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Introduction 

Context and Motivation  

Over the past few decades, optimization in mechanical engineering has been still a significant 

issue for designers and even for researchers due to the often difficulties and the high 

computational burden. Majority of mechanical design includes an intensive optimization task 

in which a number of conflicting criteria are concurrently considered, such as cost, 

performance, strength, and reliability. Therefore, the key challenge in the design process is to 

define the best compromise between contradictory design requirements. With the increasing 

development of computing technology during the last fifty years, several theoretical and 

computational contributions of optimization have been well proposed to handle the 

complicated design problems in the mechanics area (Gasser and Schuëller 1998; Mastinu et 

al. 2007; Rao and Savsani 2012).  

Conventionally, optimization methods for mechanical systems design are based on the 

assumption of deterministic models and parameters. This is the so-called Deterministic 

Design Optimization (DDO) which has been effectively applied to systematically reduce the 

structure cost and to increase the performance. According to the search procedure, DDO 

approaches can be divided into two groups, mathematical programming and metaheuristic 

algorithms (Deb 2012). Most of the first group algorithms are inadequate to resolve the 

complexities inherent in the mechanical applications, as they substantially rely on the gradient 

information and usually seek to improve the solution in the neighborhood of a starting point. 

On the contrary, metaheuristic algorithms are independent of these limiting conditions and 

can be well suited for practical design problems. They are typically inspired by successful 

concepts from nature and seek to improve the solution in the whole search space. 

Due to the advantages of nature-inspired metaheuristics, such simplicity, flexibility, 

derivative-free mechanism, and high local optima avoidance, a large number of optimization 

algorithms have been developed and applied to current mechanical design. Some of the most 

popular are Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Ant Colony 

Optimization (ACO), and Differential Evolution (DE). In particular, the DE algorithm 

introduced by Storn and Price in (1995) has received increased attention from researchers 

because of its effectiveness and explorative ability. This algorithm can generate high-quality 

solutions with a good consistency, but however its performance is rather costly in terms of 

computational resource. Therefore, the adjustments for the DE to balance between the 

file:///C:/Users/poste01/Downloads/References%20CH%202/Storn%20and%20Price%20(1995).pdf


 Introduction 

2 

computational cost and the quality of solutions have recently been one of the more interesting 

topics in the engineering optimization field (Jia et al. 2013; Ho-Huu et al. 2016; Mohamed 

2018; Phat et al. 2020).  

In practice, design optimization of mechanical systems is often highly sensitive to 

uncertainties derived from different sources, like structure sizes, material characteristics, 

manufacturing tolerances, and operating environments. Any change of these random features 

may significantly affect the performance of the structure to be optimized and lead to a final 

design with a high failure. Thus, the uncertainties are inevitable and its impact must be 

considered during the optimization procedure. In DDO approaches, the propagation of system 

uncertainties is usually handled by using the well-known safety factors. These factors, in 

many cases, are inaccurately adopted and cannot guarantee the desired reliability level with 

the most economical solution (Aoues and Chateauneuf 2010). In this sense, the Reliability-

Based Design Optimization (RBDO) is emerged as an alternative and powerful tool to deal 

with the potential uncertainties. This methodology is capable of offering robust and cost-

effective designs, and therefore has gained broad applicability in mechanics and various 

engineering fields (Yu 2011; Kusano et al. 2014; Ho-Huu et al. 2018; Meng et al. 2020). 

Main Aim and Research Contributions 

The main aim of this thesis is to contribute new optimization methods that can effectively 

address the complex problems of mechanical design. The present research passes through 

three consecutive stages. The first stage introduces an efficient deterministic optimization 

approach named Modified Adaptive Differential Evolution (MADE). The proposed approach 

is a new version of the DE algorithm with two improvements. The first improvement is 

carried out on the mutation and crossover phases, while the second one is executed on the 

selection process.  

The next stage aims to apply the developed MADE for design optimization of complex 

mechanical systems. In this research, a particular attention has been given to cam-follower 

mechanism due to its flexibility and versatility in the modern industrial applications. The first 

problem deals with a multi-objective optimization of a cam mechanism with offset translating 

roller follower in which more geometric parameters and more design constraints are taken 

into account. The second problem concerns the size optimization of a cam mechanism with 

translating flat-face follower in which the influence of the follower motion law is 

investigated. Additionally, three other recent metaheuristics including Grey Wolf Optimizer 

file:///C:/Users/poste01/Downloads/References%20CH%202/Storn%20and%20Price%20(1995).pdf
file:///C:/Users/poste01/Downloads/References%20CH%202/Storn%20and%20Price%20(1995).pdf
file:///C:/Users/poste01/Downloads/References%20CH%202/Storn%20and%20Price%20(1995).pdf
file:///C:/Users/poste01/Downloads/References%20CH%202/Storn%20and%20Price%20(1995).pdf
file:///C:/Users/poste01/Downloads/References%20CH%202/Storn%20and%20Price%20(1995).pdf
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(GWO), Whale Optimization Algorithm (WOA), and Sine-Cosine Algorithm (SCA) are 

employed to optimize the cam design problems.  

The last stage of the thesis attempts to adapt the developed MADE toward reliability 

based design optimization. In this way, a novel optimization approach is presented to handle 

the mechanical design problems under highly uncertain manufacturing and operating 

conditions. The method is based on the integration of the Reliable Design Space (RDS) 

technique with an optimization algorithm hybridizing the MADE and the Nelder-Mead local 

search (NM). Consequently, the research presented in this dissertation involves three major 

contributions summarized as follows:  

 Contribution 1: 

An effective optimization method (MADE) is developed for addressing the 

deterministic mechanical problems with continuous design variables. 

 Contribution 2: 

1. The developed MADE is applied to optimize the cam mechanism design where 

two types of follower system are studied. 

2. The optimization problem of the cam mechanism with offset roller follower 

translation is developed by considering additional geometric parameters and 

operating constraints. 

3. The optimization problem of the cam mechanism with flat-face follower 

translation inspects the impact of follower motion by using several types of 

motion laws.  

4. The application of three recently published optimizers (GWO, WOA, and SCA) 

is extended to the field of cam design optimization. 

 Contribution 3: 

1. A new reliability-based design optimization method (RDS-MADE-NM) is 

proposed to deal with the mechanical problems under the impact of 

uncertainties. 

2. The introduced method is able to handle the mixed design variables with 

continuous, discrete and integer types. 

3. To the best of our knowledge, the RBDO formulation for two systems is given 

in this study for first time and hence, new optimal solutions are presented. 
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Thesis Outline 

Following the three contributions defined above, the thesis is structured into five chapters as 

illustrated in Fig. 1. 

Chapter 1 gives an overview of the design optimization including the main concerns for 

DDO and RBDO. The basic formulations corresponding to the two processes are presented 

and the related methods are reviewed. 

Chapter 2 provides a literature survey on the synthesis of cam-follower mechanisms, in 

which the optimization of cam design and the motion curves of follower are the two interested 

topics. The principle classifications of these systems are also included in the chapter and the 

main issues of cam theory are revised.   

Chapter 3 presents the variant of the DE algorithm developed in this thesis. The 

effectiveness of the new deterministic optimization approach is evaluated through solving 

four real-world engineering benchmarks, and the obtained results are compared with those 

available in the literature. 

Chapter 4 addresses the design optimization of disc cam mechanism with translating 

roller and flat-face followers. For each type of follower shape, the optimization problem is 

formulated and an application example is presented to understand and discuss the assumptions 

adopted in the design process. 

Chapter 5 introduces the new probabilistic optimization approach, namely RDS-MADE-

NM. To confirm the search performance of this integrated approach, six mechanical design 

problems and a real challenging application of cylindrical spur gear are studied in the chapter. 

Finally, the research findings of the thesis are summarized and recommendations for 

future research study are proposed. 
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1.1 Introduction 

Design optimization of engineering systems involves complex problems with several conflict 

considerations. The aim of engineers is the search for perfect solutions that achieve the 

desired objectives while satisfying the prevailing requirements. These solutions can be 

associated with the minimization of cost functions such as weight and material volume, or 

maximization of profit functions such as strength and efficiency. Nowadays, optimization 

takes much importance in almost every aspect of engineering design and its applications can 

be seen in a number of fields including, for instance, mechanics (Yildiz et al. 2019), 

automotive (Sun et al. 2018), civil engineering (Bekdaş et al. 2019), architecture (Ding et al. 

2018), electronics (Tu et al. 2018), electricity distribution (Tan et al. 2020), and aerospace 

(Wu 2020; Champasak et al. 2020).  

The process of solving an optimization problem is complicated by the inherently random 

nature of the input data. Traditional deterministic approaches for design optimization assume 

partial safety factors to accounts for the aleatory uncertainties. But due to the unavailability of 

approved rules in determining suitable values for these factors, deterministic optimization is 

usually imprecise and does not necessarily ensure the best balance between the economic cost 

and required safety (Carter 1997; Libertiny 1997). Over the last two decades, many 

probabilistic approaches handling uncertainties have been developed and employed to deal 

with engineering design (Phadke 1995; Melchers 1999; Tsompanakis et al. 2008). The well-

known effective methodology is the reliability-based design optimization RBDO which 

quantifies closely the system uncertainties using probability theories and statistics. According 

to this, the design results of RBDO are more reliable and less conservative than those 

obtained using factors of safety concept.  

In this context, the present chapter aims at giving an overview of optimization-based 

design considering both DDO and RBDO processes. The chapter initially deals with DDO 

which provides the basic knowledge of design optimization. Reliability-based design 

optimization is then followed in which the various methodologies are reported and the main 

formulations are discussed. A demonstrative example is studied in the end of this chapter to 

show the difference between the two processes. 
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1.2 Deterministic Design Optimization (DDO) 

Deterministic optimization per definition refers to the process of finding the best values for 

design parameters of a given system without modeling the uncertainty. Conventionally, an 

optimization problem can be described by a vector of design variables, an objective function 

and a set of constraints. The vector of design variables is the set of decision parameters that 

have to be determined to acquire the desired structural performance. The objective function or 

the fitness expresses the objectives that need to be optimized and the constraints are the 

conditions that must be satisfied to produce the feasible design. Additionally, there are side 

constraints imposed on the design variables as lower and upper bounds to define the search 

space. In the deterministic formulation of the design optimization problems, the design 

variables are assumed to be deterministic and the objective functions as well as the constraints 

are determined based on their nominal values (Arora 1990). 

1.2.1 Optimization Problem Formulation 

Typically, a design optimization problem can be defined as the search for the combination of 

design variable values that either minimize or maximize the objective function value while 

respecting certain given constraints. The standard form for a deterministic optimization 

problem can be mathematically given as (Deb 2012): 

 

 

  0,     1,....,

  

( ) 0,     1,..

min/ max :

.,

  

s.t.:  

 

i
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g d i k

h

find d

d

d d d

d j m

 






 

L U

                                                                                                   (1.1)                                                                                                                                                                                         

where 𝑑 represents the vectors of design variables, 𝑓(. ) represents the objective function, 

and g𝑖 (𝑖 = 1,2, … . 𝑘) and  ℎ𝑗(𝑗 = 1,2, … . 𝑚)  denote, respectively, the inequality and equality 

constraints. The search space of design variables vector is bounded by the lower 𝑳 and upper 

𝑼 limits, referred to as the side constraints. In most practical optimization problems, the 

fitness and the constraints are often expressed as implicit functions of the design variables and 

the evaluation of these functions generally involves numerical simulation techniques such as 

the finite element method (Rao 2019).  
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1.2.2 Optimization Problem Classifications 

From the standard formulation, the problem stated in Eq. 1.1 is called a single-objective, 

constrained, non-linear optimization problem. In fact, there are many types of design 

optimization problems which can be classified in several ways: 

According to the number of objectives, optimization problems are classified into single-

objective and multi-objective problems (Zhou et al. 2011). A single-objective problem has 

only one objective to be optimized, while a multi-objective problem involves two or more 

objectives to be optimized concurrently. 

Based on the existence of constraints, optimization problems can be classified as 

constrained and unconstrained problems (Papalambros 1995). A constrained problem is stated 

with one or more constraints, whereas unconstrained problem is stated without constraints. 

Depending on the nature of the equations involved for the objective function and the 

constraints, optimization problems are classified as linear and nonlinear programming 

problems (Arora 1990). If both the objective function and the constraints are all linear 

functions of the design variables, the problem is said to be a linear programming. If, however, 

either the objective function or the constraints are nonlinear, the problem is said to be a 

nonlinear programming.  

According to the permissible values of design variables, optimization problems may also 

be classified into continuous and discrete problems (Rao 2019). Design variables of a 

continuous problem can take their values from within permitted intervals. In contrast, design 

variables of a discrete problem are restricted to take only discrete (or integer) values. 

Another important criterion of classifying optimization problems is based on the type of 

the design variables to be considered. Accordingly, optimization problems can be 

distinguished into three categories:  

 Sizing optimization problems: design variables of this category are associated 

with geometrical dimensions such as thickness of cam, module of gear, and length 

of beam (Haftka and Gurdal 2012; Deb 2012). 

 Shape optimization problems: problems of this type include the geometry 

variables describing the shape of the designed parts (e.g. height of a shell) 

(Belegundu and Rajan 1988; Masmoudi et al. 1995). 
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 Topology optimization problems: problems of the last category involve design 

variables concerning the material distribution and the structural configuration (e.g. 

truss and frame structure) (Kirsch 1989; Buhl et al. 2000). 

1.2.3 Optimization Methodologies 

Development and application of optimization methods for engineering design is an intensive 

topic that has attracted increasing attention in operational research, especially with the great 

advance of computing technology. In the last fifty or so years, a large variety of optimization 

algorithms have been developed and adopted to solve various types of problems in different 

domains. Basically, optimization algorithms can be divided, according the optimum search 

mode, into two main classes: Local Optimization Algorithms, and Global Optimization 

Algorithms (Cavazzuti 2012; Boussaïd et al. 2013). A generalized flowchart for describing 

the classification of optimization methods in the literature is outlined in Fig. 1.1. 

Optimization Methods

Global  Optimization Algorithms

Gradient-free Algorithms

  Powell’s algorithm (Powell 1964)
  NM   (Nelder and Mead  1965)

Local  Optimization Algorithms

Gradient-based Algorithms

CGA  (Fletcher and Reeves  1964)
SDA  (Pallaschke and Recht  1985)

Human-based Algorithms

   HS          (Geem et al. 2001)
  TLBO     (Roa et al.  2011)
  ISA         (Gandomi 2014)

Evolutionary Algorithms

   GA         (Holland 1975)

   DE        (Storn and Price 1995)
   BBO     (Simon 2008)

Physics-based Algorithms

   SA    (Kirkpatrick et al. 1983)

  GSA  (Rashedi et al.  2009)
   RO (Kaveh and Khayatazad  2012)

Swaem-based Algorithms

 PSO  (Kennedy and Eberhart 1995)

 ACO  (Dorigo et al. 2006)
ABC  (Karaboga and Basturk  2007)

 

Fig. 1.1 Classification of optimization methods. 

1.2.3.1 Local optimization algorithms 

As indicated by the name, local optimization algorithms are iterative processes that always 

search for the optimum in the neighborhood of a starting position. These methods typically 

start with the selection of an initial point and depend on specific rules for moving from one 

solution to the other. The objective function is evaluated at each solution and its values are 
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sequentially improved until the desired convergence is achieved (Ravindran et al. 2006; 

Wehrens and Buydens 2006).  

Local optimization algorithms can be broadly classified into two types: gradient-based 

algorithms (Arora 1990; Papalambros 1995) and gradient-free or direct algorithms (Parkinson 

et al. 2013; Rao 2019). Gradient-based algorithms use the gradient information of the 

objective function and constraints to explore the search space and reach the optimum. They 

are mainly divided as either first-order or second order methods, depending on whether the 

first partial derivatives or the second partial derivatives of the functions are required. Popular 

examples of first-order methods include the Conjugate Gradient Algorithm (CGA) (Fletcher 

and Reeves 1964) and the Steepest-Descent Algorithm (SDA) (Pallaschke and Recht 1985). 

For the second-order methods, the well-known quasi-Newton algorithm (Rosen1966) is a 

good example. 

Direct search algorithms, on the other hand, do not require the determination of any 

derivative during the search process. They are based directly on evaluating the objective 

function at a sequence of points and comparing their values to find the optimum. Therefore, 

this type of search methods is generally applicable to problems whose functions are 

discontinuous and its differentiation is relatively difficult (Onwubiko 2000). The most well-

known examples of direct search methods are Powell’s algorithm (Powell 1964) and the 

simplex algorithm of Nelder and Mead (Nelder and Mead 1965). Both algorithms have a high 

ability to handle nonlinear, unconstrained optimization problems. Powell’s algorithm is based 

on the concept of conjugate directions, while the Nelder–Mead (NM) algorithm depends on a 

set of simple rules that reflects the worst vertex through the centroid of the simplex. 

In general, local optimization algorithms are extensively used for solving optimization 

problems in engineering. These techniques are popular because they are efficient to attain the 

optimum, using a reasonable number of function evaluations, and require little problem-

specific parameters’ setting. However, these algorithms have some deficiencies which include 

that they often tend to obtain local optimal solutions, they are not suitable for solving discrete 

and multi-objective optimization problems, as they have difficulty for solving problems 

involving large number of constraints (Wehrens and Buydens 2006; Venter 2010).  

1.2.3.2 Global optimization algorithms 

In order to surmount the limitations of the methods presented in the previous section, a new 

class of global optimization algorithms has been introduced as adequate alternative. These 
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techniques, often referred to as metaheuristic algorithms, have a great capability to search in 

the whole design space and can provide solutions near to the global optimum. They are 

typically based on mechanisms inspired from nature and have the advantage of being 

successfully applied for complex and real-world optimization problems (Yıldız and Yıldız 

2019; Abderazek et al. 2020). 

Research worldwide in the metaheuristic field has produced a large number of 

optimization algorithms which can be classified according to several criteria in the literature 

(Birattari et al. 2001; Talbi 2009). By far the most common classification of metaheuristics is 

to take into account their original source of inspiration. In this way, they can be grouped as 

evolutionary algorithms, swarm-based algorithms, physics-based algorithms, and human-

based algorithms. The first group contains the algorithms inspired by natural evolutionary 

phenomena. The two most popular techniques established here are Genetic Algorithm (GA) 

(Holland, 1975) and Differential Evolution (DE) (Storn and Price 1995), which simulate 

biological evolution processes. Other techniques that fall into this group include Evolutionary 

Programming (EP) (Fogel et al. 1966), Genetic Programming (GP) (Koza 1994), Evolution 

Strategy (ES) (Beyer and Schwefel 2002), and Biogeography-Based Optimization (BBO) 

(Simon 2008). 

In the second group, swarm-based algorithms mimic the best features of collective 

behavior of animals and insects in nature. The most common techniques include Particle 

Swarm Optimization (PSO) (Kennedy and Eberhart 1995), which is inspired by bird flocks 

behavior, Ant Colony Optimization (ACO) (Dorigo et al. 2006), which is inspired by the 

behavior of ants in an ant colony, and Artificial Bee Colony (ABC) (Karaboga and Basturk 

2007), which is inspired by the honey bee behavior. In the recent decade, many swarm 

intelligence techniques have been developed such as Bat-inspired Algorithm (BA) (Yang 

2010), Fruit fly Optimization Algorithm (FOA) (Pan 2012), Dolphin Echolocation (Kaveh 

and Farhoudi 2013), Grey Wolf Optimizer (GWO) (Mirjalili et al. 2014), Whale Optimization 

Algorithm (WOA) (Mirjalili and Lewis 2016), and Grasshopper Optimization Algorithm 

(GOA) (Saremi et al. 2017). 

The third group of metaheuristics includes physics-based algorithms that imitate the 

physical rules in the universe. Some of the well-known examples for this category are 

Simulated Annealing (SA) (Kirkpatrick et al. 1983), which simulates the annealing technique 

used by the metallurgists, Gravitational Search Algorithm (GSA) (Rashedi et al. 2009), which 

is based on the gravitational force acting between the bodies, and Ray Optimization (RO) 
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(Kaveh and Khayatazad 2012), which is based the Snell’s light refraction law.  

In the last group, metaheuristic algorithms are based on the simulations of some human-

related concepts. Two of the most popular human-inspired techniques are Harmony Search 

(HS) (Geem et al. 2001), which works on the principle of music improvisation in music 

players, and Teaching-Learning-Based Optimization (TLBO) (Roa et al. 2011), which works 

on the principle of influence of a teacher on its learners. Other popular techniques are Mine 

Blast Algorithm (MBA) (Sadollah et al. 2013), Social-Based Algorithm (SBA) (Ramezani 

and Lotfi 2013), Interior Search Algorithm (ISA) (Gandomi 2014), and recently Political 

Optimizer (PO) (Askari et al. 2020). 

1.2.4 Multi-Objective Optimization 

The discussion of deterministic optimization would not be sufficient without also mentioning 

the multi-objective formulation. In the wide variety of problems in engineering, the decision 

maker aims to optimize a number of objectives simultaneously. The different objectives are 

usually conflicting where the variables that optimize one objective may be far from optimal 

for the others. In cam design problems, for instance, minimizing the size of the cam and 

maximizing its strength are two objectives not compatible. Therefore, it is most necessary to 

compromise between the two performance criteria by selecting the appropriate values of the 

cam dimensions.  

Formally, a multi-objective optimization problem involves multiple objectives which 

need to be optimized concurrently. As in single-objective optimization problem, it can contain 

a number of constraints that must be satisfied at any feasible solution. Since the considered 

objectives may be either minimized or maximized, the multi-objective optimization problem 

in the general form can be stated as (Deb 2001):  
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where 𝑛 represents here the number of the objective functions. The problem shown above 

usually does not have a unique optimal solution, but rather a multitude of optimal solutions 

that provide a potential compromise among the objectives. These solutions are known as 
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Pareto-optimal solutions or non-dominated solutions (Pareto 1964, 1971). 

Several techniques have been made to solve the multi-objective optimization. One of the 

most intuitively used is the weighted sum method, which was originally proposed by Gass 

and Saaty (1955). The main idea of this technique is to convert the multiple objective 

functions into one objective function by associating each objective with a weighting factor. In 

this manner, the multi-objective problem becomes a single-objective one as follows: 
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The values of the weighting factors 𝑤𝑞 are selected by the decision-maker considering the 

relative importance of each objective. In order to find several Pareto optimal solutions, the 

optimization problem shown in Eq. 1.3 should be solved repeatedly through modifying the 

weights in the global objective function (Diwekar 2008). 

Another popular alternative technique for solving multi-objective problems is the ε-

constraint method, which was initially demonstrated by Haimes (1971). According to this 

technique, the single most significant objective function 𝑓𝑙 is optimized whereas the others are 

used as constraints bound by some allowed levels 𝜀𝑞 . Thus, the new optimization problem 

takes the following form: 
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                                                                                     (1.4) 

The set of non-dominated solutions can be derived by using multiple different values for  𝜀𝑞. 

In this technique, the decision-maker needs to provide the range of the reference objective. In 

addition, it must be provided the increment for the constraints imposed by the levels  𝜀𝑞 . This 

increment determines the number of the non-dominated solutions generated (Jaimes et al. 
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2009). 

Apart from the conventional approaches, which turn the original multi-objective 

optimization into a single-objective optimization by either forming a weighted combination of 

the different objectives or by treating some of the objectives as constraints, there exist 

approaches that can solve the multi-objective problems directly, such as evolutionary 

algorithms (Schaffer 1984). Evolutionary algorithms for multi-objective optimization provide 

a set of Pareto optimal solutions by one running rather than solve a sequence of single-

objective problems. Among the well-known approaches, the Non-dominated Sorting Genetic 

Algorithm II (NSGA-II) developed by Deb et al. (2002) is widely used due to its high 

resolving capacity for complex multi-objective combinatorial problems. 

1.3 Reliability Based Design Optimization (RBDO) 

An optimization process that accounts for feasibility in the presence of uncertainty is 

commonly referred to as RBDO. RBDO provides an alternative to conventional deterministic 

optimization and seeks for the adequate balance between cost and safety. The two main 

components of RBDO structure are reliability analysis and optimization (Ulucenk 2009). 

Reliability analysis is the inner component that focuses on handling the constraints in 

probabilistic term to ensure that the required level of safety is satisfied. In this framework, the 

random quantities involved in the constraints are quantified and their statistical characteristics 

are defined using apposite probability distributions. On the other side, optimization is the 

outer component that focuses on searching for the desired performance under the observance 

of the probabilistic constraints.  

