional stochastic hy-

perdissipation Burgers equation, with −Aα/2 being replaced by (−1)p+1ν ∂2p

∂x2p , p ≥ 2, ν > 0

andW being a colored noise. Based on the discretization of the random noise, the authors

elaborated an approximation for the solution of the equation and proved that it converges

to the solution in Lm(Ω;L∞(0, T )× L2(0, 1)), m ∈ N and in L1(Ω;L2(0, T )× L∞(0, 1)).

To the best of our knowledge, Göyngy was the first to introduce stochastic Burgers-

type equation [53], then several works followed, see e.g. [20, 57, 113]. Other kind of gen-

eralization has been investigated by L. Debbi in [34]. In this work, the author introduced

a new class of multi-dimensional stochastic active scalar equations covering among others

the multidimensional quasi-geostrophic, 2D-Navier-Stokes and the fractional stochastic

Burgers equation on the torus with α ∈ (1, 2]. The author established thresholds guar-

anteeing the wellposedness of these equations, according to the kind of solutions (strong,

weak, martingale) and according to the Sobolev and the integrability regularities required.

A generalization of this class of equations on D ⊆ Rd and their wellposedness have also

been studied in [35].

In general, the goal of the numerical study of stochastic partial differential equations is

to elaborate schemes providing approximations with respect to time, to space or to both

simultaneously, to prove convergence of these schemes and to establish the rate of conver-

gence. The classical results state that, in the case the coefficients are globally Lipschitz

and/or have linear growth property, space or time discretization schemes convergence in

expectation. In the cases, the coefficients are locally Lipschitz or have nonlinear growth,
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only weak convergence has been proven, see e.g. [58, 87, 54, 55, 56, 73] for time discretiza-

tion and see e.g. [54, 55, 56, 58, 73] for space and full discretizations. One of the first

results about the pathwise convergence for the stochastic Burgers equation known to us

is the work [2]. In this work, the authors used the finite difference method and proved

that the discretized trajectories converge almost surely to the solution in CtL2−topology

with rate γ < 1/2.

Our aim in this chapter is to prove the wellposedness of a space-time Hölder solution

for the fractional stochastic Burgers-type Eq.(5.1) and to establish the rate of convergence

of both the Galerkin approximation and the full discretization schemes. To the best of

our knowledge, the current contribution is the first one proving these results not only

for the fractional stochastic Burgers-type equations but for the fractional and classical

stochastic Burgers equations as well. The exponential Euler scheme has been applied

here for the first time for the fractional stochastic equations. Recall that this method

has been introduced in [69] and used to approximate the solution of the stochastic heat

and reaction diffusion equations, see [68, 69]. In [12], the wellposedness and the Galerkin

approximation have been obtained for the stochastic classical Burgers-type equations. To

elaborate the full discretization scheme, we combined the spectral Galerkin method and

a version of the exponential Euler scheme. Furthermore, we have established estimates

for the product of functions in specific Sobolev and Hölder spaces and also some sufficient

conditions to prove the existence of the Galerkin approximation.

This chapter is presented in the following plan. In Section 5.1, we describe our prob-

lem and we introduce the resolution ingredients. Our main results are given in Section

5.2. Section 5.3 is devoted to the study of the Ornstein-Uhlenbeck stochastic process

defined via the fractional semigroup. We study the wellposedenss and the properties of

the solutions of pathwise fractional equations of Burgers-type in Section 5.4. The proofs

of our results are given in Section 5.5.
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5.1 Formulation of the problem

5.1.1 Properties of the linear drift term.

The fractional Laplacian denoted by Aα is defined in Subsection 1.2.4. In this subsection

we add to the list of the properties of its semigroup (e−Aα/2t)t∈[0,T ] stated in Lemma 1.71

the following non classical results.

Lemma 5.1 Let 0 < T < ∞ and 1 < α ≤ 2 be fixed and let δ ∈ [0, 1) and β ∈ R,

such that δ − β < α − 1
2 . Then for all η ∈ (1+2δ−2β

2α , 1), there exists a positive constant

Cα,δ,η,β > 0 s.t. for all t ∈ (0, T ],

‖e−Aα/2t‖L(Hβ
2 ,C

δ) ≤ Cδ,η,α,βt
−η. (5.2)

In particular, for β > 1
2 and δ < β − 1

2 , there exists a positive constant Cδ,β > 0 s.t.

‖e−Aα/2t‖L(Hβ
2 ,C

δ) ≤ Cδ,α,β. (5.3)

Proof.

Let δ ∈ [0, 1) and β ∈ R, satisfying δ − β < α− 1
2 and let v ∈ Hβ

2 . Then it is easy to

see that

|e−Aα/2tv|Cδ = |
∞∑
k=1

e−λ
α
2
k
t〈v, ek〉ek|Cδ ≤

∞∑
k=1

e−λ
α
2
k
t|〈v, ek〉||ek|Cδ . (5.4)

Thanks to Lemma A.7, we infer the existence of a constant cδ > 0, s.t. |ek|Cδ ≤ cδk
δ

and thanks to Lemma A.8, there exists a constant cη > 0, s.t. e−λ
α
2
k
t ≤ cη(λ

α
2
k t)−η. From

Remark 1.62, we have λk = (kπ)2, hence e−λ
α
2
k
t ≤ cη(kπ)−αηt−η. Using these estimates for

(5.4), we obtain

|e−Aα/2tv|Cδ ≤ Cδ,η
∞∑
k=1

t−η(kπ)−ηα|〈v, ek〉|kδ ≤ Cδ,η,αt
−η

∞∑
k=1

k−ηα+δ−β|〈v, ek〉|(kπ)β.

Now, using Hölder inequality, we get

|e−Aα/2tv|Cδ ≤ Cδ,η,α,βt
−η
( ∞∑
k=1

k2(−ηα+δ−β)
) 1

2
( ∞∑
k=1

(〈v, ek〉)2(kπ)2β
) 1

2

≤ Cδ,η,α,βt
−η|v|Hβ

2
, (5.5)
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provided 2(−ηα + δ − β) < −1. This last is equivalent to η > 1+2δ−2β
2α . A sufficient

condition for η to be in [0, 1) is that δ − β < α − 1
2 . The proof of the Est.(5.2) is then

completed.

Now if β > 1
2 , we use the estimate; e−λ

α
2
k
t ≤ 1 in Est.(5.4) and than we follow the same

steps as to get (5.5). The condition δ < β − 1
2 emerges as a consequence for the above

calculus.

Corollary 5.2 Let 0 < T <∞ and 1 < α ≤ 2 be fixed and let δ ∈ [0, α−1
2 ). Then for all

η ∈ (1+2δ+α
2α , 1), there exists a positive constant Cα,δ,η > 0 s.t. for all t ∈ (0, T ],

‖e−Aα/2t‖
L(H

−α2
2 ,Cδ)

≤ Cα,δ,ηt
−η. (5.6)

Proof.Applying Lemma 5.1 for 1 < α ≤ 2, β = −α
2 and δ < α−1

2 , we conclude that

Est.(5.6) is fulfilled

Lemma 5.3 Let 0 < T <∞ and 1 < α ≤ 2 be fixed and let β, γ ∈ R s.t. 0 < γ − β < α.

Then for all η ∈ (γ−β
α
, 1), there exists a positive constant Cα,γ,η,β > 0 s.t. for all t ∈ (0, T ],

‖e−Aα/2t‖L(Hβ
2 ,H

γ
2 ) ≤ Cα,γ,η,βt

−η. (5.7)

In particular, for β > γ, we have

‖e−Aα/2t‖L(Hβ
2 ,H

γ
2 ) ≤ 1. (5.8)

Proof.Let β, γ ∈ R s.t. 0 < γ − β < α and let v ∈ Hβ
2 . A simple calculus yields to

|e−Aα/2tv|2Hγ
2

= |A
γ
2 e−A

α/2tv|2L2 ≤ Cα,γ
∞∑
k=1

k2γe−2λ
α
2
k
t〈v, ek〉2. (5.9)

Using Lemma A.8, we get for a given η > 0,

|e−Aα/2tv|2Hγ
2
≤ Cα,γ,ηt

−2η
∞∑
k=1

k2(γ−αη)〈v, ek〉2 ≤ Cα,γ,η,βt
−2η

∞∑
k=1

k2(γ−αη−β)〈A
β
2 v, ek〉2

≤ Cα,γ,η,βt
−2η|v|2

Hβ
2
, (5.10)

provided 2(γ − αη − β) < 0 which is equivalent to η > γ−β
α

.

If β > γ, we get Est.(5.40) by following the same steps of the proof above and using of

the estimate e−2λ
α
2
k
t < 1 in stead of Lemma A.8.
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Lemma 5.4 Let 0 < T <∞ and 1 < α ≤ 2 be fixed. Then, for any κ > 0 there exists a

positive constant Cα > 0 s.t. for all t ∈ (0, T ],

‖e−Aα/2t‖L(L2,L4) ≤ Cαt
− 1

4α−κ. (5.11)

Proof.Let v ∈ L2. Using the boundedness of the semigroup e−Aα/2t on L2(0, 1) and

Lemma 5.1 (with β = δ = 0), we can easily deduce that

|e−Aα/2tv|4L4 ≤
∫ 1

0
|(e−Aα/2tv)(x)|4dx ≤ sup

x∈[0,1]
|(e−Aα/2tv)(x)|2

∫ 1

0
|(e−Aα/2tv)(x)|2dx

≤ |e−Aα/2t|2L(L2,C0)|v|2L2|e−A
α/2tv|2L2 ≤ |e−A

α/2t|2L(L2,C0)|v|4L2 ≤ Cαt
− 1
α
−κ|v|4L2 .

(5.12)

Lemma 5.5 Let 0 < T < ∞ and 1 < α ≤ 2 be fixed and let δ ∈ [0, α−1
2 ). Then for all

γ ∈ (1+α+2δ
2α , 1) and all η ∈ (0, γ − (1+α+2δ

2α )), there exists a positive constant Cα,δ,γ,η > 0

s.t. for all t, s ∈ (0, T ],

‖e−Aα/2t − e−Aα/2s‖
L(H

−α2
2 ,Cδ)

≤ Cα,δ,γ,ηs
−γ|t− s|η. (5.13)

Proof.Let v ∈ H−
α
2

2 (0, 1). Using the semigroup property, Lemmas A.7, A.8 and A.9,

we infer, for γ, η ∈ (0, 1), that

|(e−Aα/2t − e−Aα/2s)v|Cδ = |e−Aα/2s(e−Aα/2(t−s) − I)v|Cδ

≤
∞∑
k=1

e−λ
α/2
k

s(1− e−λ
α/2
k

(t−s))|〈v, ek〉||ek|Cδ

≤ Cα,δ,γ
∞∑
k=1

k−αγs−γ(1− e−λ
α/2
k

(t−s))|〈v, ek〉|kδ

≤ Cα,δ,γ,η
∞∑
k=1

k−αγs−γkαη(t− s)η|〈v, ek〉|kδ

≤ Cα,δ,γ,ηs
−γ(t− s)η

∞∑
k=1

k−αγkαη|〈v, ek〉|kδ+α/2k−α/2.(5.14)

Now, we apply Hölder inequality, we get

|(e−Aα/2t − e−Aα/2s)v|Cδ ≤ Cα,δ,γ,ηs
−γ(t− s)η(

∞∑
k=1

k2(α(1/2−γ+η)+δ))1/2(
∞∑
k=1

k−α〈v, ek〉2)1/2

≤ Cα,δ,γ,ηs
−γ(t− s)η|v|

H
−α2
2
, (5.15)

provided that δ ∈ [0, α−1
2 ), γ ∈ (1+α+2δ

2α , 1) and η ∈ (0, γ − (1+α+2δ
2α )).
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Corollary 5.6 Assume that the conditions of Lemma 5.5 are satisfied. Then, for any

κ > 0 there exists a positive function Cα,δ(·) on (0, T ], s.t. for all t ∈ (0, T ],

‖e−Aα/2t − e−Aα/2t0‖
L(H

−α2
2 ,Cδ)

≤ Cα,δ(t0)|t− t0|(
α−1−2δ

2α )−κ. (5.16)

Proof.Est.(5.16) can be easily obtained from Est.(5.13) with γ = 1 − κ and η =
α−1−2δ

2α − κ for any κ > 0.

5.1.2 Definition and properties of the nonlinear drift term

The general form of the nonlinear part of the drift term is given by a function F satisfying

the condition (Assumption 2. in Blömker et al.’ Theorem above; Subsection 3.4.2):

sup
|u|V , |v|V ≤ r, u6=v

|F (u)− F (v)|U
|u− v|V

<∞,

with V := Cδ[0, 1], for a relevant δ ∈ (0, 1) and U := H
−α/2
2 (0, 1). Our typical example is,

F (u)(x) = df(u(x))
dx

, with f : H1−α2
2 (0, 1)→ Cδ[0, 1] being locally Lipschitz. (5.17)

Specially, the case when f is a polynomial; f(x) := a0 + a1x + a2x
2 + ...anx

n, with

a0, a1, ..., an 6= 0 ∈ R, n ∈ N. It is easily seen that for n = 2 (i.e. a2 6= 0) and a1 = 0,

we recuperate the fractional stochastic Burgers equation. This fact justifies the name of

Burgers-type. For n = 1, the drift is then linear and the equation is nothing than the

fractional stochastic heat equation with globally Lipschitz coefficients. This study covers,

with slight modifications, the case when the coefficients (aj(·))nj=0 are differentiable real

functions with bounded derivatives. Moreover, the proofs can be easily extended to the

case of non autonomous function f(t, x, u), under suitable conditions.

Lemma 5.7 Let 1 < α ≤ 2, δ ∈ (1 − α
2 , 1) and let F be given by (5.17), with f being a

polynomial of order n, then the following mapping

F : Cδ[0, 1]→ H
−α2
2 (0, 1)

u 7→ F (u) = df(u(·))
dx

, (5.18)

is well defined. Moreover, for all R > 0, there exists a positive constant CR such that for

every u, v ∈ Cδ[0, 1] with |u|Cδ , |v|Cδ ≤ R, the following inequality holds

|F (u)− F (v)|
H
−α2
2
≤ CR|u− v|Cδ . (5.19)
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Proof.Let u, v ∈ Cδ[0, 1] such that |u|Cδ , |v|Cδ ≤ R for a given R > 0, thanks to the

Imbedding (1.5) in Lemma 1.13, we get

|F (u)− F (v)|
H
−α2
2
≤ C|f(u)− f(v))|

H
1−α2
2
≤ C|f(u)− f(v)|Cδ .

First, we consider the case n = 1. Then

|F (u)− F (v)|
H
−α2
2
≤ C|a1||u− v|Cδ . (5.20)

In this case F is globally Lipschitz. Now For n ≥ 2, we use the definition of f and the

fact that Cδ is a multiplication algebra, see Lemma 1.13, we get

|F (u)− F (v)|
H
−α2
2
≤ C

n∑
k=1

k−1∑
j=0
|ak||uk−1−jvj|Cδ |u− v|Cδ ≤ n2CRn|u− v|Cδ . (5.21)

Corollary 5.8 For 1 < α ≤ 2, δ ∈ (1 − α
2 , 1), F given by (5.17), with f being a poly-

nomial, U = H
−α2
2 (0, 1) and V = Cδ[0, 1], then thanks to Lemma 5.7, Assumption 2. is

fulfilled.

Corollary 5.9 For α ∈ (3
2 , 2], δ ∈ (1 − α

2 ,
α−1

2 ), F given by (5.17), with f being a

polynomial, U = H
−α2
2 (0, 1) and V = Cδ[0, 1] then thanks to Lemmas 5.1 and 5.7, the first

part of Assumption 1. and Assumption 2. are simultaneously fulfilled.

Corollary 5.10 For R > 0, there exists a positive constant CR such that for every u ∈

Cδ[0, 1] with |u|Cδ ≤ R,

|F (u)|
H
−α2
2
≤ CR(1 + |u|Cδ). (5.22)

Proof.It is sufficient to take v = 0, in the Est.(5.19).

In [12], the authors assumed the existence of a family (XN)N satisfying suitable condi-

tions, see Assumption 4. in Blömker et al.’ Theorem above; Subsection 3.4.2; Cond.(3.16)

& Cond.(3.17). In our work, we give sufficient conditions for the existence of such family.

We assume that:
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• There exists a function g : R2 → R, such that

f(x)−f(y) = (x−y)g(x, y) & ∀R > 0, ∃ CR, s.t. ∀x, y, |x|, |y| ≤ R, |g(x, y)| ≤ CR.

(5.23)

• There exist m ∈ N0, (cj)mj=1, cj > 0 and (µj)mj=1, with 0 < µj < 2, such that for all

v ∈ H
α
2

2 (0, 1), ξ ∈ Cδ[0, 1],

|〈F (v + ξ), v〉| ≤
m∑
j=1

cj|v|
µj

H
α
2

2

|ξ|jCδ + |v|L2|v|
H
α
2

2
(
m∑
j=1

cj|ξ|jCδ). (5.24)

5.1.3 Definition of the stochastic term.

We fix a stochastic basis (Ω,F ,P,F,W ), where (Ω,F ,P) is a complete probability space,

F := (Ft)t≥0 is a normal filtration. W := (W (t), t ∈ [0, T ]) is a cylindrical Wiener process

defined on the filtered probability space (Ω,F ,P,F). W can be formally written as

W (t) =
∞∑
k=1

βk(t)ek, P− a.s, (5.25)

where (βk)k≥1 is a family of independent standard Brownian motions and (ek(.) =
√

2 sin(kπ.))k∈N0

is an orthonormal basis in the space L2(0, 1). We introduce the following Ornstein-

Uhlenbeck stochastic process (OU)

W(t) :=
∫ t

0
e−A

α/2(t−s)W (ds). (5.26)

It is easy to see that W is well defined for all α > 1, see e.g. [39].

5.1.4 Definition of the Galerkin approximation.

We fix N ≥ 1. We denote by PN , the Galerkin projection on the finite dimensional space

HN generated by the N first eigenvectors (ek)Nk=1, i.e. for δ > 0, v ∈ Cδ[0, 1] ⊂ L2(0, 1)

and for all x ∈ [0, 1],

PNv(x) =
N∑
k=1
〈v, ek〉ek(x). (5.27)

Lemma 5.11 • PN and e−Aα/2t commute.

• Let δ ∈ [0, 1) and η > δ + 1
2 , then there exists Cδ,η > 0, s.t.

‖PN‖L(Hη
2 ,C

δ) ≤ Cδ,η,. (5.28)
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• Let β ≤ γ ∈ R, then there exists Cγ,β > 0, s.t.

‖I − PN‖L(Hγ
2 ,H

β
2 ) ≤ Cγ,βN

−(γ−β). (5.29)

• Let α ∈ (1, 2] and δ ∈ [0, α−1
2 ). Then, for any κ > 0 there exists Cγ,β > 0, s.t.

N (α−1
2 −δ)−κ‖(I − PN)e−Aα/2t‖L(Hα/2

2 ,Cδ) ≤ Cα,δ. (5.30)

• Let β ∈ R, then there exists Cβ > 0, s.t.

‖PN‖L(Hβ
2 ) ≤ Cβ. (5.31)

Proof.We omit the proofs of the first and last statements as they are easy. Now, we prove

the second one. Let v ∈ Cδ[0, 1], thanks to Identity (5.27) and Lemma A.7, it is easy to

see that

|PNv|Cδ ≤
N∑
k=1
|〈v, ek〉||ek|Cδ ≤ Cδ

N∑
k=1
|〈v, ek〉|kδ

≤ Cδ
N∑
k=1
|〈v, kηek〉|kδ−η ≤ Cδ

N∑
k=1
|〈Aη/2v, ek〉|kδ−η. (5.32)

Using Hölder inequality and the condition η > δ + 1
2 , we deduce that

|PNv|Cδ ≤ Cδ(
∞∑
k=1
〈Aη/2v, ek〉2) 1

2 (
∞∑
k=1

k2(δ−η)) 1
2 ≤ Cδ,η|v|Hη

2
. (5.33)

For the third estimate, we consider v ∈ Hγ
2 , then

|(I − PN)v|2
Hβ

2
= |Aβ/2(I − PN)v|2L2 =

∞∑
k=1
〈Aβ/2(I − PN)v, ek〉2 ≤

∞∑
k=N+1

λβk〈v, ek〉2

≤
∞∑

k=N+1
λβ−γk 〈Aγ/2v, ek〉2 ≤ π2(β−γ)

∞∑
k=N+1

k2(β−γ)〈Aγ/2v, ek〉2

≤ π2(β−γ)N2(β−γ)
∞∑

k=N+1
〈Aγ/2v, ek〉2 ≤ π2(β−γ)N2(β−γ)|v|2Hγ

2
. (5.34)

For the fourth estimate, we assume that v ∈ Hα/2
2 and we prove that for any κ > 0 there

exists Cα,δ > 0, such that

sup
N∈N

sup
t∈(0,T ]

(
N (α−1

2 −δ)−κ|(I − PN)e−tAα/2v|Cδ
)
<∞. (5.35)
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In fact, by application of Lemma 5.11, Est.(5.3) and Est.(5.29), we infer the existence of

Cα,δ > 0, such that

|(I − PN)e−Aα/2tv|Cδ = |e−Aα/2t(I − PN)v|Cδ

≤ |e−Aα/2t|
L(H

(δ+ 1
2 )+κ

2 ,Cδ)
|I − PN |

L(Hα/2
2 ,H

(δ+ 1
2 )+κ

2 )
|v|

H
α/2
2

≤ Cα,δN
−(α−1

2 −δ)+κ|v|
H
α/2
2
. (5.36)

Corollary 5.12 Let 0 < T <∞, 1 < α ≤ 2, δ ∈ [0, 1).

• Let β ∈ R, such that δ − β < α − 1
2 . Then, for all η ∈ (1+2δ−2β

2α , 1), there exists a

positive constant Cα,δ,β,η > 0 s.t. for all t ∈ (0, T ],

‖e−Aα/2tPN‖L(Hβ ,Cδ) ≤ Cα,δ,β,ηt
−η, (5.37)

and for β > 1
2 and δ < β − 1

2 , there exists a positive constant Cδ,β > 0 s.t.

‖e−Aα/2tPN‖L(Hβ ,Cδ) ≤ Cδ,β. (5.38)

• Let β ≤ γ ∈ R. Then for all η′ ∈ (γ−β
α
, 1), there exists a positive constant Cα,β,γ > 0

s.t. for all t ∈ (0, T ],

‖e−Aα/2tPN‖L(Hβ
2 ,H

γ
2 ) ≤ Cα,β,γt

−η′ . (5.39)

In particular, for β > γ, we have

‖e−Aα/2tPN‖L(Hβ
2 ,H

γ
2 ) ≤ 1. (5.40)

Proof.Combining Lemma 5.1 and Lemma 5.11, we conclude the first statement and

similarly, combining Lemma 5.3 and Lemma 5.11 we get the second one.

We introduce the following discretized version of Eq.(5.1), using the Galerkin spectral

method:

{
duN(t) = [−Aα/2uN(t) + PNF (uN(t))]dt+ dWN(t), t ∈ (0, T ],
uN(0) = PNu0,

(5.41)

where

WN(t) := PNW (t) =
N∑
k=1

βk(t)ek. (5.42)
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5.1.5 Full Discretization

Let us fix M ≥ 1 and consider the uniform step subdivision of the time interval [0, T ],

with time step ∆t = T
M
. We define tm = m∆t, for m = 1, ...,M . We construct the

sequence of random variables (umN,M)Mm=0 as: u0
N,M := PNu0,

um+1
N,M := e−A

α/2T/M
(
umN,M + T

M
(PNF )(umN,M)

)
+ PN

(
W((m+ 1) T

M
)− e−Aα/2T/MW((m) T

M
)
)
,

(5.43)

whereW is the Ornstein-Uhlenbeck stochastic process given by Eq.(5.26). Let us mention

here that we can also rewrite umN,M as{
u0
N,M := PNu0,

umN,M := e−A
α/2tmu0

N,M + ∆t∑m−1
k=0 e

−Aα/2(tm−tk)PNF (ukN,M) +WN(tm), (5.44)

where WN := PNW .

The idea of the construction of (5.43) is based on the representation of the solution

of the Initial Problem (5.41) via Duhamel’s formula and the application of the semigroup

property. More precisely, the solution of IPblm (5.41) at time tm+1 is given by:

uN(tm+1) = e−A
α/2tm+1PNu0+

∫ tm+1

0
e−A

α/2(tm+1−s)PNF (uN(s))ds+
∫ tm+1

0
e−A

α/2(tm+1−s)dWN(s).

Using the semigroup property, we can rewrite

e−A
α/2tm+1 = e−A

α/2T/Me−A
α/2tm and e−A

α/2(tm+1−s) = e−A
α/2T/Me−A

α/2(tm−s).

Therefore,

uN(tm+1) = e−A
α/2T/M [e−Aα/2tmPNu0 +

∫ tm

0
e−A

α/2(tm−s)PNF (uN(s))ds+
∫ tm

0
e−A

α/2(tm−s)dWN(s)]

+
∫ tm+1

tm
e−A

α/2(tm+1−s)PNF (uN(s))ds+
∫ tm+1

tm
e−A

α/2(tm+1−s)dWN(s)

= e−A
α/2T/MuN(tm) + e−A

α/2T/M
∫ tm+1

tm
e−A

α/2(tm−s)PNF (uN(s))ds

+
∫ tm+1

0
e−A

α/2(tm+1−s)dWN(s)− e−Aα/2T/M
∫ tm

0
e−A

α/2(tm−s)dWN(s).