1.3.1 RBDO Problem Formulation 

A typical RBDO is modelled as a minimization optimization problem where the lowest cost is 

taken as an objective and the reliability requirements are treated as constraints. In RBDO, 

three types of quantities are used: deterministic design variables, random design variables and 

random parameters. The deterministic design variables are computed based on their nominal 

values with negligible uncertainties, while the random design variables and random 

parameters are computed based on their mean values with uncertainties property being 

considered. Mathematically, the basic RBDO formulation can be described as follows (Aoues 

and Chateauneuf 2010): 
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where 𝑑 and 𝑥 are, respectively, the vectors of deterministic and random design variables, 

and  𝑝 is the vector of random parameters. The symbol (𝜇) denotes the mean of its 

corresponding variable, and 𝑳 and 𝑼 as in the deterministic formulation refer to the lower and 

upper bounds, respectively. In addition, Prob(. ) is the probability operator, and 𝑅𝑖
𝑡 is the 

target reliability of the ith constraint satisfaction specified by the designer. Here, only 

inequality constraints g𝑖  are considered. This is because if an equality constraint involves 𝑥 

or 𝑝, there may not exist a solution for any arbitrary desired reliability against failure (Deb et 

al. 2009).  

For convenience of discussion and to avoid confusion in this thesis, we assume that 𝑦 =

{𝑑, 𝜇𝑥}  is the vector of design variables, and  𝑧 = {𝑥, 𝑝} is the random vector. 𝑁𝑦 and  𝑁𝑧 are 

the dimensions of the vectors 𝑦 and 𝑧, respectively. 

-The concern in evaluating the probabilistic constraint is to employ the following integral:  

    
 ,   0

Prob , 0    
i

i zg d z
g d z F z dz


                                                                                 (1.6) 

where 𝐹𝑧  represents the joint probability density function of the vector 𝑧. Theoretically, the 

exact computation of this integral is very difficult owing to the absence of analytical solvers. 

Simplest techniques based on stochastic simulations such as Monte Carlo Simulation (MCS) 

(Mooney 1997) and Subset Simulation (SS) (Au and Beck 2001) are usually used and 

considered as reference methods. However, the major drawback of these methods lies in the 

high number of function evaluations. To deal efficiently with the integral in Eq. 1.6, moment 

techniques such as the first and second-order reliability methods (FORM/SORM) (Hasofer 

and Lind 1974) (Breitung 1984) can be employed. The idea is to map the constraint function 

g𝑖 from the original design space (𝑍 space) to the standard normal space (𝑈 space), and then 

establish the linear (or quadratic) approximation of the function at the point of maximum 

likelihood, known as the most probable failure point (MPFP), for estimating the reliability 

(Madsen et al. 2006). The passage from the 𝑍 space to the 𝑈 space can be achieved based the 

following transformation (Rosenblatt 1952): 
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where 𝛷 and 𝛷−1 are respectively the standard normal cumulative distribution function and 

its inverse function. 𝐶𝐷𝐹𝑗 and 𝐶𝐷𝐹𝑗
−1are the cumulative distribution function and its inverse 

function of 𝑧𝑗, respectively. 𝑢𝑧 denotes the vector 𝑧 in the standard normal space. 

1.3.2 RBDO Methodologies 

The main challenge in the resolution of RBDO problem (Eq 1.5) is associated with the 

evaluation of the probabilistic constraints, as they require high numerical efforts. Many 

researches have been developed in the past few decades, aiming to overcome this difficult 

task, which are still the key obstacle for practical engineering applications. According to the 

strategies used to deal with the probabilistic constraint during the optimization process, 

RBDO methodologies can be classified basically into three categories: namely double-loop 

approaches, decoupled approaches, and single-loop approaches, as shown in Fig. 1.2. 

RBDO Methods

Double-loop Approaches

       RIA     (Nikolaidis and Burdisso 1988)

       PMA    (Tu and Choi 1999)
   

Single-loop Approaches

          SLSV       (Chen et al.  1997)

           SLA         (Liang et al.  2008)
           RDS         (Shan and Wang   2008)
           SLDM      (Li et al.  2013)

   
   
   

Decoupled Approaches

         SORA      (Du and Chen  2004)

         SAP         (Cheng et al.  2006)
         ADA        (Chen et al.  2013)
         ISV          (Huang et al.  2016)
   

 

Fig. 1.2 Classification of RBDO methods. 

1.3.2.1 Double-loop RBDO Approaches 

The basic RBDO methodology employs a double-loop procedure in which the probabilistic 

constraints evaluation is included in the main optimization loop (Fig. 1.3). This formulation 

leads to a nested optimization problem where the inner loop concerns the reliability analysis 

and the outer loop concerns the cost optimization (Wu 1994; Yu et al. 1998; Youn et al. 

2003). The two popular techniques encountered in this category are Reliability Index 

Approach (RIA) and Performance Measure Approach (PMA). RIA technique has been 

proposed by Nikolaidis and Burdisso (1988) and its principle is to search for the MPFP on the 

limit surface using the reliability index concept. This technique is simple to formulate, but it 
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requires considerable computational efforts and converges slowly owing to difficulties to 

compute the constraints reliability (Enevoldsen and Sørensen 1994). To overcome these 

drawbacks, Tu and Choi (1999) have developed the performance measure approach in which 

the probability evaluation is converted into a performance measure by solving an inverse 

reliability problem. The obtained solution of this inverse problem represents the minimum 

performance point on the target reliability surface, known as the minimum performance target 

point (MPTP).  

1.3.2.1.1 Reliability index approach (RIA) 

The classical RBDO formulation based on the reliability index approach is expressed as: 
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where 𝛽𝑖 and 𝛽𝑖
𝑡 denote respectively the structural and the target reliability indexes of the ith 

probabilistic constraint. Through transforming the random vector 𝑧 to the independent 

standard normalized vector 𝑢𝑧  (using Eq 1.7), the reliability index 𝛽𝑖 is calculated by solving 

the following minimization problem: 
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The optimal solution of this problem is the MPFP in the 𝑈 space, and can be obtained using 

some well-established algorithms such as the HL-RF iterations (Hasofer and Lind 1974; 

Rackwitz and Fiessler 1978) or the improved HL-RF iterations (iHL-RF) (Madsen et al. 

2006). According to FORM approximation (Haldar and Mahadevan 2000), the reliability 𝑅𝑖 is 

given by: 𝑅𝑖 = 𝛷( 𝛽𝑖 ). 

1.3.2.1.2 Performance measure approach (PMA) 

The basic idea of the performance measure approach is that optimizing a complex objective 

function under simple constraints is much easier than optimizing a simple objective function 

under complex constraints (Aoues and Chateauneuf 2010). Consequently, the RBDO 

formulation based on the PMA is given as follows: 
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where 𝐺𝑖 is the ith performance function evaluated by the inverse reliability analysis. Unlike 

the RIA-based RBDO, which searches for the minimum distance point from the mean values 

of the vector 𝑧 to the failure surface subject to null limit state functions, the PMA tries to find 

the failure point corresponding to the lowest performance that satisfies the target reliability 

index: 
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The optimal solution of the previous problem is the MPTP in the 𝑈 space, and can be obtained 

using many specific algorithms, such as the Advanced Mean Value (AMV), the Conjugate 

Mean Value (CMV) and the Hybrid Mean Value (HMV) (Youn et al. 2005). These 

approaches do not require a line search procedure because the search direction is simply 

determined by exploring the spherical equality constraint in Eq. 1.11. The accuracy and 

stability of PMA is demonstrated when compared with RIA in the study of Lee et al. (2002). 
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Fig. 1.3 Generalized flowchart of double-loop RBDO, modified from (Yu 2011). 

1.3.2.2 Decoupled RBDO Approaches 

The RBDO using RIA or PMA requires an expensive computation due to the repeated 

evaluation and analysis in both reliability and optimization loops. To overcome this difficulty, 

several researchers have focused on developing more computationally efficient RBDO 

methodologies, based on either decoupled or single loop procedures. Decoupled techniques 

have been introduced to separate reliability analysis from optimization process and thus, the 

evaluation of probabilistic constraints is not carried out within the main optimization loop (see 

Fig. 1.4). The most common approach in this category is the Sequential Optimization and 

Reliability Assessment (SORA), developed by Du and Chen (2004). The SORA approach 

consists in transforming the double loop in RBDO into a sequence of deterministic 

optimization and reliability analyses where the reliability information obtained from the 

previous cycle are used to shift the boundaries of the violated deterministic constraints to the 

feasible region. In this way, the design solution is improved from cycle to cycle until 

convergence.  
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There are many other approaches that use the decoupling strategy. For example, Royset et 

al. (2001) have decoupled the reliability analysis from optimization by using the concept of 

Semi-Infinite Programming (SIP) (Kirjner-Neto et al. 1998) where the failure probability 

constraints have been replaced by a parameterized first order approximation. The Sequential 

Approximate Programming (SAP) approach has been developed by Cheng et al. (2006) where 

the RBDO has been formulated as a sequence of deterministic sub-programming problems 

and the probabilistic constraints have been approximated by the first order Taylor series 

expansion. Authors in (Li et al. 2010) have proposed the Penalty-Based Approach (PBA) 

using the penalty concept in order to link the reliability requirement to the deterministic 

optimization. Chen et al. (2013) have introduced the Adaptive Decoupling Approach (ADA) 

based on the concept of SORA. Furthermore, Huang et al. (2016) have developed another 

efficient decoupling approach, known as Incremental Shifting Vector (ISV), based on the 

shifting vector technique.  

Convergence ?

Optimal Design
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No

Relability Analysis

Supplying Sensitivity Information

Start Point

Deterministic Design Optimization

P

Min Objective function

  Deterministic constraints

          Side constraintsS.t

 

Fig. 1.4 Generalized flowchart of decoupled RBDO, modified from (Yu 2011). 

1.3.2.3 Single-loop RBDO Approaches 

In addition to double-loop and decoupled approaches, the single-loop techniques have been 

introduced to convert the nested optimization loops into one loop by eliminating the inner 
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reliability loops (Fig. 1.5). This type mainly contains iterative single-loop approaches and 

complete single-loop approaches. The first subgroup of approaches employs an iterative 

procedure based on the Karush-Kuhn-Tucker (KKT) conditions to remove the reliability 

analyses, such as the Single Loop Single Vector (SLSV) (Chen et al. 1997) and the Single 

Loop Approach (SLA) (Liang et al. 2007; Liang et al. 2008). Whereas the second subgroup 

employs a direct procedure through substituting the probabilistic constraints with approximate 

deterministic ones in one step. Two approaches have been developed in this context, the 

Reliable Design Space (RDS) method (Shan and Wang 2008) and the Single-Loop 

Deterministic Method (SLDM) (Li et al. 2013). Both approaches have the same strategy that 

uses the partial derivatives at the current design point as an approximation of the derivatives 

at its corresponding MPFP. However, RDS method is derived from RIA while SLDM reaches 

the formulation based on PMA. 

Conversion of

Probabilistic

constraints

RBDO 

Formulation

DDO

Formulation

Optimal

Design

Opimization

loop

 

Fig. 1.5 Generalized flowchart of single-loop RBDO, modified from (Shan and Wang 2008). 

1.3.3 RBDO with Metaheuristics 

In the last few decades, the use of metaheuristic algorithms to solve RBDO problems has 

rapidly increased, mainly due to the development of sophisticated computing technologies 

and the extensive applications of the Finite Element Analysis (FEA). Following the double-

loop approach, António (2001) has applied the genetic algorithm GA for RBDO of composite 

structures. The probabilistic constraints have been evaluated by SORM approximation where 

the reliability index has been computed using the Newton–Raphson iterative procedure and 
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the arc-length method. Tolson et al. (2004) have employed also the GA for reliability-based 

optimum design of water distribution systems where the constraints evaluation has been 

performed based on FORM approximation. In (Yang and Hsieh, 2011), the authors have 

proposed a modified PSO algorithm, including two new features: auto-tuning and boundary-

approaching, to solve the discrete and non-smooth RBDO problem. In their work, the 

constraints reliability has been evaluated using the subset simulation. Chen et al. (2013) have 

developed an RBDO approach of composite structures by combining PSO algorithm with 

FEA. They have used an iterative procedure to estimate the reliability index of the 

probabilistic constraints. A new RBDO approach that combines PSO algorithm with Support 

Vector Machine (SVM) has been proposed by Yang and Hsieh. (2013). First, initial solutions 

have been produced randomly and their satisfaction of the probabilistic constraints has been 

checked using the subset simulation. The solutions and their feasibility labels have been used 

by the SVM classifier as the training data set to obtain the decision functions. These functions 

have been fed to the PSO algorithm to check the feasibility of the generated solutions. After a 

specific number of generations, the PSO solution has been transferred to the SVM as new 

training solutions to update the decision functions. 

Using the single-loop approach, Papadrakakis and Lagaros (2002) have applied the 

Evolution Strategy ES for reliability-based optimization of large-scale structural systems. The 

constraints reliability has been estimated by MCS combined with the importance sampling 

technique for reducing the sample size. Liao and Ivan (2014) have proposed an efficient 

RBDO approach based on PSO algorithm. The multi-variable constraint has been transformed 

into a single variable constraint using exponential polynomial coefficients and the reliability 

has been then computed by the mean of the adaptive Gauss–Kronrod quadrature. Chakri et al. 

(2018) have used an improved version of the bat algorithm, namely directional bat algorithm 

(dBA), for RBDO of engineering systems. By adopting the reliable design space technique, 

the yielded stochastic problem from the RBDO formulation has been simply converted to a 

single-loop deterministic optimization problem. Moreover, Ho-Huu et al. (2018) have 

developed a global single-loop deterministic approach, by integrating the SLDM with 

Improved DE (IDE) algorithm, for solving RBDO problems of truss structures with 

continuous and discrete design variables.  

Like for the single-objective RBDO problems, metaheuristics have been successfully 

applied to solve multi-objective RBDO (MO-RBDO) problems. Deb et al. (2009) have 

proposed a MO-RBDO approach based on NSGA-II where the evaluation of the probabilistic 

file:///C:/Users/poste01/Downloads/References%20CH%202/Storn%20and%20Price%20(1995).pdf
file:///C:/Users/poste01/Downloads/References%20CH%202/Storn%20and%20Price%20(1995).pdf
file:///C:/Users/poste01/Downloads/References%20CH%202/Storn%20and%20Price%20(1995).pdf
file:///C:/Users/poste01/Downloads/References%20CH%202/Storn%20and%20Price%20(1995).pdf
file:///C:/Users/poste01/Downloads/References%20CH%202/Storn%20and%20Price%20(1995).pdf
file:///C:/Users/poste01/Downloads/References%20CH%202/Storn%20and%20Price%20(1995).pdf
file:///C:/Users/poste01/Downloads/References%20CH%202/Storn%20and%20Price%20(1995).pdf
file:///C:/Users/poste01/Downloads/References%20CH%202/Storn%20and%20Price%20(1995).pdf
file:///C:/Users/poste01/Downloads/References%20CH%202/Storn%20and%20Price%20(1995).pdf


Chapter 1.                                                                             Design Optimization: An Overview 

23 

constraints has been performed using the Fast-PMA (Du and Chen 2001). Mathakari et al. 

(2007) have employed the multi-objective GA combined with FEA for RBDO of electrical 

transmission towers. The importance sampling technique has been used to estimate the 

probabilistic constraints. Kawaji and Kogiso (2013) have applied the multi-objective PSO to 

solve MO-RBDO problems where the SLSV technique proposed by Chen et al. (1997) has 

been adopted to deal with the probabilistic constraints. Li and Hu (2014) have provided the 

PSO approach in combination with principle components analysis for solving many-objective 

RBDO of wind-excited tall buildings, and they further have extended the framework into the 

cases with multiple granular failure probabilities (Hu and Li 2014). 

1.4 Comparative Study Between DDO and RBDO 

The difference between DDO and RBDO is illustrated in this section by studying a well -

known mathematical example (Yang and Gu 2004). The simple case study aims at showing 

the impact of uncertainties related to the structural parameters on the output of optimization. 

Regarding the RBDO formulation of this problem, there are two normally distributed random 

design variables (𝑥1, 𝑥2) and three nonlinear constraints. There are no deterministic design 

variables or random parameters. The objective function is the sum of the mean of two random 

variables. The RBDO problem is described as follows: 
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where  𝜎1 and  𝜎2 are standard deviations of the two random variables. The same target 

reliability index 𝛽𝑖
𝑡 is used for all three constraints. To investigate the difference between the 

two optimization processes, 𝑥1and 𝑥2 are treated as deterministic variables in DDO. 
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The optimization routine ‘‘fmincon’’ of MATLAB® is used to solve the problem where 

both processes start with the same initial point  𝑦 = (5,5). The results obtained by DDO and 

RBDO are listed in Table 1.1 and shown graphically in Fig. 1.6. It is evident that no matter 

what optimization problem is considered, only the first two constraints are active. When 

uncertainty is involved, consideration of the deterministic model to take place of the random 

model brings sever failure, since the solution of DDO (shown by the blue point) is located at 

the crossing of the active limit states whereas the RBDO solution (depicted by the green 

point) falls in the safe region. 

Table 1.1 Comparison results of DDO and RBDO for the mathematical example. 

Optimization 𝑓(𝑦) 𝑦1 𝑦2 g1 g2 g3 

DDO 5.1765 3.1139 2.0626 00 00 1.5643 

RBDO 6.7257 3.4391 3.2866 00 00 0.5000 

 

1 0g 
2 0g 

3 0g 

1y

2y

 

Fig. 1.6 Comparison results of DDO and RBDO processes. 

1.5 Conclusion 

Design optimization methodologies should account for the stochastic nature of design 

variables and parameters in engineering systems. In traditional deterministic approaches, the 

structural uncertainties are handled by using safety factors without direct connection with 

reliability specifications. These factors are calibrated for average design situations and cannot 

ensure consistent reliability levels for specific design conditions (Aoues and Chateauneuf 
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2010). Among the alternative modern tools, reliability-based design optimization is a suitable 

strategy for finding optimal designs with the careful control of uncertainties propagation. In 

this sense, the safety factors are optimally defined within the system, compared to 

deterministic design where they are set before undergoing the optimization process 

(Tsompanakis et al. 2008). 

Through the short overview presented about design optimization in this chapter, the 

fundamentals and concepts associated with this thesis are introduced. First, the main concerns 

of DDO have been regarded including the basic formulation, the classifications of problems, 

and the various methodologies devoted for single and multi-objective optimization. Then, the 

theoretical basis of RBDO has been described in order to give a clear vision of the links 

between the classical deterministic approach and reliability-based one. This part has provided 

a literature survey of the existing methodologies of RBDO, their main formulations as well as 

their applications with metaheuristics. 
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2.1 Introduction 

Cam-follower is one of most important and popular mechanisms used in modern machinery 

when the accuracy is required. The spectrum of engineering applications of this mechanism 

comprises a wide variety of devices and machines, such as textiles, packaging, printing 

presses, pumping devices, machine tools, food processing machines, knitting machines, 

automobile engines, transportation equipment, and control systems. 

Conventionally, a cam mechanism consists of three basic members: two moving parts, 

namely the cam and the follower, and a fixed frame. The cam is the driver member which 

transmits a specified motion to the driven member (the follower) using predetermined 

kinematic characteristics. From the practical design point of view, the main drawback of this 

mechanism is the direct contact between the cam and the follower. This contact induces a load 

torque on the cam due to friction which causes a loss of energy dissipated as heat in the two 

parts of contact. Therefore, among the existing solutions in industry, several types of follower 

systems like roller follower and flat-face follower are employed for reducing the friction and 

improving the mechanism performance (Chen 1982; Uicker et al. 2003).  

The aim of this chapter is to provide a brief introduction to the synthesis of cam 

mechanisms. The basic classifications and terminology of these systems are firstly included in 

Section 2.2, and a literature review in the area of cam design optimization is presented in 

Section 2.3. The kinematic features of follower motion are discussed in Section 2.4, and, in 

the last section of this chapter, the fundamental concepts of cam design are outlined. 

2.2 Classification and Terminology of Cam Mechanisms 

Cam mechanisms are among the simplest, versatile, and economical means of producing 

complex motion with a high level of precision. In the cam synthesis process, the primary 

concern of the designer is to determine the mechanism structure and select the suitable type of 

cam-follower combination (Wang and Lin 1989). The mechanism structure is related mainly 

to the physical form of the cam and the follower, as well as other dimensional considerations 

such as distance between the cam and the follower bearing, length of the follower bearing, 

eccentricity of the follower relative to the cam rotation center, and space required to operate 

the system. The choice of the cam-follower combination is associated with the input-output 

motion relation of the mechanism.  
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Generally speaking, the classification of cam systems as described schematically in Fig. 

2.1 can be divided according to two basic criteria, depending on the structure of the elements 

and their type of motion. For the first criteria, the cam mechanisms can be distinguished by 

referring to the shape of the cam or the follower. For the second one, they are classified in 

three ways: the input type of motion, output type of motion, and program type of output 

motion. 

Classifications of Cam Mechanisms

R-D-R-D

According to Type of Motion

R-D-R

R-R

Oscillation

Translation

Follower Shape

Flat-Face

Roller

Knife-edge

Wedge

Face

Plate

Cylindrical

According to Structure

Input Motion Output Motion Motion Program

Translation

Rotation

Shape of Cam

Fig. 2.1 Classifications of cam mechanisms. 

2.2.1 Classification According to the Shape of the Cam 

The first classification is based on the basic form of the cam disk (Uicker et al. 2003). The 

common types of cams are plate, face, cylindrical, and wedge, Fig. 2.2a, b, c, and d, 

respectively. The palate cam is the most extensive due to its compactness and availability in 

many applications. In this type, the cam axis of rotation is perpendicular to the plane of the 

follower motion. Unlike the cams of the first three types that have rotational motion, cam of 

the last type is designed to produce a translational motion. This is the simplest of all cams but 

its applications are practically limited.  
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(a)

(b)

(c) (d)

 

Fig. 2.2 Common types of cams: (a) plate cam, (b) face cam, (c) cylindrical cam, (d) wedge cam, 

modified from (Uicker et al. 2003). 

2.2.2 Classification According to the Shape of the Follower 

Cam mechanisms can also be classified through the nature of the follower surface (Angeles 

and Lopez-Cajún 2012). Fig 2.3 illustrates plat cams action with the well-knew follower 

shapes, namely, knife-edge, roller, and flat-face followers. The least used of these in 

machinery is the follower of the first type, shown in Fig 2.3a, because of its need for a sharp 

edge to contact with the cam surface. This causes a high coefficient of friction when 

compared with other follower types. By far the most widespread are the roller, and flat-face 

followers. For the roller follower (Fig 2.3b), the cam rotates in tangent with a cylindrical 

roller. This latter rolls on the cam surface and produces a pure-rolling relative motion to drive 

the follower. For the flat-face followers (Fig 2.3c), the cam rotates in tangent with a flat 

surface to provoke the follower motion.  

Another classification of followers is linked to their position with reference to the cam 

rotation center. This gives radial type, as in Figs. 2.3a, or offset type, as in Fig. 2.3b. 
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(a) (b)

(c)
 

Fig. 2.3 Plat cams action with the common follower shapes: (a) knife-edge, (b) roller, (c) flat-face, 

modified from (Angeles and Lopez-Cajún 2012). 

2.2.3 Classification According to the Input type of Motion 

This classification, applicable when the cam motion is considered, comprises two types 

(Palacios and Angeles 2012): 

 Rotating cams, as shown in Figs. 2.2a, 2.3. The cam undergoes a periodic rotation. 

 Translating cams, when the cam undergoes a periodic translation, as shown in Fig. 

2.2d. 

2.2.4 Classification According to the Output type of Motion 

Another method of classifying cam mechanisms is based on the type of follower motion 

(Rothbart and Klipp 2004), namely,  

 Translating followers, as shown in Fig. 2.3. The follower pursues a linear motion with 

respect to the frame. The applicability of this type is very riche in production 

machinery and automotive field. 

 Oscillating followers, as shown in Figs. 2.2c. In this case, the follower pursues an 
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angular motion relative to the frame. Applications of this type are rather infrequent in 

industries. 

2.2.5 Classification According to the Program type of Output Motion 

The last classification refers to the working phases of the follower. The periods of the 

follower motion, which deals with the cam profile determination, includes the rise, return, and 

dwell. According to the number of dwell periods for a complete cycle of follower motion, 

there are three scenarios of motion program (Fig. 2.4) (Shakoor 2006):  

 Rise-Return (RR), as shown in Fig 2.4a. The follower rises to the upper point and 

returns directly to its initial position with no dwell. This scenario has very limited 

applications.  

 Rise-Dwell-Return (RDR). The follower remains stationary between the rise and return 

motion periods, as shown in Fig 2.4b. This scenario is the most common. 

 Rise-Dwell-Return-Dwell (RDRD). The last scenario involves a high dwell after the 

rise of the follower and a lower dwell after the return period, Fig. 2.4c.  

(a)

(c)

(b)

Rise Return Rise ReturnDwell

Rise ReturnDwell Dwell

 

Fig. 2.4 Program types of output motion. 
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2.3 Review of Cam Design Optimization 

Cam design optimization subject is an intensive topic of investigation in the mechanical 

engineering field. Over the past decades, there has been extensive research focused on the 

design and analysis of cam mechanisms through considering several aspects and using various 

optimization methodologies. The optimization approaches used in cam design process can 

comprise mathematical programming methods such as non-linear programming and gradient 

optimizers, or metaheuristic methods such as the class of evolutionary algorithms. A literature 

review on the application of such methods for optimizing cam and follower systems is 

presented in this section. 

2.3.1 Cam Design Optimization Using Mathematical Programming Methods 

Requirements for high performance, strength and accuracy of machinery demands efficient 

methods to deal with the optimization problem of cam design. In the literature, many 

researches have been published for the cam-follower design using different optimization 

techniques. For instance, Kwakernaak and Smith (1968) have formulated in their paper an 

optimization problem for finding cam profiles with limited follower motion kinematics and 

minimal residual vibrations over a prescribed range of cam speeds. The authors have 

suggested two numerical approaches to solve the problem, including linear programming and 

quadratic optimization. Several examples have been carried out in this work, by means of a 

digital computer, and the results have showed that the presented profiles are better than the 

well-known cycloidal profile in several respects.  

Chew et al. (1983) have developed an optimization procedure for the synthesis of high-

speed cam-follower mechanisms by using the optimal control theory formulation. Trade-offs 

between the characteristics at the cam-follower interface and at the output have been 

incorporated in this procedure. Although large-scale computations are involved in the 

numerical integration, the application of optimal-control theory has been shown to be capable 

of considering both linear and nonlinear relationships between the design variables. Based on 

iterative numerical methods, Terauchi and El-Shakery (1983) have applied the Regula-Falsi 

and Newton-Raphson algorithms to minimize the size of plate cam operating a reciprocating 

roller follower. Many design constraints have been observed in this study such as the 

maximum contact stress, the follower separation and cam profile undercutting phenomena. 

Chew and Chuang (1995) have introduced a direct procedure to the minimization of 

residual vibrations over a specified range of cam speeds. Two approaches have been taken for 
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this investigation. The first formulation is based on the generalized Lagrange multiplier 

technique, and the obtained results are then checked using a nonlinear technique based on the 

generalized reduced gradient algorithm. Another attempt by (Bouzakis et al. 1997) has 

presented a non-linear programming approach, with the aid of an integrated computer aided 

design and manufacturing (CAD-CAM) model, for optimum design of a disk cam mechanism 

with oscillating roller follower. The objective is to minimize the size of the mechanism given 

by the maximum radius of the cam profile while considering a number of constructive and 

functional requirements. For constraint treatment, the exterior penalty function, known as a 

SUMT algorithm (Kuester and Mize 1973), has been employed in this research.  

According to Hwang and Yu (2005), the golden section method has been implemented 

for optimizing the cam profile of an adjustable knock-out cam-follower mechanism of a bolt 

former. In order to ensure high quality of the motion, the optimization procedure developed 

aims to minimize the maximum strike velocity between the knock-out screw and the knock-

out pin for all various knock-out strokes. Flores (2013) has presented a comprehensive 

computational approach for cam size optimization of a cam mechanism with offset or 

eccentric translating roller follower. The objective function used in his work accounts for the 

influence of the cam base circle radius, radius of the roller, and offset of the follower as 

design variables. Furthermore, additional constraints related to the performance of the cam 

mechanism are considered, namely those associated with the maximum admissible pressure 

angles and minimum curvature radius of the cam profile. The author has used the fmincon 

function of MATLAB® toolbox, which is based on the quasi-Newtonian minimization routine, 

to solve this optimization problem.  

In (Kaplan 2014), the Lagrange multipliers method has been adopted for an optimal 

synthesis of a typical high-speed cam-follower mechanism of an internal combustion engine. 

The dynamic equation governing the behavior of the system has been simplified using 

dimensionless analysis method. The resulting model has been then used to find the optimum 

cam shape to reduce the residual vibrations in the follower part of the system. Further, 

Ouyang et al. (2017) have applied the sequential quadratic programming for optimal cam 

profile by integrating a single-objective optimization procedure with a dynamic model of 

cam-follower mechanism in delivery system of an offset press. In order to improve the 

kinematic and dynamic characteristics of the mechanism synthetically, an optimization cycle, 

known as iterative process, has been introduced to implement the procedure of single 

objective optimization and dynamic simulation alternately. The example illustrated in this 
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study has demonstrated sufficiently the effectiveness of the proposed methodology. 

2.3.2 Cam Design Optimization Using Metaheuristic Methods 

Due to the increasing development of computing technology, several studies have proposed to 

use metaheuristics for design and optimization of cam mechanisms. By using the hierarchical  

GA, Xiao and Zu (2009) have tackled the cam shape optimization problem for a unique cam 

mechanism in the cam drive engine. The output torque of the engine is taken as the objective 

function and the other design specifications, including the contact stress, the pressure angle, 

and the radius of curvature, are selected as constraints. The same problem has been 

reformulated as a bi-objective considering the maximum output torque and the minimum 

Hertzian contact stress (Xiao and Zu 2010). The authors have employed the NSGA-II and a 

multi-objective optimization algorithm based on Artificial Immune Systems (AIS) for this 

investigation. The optimization results have demonstrated that the overall engine performance 

is substantially improved by the evolutionary multi-objective optimization approach 

compared with the initial design. 

Tsiafis et al. (2013) have developed a multi-objective GA to select the optimal design 

parameters for disk cam mechanism with translating flat-face follower. The design 

parameters, aimed to be optimized, are the radius of the cam base circle, the follower face 

width, and the follower offset. The optimization approach has been applied to find the best 

solutions with respect to the desired performance and to ensure the kinematic requirements. 

Subsequently, the dynamic analysis of the designed mechanism has been carried out in this 

study considering the frictional forces. Similarly, the GA approach has been investigated by 

Jana and Bhattacharjee (2017) for multi-objective optimization of cam-follower mechanism 

with simple and double harmonic profiles. The kinematic design parameters for this type of 

mechanism are the cam angle of rotation, maximum lift of the follower, and angle for 

maximum follower lift. The optimization has been achieved by the development of programs 

using MATLAB® with GA toolbox applications. 

In addition to GA, the application of other metaheuristics can be found in the field of 

cam-follower optimization. For example, Zhi et al. (2005) have implemented ant colony 

algorithms to optimize the dynamic performance of distribution cam mechanism in internal 

combustion engine. An optimization model has been developed for solving this problem and 

the results have revealed that the behavior of the system is very much enhanced. In (Bravo 

and Flocker 2011), a new particle swarm optimization algorithm has been proposed for the 
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optimization of two cam profile problems. The first case is a single-dwell cam in which the 

magnitude of the negative acceleration is minimized. In the second case, the cam is supposed 

to have a constant velocity segment where the objective is to reduce the cycle time. The 

simulation results have proved that PSO technique is robust and well suited for minimizing a 

wide variety of objective functions applicable to the design of cam-follower systems. 

Xuan et al. (2012) in their work have modeled and simulated a multi-objective dynamic 

optimization technique for reduction of residual vibration in high-speed cam mechanisms by 

using Non-Uniform Rational B-Spline (NURBS). The Improved Artificial Fish Swarm 

Algorithm (IAFSA) has been employed to optimize the best cam-follower curve and the 

results obtained have led to a significant improvement on the design parameters. Authors in 

(Torrealba and Udelman 2016) have deployed the differential evolution algorithm to define 

the optimal cam shape of a novel adjustable compliant actuator, called Bidirectional 

Antagonistic Floating Spring Actuator (BAFSA). According to the optimization procedure, 

the cam profile is designed for the maximum range of stiffness variability of the system. This 

research have exhibited that the DE technique is very effective to deal with many aspects of 

cam design.  

Later on, Djeddou et al. (2018) have used an improved variant of the DE algorithm 

named Adaptive Mixed DE (AMDE) to synthesize a disc cam mechanism with eccentric 

roller follower translation. The first part of this study performs preliminary deterministic 

optimization to find the optimum size of the cam system and to ensure its high operating 

performance. The second part is devoted to the reliability analysis whose probability of 

system failure is estimated by the approximation methods FORM / SORM and Monte Carlo 

simulation. Furthermore, Abderazek et al. (2020) have applied seven recent metaheuristics 

including salp swarm algorithm, moth flame optimization, ant lion optimizer, multi verse 

optimizer, grey wolf optimizer, evaporation rate water cycle algorithm, and mine blast 

algorithm to automate the design of cam-roller follower mechanism. The influence of 

choosing the follower motion law on the optimal design of the mechanism has been 

investigated in their work. The computational results have indicated that the utilized 

algorithms are very competitive in structural design optimization. 

2.4 Synthesis of Follower Motion Curves 

During the process of designing cam mechanisms, one of the most interesting tasks is to select 

a suitable law of the follower motion that satisfies the constraints of the application. These 
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constraints mean the relationship of the output positions of the follower to the input motion of 

the cam (Smith 2001). The choice of the follower motion law plays a key role in relation to 

the transmission performance of the cam mechanism. The desirable characteristics of the 

motion law focus on finding an optimum displacement curve for which the velocity, 

acceleration and jerk to be continuous and their peak values as small as possible. These may 

not be important when a cam is operating at low speed, but will be crucial at high speeds since 

they can result in high vibrations and may lead to a short life span for the mechanism 

(Masood 1999). 

The design of the cam profile which determines the kinematic analysis of the follower 

motion has been a subject of discourse over the past decades. Earlier studies used many 

mathematical functions which include basic curves, polynomial and Fourier series curves to 

synthesize the cam (Norton 2002; Angeles and Lopez-Cajún 2012). In recent years, spline 

curves completely have replaced the use of these conventional curves because of their 

flexibility and versatile properties. Researcher uses various forms of splines such as basic 

spline (B-spline), Bezier, and NURBS in cam motion synthesis (Nguyen 2018). 

2.4.1 Basic Motion Curves 

Traditionally, many basic forms of motion curves have been developed and applied to cam 

mechanisms including simple trigonometric and modified curves. Some of the most common 

basic laws of follower motion selected by cam designers are (Chen 1982; Cracks 1992): 

 Constant velocity motion. 

 Simple Harmonic Motion (SHM). 

 Cycloidal motion. 

 Modified sine motion. 

 Modified Harmonic Motion (MHM). 

 Modified Trapezoidal motion. 
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Fig. 2.5 Displacement diagrams for several basic 

motion laws. 

Fig. 2.6 Velocity diagrams for several basic 

motion laws. 

  
Fig. 2.7 Acceleration diagrams for several basic 

motion laws. 

Fig. 2.8 Jerk diagrams for several basic motion 

laws.      

The normalized characteristics of these motion laws including the displacement, velocity, 

acceleration, and jerk are shown in Figs 2.5 to 2.8, respectively. In constant velocity motion 

law, the follower velocity during the motion is constant and the acceleration is zero, except at 

the beginning and end points, where the acceleration reaches infinity instantaneously. Simple 

harmonic motion has smoothness in velocity and acceleration during the rise of the follower 

but exhibits a sudden change in acceleration at the ends. Therefore, this curve is suitable only 

for cams at medium or low speeds. Cycloidal motion is obtained by rolling a circle on a 

straight line. The length of the line is equal to the circumference of the rolling circle. This law 

has the smoothest motion among all of the basic laws and therefore, it is suitable for high-

speed cams (Sateesh et al. 2009).  
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Modified sine motion law is a combination of cycloidal and harmonic quadrants 

occupying different parts of the working period. It has a low maximum velocity and provides 

excellent characteristics for booth acceleration and jerk. Modified harmonic motion is an 

improved simple harmonic curve in which every cycle starts from zero acceleration. Its 

performance is good for medium and high-speed machinery. Modified trapezoidal curve can 

generate a smooth and acceptable profile that meets the design requirements. It has good 

acceleration characteristics but accompanied by rough jerk. 

The application of basic motion curves for synthesizing cam mechanisms is very 

extensive in the literature. Zigo (1967) has devised a method based on numerical integration 

of cam profiles for an arbitrary shape of acceleration curve by means of the trapezoidal rule.  

Chen (1969) has developed an approximate procedure of calculating the cam contour for a 

prescribed acceleration characteristic using the reversion of finite differences. The author has 

extended his previous study to refine the prescribed acceleration data so that it improved the 

numerical accuracy for the use of finite-difference equation (Chen 1972). On the other hand, 

he has applied the finite integration technique to synthesize the displacement curve for the 

same given conditions (Chen 1973).  

Dhande et al. (1975) have proposed a unified approach for the analytical design of three-

dimensional cam follower systems. The authors have provided generalized expressions for 

equations of the conjugate profile, the pressure angle, and the locations of the cutter. Lin et al. 

(1988) have introduced a methodology by which cam drawings and NC codes can be 

automatically created after specifying the cam motion function. This approach has been 

developed based on the combined curves fitting method. Chan and Sim (1998) have 

developed a CAD tool for optimum plate cam design using an exploratory search process 

called the Monte Carlo method. The CAD system which is an integration of the design 

calculations and an optimization algorithm allows providing an optimal solution, a graphical 

diagram, and a simulation of cam movement for different programs of follower motion. 

A new approach using universal motion curves has been synthesized in a generalized 

model by Cheng (2002). These curves are designed using sine curves and constants on an 

acceleration basis. This approach establishes generalized design equations based on a 

generalized model of the motion curves. The curve shape on each varying-acceleration 

interval may be represented by trigonometric, polynomial, exponential or other functions and 

the motion curve may be symmetric or asymmetric. Modified trapezoidal cam profile with an 

adjustable forward and backward acceleration has been investigated in (Flocker 2009). 
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Through this study, the profile is suitable for single-dwell cam and follower applications, and 

can give an easy way to adjust the maximum forward or backward acceleration to prevent 

vibration problems.  

Using the cycloidal motion and ramp curves, Kapucu et al. (2010) have presented an 

efficient approach to eliminate the residual vibration of shedding system and the associated 

mechanism that connects the heddle shafts with the cam mechanisms. Their work uses a 

simplified dynamic model of the shedding cam-linkage mechanism to create the equation of 

motion for the system. Simple harmonic motion has been used to describe the rise and return 

of the follower for disk cam with translating flat-face follower mechanism (Moise et al. 

2011). In this work, the minimum size of the mechanism has been determined by considering 

the base radius of the cam profile. Recently, Tamboli et al. (2016) have used many standard 

basic curves such as cycloidal motion, parabolic motion, uniform motion, and constant 

acceleration for dynamic analysis of high speed cam and follower systems. The first part of 

this study deals with the combined static and inertial analysis of the systems. In the second 

part, the cam follower system is analyzed for the jump speed using well known Johnson 

method for determining the follower response. 

2.4.2 Polynomial Motion Curves 

Polynomial functions are successfully utilized to design cam profiles due to their smoothness 

properties. This class of motion curves is highly versatile in high speed applications and can 

be tailored to many design specifications. The general form of a polynomial function can be 

expressed as follows (Norton 2004):  

2 3

0 1 2 3( ..........) N

Ns C C C C C                                                                                      (2.1) 

where 𝑠 is the follower displacement, 𝜃 is the cam angular position, and 𝐶𝑖 are constant 

coefficients determined on the basis of the boundary conditions imposed. By properly 

choosing the boundary conditions and the order of the polynomial function  𝑁, the suitable 

motion can usually be developed. 

The normalized motion curves using 2-3, 3-4-5 and 4-5-6-7 polynomial functions are 

depicted in Figs 2.9 to 2.12. The 2-3 polynomial curve with a degree of three is cubic in 

nature and requires four boundary conditions of displacement and velocity at the ends of the 

rise and return stroke. The acceleration has discontinuities at the end points while the jerk 

values are infinitive at these points. The 3-4-5 polynomial curve with a degree of five uses six 

boundary conditions of displacement, velocity, and acceleration at the end points. This motion 

https://www.researchgate.net/profile/Drketan_Tamboli?_sg%5B0%5D=T9zL43X82BE8xBwjXEBeEzfTAL9JV56Lj6zlec1TomuuZP-2FxPQRyP8JZ_yLb9MR069sXI.Y3OdfRVkM7pRXH5YOupN8iQT1-kkUgfbuXJJdMneH2T1PHhO89dplwWYPQqGb0NnQlE-7HDmhbqV5PaG_JvO0g&_sg%5B1%5D=crWOB_orB6BA7oY2N7XJv3OUeRCIBzXGRYHyvHzN0XG4jiS9nbx-_R5l9on67mKrjX9ssRQ.31ILi01GdLf1Yzce9N_LpRkd-0Xa89fXBGWL3WK-wpU4rUc6o558zEyFlZfOKfmw3tMmRlxX_agyYhlyYAD_QQ
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curve has an extended control as it provides zero acceleration at the ends but no control over 

the follower jerks. In the case of 4-5-6-7 polynomial function, eight boundary conditions are 

needed to be specified for finding all the polynomial coefficients. This polynomial curve 

extends the control feature producing zero jerks at the ends (Rothbart and Klipp 2004). 

  
Fig. 2.9 Displacement diagrams with different 

polynomial motion curves. 

Fig. 2.10 Velocity diagrams with different 

polynomial motion curves. 

  
Fig. 2.11 Acceleration diagrams with different 

polynomial motion curves. 

Fig. 2.12 Jerk diagrams with different polynomial 

motion curves. 

The application of algebraic polynomials for cam synthesis has been developed by 

Dudley (1948), in which the differential equations of motion are solved using polynomial 

follower motion equations. This is the first method ever proposed that designs the cam profile 

to provide the desired follower action. Stoddart (1953) further have showed an application of 

these polynomial equations and proposed that vibration of the follower of Polydyne cam will 

be close to zero as long as there is sufficient spring force to keep it in contact. The cam profile 
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is designed such that the follower position curve matches an appropriate polynomial equation 

giving the desired characteristics of the cam mechanism. This method has been apparently 

tried by many of the car companies but has not been adopted by any one because it uses an 

incomplete polynomial to specify the profile.  

Kanzaki and Itao (1972) have developed a cam design method for type head positioning 

in high-speed tele printers. They have determined the polynomial equations for the follower 

motion by considering certain boundary conditions and the characteristics of the residual 

vibrations over a wide range of rise times. Berzak (1982) has proposed a general method for 

obtaining the optimum design of a cam-follower mechanism using polynomial output 

motions. This method deals with both the kinematic and dynamic properties of the system. 

Phan et al. (1989) have investigated an indirect repetitive control theory for linear discrete 

multivariable systems using the polynomial functions. A suitable family of polynomial output 

motions are selected to obtain optimum design using a linear sum of the weighted 

performance coefficients. Proposed theory is described by numerical examples for third 

degree polynomial curves.  

Sadek and Daadbin (1990) have presented a method of smoothing the specified profile 

curve by using polynomial curve fitting. The designed cam profile produces less vibration 

than the original profile and minimizes the tendencies to bounce. Fabien et al. (1994) have 

used linear quadratic optimal control theory to design high speed cams. They have designed 

such cam profiles at a fixed operating speed as well as over a range of speeds. Also, they have 

used trajectory sensitivity minimization to design a cam profile which is insensitive to speed 

variations. All these problems are solved by using an efficient numerical procedure. Chang 

(1996) has developed a repetitive control system for high speed cam mechanism. His study 

has used third degree polynomial curve for cam lift trajectory and five degree polynomial as 

desired output trajectory.  

An alternative method called input shaping has been developed for generating automated 

motion commands to reduce the residual vibration in cam systems (Pridgen and Singhose 

2010). This method compares the reduction of vibration between 3-4-5 and 4-5-6-7 

polynomials, and takes them as smooth reference commands in single degree of freedom. 

Shala and Likaj (2013) have presented an analytical method of geometrical and kinematical 

syntheses for the exact design of cam profile. In this research, the polynomial function used to 

specify the motion can be obtained by converting the problem of cam design into a problem 

of solving the equations system of unknown coefficients. Later attempt by (Yang et al. 2014) 

has used the polynomial motion curve to analyze the reciprocating roller follower of a cam 
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system. The cam design approach presented in this study is applied for transient and heavy 

loads in the operating system of a large hydraulic press. 

2.4.3 Spline Motion Curves 

Although the basic and polynomial curves are usually adequate, they certainly do not 

represent an exhaustive list of motions which might be used in cam design. Another common 

approach in designing cams is to synthesize suitable motion curves with splines functions.  

The term “spline” refers to a smooth curve drawn through a set of plotted control points. Such 

curves can be described mathematically as piecewise approximations of cubic polynomial 

functions having all orders of continuity (Schumaker 2007). In the past few decades, spline 

curves have been widely used to develop cam profiles because of their versatility, flexibility, 

and ease of application. The research activities on this family of motion curves include B-

spline, Bezier, and NURBS. 

The class of B-spline curves is the more popular which not only interpolates a set of 

given control points, but can also allow localized modifications to be made easily without 

greatly affecting other parts of the curve (Loprencipe and Ranzo 2001). A particular property 

of B-spline is that any number of control points can be specified by a designer without 

increasing the degree of the curve. A cubic curve could then be used for many different curves 

shapes, without the need to piece curve segments together. Any number of control points can 

be added or modified to manipulate the curve shape. The general expression for a B-spline 

function that can be applied to the problem of interpolating 𝑛𝑐 constraints is written as 

follows (Zeid 1991): 
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                                                                                                                  (2.2) 

where  𝐴𝑖  are the control points, 𝐵𝑖,𝑁 is the B-spline basis function for the 𝑁𝑡ℎ order 

polynomial representation. The B-spline curve is determined by selecting values for the 

control points and the knot sequence. 

Many researchers have used the properties of B-spline curve for cam and follower motion 

synthesis. Tsay and Huey (1988) have applied B-spline functions for general synthesis of cam 

motion programs. The proposed approach allows the designer to refine locally the motion 

curve with satisfying the discrete constraints on follower displacements, velocities, and 

accelerations. Yoon and Rao (1993) have presented a design procedure for representing the 

follower displacement using piecewise cubic spline functions. They have found that cubic 
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splines are more convenient and simpler to use compared to general spline functions and also 

result in smaller peak acceleration and jerk due to the application of the minimum norm 

principle.  

Masood (1999) has developed a CAD-CAM system which graphically generates the cam 

profile on the cylindrical drum using a B-spline representation of follower curves. Eight 

different types of follower motion are considered in his research and the kinematic 

performance is based on the criteria of achieving the lowest levels of velocity and acceleration 

for each curve. An optimal synthesis for cam motion with non-constant angular velocity has 

been presented based on the dynamic model of a complete spring-actuated cam system (Kim 

et al. 2002). In order to satisfy asymmetric constraints and guarantee continuous contact at the 

cam-follower interface, the follower motion, which is dependent on the requirements during 

the closing period of a vacuum circuit breaker, has been optimized using a cubic spline. The 

optimized cam has been compared with a cam having constant angular velocity and with a 

polynomial cam. Simulation results have revealed that the dynamic behaviors of the 

optimized cam are superior to those of the original and polynomial cams. 

Qiu et al. (2005) have proposed a universal optimal approach to cam curve design. The 

approach consists of four issues that include a cam curve description using uniform B-splines, 

an objective function in a universal weighting form to integrate the design requirements, an 

automatic adjusting technique for weighting coefficient values, and an improved complex 

search algorithm to optimize the control points of B-splines. With this approach, it is possible 

to deal simultaneously with multiple objectives for either kinematical or dynamic 

optimization. Sateesh et al. (2009) have generated a new follower velocity curve using cubic 

B-spline with six control points for optimizing the cam follower motion. They have developed 

a CAD-CAM tool which provides graphical and numerical representation of follower motion 

curves, i.e. displacement, velocity, acceleration, and jerk. It also provides cam profile 

coordinates to manufacture a cam on computer numerical control machines.  

Jamkhande et al. (2012) have discussed the impact of various cam profile options 

designed using Polydyne, N-Harmonic and B-Spline methodologies on a field problem of cam 

wear for high speed engine application. According to simulation and experimental results, the 

cam profile design using B-spline method has showed the smoothest follower response 

compared to the two other methods. In recent work, Sahu et al. (2016) have proposed a novel 

design method of cam motion that approximates the basic cycloidal velocity curve using 

higher order B-spline. The motion characteristics of the desired smooth cam profile have been 
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generated by using a developed five degree B-spline free form curve with eight control points. 

The designed cam-follower system has been efficient and provided better continuity with 

uniform acceleration as compared to the basic cycloidal motion curve. 

2.5 Basic Concepts of Cam Design 

Once the follower motion is specified to synthesize the cam profile, a series of analyses 

regarding the cam mechanism performance should be performed to test the design. In such 

analyses, the following design concepts are considered (Chen 1982; Norton 2002): 

 Cam Pressure angle. 

 Cam radius of curvature. 

 Force and torque analyses. 

 Contact stress. 

The aim of this section is to present in review manner the fundamental kinematic and 

dynamic aspects of cam design, in order to better understand the main issues investigated later 

throughout this study. The description adopted here is interested only with translating roller 

and flat-face follower cam mechanisms. 