Thanks to Identities (5.42) and (5.26), we write∫ tm+1

0
e−A

α/2(tm+1−s)dWN(s) − e−A
α/2T/M

∫ tm

0
e−A

α/2(tm−s)dWN(s)

= PN

(
W((m+ 1) T

M
)− e−Aα/2T/MW((m) T

M
)
)
.
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Now, it is quiet standard to consider the approximation:
∫ tm+1

tm
e−A

α/2(tm−s)PNF (uN(s))ds ' T

M
PNF (uN(tm))

and hence the approximation in (5.43).

The sequence (umN,M)m has the following property ( see the proof in Subsection 5.5.3).

Lemma 5.13 Let 7
4 < α < 2, δ ∈ (1 − α

2 ,
2α−3

2 ), F defined as in Subsection 5.1.2 and

u0 satiesfies Assumption A below with s > δ + 1
2 . Then there exists a finite F0-random

variable Cα,δ, s.t. for all ω ∈ Ω,

sup
m,N,M

|umN,M(ω)|Cδ < Cα,δ(ω). (5.45)

Assumption A. For s > 1
2 , we have u0 : Ω→ Hs

2(0, 1) is a F0 random variable.

5.2 The main results

In this section we present the main results. First of all, we give the following auxiliary

one,

Theorem 5.14 Let T > 0, α ∈ (3
2 , 2), δ ∈ (1− α

2 ,
α−1

2 ) and let u0 satisfies Assumption A

with s > δ+ 1
2 . Then Eq.(5.41) admits a unique L2−mild solution uN := (uN(t), t ∈ [0, T ])

satisfying supN supt∈[0,T ] |uN(t)|L2 < ∞. Moreover, for 7
4 < α < 2 and δ ∈ (1− α

2 ,
2α−3

2 ),

for almost all ω, the map uN : [0, T ]→ Cδ[0, 1] is Hölder continuous of index (α−1−2δ
2α )−κ,

for any κ > 0 and satisfies Est.(3.16), with V := Cδ[0, 1], i.e. for all most all ω ∈ Ω,

sup
N

sup
t∈[0,T ]

|uN(t, ω)|Cδ <∞. (5.46)

Our main results are obtained under the conditions 0 < T < ∞, α ∈ (7
4 , 2), δ ∈

(1− α
2 ,

2α−3
2 ) and that u0 satisfies Assumption A with s > δ + 1

2 . We have

Theorem 5.15 The fractional stochastic Burgers-type equation (5.1) with initial condi-

tion u0, admits a unique mild solution u : [0, T ]×Ω→ Cδ[0, 1]. Moreover, almost surely,

the paths of u are Hölder continuous of order (α−1−2δ
2α )− κ, for any κ > 0.
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Theorem 5.16 ∀ κ > 0, there exists a F/B([0,∞))-measurable mapping C : Ω → R∗+,

such that for almost surely,

sup
t∈[0,T ]

|u(t)− uN(t)|Cδ ≤ C(ω) N−(α−1
2 −δ)+κ, (5.47)

where u is the unique solution of Eq.(5.1) with initial condition u0 and uN is the solution

of the Galerkin approximation Eq.(5.41).

Theorem 5.17 ∀ κ > 0, there exists a F/B([0,∞))-measurable mapping C : Ω → R∗+,

such that for all N,M ≥ 1 we have almost surely,

sup
tm∈[0,T ]

|u(tm)− umN,M |Cδ ≤ C(w)
(
(∆t)(α−1−2δ

2α )−κ +N−(α−1
2 −δ)+κ

)
, (5.48)

where umN,M is the solution of the problem (5.43).

Remark 5.18 The F/B([0,∞))-measurable mappings C(ω) in Theorems 5.16 & 5.17

depend on α, T& δ. In fact, the mapping in Theorem 5.16 emerges from the application

of Theorem [12, Theorem 3.1.], see Theorem 3.11, Remark 3.12 and the proof of Theorems

5.15 & 5.16 in Subsection 5.5.2. As a consequence of the dependence of C(ω) in Theorems

5.16 on α, T& δ, the Estimates (5.118) and (5.135), the mapping C(ω) in Theorem 5.17

depends also on these parameters.

5.3 Some estimates for the stochastic terms

This section is mainly devoted to study the rate, the different kinds of convergence, in

particular the pathwise convergence, and the regularities of the Galerkin approximation

of the stochastic terms; WN given by (5.42) and

WN(t) := PNW(t) =
∫ t

0
e−A

α/2(t−s)WN(ds) =
N∑
k=1

∫ t

0
e−λ

α/2
k

(t−s)dβk(t)ek, (5.49)

where W is the Ornstein-Uhlenbeck stochastic process given by (5.26). The process

W has been studied, for example, in [16, 37, 39], where the authors proved that for α ∈

(1, 2], the Ornstein-Uhlenbeck process (5.26) is well defined as an L2−valued stochastic

process with C
α−1
2α
t C

α−1
2

x −Hölder continuous trajectories. In [34], the author proved that

for α ∈ (1, 2], W ∈ Lp(Ω;Ct × Hβ
q )(c(0, 1)), 2 ≤ q < ∞, β ≥ 0, p ≥ 2 and c(0, 1) is the

unit circle. The following Lemma is a generalization of [12, Proposition 4.2.],
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Lemma 5.19 Let α ∈ (1, 2], 0 < β < α−1
2 , q ≥ 2 and let p0 >

2α
α−1−2β be fixed. Then for

p ≥ 1 and for any κ > 0, there exists Cα,β,q,p > 0, s.t.

sup
N∈N

E
[
|WN |pCtHβ

q
+N

p(α−1
2 −(β+ α

p0
)−κ)|(I − PN)W|p

CtH
β
q

+ |W|p
CtH

β
q

]
< Cα,β,q,p. (5.50)

Proof.To prove Lemma 5.19, it is sufficient to prove the result for the second term in

the LHS of (5.50). The remaining estimates can be easily obtained by following a similar

steps, but simple calculus without considering any power of N .

The proof is given in two steps. In the first one, we prove that for α ∈ (1, 2], 0 < β <

α−1
2 , q ≥ 2 and p > 2α

α−1−2β , there exist Cα,β,q,p > 0 and ξp ∈ (0, α−1
2 − (β + α

p
)), such that

the following estimate holds:

sup
N∈N

E
[
N ξpp|(I − PN)W|p

CtH
β
q

]
< Cα,β,q,p. (5.51)

In the second step, we show that Est.(5.51) is true for all p ≥ 1 and for a universal ξ.

Step1. Recall that

(I − PN)W(t) =
∫ t

0
e−A

α/2(t−s)(I − PN)W (ds). (5.52)

Using the factorization method (see Theorem 3.8), we represent (I − PN)W as,

(I − PN)W(t) =
∫ t

0
(t− s)ν−1e−A

α/2(t−s)Y N(s)ds, (5.53)

Y N(t) =
∫ t

0
(t− s)−νe−Aα/2(t−s)(I − PN)W (ds), (5.54)

with ν ∈ (0, 1). Thanks to Est.(1.23) and by application of Hölder inequality and the fact

that we can choose 1
p

+ β
α
< ν < 1, we get

E|(I − PN)W|p
CtH

β
q

= E
(

sup
t∈[0,T ]

|A
β
2

∫ t

0
(t− s)ν−1e−A

α/2(t−s)Y N(s)ds|pLq
)

≤ E sup
t∈[0,T ]

( ∫ t

0
(t− s)ν−1|A

β
2 e−A

α/2(t−s)Y N(s)|Lqds
)p

≤ CE sup
t∈[0,T ]

( ∫ t

0
(t− s)ν−1− β

α |Y N(s)|Lqds
)p

≤ C sup
t∈[0,T ]

( ∫ t

0
(t− s)(ν−1− β

α
) p
p−1ds

)(p−1)
E
∫ T

0
|Y N(s)|pLqds

≤ CT (1+(ν−1− β
α

) p
p−1 )(p−1)E

∫ T

0
|Y N(s)|pLqds. (5.55)
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Moreover, using the stochastic isometry, the estimate |ek|Lq ≤ 1 and Lemma A.8, with
1
α
< γ < 1− 2ν and ν < 1

2 −
1

2α , we obtain

E
∫ T

0
|Y N(s)|pLqds ≤ E

∫ T

0
|
∫ t

0
(t− s)−νe−Aα/2(t−s)(I − PN)W (ds)|pLqds

≤ C
∫ T

0
(
∫ t

0
(t− s)−2ν

∞∑
k=N+1

e−2λ
α
2
k

(t−s)|ek|2Lqds)
p
2dt

≤ C
∫ T

0
(
∫ t

0
(t− s)−2ν

∞∑
k=N+1

e−2λ
α
2
k

(t−s)ds)
p
2dt

≤ C
∫ T

0
(
∫ t

0
(t− s)−2ν

∞∑
k=N+1

(2λk)
−γα

2 (t− s)−γds)
p
2dt

≤ Cα,γ

∫ T

0
(
∫ t

0
(t− s)−2ν−γds

∞∑
k=N+1

k−γα)
p
2dt. (5.56)

Remark that γ exists thanks to the condition ν < 1
2 −

1
2α and α > 1. It is also easy to

see that, thanks to the choice of ν and γ, the integral in the RHS of the last inequality of

Est.(5.56) converges. Now, let ξ ∈ (0, αγ−1), then∑∞k=N+1 k
−γα ≤ N−ξ

∑∞
k=N+1 k

−γα+ξ ≤

Cα,γ,ξN
−ξ. Hence

E
∫ T

0
|Y N(s)|pLqds ≤ Cα,γ,βN

−ξ p2 (
∫ T

0
t(1−2ν−γ) p2dt)(

∞∑
k=N+1

k−γα+ξ)
p
2

≤ Cα,γ,βN
−ξ p2T (1−2ν−γ) p2 +1(

∞∑
k=1

k−γα+ξ)
p
2

≤ Cα,γ,β,p,ν,ξ,TN
−ξ p2 . (5.57)

Now to combine (5.55) and (5.57), we have to assume that 1
p

+ β
α
< ν < 1

2 −
1

2α . The

existence of ν is guaranted thanks to the conditions 0 < β < α−1
2 and p > 2α

α−1−2β .

Therefore,

E|(I − PN)W|p
CtH

β
q
≤ Cα,γ,β,p,ν,ξ,TN

−p ξ2 . (5.58)

According to the values of the parameters ξ, γ and ν, we deduce that ξ
2 ∈ (0, α−1

2 −(β+ α
p
)),

hence ξ depends, in particular, on p, so let us denote ξ
2 by ξp.

Step2. Let us fix p0 >
2α

α−1−2β , using Hölder inequality, we deduce Est.(5.51), for all

p ≤ p0, with ξp being replaced by ξp0 and the constant depends also on p0 and p. Now,

for p ≥ p0, then Est.(5.51) holds and thanks to the inclusion (0, α−1
2 − (β + α

p 0
)) ⊂

(0, α−1
2 − (β + α

p
)), it is sufficient to take ξp equal to ξp0 .
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Corollary 5.20 Let α ∈ (1, 2], 0 < δ < α−1
2 and p0 >

2(α+1)
α−1−2δ . Then for p ≥ 1 and for

any κ > 0, there exists Cα,δ,p > 0, s.t.

sup
N∈N

E
[
|WN |pCtCδ +N

p(α−1
2 −(δ+α+1

p0
)−κ)|(I − PN)W|pCtCδ + |W|pCtCδ

]
< Cα,δ,p. (5.59)

Proof.It is easy to see that Est.(5.50) is valid for the special case β = δ + 1
p0
, with

δ < α−1
2 , p0 >

2(α+1)
α−1−2δ and q = p0. Hence, we get

sup
N∈N

E
[
|WN |p

CtH
δ+ 1

p0
p0

+N
p(α−1

2 −(δ+α+1
p0

)−κ)|(I − PN)W|p
CtH

δ+ 1
p0

p0

+ |W|p
CtH

δ+ 1
p0

p0

]
< Cα,δ,p.

(5.60)

Thanks to the embedding H
δ+ 1

p0
p0 ↪→ Cδ, see Theorem 1.17, we get Est.(5.59).

Corollary 5.21 Let α ∈ (1, 2] and δ ∈ (0, α−1
2 ). Then, for any κ > 0 there exists a finite

positive random variable Cα,δ, such that for almost surely,

sup
N∈N

[
N (α−1

2 −δ)−κ|(I − PN)W(ω)|CtCδ
]
≤ Cα,δ(ω). (5.61)

Proof.Using Corollary 5.20 and Lemma A.3, we deduce for a given p0 >
2(α+1)
α−1−2δ , that

almost surely,

sup
N∈N

sup
t∈(0,T ]

(
N

(α−1
2 −(δ+α+1

p0
)−κ)−ε|(I − PN)W(ω, t)|Cδ

)
<∞. (5.62)

For p0 large (α+1
p0

= ε) then there exists a random variable Cα,δ,ε, such that (5.61) is

fulfilled.

Lemma 5.22 Let α ∈ (1, 2] and 0 < δ < α−1
2 . Then there exists a finite positive random

variable Cα,δ, such that for almost surely,

sup
N∈N

sup
t∈[0,T ]

|WN(t, ω)|Cδ < Cα,δ(ω). (5.63)

Proof.Thanks to Lemma A.7, we have

|WN(t, ω)|Cδ = |
N∑
k=1

(
∫ t

0
e−(t−s)λα/2

k dβk(s))(ω)ek|Cδ ≤
N∑
k=1
|(
∫ t

0
e−(t−s)λα/2

k dβk(s))(ω)||ek|Cδ

≤ Cδ
∞∑
k=1
|(
∫ t

0
(kπ)δe−(t−s)(kπ)αdβk(s))(ω)|. (5.64)
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We define

C(t, ω) := Cδ
∞∑
k=1
|(
∫ t

0
(kπ)δe−(t−s)(kπ)αdβk(s))(ω)|. (5.65)

It is well known that the process C(t, ω) is well defined provided that
∞∑
k=1

∫ t

0
(kπ)2δe−2(t−s)(kπ)αds <∞.

This last condition is satisfied by using Lemma A.8, with 2δ+1
α

< γ < 1. Moreover, C(·, ω)

has continuous trajectories on [0, T ]. Therefore, the random variable:

Cα,δ(ω) := sup
t∈[0,T ]

C(t, ω) (5.66)

exists, is positive and finite and we have,

sup
t∈[0,T ]

|WN(t, ω)|Cδ ≤ Cα,δ(ω). (5.67)

Lemma 5.23 Let α ∈ (1, 2], 0 ≤ δ < α−1
2 and fix N ∈ N. The stochastic process:

WN : [0, T ] × Ω → Cδ[0, 1] has Hölder continuous sample paths of degree 1
2 − κ, for any

κ > 0.

Proof.Our main tool here is Kolmogorov-Centsov Theorem 2.10. First, we prove

that for large p ∈ [1,∞) and for t1, t2 ∈ (0, T ], there exist positive constants CN,p and

τ ′ ∈ (0, 1) s.t. (
E|WN(t2)−WN(t1)|pCδ

) 1
p ≤ CN,p|t1 − t2|

τ ′
2 , (5.68)

Let x, y ∈ [0, 1] and t1, t2 ∈ (0, T ]. Then

((WN(t2)(x) − WN(t1)(x))− (WN(t2)(y)−WN(t1)(y)))

=
N∑
k=1

(∫ t2

0
e−λ

α
2
k

(t2−s)dβk(s)−
∫ t1

0
e−λ

α
2
k

(t1−s)dβk(s)
)

(ek(x)− ek(y)) .

(5.69)

Thanks to the fact that the elements of the sequence (βk)k are independent and to Lemma

A.5, we get for every τ ′ ∈ (0, 1),

E((WN(t2)(x) − WN(t1)(x))− (WN(t2)(y)−WN(t1)(y)))2

=
N∑
k=1
|ek(x)− ek(y)|2E

(∫ t2

0
e−λ

α
2
k

(t2−s)dBk(s)−
∫ t1

0
e−λ

α
2
k

(t1−s)dBk(s)
)2

≤
N∑
k=1
|ek(x)− ek(y)|2λ−

α
2 (1−τ ′)

k |t2 − t1|τ
′
. (5.70)
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Let 0 < ε < 1
p
. Using the properties of the trigonometric function sin(kπx), a simple

calculus yields to

E((WN(t2)(x) − WN(t1)(x))− (WN(t2)(y)−WN(t1)(y)))2

≤
N∑
k=1
|ek(x)− ek(y)|2(δ+ 1

p
+ε)(|ek(x)|+ |ek(y))|2−2(δ+ 1

p
+ε)λ

−α2 (1−τ ′)
k |t2 − t1|τ

′

≤ 4
N∑
k=1

k2(δ+ 1
p

+ε)|x− y|2(δ+ 1
p

+ε)λ
−α2 (1−τ ′)
k |t2 − t1|τ

′

≤ C
( N∑
k=1

k−α(1−τ ′− 2
α

(δ+ 1
p

+ε))
)
|t2 − t1|τ

′|x− y|2(δ+ 1
p

+ε)

≤ C
( N∑
k=1

k−α(1−τ ′− 2
α

(δ+ 1
p

+ε))
)
|t2 − t1|τ

′|x− y|2(δ+ 1
p

+ε)

≤ CN |t2 − t1|τ
′ |x− y|2(δ+ 1

p
+ε). (5.71)

Furthermore, using Lemma A.5 and the properties of the trigonometric functions, we get

E(WN(t2)(x) − WN(t1)(x))2

=
N∑
k=1
|ek(x)|2E

(∫ t2

0
e−λ

α
2
k

(t2−s)dBk(s)−
∫ t1

0
e−λ

α
2
k

(t1−s)dBk(s)
)2

≤ C
N∑
k=1

k−α(1−τ ′)|t2 − t1|τ
′ ≤ CN |t2 − t1|τ

′
. (5.72)

Thus, using Lemma A.4, we infer that

E((WN(t2)(x) − WN(t1)(x))− (WN(t2)(y)−WN(t1)(y)))p

≤ p!
(
E((WN(t2)(x)−WN(t1)(x))− (WN(t2)(y)−WN(t1)(y)))2

) p
2

≤ CN,p|t2 − t1|τ
′ p
2 |x− y|p(δ+

1
p

+ε). (5.73)

And

E(WN(t2)(x)−WN(t1)(x))p ≤ p!
(
E(WN(t2)(x)−WN(t1)(x))2

) p
2 ≤ CN,p|t2 − t1|τ

′ p
2 .

(5.74)

Thanks to the Sobolev embedding H
δ+ 1

p
p ↪→ Cδ, see e.g. Theorem 1.17, Est.(5.73),
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Est.(5.74) and Lemma A.6, we obtain

E|WN(t2) − WN(t1)|pCδ ≤ CN(
∫ 1

0
E(WN(t2)(x)−WN(t1)(x))pdx

+
∫ 1

0

∫ 1

0

E((WN(t2)(x)−WN(t1)(x))− (WN(t2)(y)−WN(t1)(y)))p
|x− y|2+δp dx dy)

≤ CN,p|t2 − t1|
τ ′p
2

(
1 +

∫ 1

0

∫ 1

0
|x− y|−(1−pε)dx dy

)
≤ CN,p(t2 − t1)

τ ′p
2 . (5.75)

Corollary 5.24 Let α ∈ (1, 2] and 0 ≤ δ < α−1
2 . The Ornstein-Uhlenbeck stochastic

process W has a continuous version, we still denote by W : [0, T ] × Ω → Cδ[0, 1] with

Hölder continuous sample paths of degree
(
α−1−2δ

2α

)
− κ, for any κ > 0.

Proof.First, we find τ ′ such that Est.(5.68) holds with a constant in the RHS which

is independent of N , i.e. we prove that for large p ∈ [1,∞) and for t1, t2 ∈ (0, T ], there

exist positive constants Cα,δ,p and τ ′ ∈ (0, 1) s.t.

(
E|WN(t2)−WN(t1)|pCδ

) 1
p ≤ Cα,δ,p|t1 − t2|

τ ′
2 , (5.76)

To this aim, it is sufficient to follow the same calculus as in the proof of Lemma 5.23 and

to choose τ ′ such that ∑∞k=1 k
−α(1−τ ′− 2

α
(δ+ 1

p
+ε)) <∞. We consider p large and ε small such

that 0 < 1
α

(2
p

+ 2ε) < ε′ for a given ε′. We have

∞∑
k=1

k−α(1−τ ′− 2
α

(δ+ 1
p

+ε)) ≤
∞∑
k=1

k−α(1−τ ′− 2δ
α

+ε′)) <∞, (5.77)

provided α(1− τ ′ − 2δ
α
− ε′) > 1. So it is sufficient to take 0 < τ ′ < α−1−2δ

α
.

Now, we take p0 >
2(α+1)
α−1−2δ and we use Corollary 5.20, and Est.(5.76), then for any κ > 0

there exists Cδ,p > 0 s.t for all N ∈ N,

E|W(t2)−W(t1)|pCδ ≤ E|(I − PN)(W(t2)−W(t1))|pCδ + E|WN(t2)−WN(t1)|pCδ

≤ Cα,δ,pN
−p(α−1

2 −(δ+α+1
p0

)−κ) + Cδ,p|t1 − t2|
τ ′p
2 . (5.78)

The result is easily deduced making N →∞ and applying Kolomogorov-Centsov Theorem

2.10.
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5.4 Some auxiliary results

In this section we provide non classical results to estimate the nonlinear term. We mainly

focus on nonlinear term of Burgers equation, i.e. for F given by f(x) = x2.

Let vN : (0, T )→ L2(0, 1) be a sequence of continuous functions. We define

yN(t) :=
∫ t

0
e−A

α/2(t−s)PNF (vN(s))ds. (5.79)

Lemma 5.25 Assume α ∈ (7
4 , 2) and that the sequence (vN)N satisfies

sup
N

sup
t∈[0,T ]

|vN(t)|L2 <∞. (5.80)

Then

sup
N

sup
t∈[0,T ]

|yN(t)|L4 <∞. (5.81)

Proof.Using Lemma 5.4, Lemma 5.11 and [16, Lemma 2.11](see e.g. Lemma 3.23),

we get

|yN(t)|L4 ≤
∫ t

0
|e−Aα/2(t−s)PNF (vN(s))|L4ds

≤
∫ t

0
‖e−Aα/2

(t−s)
2 ‖L(L2,L4)‖PN‖L(L2)|e−A

α/2 (t−s)
2 F (vN(s))|L2ds

≤ C
∫ t

0
(t− s)− 1

4α−κ1(t− s)− 3
2α−κ2|vN(s)2|L1ds ≤ C

∫ t

0
(t− s)− 7

4α−κ|vN(s)|2L2ds,

(5.82)

for any κ1, κ2 > 0 and κ := κ1 + κ2.

Finally, using Assumption (5.80), we end up with

|yN(t)|L4 ≤ C sup
N

sup
t∈[0,T ]

|vN(s)|2L2T 1− 7
4α−κ <∞, for any κ > 0. (5.83)

Lemma 5.26 Assume α ∈ (3
2 , 2), δ ∈ [0, 2α−3

2 ). Let vN : (0, T )→ L4(0, 1) satisfying

sup
N

sup
t∈[0,T ]

|vN(t)|L4 <∞. (5.84)

Then

sup
N

sup
t∈[0,T ]

|yN(t)|Cδ <∞. (5.85)
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Proof.Using Lemma 5.1, in particular Est.(5.2) and Lemma 5.11, we infer that

|yN(t)|Cδ ≤
∫ t

0
|e−Aα/2(t−s)PNF (vN(s))|Cδds

≤
∫ t

0
‖e−Aα/2(t−s)‖L(H−1

2 ,Cδ)‖PN‖L(H−1
2 )|F (vN(s))|H−1

2
ds

≤ Cα,β,δ

∫ t

0
(t− s)− 3+2δ

2α −κ|vN(s)|2L4ds ≤ Cα,β,δT
1− 3+2δ

2α −κ sup
N

sup
t∈[0,T ]

|vN(s)|2L4 <∞,

(5.86)

for any κ > 0.

Corollary 5.27 Assume α ∈ (7
4 , 2), δ ∈ (0, 2α−3

2 ) and that (vN)N satisfies Cond.(5.80).

Then

sup
N

sup
t∈[0,T ]

|yN(t)|Cδ <∞. (5.87)

Proof.An application of Lemmas 5.25 and 5.26 leads to the result.