2.5.1 Pressure Angle Analysis 

The pressure angle φ is defined as the angle formed between the line of the follower motion 

and the normal direction to the cam profile at the cam-follower contact point, as displayed in 

Fig. 2.13. This angle measures the efficiency of the force transmission between the cam and 

the follower (Rothbart and Klipp 2004). Only the component of force along the direction of 

the follower motion is useful in overcoming the output load. Therefore, the perpendicular 

component should be kept as low as possible to reduce sliding friction between the follower 

and its guide way. Cam pressure angles of 30º are about the largest that can be used without 

causing serious mechanical problems. The expression that allows the evolution of pressure 

angle is given as follows (Arthur et al. 2001): 

1 '
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s e
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   
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                                                                                                                   (2.3) 

For a roller follower, the 𝛼 parameter is calculated as:  

 
2 2

b rR R e                                                                                                                (2.4) 

For a flat-face follower, 𝛼 is replaced by the following equation: 
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2 2

bR e                                                                                                                          (2.5)  

where 𝑠′ is the follower velocity with respect to the cam angle, 𝑅𝑏  is the base circle radius of 

the cam, 𝑅𝑟 is the roller radius, and 𝑒 is the offset of the follower. 



Tangent 

Normal
 Follower Motion Line

Cam Profile

 

Fig. 2.13 Visualization of the cam pressure angle. 

2.5.2 Radius of Curvature Analysis 

The radius of curvature 𝜌 is another factor that plays a vital role in the design of cam 

mechanisms, since it measures the rapidity at which the cam surface changes its direction 

(Chen 1982). As shown in Fig. 2.14, the radius of curvature at a point of the cam profile is the 

radius of a circle tangent at that point to the cam profile. This radius is positive if the center of 

the circle K is located between the cam rotation center O and the point of tangency Q; 

otherwise, this radius is negative. For a roller follower, the cam curvature radius can be 

expressed as follows (Wilson and Salder 2013): 
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           
                                                                         (2.6)  

In this case, the minimum curvature radius 𝜌𝑚𝑖𝑛 should be too greater than the roller radius 𝑅𝑟  

to prevent the undercutting phenomenon. For a flat-face follower, the curvature radius is 

written as the following (Wang and Lin 1989): 

''bR s s   
     

                                                                                                                                        (2.7) 

where 𝑠′′ is the follower acceleration with respect to the cam angle. 
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Fig. 2.14 Visualization of the cam curvature radius. 

2.5.3 Force and Torque Analyses 

There are various forces associated with the motion of the cam and follower. In cam design 

process, the magnitude, the direction and the line of forces action should be identified and 

evaluated to select the suitable dimensions the cam mechanism elements. Generally, the 

forces acting on the cam-follower system include inertia forces, spring forces, frictional 

resistances, and other external loads (Shakoor 2006). 

The inertia force 𝐹𝑖  caused by the necessity of moving the follower mass Mf is formulated as 

follows: 

'' ²i f cF M s   
     

                                                                                                                                    (2.8) 

The spring force 𝐹𝑠, which should always be large enough to ensure the permanent contact 

between the cam and follower, is proportional to the follower displacement: 

( )s s sF k s  
     

                                                                                                                 (2.9) 

For the frictional resistances, the horizontal and vertical components concern the follower 

motion relative to its bearing:  

1 2( )fF N N 
     

                                                                                                                                   (2.10) 

where 𝜔𝑐 is the cam angular velocity, 𝑘𝑠 is the constant elasticity of the spring, 𝛿𝑠 is its initial 

deflection, and 𝜇 is the coefficient of friction between the follower stem and  its bearing. 

In addition, an important part of the cam-follower system design is the determination of 

the torque, which is continually changing through the performance of any machine.  From the 

torque information, the designer is able to determine the camshaft loads, the power required to 
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drive the follower, and thus the driving motor size. The input torque Tcam created in cam-

follower mechanisms can be expressed as (Norton 2002): 

'camT F s 
     

                                                                                                                   (2.11) 

where 𝐹 is the force of the cam acting on the follower. For a roller follower, 𝐹 is calculated as 

follows: 
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For a flat-face follower, the required cam force to move the follower is given by the following 

equation: 
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                                     (2.13) 

where 𝐹𝑒  is the external applied load, 𝐶 is the follower overhang, 𝑏 is the length of follower 

bearing, and 𝜇0 is the coefficient of friction between the cam and follower. 

2.5.4 Contact Stress Analysis 

The contact stress is a significant design specification that must be considered for evaluating 

the durability of the cam mechanism. The exact determination of contact stresses for 

complicated surfaces is a difficult process. It depends strongly on the geometry and the size of 

the contacting zone. According to the theory of Hertz (1881), the contact stress problem 

between the cam and follower is simplified by assuming two parallel bodies in a linear 

contact. For cam mechanisms with translating roller followers, the Hertzian contact stress 

 𝜎𝐻𝑚𝑎𝑥 developed at the contact area can be computed as (Chen 1982): 
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For a flat-face follower shape, 𝜎𝐻𝑚𝑎𝑥 is evaluated as follows: 
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                                                        (2.15) 

where 𝑡𝑐 is the cam thickness, 𝜐1, 𝜐2 are Poisson coefficients, and 𝐸1, 𝐸2 are the elasticity 

modulus of the material for the cam and follower respectively.  
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2.6 Conclusion 

Cam-follower mechanism is preferred over a wide variety of machines because of its simple 

structure and high accuracy. The design of this mechanism is a complicated process which 

involves substantial work knowledge and several activities. The initial decision to be made is 

to identify the shape of the mechanism elements and select an appropriate combination of cam 

and follower. The next decision concerns the determination of follower motion and 

dimensional synthesis of the cam profile. After that, a number of analyses considering the 

kinematical and dynamical requirements should be studied to ensure the proper operating 

conditions. 

The object in writing this chapter is to present a typical survey on the synthesis of cam 

mechanisms. First, the common classifications and terminology used in cam design have been 

presented. Second, the different optimization approaches applied in the field of cam-follower 

design have been displayed. Third, the design of cam profile which determines the 

characteristics of follower motion has been discussed. In the sequel of this chapter, the 

theoretical foundation of the main issues associated with the cam synthesis and analysis has 

been reviewed. 
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3.1 Introduction 

Deterministic optimization of mechanical engineering structures is well known as a hard 

problem with many difficulties like nonlinearity, dimensionality and differentiability. 

Therefore, to deal with such problems effectively, it is highly needed to use powerful 

optimization algorithms that compromise between the accuracy of the solutions and the 

computational cost. In the present chapter, a novel differential evolution algorithm is 

proposed to solve the deterministic mechanical optimization problems. The proposed 

approach, named Modified Adaptive Differential Evolution (MADE), is a new version of the 

DE with two improvements. Firstly, the self-adaptive mechanism is employed in order to 

automate the tuning of mutation and crossover parameters instead of the manual mode as in 

the conventional DE. Secondly, the superiority of feasible points technique is applied to the 

selection phase instead of basic selection. 

Originally, the MADE algorithm has been developed by Hamza et al. (2018) for solving 

the design optimization problem of cam system with eccentric translating roller follower, as 

well discussed in the next chapter. To demonstrate the efficiency and applicability of the 

proposed algorithm, four engineering optimization problems are investigated and the results 

obtained are compared with those reported recently in the literature using several methods. 

Thus, the organization of the remaining chapter is as follows. The basic concepts of the 

standard DE are firstly provided in Section 3.2. Then, the developed MADE is described in 

Section 3.3 and validated in Section 3.4. Finally, some conclusions are given in Section 3.5. 

3.2 Basics of Differential Evolution 

The differential evolution DE is one of the most popular and effective evolutionary 

algorithms, initially was introduced by Storn and Price (1995). Thanks to its attractive 

features, compact structure, fewer number of control parameters, and ease of implementation, 

the DE algorithm has been widely addressing to solve many problems in various areas of 

engineering during the past two decades. We find several studies in chemical science (Dragoi 

and Curteanu 2016), gas oil and petroleum industry (Nobakhti and Wang 2006), defense 

(Starkey 2005), signal processing (Lobato et al. 2012), image registration (Jiang et al. 2013), 

power system transfer capability assessment (Wong and Dong 2005), optimal power flow 

(Biswas et al. 2018), mechanical precision engineering (Abderazek et al. 2015; Abderazek et 

al. 2017; Redjechta et al. 2019), machining applications (Yildiz 2013a; Yildiz 2013b) and 

structural design optimization (Ho-Huu et al. 2015; Ho-Huu et al. 2018). 
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Typically, the basic operators in classical DE involve four principal phases as briefly 

summarized in Fig. 3.1. The inputs parameters associated with these operators are the 

population size  𝑁𝑝, the maximum number of iterations 𝑇𝑚𝑎𝑥, the scale factor 𝐹, and the 

crossover rate 𝐶𝑟 (Fan and Lampinen 2003).  

Mutation

Convergence ?
No Yes

Initialization Crossover Selection

Stop

 

Fig. 3.1 Flowchart of the basic DE algorithm, modified from (Ho-Huu et al. 2018). 

  Phase 1: Initialization 

Similar to the population-based evolutionary algorithms, the DE starts the search with an 

initial population containing 𝑁𝑝 individuals within the search space of the design variables. 

The individuals for the first population are generated randomly using the following equation:  

   0

, , 0,1 ,t

i j i i j i iy y rand y y    L U L
    1,...,i Ny  and 1,...,j Np                                     (3.1)                                                                            

where 𝑖 corresponds to the design variable index, 𝑗 corresponds to the individual index, and 

𝑟𝑎𝑛𝑑 generates a random value uniformly distributed in the range [0,1]. In this chapter, the 

vector 𝑦 = {𝑑} is assumed to contain only deterministic design variables. After the 

initialization phase, the fitness of each solution is evaluated and the best individual 𝑦𝑖,𝑏𝑒𝑠𝑡 is 

selected (Storn and Price 1995). 

 Phase 2: Mutation 

The mutation operator serves to create a new mutated vector 𝑣𝑖,𝑗
𝑡+1 for each target vector 𝑦𝑖,𝑗

𝑡  in 

the current population. The most extensively utilized mutation strategies in the basic DE are 

(Vitaliy 2006):  
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DE/best/2:                         1

, , 1 , 1 , 2 2 , 3 , 4
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(3.6) 

where  𝑡 denotes the number of the current iteration, 𝑟1 , 𝑟2, 𝑟3, 𝑟4, and 𝑟5 are integer indices 

chosen randomly within [1,…, Np], different from each other as well as different form the 

index 𝑗, and 𝐹1  and 𝐹2 are the mutation factors. In this study, the fourth strategy DE/rand/2 is 

selected to generate the mutated vector. It usually converges slowly but exhibits powerful 

exploration ability (Xu et al. 2018). 

 Phase 3: Crossover  

The crossover operator is implemented to increase the diversity of the population in the next 

generation. The two common crossover types are binomial and exponential (Jia et al. 2013). 

However, the binomial crossover is the most often used where the trial vector   𝑤𝑖,𝑗
𝑡+1 is 

obtained by mixing the target vector 𝑦𝑖,𝑗
𝑡  with the mutated vector  𝑣𝑖,𝑗

𝑡+1 according to the 

following rule (Lieu et al. 2018): 
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                                                                              (3.7)

                                                                                                                         

where 𝑝𝑟 is an integer number chosen randomly within [1, … , 𝑁𝑦]. 

 Phase 4: Selection  

In this phase, the target vector 𝑦𝑖,𝑗
𝑡  is compared with the trial vector  𝑤𝑖,𝑗

𝑡+1 in terms of the 

fineness value and the better one will survive to the next generation. The selection scheme for 

a minimization optimization problem is implemented as follows (Das and Suganthan 2010): 
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,
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                                                                                                       (3.8)                                                                                                                                                                                                                                                            

                                                                                                                           

    

The optimization process including mutation, crossover, and selection is repeated until 

the stopping criterion (like the maximum number of iterations) is reached. 
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3.3 Modified Adaptive Differential Evolution (MADE) 

Generally, the performance of any optimization approach is evaluated by three main factors: 

the accuracy of the best obtained solution, the stability when executing several runs, and the 

convergence rate to the final result. It is well known that the standard DE is a successful 

evolutionary algorithm that has been proven to be efficient and robust for global optimization. 

However, there are still some limitations and there is room for more improvements 

(Civicioglu and Besdok 2013). In this section, a new version of the DE is proposed to 

reinforce its search capability and accelerate convergence speed (Hamza et al. 2018). The 

novel version called MADE is effectively applied for solving the deterministic mechanical 

optimization problems with continuous design variables. The first improvement is carried out 

on the mutation and crossover phases, while the second one is performed on the selection 

phase. In addition, the reflection technique is used in MADE to control the boundary of the 

search space, during the mutation phase, and the exterior penalty method is applied to handle 

the design constraints. The details of these points are presented in the following subsections. 

3.3.1 Improvement on the Mutation and Crossover Phases 

The mutation and crossover operators play a key role in exploring the whole search space and 

converging faster to the optimum. As seen in the second and third phases, the specific factors 

for these two strategies are randomly chosen without primary information. This may lead the 

DE to be poor at searching ability and hence slowly converge to a global optimal solution 

(Semenov and Terkel 2003). In fact, the DE algorithm requires an exact configuration of its 

control parameters for efficiently searching progress. Therefore, the MADE proposed 

throughout this study uses the self-adaptive jDE technique introduced by Brest et al. (2006) to 

avoid the manual tuning of the mutation and crossover parameters (𝐹1, 𝐹2 and 𝐶𝑟).  

In the jDE technique, the initial values of scaling factors and the crossover rate are firstly 

specified based on the trial and error method. After that, their values are adjusted using the 

jDE mechanism for each target vector from the current population. Thus, the new values 

influence directly the mutation, crossover and selection operations of the new individual. The 

control parameters for the DE/rand/2/bin scheme are updated at each generation according to 

the following expressions: 

  1 11

1,

1,

0,1          

        otherwise

l ut

j t

j

F rand F if
F

F

 


   
 


                                                                              (3.9)             



Chapter 3.                                                  Modified Adaptive Differential Evolution Algorithm 

52 

  2 21

2,

2,

0,1          

        otherwise

l ut

j t

j

F rand F if
F

F

 


   
 


                                                                                           (3.10) 

  3 31
0,1                     

        otherwise

t

j t

j

rand if
Cr

Cr

 


 
 


                                                                              (3.11)                                                                                                                           

where 𝐹𝑙= 0.1, 𝐹𝑢= 0.9, 𝛿𝑞 (q=1,..3) are uniform random values within [0, 1],  and 𝜏𝑞  (q=1,..3) 

represent the probabilities to adapt the parameters 𝐹1, 𝐹2 and 𝐶𝑟, respectively.  

For further clarification, the self-adaptive jDE procedure is described schematically in the 

flowchart given in Fig. 3.2. It should be noted that this technique is conducted with the same 

manner for other mutation schemes. 
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Fig. 3.2 Flowchart of jDE technique. 

3.3.2 Improvement on the Selection Phase 

The selection operator aims at comparing the trial vector created by crossover progress with 

the target vector and selecting the better one for the next generation. The idea of competing 

two solutions only in terms of the fitness value is usually inaccurate and does not necessarily 
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ensure the survival of the competent individuals. To overcome this deficiency, the MADE 

variant replaces the basic selection of the conventional DE by the superiority of feasible 

points technique proposed by Deb (2000).  

According to this approach, the comparison between the trial and target vectors are based 

on three priorities: the feasibility of the individual, the best fitness value, and the lowest rate 

of the constraint violations. This involves three possible selection scenarios as explicated as 

follows: (1) when the two compared solutions are in the feasible region, the one with better 

fitness value is selected, (2) when one solution is feasible and the other is infeasible, the 

feasible one is chosen directly, and (3) when the two solutions are infeasible, the one with the 

smaller constraint violations is preferred. For more details, the feasibility rules procedure, in 

case of minimization problem, is illustrated in the flowchart presented in Fig. 3.3. 

     1 2 3: 0,1 , : 0,1 , : 0,1rand rand rand    

Yes No   1

, , 0t t

n i j n i jP w P y  

Yes No   1

, ,

t t

i j i jf w f y 
Yes No

1

, ,:t t

i j i jy y 
1 1

, ,:t t

i j i jy w 

 1

, 0t

n i jP w  

 , 0t

n i jP y 



1

, , Comparison between  and t t

i j i jw y

1

, ,:t t

i j i jy y 1 1

, ,:t t

i j i jy w 

Yes No   1

, ,

t t

n i j n i jP w P y 

1 1

, ,:t t

i j i jy w 

Yes No

1

, ,:t t

i j i jy y 

 1

, 0t

n i jP w  

 , 0t

n i jP y 



Scenario 1  

Scenario 3  Scenario 2  

 

Fig. 3.3 Flowchart of feasibility rules technique. 

3.3.3 Constraints Handling 

3.3.3.1 Boundary constraints 

In the second phase, the mutation operator may generate individuals whose components 

violate the boundary of the search space. Therefore, in such cases, a correction procedure is 

necessary employed to check and repair the infeasible components of the individual. There 

are various correction strategies to handle the boundary constraints (Kukkonen and Lampinen 

2006; Wang et al. 2011). In this study, the well-known reflection method is employed and 

executed as follows (Juárez-Castillo et al. 2019): 
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3.3.3.2 Constraints functions  

Constraint handling to solve real-world optimization problems is one of the challenging tasks 

when using metaheuristic algorithms. For this reason, many researches have been focused on 

developing effective methods to deal with the constraints functions. These methods can be 

simply classified into four groups (Mezura-Montes and Coello 2011): penalty functions, 

decoders, special operators, and separation of objective function and constraints. The methods 

of the first group are the most frequently used in evolutionary algorithms due to its simplicity 

of application. They are based on the idea of transforming a constrained optimization problem 

into an unconstrained one by defining a new extended objective function (Mezura-Montes 

2009). Examples of penalty functions in the literature comprise exterior penalty, annealing 

penalty, adaptive co-evolutionary penalty, dynamic penalty, and death penalty (Kramer 2010). 

For further theoretical details about these methods, the interesting readers are encouraged to 

refer to the specialized literature such as (Coello 2002). 

In MADE, the exterior penalty technique adjusted by Abderazek et al. (2017) is 

considered to treat the constraints. The mathematical model of this technique is expressed as 

follows:  
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where 𝑃𝑛 is the penalty function used to compute constraint violations, and 𝜈 is a very small 

value. 

By integrating two above mentioned improvements into the DE, a so-called modified 

adaptive differential evolution MADE algorithm is developed for solving the continuous 

optimization problems. The pseudocode of the proposed MADE is shown in Algorithm 3.1. 
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3.4 Evaluation of MADE 

In order to demonstrate the performance of the new proposed algorithm, four real-world 

optimization problems from the structural engineering field are studied, namely, three bar 

truss, tension spring, welded beam, and hydrostatic thrust bearing. All the mentioned 

problems have continuous nature of design variables. The initial parameters of MADE for the 

problems are set as follows: 𝐹1 = 0.8, 𝐹2 = 0.5, 𝐶𝑟 = 0.5, 𝜏1 = 0.5, 𝜏2 = 0.2 and 𝜏3 = 0.1. 

The population size and the maximum number of function evaluations (FEs) are listed in 

Table 3.1. Moreover, for each problem, 50 independent runs are performed and the MADE 

statistical results are compared with other recent algorithms including the best, mean, worst 

solutions, and standard deviation (SD). The MADE is implemented in MATLAB
®
 and the 

optimization runs are executed on a PC i5 with a 2.2 GHz and 4 GB of RAM memory.  

The best values of objective function, design variables and constraints obtained by 

MADE in each optimization problem are presented in Table 3.2. In addition, the statistical 

results are summarized in Table 3.3. Commonly, it is remarked from the two tables that the 

developed approach can acquire the feasible global optimal solution for all problems with 

Algorithm 3.1: MADE optimization algorithm 

Input: 𝑁𝑝,  𝑇𝑚𝑎𝑥 , 𝐹1,  𝐹2, 𝐶𝑟 and 𝜏1,  𝜏2,  𝜏3.  

1 Initialize the population Eq. 3.1. 

2 Evaluate the fitness for all individuals and select the best initial solution 𝑦𝑏𝑒𝑠𝑡
1 . 

3 while  𝑡 < 𝑇𝑚𝑎𝑥  do 

4  for   𝑗 ≔ 1 𝑡𝑜 𝑁𝑝 do 

   Mutation Phase 

5   Update the parameters 𝐹1,𝑗,  𝐹2,𝑗 and  𝐶𝑟𝑗   Eqs. 3.9, 3.10, and 3.11. 

6   Generate the mutant vector 𝑣𝑖,𝑗
𝑡+1   Eq. 3.5. 

7   Handle boundary constraints  Eq. 3.12. 

   Crossover Phase 

8   Randomly chose an integer number 𝑝𝑟 within [1, 𝑁𝑦]. 

9   for  𝑖 ≔ 1 𝑡𝑜 𝑁𝑦 do 

10    if     , 0,1i j jrand Cr i pr    then 

11      1 1

, ,:t t

i j i jw v   

12    else 
 

13      1

, ,:t t

i j i jw y   

14    end 
 

15   end 
 

   Selection Phase 

16   Compare between 𝑤𝑖,𝑗
𝑡+1 and 𝑦𝑖,𝑗

𝑡  by following the flowchart of feasibility rules (Fig. 3.3). 

17  end 

18     𝑡 = 𝑡 + 1 

19 end 

Output: The best found solution  𝑦𝑏𝑒𝑠𝑡  with the corresponding fitness value 𝑓𝑏𝑒𝑠𝑡 . 
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small function evaluations number, lesser than 20,000 in case of the three bar truss and 

welded beam. This indicates that the proposed MADE is perfectly adapted for solving the 

considered problems in terms of solution quality, convergence speed, and robustness.  

Table 3.1 Np size and FEs number of the MADE for each optimization problems.  

Problem Np FEs 

Three bar truss design 10 4,000 

Tension spring 40 20,000 

Welded beam 40 18,000 

Hydrostatic thrust bearing 50 40,000 

Table 3.2 Optimal results obtained by MADE for the four engineering design problems. 

Variables Three bar truss Tension spring Welded beam Hydrostatic thrust 

 𝑑1 0.788675136255 0.051689060739 0.20572963978 5.9557806 

 𝑑2 0.408248285767 0.356717731547 3.47048866562 5.3890131 

 𝑑3 − 11.28896623541 9.03662391035 5.3587E-06 

 𝑑4 − − 0.20572963978 2.26965688 

 g1(𝑑)
 

0 0 1.8189894E-12 0.033765361542 

 g2(𝑑)
 

1.4641016204770 0 0 0.000102761472 

 g3(𝑑)
 

0.5358983795229 4.0537856140377 0 0.000108170138 

 g4(𝑑)
 

− 0.7277288051420 3.43298420860 0.000324364889 

 g5(𝑑)
 

− − 0.08072963978 0.566768002669 

 g6(𝑑)
 

− − 0.23554032258 0.000996361382 

 g7(𝑑) − − 2.7284841E-12 0.004303914875 

𝑓(𝑑) 263.8958433764 0.012665232788 1.72485230859 1625.44281765801 

Table 3.3 Statistical results obtained by MADE for the four engineering design problems. 

Problem Best Mean Worst SD 

Three bar truss 263.8958433764684 263.8958433764685 263.895843376468 2.7005E-13 

Tension spring 0.012665232788319 0.012665232788320 0.01266523278823 5.8876E-16 

Welded beam 1.724852308597364 1.724852308597365 1.72485230859736 9.6318 E-16 

Hydrostatic thrust 1625.442817658010 1625.450964132840 1625.58794200080 2.1550E-02 

3.4.1 Three Bar Truss  

The first problem deals with the design of a three-bar truss structure (Nowacki 1973) in which 

the weight is to be minimized and subjected to stress, deflection, and buckling constraints. 

The design variables come from the cross-sectional areas of the two members 𝑑1 and 𝑑2, as 

shown in Fig. 3.4. This optimization problem is formulated as follows: 
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where 𝑙=100cm, 𝑃=2KN, and  𝜎=2KN/ cm.2 

The above problem has been recently solved using several approaches like Dynamic 

Stochastic ranking based DE (DSS-MDE) (Zhang et al. 2008), DE with Level Comparison 

(DELC) (Wang and Li 2010), Constrained Optimization based on a Modified DE (COMDE) 

(Mohamed and Sabry 2012), Water Cycle Algorithm (WCA) (Eskandar et al. 2012), rank-

iMDDE (Gong et al. 2014), ε-constrained DE algorithm with a novel Local Search operator 

(εDE-LS) (Yi et al. 2016), and Adaptive Mixed DE (AMDE) (Abderazek et al. 2017). The 

results of these algorithms are collected in Table 3.4, a result in boldface means a better 

solution obtained. In terms of the standard deviation, rank-iMDDE is the better, followed by 

εDE-LS, DELC, MADE, AMDE and COMDE. However, MADE and AMDE exhibit 

superiority in terms of FEs among the compared algorithms. The convergence of MADE to 

the best solution is given in Fig. 3.5. 

 

l

P

l

l d1 d2
d3 = d1

 

Fig. 3.4 Three bar truss design. 
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Fig. 3.5 Convergence diagram of MADE for the three bar truss problem. 

Table 3.4 Comparison of MADE statistical results with literature for the three bar truss problem. 

Algorithm Best Mean Worst SD FEs 

MADE 263.8958433764684 263.8958433764685 263.8958433764686 2.7005E-13 4,000 

DSS-MDE 263.8958433 263.8958436 263.8958498 9.70E−07 15,000 

DELC 263.8958434 263.8958434 263.8958434 4.34E−14 10,000 

COMDE 263.8958434 263.8958434 263.8958434 5.34E−13 7000 

WCA 263.895843 263.895843 263.895843 8.71E−05 5,250 

Rank-iMDDE 263.89584340 263.8958434 263.8958434 0.00E+00 4,920 

εDE-LS 263.895843376468 263.895843376468 263.895843376468 2.3206E−14 15,000 

AMDE  263.8958433764684 263.8958433764685 263.8958433764686 2.7441E-13 4,000 

3.4.2 Tension Spring 

The aim of this problem is the volume minimization of a tension spring (Arora 2004), under 

constraints on shear stress, surge frequency, minimum deflection, and limits on outside 

diameter of design variables. There are three design variables consisting of the wire 

diameter 𝑑1, the mean coil diameter 𝑑2, and the number of active coils 𝑑3, as illustrated in 

Fig. 3.6. The mathematical formulation of the optimization problem can be described in the 

following form: 
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The convergence of MADE to the best fitness value for this problem is plotted in Fig. 3.7. 

The optimal results obtained by MADE and other algorithms, including Ideal Gas Molecular 

Movement (IGMM) (Varaee and Ghasemi 2017), modified Backtracking Search Optimization 

Algorithm (SSBSA) (Wang et al. 2019), rank-iMDDE, COMDE, DSS-MDE, WCA, DELC 

and εDE-LS are reported in Table 3.5. As it can be seen from the table, the best solution 

found for this example is 0.01266523. Further, among the compared algorithms, it is observed 

that MADE is more robust in solving this problem with a standard deviation value of 

5.8876E− 16. In addition, the proposed variant gains the best results compared with the other 

eight approaches regarding the values of best, mean, and worst solutions. 

 

PP

d2

d1  

Fig. 3.6 Tension spring design. 
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Fig. 3.7 Convergence diagram of MADE for the tension spring problem. 

Table 3.5 Comparison of MADE statistical results with literature for the tension spring problem. 

Algorithm Best Mean Worst SD FEs 

MADE 0.012665232788319 0.012665232788320 0.012665232788323 5.8876E-16 20,000 

IGMM 0.0126653  0.0128657  0.0135125  2.56E−04  4,000 

SSBSA  0.012665 0.012749 0.013300 1.31E-04 36,030 

Rank-iMDDE 0.012665233 0.012665264 0.01266765 2.45E−07 19,565 

COMDE 0.012665233 0.012665233 0.012665233 3.09E−06 24,000 

DSS-MDE 0.012665233 0.012669366 0.012738262 1.25E−05 24,000 

WCA 0.012665 0.012746 00.012952 8.06E−05 11,750 

DELC 0.012665233 0.012665267 0.012665575 1.30E−07 20,000 

εDE-LS 0.012665233 0.012665233 0.012665233 5.0075E−14 20,000 

3.4.3 Welded Beam 

This optimization problem has been initially formulated by Rao (2019) where the goal is to 

minimize the manufacturing cost of a welded beam (Fig. 3.8). This example involves four 

design variables and seven constraints which are related to mechanical quantities, such as 

shear stress, bending stress, buckling and displacement. The problem can be expressed as: 
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The convergence diagram of MADE for the welded beam optimization problem is 

demonstrated in Fig. 3.9. In this case, MADE is compared with Multiple trial vector-based 

DE (MDDE) (Mezura-Montes et al. 2007), Social-Spider Algorithm (SSO-C) (Cuevas and 

Cienfuegos 2014), SSBSA, rank-iMDDE, COMDE, DELC, and WCA. The comparison 

results listed in Table 3.6 show that all the mentioned algorithms are able to find the global 

optimal solution. MADE and rank-iMDDE outperform the others with the lower standard 

deviation value. Besides, with the smallest Fes number, MADE is considered the most 

efficient among here tackled algorithms.  

Load

14 in

d1

d2

d3

d4

d4

 

Fig. 3.8 Welded beam design.  
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Fig. 3.9 Convergence diagram of MADE for the welded beam problem. 

Table 3.6 Comparison of MADE statistical results with literature for the welded beam problem. 

Algorithm Best Mean Worst SD FEs 

MADE 1.724852308597364 1.724852308597365 1.724852308597366 9.6318 E-16 18,000 

MDDE 1.725  1.725  1.725  1.00E−15  24,000 

SSO-C 1.7248523085 1.746461619 1.799331766 2.57E−02 25,000 

SSBSA 1.724851 1.910178 2.217041 0.154774 34,340 

Rank-iMDDE 1.724852309  1.724852309  1.724852309  9.06E-16  19,830 

COMDE 1.724852  1.724852  1.724852  1.60E−12  20,000 

DELC 1.724852  1.724852  1.724852  4.10E−13  20,000 

WCA 1.724856  1.726427  1.744697  4.29E−03  46,450 

3.4.4 Hydrostatic Thrust Bearing 

In this problem, the power loss during the operation of a hydrostatic thrust bearing (see Fig. 

3.10) is minimized (Coello 2000). Optimization constraints are on load carrying capacity, 

inlet oil pressure, oil temperature rise, oil film thickness, and physical restrictions.  There are 

four design variables including the bearing step radius 𝑑1, the recess radius 𝑑2, the oil 

viscosity 𝑑3, and the flow rate 𝑑4. The formulation of the optimization problem is given as 

follows: 

file:///D:/programmes%20_article/References%20CH3/Coello%20(2000).pdf
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Hydrostatic thrust bearing optimization problem has been previously solved using TLBO 

(Rao et al. 2011), ABC (Rao et al. 2011), Novel Differential Evolution (NDE) (Mohamed 

2018), rank-iMDDE and MMDE. The statistical results of the six competitive algorithms are 

tabulated in Table 3.7. Although ABC shows slight superiority in terms of the best solution, 

MADE can produce better results with respect to the mean and worst solutions. Furthermore, 

MADE is the most stable among the compared algorithms in solving the problem based on the 

lowest value of standard deviation (2.1550E-02). The convergence history of MADE for this 

problem is depicted in Fig. 3.11. 
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Fig. 3.10 Hydrostatic thrust bearing design.  

 

Fig. 3.11 Convergence diagram of MADE for the hydrostatic bearing problem. 

Table 3.7 Comparison of MADE statistical results with literature for the hydrostatic bearing problem. 

Algorithm Best Mean Worst SD FEs 

MADE 1625.44281765801 1625.45096413284 1625.58794200080 2.1550E-02 40,000 

NDE 1625. 44276496 1692. 67262344 1789. 233019362 53 .7568525 24,000 

TLBO 1625.443000 1797.707980 2096.801270 − 25,000 

ABC 1625.442760 1861.554000 2144.836000 − 25,000 

Rank-iMDDE 1625.460142 1724.727935 1894.734127 − 25,000 

MMDE 1638.403234 1759.103885 2553.358476 − 25,000 
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3.5 Conclusion 

This chapter presents a new version of the DE algorithm called MADE for solving the 

deterministic mechanical optimization problems with continuous design variables. The 

proposed MADE is based on two improvements including the self-adaptive mechanism to 

update the values of mutation and crossover parameters, and the feasibility rules for the 

selection step. This helps the developed approach increase the search capability of the basic 

DE and acquire a better convergence rate. 

The performance of MADE has been verified through four engineering examples. As 

shown in Tables 3.2 and 3.3, the MADE is successfully adapted to optimize the several design 

problems with high-quality solutions and robustness. According to the statistical analysis 

illustrated in Tables 3.4 to 3.7, it is concluded that the MADE is a very competitive approach 

when compared with other recently published optimizers such as DSS-MDE, DELC, 

COMDE, WCA, rank-iMDDE, εDE-LS, AMDE, IGMM, SSBSA, MDDE, SSO-C, TLBO, 

ABC, and NDE. In addition, from the convergence histories shown in Figs 3.5, 3.7, 3.9 and 

3.11, it can be easily seen that MADE have detected best solutions for the four optimization 

problems in early generations. This demonstrates that with two proper improvements, the 

developed MADE is efficient, robust, and can be considered as a competent optimization tool 

to deal with the challenging problems in the real mechanical engineering applications. In the 

next chapter, the MADE is extended to optimize the design of disc cam mechanism where 

two popular types of follower system are investigated.  
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4.1 Introduction 

The problem of cam design optimization, as pertaining to cam mechanisms with translating 

roller and flat-face followers, is handled in this chapter. The problem addressed here is solved 

using the developed MADE and three other metaheuristics, namely, Grey Wolf Optimizer 

(GWO) (Mirjalili et al. 2014), Whale Optimization Algorithm (WOA) (Mirjalili and Lewis 

2016), and Sine-Cosine Algorithm (SCA) (Mirjalili 2016).  

In the first application, the optimal design of disc cam mechanism with eccentric roller 

follower translation is performed. The optimization procedure is developed for three 

objectives: minimizing the cam size, maximizing the mechanism efficiency, and maximizing 

the cam mechanical resistance. To enhance the design quality of the mechanism in the 

optimization process, more geometric parameters and more design constraints are included in 

the problem formulation.  

The second application deals with the optimization of disc cam mechanism with flat-face 

follower translation considering several laws of the follower motion. According to the 

optimization process, the objective is to minimize the size of the mechanism under a number 

of constraints regarding the performance requirements as well as geometric restrictions. A 

demonstrative example evaluating the proposed design methodology and showing the 

applicability of the algorithms is presented for each type of mechanism. 

4.2 Metaheuristics Description 

The first section of this chapter provides a short description of the algorithms employed to 

optimize the cam design problems, GWO, WOA, and SCA. For full details about these 

methods, interested readers can refer to their corresponding literature. 

4.2.1 Grey Wolf Optimizer (GWO) 

The GWO algorithm has been developed by Mirjalili et al. (2014) based on emulating the 

social hierarchy and hunting behavior of grey wolves in nature. Like other metaheuristics, this 

algorithm starts the search process by creating a set of random candidate solutions. During the 

optimization, the three best candidate solutions are saved and considered as alpha, beta, and 

delta wolves, who take the lead toward to promising regions of the search space. The rest of 

grey wolves are assumed as omega and required to encircle alpha, beta, and delta with the aim 

to find better solutions. The grey wolf hunting comprises three phases (Muro et al. 2011): (1) 

tracking, chasing and approaching the prey, (2) pursuing, encircling and harassing the prey 
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until it stops moving, and (3) attacking the prey.  

4.2.2 Whale Optimization Algorithm (WOA) 

The WOA is one of the recent swarm intelligence techniques introduced by Mirjalili and 

Lewis (2016) to optimize engineering design problems. This algorithm mimics the hunting 

strategy of humpback whales in sea. The humpback whales prefer to hunt school of krill or 

small fishes near the surface. This foraging is accomplished by swimming around the prey 

within a shrinking circle and creating distinctive bubbles along a circle or ‘9’-shaped path. In 

addition to the initialization phase, the WOA involves the following: (1) encircling prey, (2) 

spiral bubble-net attacking method, and (3) search for prey. 

4.2.3 Sine-Cosine Algorithm (SCA) 

This is another recent metaheuristic proposed by Mirjalili (2016) for solving constrained 

optimization problems. The basic idea is to simulate the mathematical behaviors of 

trigonometric sine and cosine functions. The SCA algorithm starts the search process by 

generating several random solutions. Then, the algorithm stores the better solution obtained  

so  far,  denotes  it  as  the destination point, and updates the other solutions to create new 

ones according to sine and cosine functions. Finally, the optimization procedure is stopped 

when the maximum number of iterations is satisfied. 

4.3 Optimum Design of Cam-Roller Follower Mechanism 

A schematic representation of a disc cam mechanism with offset translating roller follower is 

shown in Fig. 4.1. The cam is supposed to rotate with a constant angular velocity  𝜔𝑐. The 

translating roller follower consists of a follower, constrained to move in a straight line, with a 

roller attached to its extremity by means of a pin. Thus, as the cam rotates, the roller rolls on 

the cam surface and causes the follower to translate. The spring is assumed to have a constant 

elastic ratio 𝑘𝑠  with an initial compression δ𝑠  to ensure the return motion of the follower. The 

cam profile is determined here considering the kinematical and dynamical requirements of the 

system. 
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Fig. 4.1 Cam mechanism with offset translating roller follower. 

4.3.1 Design Optimization Procedure 

The optimization of cam-roller follower mechanism has been extensively reported in the 

literature. According to previous studies (Yu and Lee 1998; Tsiafis et al. 2009; Flores 2013), 

the optimum design of this mechanism can be achieved by considering three major parameters 

that affect the cam design process, namely the base circle radius of the cam 𝑅𝑏, the roller 

radius 𝑅𝑟  and the offset of the follower 𝑒. However, it is of great importance to consider other 

parameters that may improve the system performance. Particularly, those associated with the 

geometric elements of the mechanism such as the cam thickness, the distance between the 

cam center and the follower bearing, and the length of follower bearing.  

Consequently, the main task is to propose a global optimization procedure by taking into 

account additional geometric parameters that influence the design quality of the cam 

mechanism. The optimization problem is formulated as a multi-objective while observing 

several design constraints. In the following, the objective functions, constraints and design 

variables will be detailed. 

4.3.1.1 Objective functions 

The optimization problem is simultaneously investigated for three objectives among them 

minimum congestion, maximum efficiency, and maximum strength resistance of the cam. 



Chapter 4.                                            Optimization of Cam Mechanisms Using Metaheuristics 

69 

The first goal is the cam size minimization, which is defined according to the base circle 

radius 𝑅𝑏 and thickness of the cam 𝑡𝑐. 

 1 b cf R t 
                                                                                                                                                    (4.1) 

The second objective is to reduce the maximum input torque required to drive the cam 𝑇𝑐𝑎𝑚, 

which is directly decreasing the cost of performance.
 

2 'camf T F s                                                                                                                                                           (4.2) 

The last objective is to minimize the maximum contact stress 𝜎𝐻𝑚𝑎𝑥 between the cam and the 

roller follower, which is directly decreasing the cost of maintenance. 
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                                                        (4.3)  

4.3.1.2 Constraints 

The above objective functions are subjected to ten design constraints. In this subsection, each 

constraint is given in detail.  

 To simplify the mechanism assembly, the first two constraints are specified by the 

following constructive conditions (Fig. 4.1): 

     1 0rg e R                                                                                                                    (4.4) 

2 0bg R e  
                                                                                                                 

(4.5)
   

 To ensure that the mechanism is operated correctly, during the high dwell of the follower, 

the roller must not touch the follower bearing (Fig. 4.1). So, the following constraint 

should be added to avoid the contact: 

       3 0f rg q h R                                                                                                        (4.6) 

 On the other hand, during the low dwell, the follower level should not be lower than the 

level of bearing to avoid any contact between the external mass and this latter. 

Mathematically, the constraint can be formulated as (Hamza et al. 2018): 

        4 0fg L q b                                                                                                      (4.7) 

where ℎ𝑓 is the lift of follower, and 𝐿𝑓 is its length. 

 In order to guarantee the proper operation of the mechanism, two constraints are imposed 
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on the pressure angle. These are the maximum allowed values for the rise and return 

periods (Flores 2013): 

5 30 max 0 Riseg                                                                                                       (4.8)                                                                         

6 45 max 0 Returng                                                                                                              (4.9)                                                    

 To avoid undercutting as well as to ensure the desired movement of the mechanism, two 

other constraints are imposed on the curvature radius of the pitch curve 𝜌. When the cam 

is on the convex part, the minimum positive radius of curvature 𝜌𝑚𝑖𝑛  should be greater or 

equal to the roller radius 𝑅𝑟  (Chen 1982). When the cam is on the concave part, the 

absolute value of the minimum curvature radius |𝜌𝑚𝑖𝑛| should be too greater than 𝑅𝑟 . 

(Norton 2002). Thus, the two constraints are written as the following: 

For 𝜌 > 0 

   7 min 0rg R                                                                                                  (4.10)                                                                                                                               

For 𝜌 < 0  

              8 min 0r cg R r                                                                                           (4.11)                                                    

where 𝑟𝑐 is a positive constant to control the variation of the curvature radius for the concave 

part of the cam.     

 To ensure the mechanical resistance of the cam, the maximum contact stress 

 𝜎𝐻max should be less or equal to the permissible value  𝜎𝐻𝑝. Mathematically, the 

constraint is expressed as:  

   9 max 0Hp Hg    
                                                                                                               

(4.12) 

 Regarding the mechanical efficiency of the system
 
𝜂, the power transmission from the 

cam to the follower should be done with a minimum loss of energy, mainly due to friction 

and pressure angle. Thereby, the constraint on the minimal limit of energy loss is 

established as follows: 

 10 min 0.90 0g                                                                                                          (4.13)     

4.3.1.3 Design variables 

From the problem formulation, it is clear that the design optimization of the cam mechanism 

is affected by the geometric parameters proposed previously, which are conflicting with each 

other. When the cam thickness 𝑡𝑐 is increased, the resistance of the cam is improved (third 

objective) due to the direct reducing in the contact stress. But at the same time, the cam size 
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becomes greater which does not serve the first objective. It is then necessary to select an 

optimum value of this parameter. Also, the reduction of the distance 𝑞 allows the decrease of 

the input torque 𝑇cam by increasing the mechanical efficiency 𝜂. It means that we play on the 

second objective, but at the same time the constraint  g3 should be respected. On the other 

hand, the length of the follower bearing 𝑏 has a certain influence on the input torque and on 

the constraint g4. In addition, the two latter parameters have a direct influence on the normal 

force 𝐹𝑛 and thus affecting the contact stress 𝜎𝐻max  (third objective).  

Based on the above analysis, the final optimization model of the cam mechanism design 

is developed for six variables. They are the cam base circle radius 𝑅𝑏, roller radius 𝑅𝑟 ,  

follower offset 𝑒, cam thickness 𝑡𝑐 , distance between the cam center and the follower 

bearing 𝑞, and follower bearing length 𝑏. All the design variables are continuous. 

Thus, to conclude, the resulting mathematical formulation of the optimization problem 

can be summarized as: 
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4.3.2 A Practical Design Example 

The introduced design methodology is applied and evaluated by providing a demonstrative 

application example. Initially, the length of the follower 𝐿𝑓, its diameter 𝑑𝑓  and its mass 

𝑀𝑓  are defined under the resistance conditions which must be verified to the following 

compressive and buckling solicitations: 

maxc e

e b

R

R









                                                                                                                                                  (4.16)                                                                                                                                                    

where 𝜎𝑐 max is the maximum compressive stress, 𝜎𝑏 is the buckling critical limit, and 𝑅𝑒  is 

the elastic limit of the follower material. 

The input data for the follower and the parameters of case study example are presented in 

Table 4.1 and Table 4.2, respectively. In addition, by following the same methodology as in 

(Halicioglu et al. 2017; Halicioglu et al. 2018; Pedrammehr et al. 2018), the kinematic 

analyses of the follower motion such as displacement, velocity, and acceleration are presented 

in Figs. 4.2, 4.3, and 4.4 respectively. Moreover, the dynamic analysis including the external 

force, inertial force, spring force and total force acting on the follower is given in Fig. 4.5. 

Assuming the simple harmonic motion SHM of the type rise-dwell-return-dwell RDRD, the 

motion kinematics are given by Eqs. 4.17, 4.18, and 4.19 (Rothbart and Klipp 2004): 
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where  𝜃  is the cam rotation angle and 𝜃𝑅𝑖𝑠𝑒 is the rise period angle. The follower 

characteristics are calculated for 60° rise, 130° high dwell, 140° returns, 30° low dwell, 

follower lift ℎ𝑓   = 20 mm, and cam speed ω𝑐 = 2 rad/sec.  

From Figs. 4.3 and 4.4, it is observed that the dwell periods have always zero velocity 

and zero acceleration. During the rise and the return periods, the follower velocity follows a 

sine function and its peak values are respectively 60 mm/sec and 25.72 mm/sec. The follower 

acceleration follows a cosine function and its peak values are respectively 360 mm/sec2 and 

file:///C:/Users/poste01/Downloads/Rao,%202009.pdf
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66.12 mm/sec2. It can then be deduced that the motion law considered in this study provides 

an acceleration curve with finite values at the rise and the return periods, which leads to 

reduce the amplitude of the inertia force applied on the follower, as can be seen in Fig. 4.5. 

On the other hand, the spring force, which is directly related to the follower displacement, has 

the major contribution on the total force. 

Table 4.1 Input data of the follower. 

Input data Values  

Material density (Kg/m3) 8027 

Material elastic limit 𝑅𝑒(Mpa) 170 

Inertial moment (mm4) π. d4/64 

Diameter 𝑑𝑓  (mm) 10 

Length 𝐿𝑓 (mm) 80 

Mass 𝑀𝑓(Kg)  50.183×10-3 

Table 4.2 Input parameters of the case study example. 

Input data  Values  

Cam module of elasticity 𝐸1  (Mpa) 2.1×105 

Follower module of elasticity  𝐸2  (Mpa) 2×105 

Cam Poisson’s ratio 𝜐1 0.28 

Follower Poisson’s ratio 𝜐2 0.265 

Permissible contact stress 𝜎𝐻𝑝(Mpa) 235 

Friction coefficient of follower /bearing µ  0.1 

Spring rate 𝑘𝑠 (N/mm) 1.2 

Spring initial deflection 𝛿𝑠 (mm) 8 

Curvature radius constant 𝑟𝑐  (mm) 10 

External force 𝐹𝑒(N) 30  
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Fig. 4.2 Displacement diagram of the follower 

motion. 

Fig. 4.3 Velocity diagram of the follower motion. 

  

Fig. 4.4 Acceleration diagram of the follower 

motion. 

Fig. 4.5 Evolution of external, inertial, spring, and total 

forces respect to cam rotation angle. 

4.3.2.1 Results and discussions 

The cam mechanism with offset roller follower translation must be designed for minimum 

congestion, maximum efficiency, and maximum strength resistance of the cam. The above 

multi-objective optimization problem involves six continuous design variables and ten 

inequalities constraints, two linear and eight nonlinear. The complexity of the problem arises 

from the non-linear interactions of the six design variables in the objective functions and the 

constraints. The upper and the lower variables limits are: 

20 60,   0 20,   0 20,   0 20,   50 130,   25 55.b r cR R e t q b             

In order to handle this multi-objective problem, we use firstly the weighted sum method 

presented in Chapter 1; the multi-objective formulation is converted into a single-objective 

one by using the weighting factors. After several tests, the factors are chosen in the present 

example as, w1=0.8, w2=0.1, and w3=0.1. Hence, the objective function, has to be minimized, 

is established as follows:  
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   1 2 3 maxƒ     b c cam Hy w R t w T w                                                                                   (4.20) 

Four recent algorithms are used for solving the optimization problem including MADE, 

WOA, GWO, and SCA. For the specific parameters of WOA, GWO, and SCA, we conserve 

the similar values suggested by the authors as in the original versions. For the specific 

parameters of MADE version, please refer to our article (Hamza et al. 2018). In order to 

assess the quality of the results and the robustness of the utilized algorithms, the whole 

metaheuristics are run 25 independent times with Np = 20 and 𝑇𝑚𝑎𝑥= 600.  

The best optimal solutions of the problem obtained by the compared algorithms are given 

in Table 4.3. The statistical results including the best, mean, and worst solutions as well as the 

standard deviation are also tabulated in Table 4.4. As it can be observed from Table 4.3, the 

four optimizers can reach the feasible solutions for all runs. By providing the lower fitness 

value of 217.70907431, MADE performed better than other here utilized algorithms. The best 

solution given by MADE is {28.633568856151, 9.3006758804433, 9.3006758804458, 

9.8395981706191, 67.0770861444, 48.6993241195}. WOA can reach good results compared 

with GWO, it is slightly worse than MADE. In contrast, the SCA approach is not able to find 

the near optimal solution, where its best solution is about 0.80 % greater than those obtained 

by the other algorithms. 

According to the statistical analysis presented in Table 4.4, MADE is the best algorithm 

because of the lowest values of mean, worst, and SD. Whereas SCA is the weakest algorithm 

in optimizing the cam design problem with the highest solutions of the mean (227.5906), 

worst (236.5448), and SD (6.4421E+00). GWO with lower mean, worst, and SD values of 

217.8324, 218.0257, and 8.0349E-02, respectively, shows more uniform performance rather 

than WOA. 