Lemma 5.28 Let α ∈ (3
2 , 2) and δ ∈ (1 − α

2 ,
α−1

2 ). We introduce the following initial

value problems {
∂
∂t
vN(t) = −Aα/2vN(t) + PNF (vN(t) + ξN(t)),
vN(0) = PNv0,

(5.88)

where v0 ∈ L2(0, 1) and ξN : (0, T )→ Cδ[0, 1] is continuous with

sup
N

sup
[0,T ]
|ξN(t)|Cδ <∞. (5.89)

Assume that F is given by f satisfying Cond.(5.23). Then for all N ∈ N0, IVP.(5.88)

admits a local solution. Moreover, if F satisfies Cond.(5.24), then the local solution vN

becomes global, unique and it satisfies

vN ∈ C(0, T ;L2(0, 1)) ∩ L2(0, T ;H
α
2

2 (0, 1)), (5.90)

and

sup
N

sup
t∈[0,T ]

|vN(t)|L2 <∞. (5.91)

In particular, this result is true for Burgers equation.
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Proof. To prove the existence of the local solution it is sufficient to prove that there

exists T0 ≤ T , such that the application ϕN : C(0, T0;Cδ[0, 1]) → C(0, T0;Cδ[0, 1]) is

welldefined and it is a contraction, where ϕN is given by

(ϕNv)(t) = e−A
α/2tPNv0 +

∫ t

0
e−A

α/2(t−s)PNF (v(s) + ξN(s))ds. (5.92)

In fact, let u, v ∈ C(0, T0;Cδ[0, 1]) such that |u|Cδ , |v|Cδ < R. Using Corollary 5.2, the

embedding Cδ[0, 1] ↪→ H
1−α2
2 (0, 1), see Lemma 1.13, Cond.(5.23) and the fact that Cδ[0, 1]

is a multiplication algebra, for any κ > 0 we obtain

|(ϕNv−ϕNu)(t)|Cδ ≤
∫ t

0
|e−Aα/2(t−s)PN(F (v(s) + ξN(s))− F (u(s) + ξN(s)))|Cδds

≤
∫ t

0
‖e−Aα/2(t−s)‖

L(H
−α2
2 ,Cδ)

‖PN‖L(H
−α2
2 )
|f(v(s) + ξN(s))− f(u(s) + ξN(s))|

H
1−α2
2

ds

≤ Cα,δ

∫ t

0
(t− s)− 1+2δ+α

2α −κ|(v(s)− u(s)) (g(v(s) + ξN(s), u(s) + ξN(s))) |Cδds

≤ Cα,δ

∫ t

0
(t− s)− 1+2δ+α

2α −κ|(v(s)− u(s))|Cδ | (g(v(s) + ξN(s), u(s) + ξN(s))) |Cδds

≤ Cα,δ,R sup
s∈[0,T0]

|v(s)− u(s)|Cδ
∫ t

0
(t− s)− 1+2δ+α

2α −κds

≤ Cα,δ,RT
1− 1+2δ+α

2α −κ
0 sup

s∈[0,T0]
|v(s)− u(s)|Cδ . (5.93)

Then, we choose T0, such that Cα,δ,RT
1− 1+2δ+α

2α −κ
0 < 1.

Now, we prove that for any solution of IVP(5.88) on [0, T0], we have

sup
N

sup
t∈[0,T0]

|vN(t)|L2 <∞. (5.94)

This last condition is sufficient to guarantee the global existence of the solution. In fact,

we multiply the two sides of the first equation in IVP(5.88) by vN and we use [103] and

we integrate, we get

|vN(t)|2L2 + 2
∫ t

0
|vN(s)|2

H
α
2

2
ds = |vN(0)|2L2 + 2

∫ t

0
〈F (vN(s) + ξN(s)), PNvN(s)〉ds.

(5.95)
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We use Cond.(5.24), Young inequality with ε1, ε2 > 0 and Lemma 5.11, we obtain

|vN(t)|2L2 + 2
∫ t

0
|vN(s)|2

H
α
2

2
ds ≤ |PNv0|2L2 +

m∑
j=1

cj

∫ t

0
|vN(s)|µj

H
α
2

2

|ξN(s)|jCδds

+
∫ t

0
|vN(s)|L2|vN(s)|

H
α
2

2
(
m∑
j=1

cj|ξN(s)|jCδ)ds

≤ |v0|2L2 +mε1

∫ t

0
|vN(s)|2

H
α
2

2
ds+ 1

ε1
(
m∑
j=1

cj

∫ t

0
|ξN(s)|

2
2−µj
Cδ ds)

+ ε2

∫ t

0
|vN(s)|2

H
α
2

2
ds+ 1

ε2

∫ t

0
|vN(s)|2L2(

m∑
j=1

cj|ξN(s)|jCδ)
2ds. (5.96)

We choose ε1, ε2 > 0 such that mε1 + ε2 < 2 and we use Cond.(5.89) we end up with

|vN(t)|2L2 + (2−mε1 − ε2)
∫ t

0
|vN(s)|2

H
α
2

2
ds ≤ |v0|2L2 + 1

ε1
T (

m∑
j=1

cj sup
N

sup
s
|ξN(s)|

2
2−µj
Cδ )

+ 1
ε2
supN sup

s
(
m∑
j=1

cj|ξN(s)|jCδ)
2)
∫ t

0
|vN(s)|2L2ds

≤ C1 + C2

∫ t

0
|vN(s)|2L2ds. (5.97)

In particular, as the first term in the LHS of Est.(5.97) is bounded by the RHS of Est.(5.97)

and by application of Gronwall lemma, we deduce that |vN(t)|2L2 ≤ C1e
C2T and conse-

quently that supN
∫ t

0 |vN(s)|2
H
α
2

2

ds <∞. Thus, conditions (5.90) & (5.91) are fulfilled.

To clarify further that our study covers the fractional stochastic Burgers equation, we

independently develop below this later case. In fact, using the fact that for all y, we have

〈∂xy2, y〉 = 0, [16, Lemma 11], the embedding Cδ[0, 1] ↪→ H
1−α2
2 (0, 1), see Lemma 1.13,

and the fact that Cδ[0, 1] is a multiplication algebra, we get

|vN(t)|2L2 + 2
∫ t

0
|vN(s)|2

H
α
2

2
ds = |vN(0)|2L2 + 2

∫ t

0
〈F (vN(s) + ξN(s)), PNvN(s)〉ds

≤ |vN(0)|2L2 + 2
∫ t

0

(
|〈∂x(vN(s))2, vN(s)〉|+ |〈∂x(ξN(s))2, vN(s)〉|

)
ds

+ 4
∫ t

0
|〈∂x(vN(s)ξN(s)), vN(s)〉|ds

≤ |vN(0)|2L2 + 2
∫ t

0
|ξN(s))2|

H
1−α2
2
|vN(s)|

H
α
2

2
ds+ 4

∫ t

0
|vN(s)|

H
α
2

2
|vN(s)ξN(s))|

H
1−α2
2

ds

≤ |PNv(0)|2L2 + 2
∫ t

0
|ξN(s))|2Cδ |vN(s)|

H
α
2

2
ds+ 4

∫ t

0
|vN(s)|

H
α
2

2
|vN(s)|

H
1−α2
2
|ξN(s))|Cδds.

(5.98)

Using the following interpolation |vN(s)|
H

1−α2
2
≤ c|vN(s)|2

α−1
α

L2 |vN(s)|
2−α
α

H
α
2

2

, Young inequality,
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Lemma 5.11 and Cond.(5.89), we deduce that

|vN(t)|2L2 + 2
∫ t

0
|vN(s)|2

H
α
2

2
ds ≤ |v0|2L2 +

∫ t

0
( 1
ε1
|ξN(s))|4Cδ + ε21|vN(s)|2

H
α
2

2
)ds

+ 4c
∫ t

0
|vN(s)|

2
α

H
α
2

2

|vN(s)|2
α−1
α

L2 |ξN(s))|Cδds

≤ |v0|2L2 +
∫ t

0
( 1
ε1
|ξN(s))|4Cδ + ε21|vN(s)|2

H
α
2

2
)ds

+ 4c
∫ t

0
(ε2|vN(s)|2

H
α
2

2
+ 1
ε2

(|vN(s)|2L2|ξN(s))|2Cδds

≤ |v0|2L2 + Tc

ε1
+ (ε21 + 4cε2)

∫ t

0
|vN(s)2

H
α
2

2
)ds+ 4c

ε2

∫ t

0
|vN(s)|2L2ds. (5.99)

the choice of ε1 and ε2 such that ε21 + 4cε2 ≤ 2 gives us

|vN(t)|2L2 + (2− ε21 − 4cε2)
∫ t

0
|vN(s)|2

H
α
2

2
ds ≤ (|v0|2L2 + Tc

ε1
) + 4c

ε2

∫ t

0
|vN(s)|2L2ds.

(5.100)

Now, arguing as above and we apply Gronwall lemma A.1 , we infer that

|vN(t)|2L2 ≤ (|v0|2L2 + Tc

ε1
)e

4c
ε2
T
. (5.101)

Thus, Cond.(5.91) is fulfilled and consequently, vN ∈ L2(0, T ;H
α
2

2 (0, 1)). Thus the proof

is achieved.

5.5 Proof of Theorems

5.5.1 Proof of Theorem 5.14

Existence. We understand equation (5.41) in the integral form as

uN(t) = e−A
α/2tPNu0 +

∫ t

0
e−A

α/2(t−s)PNF (uN(s))ds+WN(t), t ∈ [0, T ], (5.102)

where WN(t) is given by (5.49). Remark that if uN is solution of Eq.(5.41), then vN :=

uN −WN is a mild solution of the pathwise IVP.(5.88), with ξN by WN and vice versa.

To prove the existence of the solution uN satisfying Eq.(5.102) and Cond.(5.91), we apply

Lemma 5.22 and Lemma 5.28.

Uniform boundedness of (uN)N . Now, we assume that 7
4 < α < 2, δ ∈ (1− α

2 ,
2α−3

2 )

and we prove that the solutions (uN)N satisfy Est.(5.46). In fact, using Identity (5.102),
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it is obvious that

|uN(t)|Cδ ≤ |e−A
α/2tPNu0|Cδ + |

∫ t

0
e−A

α/2(t−s)PNF (uN(s))ds|Cδ + |WN(t)|Cδ . (5.103)

Let us remark that the second term respectively the third one in Est.(5.103), are bounded

thanks to Corollary 5.27 and Lemma 5.28 respectively to Lemma 5.22. To estimate

the first term in Est.(5.103), we use Lemma 5.1, Lemma 5.11 and Assumption A with

s ≥ β > δ + 1
2 , we get

|e−Aα/2tPNu0|Cδ ≤ ‖e−A
α/2t‖L(Hβ

2 ,C
δ)‖PN‖L(Hβ

2 )|u0|Hβ
2
≤ Cα,δ,β|u0|Hβ

2
<∞. (5.104)

The proof is then achieved.

Hölder Regularity of uN . We prove that each term of Identity (5.102) is Hölder

continuous of index α−1−2δ
2α − κ, for any κ > 0. In fact, the regularity of WN follows from

Lemma 5.23. To get the regularity of the first term, we use Corollary 5.6, Lemma 5.11,

the embedding Hβ
2 (0, 1) ↪→ H

−α2
2 (0, 1) and the Assumption A with s ≥ β > δ + 1

2 . Then,

for τ < t ∈ (0, T ), we have

|(e−Aα/2t − e−Aα/2τ )PNu0|Cδ ≤ C‖e−Aα/2t − e−Aα/2τ‖
L(H

−α2
2 ,Cδ)

‖PN‖L(H
−α2
2 )
|u0|

H
−α2
2

≤ Cα,δ,τ |t− τ |(
α−1−2δ

2α )−κ|u0|Hβ
2
, (5.105)

for any κ > 0.

For the second term, we have,

|
∫ t

0
e−A

α/2(t−s)PNF (uN(s))ds−
∫ τ

0
e−A

α/2(τ−s)PNF (uN(s))ds|Cδ

≤ |
∫ τ

0
[e−Aα/2(t−s) − e−Aα/2(τ−s)]PNF (uN(s))ds|Cδ + |

∫ t

τ
e−A

α/2(t−s)PNF (uN(s))ds|Cδ

≤
∫ τ

0
‖e−Aα/2(t−s) − e−Aα/2(τ−s)‖

L(H
−α2
2 ,Cδ)

‖PN‖L(H
−α2
2 )
|F (uN(s))|

H
−α2
2
ds

+
∫ t

τ
‖e−Aα/2(t−s)‖

L(H
−α2
2 ,Cδ)

‖PN‖L(H
−α2
2 )
|F (uN(s))|

H
−α2
2
ds. (5.106)

Using Lemma 5.5 and Lemma 5.11, we infer that, for ε1, ε2 ∈ (0, α−1−2δ
2α − κ), for any

κ > 0,

|
∫ t

0
e−A

α/2(t−s)PNF (uN(s))ds−
∫ τ

0
e−A

α/2(τ−s)PNF (uN(s))ds|Cδ

≤ Cα

∫ τ

0
(t− τ)(α−1−2δ

2α −κ)−ε1(τ − s)−1+ε2|F (uN(s))|
H
−α2
2
ds

+ Cα

∫ t

τ
(t− s)−1+ε2 |F (uN(s))|

H
−α2
2
ds. (5.107)
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Let us now, remark that thanks to the uniform boundedness of (uN)N with respect to t

andN , we can choose R(ω) = supN supt∈[0,T ] |uN(t, ω)|Cδ , for a.s.ω ∈ Ω and by application

of Corollary 5.10, we infer the existence of a random variable CF,α,δ(ω), such that

|F (uN(s, ω))|
H
−α2
2
≤ CF,α,δ(ω)(1 + |uN(s, ω)|Cδ) ≤ CF,α,δ(ω). (5.108)

Thus

|
∫ t

0
e−A

α/2(t−s)PNF (uN(s))ds−
∫ τ

0
e−A

α/2(τ−s)PNF (uN(s))ds|Cδ

≤ CF,α,δ(·)
[ ∫ τ

0
(t− τ)(α−1−2δ

2α −κ)−ε1(τ − s)−1+ε2ds+
∫ t

τ
(t− s)−1+ε2ds

]
≤ CF,α,δ,T (·)

[
(t− τ)(α−1−2δ

2α −κ)−ε1 + (t− τ)ε2
]
. (5.109)

Now, it is easy to get the Hölder index, by taking ε1 → 0 and ε2 → α−1−2δ
2α − κ.

Uniqueness. Assume that there exist two solutions u1
N and u2

N of Eq.(5.102) starting

from the same initial condition u0 and satisfying the boundedness, the regularity proper-

ties above, then using Corollary 5.2, the boundedness property of u1
N and u2

N and Lemma

5.7, we obtain P− a.s., for all t ∈ (0, T ]

|u1
N(t, ω) − u2

N(t, ω)|Cδ ≤
∫ t

0
|e−Aα/2(t−s)PN(F (u1

N(s, ω))− F (u2
N(s, ω)))|Cδds

≤
∫ t

0
‖e−Aα/2(t−s)‖

L(H
−α2
2 ,Cδ)

‖PN‖L(H
−α2
2 )
|F (u1

N(s, ω))− F (u2
N(s, ω))|

H
−α2
2
ds

≤ CF,α,δ(ω)
∫ t

0
(t− s)−( 1+2δ+α

2α )−κ|u1
N(s, ω)− u2

N(s, ω)|Cδds, (5.110)

for any κ > 0. By application of Gronwall lemma A.1 we get, P− a.s.,

|u1
N(t, ω)− u2

N(t, ω)|Cδ = 0, ∀t ∈ (0, T ].

Thus the uniqueness is proved.

5.5.2 Proof of Theorems 5.15 & 5.16

To prove theorems 5.15 & 5.16, we will mainly check that Assumptions 1-4 of Theorem

3.11 hold, with V := Cδ[0, 1], U := H
−α/2
2 (0, 1) and S(t) = e−A

α/2t.

Assumption 1. Lemma 5.5 states that for α ∈ (1, 2] and δ ∈ [0, 1) the semigroup

e−A
α/2· : [0, T ] → L(H−

α
2

2 (0, 1), Cδ[0, 1]) is Hölderian so it is continuous. Moreover, for
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δ < α−1
2 and thanks to Corollary 5.2, we have for all η′ ∈ (1+2δ+α

2α , 1),

sup
t∈(0,T ]

(
tη
′‖e−Aα/2t‖L(H−α/22 ,Cδ)

)
<∞. (5.111)

Now, we introduce the auxiliary parameter β ∈ (α2 , α− δ −
1
2). Thanks to Lemma 5.1

and Lemma 5.11, we infer that for all η′′ ∈ (1+2δ+2β
2α , 1), there exists Cδ,β,η′′ > 0, s.t.

‖(I − PN)e−Aα/2t‖
L(H

−α2
2 ,Cδ)

= ‖e−Aα/2t(I − PN)‖
L(H

−α2
2 ,Cδ)

≤ ‖e−Aα/2t‖L(H−β2 ,Cδ)‖I − PN‖L(H
−α2
2 ,H−β2 )

≤ Cδ,β,η′′t
−η′′N−(β−α2 ). (5.112)

We consider β = (α − δ − 1
2) − κ, for any κ > 0 and we take η′ = η′′ := 1 − ε, with

ε ∈ (0, α−1−2δ
2α ), then we get the estimate

‖(I − PN)e−Aα/2t‖
L(H

−α2
2 ,Cδ)

≤ Cδ,β,η′′t
−1+εN−(α−1

2 −δ)+κ. (5.113)

Consequently, Assumption 1 is satisfied.

Assumption 2. This assumption is satisfied, for the fractional stochastic Burgers

type equations, thanks to Corollary 5.8, provided that 1 < α ≤ 2 and δ > 1− α
2 .

As a result, Assumptions 1 & 2 are simultaneously satisfied for 3/2 < α ≤ 2 and

δ ∈ (1− α
2 ,

α−1
2 ), see also Corollary 5.9.

Assumption 3. Corollary 5.24 shows the continuity of the process W . Moreover,

it is easy to see that Est.(5.105) is still valid without PN . Thus, the process e−Aα/2tu0 :

Ω → Cδ[0, 1] and consequently the process O(t) := e−tA
α/2
u0 +W(t) : Ω → Cδ[0, 1] are

continuous. In addition, thanks to Lemma 5.11, the fact that α < 2 + δ, Assumption A

with s ≥ β > δ + 1
2 and the embeddings Hβ

2 (0, 1) ↪→ H
δ+ 1

2
2 (0, 1) ↪→ H

α/2
2 (0, 1), we have

P− a.s.

|(I − PN)e−Aα/2tu0(ω)|Cδ ≤ ‖(I − PN)e−Aα/2t‖L(Hα/2
2 ,Cδ)|u0(ω)|

H
α/2
2

≤ Cα,δ(ω)N−(α−1
2 −δ)+κ|u0(ω)|Hβ

2
. (5.114)

Now, Corollary 5.21 and Est.(5.114) together show that O(t) satisfies P− a.s.

sup
N∈N

sup
t∈(0,T ]

(
N (α−1

2 −δ)−κ|(I − PN)O(t, ω)|Cδ
)
<∞, (5.115)

For any κ > 0. Thus Assumption 3 is fulfilled.

Assumption 4. This assumption is satisfied thanks to Theorem 5.14.
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5.5.3 Proof of Lemma 5.13

Using Eq.(5.44), we rewrite umN,M as{
u0
N,M := PNu0,

umN,M = e−A
α/2tmu0

N,M +
∫ tm
0 e−A

α/2(tm−s)∆t∑m−1
k=0 δtk(s)PNF (ukN,M)ds+WN(tm).

(5.116)

We introduce the following problem:


ZN,M(0) := PNu0,

for t ∈ (tm−1, tm] :
ZN,M(t) = e−A

α/2tPNu0 +
∫ t

0 e
−Aα/2(t−s)∆t∑m−1

k=0 δtk(s)PNF (ZN,M(s) +WN(tm))ds.
(5.117)

We argue as in the proof of Lemma 5.28 using Lemma 5.22, we prove the existence of a

stochastic process ZN,M solution of Eq.(5.117) and satisfying

sup
N,M

sup
t∈[0,T ]

|yN,M(t, ω)|Cδ ≤ Cα,δ(ω).

It is easy to see that ZN,M(tm) = umN,M −WN(tm), where umN,M is solution of Eq.(5.116).

Now, argue as in the proof of Theorem 5.14, we infer that umN,M exists and fulfill Est.(5.45).

5.5.4 Proof of Theorem 5.17

Using the triangular inequality and Theorem 5.16, in particular Est.(5.47), we get

|u(tm)− umN,M |Cδ ≤ |u(tm)− uN(tm)|Cδ + |uN(tm)− umN,M |Cδ

≤ CN−(α−1
2 −δ)+κ + |uN(tm)− umN,M |Cδ , (5.118)

for any κ > 0. In the aim to estimate the term |uN(tm)− umN,M |Cδ , we rewrite umN,M as:

umN,M := e−A
α/2tmu0

N +
m−1∑
k=0

∫ tk+1

tk

e−A
α/2(tm−tk)PNF (ukN,M)ds+WN(tm). (5.119)

Then,

|uN(tm)− umN,M |Cδ ≤
m−1∑
k=0
|
∫ tk+1

tk

[e−Aα/2(tm−s)PNF (uN(s))− e−Aα/2(tm−tk)PNF (ukN,M)]ds|Cδ

≤ J1 + J2 + J3, (5.120)

where

J1 :=
m−1∑
k=0

∫ tk+1

tk

|e−Aα/2(tm−s)PN [F (uN(s))− F (uN(tk)]|Cδds, (5.121)
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J2 :=
m−1∑
k=0

∫ tk+1

tk

|[e−Aα/2(tm−s) − e−Aα/2(tm−tk)]PNF (uN(tk)|Cδds (5.122)

and

J3 :=
m−1∑
k=0

∫ tk+1

tk

|e−Aα/2(tm−tk)PN [F (uN(tk)− F (ukN,M)]|Cδds. (5.123)

Now, we estimate the terms J1, J2, J3. But, first of all, let us remark that thanks to

the uniform boundedness of (uN)N with respect to t and N and of umN,M with respect to

m,N,M , we can choose R(ω) = max{supN supt∈[0,T ] |uN(t, ω)|Cδ , supm,N,M |umN,M(ω)|Cδ},

for a.s.ω ∈ Ω and by application of Lemma 5.7, we infer the existence of a random variable

CF,α,δ(ω), such that

|F (uN(s, ω))− F (umN,M(ω))|
H
−α2
2
≤ CF,α,δ(ω)(|uN(s, ω)− umN,M(ω)|Cδ) (5.124)

and

|F (uN(s, ω))− F (uN(t, ω))|
H
−α2
2
≤ CF,α,δ(ω)(|uN(s, ω)− uN(t, ω)|Cδ). (5.125)

To estimate J1, we use Corollary 5.2, Lemma 5.11, in particular, Est.(5.31) and Est.(5.125),

we get

J1 ≤
m−1∑
k=0

∫ tk+1

tk

‖e−Aα/2(tm−s)‖L(H−α/22 ,Cδ)‖PN‖L(H
−α2
2 )
|F (uN(s))− F (uN(tk)|

H
−α2
2
ds

≤ CF,α,δ

(m−1∑
k=0

∫ tk+1

tk

(tm − s)−( 1
2α (α+2δ+1)+κ′)|uN(s)− uN(tk)|Cδds

)
, (5.126)

for any κ′ > 0 . Thanks to the regularity of the Galerkin solution, see Theorem 5.14, we

infer that

J1 ≤ CF,α,δ

(m−1∑
k=0

∫ tk+1

tk

(tm − s)−( 1
2α (α+2δ+1)+κ′)(s− tk)(α−1−2δ

2α )−κds
)
, (5.127)

for any κ > 0. As (s− tk) ≤ ∆t for all s ∈ [tk, tk+1] and 1
2α(α + 2δ + 1) + κ′ < 1, we get

J1 ≤ C(∆t)(α−1−2δ
2α )−κ

(m−1∑
k=0

∫ tk+1

tk

(tm − s)−( 1
2α (α+2δ+1)+κ′)ds

)

≤ C(∆t)(α−1−2δ
2α )−κ

∫ tm

0
(tm − s)−( 1

2α (α+2δ+1)+κ′)ds

≤ Cα,δT
1−( 1

2α (α+2δ+1))+κ′)(∆t)(α−1−2δ
2α )−κ. (5.128)
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To estimate J2, we use Lemma 5.5, Lemma 5.11, in particular, Est.(5.31) and Est.(5.108),

then we end up with the following estimate

J2 ≤
m−1∑
k=0

∫ tk+1

tk

‖e−Aα/2(tm−s) − e−Aα/2(tm−tk)‖L(H−α/22 ,Cδ)‖PN‖L(H
−α2
2 )
|F (uN(tk)|H−α/22

ds

≤ CF,α,δ

(m−1∑
k=0

∫ tk+1

tk

(s− tk)η(tm − s)−γ(1 + |uN(tk)|Cδ)ds
)
, (5.129)

by taking γ = 1− κ and η = (α−1−2δ
2α )− κ, for any κ > 0 we deduce

J2 ≤ CF,α,δT
κ(∆t)(α−1−2δ

2α )−κ. (5.130)

Now, arguing as for the estimation of J1, using Corollary 5.2, Lemma 5.11, in particular,

Est.(5.31) and Est.(5.124), we get

J3 ≤
m−1∑
k=0

∫ tk+1

tk

‖e−Aα/2(tm−tk)‖L(H−α/22 ,Cδ)‖PN‖LH−α22
|F (uN(tk)− F (ukN,M)]|

H
−α/2
2

ds

≤ Cα,δ

(m−1∑
k=0

∫ tk+1

tk

(tm − tk)−(α+1+2δ
2α )−κ′|uN(tk)− ukN,M |Cδds

)
, (5.131)

for any κ′ > 0. Thus thanks to the estimates (5.120), (5.128), (5.130) and (5.131), we get

|uN(tm) − umN,M |Cδ

≤ Cα,δ,T

(m−1∑
k=0

(
∫ tk+1

tk

(tm − tk)−(α+1+2δ
2α )−κ′ds)|uN(tk)− ukN,M |Cδ + (∆t)(α−1−2δ

2α )−κ
)
,

(5.132)

as tm − s ≤ tm − tk, for all s ∈ [tk, tk+1] we get

|uN(tm) − umN,M |Cδ

≤ Cα,δ,T

(m−1∑
k=0

(
∫ tk+1

tk

(tm − s)−(α+1+2δ
2α )−κ′ds)|uN(tk)− ukN,M |Cδ + (∆t)(α−1−2δ

2α )−κ
)

(5.133)

The application of the discretized version of Gronwall lemma A.2 yields

|uN(tm)− umN,M |Cδ ≤ Cα,δ,T (∆t)(α−1−2δ
2α )−κ exp

(m−1∑
k=0

∫ tk+1

tk

(tm − s)−(α+1+2δ
2α )−κ′ds

)

≤ Cα,δ,T (∆t)(α−1−2δ
2α )−κ exp

( ∫ tm

0
(tm − s)−(α+1+2δ

2α )−κ′ds
)
. (5.134)

Thanks to the fact that α+1+2δ
2α + κ′ < 1, we obtain

|uN(tm)− umN,M |Cδ ≤ Cα,δ,T (∆t)(α−1−2δ
2α )−κ. (5.135)
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Chapter 6

Numerical approximations for
fractional stochastic nonlinear heat
equation in Hilbert space- Temporal,

spacial and full approximations-

6.1 Introduction

In this second contribution, we deal with the fractional stochastic nonlinear heat equation

(FSNHE) with multiplicative noise. This means, we consider Eq.(5.1), with the nonlinear

operator F being globally Lipschitz with nonlinear growth condition instead of locally

Lipschitz. Moreover, we study this equation in the Hilbert space L2(0, 1) instead of the

Hölder space Cδ(0, 1). We establish temporal, spacial and full schemes for this equation

and we prove their convergence. Regarding the relaxed condition imposed on the nonlin-

ear term, we improve either the rate of convergence and the constraint on the diffusion

dissipation index α. Recall that, in our first contribution Chapter 5, we studied the

additive fractional stochastic Burgers-type equation in the Hölder space Cδ(0, 1). The

full approximation has been proved with the rate of convergence (N−ζ + (∆t)ξ), with

ζ < α−1
2 − δ and ξ < α−1

2α −
δ
α
, for α ∈ (7

4 , 2] and δ ∈ (1− α
2 ,

2α−3
2 ). In this chapter, we fill
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the gap α ∈ (1, 7
4 ] for the heat equation. Specially, we prove the strong convergence ( i.e.

in the space Lp(Ω, L2(0, 1))) of the temporal implicit scheme via Euler method, the strong

convergence of the spacial approximation via spectral Galerkin method and the strong

convergence of the space-time approximation obtained as a combination of the temporal

and the spacial schemes.