Moreover, the convergence graphs of the best fitness value for the four algorithms are 

given in Fig. 4.6. From the figure, it is visible that WOA can converge to the global solution 

faster than the compared algorithms where its best value is reached in average of 215 

iterations. MADE started converging to the final result after about 250 iterations. Fig. 4.6 

demonstrates also that GWO achieved the best solution at the end of iterations (580 

iterations), while the SCA failed in solving the cam optimization problem and converged to a 

local optimal solution.  

The optimal values of the design parameters obtained by MADE approach are used to 

plot the evolution of pressure angle, radius of curvature, efficiency, input torque, and contact 



Chapter 4.                                            Optimization of Cam Mechanisms Using Metaheuristics 

76 

stress in function of the cam rotational angle, as shown in Figs. 4.7 to 4.11 respectively. 

According to Fig. 4.7, it is clear that both values of 𝜑Rise and 𝜑Return are well below the 

allowable limits 30° and 45° respectively. This is due to the fact of second term of the 

objective function which indicates that reducing the input torque leads to an increase in the 

efficiency and a reduction of pressure angles, thereby confirming the desired performance of 

the mechanism. Fig. 4.8 shows that the minimum values of the curvature radius for convex 

and concave parts of the optimized cam profile are satisfied (constraints g7 and g8 respectively 

in Table 4.3). Following the same logic, we can deduce from Fig. 4.11 that the large gap 

between the maximum contact stress applied on the cam and its allowable limit is due to the 

influence of third term of the objective function, which indicates a good strength of the cam 

(g9). 

In addition, the risk of the contact between the roller and the follower bearing during the 

high dwell of the follower is avoided with a safety distance equal to 1.00 mm, (constraint g3 of 

Table 4.3). For cons, the value found for the constraint g4 presents the safety height between 

the follower and its bearing during the low dwell. Finally, the obtained optimal cam profile is 

given in Fig. 4.12. 

 

Fig. 4.6 Convergence diagrams of the four algorithms for the cam design example.  
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Fig. 4.7 Evolution of the pressure angle. 

 

 Fig. 4.8 Evolution of the curvature radius. 

 

Fig. 4.9 Evolution of the mechanical efficiency. Fig. 4.10 Evolution of the cam input torque. 

 

  
Fig. 4.11 Evolution of the Hertzian contact stress. Fig. 4.12 Optimized cam profile. 
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Table 4.3 Global optimal results of the cam-roller follower mechanism.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.4 Statistical results of the four algorithms for the cam design example. 

Algorithm  Best Mean Worst SD 

AMDE  217.70907431416 217.709074327487 217.709074371881 1.0809E-08 

WOA  217.71152132005 218.15852504050 219.75563069304 4.5165E-01 

GWO 217.74125905577 217.83240028686 218.02570172087 8.0349E-02 

SCA 219.47174900595 227.59061893368 236.54489741682 6.4421E+00 

 

 

 

 

 

 

 

 

 

Variables MADE WOA GWO SCA 

Rb (mm) 28.633568 28.822083 29.179371 33.091260 

Rr  (mm) 89.300675 9.3767281 9.4875717 9.9269133 

e (mm) 89.300675 9.3767282 9.5149594 10.297035 

tc  (mm) 19.839598 9.6887704 67.970099 73.039466 

q (mm) 67.077086 67.406800 48.481906 45.170925 

b (mm) 48.699324 48.621652 9.7468829 10.524811 

g1
 

2.4797E-12 9.8946E-08 6.3408e+00 8.9329e+00 

g2
 

1.9332E+01 1.9445E+01 1.8885e+01 2.0162e+01 

g3
 

1.0000E+00 1.0002E+00 8.9333e-06 6.3792e-04 

g4
 

1.0003E+00 1.0022E+00 7.8335e+01 8.9085e+01 

g5
 

5.7885E+00 5.9881E+00 4.5605e-03 3.4493e-01 

g6
 

1.8746E+01 1.8799E+01 2.5961e-02 2.5572e+00 

g7
 

1.3387E+01 1.3478E+01 3.6636e+00 6.0261e+00 

g8
 

8.3376E+00 3.4784E+00 1.3664e+01 1.6026e+01 

g9
 

7.7566E+01 7.6949E+01 2.7388e-02 3.7012e-01 

g10
 

2.0761E-14 9.7436E-09 1.9664e+01 2.2794e+01 

fmin 217.70907 217.71152 217.74125 219.47174 
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The second method used to solve this multi-objective problem is the Pareto optimization 

technique. The well-known NSGA-II (Deb et al. 2002) is employed with a population size of 

100 and a maximum iterations number of 300. Fig. 4.13 displays the non-dominated solutions 

obtained from the optimization procedure. Some of the Paretian points and the corresponding 

objective functions values are presented in Table 4.5. As it can be seen from the table, the 

values of the six design variables are varied according to the contribution of each objective. 

This provides multitude solutions and thus the designer can closely analyze the appropriate 

decisions for the comparison and the choice. 

 

Fig. 4.13 Non-dominated solutions obtained by NSGA-II for the cam design example. 

Table 4.5 Some of the Pareto optimal solutions for the cam design example.  

Variables Solution 1 Solution 2 Solution 3 Solution 4 Solution 5 

Rb (mm) 25.0752 46.8010 36.7350 56.6534 39.1237 

Rr  (mm) 07.7768 13.5756 12.2634 13.0410 09.1789 

e (mm) 07.7768 15.9022 12.2634 20.0000 13.9578 

tc  (mm) 06.0540 16.5936 12.9015 18.7434 06.3758 

q (mm) 60.6951 92.8204 80.7023 100.8042 76.4209 

b (mm) 50.2232 44.4244 45.7366 44.9590 48.8211 

f1 (mm)
 

31.1291 63.3946 49.6365 75.3968 45.4995 

f2 (N.mm)
 

1.7311E+03 1.6508E+03 1.6809E+03 1.6254E+03 1.6640E+03 

f3 (Mpa)
 

2.1794E+02 9.9561E+01 1.2041E+02 9.3717E+01 1.9127E+02 
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4.4 Optimum Design of Cam Flat-Faced Follower Mechanism 

The design optimization problem of cam mechanism with translating flat-face follower is 

investigated in this section. The schematic view of the mechanism is presented in Fig. 4.14. 

The cam’s position, characterized by the angle of rotation 𝜃, is defined as the input motion of 

the system while the position of the follower, given by the straight line  𝑠(𝜃), is the output 

motion. The contact between the cam and the follower is shown theoretically by a linear 

contact, along the face of the follower, but practically is a surface contact. 

In the cam synthesis procedure, the suitable choice of the law to describe the follower 

motion is an influential factor on the design quality. The present design method is introduced 

to optimize the size of the mechanism by properly selecting the type of follower motion. 

There are four motion laws considered in this study including two basic curves and two 

polynomial functions. The proposed approach considers the main geometric parameters of the 

mechanism as design variables and is based on satisfying multiple constraints like cam 

pressure angle, curvature radius and other geometric restrictions. The mathematical 

formulation of the optimization problem is detailed bellow. It should be noted that the 

problem is developed at the kinematics design level only. 

c 



b

C
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X

Y

bR

L
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q

 

Fig. 4.14 Cam mechanism with translating flat‐face follower. 
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4.4.1 Design Optimization Procedure 

The objective function established in the current section considers the size minimization of 

the mechanism shown in Fig 4.14. It is known that the size of this system can be varied by the 

base circle radius of the cam 𝑅𝑏 according to the axis 𝑌 and the length of the follower face 𝐿 

according to the axis 𝑋. Therefore, the objective function can be written mathematically as: 

   bf y R L                                                                                                                   (4.21) 

The design parameters, aimed to be optimized, include the base circle radius of the 

cam 𝑅𝑏 , length of the follower face 𝐿, and the follower eccentricity 𝑒 as shown in Fig. 4.14. 

The following functional constraints are included during the optimization: 

 To prevent jamming in the guide, the maximum pressure angle on the cam profile 

should be less than the permissible value (Tsiafis et al. 2013): 

    1 30 max | | 0g                                                                                                   (4.22) 

 The radius of curvature is an important factor that affects the cam mechanism size. To 

ensure that the mechanism is operated without undercutting and cusp, the minimum 

curvature radius should always be positive (Rothbart and Klipp 2004): 

  m2 in 0g                                                                                                              (4.23) 

 To ensure good working conditions of the system, the following geometric constraints 

must be respected (Chen 1982): 

03 (    )2 2 0g b µµ b C µ                                                                                              (4.24) 
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The distance 𝜉 as shown in Fig. 4.14 is calculated with the following relation (Tsiafis et al.  

2013): 

 
22 2( ' ' )   bx y R s                                                                                                     (4.27) 

where 𝑥′(𝜃) and 𝑦′(𝜃) are the coordinates of the cam profile.  
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As a result, the optimization procedure presented above leads to a problem that can be 

summarized as follows: 

                                    Find               },  { ,  by R L e                                    

    Minimize           bf y R L                                                                     (4.28) 
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4.4.2 A Practical Design Example 

An application example is presented and used to demonstrate the optimization approach of the 

cam mechanism. The follower eccentricity is set in this example equal to zero (𝑒 = 0 mm) 

and hence, the last constraint g5 is not enforced. The follower motion laws under the 

optimization are cycloidal, modified sinusoidal acceleration (modified sine), 3-4-5 

polynomial, and 4-5-6-7 polynomial. For each motion curve, the above optimization problem 

is solved and the results are discussed and compared.  

The input data for the present design example are given in Table 4.6. The cam angular 

velocity is supposed to be equal to 1 rad/sec (𝜔𝑐= 1 rad/sec). The follower describes a rise of 

8 mm during the cam rotation from 0 to 60°. Then, it remains stationary for amplitude of cam 

rotation angle equal to 130°. The follower returns to its initial position during cam rotation 

angle equal to 100°. Recently, it remains stationary during the remaining cam rotation. 

According to the follower characteristics, the kinematic analyses of the four motion laws 

including the displacement, velocity, acceleration, and jerk are illustrated during the rise 

period in Figs. 4.15 to 4.18, respectively. For more mathematical details about these types of 

motion, please refer to the specialized literature such as (Lin et al. 1988; Norton 2004; 

Rothbart and Klipp 2004). 
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Table 4.6 Input parameters of the case study example. 

Input data Values  

Total follower rise ℎ𝑓 (mm)  8 

Rise angle: θ Rise (°) 60 

High dwell angle: θ Dwell-H (°) 130 

Return angle: θ Return (°)  100 

Low dwell angle: θ Dwell-L (°)  70 

Guide length: 𝑏(mm)   40 

Distance 𝑞(mm)  70 

Friction coefficient of follower/bearing µ 0.1 

Friction coefficient of  cam/ follower µ0   0.15 

 

  

Fig. 4.15 Follower displacement with different 

motion laws. 

Fig. 4.16 Follower velocity with different motion 

laws. 

  
Fig. 4.17 Follower acceleration with different 

motion laws. 

Fig. 4.18 Follower jerk with different motion 

laws.      
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4.4.2.1 Results and discussions 

The algorithms applied in the first section for optimizing the cam mechanism with roller-

follower are now extended to flat-face follower. The parameters’ setting of the different 

algorithms as well as the FEs number are the same as those used in the previous example. The 

best values of objective function, design variables and constraints for the four motion laws are 

listed in Table 4.7. Table 4.8 summarizes the statistical results in the form of the best, mean, 

worst, and SD values. In addition, the convergence plots of the utilized algorithms for the four 

investigated cases are displayed in Figs. 4.19 to 4.22, respectively. 

A. Case 1: Cycloidal motion law 

The results obtained in the first case implied that MADE is the best algorithm because of the 

lower objective value of 71.326916 mm. Moreover, MADE with SD value of 1.450E-14 is the 

more consistent in solving the cam design optimization problem. GWO by achieving the 

lowest values of the best (71.327708 mm), mean (71.333626 mm), worst (71.340716 mm), 

and SD (0.0027433) reached good results when compared with WOA and SCA.  

Furthermore, the convergence graphs of the best results shown in Fig. 4.19 demonstrate 

that WOA and MADE converged to the best solution from the initial iterations, while SCA 

and GWO did not converge to the final results until the latest iterations. 

B. Case 2: Modified sine motion law 

In the case of the modified sine motion curve, MADE version is the most effective and robust 

among the four algorithms based on the lowest values for the best (61.5859074 mm) and SD 

(7.2519E-15). WOA by the best fitness value of 61.5865665 mm performed better than GWO 

and SCA, but produced worst results in terms of the mean, worst and SD values. 

On the other hand, Fig. 4.20 exhibits that WOA and MADE get close to the final solution 

faster than the others from the initial iterations. SCA reached its best value in average of 450 

iterations, while GWO achieved the near optimal value at the end of iterations. 

C. Case 3: 3-4-5 Polynomial motion law 

According to the results reported in the third case, MADE and WOA can get the lowest 

design of 65.5338 mm. However, MADE with the lower SD value of 4.3512E-14 proves 

more stability than WOA with 0.45465239. GWO by providing the lower value of the mean, 

worst, and SD is better than WOA and SCA. 
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The convergence rate plot in Fig. 4.21 is a clear evidence of a fast convergence of MADE 

rather than other used algorithms. In this case, WOA started converging to the final solution 

after 160 iterations. 

D. Case 4: 4-5-6-7 Polynomial motion law 

Concerning the last case, the results collected in Tables 4.7 and 4.8 show that MADE and 

WOA reached the lowest objective value of 83.2029 mm. Further, MADE by achieving the 

very small value of SD displayed an excellent performance in terms of robustness. As in the 

first three cases, SCA performed the weakest record with the highest values of best 

(83.2459139 mm), mean (83.4002381 mm), and worst (83.4555703 mm). 

Convergence rate histories of the final results in Fig. 4.22 display that WOA converged to 

the best solution faster than other utilized methods. MADE started converging to the final 

result after 130 iterations. GWO reached the best value in the last iterations whereas SCA 

converged to its solution from the middle iterations. 

 

Fig. 4.19 Convergence diagrams of the four algorithms for Case 1. 
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Fig. 4.20 Convergence diagrams of the four algorithms for Case 2. 

 

Fig. 4.21 Convergence diagrams of the four algorithms for Case 3. 

 

Fig. 4.22 Convergence diagrams of the four algorithms for Case 4. 
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Table 4.7 Global optimal results of the cam flat-face follower mechanism for the investigated cases. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Variables MADE WOA GWO SCA 

     Case 1: Cycloidal   

Rb (mm) 40.769167 40.769167 40.769354 40.773569 

L (mm) 30.557749 30.563373 30.558353 30.565275 

g1 1.1100E+01 1.1100E+01 1.1100E+01 1.1101E+01 

g2  2.2058E+00 2.2058E+00 2.2060E+00 2.2102E+00 

g3  3.6787E+01 3.6787E+01 3.6787E+01 3.6787E+01 

g4  1.2434E-14 2.8120E-03 3.0219E-04 3.7634E-03 

f (mm)
 

71.326916162 71.3325402684 71.327708255 71.338845205 

  Case 2: Modified sine acceleration   

Rb (mm) 34.713430 34.713431 34.714153 34.720352 

L (mm) 26.872476 26.873134 26.873112 26.876335 

g1 1.0763E+01 1.0763E+01 1.0763E+01 1.0766E+01 

g2  2.2058E+00 2.2264E+00 2.2272E+00 2.2334E+00 

g3  3.6971E+01 3.6971E+01 3.6971E+01 3.6971E+01 

g4  8.8818E-15 3.2915E-04 3.1777E-04 1.9293E-03 

f (mm)
 

61.585907403 61.586565986 61.587265257 61.596688000 

  Case 3: 3-4-5  Polynomial   

Rb (mm) 36.885922 36.885922 36.886260 36.892716 

L (mm) 28.647889 28.647974 28.648334 28.648570 

g1 1.0623E+01 1.0623E+01 1.0623E+01 1.0626E+01 

g2  2.2168E+00 2.2168E+00 2.2172E+00 2.2236E+00 

g3  3.6861E+01 3.6861E+01 3.6861E+01 3.6861E+01 

g4  00.0 4.2247E-05 2.2224E-04 3.4026E-04 

f (mm)
 

65.533812169 65.533897098 65.534595180 65.541286470 

                  Case 4: 4-5-6-7  Polynomial    

Rb (mm) 49.780366 49.780366 49.781949 49.802746 

L (mm) 33.422538 33.422559 33.422809 33.443167 

g1 1.2704E+01 1.2704E+01 1.2705E+01 1.2711E+01 

g2  2.1930E+00 2.1930E+00 2.1946E+00 2.2154E+00 

g3  3.6771E+01 3.6771E+01 3.6771E+01 3.6772E+01 

g4  7.1054E-15 1.0601E-05 1.3548E-04 1.0315E-02 

f (mm)
 

83.202904553 83.202926053 83.204758598 83.245913968 
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Table 4.8 Statistical results of the four algorithms for the investigated cases. 

Algorithm  Best Mean Worst SD 

  Case 1: Cycloidal   

MADE  71.326916 71.326916 71.326916 1.450E-14 

WOA  71.332540 71.941615 73.965240 0.7163394 

GWO 71.327708 71.333626 71.340716 0.0027433 

SCA 71.338845 71.548895 71.748665 0.1121932 

  Case 2: Modified sine acceleration   

MADE  61.5859074 61.5859074 61.5859074 7.2519E-15 

WOA  61.5865665 62.0046706 64.3673002 0.57875819 

GWO 61.5872653 61.5903237 61.5974044 0.00214746 

SCA 61.5966880 61.7183771 61.9174414 0.08449077 

  Case 3: 3-4-5  Polynomial   

MADE  65.5338122 65.5338122 65.5338122 4.3512E-14 

WOA  65.5338971 65.8581392 67.3068901 0.45465239 

GWO 65.5345952 65.5392205 65.5452229 0.00288252 

SCA 65.5412865 65.7389642 66.0328109 0.13437887 

  Case 4: 4-5-6-7  Polynomial   

MADE  83.2029046 83.2029046 83.2029046 0.00 

WOA  83.2029261 83.3265572 83.4953231 0.0957834 

GWO 83.2047586 83.2134349 83.2242368 0.0059703 

SCA 83.2459139 83.4002381 83.4555703 0.0557051 

 

Now, the results provided by MADE are considered to analyze the motion design. By 

comparing the solutions obtained in the four cases, the modified sine motion law expresses 

the best performance based on the lower value of the objective function. The design  

parameters values recorded by this type of motion are {𝑅𝑏 = 34.713430921 mm, 𝐿 =

 26.87247648 mm}, corresponding to 𝑓 = 61.585907403 mm. The constraint violations are 

[1.0763E+01, 2.2058E+00, 3.6971E+01, 8.8818E-15]. The 3-4-5 polynomial cam profile with 

the fitness value of 65.533812169 mm performs better than the cycloidal curve with 

71.326916162 mm. In contrast, the 4-5-6-7 polynomial cam profile with the fitness value of 

83.202904553 mm is the worst motion law in minimizing the size of the cam mechanism.  

The modified sine motion law has the lowest amplitude for booth velocity and 

acceleration (Figs. 4.16 and 4.17), as it provides a good compromise of the motion  

kinematics. Therefore, it is extensively preferred in the cam design process especially in 

applications where the cam speed is very high and the follower mass is relatively large 
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(Norton 2002). These characteristics have demonstrated significantly that the modified sine 

curve is the appropriate motion law, among the considered types, to optimize the design of the 

mechanism. Lastly, the evolutions of the pressure angle and curvature radius with the 

modified sine curve are presented in Figs. 4.23 and 4.24, respectively, to prove the 

satisfaction of the first two design constraints. The corresponding cam profile is also shown in 

Fig. 4.25. 

 

 

 

 
Fig. 4.23 Pressure angle evolution with the 

modified sine curve. 

Fig. 4.24 Curvature radius evolution with the 

modified sine curve. 

 

 

Fig. 4.25 Optimal cam profile obtained with the modified sine curve. 
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4.5 Conclusion 

The present chapter introduces the application of the developed MADE and three recent 

metaheuristic algorithms (GWO, WOA, and SCA) for a global optimization approach of disc 

cam mechanisms. In the first problem, a cam mechanism with eccentric roller follower 

translation has been optimized regarding three objectives: minimum cam size, maximum 

efficiency, and maximum cam strength resistance. The optimization is subjected to ten 

constraints and involves six design variables considering the suitable dimensions of the 

mechanism elements. In order to solve this multi-objective problem, the classical weighted 

sum method has been adopted where the weighting factors have been chosen in accordance 

with the importance of each objective. Moreover, instead of providing a single solution, the 

Pareto optimization approach based on NSGA-II has been employed to give more versatility 

and flexibility by providing a set of no-dominated solutions. The results found through the 

design example have showed that the optimum synthesis has been performed by an excellent 

efficiency and a sufficient durability. 

The second problem concerns the optimum design of a cam mechanism with flat-face 

follower translation in which the effect of four laws of follower motion has been inspected. 

The design procedure has been established to optimize the size of the mechanism while 

respecting some relevant constraints related to the cam design process. The follower motion 

laws considered in study have been cycloidal, modified sine, 3-4-5 polynomial, and 4-5-6-7 

polynomial. Based on the final results, the modified sine curve is the best motion law among 

the four types and can provide a reduction in the objective value of 15.82 %, 06.41 %, and 

35.10 % compared with cycloidal, 3-4-5 polynomial and 4-5-6-7 polynomial laws, 

respectively.  

As regards the comparison results of the algorithms applied in solving the cam design 

optimization problems, it can be deduced that the MADE version is the most effective 

because of the lowest values for the best solution and standard deviation over all the case 

studies. WOA is very competitive in solution quality and has showed an evident superiority in 

terms of convergence speed compared with the other algorithms. However, GWO is better 

than WOA regarding the values of the mean, worst and standard deviation. On the other hand, 

the SCA has demonstrated the weakest performance for all cases and can be considered as the 

worst among the compared algorithms in this study. 
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5.1 Introduction 

In the majority of cases, practical RBDO problems in mechanical engineering have several 

computational and modeling challenges; consider multiple conflicting objectives, include 

various complex constraints on geometry and mechanical resistances, as well as mixed types 

of design variables (continuous-discrete-integer). This context leaves plenty of room for 

developing more powerful approaches in the field of RBDO by using accurate optimization 

algorithms and integrating suitable probabilistic concepts. In the present chapter, an efficient 

optimization algorithm, hybridizing the developed MADE with the NM local search (Nelder 

and Mead 1965), is proposed to deal with mechanical RBDO problems.  

The RDS concept (Shan and Wang 2008) is firstly employed to convert the RBDO 

problem into a simple deterministic optimization (SDO) one and the hybrid MADE-NM is 

then selected as an optimization tool. The efficiency and reliability of the integrated approach, 

referred as (RDS-MADE-NM), are demonstrated through solving six mechanical problems 

with different levels of complexities. In addition, an industry case on a specific cylindrical 

spur gear is studied to verifier the applicability of RDS-MADE-NM to real challenging 

RBDO problems.  

In the remainder of the chapter, the RDS technique is presented in Section 5.2 and 

followed by the NM algorithm in Section 5.3. The proposed RDS-MADE-NM integrated 

approach is introduced in Section 5.4 and validated in Section 5.5. A real industry case is 

investigated in Section 5.6. Finally, some concluding remarks are exposed in Section 5.7. 

5.2 Reliable Design Space (RDS) Technique 

As mentioned in Chapter 1, the direct solution of RBDO problem (Eq. 1.5) is given by 

employing two nested optimization loops. The RDS technique has been proposed by Shan and 

Wang (2008) to remove the inner reliability loops and thus, providing an equivalent 

deterministic formulation. The main idea is based on the reformulation of the probabilistic 

constraints defined on the original design space by approximate deterministic ones in the 

reliable design space. Fig. 5.1 illustrates geometrically the concept of the RDS. For an easy 

understanding, we assume that an optimization problem contains only one constraint with two 

variables 𝑋 =  {𝑥1, 𝑥2}. When uncertainty is not considered, the feasible design space (FDS) 

is identified within the global design space by the yellow area and its boundary is determined 

by the deterministic constraint (g (𝑥1, 𝑥1) = 0). By considering the uncertainty, the RDS is 

file:///C:/Users/poste01/Downloads/References%20CH%202/Storn%20and%20Price%20(1995).pdf
file:///C:/Users/poste01/Downloads/References%20CH%202/Storn%20and%20Price%20(1995).pdf
file:///C:/Users/poste01/Downloads/References%20CH%202/Storn%20and%20Price%20(1995).pdf
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separated from the deterministic FDS, as can be seen by the blue area, and its boundary is 

determined by the probabilistic constraint (Prob(g (𝑑, 𝑋) ≥ 0) = 𝑅𝑡).  
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Fig. 5.1 Concept of the reliable design space. 

Analytically, the RDS can be denoted by the region of design points whose 

corresponding inverse MPFPs satisfy the deterministic constraints g𝑖 . In other word, each 

design point 𝜇𝑧 in the RDS has its inverse MPFP 𝒛 within the deterministic FDS.  