The structure of this chapter is as follows: in Section 6.2, we give the main assumptions

and definitions. Sections 6.4, 6.5 and 6.6 are devoted to the temporal, the spacial and the

full approximations, respectively.

6.2 Preliminaries and Assumptions

Let us first, recall the formal fractional stochastic nonlinear heat equation on the bounded

domain [0, 1] with Dirichlet boundary conditions:
∂u(t, x)
∂t

= −(− ∂2

∂2x
)α2 u(t, x) + F (u(t))(x) +G(u(t))(x) ∂

2W (t, x)
∂t ∂x

, (t, x) ∈ (0, 1)2,

u(t, 0) = u(t, 1) = 0, ∀ t ∈ (0, 1] (Dirichlet boundary conditions),
u(0, x) = u0(x), ∀ x ∈ [0, 1] (initial condition).

(6.1)

The evolution form of Eq.(6.1) is again given by Eq.(5.1), with Aα := (− ∂2

∂2x
)α2 = A

α
2 ,

with A = −∆ endowed with the Dirichlet boundary conditions, see Section. 1.2.4. Now,

let us take α ∈ (1, 2], p ≥ 2, H denotes the Hilbert space L2(0, 1), 〈., .〉 its inner product

and we assume that:

Assumption A1. The initial condition u0 is an F0-masurable random variable, satisfies

u0 ∈ Lp(Ω,F0,P;Hη
2 ), with η > 0.

Assumption B1. The nonlinear operator F : H → D(A−ρ) with 0 ≤ ρ < α
2 satisfies the

global Lipschitz and the nonlinear growth conditions, i.e.

∃CF1 > 0, s.t. |A−ρ(F (x)− F (y))|H ≤ CF1|x− y|H for all x, y ∈ H, (6.2)

and

∃CF > 0, s.t. |A−ρF (x)|H ≤ CF (1 + |x|H) for all x ∈ H. (6.3)

Assumption C1. The operator G : H → L(H), where L(H) is the set of linear
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bounded operators from H to H, (see the Definition 1.23) satisfies the global Lipschitz

and the nonlinear growth conditions, i.e. ∃CG > 0, s.t.

‖G(x)−G(y)‖L(H) ≤ CG|x− y|H for all x, y ∈ H, (6.4)

and

‖G(x)‖L(H) ≤ CG (1 + |x|H) for all x ∈ H. (6.5)

The random version of Assumptions A1 and B1.

In order to make the proofs in this chapter more easier when we use the Assumptions

A1 and B1, we reformulate them here in the random context as follows; let x, y be two

H-valued random variable. Then, we have

Assumption Ar1. The initial condition u0 is an F0-masurable random variable, satisfying
(
E|A

η
2u0|p

) 1
p <∞,

with η > 0.

Assumption Br1. The nonlinear operator F : H → D(A−ρ) with 0 ≤ ρ < α
2 satisfies the

global Lipschitz and the nonlinear growth conditions, i.e.

‖A−ρ(F (x)−F (y))‖pLp(Ω,H) = E|A−ρ(F (x)−F (y))|pH ≤ Cp
F1E|(x−y)|pH ≤ Cp

F1‖x−y‖
p
Lp(Ω,H),

(6.6)

for some positive constant CF1, and

‖A−ρF (x)‖pLp(Ω,H) = E|A−ρF (x)|pH ≤ Cp
F1E (1 + |x|H)p .

The fact that, for any a, b ≥ 0, (a+ b)p ≤ Cp(ap + bp), for all p ≥ 1 leads to,

Cp
F,pE (1 + |x|H)p ≤ Cp

F1,p (1 + E|x|pH) = Cp
F1,p

(
1 + ‖x‖pLp(Ω,H)

)
. (6.7)

Moreover, the use of the basic inequality (a+ b)q ≤ Cq(aq + bq), for any a, b ≥ 0, and any

0 < q < 1, yields

‖A−ρF (x)‖Lp(Ω,H) ≤ CF1,p
(
1 + ‖x‖pLp(Ω,H)

) 1
p ≤ CF1,p

(
1 + ‖x‖Lp(Ω,H)

)
, (6.8)

for some positive constant CF1,p.
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Remark 6.1 To avoid the repetitions, in the rest of this chapter, when we need to use

estimations in the random context as it has been proved above for Assumptions A1 and

B1, we will do it without proof.

Let us metion here that, the wellposedness of Prb.(6.1) in the whole space R has been

obtained in the random field-setting (see Theorem 3.15). However, to approximate the

problem temporally we need its wellposedness in the L2-setting. For this, in the rest of

this chapter we assume that Prb.(6.1) admits an unique mild solution u given P-a.s. by:

u(t) = Sα(t)u0 +
∫ t

0
Sα(t−s)F (u(s)) ds+

∫ t

0
Sα(t−s)G(u(s)) dW (s), ∀ t ∈ [0, 1], (6.9)

where Sα(t) := e−Aαt, for any t ∈ [0, 1].

6.3 Temporal regularity of the mild solution

Due to the fact that, the temporal regulariy of the mild solution of Prb.(6.1) has been

proved in the random field setting as mentioned in Theorem 3.16, and regarding the

importance of such peoperty in the proof of the temporal approximation, we prove it in

this section in the L2-setting.

Proposition 6.2 According to Assumptions Ar1 with η > α−1
2 , Br1 with ρ ∈ [0, 1

2 ], and

C1, the mild solution u of Prb.(5.1) equivalently Prb.(6.1) is time Hölder continuous with

exponent α−1
2α − κ, for any κ > 0. i.e.

‖u(t)− u(s)‖Lp(Ω,H) ≤ C
(‖A

η
2 u0‖Lp(Ω,H),p,α)

(t− s)α−1
2α −κ, (6.10)

for all 0 ≤ s < t ≤ 1.

In order to prove this proposition, we need the following useful result.

Lemma 6.3 For all ξ > 1
4 , there exists Cξ > 0, s.t.

‖A−ξ‖HS ≤ Cξ. (6.11)

Let α ∈ (1, 2]. For any 0 ≤ s < t ≤ 1, we have
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• For all ζ > 0 and all 0 < γ < ζ
α
, there exists Cγ > 0, s.t.

‖A−
ζ
2 (Sα(t)− Sα(s))‖L(H) ≤ Cγ(t− s)γ. (6.12)

• For all ξ ≥ 0 and all γ ∈ ( 2
α
ξ, 1 + 2

α
ξ),there exists Cγ,α,ξ > 0, s.t.

‖Aξ(Sα(t)− Sα(s))‖L(H) ≤ Cγ,α,ξs
−γ(t− s)γ− 2

α
ξ. (6.13)

Proof.For the first estimate, let ξ > 1
4 , the use of the definition of the Hilbert-Schmidt

norm (see Identity.(1.13)), with the facts that |ej|H = 1 and λj = (jπ)2, leads to

‖A−ξ‖2
HS =

∑
j∈N0

|A−ξej|2H =
∑
j∈N0

|λ−ξj ej|2H =
∑
j∈N0

λ−2ξ
j |ej|2H =

∑
j∈N0

λ−2ξ
j = π−4ξ ∑

j∈N0

j−4ξ.

Riemman series ∑j∈N0 j
−4ξ converges, thanks to ξ > 1

4 , and so

‖A−ξ‖HS ≤ Cξ.

For the second estimate, we use Identity.(1.12) in Lemma 1.36 to get

‖A−
ζ
2 (Sα(t)− Sα(s))‖L(H) = sup

1≤j≤∞
|λ−

ζ
2

j (e−tλ
α
2
j − e−sλ

α
2
j )|.

Since the function e−x ∈ C1, then it is Lipschitz and γ-Hölder continuous for any γ ∈

(0, 1). Therefore, there exists Cγ > 0 s.t.

|λ−
ζ
2

j (e−tλ
α
2
j − e−sλ

α
2
j )| ≤ Cγ(t− s)γ(λ

− ζ2
j λ

αγ
2
j ) = Cγ(t− s)γ(λ

−( ζ2−
αγ
2 )

j ).

Let 0 < γ < ζ
α
, then ζ − αγ > 0. We have λj = (jπ)2 > 1, and so λ

1
2 (ζ−αγ)
j > 1. Hence

‖A−
ζ
2 (Sα(t)− Sα(s))‖L(H) ≤ Cγ(t− s)γ sup

1≤j≤∞
(λ−

1
2 (ζ−αγ)

j ) ≤ Cγ(t− s)γ.

For the last estimate, let ξ ∈ [0, α2 ), by using Identity.(1.12) in Lemma 1.36, we have

‖Aξ(Sα(t)− Sα(s))‖L(H) = sup
1≤j≤∞

|λξj(e−tλ
α
2
j − e−sλ

α
2
j )| = sup

1≤j≤∞
|λξje−sλ

α
2
j (e−(t−s)λ

α
2
j − 1)|.

(6.14)

We use Lemma A.8 (with γ ∈ ( 2
α
ξ, 1)) and Lemma A.9 (with β = γ − 2

α
ξ), to get

‖Aξ(Sα(t) − Sα(s))‖L(H) = sup
1≤j≤∞

|λξje−sλ
α
2
j (e−(t−s)λ

α
2
j − 1)|

≤ Cγs
−γ sup

1≤j≤∞
|λξjλ

−α2 γ
j (e−(t−s)λ

α
2
j − 1)| = Cγs

−γ sup
1≤j≤∞

|λ−(α2 γ−ξ)
j (e−(t−s)λ

α
2
j − 1)|

≤ Cγ,α,ξs
−γ(t− s)γ− 2

α
ξ sup

1≤j≤∞
|λ−(αγ2 −ξ)
j λ

(αγ2 −ξ)
j | ≤ Cγ,α,ξs

−γ(t− s)γ− 2
α
ξ.

(6.15)
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Proof of Proposition 6.2

From Eq.(6.9) we have

‖u(t)− u(s)‖Lp(Ω,H) ≤ ‖(Sα(t)− Sα(s))u0‖Lp(Ω,H)

+ ‖
∫ t

0
Sα(t− r)F (u(r))dr −

∫ s

0
Sα(s− r)F (u(r))dr‖Lp(Ω,H)

+ ‖
∫ t

0
Sα(t− r)G(u(r))dW (r)−

∫ s

0
Sα(s− r)G(u(r))dW (r)‖Lp(Ω,H).

(6.16)

To estimate the first term in the RHS of Est.(6.16), we use the fact that A η
2 commutes

with the semigroup Sα(t) and Assumption Ar1 with η > 0, to obtain

‖(Sα(t)− Sα(s))u0‖Lp(Ω,H) = ‖A−
η
2 (Sα(t)− Sα(s))A

η
2u0‖Lp(Ω,H)

≤ ‖A−
η
2 (Sα(t)− Sα(s))‖L(H)‖A

η
2u0‖Lp(Ω,H). (6.17)

Thus, by replacing Est.(6.12) (with ζ = η and γ = β) in Est.(6.17) it holds

‖(Sα(t)− Sα(s))u0‖Lp(Ω,H) ≤ C
(β,‖A

η
2 u0‖Lp(Ω,H))

(t− s)β, (6.18)

where η > 0 and β ∈ (0, η
α

).

To estimate the second term in the RHS of Est.(6.16), first we have

‖
∫ t

0
Sα(t− r)F (u(r))dr −

∫ s

0
Sα(s− r)F (u(r))dr‖Lp(Ω,H)

≤ ‖
∫ s

0
(Sα(t− r)− Sα(s− r))F (u(r))dr‖Lp(Ω,H)

+ ‖
∫ t

s
Sα(t− r)F (u(r))dr‖Lp(Ω,H) := S1 + S2. (6.19)

Second, we estimate S1 by using the commutative property of Aρ and Sα(t) and Assump-

tion Br1 with 0 ≤ ρ < α
2 , as follows

S1 = ‖
∫ s

0
(Sα(t− r)− Sα(s− r))F (u(r))dr‖Lp(Ω,H)

= ‖
∫ s

0
Aρ(Sα(t− r)− Sα(s− r))A−ρF (u(r))dr‖Lp(Ω,H)

≤
∫ s

0
‖Aρ(Sα(t− r)− Sα(s− r))‖L(H)‖A−ρF (u(r))‖Lp(Ω,H)dr

≤ CF1,p

∫ s

0
‖Aρ(Sα(t− r)− Sα(s− r))‖L(H)

(
1 + ‖u(r)‖Lp(Ω,H)

)
dr

≤ CF1,p

(
1 + sup

r∈[0,1]
‖u(r)‖Lp(Ω,H)

)∫ s

0
‖Aρ(Sα(t− r)− Sα(s− r))‖L(H)dr.

(6.20)
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By replacing Est.(6.13) (with ξ = ρ ∈ [0, α2 ) and γ ∈ ( 2
α
ρ, 1)) in Est.(6.20), we obtain

S1 ≤ C(F1,p,supr∈[0,1] ‖u(r)‖Lp(Ω,H),γ,α,ρ)(t− s)γ−
2
α
ρ
∫ s

0
(s− r)−γdr.

The integral
∫ s
0 (s− r)−γdr is finite, thanks to the condition γ < 1. And so,

S1 ≤ C(F1,p,supr∈[0,1] ‖u(r)‖Lp(Ω,H),γ,α,ρ)(t− s)γ−
2
α
ρ. (6.21)

Third, to estimate S2 we argue as above, to arrive at

S2 = ‖
∫ t

s
Sα(t− r)F (u(r))dr‖Lp(Ω,H) ≤

∫ t

s
‖AρSα(t− r)‖L(H)‖A−ρF (u(r))‖Lp(Ω,H)dr

≤ CF1,p

(
1 + sup

r∈[0,1]
‖u(r)‖Lp(Ω,H)

)∫ t

s
‖AρSα(t− r)‖L(H)dr. (6.22)

We replace Est.(1.23) (with β = 2ρ) in Est.(6.22), yields

S2 ≤ C(F1,p,α,ρ,supr∈[0,1] ‖u(r)‖Lp(Ω,H))

∫ t

s
(t−r)− 2

α
ρdr ≤ C(F1,p,α,ρ,supr∈[0,1] ‖u(r)‖Lp(Ω,H))(t−s)

1− 2
α
ρ.

(6.23)

Hence, from Est.(6.19), Est.(6.21) and Est.(6.23) we get

‖
∫ t

0
Sα(t− r)F (u(r))dr −

∫ s

0
Sα(s− r)F (u(r))dr‖Lp(Ω,H) ≤ C(p,γ,α,ρ)(t− s)γ−

2
α
ρ

+ C(p,α,ρ)(t− s)1− 2
α
ρ. (6.24)

We have min{γ − 2
α
ρ, 1− 2

α
ρ} = γ − 2

α
ρ because γ < 1, and so

‖
∫ t

0
Sα(t− r)F (u(r))dr −

∫ s

0
Sα(s− r)F (u(r))dr‖Lp(Ω,H) ≤ C(p,α,ρ,γ)(t− s)γ−

2
α
ρ, (6.25)

where ρ ∈ [0, α2 ) and γ ∈ ( 2
α
ρ, 1).

About the stochastic term in the RHS of Est.(6.16), we have

‖
∫ t

0
Sα(t− r)G(u(r))dW (r) −

∫ s

0
Sα(s− r)G(u(r))dW (r)‖Lp(Ω,H)

≤ ‖
∫ s

0
(Sα(t− r)− Sα(s− r))G(u(r))dW (r)‖Lp(Ω,H)

+ ‖
∫ t

s
Sα(t− r)G(u(r))dW (r)‖Lp(Ω,H) := S3 + S4.

(6.26)
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In order to estimate S3, we use Burkholder-Davis-Gundy inequality with p ≥ 2, and the

definition of the norm in Lp(Ω,R) to get

S3 = ‖
∫ s

0
(Sα(t− r)− Sα(s− r))G(u(r))dW (r)‖Lp(Ω,H)

≤ Cp

(
E
(∫ s

0
‖(Sα(t− r)− Sα(s− r))G(u(r))‖2

HSdr
) p

2
) 1
p

= Cp‖
(∫ s

0
‖(Sα(t− r)− Sα(s− r))G(u(r))‖2

HSdr
)
‖

1
2

L
p
2 (Ω,R)

. (6.27)

First, we estimate ‖(Sα(t− r)− Sα(s− r))G(u(r))‖HS by using the fact that ‖AB‖HS ≤

‖A‖HS‖B‖L(H), for every A ∈ HS and every B ∈ L(H), and Assumption C1 as follows

‖(Sα(t− r)− Sα(s− r))G(u(r))‖HS ≤ ‖(Sα(t− r)− Sα(s− r))‖HS‖G(u(r))‖L(H)

≤ CG(1 + |u(r)|H)‖(Sα(t− r)− Sα(s− r))‖HS.

Now, let ξ̀ ∈ (1
4 ,

α
4 ), we use Est.(6.11) (with ξ = ξ̀) and Est.(6.13) (with ξ = ξ̀ and γ = γ̀

s.t. γ̀ ∈ ( 2
α
ξ̀, 1

2) ), to obtain

‖(Sα(t− r) − Sα(s− r))G(u(r))‖HS ≤ CG(1 + |u(r)|H)‖A−ξ̀(Aξ̀(Sα(t− r)− Sα(s− r)))‖HS

≤ CG(1 + |u(r)|H)‖A−ξ̀‖HS‖Aξ̀(Sα(t− r)− Sα(s− r))‖L(H)

≤ CG,ξ̀(1 + |u(r)|H)‖Aξ̀(Sα(t− r)− Sα(s− r))‖L(H)

≤ CG,ξ̀,γ̀,α(1 + |u(r)|H)(s− r)−γ̀(t− s)γ̀− 2
α
ξ̀. (6.28)

We replace Est.(6.28) in Est.(6.27), and use the fact that, for all a, b > 0, (a + b)2 ≤

C(a2 + a2), for some C > 0, to get

S3 = ‖
∫ s

0
(Sα(t− r)− Sα(s− r))G(u(r))dW (r)‖Lp(Ω,H)

≤ Cp,G,ξ̀,γ̀,α(t− s)γ̀− 2
α
ξ̀‖
(∫ s

0
(1 + |u(r)|2H)(s− r)−2γ̀dr

)
‖

1
2

L
p
2 (Ω,R)

≤ Cp,G,ξ̀,γ̀,α(t− s)γ̀− 2
α
ξ̀
(∫ s

0
‖1 + |u(r)|2H‖L p2 (Ω,R)

(s− r)−2γ̀dr
) 1

2

≤ Cp,G,ξ̀,γ̀,α(t− s)γ̀− 2
α
ξ̀
(∫ s

0
(1 + ‖|u(r)|2H‖L p2 (Ω,R)

)(s− r)−2γ̀dr
) 1

2

= Cp,G,ξ̀,γ̀,α(t− s)γ̀− 2
α
ξ̀
(∫ s

0
(1 + ‖u(r)‖2

Lp(Ω,H))(s− r)−2γ̀dr
) 1

2

≤ Cp,G,ξ̀,γ̀,α(t− s)γ̀− 2
α
ξ̀(1 + sup

r∈[0,1]
‖u(r)‖2

Lp(Ω,H))
1
2

(∫ s

0
(s− r)−2γ̀dr

) 1
2
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The integral
∫ s
0 (s− r)−2γ̀dr is finite, thanks to the condition γ̀ < 1

2 , and so

S3 ≤ C(p,G,ξ̀,γ̀,α,supr∈[0,1] ‖u(r)‖2
Lp(Ω,H))

(t− s)γ̀− 2
α
ξ̀. (6.29)

In order to estimate S4, we argue as above. Then, by using Burkholder-Davis-Gundy

inequality with p ≥ 2, and the definition of the norm in Lp(Ω,R) we obtain

S4 = ‖
∫ t

s
Sα(t− r)G(u(r))dW (r)‖Lp(Ω,H)

≤ Cp‖
(∫ t

s
‖Sα(t− r)G(u(r))‖2

HSdr
)
‖

1
2

L
p
2 (Ω,R)

. (6.30)

The use of the fact that ‖AB‖HS ≤ ‖A‖HS‖B‖L(H), for every A ∈ HS and every B ∈

L(H), and Assumption C1, yields

‖Sα(t− r)G(u(r))‖HS ≤ ‖Sα(t− r)‖HS‖G(u(r))‖L(H)

≤ CG(1 + |u(r)|H)‖Sα(t− r)‖HS.

Let ξ̀ ∈ (1
4 ,

α
4 ). We use Est.(6.11) (with ξ = ξ̀) and Est.(1.23) (with β = 2ξ̀ ), to obtain

‖Sα(t− r)G(u(r))‖HS ≤ CG(1 + |u(r)|H)‖A−ξ̀(Aξ̀Sα(t− r))‖HS

≤ CG(1 + |u(r)|H)‖A−ξ̀‖HS‖Aξ̀Sα(t− r)‖L(H)

≤ CG,ξ̀(1 + |u(r)|H)‖Aξ̀Sα(t− r))‖L(H)

≤ CG,ξ̀,α(1 + |u(r)|H)(t− r)− 2
α
ξ̀. (6.31)

By replacing Est.(6.31) in Est.(6.30), and using the fact that, for all a, b > 0, (a + b)2 ≤

C(a2 + a2), for some C > 0, we get

S4 = ‖
∫ t

s
Sα(t− r)G(u(r))dW (r)‖Lp(Ω,H)

≤ Cp,G,ξ̀,α‖
(∫ t

s
(1 + |u(r)|2H)(t− r)− 4

α
ξ̀dr

)
‖

1
2

L
p
2 (Ω,R)

≤ Cp,G,ξ̀,α

(∫ t

s
‖1 + |u(r)|2H‖L p2 (Ω,R)

(t− r)− 4
α
ξ̀dr

) 1
2

≤ Cp,G,ξ̀,α

(∫ t

s
(1 + ‖|u(r)|2H‖L p2 (Ω,R)

)(t− r)− 4
α
ξ̀dr

) 1
2

= Cp,G,ξ̀,α

(∫ t

s
(1 + ‖u(r)‖2

Lp(Ω,H))(t− r)−
4
α
ξ̀dr

) 1
2

≤ Cp,G,ξ̀,α(1 + sup
r∈[0,1]

‖u(r)‖2
Lp(Ω,H))

1
2

(∫ t

s
(t− r)− 4

α
ξ̀dr

) 1
2
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From the condition ξ̀ < α
4 , it holds

∫ t
s (t− r)− 4

α
ξ̀dr = 1

1− 4
α
ξ̀
(t− s)1− 4

α
ξ̀, and so

S4 ≤ C(p,G,ξ̀,α,supr∈[0,1] ‖u(r)‖2
Lp(Ω,H))

(t− s) 1
2−

2
α
ξ̀. (6.32)

Comming back to Est.(6.26), then from Est.(6.29) and Est.(6.32), we arrive at

‖
∫ t

0
Sα(t− r)G(u(r))dW (r) −

∫ s

0
Sα(s− r)G(u(r))dW (r)‖Lp(Ω,H)

≤ C(p,α,ξ̀,γ̀)

(
(t− s)γ̀− 2

α
ξ̀ + (t− s) 1

2−
2
α
ξ̀
)
.

Since γ̀ < 1
2 , then min{γ̀ − 2

α
ξ̀, 1− 2

α
ξ̀} = γ̀ − 2

α
ξ̀, and so

‖
∫ t

0
Sα(t− r)G(u(r))dW (r)−

∫ s

0
Sα(s− r)G(u(r))dW (r)‖Lp(Ω,H) ≤ C(p,α,ξ̀,γ̀)(t− s)

γ̀− 2
α
ξ̀,

(6.33)

where ξ̀ ∈ (1
4 ,

α
4 ) and γ̀ ∈ ( 2

α
ξ̀, 1

2).

Now, replacing Est.(6.18), Est.(6.25) and Est.(6.33) in Est.(6.16), to get

‖u(t)− u(s)‖Lp(Ω,H) ≤ C
(β,‖A

η
2 u0‖Lp(Ω,H))

(t− s)β + C(p,α,ρ,γ)(t− s)γ−
2
α
ρ

+ C(p,α,ξ̀,γ̀)(t− s)
γ̀− 2

α
ξ̀,

where η > 0, β ∈ (0, η
α

), ρ ∈ [0, α2 ), γ ∈ ( 2
α
ρ, 1), ξ̀ ∈ (1

4 ,
α
4 ) and γ̀ ∈ ( 2

α
ξ̀, 1

2).

Hence,

‖u(t)− u(s)‖Lp(Ω,H) ≤ C
(β,‖A

η
2 u0‖Lp(Ω,H),p,α,ρ,γ,ξ̀,γ̀)

(t− s)min{β,γ− 2
α
ρ,γ̀− 2

α
ξ̀}.

To improve the exponent of the temporal regularity, we take η > α−1
2 , ρ ≤ 1

2 , and let

β → α−1
2α , γ → 1, ξ̀ → 1

4 and γ̀ → 1
2 . Thus, min{β, γ − 2

α
ρ, γ̀ − 2

α
ξ̀} = α−1

2α − κ, for any

κ > 0. And so,

‖u(t)− u(s)‖Lp(Ω,H) ≤ C
(‖A

η
2 u0‖Lp(Ω,H),p,α)

(t− s)α−1
2α −κ.

6.4 Temporal approximation

This section is concerned with the time discretization. Let M ∈ N0 be large, in particular

M > πα and τ = 1
M

be a uniform time step. Then, for tm = mτ, m ∈ {1, ...,M}, we seek

to approximate the values (u(tm))Mm=1, where u is the mild solution of Prb.(6.1) on the
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time interval [0, 1]. We construct the sequence of random variables (um)Mm=1 via implicit

Euler scheme as follows:

{ um − um−1

τ
= −Aαum + F (um−1) +G(um−1)(W (tm)−W (tm−1))

τ
,

u0 := u0.
(6.34)

The scheme described by (6.34) is informal and has to be understood in the following

sense
{
um = (I + τAα)−1um−1 + (I + τAα)−1τF (um−1) + (I + τAα)−1G(um−1)∆Wm,
u0 := u0,

(6.35)

where ∆Wm := W (tm)−W (tm−1), ∀1 ≤ m ≤M .

Theorem 6.4 Let α ∈ (1, 2] and p ≥ 2. Assume that Assumptions Ar1 with η ∈ (α−1
2 , α],

Br1 with ρ ∈ [0, 1
2 ] and C1 are satisfied. Then, Scheme (6.35) is of Lp-order α−1

2α − κ,for

any κ > 0 in H . More precisely, there exists a positive constant Cp,α,η,ρ s.t.

‖um − u(tm)‖Lp(Ω,H) ≤ Cp,α,η,ρτ
α−1
2α −κ, for every m ∈ {1, ...,M}. (6.36)

Moreover, if p > 2α
α−1 , then Scheme (6.35) converges in probability with the same order,

and converges almost surely with order ξ < (α−1
2α − κ)− 1

p
, for any κ > 0.

Remark 6.5 1. The order of convergence α−1
2α − κ is optimal since it coincides with

the exponent of the temporal regularity.

2. For α = 2, the order is less than 1
4 and this result has been already obtained in the

classical case, see e.g. [58, 87].

To prove Theorem 6.4, we need the following lemma.

Lemma 6.6 1. For all ξ ∈ [0, α2 ), there exists Cξ > 0, s.t.

‖Aξ(I + τAα)−m‖L(H) ≤ Cξt
− 2ξ
α

m . (6.37)

2. For all ζ ∈ [0, α], there exists Cζ > 0 s.t.

‖A−
ζ
2
(
(I + τ Aα)−m − Sα(tm)

)
‖L(H) ≤ Cζ τ

ζ
α m−(1− ζ

α
). (6.38)
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3. For all ξ ∈ [0, α2 ) and all β ∈ [0, α2 − ξ) there exists Cξ,β > 0 s.t.

‖Aξ
(
(I + τ Aα)−(m−k) − Sα(tm − s)

)
‖L(H) ≤ Cξ,β τ

2β
α (tm − s)−

2
α

(ξ+β), (6.39)

where k ∈ {0, ...,m− 1} and s ∈ [tk, tk+1].

Proof.To get Est.(6.37), we consider separately the case m = 1, using Identity.(1.12)

in Lemma 1.36 to get

‖Aξ(I + τ Aα)−1‖L(H) = sup
1≤j≤∞

(
λξj(1 + τ λ

α
2
j )−1

)

= τ−
2ξ
α sup

1≤j≤∞

 τ
2ξ
α λξj

(1 + τ λ
α
2
j )

 ≤ τ−
2ξ
α sup

1≤j≤∞

 τ λ
α
2
j

(1 + τ λ
α
2
j )


2ξ
α

≤ t
− 2ξ
α

1 .

(6.40)

Now, for m ≥ 2, the use of Identity.(1.12) in Lemma 1.36 yields

‖Aξ(I + τ Aα)−m‖L(H) = sup
1≤j≤∞

(
λξj(1 + τ λ

α
2
j )−m

)
≤ sup

1≤j<τ−
1
α π−1

(
λξj(1 + τ λ

α
2
j )−m

)

+ sup
τ−

1
α π−1≤j≤∞

(
λξj(1 + τ λ

α
2
j )−m

)
. (6.41)

Recall that λj = (jπ)2, then for 1 ≤ j < τ−
1
απ−1, we have τ λ

α
2
j < 1. Owing to the fact

that, for any x ∈ [0, 1], it holds log(1 + x) ≥ x
2 , we get

sup
1≤j<τ−

1
α π−1

(
λξj(1 + τ λ

α
2
j )−m

)
= sup

1≤j<τ−
1
α π−1

(
λξje
−m log(1+τ λ

α
2
j )
)

≤ sup
1≤j<τ−

1
α π−1

λξje−m τ λ
α
2
j

2

 .

Using LemmaA.8 with x = mτλ
α
2
j

2 and γ = 2ξ
α

we conclude

sup
1≤j<τ−

1
α π−1

(
λξj(1 + τ λ

α
2
j )−m

)
≤ λξj

(
(mτ)

−2ξ
α λ−ξj

)
≤ Cξt

−2ξ
α
m (6.42)

For τ− 1
απ−1 ≤ j ≤ ∞, we have τ λ

α
2
j ≥ 1, then by the same calculus as above it is true
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that

sup
τ−

1
α π−1≤j≤∞

(λξj(1 + τ λ
α
2
j )−m) = sup

τ−
1
α π−1≤j≤∞

(
λξj (τ λ

α
2
j )−m(1 + (τ λ

α
2
j )−1)−m

)

= sup
τ−

1
α π−1≤j≤∞

(
λξj (τ λ

α
2
j )−me−m log(1+(τ λ

α
2
j )−1)

)

≤ sup
τ−

1
α π−1≤j≤∞

λξj (τ λ
α
2
j )−me−

m (τ λ
α
2
j

)−1

2


≤ Cξ sup

τ−
1
α π−1≤j≤∞

(
λξj (τ λ

α
2
j )−mm−

2ξ
α (τ λ

α
2
j )

2ξ
α

)

≤ Cξ(τ m)−
2ξ
α sup
τ−

1
α π−1≤j≤∞

(
(τ λ

α
2
j )−(m− 4ξ

α
)
)
. (6.43)

Thanks to the condition 0 ≤ ξ < α
2 , the exponent m− 4ξ

α
is positive, moreover, τ λ

α
2
j ≥ 1

by assumption, hence (τ λ
α
2
j )−(m− 4ξ

α
) = ( 1

τ λ
α
2
j

)(m− 4ξ
α

) ≤ 1 and

sup
τ−

1
α π−1≤j≤∞

(λρj (1 + τ λ
α
2
j )−m) ≤ Cρt

− 2ρ
α

m . (6.44)

Replace Est.(6.42) and Est.(6.44) in Est.(6.41) to arrive at the result.

In order to estimate Est.(6.38), we introduce the rational function r(x) = 1
1+x for x ∈

R− {−1},. It is well known, see [104, Ch. 7], that for x close to 0

r(x) = e−x +O(x2). (6.45)

and

∃ C > 0, s.t. | r(x)− e−x |≤ Cx2, ∀ x ∈ [0, 1]. (6.46)

besides

∃ c ∈ (0, 1), s.t. | r(x) |≤ e−cx, ∀ x ∈ [0, 1]. (6.47)

As we have seen before, ∀ ζ ∈ [0, α], we have,

‖A−
ζ
2
(
(I + τ Aα)−m − Sα(tm)

)
‖L(H) = sup

1≤j≤∞
|λ−

ζ
2

j

(
(1 + τλ

α
2
j )−m − e−tmλ

α
2
j

)
|.

Due to the fact that tm = mτ and using the polynomial expansion: xm − ym = (x −

y)∑m−1
i=0 xm−1−iyi, we get

(λ−
ζ
2

j

(
(1 + τλ

α
2
j )−m − e−tmλ

α
2
j

)
) =

(
λ
− ζ2
j (1 + τλ

α
2
j )−m − (e−τλ

α
2
j )m

)

= λ
− ζ2
j

(((
1 + τλ

α
2
j

)−1
− e−τλ

α
2
j

))m−1∑
i=0

(
1 + τλ

α
2
j

)−(m−1−i)
e−τλ

α
2
j i.

(6.48)
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For τλ
α
2
j < 1, we use Inequality (6.46) with the definition of the rational function r to get

|λ−
ζ
2

j

(
(1 + τλ

α
2
j )−m − e−tmλ

α
2
j

)
| ≤ Cλ

− ζ2
j (τλ

α
2
j )2

m−1∑
i=0

(
1 + τλ

α
2
j

)−(m−1−i)
e−τλ

α
2
j i.

Now, we use Inequality (6.47) to arrive at

|λ−
ζ
2

j

(
(1 + τλ

α
2
j )−m − e−tmλ

α
2
j

)
| ≤ Cλ

− ζ2
j (τλ

α
2
j )2

m−1∑
i=0

e−c(m−1−i)τλ
α
2
j e−τλ

α
2
j i

≤ Cλ
− ζ2
j (τλ

α
2
j )2

m−1∑
i=0

e−c(m−1)τλ
α
2
j

≤ Cλ
− ζ2
j ecτλ

α
2
j (τλ

α
2
j )2 m e−c m τλ

α
2
j .

The fact that, cτλ
α
2
j < 1 yields to ecτλ

α
2
j < e, besides the use of Lemma A.8 gives us

|λ−
ζ
2

j

(
(1 + τλ

α
2
j )−m − e−tmλ

α
2
j

)
| ≤ Cα,ζλ

− ζ2
j (τλ

α
2
j )2m

(
cmτλ

α
2
j

)−(2− ζ
α

)
≤ Cc,α,ζτ

ζ
αm−(1− ζ

α
).

(6.49)

For τλ
α
2
j ≥ 1 and arguing as before, we have

|λ−
η
2

j

((
1 + τλ

α
2
j

)−m
− e−tmλ

α
2
j

)
| ≤ λ

− η2
j

((
1 + τλ

α
2
j

)−m
+ e−tmλ

α
2
j

)

= λ
− η2
j

(
e−m log(1+τλ

α
2
j ) + e−m τ λ

α
2
j

)
≤ λ

− η2
j (τλ

α
2
j )

η
α e−m(log2+1). (6.50)

Again, the use of Lemma A.8 yields

|λ−
η
2

j

((
1 + τλ

α
2
j

)−m
− e−tmλ

α
2
j

)
| ≤ Cα,ητ

η
αm−(1− η

α
). (6.51)

Thus, from Est.(6.49) and Est.(6.51) we obtain the result.

About Est.(6.39), the facts that Sα(tm− s)) = e−(tm−s)Aα and tm−k = (m− k)τ = tm− tk
help us to write

(I + τ Aα)−(m−k) − Sα(tm − s) = (I + τ Aα)−(m−k) − e−(tm−s)Aα

= (I + τ Aα)−(m−k) − (I + τ Aα)−(m−k+1)

+ (I + τ Aα)−(m−k+1) − (I + τ Aα)−1e−(tm−k)Aα

+ (I + τ Aα)−1e−(tm−k)Aα − (I + τ Aα)−1e−(tm−s)Aα

+ (I + τ Aα)−1e−(tm−s)Aα − e−(tm−s)Aα . (6.52)
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For 0 ≤ ξ < α
2 , we have

‖Aξ((I + τ Aα)−(m−k) − Sα(tm − s))‖L(H) = ‖Aξ((I + τ Aα)−(m−k) − e−(tm−s)Aα‖L(H)

≤ ‖Aξ(I + τ Aα)−(m−k)
(
I − (I + τ Aα)−1

)
‖L(H)

+ ‖ Aξ(I + τ Aα)−1
(
(I + τ Aα)−(m−k) − e−(tm−k)Aα

)
‖L(H)

+ ‖ Aξ(I + τ Aα)−1 e−(tm−s)Aα
(
I − e−(s−tk)Aα

)
‖L(H)

+ ‖ Aξe−(tm−s)Aα
(
I − (I + τ Aα)−1

)
‖L(H)

:= a+ b+ c+ d. (6.53)

In order to estimate the different terms appear in Est.(6.53), let us fix a parameter β ∈

[0, α2 − ξ). So, the first term a can be rewritten by using Identity.(1.12) in Lemma 1.36 as

a := ‖Aξ(I + τ Aα)−(m−k)
(
I − (I + τ Aα)−1

)
‖L(H)

= sup
1≤j≤∞

λξj(1 + τ λ
α
2
j )−(m−k) τλ

α
2
j

(1 + τλ
α
2
j )


= τ

2β
α sup

1≤j≤∞

λ(ξ+β)
j (1 + τ λ

α
2
j )−(m−k) (τλ

α
2
j )1− 2β

α

(1 + τλ
α
2
j )

 .
The fact that β ∈ [0, α2 − ξ) with 0 ≤ ξ < α

2 gives 0 ≤ 2ξ
α
< 1 − 2β

α
< 1, besides

(1 + τ λ
α
2
j ) > 1, and so (1 + τ λ

α
2
j ) > (1 + τ λ

α
2
j )1− 2β

α . Then,

a ≤ τ
2β
α sup

1≤j≤∞

λ(ξ+β)
j (1 + τ λ

α
2
j )−(m−k)

 τλ
α
2
j

(1 + τλ
α
2
j )

1− 2β
α


≤ τ

2β
α sup

1≤j≤∞

(
λ

(ξ+β)
j (1 + τ λ

α
2
j )−(m−k)

)
= τ

2β
α = ‖A(ξ+β)(I + τAα)−(m−k)‖L(H).

As s ∈ [tk, tk+1] we get tm − s ≤ tm − tk = tm−k, then an application of Est.(6.37) yields

a ≤ Cξ,βτ
2β
α t
− 2
α

(ξ+β)
m−k ≤ Cξ,βτ

2β
α (tm − s)−

2
α

(ξ+β). (6.54)

117



To estimate b, for ξ ∈ [0, α2 ) and β ∈ [0, α2 − ξ) we argue as above to get

b := ‖ Aξ(I + τ Aα)−1
(
(I + τ Aα)−(m−k) − e−(tm−k)Aα

)
‖L(H)

= sup
1≤j≤∞

(
λξj(1 + τ λ

α
2
j )−1|(1 + τ λ

α
2
j )−(m−k) − e−(tm−k)λ

α
2
j |
)

= τ
2β
α sup

1≤j≤∞

 (τ λ
α
2
j ) 2ξ

α

(1 + τ λ
α
2
j )

τ−
2
α

(ξ+β)|(1 + τ λ
α
2
j )−(m−k) − e−(tm−k)λ

α
2
j |



≤ τ
2β
α τ−

2
α

(ξ+β) sup
1≤j≤∞


 τ λ

α
2
j

(1 + τ λ
α
2
j )


2ξ
α

|(1 + τ λ
α
2
j )−(m−k) − e−(tm−k)λ

α
2
j |

 .
≤ τ

2β
α τ−

2
α

(ξ+β) sup
1≤j≤∞

(
|(1 + τ λ

α
2
j )−(m−k) − e−(tm−k)λ

α
2
j |
)

By using Est.(6.38) (with ζ = 0) we arrive at

b ≤ τ
2β
α τ−

2
α

(ξ+β) ‖(I + τAα)−(m−k) − e−tm−kAα‖L(H) ≤ C τ
2β
α τ−

2
α

(ξ+β) (m− k)−1. (6.55)

Since m ∈ {1, ...,M} and k ∈ {0, ...,m − 1} we deduce (m − k) ≥ 1, with the fact that
2
α

(ξ+ β) < 1 thanks to ξ ∈ [0, α2 ) and β ∈ [0, α2 − ξ), then (m− k) ≥ (m− k) 2
α

(ξ+β). Now,

we majorize the term b as

b ≤ C τ
2β
α τ−

2
α

(ξ+β) (m− k)− 2
α

(ξ+β) = C τ
2β
α (τ (m− k))− 2

α
(ξ+β)

≤ C τ
2β
α (tm − s)−

2
α

(ξ+β). (6.56)

To estimate c, first we have

c := ‖ Aξ(I + τ Aα)−1 e−(tm−s)Aα
(
I − e−(s−tk)Aα

)
‖L(H)

= sup
1≤j≤∞

(
λξj(1 + τ λ

α
2
j )−1e−(tm−s)λ

α
2
j

(
1− e−(s−tk)λ

α
2
j

))

= sup
1≤j≤∞

τ− 2ξ
α

(τ λ
α
2
j ) 2ξ

α

(1 + τ λ
α
2
j )
e−(tm−s)λ

α
2
j

(
1− e−(s−tk)λ

α
2
j

)

≤ τ−
2ξ
α sup

1≤j≤∞


 τ λ

α
2
j

(1 + τ λ
α
2
j )


2ξ
α (

λ
(ξ+β)
j e−(tm−s)λ

α
2
j

)
λ
−(ξ+β)
j

(
1− e−(s−tk)λ

α
2
j

)
The use of Lemma A.8 and Lemma A.9, besides the fact that s− tk ≤ tk+1− tk = τ , helps

us to get

c ≤ Cξ,βτ
− 2ξ
α (tm − s)−

2
α

(ξ+β)(s− tk)
2
α

(ξ+β) sup
1≤j≤∞


 τ λ

α
2
j

(1 + τ λ
α
2
j )


2ξ
α


≤ Cξ,βτ

− 2ρ
α (tm − s)−

2
α

(ξ+β)τ
2
α

(ξ+β) = Cξ,β τ
2β
α (tm − s)−

2
α

(ξ+β). (6.57)
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It remains to estimate the last term d. By the same calculus as above with the use of

Lemma A.8, we arrive at

d := ‖ Aξe−(tm−s)Aα
(
I − (I + τ Aα)−1

)
‖L(H)= sup

1≤j≤∞

λξj e−(tm−s)λ
α
2
j

 τ λ
α
2
j

(1 + τ λ
α
2
j )



≤ τ
2β
α sup

1≤j≤∞

(λ(ξ+β)
j e−(tm−s)λ

α
2
j

) τ λ
α
2
j

(1 + τ λ
α
2
j )

1− 2β
α



≤ Cξ,β τ
2β
α (tm − s)−

2
α

(ξ+β) sup
1≤j≤∞


 τ λ

α
2
j

(1 + τ λ
α
2
j )

1− 2β
α

 ≤ Cξ,β τ
2β
α (tm − s)−

2
α

(ξ+β).

(6.58)

Coming back to Est.(6.53), so by Est.(6.54), Est.(6.56), Est.(6.57) and Est.(6.58) we get

the desired result.

Proof of Theorem 6.4

From the one hand, we rewrite the mild solution u given by Eq.(6.9) as follows

u(tm) = Sα(tm)u0 +
m−1∑
k=0

∫ tk+1

tk

Sα(tm − s)F (u(s))ds+
m−1∑
k=0

∫ tk+1

tk

Sα(tm − s)G(u(s))dW (s).

(6.59)

From the other hand, in Identity.(6.35) we replace um−1 by its value which can be deduced

from the same Identity.(6.35) and we iterate this sequence up to m, besides the fact that∫ tk+1
tk ds = τ , we get

um = (I + τAα)−mu0 +
m−1∑
k=0

∫ tk+1

tk

(I + τAα)−(m−k)F (uk)ds

+
m−1∑
k=0

∫ tk+1

tk

(I + τAα)−(m−k)G(uk)dW (s). (6.60)
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Then

‖um − u(tm)‖Lp(Ω,H) ≤ ‖
(
(I + τAα)−m − Sα(tm)

)
u0‖Lp(Ω,H)

+ ‖
m−1∑
k=0

∫ tk+1

tk

(
(I + τAα)−(m−k)F (uk)− Sα(tm − s)F (u(s))

)
ds‖Lp(Ω,H)

+ ‖
m−1∑
k=0

∫ tk+1

tk

(
(I + τAα)−(m−k)G(uk)− Sα(tm − s)G(u(s))

)
dW (s)‖Lp(Ω,H).

(6.61)

We estimate the terms of the RHS of Est.6.61 as follows:

The fact that A η
2 commutes with the semigroup Sα(t) and the resolvant (I+τAα)−1, with

the use of Est.(6.38) in Lemma 6.6 (with ζ = η) besides the Assumption Ar1 help us to

get

‖((I + τAα)−m − Sα(tm))u0‖Lp(Ω,H) = ‖A−
η
2
(
(I + τAα)−m − Sα(tm)

)
A

η
2u0‖Lp(Ω,H)

≤ ‖A−
η
2
(
(I + τAα)−m − Sα(tm)

)
‖L(H)‖u0‖Lp(Ω,Hη

2 )

≤ Cη τ
η
α m−(1− η

α
)‖u0‖Lp(Ω,Hη

2 ) ≤ C(η,‖u0‖Lp(Ω,Hη2 )) τ
η
α m−(1− η

α
).

Thanks to condition η ≤ α; the power 1− η
α
is positive, thus

‖
(
(I + τAα)−m − Sα(tm)

)
u0‖Lp(Ω,H) ≤ C(η,‖u0‖Lp(Ω,Hη2 )) τ

η
α . (6.62)

The second term in the RHS of Est.(6.61) can be splitted by the following way

‖
m−1∑
k=0

∫ tk+1

tk

(
(I + τAα)−(m−k)F (uk)− Sα(tm − s)F (u(s))

)
ds‖Lp(Ω,H)

≤
m−1∑
k=0

∫ tk+1

tk

‖
(
(I + τAα)−(m−k)F (uk)− Sα(tm − s)F (u(s))

)
‖Lp(Ω,H)ds

≤
m−1∑
k=0

∫ tk+1

tk

‖(I + τAα)−(m−k)
(
F (uk)− F (u(tk))

)
‖Lp(Ω,H)ds

+
m−1∑
k=0

∫ tk+1

tk

‖(I + τAα)−(m−k) (F (u(tk))− F (u(s))) ‖Lp(Ω,H)ds

+
m−1∑
k=0

∫ tk+1

tk

‖
(
(I + τAα)−(m−k) − Sα(tm − s)

)
F (u(s))‖Lp(Ω,H)ds

:= R1 +R2 +R3. (6.63)
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By the commutativity of Aρ and (I + τAα)−(m−k), Est.(6.37) in Lemma 6.6 (with ξ = ρ)

and Assumption Br1, we get

R1 :=
m−1∑
k=0

∫ tk+1

tk

‖Aρ(I + τAα)−(m−k)A−ρ
(
F (uk)− F (u(tk))

)
‖Lp(Ω,H)ds

≤
m−1∑
k=0

∫ tk+1

tk

‖Aρ(I + τAα)−(m−k)‖L(H)‖A−ρ
(
F (uk)− F (u(tk))

)
‖Lp(Ω,H)ds

≤ Cρ
m−1∑
k=0

∫ tk+1

tk

t
− 2ρ
α

m−k ‖uk − u(tk)‖Lp(Ω,H)ds = Cρτ
m−1∑
k=0

t
− 2ρ
α

m−k ‖uk − u(tk)‖Lp(Ω,H).