The inverse MPFP 𝒛 represents the MPFP in the 𝑍 space, and its evaluation conventionally 

requires an iterative procedure during the optimization (Chen et al. 1997; Liang et al. 2008). 

According to Shan and Wang (2008), the partial derivatives at the current design point 𝜇𝑧 can 

be employed to approximate the derivatives at its inverse MPFP 𝒛. Hence, the direct 

calculation of 𝒛 at any design point 𝜇𝑧 can be achieved as: 

 
    ( )i t

j i j
i

j z z j z     z ,              1,...,i k  and 1,...,j Nz                                                                       (5.1)                                                                                                                                                                           

where 𝜇𝑧  referred as the design point is the mean vector of 𝑧, 𝜎𝑧 is the standard deviation 

vector of 𝑧, 𝛽𝑡  denotes the target reliability index vector, and 𝛼(𝜇𝑧) is the direction cosine: 
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Using Eq. 5.1, the reliable design space of the RBDO problem is defined by approximate 

deterministic constraints  𝐠𝑖  as follows:  

   
( ,  ) ( ,  ) ( ,    ( )) 0t

i z i i z i z z
i id g d g d          g z                                                                         (5.3)                                                                                                                

Accordingly, the RBDO problem in Eq.1.5 becomes a SDO problem expressed in the 

following form: 

 
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                                                                                                             (5.4)                                                                                                                                        

    
                                                                       

It should be noted that the approximation presented in Eq. 5.1 is only valid for the normal 

distribution case. For other distributions, the probabilistic transformation (Rosenblatt 1952) is 

applied to estimate the mean and the standard deviation of the equivalent normal distribution 

(Haldar and Mahadevan 2000). The pseudocode of the RDS concept is summarized in 

Algorithm 5.1.  

Algorithm 5.1: RDS technique 

 Input: Number of constraints 𝑘, dimension of the random vector 𝑁𝑧, target reliability index vector 𝛽𝑡, mean 

vector 𝜇𝑧, and standard deviation vector 𝜎𝑧. 

1 For 𝑖 ≔ 1 to k do  

2  Calculate the partial derivatives of the function g𝑖(𝑑, 𝜇𝑧) with respect to the mean vector 𝜇𝑧. 

3  For 𝑗 ≔ 1 to 𝑁𝑧 do 

4   For each given 𝜇𝑧𝑗 , find the corresponding direction cosine 𝛼𝑗
𝑖(𝜇𝑧) using Eq. 5.2. 

5   Substitute 𝛽𝑖
𝑡,𝜎𝑧𝑗 , and 𝛼𝑗

𝑖(𝜇𝑧) into Eq. 5.1 to obtain the inverse MPFP 𝒛𝑗
𝑖 . 

6  End 

 7  For 𝒛𝑖 = {𝒛1
𝑖 , 𝒛2

𝑖 , … , 𝒛𝑁𝑧
𝑖 }, formulate the approximate deterministic constraint 𝐠𝑖(𝑑, 𝜇𝑧) by substituting 𝒛𝑖  

into the constraint function g𝑖 .  
8 End 

 Output: The mathematical formulas of approximate deterministic constraints 𝐠𝑖=1,..,𝑘(𝑑, 𝜇𝑧).  

5.3 Nelder-Mead (NM) Simplex Search Algorithm 

The NM simplex search algorithm was originally developed by Nelder and Mead (1965). It is 

a derivative free method introduced for unconstrained continuous optimization problems. Due 

to its simple structure and ease of implementation, the NM algorithm has been successfully 

combined with several metaheuristics to solve different optimization problems in diverse 

fields (Rajan and Malakar 2015; Liao et al. 2015; Hamid et al. 2016; Moezi et al. 2018; Singh 

et al. 2018; Xu and Yan 2019; Xu et al. 2019,….). 
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In this study, the NM technique is used to enhance the local search ability of the MADE 

algorithm. For each generation and after the mutation and crossover operations, the NM is 

introduced as local search to replace the worst current solution with the best one. The 

procedure of the NM method is illustrated in the flowchart presented in Fig. 5.2. According to 

this figure, the NM contains four operations: reflection, expansion, contraction and shrinkage. 

It is worth mentioning that the values of the NM control parameters are iteratively updated, 

during the optimization, according to the method proposed by Xu and Yan (2019).  
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 Fig. 5.2 Flowchart of the NM algorithm. 

5.4 Proposed RBDO Approach: RDS-MADE-NM   

By integrating the RDS concept with the MADE and NM algorithms, a new resolution 

approach for mechanical RBDO problems is developed, which is addressed to handle 

continuous, discrete and integer design variables. The proposed approach in this study 

involves two key steps: 

 First, the RBDO problem (Eq. 1.5) is converted into a SDO problem (Eq. 5.4) by 

applying the RDS strategy.  

 Second, the formed optimization problem is solved by introducing a hybrid 

optimization algorithm, coupling MADE with NM.  
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In the present approach, the index technique (Onwubolu and Davendra 2009) is adopted 

to deal with the discrete and integer design variables. The generalized flowchart of the 

developed RDS-MADE-NM approach is outlined in Fig. 5.3. 
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Fig. 5.3 Generalized flowchart of the RDS-MADE-NM integrated approach. 

5.5 Evaluation of RDS-MADE-NM 

In this section, the performance of the RDS-MADE-NM is shown by solving six nonlinear 

RBDO problems. The first four mechanical problems chosen from the literature are: the 

cantilever beam, vehicle side impact, speed reducer, and welded beam. Furthermore, two 

additional problems of mechanical design are formulated in this study for first time including 

the multiple disc clutch brake and the cylindrical pressure vessel. The population size and FEs 

number for each problem are given in Table 5.1. All problems are independently executed 50 

times and the obtained results are compared with those available in the literature. For more 

readability, the better solution is highlighted in bold face. 
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Table 5.1 Np size and FEs number of the RDS-MADE-NM for the RBDO problems.  

RBDO problem Np FEs 

Cantilever beam 20 15,000 

Vehicle side impact 20 35,000 

Speed reducer 20 25,000 

Welded beam 20 18,000 

Multiple disc clutch brake 25 5,000 

Pressure vessel 25 25,000 

5.5.1 Cantilever Beam 

The cantilever beam problem (Fig. 5.4) is widely used in the literature to test the reliability 

and the efficiency of RBDO methods (Liang et al. 2007; Shan and Wang 2008; Li et al. 

2013). The objective is to minimize the beam weight, while two probabilistic constraints are 

considered. The first is imposed on the stress at the fixed end, which should be less than the 

yield strength. The second is fixed on the tip displacement, which should be less than the 

allowable displacement 𝐷0. The problem involves two continuous deterministic design 

variables: the width  𝑑1  and thickness  𝑑2  of the cross-section. Moreover, four random 

parameters exist in the probabilistic constraints, supposed to be independent normally 

distributed where their statistical data are illustrated in Table 5.2. Thus, the RBDO problem is 

stated as follows:                                                                                                                                    
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The beam length L =100 in and the allowable displacement 𝐷0= 2.5 in. 
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Fig. 5.4 Cantilever beam design. 
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Fig. 5.5 Illustration of the deterministic FDS for the cantilever beam example. 

5.5.1.1 Formulating the deterministic optimization problem 

The feasible design space of the cantilever beam problem for the deterministic level is 

presented in Fig. 5.5. To shift the boundaries of the deterministic feasible space to the reliable 

space, the two probabilistic constraints in Eq. 5.5 are converted into approximate 

deterministic ones by applying the pseudo-code of the RDS technique (Algorithm 5.1). 

Algorithm 5.2 presents the procedure of the RDS strategy for the cantilever beam problem. 

Note that the same procedure is followed for the other problems studied. 
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Algorithm 5.2: Adopted RDS technique for the cantilever beam problem 

Input: 2,k  4,Nz  {3,3},i
t 

 

6{40000,1000,500,2 19 },0z  
 

6{2000,100,100,1.4 15 }.0z    

For 𝑖 ≔ 1  to k do  

 The partial derivatives of the function g𝑖(𝑑, 𝜇𝑧) are computed (Appendix A). 

 For 𝑗 ≔ 1 to 𝑁𝑧 do 

  The inverse MPFP of the constraint g𝑖  is calculated as follows: 
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After the approximate deterministic constraints have been formed, the reliable design 

space of the cantilever beam problem is defined, as presented in Fig. 5.6. Thus, the equivalent 

deterministic optimization problem is established as follows: 
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Reliable Design Space                                  

Feasible Design Space                                      

1 0,( ) g pd   
1 0,( )pg d   

2 0,( )pg d   

2 0,( ) g pd   

 

Fig. 5.6 Illustration of the RDS for the cantilever beam example. 

5.5.1.2 Results and discussions 

This optimization problem has been recently solved using SLDM (Li et al. 2013), IRA-DE 

(Lobato et al. 2017), Mean anchor (Fenrich and Alonso 2019), and PSO-4M-3M-2M (Liao 

and Biton 2019). The optimal results of the proposed method and the compared ones are 

given in Table 5.3. From this table, it is observed that the RDS-MADE-NM can reach the 

lower value of the objective function of 𝑓(𝑦∗) = 9.520247 with 𝑦∗ = {2.445990 mm, 

3.892184 mm}. The results given by both IRA-DE and PSO-4M-3M–2M are very 

competitive compared with those of SLDM and Mean-anchor approach.  

Moreover, Table 5.4 represents the statistical results of the proposed method for 50 

independent runs. It is clear from the table that RDS-MADE-NM approach is very stable in 

solving this problem through achieving a small standard deviation of 8.48E-15. Besides, the 

RDS-MADE-NM needs few iterations to reach the best optimal solution (FEs = 15,000).  

Table 5.2 Random parameters of the cantilever beam problem. 

Random parameters  𝝁 𝝈 

Yield strength 𝑝1 (psi) 40,000 2000 

Load lateral 𝑝2 (lb) 1000 100 

Load vertical  𝑝3 (lb) 500 100 

Young’s modulus  𝑝4 (psi) 29×106 1.45×106 
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Table 5.3 Comparison of RBDO results for the cantilever beam problem. 

Variable RDS-MADE-NM PSO-4M-3M-2M  Mean anchor  IRA-DE  SLDM 

𝑑1 2.445990 2.45020 2.6219 2.44881 2.448 

𝑑2 3.892184 3.88050 3.6492 3.88772 3.893 

𝑓𝑏𝑒𝑠𝑡  9.520247 9.52030 9.5680 9.52026 9.528 

Table 5.4 Statistical results of the RDS-MADE-NM for the cantilever beam problem. 

Method Best Mean Worst SD FEs 

RDS-MADE-NM 9.520247 9.520247 9.520247 8.48E-15 15,000 

5.5.2 Vehicle Side Impact 

This mechanical problem has been modeled for the first time by Gu et al. (2001) using the 

finite elements analysis, as shown in Fig. 5.7. The objective is to minimize the total vehicle 

weight while the probabilistic constraints are related to deflections, velocities at different 

vehicles and dummy locations. The problem has seven continuous random design variables 

and four random parameters as presented in Table 5.5. All the random quantities follow the 

normal distribution and are statistically independent. The RBDO problem of the vehicle side 

impact is expressed as follows: 
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For more details, the mathematical forms of the probabilistic constraints are provided in 

Appendix B.1.  

Table 5.6 displays the best optimal values of the objective and the design variables for the 

vehicle side impact problem using different approaches: SLA (Liang et al. 2008), SLDM (Li 

et al. 2013), AH-SLM (Jiang et al. 2017), and RBDO-dBA (Chakri et al. 2018). Table 5.6 

shows obviously that RDS-MADE-NM and RBDO-dBA methods are the most effective in 

solving the problem by reaching the best fitness value (𝑓(𝑦∗) = 28.5526). The SLDM with 

the value of 28.596 is slightly better than SLA and AH-SLM with values of 28.6977 and 

29.5578, respectively. The statistical values of the proposed approach and the RBDO-dBA 

developed by Chakri et al. (2018) are presented in Table 5.7.  
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Table 5.7 indicates clearly the robustness of the RDS-MADE-NM compared with the 

RBDO-dBA through the small standard deviation of 9.00E-13. Moreover, the best, mean and 

worst solutions provided by the proposed RDS-MADE-NM approach are better than those 

obtained with the RBDO-dBA. As mentioned in the same table, the RDS-MADE-NM reaches 

the best value with the lowest FEs, which is about 65% smaller.  

B
arrier 

 
Fig. 5.7 Vehicle side impact design, extracted from (Youn and Choi 2004). 

Table 5.5 Random design variables and random parameters of the vehicle side impact problem. 

Random design variables 𝝁𝒙𝒋
𝑳 𝝁𝒙𝒋

𝑼 𝝈𝒋 

Thickness (mm)    

B-Pillar inner 𝑥1 0.5 1.5 0.03 

B-Pillar reinforcement 𝑥2 0.45 1.35 0.03 

Floor side inner 𝑥3 0.5 1.5 0.03 

Cross members 𝑥4 0.5 1.5 0.03 

Door beam 𝑥5 0.875 2.625 0.05 

Door belt line reinforcement 𝑥6 0.4 1.2 0.03 

Roof rail 𝑥7 0.4 1.2 0.03 

Random parameters 𝝁 𝝈 

Material of B-Pillar inner 𝑝1 0.345 0.006 

Material of floor side inner 𝑝2 0.192 0.006 

Barrier height (mm) 𝑝3 0.00 10.00 

Barrier hitting position (mm) 𝑝4 0.00 10.00 
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Table 5.6 Comparison of RBDO results for the vehicle side impact problem.  

Variable RDS-MADE-NM RBDO-dBA AH-SLM SLDM SLA 

𝜇𝑥1 0.800849009 0.80084900 0.7872 0.8050 0.81000 

𝜇𝑥2 1.350000000 1.35000000 1.3500 1.3500 1.35000 

𝜇𝑥3 0.713392195 0.71339220 0.6887 0.7170 0.72770 

𝜇𝑥4 1.499999999 1.50000000 1.5000 1.5000 1.50000 

𝜇𝑥5 0.875000000 0.87500000 1.0705 0.8750 0.87500 

𝜇𝑥6 1.200000000 1.20000000 1.2000 1.2200 1.20000 

𝜇𝑥7 0.400000000 0.40000000 0.7284 0.4000 0.40000 

𝑓𝑏𝑒𝑠𝑡  28.55263766 28.5526497 29.5578 28.596 28.6977 

Table 5.7 Statistical results for the vehicle side impact problem. 

Method Best Mean Worst SD FEs 

RDS-MADE-NM 28.5526376 28.5526376 28.5526376 9.00E-13 35,000 

RBDO-dBA 28.5526497 28.5526578 28.5527264 1.55E-05 100,000 

5.5.3 Speed Reducer 

The probabilistic optimization formulation of the speed reducer problem has been proposed in 

(Yin and Chen 2006). The problem, as described schematically in Fig. 5.8, contains seven 

continuous design variables. The teeth module  𝑑1  and the number of pinion teeth 𝑑2 are 

deterministic. The random design variables are: face width 𝑥1, lengths of the shafts (𝑥2, 𝑥3), 

and diameters of the shafts (𝑥4,  𝑥5). There are also fifteen random parameters including the 

material properties, rotation speed, and engine power. The design problem is subjected to ten 

probabilistic constraints as well as one deterministic constraint. So, to minimize the system 

weight, the probabilistic optimization problem can be formulated as follows: 
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The mathematical formulas of the constraints are presented in Appendix B.2. All the random 

design variables and random parameters are statistically independent with the normal 

distribution (Table 5.8). 

The best optimal results of the RDS-MADE-NM are compared with those of the RBDO-

dBA (Chakri et al. 2018), Enhanced SORA (ESORA) and DLA (Yin and Chen 2006). The 

comparison results are detailed in Table 5.9.The results show that the RDS-MADE-NM can 

provide new optimal solution for the speed reducer problem, where 𝑓(𝑦∗) = 2856.3662. The 

RBDO-dBA approach with best solution of 2856.547 is better than ESORA and DLA with 

values of 2857.25 and 2878.97, respectively.   

The statistical results of the proposed approach and the RBDO-dBA are collected in 

Table 5.10. The obtained results clearly show that RDS-MADE-NM is better than RBDO-

dBA in solving this problem based on the lowest values for the mean (2856.36622), the worst 

(2856.36622) as well as the standard deviation (9.79E-08). Moreover, the RDS-MADE-NM 

can reach the best point with the lowest Fes number, which is 50% smaller. 
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Fig. 5.8 Speed reducer design. 
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Table 5.8 Characteristics of the speed reducer problem. 

Deterministic design variables 𝒅𝒒
𝑳
 𝒅𝒒

𝑼
 

Teeth module (mm) 𝑑1 0.7 0.8 

Pinion teeth number 𝑑2 17 28 

Random design variables (mm) 𝝁𝒙𝒋
𝑳 𝝁𝒙𝒋

𝑼 Covariant 

Face width 𝑥1 2.6 4.2 0.05 

Shaft length 1 𝑥2 7.0 8.3 0.05 

Shaft length 2  𝑥3 7.0 9.3 0.05 

Shaft diameter 1  𝑥4 2.9 3.95 0.02 

Shaft diameter 2 𝑥5 5.0 6.0 0.02 

Random parameters 𝝁 𝝈 

𝑝1 27.0 2.7 

𝑝2 397.5 39.8 

𝑝3 1.93 0.0965 

𝑝4 1.93 0.0965 

𝑝5 1100.0 110.0 

𝑝6 745.0 74.5 

𝑝7 1.69×107 1.69×106 

𝑝8 0.1 0.005 

𝑝9 1.58×108 1.58×107 

𝑝10 850.0 34.0 

𝑝11 5.0 0.25 

𝑝12 12.0 0.6 

𝑝13 1.5 0.75 

𝑝14 1.1 0.11 

𝑝15 1.9 0.19 

Table 5.9 Comparison of RBDO results for the speed reducer problem.  

Variable RDS-MADE-NM RBDO-dBA ESORA DLA 

𝑑1 0.700000009 0.700000 0.70000 0.70000 

𝑑2 17.00000000 17.00000 17.0000 17.0000 

𝜇𝑥1 3.859799083 3.860190 3.86180 3.77750 

𝜇𝑥2 7.000000000 7.000000 7.00000 7.00000 

𝜇𝑥3 7.000000000 7.000000 7.00000 7.00000 

𝜇𝑥4 2.932387331 2.932511 2.93260 3.19760 

𝜇𝑥5 5.000000000 5.000000 5.00000 5.00000 

𝑓𝑏𝑒𝑠𝑡  2856.366228 2856.547 2857.25 2878.97 
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Table 5.10 Statistical results for the speed reducer problem. 

Method Best Mean Worst SD FEs 

RDS-MADE-NM 2856.36622 2856.36622 2856.36622 9.79E-08 25,000 

RBDO-dBA 2856.547 2856.547 2856.547 9.62E-05 50,000 

5.5.4 Welded Beam 

The welded beam structure (Roa et al. 2019) (Fig. 5.9) must be designed for the minimum 

cost using four design variables: welding depth 𝑥1, welding length 𝑥2, beam height 𝑥3, and 

beam thickness 𝑥4. This problem involves seven parameters and five constraints associated 

with the geometry, the maximum permissible stress, and the tip deflection. The RBDO 

formulation of this example has been extensively studied in the literature (Lee and Lee 2005; 

Cho and Lee 2011; Li at al. 2015) considering that all random design variables are continuous 

with the normal distribution, and the parameters are all deterministic.  

In the present study, we have decided to use the modified formulation proposed by 

Chakri et al. (2018) where all the random design variables are considered to be discrete; all 

the parameters are assumed to be random; and mixed types of distribution functions are used. 

The modified RBDO problem of the welded beam is given by the following equation: 
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The mathematical formulation of the probabilistic constraints, for the welded beam problem, 

is presented in Appendix B.3. The statistical characteristics of the system parameters are taken 

from (JCSS 2001) and listed in Table 5.11. 

The best optimal values of the objective as well as the design variables provided by RDS-

MADE-NM and RBDO-dBA methods are presented in Table 5.12. It can be observed from 
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this table that the proposed approach achieves new best optimal solution for the welded beam 

problem, considering the case of discrete variables.  

Form the statistical analysis given in Table 5.13, the approach proposed in this study 

outperforms the RBDO-dBA, regarding the values of the best, the mean and the worst 

solutions. In addition, the introduced approach is more robust in solving this problem with 

lowest value of the standard deviation of 4.54E-10. From the same table, it can be noticed that 

the RDS-MADE-NM is capable to provide the optimized results in lesser Fes number 

(reduction of 64%).  
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x

4
x

1
p

 

Fig. 5.9 Welded beam design. 

Table 5.11 Random parameters of the welded beam problem. 

Random parameters Distribution 𝝁 Covariant 

Load 𝑝1(N) Log-normal 26688.0 0.10 

Beam length 𝑝2(mm) Normal 355.6 0.05 

Young modulus 𝑝3(Mpa) Log-normal 206850.0 0.03 

Shear modulus 𝑝4(Mpa) Log-normal 82740.0 0.03 

Admissible deflection 𝑝5(mm) Normal 6.35 0.05 

Admissible shear stress 𝑝6(Mpa) Log-normal 93.77 0.07 

Admissible normal stress 𝑝7(Mpa) Log-normal 206.85 0.07 

Weld material cost 𝑐1 ($/mm) Deterministic 6.74135×10-5 _ 

Bar stock cost 𝑐2 ($/mm) Deterministic 2.93585×10-6 _ 

Table 5.12 Comparison of RBDO results for the welded beam problem.   

Variable RDS-MADE-NM RBDO-dBA 

𝜇𝑥1 6.00000 6.00000 

𝜇𝑥2 210.000 233.000 

𝜇𝑥3 219.000 232.000 

𝜇𝑥4 7.00000 7.00000 

𝑓𝑏𝑒𝑠𝑡  2.96502 3.27626 



Chapter 5.                                                                                            A Novel RBDO Approach  

107 

Table 5.13 Statistical results for the welded beam problem. 

Method Best Mean Worst SD FEs 

RDS-MADE-NM 2.96502 2.96502 2.96502 4.54E-10 18,000 

RBDO-dBA 3.27626 3.30780 3.35368 2.24E-02 50,000 

5.5.5 Multiple Disc Clutch Brake 

The objective of this problem is to minimize the weight of the multiple disc clutch brake 

shown in Fig. 5.10, while observing eight design constraints. The optimization problem has 

been expressed in the deterministic form by Osyczka (2002) and is modified here to be a 

RBDO problem.  

Regarding the RBDO formulation, there are five discrete design variables consisting of 

four random ones: the inner and the outer radiuses (𝑥1, 𝑥2), the thickness of discs 𝑥 3, and the 

actuating force 𝑥4. The deterministic variable is the number of friction surfaces 𝑑1. The first 

three variables are assumed to follow the normal distribution with a covariant of 0.05, while 

the actuating force variable 𝑥4 follows the lognormal distribution with a covariant of 0.10. 

There are also nine normally distributed random parameters and their statistical data are 

described in Table 5.14. All the random variables and random parameters are supposed to be 

independent. Thus, the RBDO formulation can be expressed as follows: 
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The mathematical formulation of the probabilistic constraints is detailed in Appendix B.4.  
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In order to confirm the results of proposed approach for the multiple disc clutch brake 

and the presser vessel RBDO problems, five additional algorithms are used: the Particle 

Swarm Optimization (PSO) (Kennedy and Eberhart 1995), the Artificial Bee Colony (ABC) 

(Karaboga and Basturk 2007), the Bat Algorithm (BA) (Yang 2010), the Krill Herd (KH) 

(Gandomi and Alavi 2012), and the Interior Search Algorithm (ISA) (Gandomi 2014). It is 

worth mentioning that the used algorithms are also coupled with the RDS strategy. 

Concerning the specific parameters of each implemented algorithm, we keep the similar 

values suggested by the original authors for the two problems. For the statistical comparison, 

we run each algorithm 50 times.  

The optimal results for the multiple disc design problem achieved by the used algorithms 

are given in Table 5.15. Table 5.16 details the simulated results regarding the values of the 

best, the mean, the worst solutions, and the standard deviation. According to Table 5.15, all 

investigated algorithms are able to find the feasible optimal global solution, which is 𝑓(𝑦∗) = 

0.73562276. For the statistical analysis, Table 5.16 clearly shows that the MADE-NM 

outperforms the other implemented algorithms in terms of the mean and the worst values. 

Moreover, by achieving the smallest standard deviation of 7.85E-16, the MADE-NM is the 

most consistent to solve this problem. The mean and the worst solutions given by ABC 

algorithm are better than the other compared algorithms.  

Fig. 5.11 illustrates the convergence plots of the algorithms to the best results. It shows 

clearly that MADE-NM can converge fast, compared to the other metaheuristics, and take 

only 10 iterations to find the best solution. PSO and KH can reach the optimal solution at the 

19th and 26th iterations, respectively. ISA and BA obtain the best solution almost in the same 

iteration, while ABC converges to the final value after 96 iterations.    