(6.64)

To estimate R2, by arguing as above we get

R2 :=
m−1∑
k=0

∫ tk+1

tk

‖(I + τAα)−(m−k) (F (u(tk))− F (u(s))) ‖Lp(Ω,H)ds

≤
m−1∑
k=0

∫ tk+1

tk

‖Aρ(I + τAα)−(m−k)‖L(H)‖A−ρ (F (u(tk))− F (u(s))) ‖Lp(Ω,H)ds

≤ Cρ
m−1∑
k=0

∫ tk+1

tk

t
− 2ρ
α

m−k ‖u(tk)− u(t(s))‖Lp(Ω,H)ds. (6.65)

According to the temporal regularity Est.(6.10) with the fact that tm−s ≤ tm−tk = tm−k

we majorized R2 as follows

R2 ≤ Cρ
m−1∑
k=0

∫ tk+1

tk

t
− 2ρ
α

m−k (s− tk)(α−1
2α )−κds ≤ Cρ,α

m−1∑
k=0

t
− 2ρ
α

m−k (tk+1 − tk)1+(α−1
2α −κ)

= Cρ,α
m−1∑
k=0

∫ tk+1

tk

t
− 2ρ
α

m−kτ
α−1
2α −κds ≤ Cρ,α τ

α−1
2α −κ

m−1∑
k=0

∫ tk+1

tk

(tm − s)−
2ρ
α ds. (6.66)

Since 0 ≤ ρ < α
2 we have ∑m−1

k=0
∫ tk+1
tk (tm − s)−

2ρ
α ds =

∫ tm
0 (tm − s)−

2ρ
α ds ≤ 1

1− 2ρ
α

< ∞ and

so

R2 ≤ Cα,ρ τ
α−1
2α −κ. (6.67)

To estimate R3 we use Est.(6.39) in Lemma 6.6 (with ξ = ρ), the Assumption Br1 and

choose β ∈ (0, α2 − ρ). Then

R3 :=
m−1∑
k=0

∫ tk+1

tk

‖Aρ
(
(I + τAα)−(m−k) − Sα(tm − s)

)
A−ρF (u(s))‖Lp(Ω,H)ds

≤
m−1∑
k=0

∫ tk+1

tk

‖Aρ
(
(I + τAα)−(m−k) − Sα(tm − s)

)
‖L(H) ‖A−ρF (u(s))‖Lp(Ω,H)ds

≤ Cα,ρ τ
2β
α

m−1∑
k=0

∫ tk+1

tk

(
tm − s)−

2
α

(ρ+β)
) (

1 + sup
s∈[0,1]

‖u(s)‖Lp(Ω,H)

)
ds.
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The term ∑m−1
k=0

∫ tk+1
tk (tm − s)−

2
α

(ρ+β)ds is finite because β < α
2 − ρ, and so

R3 ≤ Cα,ρτ
2β
α . (6.68)

We replace Est.(6.64), Est.(6.67) and Est.(6.68) in Est.(6.63), to get

‖
m−1∑
k=0

∫ tk+1

tk

((I + τAα)−(m−k)F (uk)− Sα(tm − s)F (u(s)))ds‖Lp(Ω,H)

≤ Cα,ρ
(
τ
α−1
2α −κ + τ

2β
α

)
+ Cρτ

m−1∑
k=0

t
− 2ρ
α

m−k ‖uk − u(tk)‖Lp(Ω,H). (6.69)

Now, we deal with the stochastic term in the RHS of Est.(6.61). First, by Burkholder-

Davis-Gundy inequality we have the following sequence of inequalities

‖
m−1∑
k=0

∫ tk+1

tk

(
(I + τAα)−(m−k)G(uk)− Sα(tm − s)G(u(s))

)
dW (s)‖Lp(Ω,H)

≤ Cp

(
m−1∑
k=0

∫ tk+1

tk

(
E‖(I + τAα)−(m−k)G(uk)− Sα(tm − s)G(u(s))‖pHS

) 2
p ds

) 1
2

≤ Cp

(
m−1∑
k=0

∫ tk+1

tk

(
E‖(I + τAα)−(m−k)

(
G(uk)−G(u(tk))

)
‖pHS

) 2
p ds

) 1
2

+ Cp

(
m−1∑
k=0

∫ tk+1

tk

(
E‖(I + τAα)−(m−k) (G(u(tk))−G(u(s))) ‖pHS

) 2
p ds

) 1
2

+ Cp

(
m−1∑
k=0

∫ tk+1

tk

(
E‖

(
(I + τAα)−(m−k) − Sα(tm − s)

)
G(u(s))‖pHS

) 2
p ds

) 1
2

:= Cp(R4 +R5 +R6). (6.70)

In order to estimate R4, we use Assumption C1 to arrive at

(E‖(I + τAα)−(m−k)(G(uk) − G(u(tk)))‖pHS)
2
p

≤ ‖(I + τAα)−(m−k)‖2
HS(E‖G(uk)−G(u(tk))‖pL(H))

2
p

≤ C2
G‖A−ρ̀‖2

HS ‖Aρ̀(I + τAα)−(m−k)‖2
L(H) ‖uk − u(tk)‖2

Lp(Ω,H).

The operator A−ρ̀ is Hilbert-Schmidt due to the choice of ρ̀ > 1
4 . By using Est.(6.37)

(with 1
4 < ξ = ρ̀ < α

4 ) we have

C2
G‖A−ρ̀‖2

HS ‖Aρ̀(I + τAα)−(m−k)‖2
L(H) ‖uk − u(tk)‖2

Lp(Ω,H) ≤ C2
ρ̀ t
− 4ρ̀
α

m−k ‖uk − u(tk)‖2
Lp(Ω,H).
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Thus R4 is majorized as

R4 :=
(
m−1∑
k=0

∫ tk+1

tk

(
E‖(I + τAα)−(m−k)

(
G(uk)−G(u(tk))

)
‖pHS

) 2
p ds

) 1
2

≤ Cρ̀

(
τ
m−1∑
k=0

t
− 4ρ̀
α

m−k ‖uk − u(tk)‖2
Lp(Ω,H)

) 1
2

. (6.71)

We estimate R5, by the same manner used above (i.e. the use of Assumption C1 and

Est.(6.37) (with 1
4 < ξ = ρ̀ < α

4 )) with an application of the temporal regularity Est.(6.10)

to arrive at

R5 :=
(
m−1∑
k=0

∫ tk+1

tk

(
E‖(I + τAα)−(m−k) (G(u(tk))−G(u(s))) ‖pHS

) 2
p ds

) 1
2

≤ Cρ̀

(
m−1∑
k=0

∫ tk+1

tk

t
− 4ρ̀
α

m−k ‖u(tk)− u(s)‖2
Lp(Ω,H)ds

) 1
2

≤ Cρ̀

(
m−1∑
k=0

∫ tk+1

tk

t
− 4ρ̀
α

m−k (s− tk)2(α−1
2α −κ)ds

) 1
2

.

By following the same steps used in the Est.(6.66) we get

R5 ≤ Cρ̀

(
m−1∑
k=0

t
− 4ρ̀
α

m−k (tk+1 − tk)1+2(α−1
2α −κ)

) 1
2

= Cρ̀ τ
α−1
2α −κ

(
m−1∑
k=0

∫ tk+1

tk

t
− 4ρ̀
α

m−kds

) 1
2

≤ Cρ̀ τ
α−1
2α −κ

(
m−1∑
k=0

∫ tk+1

tk

(tm − s)−
4ρ̀
α ds

) 1
2

.

The fact that ∑m−1
k=0

∫ tk+1
tk (tm − s)− 4ρ̀

α ds =
∫ tm

0 (tm − s)− 4ρ̀
α ds ≤ 1

1− 4ρ̀
α

< ∞ since 4ρ̀
α
< 1

yields

R5 ≤ Cρ̀,α τ
α−1
2α −κ. (6.72)

To estimate R6, we use Assumption C1. Then

R6 :=
(
m−1∑
k=0

∫ tk+1

tk

(
E‖

(
(I + τAα)−(m−k) − Sα(tm − s)

)
G(u(s))‖pHS

) 2
p ds

) 1
2

≤
(
m−1∑
k=0

∫ tk+1

tk

‖(I + τAα)−(m−k) − Sα(tm − s)‖2
HS

(
1 + ‖u(s)‖2

Lp(Ω,H)

)
ds

) 1
2

≤
(

1 + sup
s∈[0,1]

‖u(s)‖2
Lp(Ω,H)

)
(
m−1∑
k=0

∫ tk+1

tk

‖A−ρ̀‖2
HS‖Aρ̀

(
(I + τAα)−(m−k) − Sα(tm − s)

)
‖2
L(H)ds

) 1
2

.
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The use of Est.(6.39) in lemma 6.6 (with 1
4 < ξ = ρ̀ < α

4 and 0 < β = β̀ < α
4 − ρ̀) and the

fact that ‖A−ρ̀‖HS <∞ leads to

R6 ≤ τ
2β̀
α

(
m−1∑
k=0

∫ tk+1

tk

(tm − s)−
4
α

(ρ̀+β̀)ds

) 1
2

≤ Cp,ρ̀,β̀ τ
2β̀
α . (6.73)

From Est.(6.71), Est.(6.72) and Est.(6.73) we estimate the stochastic term in the RHS of

Est.(6.61) as follows

‖
m−1∑
k=0

∫ tk+1

tk

(
(I + τAα)−(m−k)G(uk)− Sα(tm − s)G(u(s))

)
dW (s)‖Lp(Ω,H)

≤ Cp,α,ρ̀,β̀(τ α−1
2α −κ + τ

2β̀
α ) + Cp,ρ̀

(
τ
m−1∑
k=0

t
− 4ρ̀
α

m−k ‖uk − u(tk)‖2
Lp(Ω,H)

) 1
2

. (6.74)

Now, to unify the two terms
(
τ
∑m−1
k=0 t

− 2ρ
α

m−k ‖uk − u(tk)‖Lp(Ω,H)

)2
and(

τ
∑m−1
k=0 t

− 4ρ̀
α

m−k ‖uk − u(tk)‖2
Lp(Ω,H)

)
, we apply Hölder inequality; Est.A.11 and the fact

that tm − s ≤ tm−k to obtain

τ
m−1∑
k=0

t
− 2ρ
α

m−k ‖uk − u(tk)‖Lp(Ω,H) ≤
(
τ
m−1∑
k=0

t
− 2ρ
α

m−k

) 1
2
(
τ
m−1∑
k=0

t
− 2ρ
α

m−k ‖uk − u(tk)‖2
Lp(Ω,H)

) 1
2

≤
(
m−1∑
k=0

∫ tk+1

tk

(tm − s)−
2ρ
α ds

) 1
2
(
τ
m−1∑
k=0

t
− 2ρ
α

m−k ‖uk − u(tk)‖2
Lp(Ω,H)

) 1
2

≤ Cα,ρ

(
τ
m−1∑
k=0

t
− 2ρ
α

m−k ‖uk − u(tk)‖2
Lp(Ω,H)

) 1
2

. (6.75)

Now, coming back to Est.(6.61) and replace Est.(6.62), Est.(6.69) and Est.(6.74) to con-

clude that

‖um − u(tm)‖2
Lp(Ω,H) ≤ C(p,α,η,ρ,ρ̀,β̀,‖u0‖Lp(Ω,Hη2 ))

(
τ
η
α + τ

α−1
2α −κ + τ

2β
α + τ

2β̀
α

)2

+ Cα,ρ

(
τ
m−1∑
k=0

t
− 2ρ
α

m−k ‖uk − u(tk)‖2
Lp(Ω,H)

)

+ Cp,ρ̀

(
τ
m−1∑
k=0

t
− 4ρ̀
α

m−k ‖uk − u(tk)‖2
Lp(Ω,H)

)
. (6.76)

Therefore, for 0 < η ≤ α, 0 < β < α
2 − ρ, 0 ≤ ρ < α

2 , 0 < β̀ < α
4 − ρ̀ and 1

4 < ρ̀ < α
4 .

‖um − u(tm)‖2
Lp(Ω,H) ≤ C(p,α,η,ρ,ρ̀,β̀,‖u0‖Lp(Ω,Hη2 ))

(
τ
η
α + τ

α−1
2α −κ + τ

2β
α + τ

2β̀
α

)2

+ Cp,ρ,ρ̀τ
m−1∑
k=0

t
− 2
α
max(ρ,2ρ̀)

m−k ‖uk − u(tk)‖2
Lp(Ω,H), (6.77)
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By denoting µ := min{ η
α
, α−1

2α − κ,
2β
α
, 2β̀
α
} with the application of the descrite version of

Gronwall lemma A.2 we arrive at

‖um − u(tm)‖2
Lp(Ω,H) ≤ C(p,α,η,ρ,ρ̀,β̀,‖u0‖Lp(Ω,Hη2 ))

τ 2µ × e(Cp,ρ,ρ̀τ
∑m−1

k=0 t
− 2
α max(ρ,2ρ̀)

m−k ). (6.78)

Thanks to the fact that 2
α
max(ρ, 2ρ̀) < 1, we obtain

e(Cp,ρ,ρ̀τ
∑m−1

k=0 t
− 2
α max(ρ,2ρ̀)

m−k ) ≤ e
Cp,ρ,ρ̀

∑m−1
k=0

∫ tk+1
tk

(tm−s)−
2
α max(ρ,2ρ̀)

≤ eCp,α,ρ,ρ̀ (6.79)

In order to improve the order of convergence, we take η > α−1
2 , ρ ≤ 1

2 , and let β → α
2 − ρ

and β̀ → α
4 − ρ̀ with ρ̀→ 1

4 . Then, we have

‖um − u(tm)‖Lp(Ω,H) ≤ Cp,α,η,ρτ
α−1
2α −κ, for any κ > 0. (6.80)

Now, if p > 2α
α−1 , the sufficient condition of Lemma 4.17 is fulfilled and therefore our

scheme converges in probability with the same order α−1
2α − κ. Moreover, it is almost

surely convergent with the order ξ < (α−1
2α −)− 1

p
.

6.5 Spacial approximation

This section is devoted to fulfill the spacial approximation of the fractional stochastic

nonlinear heat equation Prb.(6.1), with α ∈ (1, 2]. First, we establish the spacial discrete

version of Eq.(6.1). We fix N ∈ N0, h = 1
N

and (Hh)h∈(0,1] being a sequence of finite

dimensional subspaces of H := L2(0, 1) generated by the N first eigenfunctions (ek)Nk=1,

i.e.

Hh := span{ek, k = 1, ..., N},

where (ek(.) :=
√

2sin(kπ.))∞k=1 is the ONB of H which can be considred as the eigenvec-

tors of minus Laplacian corresponding to the eigenvalues (λk := (kπ)2)k∈N0 , see Section

1.2.3.

Definition 6.7 (Discrete version of Aα). The discrete version of Aα denoted Aα,h
is defined from Hh to Hh by

Aα,hvh :=
N∑
i=1

vihAαei =
N∑
i=1

vihλ
α
2
i ei, ∀ vh ∈ Hh, ,

where vih := 〈vh, ei〉 with 〈., .〉 is the H-inner product.
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It is easy to see that, for every k ∈ {1, ..., N},

Aα,hek =
N∑
i=1
〈ek, ei〉Aαei = Aαek = λ

α
2
k ek.

Then, (λ
α
2
k )Nk=1 is the set of eigenvalues the operator Aα,h corresponding to the set of

eigenvectors (ek)Nk=1.

Lemma 6.8 • the operator −Aα,h is a generator of a semigroup of contraction (e−tAα,h)t∈[0,1]

on Hh, let us denote it by (Sα,h(t))t∈[0,1], acting on the spectrum as; for any k ∈

{1, ..., N} it holds e−tAα,hek = e−tλ
α
2
k ek, .

• there exists a positive constant Cβ s.t.

‖Aβα,he−tAα,h‖L(H) ≤ Cβt
−β, for all t ∈ (0, 1]. (6.81)

Proof.Let uh := ∑N
i=1 u

i
hAαei ∈ Hh and vh := ∑N

j=1 v
j
hAαej ∈ Hh, where uih := 〈uh, ei〉

and vjh := 〈vh, ej〉. We have

〈Aα,huh, vh〉 = 〈
N∑
i=1

uihAαei,
N∑
j=1

vjhej〉 =
N∑

i,j=1
uihv

j
h〈Aαei, ej〉 =

N∑
i,j=1

uihv
j
h〈ei, Aαej〉

=
N∑

i,j=1
〈uihei, v

j
hAαej〉 = 〈

N∑
i=1

uihei,
N∑
j=1

vjhAαej〉 = 〈uh, Aα,hvh〉.

Thus, Aα,h is symmetric with D(Aα,h) = Hh, and so, it is self-adjoint via Corolarry 1.32.

Further

〈Aα,huh, uh〉 = 〈
N∑
i=1

uihAαei,
N∑
j=1

ujhej〉 =
N∑

i,j=1
uihu

j
h〈Aαei, ej〉

=
N∑

i,j=1
uihu

j
hλ

α
2
i 〈ei, ej〉 =

N∑
i=1

(uih)2λ
α
2
i ≥ 0.

Then, Aα,h is nonnegative. According to Proposition 1.58, the operator −Aα,h is a gener-

ator of a semigroup of contraction (e−tAα,h)t∈[0,1] on Hh.

About the smoothing property Est.(6.81), the use of Est.(1.12) in Lemma 1.36 and Lemma

A.8 gives

‖Aβα,he−tAα,h‖L(H) = sup
1≤i≤N

(
λ
αβ
2
i e−tλ

α
2
i

)
≤ Cβt

−β.
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Let us recall the Galerkin projection studied in Subsection 5.1.4. In this chapter we

denote it by Ph instead of PN , with h = 1
N
. Then, for all u ∈ H we have

(Phu)(x) :=
N∑
k=1
〈u, ek〉ek(x), for all x ∈ [0, 1].

We add to the list of properties of Ph stated in Lemma 5.11 the following two properties.

Lemma 6.9 The operator Ph satisfies,

• for all β ∈ R, the operators Aβ and Ph commute.

• For all α ∈ (1, 2] and all β > 1
2 there exists Cα,β > 0 s.t.

‖PhSα(t)‖2
HS ≤ Cα,β t

− 2β
α , (6.82)

where ‖ . ‖HS denotes the Hilbert-Shmidt norm, see Remark 1.13.

Proof.As the operator Aβ is defined on the spectrum of A and Ph is the projection on

Hh construct via the elements of the ONB of the eigenvalues of A, the proof of the first

property is easy, so we omit.

To proof Est.(6.82), we use the definition of the Hilbert-Schmidt norm (see Remark 1.13),

Est.(5.31), Est.(1.23) to get

‖PhSα(t)‖2
HS =

∞∑
k=1
|PhSα(t)ek|2H ≤

∞∑
k=1
‖Ph‖2

L(H)|Sα(t)ek|2H ≤ C
∞∑
k=1
|Sα(t)ek|2H

= C
∞∑
k=1
|A

β
2Sα(t)A−

β
2 ek|2H = C

∞∑
k=1

λ−βk |A
β
2Sα(t)ek|2H ≤ C

∞∑
k=1

λ−βk ‖A
β
2Sα(t)‖2

L(H) |ek|2H .

The facts that |ek|2H = 1 and λk = (kπ)2 leads to

‖PhSα(t)‖2
HS ≤ Cα,βt

− 2β
α

∞∑
k=1

λ−βk |ek|2H ≤ Cα,βt
− 2β
α

∞∑
k=1

k−2β ≤ Cα,βt
− 2β
α .

Now, we are able to introduce the following discrete version of Prb.(6.1) given in the

evolution form by using the spectral Galerkin method as:{
duh(t) = (−Aα,huh(t) + PhF (uh(t)))dt+ PhG(uh(t))dW (t), t ∈ (0, 1],
uh(0) = Phu0,

(6.83)

We recall here the result of the wellposedness for Prb.(6.83) (see [48, Theorems 2.2 and

2.3]).
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Theorem 6.10 There exists a continous Hh-valued Ft-adapted process (uh(t))t∈[0,1] solu-

tion of Prb.(6.83) s.t. for all t ∈ [0, 1] the following equality holds in Hh, P- a.s.

uh(t) = Sα,h(t)Phu0 +
∫ t

0
Sα,h(t− s)PhF (uh(s)) ds+

∫ t

0
Sα,h(t− s)PhG(uh(s)) dW (s).

(6.84)

Moreover, there exists a constant Ch > 0 s.t.

E sup
t∈[0,1]

|uh(t)|pH ≤ Ch(1 + E|uh(0)|pH), for all p ∈ [1,∞). (6.85)

Our main result of this section is the following.

Theorem 6.11 Let α ∈ (1, 2]. Under Assumptions Ar1 with η > 0, Br1 with ρ ∈ [0, α2 )

and C1, there exists a constant Cα,η,p > 0 independent of h ∈ (0, 1] s.t.

‖uh(t)− u(t)‖Lp(Ω,H) ≤ Cα,η,ph
ν , for all t ∈ (0, 1], (6.86)

with ν := min{η, α − 2ρ, α2 − κ}, for any κ > 0. In particular, for η > α
2 and ρ ∈ [0, α4 ),

we get ν = α
2 − κ.

In order to prove Theorem 6.11, we introduce and study some basic estimates of the

family of operators (Eα,h(t))t∈[0,1] s.t.

∀ t ∈ [0, 1], Eα,h(t) := Sα(t)− Sα,h(t)Ph.

Remark 6.12 It is easy to see that Sα,h(t)Ph = PhSα(t), and so Eα,h(t) = (I−Ph)Sα(t).

Lemma 6.13 Let α ∈ (1, 2] and t ∈ (0, 1]. We have

• For all γ ≥ 0 and all β ∈ R there exists Cγ,β > 0 s.t.

|Eα,h(t)x|H ≤ Cγ,βh
γ t−

(γ−β)
α |A

β
2 x|H , ∀x ∈ Hβ

2 , (6.87)

where Hβ
2 is the fractional Sobolev space given by Definition 1.3 and Remark 1.4.

• For all 0 ≤ δ < α
2 and γ > 4δ

α
there exists Cα,γ,δ > 0 s.t.

|Eα,h(t)x|H ≤ Cα,γ,δh
(αγ2 −2δ) t−

γ
2 |A−δx|H , (6.88)

for all x ∈ D(A−δ).
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• For all γ > 1
α
there exists Cγ,α > 0 s.t.

‖Eα,h(t)‖2
HS ≤ Cγ,α h

αγ t−γ. (6.89)

Proof.Fix t ∈ (0, 1] and let γ ≥ 0 and β ∈ [0, γ], then for all x ∈ Hβ
2 and from Remark

6.12 we have

Eα,h(t)x =
∞∑

k=N+1
〈x, ek〉e−tλ

α
2
k ek.

Now, about Est.(6.87) we use Lemma A.8 to end up with

|Eα,h(t)x|2H =
∞∑

k=N+1
〈x, ek〉2e−2 tλ

α
2
k =

∞∑
k=N+1

λ−γk

(
λ

(γ−β)
k e−2 tλ

α
2
k

)
〈x, ek〉2 λβk

≤ λ−γN+1

∞∑
k=N+1

t−
2(γ−β)
α

(
(t λ

α
2
k )

2(γ−β)
α e−2 tλ

α
2
k

)
〈x, ek〉2 λβk

≤ Cγ,β(N + 1)−2γ t−
2(γ−β)
α

∞∑
k=1
〈x, ek〉2 λβk ≤ Cγ,βh

2γ t−
2(γ−β)
α |A

β
2 x|2H ,

which achieve the Est.(6.87). The proof of Est.(6.88) follows the same lines as that of

Est.(6.87) and the fact that λk = (kπ)2, for this let 0 ≤ δ < α
2 , γ >

4δ
α

and x ∈ D(A−δ)

then

|Eα,h(t)x|2H =
∞∑

k=N+1
〈x, ek〉2e−2 tλ

α
2
k ≤ Cα,γt

−γ
∞∑

k=N+1
λ
−αγ2
k 〈x, ek〉2

= Cα,γt
−γ

∞∑
k=N+1

λ
−(αγ2 −2δ)
k 〈x, ek〉2λ−2δ

k = Cα,γt
−γ

∞∑
k=N+1

(kπ)−2(αγ2 −2δ)〈x, ek〉2λ−2δ
k

≤ Cα,γ,δt
−γ(N + 1)−2(αγ2 −2δ)

∞∑
k=1
〈x, ek〉2λ−2δ

k ≤ Cα,γ,δt
−γh−2(αγ2 −2δ)|A−δx|2H .

About Est.(6.89), let γ > 1
α
, the use of definitions of Eα,h and HS-norm besides the

orthogonality of (ek)k leads to

‖Eα,h(t)‖2
HS =

∞∑
k=1
|Eα,h(t)ek|2H =

∞∑
k=1

∞∑
i=N+1

〈ek, ei〉2e−2t λ
α
2
i =

∞∑
k=N+1

e−2t λ
α
2
k .

We apply Lemma A.8 with the definition of λk allows us to get

‖Eα,h(t)‖2
HS = (N + 1)−αγ

∞∑
k=N+1

(N + 1)αγ e−2t λ
α
2
k ≤ Cγ(N + 1)−αγ t−γ

∞∑
k=N+1

(N + 1)αγλ−
αγ
2

k

≤ Cγ,αh
αγ t−γ

∞∑
k=N+1

( k

N + 1)−αγ ≤ Cγ,αh
αγ t−γ

∫ ∞
1

s−αγ ds,

The integral
∫∞
1 s−αγ ds is finite, thanks to the fact that γ > 1

α
, and so the desired

estimate is achived.

Now we are ready to prove our main result.
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Proof of Theorem 6.11

From equations (6.9) and (6.84) we have,

‖uh(t) − u(t)‖Lp(Ω,H) ≤ ‖Eα,h(t)u0‖Lp(Ω,H)

+ ‖
∫ t

0
Sα,h(t− s)PhF (uh(s)) ds−

∫ t

0
Sα(t− s)F (u(s)) ds‖Lp(Ω,H)

+ ‖
∫ t

0
Sα,h(t− s)PhG(uh(s)) dW (s)−

∫ t

0
Sα(t− s)G(u(s)) dW (s)‖Lp(Ω,H).

(6.90)

By using Est.(6.87) (with β = γ = η), with η given in Assumption Ar1 we get

‖Eα,h(t)u0‖Lp(Ω,H) ≤ Cη h
η ‖A

η
2u0‖Lp(Ω,H). (6.91)

The second term in the RHS of Est.(6.90) is splitted to two additional terms as follows

‖
∫ t

0
Sα,h(t− s)PhF (uh(s)) ds−

∫ t

0
Sα(t− s)F (u(s)) ds‖Lp(Ω,H)

≤ ‖
∫ t

0
Sα,h(t− s)Ph (F (uh(s))− F (u(s))) ds ‖Lp(Ω,H)

+ ‖
∫ t

0
(Sα,h(t− s)Ph − Sα(t− s))F (u(s))ds ‖Lp(Ω,H) = S1 + S2.

Thanks to commutativity of Ph and Sα,h, we have

S1 ≤
∫ t

0
‖Sα,h(t− s)Ph (F (uh(s))− F (u(s))) ‖Lp(Ω,H)ds

=
∫ t

0
‖PhSα(t− s) (F (uh(s))− F (u(s))) ‖Lp(Ω,H)ds

=
∫ t

0
‖PhAρSα(t− s)A−ρ (F (uh(s))− F (u(s))) ‖Lp(Ω,H)ds.

An application of Est.(5.31), Est.(1.23) and the Assumption Br1 leads to

S1 ≤
∫ t

0
‖Ph‖L(H)‖AρSα(t− s)‖L(H)‖

(
A−ρ (F (uh(s))− F (u(s)))

)
‖Lp(Ω,H)ds

≤ C
∫ t

0
‖AρSα(t− s)‖L(H)‖A−ρ (F (uh(s))− F (u(s))) ‖Lp(Ω,H)ds

≤ Cα,ρ

∫ t

0
(t− s)−

2ρ
α ‖A−ρ (F (uh(s))− F (u(s))) ‖Lp(Ω,H)ds

≤ Cα,ρ

∫ t

0
(t− s)−

2ρ
α ‖uh(s)− u(s)‖Lp(Ω,H)ds. (6.92)
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To estimate S2 we use the definition of Eα,h, Remark 6.1 and Est.(6.88) (with δ = ρ <

α
2 and 4ρ

α
< γ < 2) and Assumption Br1 we get

S2 = ‖
∫ t

0
(Sα,h(t− s)Ph − Sα(t− s))F (u(s))ds ‖Lp(Ω,H) = ‖

∫ t

0
Eα,h(t− s)F (u(s))ds ‖Lp(Ω,H)

≤
∫ t

0
‖Eα,h(t− s)F (u(s))‖Lp(Ω,H)ds ≤ Cα,γ,ρ,ph

(αγ2 −2ρ)
∫ t

0
(t− s)−

γ
2 ‖A−ρF (u(s))‖Lp(Ω,H)ds

≤ Cα,γ,ρ,ph
(αγ2 −2ρ)

(
1 + sup

t∈[0,1]
‖u(t)‖Lp(Ω,H)

)∫ t

0
(t− s)−

γ
2 ds,

thanks to γ < 2, the integral
∫ t

0(t− s)− γ2 ds is finite and so

S2 ≤ Cα,γ,ρ,ph
(αγ2 −2ρ). (6.93)

By gathering Est.(6.92) and Est.(6.93) we arrive at

‖
∫ t

0
Sα,h(t− s)PhF (uh(s)) ds−

∫ t

0
Sα(t− s)F (u(s)) ds‖Lp(Ω,H)

≤ Cα,γ,ρ,ph
(αγ2 −2ρ) + Cα,ρ

∫ t

0
(t− s)−

2ρ
α ‖uh(s)− u(s)‖Lp(Ω,H)ds. (6.94)

To estimate the stochastic term in the RHS of Est.(6.90), we use Burkholder-Davis-Gundy

inequality with p ≥ 2 and the definition of the norm in Lp(Ω,R) to get

‖
∫ t

0
Sα,h(t− s)PhG(uh(s)) dW (s)−

∫ t

0
Sα(t− s)G(u(s)) dW (s)‖Lp(Ω,H)

≤ Cp

(
E
{(∫ t

0
‖Sα,h(t− s)PhG(uh(s)) − Sα(t− s)G(u(s))‖2

HSds
) p

2
}) 1

p

= Cp‖
(∫ t

0
‖Sα,h(t− s)PhG(uh(s)) − Sα(t− s)G(u(s))‖2

HSds
) 1

2
‖Lp(Ω,R). (6.95)

Owing to the basic inequality: (a + b)2 ≤ C(a2 + b2), ∀ a, b ≥ 0, for some C > 0, we

get

‖Sα,h(t− s)PhG(uh(s)) − Sα(t− s)G(u(s))‖2
HS

= ‖Sα,h(t− s)Ph (G(uh(s))−G(u(s))) + (Sα,h(t− s)Ph − Sα(t− s))G(u(s))‖2
HS

≤ ‖Sα,h(t− s)Ph (G(uh(s))−G(u(s))) ‖2
HS +

∫ t

0
‖ (Sα,h(t− s)Ph − Sα(t− s))G(u(s))‖2

HS

The fact that: (a+ b) 1
2 ≤ C(a 1

2 + b
1
2 ), ∀ a, b ≥ 0, for some C > 0 yields

(
∫ t

0
‖Sα,h(t− s)PhG(uh(s)) − Sα(t− s)G(u(s))‖2

HSds)
1
2

≤
(∫ t

0
‖Sα,h(t− s)Ph (G(uh(s))−G(u(s))) ‖2

HSds
) 1

2

+
(∫ t

0
‖ (Sα,h(t− s)Ph − Sα(t− s))G(u(s))‖2

HSds
) 1

2
,
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and so

‖
∫ t

0
Sα,h(t− s)PhG(uh(s)) dW (s)−

∫ t

0
Sα(t− s)G(u(s)) dW (s)‖Lp(Ω,H)

≤ Cp‖
(∫ t

0
‖Sα,h(t− s)Ph (G(uh(s))−G(u(s))) ‖2

HSds
) 1

2
‖Lp(Ω,R)

+ Cp‖
(∫ t

0
‖ (Sα,h(t− s)Ph − Sα(t− s))G(u(s))‖2

HSds
) 1

2
‖Lp(Ω,R) := Cp(S3 + S4).

(6.96)

To estimate S3, we have Sα,h(t)Ph = PhSα(t) then

S3 = ‖
(∫ t

0
‖Sα,h(t− s)Ph (G(uh(s))−G(u(s))) ‖2

HSds
) 1

2
‖Lp(Ω,R)

= ‖
(∫ t

0
‖PhSα(t− s) (G(uh(s))−G(u(s))) ‖2

HSds
) 1

2
‖Lp(Ω,R),

Now, we use the fact that ‖AB‖HS ≤ ‖A‖L(H)‖B‖HS for A ∈ L(H) and B ∈ HS and

Est.(6.82) (with 1
2 < β < α

2 ) together with the Assumption C1, to get

S3 ≤ ‖
(∫ t

0
‖PhSα(t− s)‖2

HS‖G(uh(s))−G(u(s))‖2
L(H)ds

) 1
2
‖Lp(Ω,R)

≤ Cα,β‖
(∫ t

0
(t− s)−

2β
α |uh(s)− u(s)|2Hds

) 1
2
‖Lp(Ω,R)

= Cα,β

(E(∫ t

0
(t− s)−

2β
α |uh(s)− u(s)|2Hds

) p
2
) 2
p


1
2

= Cα,β

(
‖
∫ t

0
(t− s)−

2β
α |uh(s)− u(s)|2Hds‖L p2 (Ω,R)

) 1
2

≤ Cα,β

(∫ t

0
(t− s)−

2β
α ‖|uh(s)− u(s)|2H‖L p2 (Ω,R)

ds
) 1

2

= Cα,β

(∫ t

0
(t− s)−

2β
α ‖uh(s)− u(s)‖2

Lp(Ω,H)ds
) 1

2
. (6.97)

Now, we move to estimate S4, we follow the same steps as above with the use of
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Est.(6.89) (with 1
α
< γ = ξ < 1) and Assumption C1, thus

S4 = ‖
(∫ t

0
‖Eα,h(t− s)G(u(s))‖2

HSds
) 1

2
‖Lp(Ω,R)

≤ ‖
(∫ t

0
‖Eα,h(t− s)‖2

HS‖G(u(s))‖2
L(H)ds

) 1
2
‖Lp(Ω,R)

≤ Cξ,αh
αξ
2 ‖
(∫ t

0
(t− s)−ξ(1 + |u(s)|H)2ds

) 1
2
‖Lp(Ω,R)

≤ Cξ,αh
αξ
2 ‖
(∫ t

0
(t− s)−ξ(1 + |u(s)|2H)ds

) 1
2
‖Lp(Ω,R)

≤ Cξ,αh
αξ
2

(
‖
∫ t

0
(t− s)−ξ(1 + |u(s)|2H)ds‖

L
p
2 (Ω,R)

) 1
2

≤ Cξ,αh
αξ
2

(∫ t

0
(t− s)−ξ‖1 + |u(s)|2H‖L p2 (Ω,R)

ds
) 1

2

≤ Cξ,αh
αξ
2

(∫ t

0
(t− s)−ξ(1 + ‖u(s)‖2

Lp(Ω,H))ds
) 1

2

≤ Cξ,αh
αξ
2

(
1 + sup

t∈[0,1]
‖u(s)‖Lp(Ω,H)

)(∫ t

0
(t− s)−ξds

) 1
2
.

The choice of ξ < 1 ensures the convergence of
∫ t

0(t− s)−ξds and so

S4 ≤ Cp,ξ,αh
αξ
2 . (6.98)

Replacing Est.(6.97) and Est.(6.98) in (6.96) in order to estimate the third term in (6.90)

as follows

‖
∫ t

0
Sα,h(t− s)PhG(uh(s))dW (s)−

∫ t

0
Sα(t− s) G(u(s))dW (s)‖Lp(Ω,H)

≤ Cp,ξ,αh
αξ
2 + Cp,α,β

(∫ t

0
(t− s)−

2β
α ‖uh(s)− u(s)‖2

Lp(Ω,H)ds
) 1

2
. (6.99)

Finally, we replace Est.(6.91) with η > 0, Est.(6.94) with 0 ≤ ρ < α
2 ,

4ρ
α
< γ < 2 and

Est.(6.99) with 1
2 < β < α

2 ,
1
α
< ξ < 1 in Est.(6.90) we conclude that

‖uh(t)− u(t)‖Lp(Ω,H) ≤
(
Cηh

η‖A
η
2u0‖Lp(Ω,H) + Cα,γ,ρ,ph

(αγ2 −2ρ) + Cp,ξ,αh
αξ
2
)

+ Cα,ρ

∫ t

0
(t− s)−

2ρ
α ‖uh(s)− u(s)‖Lp(Ω,H)ds

+ Cp,α,β

(∫ t

0
(t− s)−

2β
α ‖uh(s)− u(s)‖2

Lp(Ω,H)ds
) 1

2
. (6.100)

To unify the two terms
∫ t

0(t− s)− 2ρ
α ‖uh(s)− u(s)‖Lp(Ω,H)ds and
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(∫ t
0(t− s)− 2β

α ‖uh(s)− u(s)‖2
Lp(Ω,H)ds

) 1
2 , we apply Hölder inequality A.10 to get

∫ t

0
(t− s)−

2ρ
α ‖uh(s)− u(s)‖Lp(Ω,H)ds

≤
(∫ t

0
(t− s)−

2ρ
α ds

) 1
2
(∫ t

0
(t− s)−

2ρ
α ‖uh(s)− u(s)‖2

Lp(Ω,H)ds
) 1

2

≤ Cα,ρ

(∫ t

0
(t− s)−

2ρ
α ‖uh(s)− u(s)‖2

Lp(Ω,H)ds
) 1

2
.

Now, by taking ν := min
{
η, (αγ2 − 2ρ), αξ2

}
with η > 0, γ ∈ [4ρ

α
, 2), ρ ∈ [0, α2 ), ξ ∈ ( 1

α
, 1)

and β ∈ (1
2 ,

α
2 ) we have

‖uh(t)− u(t)‖Lp(Ω,H) ≤ Cα,η,ρ,p,γ,ξh
ν

+ Cα,ρ,p,β

(∫ t

0
(t− s)− 2

α
max(ρ,β)‖uh(s)− u(s)‖2

Lp(Ω,H)ds
) 1

2
.(6.101)

An application of the basic inequality: (a+ b)2 ≤ C(a2 + b2), ∀ a, b ≥ 0, for some C > 0,

leads to

‖uh(t)− u(t)‖2
Lp(Ω,H) ≤ Cα,η,ρ,p,γ,ξh

2ν

+ Cα,ρ,p,β

∫ t

0
(t− s)−1+(1− 2

α
max(ρ,β))‖uh(s)− u(s)‖2

Lp(Ω,H)ds.

(6.102)

Let γ → 2 and ξ → 1, we apply the Gronwall lemma A.1 which is possible since 1 −
2
α

max(ρ, β) > 0 to infer that

‖uh(t)− u(t)‖2
Lp(Ω,H) ≤ Cα,η,ρ,ph

2ν , (6.103)

with ν = min
{
η, (α− 2ρ), α2 − κ

}
, for any κ > 0. In particular, for η > α

2 and ρ ∈ [0, α4 )

it holds

‖uh(t)− u(t)‖Lp(Ω,H) ≤ Cα,η,ρ,ph
α
2−κ, for any κ > 0. (6.104)

6.6 Full approximation

In this section we deal with the full discretization of Prb.(6.1). By making a combination

of the spectral Galerkin method and the implicit Euler method, we elaborate the space-

time scheme. We use the same techniques stated in Section 6.4 and we construct the
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sequence of random variables (umh )Mm=1, m ∈ {1, ...,M}, M > πα, h = 1
N

and N ∈ N0 as

follows{ umh − um−1
h

τ
= −Aα,humh + PhF (um−1

h ) + PhG(um−1
h )W (tm)−W (tm−1)

τ
,

u0
h := Phu0.

(6.105)

Theorem 6.14 Let α ∈ (1, 2]. Under Assumptions Ar1 (with η ∈ (α2 , α]), Br1 (with ρ ∈

[0, α4 )) and C1, there exists a positive constant Cp,α independent of τ and h s.t.

‖umh − u(tm)‖Lp(Ω,H) ≤ Cp,α,η,ρ
(
h
α
2−κ + τ

α−1
2α −κ

)
, for any κ > 0,

for all m ∈ {1, ...,M}.

Proof.We have

‖umh − u(tm)‖Lp(Ω,H) ≤ ‖umh − uh(tm)‖Lp(Ω,H) + ‖uh(tm)− u(tm)‖Lp(Ω,H).

Using Theorem 6.11, in particular Est.(6.86), we get

‖umh − u(tm)‖Lp(Ω,H) ≤ ‖umh − uh(tm)‖Lp(Ω,H) + Cα,η,ph
α
2−κ, (6.106)

for any κ > 0. In order to estimate ‖umh − uh(tm)‖Lp(Ω,H), we have on the one hand,

Scheme (6.105) is equivalent to

umh = (I + τAα,h)−m Phu0 +
m−1∑
k=0

∫ tk+1

tk

(I + τAα,h)−(m−k) PhF (ukh)ds

+
m−1∑
k=0

∫ tk+1

tk

(I + τAα,h)−(m−k) PhG(ukh)dW (s).(6.107)

In the other hand, we rewrite Eq.(6.84) as the form of Eq.(6.59). Hence,

‖umh − uh(tm)‖Lp(Ω,H) ≤ ‖
(
(I + τAα,h)−mPh − Sα,h(tm)Ph

)
u0‖Lp(Ω,H)

+ ‖
m−1∑
k=0

∫ tk+1

tk

(
(I + τAα,h)−(m−k)PhF (ukh)− Sα,h(tm − s)PhF (uh(s))

)
ds‖Lp(Ω,H)

+ ‖
m−1∑
k=0

∫ tk+1

tk

(
(I + τAα)−(m−k)G(uk)− Sα(tm − s)G(u(s))

)
dW (s)‖Lp(Ω,H). (6.108)

The fact that Aα,h commutes with Ph since Aα,h = Aα|Hh , the boundedness of Ph (i.e.

Est.(5.31)) and the use of Est.(6.62) leads to

‖((I + τAα,h)−mPh − Sα,h(tm)Ph)u0‖Lp(Ω,H) = ‖Ph
(
(I + τAα)−m − Sα(tm)

)
u0‖Lp(Ω,H)

≤ ‖Ph‖L(H)‖
(
(I + τAα)−m − Sα(tm)

)
u0‖Lp(Ω,H) ≤ C(η,‖u0‖Lp(Ω,Hη2 )) τ

η
α . (6.109)
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To estimate the second term in the RHS of Est.(6.108), we argue as above to infer that

‖
m−1∑
k=0

∫ tk+1

tk

(
(I + τAα,h)−(m−k)PhF (ukh)− Sα,h(tm − s)PhF (uh(s))

)
ds‖Lp(Ω,H)

≤
m−1∑
k=0

∫ tk+1

tk

‖
(
(I + τAα,h)−(m−k)PhF (ukh)− Sα,h(tm − s)PhF (uh(s))

)
‖Lp(Ω,H)ds

=
m−1∑
k=0

∫ tk+1

tk

‖Ph
(
(I + τAα)−(m−k)F (ukh)− Sα(tm − s)F (uh(s))

)
‖Lp(Ω,H)ds

≤
m−1∑
k=0

∫ tk+1

tk

‖Ph‖L(H)‖
(
(I + τAα)−(m−k)F (ukh)− Sα(tm − s)F (uh(s))

)
‖Lp(Ω,H)ds

≤
m−1∑
k=0

∫ tk+1

tk

‖
(
(I + τAα)−(m−k)F (ukh)− Sα(tm − s)F (uh(s))

)
‖Lp(Ω,H)ds. (6.110)

By following the same steps used in the sequence of inequalities Est.(6.63) with u replaced

by uh and uk replaced by ukh together with the techniques used to estimate R1, R2 and

R3, we arrive at
m−1∑
k=0

∫ tk+1

tk

‖((I + τAα)−(m−k)F (ukh)− Sα(tm − s)F (uh(s)))‖Lp(Ω,H)ds

≤ Cα,ρ
(
τ
α−1
2α − + τ

2β
α

)
+ Cρτ

m−1∑
k=0

t
− 2ρ
α

m−k ‖ukh − uh(tk)‖Lp(Ω,H), (6.111)

where ρ ∈ [0, α2 ) and β ∈ (0, α2 − ρ).

In order to estimate the third term in the RHS of Est.(6.108), we use Burkholder-Davis-

Gundy inequality and the boundedness of Ph to obtain

‖
m−1∑
k=0

∫ tk+1

tk

(
(I + τAα,h)−(m−k)PhG(ukh)− Sα,h(tm − s)PhG(uh(s))

)
dW (s)‖Lp(Ω,H)

≤ Cp

(
m−1∑
k=0

∫ tk+1

tk

(
E‖(I + τAα,h)−(m−k)PhG(ukh)− Sα,h(tm − s)PhG(uh(s))‖pHS

) 2
p ds

) 1
2

≤ Cp

(
m−1∑
k=0

∫ tk+1

tk

(
E‖Ph

(
(I + τAα)−(m−k)G(ukh)− Sα(tm − s)G(uh(s))

)
‖pHS

) 2
p ds

) 1
2

≤ Cp

(
m−1∑
k=0

∫ tk+1

tk

(
E
(
‖Ph‖pL(H)‖(I + τAα)−(m−k)G(ukh)− Sα(tm − s)G(uh(s))‖pHS

)) 2
p ds

) 1
2

≤ Cp

(
m−1∑
k=0

∫ tk+1

tk

(
E‖(I + τAα)−(m−k)G(ukh)− Sα(tm − s)G(uh(s))‖pHS

) 2
p ds

) 1
2

. (6.112)
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We use the same steps followed in the sequence of inequalities Est.(6.70) besides the

techniques used to estimate the terms R4, R5 and R6, to get

‖
m−1∑
k=0

∫ tk+1

tk

(
(I + τAα,h)−(m−k)PhG(ukh)− Sα,h(tm − s)PhG(uh(s))

)
dW (s)‖Lp(Ω,H)

≤ Cp,α,ρ̀,β̀(τ α−1
2α −κ + τ

2β̀
α ) + Cp,ρ̀

(
τ
m−1∑
k=0

t
− 4ρ̀
α

m−k ‖ukh − uh(tk)‖2
Lp(Ω,H)

) 1
2

, (6.113)

for any κ > 0, where ρ̀ ∈ (1
4 ,

α
4 ) and β̀ ∈ (0, α4 − ρ̀).

Coming back to Est.(6.108), by gathering Est.(6.109), Est.(6.111) and Est.(6.113) we

arrive at

‖umh − uh(tm)‖2
Lp(Ω,H) ≤ C(p,α,η,ρ,ρ̀,β̀,‖u0‖Lp(Ω,Hη2 ))

(
τ
η
α + τ

α−1
2α −κ + τ

2β
α + τ

2β̀
α

)2

+ Cρ

(
τ
m−1∑
k=0

t
− 2ρ
α

m−k ‖ukh − uh(tk)‖Lp(Ω,H)

)2

+ Cp,ρ̀

(
τ
m−1∑
k=0

t
− 4ρ̀
α

m−k ‖ukh − uh(tk)‖2
Lp(Ω,H)

)
. (6.114)

For η > α
2 , ρ ∈ [0, α4 ) and let β → α

2 − ρ, β̀ →
α
4 − ρ̀ with ρ̀ → 1

4 , we apply the discrete

Gronwall Lemma A.2 as stated before in Section 6.4 we infer that

‖umh − uh(tm)‖Lp(Ω,H) ≤ Cp,α,η,ρτ
α−1
2α −κ, (6.115)

for any κ > 0.

Finally, from Est.(6.106) and Est.(6.115) we get the desired result.
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Chapter 7

The temporal approximation for
fractional stochastic Burgers
equation in Hilbert space

In this third contribution chapter, we study a weak temporal convergence of Euler scheme

for the multiplicative fractional stochastic Burgers equation in the Hilbert space L2(0, 1).

Let us mention that, in Chapter 5, we studied the additive fractional stochastic Burgers-

type equation in the Hölder space Cδ(0, 1). Regarding the relaxed condition imposed on

the spacial functional space, we seek to improve not only the diffusion dissipation index

α but the order of convergence as well, by proving a weaker convergence. Precisely, we

prove the convergence in probability which is weaker than the Lp convergence and the

pathwise convergence.

Recall that, the fractional stochastic Burgers equation is given by Prb.(3.33) in Subsec-

tion 3.5.2, with Aα := (−∆)α2 , and the Laplacian being endowed with the homogeneous

Dirichlet boundary conditions and F (u(.)) := ∂xu
2.
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7.1 Main result

By keeping the same notations used in Section 6.4, we study the following time-discretization

of Eq.(3.33) given as follows

{
um = (I + τAα)−1um−1 + (I + τAα)−1τF (um−1) + (I + τAα)−1G(um−1)∆Wm,
u0 := u0,

(7.1)

where ∆Wm := W (tm)−W (tm−1), τ = T
M
, M ∈ N0 and tm = mτ with m = 1, ...,M .

The main result of this chapter is the following

Theorem 7.1 Let α ∈ (3
2 , 2] and p > 2α

α−1 . Then, under Assumptions Ar1 with η ∈

(α−1
2 , α], Br1 with ρ ∈ [0, 1

2 ] and C1, the approximate solution (um)Mm=0 defined by the

numerical scheme (7.1) converges in probability with order α−1
2α − κ, for any κ > 0, in

L2(0, 1), to the mild solution u. More precisely, we have

lim
c→+∞

lim sup
M→+∞

P
{

max
0≤m≤M

|u(mτ)− um|L2 ≥ cτ
α−1
2α −κ

}
= 0. (7.2)

7.2 Some auxiliary results

In order to prove our main theorem, we introduce the following truncated Cauchy problem:
{
dun(t) = (−Aαun(t) + Fn(un(t)))dt+G(un(t))dW (t), t ∈ (0, T ],
un(0) := u0,

(7.3)

where for fixed n > 0,

Fn(u) := F (Πn(u)), ∀u ∈ H. (7.4)

and Πn is the projection from L2(0, 1) onto the ball B(0, n) ⊂ L2(0, 1) defined by

Πn(u) :=
{ u, if |u|L2 ≤ n,

n
|u|L2

u, if |u|L2 > n (7.5)

Let 3
2 < α ≤ 2 and p > 2α

α−1 . According to [16, Theorem 1.3] (see also Theorem 3.15 in

Subsection 3.5.2) respectively [16, Theorem 2.14], the problems (3.33) and (7.3) admit
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unique global solutions u = {u(t), t ∈ [0, T ]} respectively un = {un(t), t ∈ [0, T ]} with u

satisfying

E[ sup
t∈[0,T ]

|u(t)|pL2 ] <∞. (7.6)

Using Markov inequality (A.13), we have

lim
C→+∞

P
{

sup
t∈[0,T ]

|u(t)|L2 ≥ C

}
= 0. (7.7)

By construction, see [16], the processes u and un are P-a.s. equal up to the stopping time:

τn = inf {t ≥ 0, |un(t)|L2 ≥ n}. (7.8)

Consequently, we have from Markov inequality (A.13) that

lim
C→+∞

lim sup
n→+∞

P
{

sup
t∈[0,T ]

|un(t)|L2 ≥ C

}
= 0. (7.9)

Therefore, there exists C > 0, such that for all n ≥ 1,

sup
n

E sup
t∈[0,T ]

|un(t)|pL2 ≤ C. (7.10)

The proof of the main result is related to the following lemma.

Lemma 7.2 For any ε ∈ (0, 1) and any C ≥ 1, we have

lim
M→+∞

P
{

max
0≤m≤M

|u(mτ)− um|L2 ≥ ε
}

= 0, (7.11)

and

lim
C→+∞

lim sup
M→+∞

P
{

max
0≤m≤M

|um|L2 ≥ C
}

= 0. (7.12)

Proof.To prove the convergence in the probability of the temporal approximation

(um)Mm=0, first we need the convergence in probability of the temporal approximation

of the truncated Cauchy problem (7.3). For this, we construct as above the following

sequence of random variables (umn )Mm=0,{
umn = (I + τAα)−1um−1

n + (I + τAα)−1τFn(um−1
n ) + (I + τAα)−1G(um−1

n )∆Wm,
u0
n := u0.