The optimal solution obtained by RDS-MADE-NM is employed to test the reliability of 

the constraints satisfaction for this example. Table 5.17 presents the values of the eight 

constraints in the reliable design space, the corresponding reliability indexes and failure 

probabilities. The probabilistic constraints are estimated here by FORM approximation and 

Monte Carlo simulation using the Phimeca software. The Monte Carlo simulation is regarded 

as reference method with 106 samples. As it can be observed from Table 5.17, the calculated 

reliability of each constraint satisfies the imposed level, which validates the solution obtained 

by developed approach to this RBDO problem. For the fifth and seventh constraints, the 

symbol ∞ indicates that the reliability index has a high value, meaning that the corresponding 

probability of failure is very low.  

file:///C:/Users/poste01/Downloads/References%20CH%202/Storn%20and%20Price%20(1995).pdf
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Fig. 5.10 Multiple disc clutch brake design. 

 

Fig. 5.11 Convergence diagrams for the multiple disc clutch brake RBDO problem. 

Table 5.14 Random parameters of the multiple disc clutch brake problem. 

Random parameters 𝝁 Covariant 

Minimum difference between radii 𝑝1(mm) 20 0.05 

Maximum length 𝑝2(mm) 30 0.05 

Distance between disc when unloaded 𝑝3(mm) 0.5 0.05 

Maximum velocity of slip stick 𝑝4(m/sec) 10 0.05 

Maximum allowable pressure on disc 𝑝5(Mpa) 1 0.03 

Friction coefficient 𝑝6 0.5 0.03 

Disc mass moment of inertia 𝑝7(kg.mm2) 55 0.15 

Frictional resistance torque 𝑝8(N.m) 3 0.15 

Static input torque 𝑝9(N.m) 40 0.15 

Material  density 𝑐 (kg/mm3) 78×10-7 _ 
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Table 5.15 Best results obtained by the algorithms for the multiple disc clutch brake RBDO problem. 

Variable MADE-NM ABC BA PSO KH ISA 

𝑑1 4.0000000 4.0000000 4.0000000 4.0000000 4.0000000 4.0000000 

𝜇𝑥1 60.000000 60.000000 60.000000 60.000000 62.000000 60.000000 

𝜇𝑥2 98.000000 98.000000 98.000000 98.000000 100.00000 98.000000 

𝜇𝑥3 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 

𝜇𝑥4 880.00000 1000.0000 1000.0000 950.0000 880.00000 1000.0000 

𝑓𝑏𝑒𝑠𝑡  0.73562276 0.73562276 0.73562276 0.73562276 0.73562276 0.73562276 

Table 5.16 Statistical results for the multiple disc clutch brake RBDO problem. 

Algorithm Best Mean Worst SD FEs 

MADE-NM 0.73562276 0.73562276 0.73562276 7.85E-16 5,000 

ABC 0.73562276 0.76692962 0.81709997 2.98E-02 5,000 

BA 0.73562276 1.12175905 2.84055268 4.62E-01 5,000 

PSO 0.73562276 0.83176636 1.32412098 1.66E-01 5,000 

KH 0.73562276 0.94456488 1.55260022 2.01E-01 5,000 

ISA 0.73562276 0.78474924 1.10343415 8.59E-02 5,000 

Table 5.17 Constraint value and estimated reliability of the probabilistic constraints for the multiple 

disc clutch brake problem. 

Constraint in the RDS Value FORM (abdo-Rackwitz) 𝑷𝒇 𝑴𝑪𝑺  

𝜷 𝑷𝒇  

𝐠𝟏  0.5046 3.0865 0.0010 0.00098 

𝐠𝟐 17.9225 5.1974 1.0105E-07 0.0000 

𝐠𝟑 0.8581 6.2652 1.8617E-10 0.0000 

𝐠𝟒 8.3086 7.165 3.8893E-13 0.0000 

𝐠𝟓 8.4649 ∞ 0.0000 0.0000 

𝐠𝟔 0.0009 3.0252 0.0012 0.0012 

𝐠𝟕 29.3033 ∞ 0.0000 0.0000 

𝐠𝟖 5.28150 6.8237 4.4363E-12 0.0000 

5.5.6 Cylindrical Pressure Vessel 

For the cylindrical pressure vessel structure presented in Fig. 5.12, the objective is to optimize 

the total fabrication cost using four mixed design variables. The thickness of the cylindrical 

shell 𝑥1 and the thickness of the spherical head 𝑥2 are discrete in multiples of 0.0625, while 

the inner radius 𝑥3, and the length of the cylindrical segment of the vessel 𝑥4 are continuous. 

The original design formulation was given by Sandgren (1990) in the deterministic term and 

then became widely used in the engineering field as a real-world mixed test problem. In the 

file:///C:/Users/poste01/Downloads/References%20CH%202/Storn%20and%20Price%20(1995).pdf
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present research, the probabilistic optimization formulation is investigated to test the 

effectiveness of the proposed approach in case of mixed design variables. We assume that the 

four variables are random with the normal distribution and a covariant of 0.05. The RBDO 

problem is given as follows: 
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                (5.11) 

Tables 5.18 and 5.19 display the simulated results for the pressure vessel RBDO problem. 

Table 5.18 obviously demonstrates that only MADE-NM, PSO and ISA are able to get the 

optimal value of  𝑓(𝑦∗) = 8418.6674$ with 𝑦∗ = {1.00 in, 0.500 in, 46.1087 in, 176.1772 

in}. From the statistical analysis listed in Table 5.19, the proposed MADE-NM algorithm 

confirms that is very effective to solve this problem with lowest values of the mean, the worst 

solutions as well as the standard deviation. Both ABC and KH converge only to the near 

global solution. However, BA is the worst in dealing with this example with highest values of 

the best (12585.53$), the mean (28556.45$) and the worst (67892.85$).  

As shown in Fig. 5.13, PSO algorithm is relatively faster than the compared algorithms to 

find the best fabrication cost of the presser vessel structure. The reliability analysis 

corresponding to the optimal solution obtained by RDS-MADE-NM is also given in Table 

5.20. According to this table, the desired reliability is checked for all constraints. The first and 

third constraints presented in bold are actives, which have the same level of required 

reliability. 
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Fig. 5.12 Cylindrical pressure vessel design. 

 
Fig. 5.13 Convergence diagrams for the pressure vessel RBDO problem. 

Table 5.18 Best simulated results obtained by the algorithms for the pressure vessel RBDO problem. 

Variable MADE-NM ABC BA PSO KH ISA 

𝜇𝑥1 1.0000000 1.0000000 1.81250000 1.0000000 1.0625000 1.0000000 

𝜇𝑥2 0.5000000 0.5000000 0.68750000 0.5000000 0.5625000 0.5000000 

𝜇𝑥3 46.108706 46.029740 64.1257975 46.108706 48.981693 46.108706 

𝜇𝑥4 176.17721 177.68827 40.8397406 176.17721 145.91348 176.17721 

𝑓𝑏𝑒𝑠𝑡  8418.6674 8450.0475 12585.5311 8418.6674 8744.6073 8418.6674 

Table 5.19 Statistical results for the pressure vessel RBDO problem. 

Algorithm Best Mean Worst SD FEs 

MADE-NM 8418.66744 8418.66744 8418.66744 6.17E-12 25,000 

ABC 8450.04752 8695.46768 9136.5936 1.60E+02 25,000 

BA 12585.5311 28556.4531 67892.8534 1.43E+04 25,000 

PSO 8418.66744 9775.69268 28441.5616 2.89E+03 25,000 

KH 8744.60734 9497.32202 11957.833 6.94E+02 25,000 

ISA 8418.66744 9419.99224 10742.712 6.01E+02 25,000 
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Table 5.20 Constraint value and estimated reliability of the probabilistic constraints for the pressure 

vessel problem. 

Constraint in the RDS Value FORM (abdo-Rackwitz)  𝑷𝒇 𝑴𝑪𝑺  

𝜷 𝑷𝒇  

𝐠𝟏  0.0000 1.6450 0.0500 0.0497 

𝐠𝟐 0.0053 1. 8056 0.0355 0.0353 

𝐠𝟑 0.0000 1.6449 0.0500 0.0501 

𝐠𝟒 49.3322 3.9763 3.4998E-5 0.00002 

5.6 Industry Case Study 

A cylindrical spur gear in a large transport machine is taken as a case study. This structure has 

been investigated by Abderazek et al. (2017) in the deterministic optimization level. The 

problem is formulated for two objectives, regarding the maximum bending stresses and the 

specific sliding coefficients. The bending stress is modeled explicitly using FEA 

(Atanasovska et al. 2010; Atanasovska et al. 2013). In addition, several constraints related to 

the system performance are considered, such as minimal transverse contact ratio value, 

thickness of the tooth tip diameter, and tooth interferences. The optimization problem is 

developed for three mixed design variables including two continuous (the profile shift 

coefficient  𝑥𝑝1 and the radius of root curvature 𝜌𝑓) and one discrete (the pressure angle 𝛼𝑛). 

In this study, the RBDO for this structure is considered to explore the applicability of the 

proposed approach in real mechanical problems. It is assumed that all the random design 

variables and parameters are independent with the normal distribution. According to the 

statistical description proposed by Zhang at al. (2003), the profile shift coefficients (𝑥𝑝1, 𝑥𝑝2) 

have a covariant of 0.033, the radius of root curvature 𝜌𝑓, the pressure angle 𝛼𝑛 and the 

normal module 𝑚𝑛 have a covariant of 0.005, while the teeth number for the pinion and the 

wheel (𝑧1 , 𝑧2) are treated as deterministic. The flowchart in Fig. 5.14 displays the basic steps 

of the developed RBDO procedure for the problem. The mathematical RBDO model of the 

cylindrical spur gear is formulated as the following: 

file:///C:/Users/poste01/Downloads/References%20CH%202/Storn%20and%20Price%20(1995).pdf
file:///H:/Version%20finale/References%20CH%201/Analysis%20of%20the%20nominal%20load%20effects%20on%20gear%20load%20capacity%20using%20the%20finite%20element%20method.pdf
file:///C:/Users/poste01/Downloads/References%20CH%202/Storn%20and%20Price%20(1995).pdf
file:///C:/Users/poste01/Downloads/References%20CH%202/Storn%20and%20Price%20(1995).pdf


Chapter 5.                                                                                            A Novel RBDO Approach  

114 

 

 

 

1 1

2 max1

1

2 1

3 2

2 222
4

1

2

, ,

, 1,...,5.

6, 7.

1.4

0.4

0.4

( 2 2 )
sin

2

 

min

Pr .  0
. . :

0,

xp f n

F

q

a n

a n

n p

b n

t
i i

find

ob g R
s t  

g                   

f

f

        i

g

g s m

g s m

m z x
g r a    

           q

        

g

 



 














 



 




 

 

 

 
  





 

 

 

1 122
5 1

3
6 1 2

6
7 max1 max 2

1-0.5 0.8, 6 8.3, 18, 19, 20, 21, 22

  99.87

( 2 2 )
sin

2

1

10

3 .%

0

xp

n p

b

F

i

n

t

n

F

f        

R

m z x
r a

g

g

 

 

 

 









 
   

  



   





 





                                                             (5.12)                      

where 𝜎𝐹1, 𝜎𝐹2  are the maximum bending stresses and  𝛾𝑚𝑎𝑥1,  𝛾𝑚𝑎𝑥2  are the maximum 

specific sliding coefficients for the pinion and the wheel, respectively. 𝜀𝛼  is the transverse 

contact ratio, 𝑎′  is the distance of the working center, and 𝛼𝑛
′  is pressure angle at the pitch 

cylinder. Note that the last two constraints are considered to be deterministic. To provide 

equally strong teeth on the pinion and the wheel, their maximum bending stresses should be 

balanced (constraint g6). Moreover, in order to maximize the wear resistance of the gear pair, 

the maximum specific sliding coefficients should be equalized at extremes of contact path (as 

given by the constraint g7). For more details about the design problem, please refer to 

(Abderazek et al. 2017). 

5.6.1 Simulation Results  

For solving this multi-objective RBDO problem, the weighted sum method is applied where 

the weighting factors for the objectives are chosen as: w1 = 0.9, w2 = 0.1. It should be noted 

that we keep the same parameters tuning of the proposed method (as in the previous section) 

for this case study, 𝑁𝑝 = 20 and 𝑇𝑚𝑎𝑥 = 2500. The best results for the cylindrical spur gear 

RBDO problem, after 50 runs, are given in Table 5.21. Results show that the proposed RDS-

file:///C:/Users/poste01/Downloads/References%20CH%202/Storn%20and%20Price%20(1995).pdf
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MADE-NM reaches the optimal solution for all runs, and provides the objective functions 

values of 𝑓1(𝑦∗) = 692.3603 and 𝑓2(𝑦∗) = 0.9250, with 𝑦∗ = {0.382792, 7.769226 mm, 

22.00 °}.  

Accordingly, the achieved results can offer a perfect balancing in the tooth root stresses 

(𝜎𝐹1 = 692.3603 MPa, and 𝜎𝐹2 = 692.3604 MPa) and the maximum specific sliding 

coefficients (𝛾𝑚𝑎𝑥1 = 𝛾𝑚𝑎𝑥2 = 0.9250) so that the service life of the system is significantly 

extended. Additionally, the probabilistic constraints at the optimal solution obtained are 

evaluated using Monte Carlo simulation. The results summarized in Table 5.22 show that the 

required reliability of each constraint is verified (𝑃𝑓 = Ф(−3) ≈ 0.0013). This effectively 

demonstrates that the proposed approach is capable to solve this real RBDO problem. 
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Fig. 5.14 Flowchart of the RBDO procedure for the cylindrical spur gear. 
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Table 5.21 RBDO results of the cylindrical spur gear problem. 

Variable   RDS-MADE-NM 

𝜇𝑥𝑝1 0.382792466550098 

𝜇𝜌𝑓
 (mm) 7.769226148927356 

𝜇𝛼𝑛   (°) 22.00000000000000 

𝜎𝐹1 (MPa) 692.3603432173304 

𝜎𝐹2 (MPa) 692.3604432173306 

𝛾𝑚𝑎𝑥1  0.925016962706618 

𝛾𝑚𝑎𝑥2  0.925017962706618 

𝑓𝑏𝑒𝑠𝑡  623.2168105918681 

Table 5.22 Constraint value and estimated reliability of the probabilistic constraints for the cylindrical 

spur gear problem. 

Constraint in the RDS Value 𝑷𝒇 𝑴𝑪𝑺  

𝐠𝟏  7.3720E-02 0.0011 

𝐠𝟐 1.6639E+00 0.0002 

𝐠𝟑 7.5690E+00 0.0000 

𝐠𝟒 4.4552E+01 0.0000 

𝐠𝟓 6.2842E+02 0.0000 

5.7 Conclusion 

Reliability-based design optimization problems are very important in mechanical applications, 

but their resolution usually involves computational difficulties. In this chapter, a novel RBDO 

approach called RDS-MADE-NM has been presented for handling the mechanical problems. 

According to this integrated approach, the RDS concept is initially used to deal with the 

evaluation of the probabilistic constraints, and then the hybrid MADE-NM algorithm is 

applied to solve the formed deterministic optimization problem.  

The performance of the proposed approach has been evaluated through six mechanical 

design problems including new RBDO formulations for two systems, the multiple disc clutch 

brake and pressure vessel. In the first four RBDO problems, the RDS-MADE-NM has been 

compared with different methods in the literature using double-loop, single-loop, and 

decoupled strategies. The comparative results have demonstrated obviously the superiority of 

the developed approach in terms of efficiency and robustness, with the least values of the 

function evaluations and standard deviation.  
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For the new RBDO problems, the results obtained by the developed approach have been 

compared with five metaheuristics implemented using the same probabilistic concept. 

According to the comparison results, the RDS-MADE-NM is more flexible and consistent to 

acquire the best solutions. Furthermore, to test the effectiveness of the new approach on 

complicated limit-state functions and objective functions, the RBDO for a real spur gear 

mechanism has been studied in this chapter. The found results have really revealed that RDS-

MADE-NM is a promising RBDO tool that can be extended to further applications in 

mechanical engineering.  
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Conclusions and Future Research 

Conclusions 

Optimization in the real mechanical applications usually involves highly nonlinear and 

complex problems with many contradictory design requirements. The primary aim of the 

designer focuses not only to reduce the manufacturing cost of the structure, but also to 

improve significantly its performances. However, when taking into account the impact of 

uncertainties associated with the structural parameters, the reliability of the design becomes 

an interesting challenge in the optimization process. The present thesis hence attempts to 

contribute new optimization tools for addressing the complex mechanical design problems, 

while considering deterministic and reliability based approaches.  

Along the course of the thesis, three main contributions have been introduced and 

discussed. The first contribution lies in the development of an efficient deterministic 

optimization approach capable of solving the design problems of mechanical engineering with 

continuous variables. The proposed method called Modified Adaptive Differential Evolution 

(MADE) is an improved variant of the DE algorithm with two modifications. Particularly, the 

values of mutation and crossover factors are updated automatically via the self-adaptive 

mechanism instead of the manual tuning. Meanwhile, the superiority of feasible points 

technique is used for the selection progress to select the better individuals instead of basic 

selection.  

The effectiveness and applicability of the proposed MADE approach have been verified 

by optimizing four well-known engineering benchmarks which are the three bar truss, tension 

spring, welded beam, and hydrostatic thrust bearing. The numerical results obtained have 

demonstrated that the developed approach is very accurate and robust compared to the 

existing optimization methods in the literature. Besides, the MADE approach has showed 

good convergence speed to reach the best solution for the four tested problems. 

The second contribution of the thesis presents the application of the developed MADE 

and three recent metaheuristics, namely, Grey Wolf Optimizer (GWO), Whale Optimization 

Algorithm (WOA), and Sine-Cosine Algorithm (SCA) for optimizing two cam-follower 

design problems. The former problem is a multi-objective optimization of a cam mechanism 

with offset roller follower translation, including the minimum congestion, the maximum 

performance, and the maximum cam durability. Unlike previous studies where only the main 
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design parameters of the system are used in the optimization procedure, the optimization 

model developed in this research considers more geometric parameters and more working 

conditions to improve the design quality. The second problem is a single-objective 

optimization of a cam mechanism with radial flat-face follower translation in which the size 

of the mechanism is minimized. The optimization process established here investigates the 

influence of the follower motion features on the size minimization of the system. 

Several design constraints are observed during the optimization of the two cam 

mechanisms regarding performance indicators, such as pressure angle and efficiency, 

resistance indicators, such as radius of curvature and contact stress, as well as geometric 

restrictions. According to this, the final results obtained for the case studies have provided 

very useful information and fruitful decisions for the cam synthesis process. Among the four 

methods employed to solve the optimization problems, our developed MADE has displayed 

the better performance in terms of the solution quality and robustness whereas the SCA has 

demonstrated the weakest efficiency in this study. 

The last contribution of this dissertation introduces an effective reliability-based 

optimization approach that is able of handling the mechanical design problems while 

accounting for the system uncertainties. The new proposed approach is a combination of the 

Reliable Design Space (RDS) technique and a hybrid optimization algorithm based on the 

developed MADE and the Nelder-Mead local search (NM). The RDS strategy is initially 

employed to convert the RBDO problem into a deterministic optimization one, by 

transforming probabilistic constraints to approximate deterministic constraints, and the hybrid 

MADE-NM is then used as an optimization tool. Additionally, the index technique is adopted 

in this approach to deal with the discrete and integer design variables. 

The performance of the new integrated approach (RDS-MADE-NM) has been confirmed 

through solving six mechanical RBDO problems, comprising three examples with continuous 

variables (cantilever beam, vehicle side impact, and speed reducer), two examples with 

discrete variables (welded beam, and multiple disc clutch brake), and one with mixed 

variables (cylindrical pressure vessel). Overall, the simulation results have clearly 

demonstrated that the proposed approach performs very well with the high robustness and the 

reasonable computational cost. In particular, the first two examples have verified that RDS-

MADE-NM is effective for both weakly and highly dimensional RBDO problems, 

respectively. By solving the speed reducer design problem, the proposed approach have 

showed a high capability to handle a mixture of probabilistic and deterministic constraints, 
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both random and deterministic design variables, as well as with varying variance. The last 

three examples have proved that RDS-MADE-NM is competent for the discrete and the 

mixed RBDO problems. 

Furthermore, RDS-MADE-NM has been used to solve the RBDO problem of a real spur 

gear mechanism. The obtained results of the studied case have revealed the efficacy and 

accuracy of the new approach in solving mechanical engineering problems with 

computational complexities. This confirms that the RDS-MADE-NM is a promising RBDO 

approach to deal with real industrial cases. It is important to notice that the RBDO for the 

multiple disc clutch brake and pressure vessel structures have been formulated in this study 

for the first time. For both problems, the validity of the new obtained solutions has been 

checked by FORM approximation and Monte Carlo Simulation. This will allow to use these 

two examples as benchmarks in RBDO studies in the future.  

Future Research 

Based on the results obtained in this dissertation, recommendations for future work will be 

focused on two tasks: 

 First, most studies in the field of cam design optimization are based on deterministic 

approaches without modeling the potential uncertainties, which usually leads to a final 

design with a high chance of failure. In the near future, the developed RDS-MADE-

NM approach will be applied to cam-follower mechanisms in order to compromise 

between the objectives to be optimized and the design reliability. Moreover, it would 

be interesting to increase cam performance by using more efficient curves of follower 

motion, such as the class of spline functions, as well as including additional 

constraints, such as those associated with the velocity and acceleration limits. 

 Second, the probabilistic optimization approach developed in this research has only 

been applied to mechanical problems with explicit behavior and the random quantities 

treated have only been assumed to follow Gaussian distributions, i.e., normal, log-

normal. Therefore, it seems promising to extend the RDS-MADE-NM to deal with 

real implicit systems involving finite element and CAD models. In addition, the 

integration of RDS-MADE-NM into probabilistic transformation techniques for 

handling random variables with non-Gaussian distributions is also suggested to be 

further investigated. 
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Annex A 

The partial derivatives of the first function g1(𝑑, 𝜇𝑧) with respect to the mean vector 𝜇𝑧 : 
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The partial derivatives of the second function g2(𝑑, 𝜇𝑧) with respect to the mean vector 𝜇𝑧 : 
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Annex B 

B.1. Vehicle side impact problem 

Mathematical formulation of the probabilistic constraints of the vehicle side impact problem: 
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 B.2. Speed reducer problem 

Mathematical formulas of the constraints of the speed reducer problem: 
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B.3. Welded beam problem 

Mathematical formulas of the probabilistic constraints of the welded beam problem: 
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B.4. Multiple disc clutch brake problem 

Mathematical formulation of the probabilistic constraints of the multiple disc clutch brake 

problem: 
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Abstract 

This dissertation essentially introduces the methodology for deterministic and reliability based 

design optimization of complex mechanical systems. The present research passes through 

three consecutive stages. Firstly, an effective deterministic optimization approach is 

developed. The proposed approach (MADE) is a new version of the DE algorithm with two 

improvements. Secondly, the developed MADE is applied to optimize two cam design 

problems. Overall, the final results obtained provide very suitable decisions for cam 

mechanism syntheses. Lastly, the developed MADE is adjusted to deal with Reliability-Based 

Design Optimization (RBDO). In this way, a novel optimization approach is proposed to 

handle the mechanical design problems under the impact of uncertainties. The simulation 

results on six mechanical problems and an industry case of cylindrical spur gear demonstrate 

that the developed approach is a promising tool with extensive applicability.  

Keywords: Mechanical design, Deterministic optimization, Reliability-based design 

optimization, Differential evolution algorithm, Cam mechanism, Roller follower, Flat-face 

follower. 

Résumé 

Cette thèse introduit essentiellement la méthodologie d'optimisation déterministe et fiabiliste 

pour la conception des systèmes mécaniques complexes. La présente recherche passe par trois 

volets consécutifs. Dans le premier volet, une approche d’optimisation déterministe effective 

est développée. La méthode proposée (MADE) est une nouvelle version de l’algorithme à 

évolution différentielle (DE) avec deux améliorations. Dans le deuxième volet, la MADE est 

appliquée pour optimiser deux problèmes de conception des mécanismes à came-tige. Les 

résultats obtenus offrent des décisions très utiles pour la synthèse des mécanismes à came. 

Dans le dernier volet de la thèse, la MADE est ajustée pour traiter la formulation 

d'optimisation basée sur la fiabilité (RBDO), Dans ce contexte, une nouvelle approche 

d'optimisation est proposée pour résoudre les problèmes de conception mécanique sous 

l’impact des incertitudes. Les résultats de simulation sur six problèmes mécaniques et un cas 

pratique d’un train d’engrenage cylindrique démontrent que l’approche développée est un 

outil prometteur pour des applications étendues. 

Mots clés: Conception mécanique, Optimisation déterministe, Optimisation fiabiliste, 

Algorithme à évolution différentielle, Mécanisme à came, Tige-galet, Tige-plateau. 
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