(7.13)

Second, for ε ∈ (0, 1), let the event

A := {w ∈ Ω, max
0≤m≤M

|u(mτ,w)− um(w)|L2 ≥ ε}. (7.14)
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We define as in [87], the random variables:

mε = min {0 ≤ m ≤M, |u(mτ)− um|L2 ≥ ε}, a.s.

and, for n > 1

Θn = inf {t ≤ T, |u(t)|L2 ≥ n− 1}. a.s. (7.15)

We can rewrite the event A by the following form

A = A ∩ ({Θn < T} ∪ {Θn ≥ T}) = (A ∩ {Θn < T}) ∪ (A ∩ {Θn ≥ T})

= (A ∩ {Θn < T}) ∪ (A ∩ {Θn ≥ T} ∩ {mετ < T}) ∪ (A ∩ {Θn ≥ T} ∩ {mετ ≥ T})

(7.16)

Since A ∩ {mετ ≥ T} = ∅, we deduce that

A = (A ∩ {Θn < T}) ∪ (A ∩ {Θn ≥ T} ∩ {mετ < T})

⊂ {Θn < T} ∪ ({Θn ≥ T} ∩ {mετ < T}) . (7.17)

Now, we need to prove the following main inclusion

({Θn ≥ T} ∩ {mετ < T}) ⊂ { max
0≤m≤M

|un(mτ)− umn |L2 ≥ ε}. (7.18)

To do this, we have from the event ({Θn ≥ T} ∩ {mετ < T}) two facts:

• First, ∀ m ∈ {0, ...,M}, mτ ≤ T ≤ Θn. Hence, for any m ∈ {0, ...,M}, we have

|u(mτ)|L2 < n− 1 < n, and so

u(mτ) = un(mτ), ∀ m ∈ {0, ...,M}. (7.19)

• Second, if mε < M then, ∀ m ∈ {0, ...,mε − 1}

|u(mτ)− um|L2 < ε < 1, (7.20)

Thus, from (7.20), we have ∀ m ∈ {0, ...,mε − 1},

|um|L2 ≤ |u(mτ)− um|L2 + |u(mτ)|L2 ≤ 1 + |u(mτ)|L2 ,

and since |u(mτ)|L2 < n− 1 from the first fact, it holds

|um|L2 < n, ∀ m ∈ {0, ...,mε − 1},
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and so

Πn(um) = um, ∀ m ∈ {0, ...,mε − 1}. (7.21)

We use the definitions of um and umn introduced by (7.1) and (7.13) respectively,

besides (7.21) to get

um = umn , ∀ m ∈ {0, ...,mε − 1}. (7.22)

Similarly, the definitions of umε and umεn , by using (7.1) and (7.13) respectively,

yields

umε = umεn . (7.23)

As a result, from the identities (7.19) and (7.23), we obtain

u(mετ)− umε = un(mετ)− umεn .

Hence, by using the definition of the random variable mε we deduce that

|un(mετ)− umεn |L2 ≥ ε,

and so

max
0≤m≤M

|un(mτ)− umn |L2 ≥ ε.

Thus, the main inclusion (7.18) is proved.

Consequently, from (7.17) and (7.18) we have

P(A) ≤ P(Θn < T ) + P( max
0≤m≤M

|un(mτ)− umn |L2 ≥ ε).

Then

lim
M→+∞

P(A) ≤ P(Θn < T ) + lim
M→+∞

P( max
0≤m≤M

|un(mτ)− umn |L2 ≥ ε). (7.24)

To get, limM→+∞ P(max0≤m≤M |un(mτ)−umn |L2 ≥ ε), we use Theorem 6.4. This theorem

ensures the strong temporal convergence of the heat equation in the space Lp(Ω, L2(0, 1)),

for the time interval [0, 1]. The proof is still valid for the time interval [0, T ], for any T > 0.

Then, for any n ≥ 1 we have

E[ max
0≤m≤M

|un(mτ)− umn |
p
L2 ] ≤ Cp,α,η,ρ,nτ

α−1
2α −κ, for any κ > 0.
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Let us mention that, the dependence of the constant Cp,α,η,ρ,n on n, is due to the de-

pendence on supt∈[0,T ] E[|un(t)|pL2 ]. However, from Est.(7.10) (see also [16]), there exists

C > 0 for any n ≥ 1 s.t.

sup
n∈N0

(
sup
t∈[0,T ]

E[|un(t)|pL2 ]
)
≤ sup

n∈N0

(
E[ sup

t∈[0,T ]
|un(t)|pL2 ]

)
≤
(
E[ sup

t∈[0,T ]
|u(t)|pL2 ]

)
< C.

Therefore, there exists Cp,α,η,ρ > 0 s.t. for any n ≥ 1,

E[ max
0≤m≤M

|un(mτ)− umn |
p
L2 ] ≤ Cp,α,η,ρτ

α−1
2α −κ. (7.25)

Now, by taking the limit when M goes to +∞ (recall that τ = T
M
, and so τ → 0), after

applying Markov inequality (A.13) we get

lim
M→+∞

P( max
0≤m≤M

|un(mτ)− umn |L2 ≥ ε) = 0. (7.26)

To estimate P(Θn < T ), let us recall from [16, page 148] that, limn→+∞ τn = +∞, a.s.

Then

lim
n→+∞

P(Θn < T ) = lim
n→+∞

P(τn < T ) = 0, (7.27)

From Est.(7.24), Est.(7.26) and Est.(7.27), the convergence in probability of (um)Mm=0 has

been ensured.

Now, it remains to prove the boundedness in probability of (um)Mm=0. For this end, we

fix C ≥ 1 and ε ∈ (0, 1). First, we have the following inclusion

( max
0≤m≤M

|um|L2 ≥ C) ⊂ ( max
0≤m≤M

|u(mτ)− um|L2 ≥ ε) ∪ ( sup
t∈[0,T ]

|u(t)|L2 ≥ C − ε).

Indeed, if we suppose the inverse, i.e. there exists w ∈ Ω s.t. max0≤m≤M |um(w)|L2 ≥ C,

besides max0≤m≤M |u(mτ,w) − um(w)|L2 < ε and supt∈[0,T ] |u(t, w)|L2 < C − ε, we get

for all m ∈ {0, ...,M} and all t ∈ [0, T ]

|um(w)|L2 ≤ |um(w)− u(mτ,w)|L2 + |u(mτ,w)|L2

≤ max
0≤m≤M

|um(w)− u(mτ,w)|L2 + sup
t∈[0,T ]

|u(t, w)|L2 < C, (7.28)

and this is a contradiction. As a result,

P( max
0≤m≤M

|um|L2 ≥ C) ≤ P( max
0≤m≤M

|u(mτ)− um|L2 ≥ ε) + P( sup
t∈[0,T ]

|u(t)|L2 ≥ C − ε).
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Est.(7.11) allows us to take the supermum limit when M goes to +∞, for a fixed C ≥ 1,

then

lim sup
M→+∞

P( max
0≤m≤M

|um|L2 ≥ C) ≤ lim sup
M→+∞

P( max
0≤m≤M

|u(mτ)− um|L2 ≥ ε)

+ P( sup
t∈[0,T ]

|u(t)|L2 ≥ C − ε),

which implies

lim sup
M→+∞

P( max
0≤m≤M

|um|L2 ≥ C) ≤ P( sup
t∈[0,T ]

|u(t)|L2 ≥ C − ε).

To obtain the desired result, we use Est.(7.7) after taking the limit to +∞ with respect

to C.

7.3 Proof of the main result

To prove the main result, let α ∈ (3
2 , 2], p > 2α

α−1 , M ≥ 1, n ≥ 1 and c > 0. First, for any

κ > 0, we have

P
(

max
0≤m≤M

|u(mτ)− um|L2 ≥ cτ
α−1
2α −κ

)
≤ P

(
max

0≤m≤M
|un(mτ)− umn |L2 ≥ cτ

α−1
2α −κ

)
+ P

(
max

0≤m≤M
|um|L2 ≥ n

)
+ P

(
sup
t∈[0,T ]

|u(t)|L2 ≥ n

)
. (7.29)

By using Est.(7.25) with Markov inequality (A.13), we estimate the first term in the RHS

of (7.29) as follows

P
(

max
0≤m≤M

|un(mτ)− umn |L2 ≥ cτ
α−1
2α −κ

)
≤ (Cp,α,η,ρ)p

cp
. (7.30)

Again, the use of Markov inequality allows us to estimate the third term in the RHS of

(7.29) as follows

P
(

sup
t∈[0,T ]

|u(t)|L2 ≥ n

)
≤

E[supt∈[0,T ] |u(t)|pL2 ]
np

. (7.31)

We replace Est.(7.30) and Est.(7.31) in Est.(7.29), to get

P
(

max
0≤m≤M

|u(mτ)− um|L2 ≥ cτ
α−1
2α −κ

)
≤ (Cp,α,η,ρ)p

cp

+ P
(

max
0≤m≤M

|um|L2 ≥ n
)

+
E[supt∈[0,T ] |u(t)|pL2 ]

np
. (7.32)
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We take first the limisup when M goes to +∞, then the limit when n goes to +∞, to get

lim sup
M→+∞

P
(

max
0≤m≤M

|u(mτ)− um|L2 ≥ cτ
α−1
2α −κ

)
≤ (Cp,α,η,ρ)p

cp

+ lim sup
n→+∞

lim sup
M→+∞

P
(

max
0≤m≤M

|um|L2 ≥ n
)

+ lim sup
n→+∞

E[supt∈[0,T ] |u(t)|pL2 ]
np

. (7.33)

Thus, Est.(7.6) and Est.(7.12), yield

lim sup
M→+∞

P
(

max
0≤m≤M

|u(mτ)− um|L2 ≥ cτ
α−1
2α −κ

)
≤ (Cp,α,η,ρ)p

cp
. (7.34)

Finally, after taking the limit when c goes to +∞, we get the desired result.
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Appendix A

Some definitions and useful results

A.1 Some useful versions of Grönwall’s Lemma

Grönwall’s Lemma plays an important role in the analytical or numerical theory of dif-

ferential equations. The original version is due Grönwall T. H. [51], but there exists a

huge number of its versions. In this section we collect some useful versions needed in this

thesis.

Lemma A.1 Let T > 0 and C1, C2 be two positive constants and let f : [0, T ]→ R be a

positive and continous function. If for β > 0 we have

f(t) ≤ C1 + C2

∫ t

0
(t− s)−(1−β)f(s)ds, ∀ t ∈ (0, T ],

then there exists CC2,T,β s.t.

f(t) ≤ C1CC2,T,β.

There also exists discrete analogues, see for instance [64] for the the next lemma.

Lemma A.2 Let (xn)n∈N and (yn)n∈N be positive sequences and C a positive constant. If

for any n ≥ 1

xn ≤ C +
n−1∑
k=0

xkyk,
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then

xn ≤ Ce(
∑n−1

k=0 yk).

A.2 Some basic results

Fix T > 0. Let (Ω,F ,P) be a probability space.

Lemma A.3 [72, Lemma 2.1]. Let τ > 0 and Cp ∈ [0,∞) for p ≥ 1. In addition, Let

Zn, n ∈ N, be a sequence of random variables such that

(E|Zn|p)
1
p ≤ Cp n

−τ , (A.1)

for all p ≥ 1 and all n ∈ N. Then

P
(

sup
n∈N

(nτ−ε|Zn|) <∞
)

= 1, (A.2)

for all ε ∈ (0, τ).

Lemma A.4 [67, Lemma 10, P. 49] Let Y : Ω→ R be a F/B(R)−measurable mapping,

that is centered and normal distributed. Then for every p ∈ N,

E|Y |p ≤ p!(E|Y |2)
p
2 . (A.3)

Lemma A.5 [67, Lemma 12, P. 49] Let B : [0, T ] × Ω → R be a standard Brownian

motion. Then

E
(
|
∫ t2

0
e−λ(t2−s)dB(s)−

∫ t1

0
e−λ(t1−s)dB(s)|2

)
≤ λr−1|t2 − t1|r, (A.4)

for every t1, t2 ∈ [0, T ], r ∈ [0, 1] and every λ ∈ (0,∞).

Lemma A.6 [67, Lemma 9, P. 49] Let η ∈ (0, 1). Then, we have
∫ 1

0

∫ 1

0
|x− y|−ηdxdy ≤ 3

1− η .

Lemma A.7 Let δ ∈ (0, 1]. There exists a constant cδ > 0 (independent of k) such that

|ek|Cδ ≤ cδk
δ. (A.5)
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Proof.Since the function sin ∈ C1(in reality it is well known that sin ∈ C∞, but for

our proof, it is enough to be in C1), then it is Lipschitz (δ = 1) and δ−Hölder continuous

for any δ ∈ (0, 1). Therefore, there exists Cδ > 0, such that ∀x, y, we have;

| sin(x)− sin(y)| ≤ Cδ|x− y|δ.

Hence, ∀k ∈ N0, ∀x, y ∈ [0, 1], we infer that

|ek(x)− ek(y)| =
√

2| sin(kπx)− sin(kπy)| ≤
√

2Cδ(πk)δ|x− y|δ. (A.6)

Moreover, using the properties of the function sin, it is well known that

|ek|C0 := sup
x∈[0,1]

|ek(x)| :=
√

2 sup
x∈[0,1]

| sin(kπx)| ≤
√

2. (A.7)

|ek|Cδ := sup
x∈[0,1]

|ek(x)|+ sup
x 6=y∈[0,1]

|ek(x)− ek(y)|
|x− y|δ

≤
√

2(1 + Cδπ
δkδ) ≤

√
2(kδ + Cδπ

δkδ) ≤ cδk
δ. (A.8)

Lemma A.8 ∀γ > 0,∃ Cγ > 0, s.t ∀x ≥ 0, xγe−x ≤ Cγ.

Proof.Let fγ(x) : x ∈ [0,+∞) → [0,+∞) 3 xγe−x. The real function fγ is differ-

entiable and ∀x ∈ (0,+∞), f ′γ(x) = xγ−1e−x(γ − x), therefore f has a maximum on

(0,+∞) at γ, i.e. ∀x ≥ 0, xγe−x ≤ Cγ := fγ(γ) = γγe−γ.

Lemma A.9 ∀β ∈ [0, 1],∃ Cβ > 0, s.t ∀x > 0, x−β(1− e−x) ≤ Cβ.

Proof.First, we assume x ≥ 1. As 1 − e−x ≤ 1, then x−η(1 − e−x) ≤ x−η ≤ 1. Now,

for x < 1, we use Taylor expansion of order 1 of the function e−x, we infer the existence

of cx ∈ (0, x], s.t. 1− e−x = xe−cx . Hence x−η(1− e−x) = x1−ηe−cx ≤ x1−η ≤ 1.

A.3 Some elementary inequalities

Following is a collection of elementary, but fundamental inequalities.
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• Young inequality with ε. Let 1 < p, q < ∞ s.t. 1
p

+ 1
q

= 1, a, b > 0 and ε > 0.

Then,

ab ≤ εap + Cεb
q, (A.9)

where Cε := (εp)−
q
p q−1.

• Hölder inequality. Let D be a domain in R and 1 ≤ p, q ≤ ∞ s.t., 1
p

+ 1
q

= 1.

Then

1. Continuous version. For all u ∈ Lp(D) and all v ∈ Lq(D) it holds

‖uv‖L1(D) ≤ ‖u‖Lp(D)‖v‖Lq(D). (A.10)

2. Discrete version. For all a = (ai)ni=1 ∈ Rn and all b = (bi)ni=1 ∈ Rn it holds

|
n∑
i=1

aibi| ≤ (|ai|p)
1
p (|bi|q)

1
q . (A.11)

• Interpolation inequality for Lp-norms. Let 1 ≤ p ≤ r ≤ q ≤ ∞ and θ ∈ (0, 1)

s.t. 1
r

= θ
p

+ (1−θ)
q

. For all u ∈ Lp(D) ∩ Lq(D). Then, u ∈ Lr(D) and

‖u‖Lr(D) ≤ ‖u‖θLp(D)‖u‖1−θ
Lq(D). (A.12)

• Markov inequality. Let ξ be an R+-valued random variable. Then, for any p ≥ 1

and any a > 0, we have

P (ξ ≥ a) ≤ E (ξp)
ap

, (A.13)

provided that ξ is p-th integrable.

• Polarization identity. Let (H, 〈., .〉H , |.|H) be a real Hilbert space. Then, for all

u, v ∈ H it holds

〈u, v〉H = 1
4
(
|u+ v|2H − |u− v|2H

)
. (A.14)

A.4 Basic definitions on functional spaces

Linear spaces are the standard setting for studying and solving a large number of the

problems in differential and integral equations, and other topics in applied mathematics.

Let us recall them here.
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Definition A.10 (Linear space). Let X be a set of objects and K be a set of scalars,

i.e. K = R or K = C. If there exsit an addition operation (x, y)→ x+y ∈ X, for any x, y ∈

X and a scalar multiplication operation (λ, x)→ λ×x ∈ X, for any λ ∈ K and any x ∈ X

such that the following rules hold.

1. for any x, y ∈ X, x+ y = y + x,

2. for any x, y, z ∈ X, (x+ y) + z = x+ (y + z),

3. there is an element 0 ∈ X s.t. 0 + x = x for any x ∈ X,

4. for any x ∈ X, there is an element −x ∈ X s.t. x+ (−x) = 0,

5. for any x ∈ X, 1× x = x,

6. for any x ∈ X and any λ, γ ∈ K, λ× (γ × x) = (λγ)× x,

7. for any x, y ∈ X and any λ, γ ∈ K, λ× (x+ y) = λ× x+ λ× y and (λ+ γ)× x =

λ× x+ γ × x.

Then X is called real linear space, for K = R and called complex linear space for

K = C.

Definition A.11 (Banach space). Let X be a real Linear space.

• A mapping ‖.‖ : X → [0,∞) is called a norm if

1. ‖x‖ = 0⇔ x = 0,

2. ‖λx‖ = |λ| ‖x‖, ∀x ∈ X, ∀λ ∈ R,

3. ‖x+ y‖ ≤ ‖x‖+ ‖y‖, ∀x, y ∈ X.

• A normed space X is a real vector space endowed with a norm ‖.‖X .

• A Banach space (X, ‖.‖X) is a complete normed space, in the sense that each

Cauchy sequence in X converges in X with respect to the norm ‖.‖X .

Definition A.12 (Separable space). Let (X, ‖.‖X) be a Banach space. We say that

X is a separable if it contains a countable dense subset.
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Definition A.13 (Hilbert space). Let H be a real vector space.

• A mapping 〈., .〉 : H ×H → R is called an inner product (or scalar product) if

1. 〈x, x〉 = 0⇔ x = 0,

2. 〈x, x〉 ≥ 0, ∀x ∈ H,

3. 〈x, y〉 = 〈y, x〉, ∀x, y ∈ H,

4. the mapping x 7→ 〈x, y〉 is linear for each y ∈ H.

• each inner product 〈., .〉 generates a norm defined by ‖x‖ := 〈x, x〉 1
2 , for x ∈ H.

• A pre-Hilbertian space H is a real vector space endowed with an inner product

〈., .〉H .

• A Hilbert space H is a complete pre-Hilbertian space with respect to the norm

‖.‖H which is generated by 〈., .〉H .

Definition A.14 (Schwartz space). The space of all functions f ∈ C∞ of rapid de-

crease in the sense that, for all α, β ≥ 0

sup
x∈R
|xβdαu(x)| <∞,

is called Schwartz space and is denoted by S.

Definition A.15 (Space of tempered distributions). The space of all continuous

functionals ϕ : S → R is called space of tempered distributions and denoted by S ′.
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Conclusion

In this thesis, we dealt with the numerical approximations of some fractional stochas-

tic partial differential equations, driven by the fractional Laplacian and perturbed by a

Gaussian noise. By applying Blömker method used in [12], we have generalized their

results in the fractional case. Precisely, we have used the spacial discretization scheme in

order to prove the wellposedness of the fractional stochastic Burgers-type equation in the

Cγ
t C

δ
x-topology, where γ < α−1−2δ

2α and δ ∈ (1 − α
2 ,

2α−3
2 ), for α ∈ (7

4 , 2). In addition, we

have fulfilled the pathwise convergence of the obtained spacial and full approximations,

with the orders of convergence (α−1−2δ
2 ) − κ in space and (α−1−2δ

2α ) − κ in time, for any

κ > 0. These results have been proved here for the first time in the Hölder space Cδ(0, 1),

not only for the fractional stochastic Burgers-type equation, but for the fractional and

classical stochastic Burgers equations as well.

In order to improve either the orders of convergence and the constraint on the diffusion

dissipation index α, we have relaxed the condition imposed on the nonlinear term and have

studied such equation in the Hilbert space L2(0, 1) instead of the Hölder space Cδ(0, 1).

Precisely, we have dealt with the fractional stochastic nonlinear heat equation with mul-

tiplicative noise. We have fulfilled the strong convergence in the space Lp(Ω, L2(0, 1)) of

the temporal, the spacial and the full approximations of the mild solution with orders of

convergence α
2 − κ in space and (α−1

2α )− κ in time, for any κ > 0. We have filled the gap

α ∈ (1, 7
4 ], for the heat equation. For Burgers equation, we have proved a weaker conver-

152



gence, namely the convergence in probability of the temporal approximation obtained via

the implicit Euler scheme with the same order (α−1
2α )− κ, provided that α ∈ (3

2 , 2].

The perspectives are:

• Extend the obtained results by considering alternative definitions of the fractional

Laplacian, for instance in terms of Riesz operator. Moreover, also in case of spec-

tral Laplacian, it would be interesting to consider Neumann or Robin boundary

conditions.

• Study the numerical approximations of the fractional stochastic partial differential

equations driven by other kind of fractional operators, like Riemann-Liouville.

• Study the numerical approximations of the fractional stochastic partial differential

equations perturbed by other kind of stochastic noises, like Lévy noise.

• Extend the results obtained in this thesis for the d-dimensional case, for d > 1.

In the last let us mention that, by our study here we are in the neighborhood of the
millennium problem, i.e. Navier-Stokes equation.
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 ملخص:

 العشوائية الكسرية، العددية لفئة من المعادلات التفاضلية الجزئية تقريباتقدمت هذه الأطروحة تحليلا دقيقا لمختلف ال

. وتتضمن يةبضوضاء غوص ومشوشة الكسريبمؤثر لابلاس مدفوعة  في فضاء احادي البعد، ،غير محلياو الليبتشيزية محليا

التقارب  تمعدلاحددنا ، وجه الخصوصعلى اتها المختلفة. وتقارب مكانية-وزمانيةزمانية، مكانية  تحقيق تقريبات الدراسة

 .وبينا ارتباطها بالاس الكسري لمؤثر لابلاس

غير الخطية ، معادلة الحرارة معادلة تفاضلية جزئية عشوائية كسرية من نوع بورغرس :المفتاحيةوالعبارات  الكلمات

 ، ضوضاء بيضاء مكانية مضاعفة-زمانيةضوضاء بيضاء  ،غوصيةضوضاء  ،الكسريمؤثر لابلاس  ،العشوائية الكسرية

شميدت، حلول معتدلة، -فضاءات صوبولاف الكسرية، مؤثر هيلبرتهولدر ،  فضاءات،  مكانية غير مضاعفة-زمانية

 المكاني، رتبة التقارب.-تقريب غالاركين الطيفي، طريقة اولر الضمنية، طريقة اولر الاسية، التقريب الزماني

 

Résumé :  

Cette thèse a fourni une analyse rigoureuse de divers schémas numériques pour une classe 

d’équations aux dérivées partielles stochastiques fractionnaires non linéaires Lipschitzienne 

localement et globalement, entraînées par le Laplacien fractionnaire dans l’espace 

unidimensionnel et perturbées par un bruit gaussien. L’étude contient l’élaboration de 

schémas temps, espace et espace-temps et leurs différentes convergences. Spécialement, nous 

exprimons pour chaque schéma le taux de convergence en termes de la puissance 

fractionnaire du Laplacien. 

Mots clés et phrases : Équation stochastique fractionnaire de type Burgers, équation de chaleur 

non linéaire stochastique fractionnaire, Laplacien fractionnaire, Bruit gaussien, bruit blanc en 

espace et en temps multiplicatif, bruit blanc en espace et en temps additif, espaces de Hölder, 

espaces de Sobolev fractionnaires, opérateur de Hilbert-Schmidt, solution mild, approximation 

spectrale de Galerkin, schéma implicite d’Euler, schéma d’Euler exponentiel, approximation 

complète, ordre de convergence. 

 

Abstract: 

This dissertation has provided a rigorous analysis of various numerical schemes for a class of 

local and global Lipschitz nonlinear fractional stochastic partial differential equations, driven 

by the fractional Laplacian in the one-dimensional space and perturbed by a Gaussian noise. 

The study contains the elaboration of time, space and space-time schemes and their different 

convergences. Specially, we express for every scheme the rate of convergence in terms of the 

fractional power of the Laplacian. 

 

Key words and phraces: Fractional stochastic Burgers-type equation, fractional stochastic 

nonlinear heat equation, fractional Laplacian, Gaussian noise, multiplicative space-time white 

noise, additive space-time white noise, Hölder spaces, fractional Sobolev spaces, Hilbert-

Schmidt operator, mild solutions, spectral Galerkin approximation, implicit Euler scheme, 

exponential Euler scheme, full approximation, order of convergence. 
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