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Abstract 

With the enormous number of connected objects in pervasive environments, users tend to retrieve 

contextual information directly from physical environments to manage easily their needs and daily 

situations. However, with the rapid growth in the size of data and numbers of devices in distributed 

pervasive environments, the identification of a large number of user's situations becomes a challenging 

task. In fact, the identification of situations in pervasive environments involves a semantic interpretation 

of context raw data provided by various heterogeneous objects, which requires new agile solutions in 

managing and identifying composite situations. None of the existing approaches are able to efficiently 

manage and identify composite user-centric urgent situations. They lack the flexibility to evolve and adapt 

according to the user’s current context and environment’s requirements. Current systems lose 

performance facing up the complexity of managing a huge number of situations or looking for suitable 

services while respecting time requirements. Our goal is to provide an agile semantic approach in the 

context of smart- * (home, health, cities, vehicle, etc.). This agile approach emphasizes the efficient 

management of daily and urgent situations via mobile applications and the automatic generation of 

reconfiguration actions according to the user's profile, his needs and current situations. First, we have 

proposed a multi-layered ontology for composite situation model called Multi-OCSM to formally model 

smart services, user’s domains, context, situation and priority-based situation. It also allows automatic 

reconfiguration of distributed pervasive applications with better autonomy. Afterward, we have proposed 

a new architecture to specify composition operators such as parallel, sequence, alternative, and recurrence 

among component-based situations. From the specification of component-based situations, we generate 

the orchestration of the services via semantic rules and evolved moving scenarios. Then, we have offered 

a new semantic approach based on microservices which allows the exploitation of the Multi-OCSM 

ontology for the management and identification of composite situations in real time. A context-aware 

ontology-based recommendation system for situation rules enrichment and adaptation is also proposed. 

Finally, to validate the efficiency of our approach, we have proposed a prototype for situation management 

with several experiments. The experimental results show that the proposed approach is efficient in terms 

of managing and identifying composite situations where the use of factored microservices improves the 

execution time of the system. 

Keywords: ontologies, heterogeneous connected objects, pervasive environments, contextual and 

urgent situations, Multi-OCSM, automatic reconfiguration.  
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Résumé 

Avec l’apparition abondante d’objets connectés dans les environnements pervasif, les utilisateurs 

ont tendance à récupérer les informations contextuelles directement, depuis l'environnement physique, 

pour mieux répondre à leurs besoins et gérer idéalement leurs situations. Cependant, avec la croissance 

rapide de la taille des données et du nombre d'appareils dans les environnements pervasif, l'identification 

d'un grand nombre de situations d'utilisateurs devient une tâche difficile. En effet, l'identification de 

situations dans des environnements pervasif implique une interprétation sémantique des données brutes 

contextuelles fournies par divers objets hétérogènes, ce qui nécessite de nouvelles solutions agiles dans la 

gestion des situations composites. Aucune des approches existantes n'est en mesure de gérer et d'identifier 

efficacement les situations d'urgence composites centrées sur l'utilisateur. Elles manquent de flexibilité 

pour évoluer et s’adapter en fonction du contexte actuel de l’utilisateur et des exigences de 

l’environnement. Les systèmes actuels perdent en performance face à la complexité de la gestion d'un 

grand nombre de situations ou de la recherche de services adaptés tout en respectant les délais. Notre 

objectif est de fournir une approche sémantique agile dans le contexte du smart-* (maison, santé, etc.). 

Cette approche agile met l'accent sur la gestion efficace des situations quotidiennes et urgentes via des 

applications mobiles et la génération automatiquement des actions de reconfigurations en fonction du 

profil de l'utilisateur, de ses besoins et situations actuels. Tout d'abord, nous avons proposé un modèle 

d’ontologie multicouche appelé Multi-OCSM pour modéliser formellement des services intelligents des 

domaines des utilisateurs, des situations et des priorités entre situations. Il permet également une 

reconfiguration automatique des applications pervasive avec une meilleure autonomie. Ensuite, nous 

avons proposé une nouvelle architecture pour spécifier des opérateurs de composition tels que parallèle, 

séquence, alternative et récurrence entre des situations basées composants. A partir de la spécification de 

situations à base de composants, nous générons l'orchestration des services à partir des règles sémantiques 

et scénarios de mouvements. Nous avons aussi proposé une nouvelle approche basée sur les microservices 

pour la gestion et l’identification des situations composites en temps réel. Un système de recommandation 

basé sur une ontologie sensible au contexte pour l'enrichissement et l'adaptation des règles de situation est 

également proposé. Enfin, pour valider l'efficacité de notre approche, nous proposons un prototype de 

gestion des situations avec plusieurs expérimentations. Les résultats expérimentaux montrent que 

l'approche proposée est efficace en termes de gestion et d'identification des situations composites où 

l'utilisation des microservices factorisés améliore le temps d'exécution du système. 

Keywords : ontologies, objets connectés hétérogènes, environnements omniprésents, situations 

contextuelles et urgentes, Multi-OCSM, reconfiguration automatique. 



 

iv 

 

Preface 

The works presented in this thesis have been published in the following international conferences 

and journals: 

National conferences  

- A. Lakehal. Approche sémantique de génération automatique d’applications agiles en 

environnement pervasif. Doctoral Day, First Edition, UFAS-1 University, Auditorium Mouloud 

Kacem Nait Belkacem-El Bez, 18 May 2017. 

International conferences  

- A. Lakehal. Ontology based Context Model for automatic generation of Agile Applications in 

Pervasive Environments. First Symposium International of Doctorate in Computer Science 

Tuniso-Algériens (SDTA). Tunisie, Hammamet, 24-26 Avril, 2017. 

- A. Lakehal, A. Alti, S. Laborie, P. Roose. Ontolgy-based Context-aware Recommandation Approach 

for Dynamic Situations Enrichment. 2018 IEEE 13th International Workshop on Semantic and 

Social Media Adaptation and Personalization (SMAP), Zaragoza, Spain, 6-8 November, 2018, 

(SJR 0.15) (Core: B). DOI: 10.1109/SMAP.2018.8501880 

- A. Lakehal, A. Alti, P. Roose. A Semantic Event-Based Framework for Complex Situations Modeling 

and Identification in Smart Environments. 7th International Conference on Computing and 

Informatics 2019 (ICOCI 2019), Malaysia, 27-29 March, 2019 (Core: C). 

International journals   

- A. Lakehal, A. Alti, P. Roose. A Semantic Event-Based Framework for Complex Situations Modeling 

and Identification in Smart Environments. International Journal of Advanced Computer Research, 

Vol 9(43) – DOI: 10.19101/IJACR.PID33 – 2019 (Q4 IF 0.85). 

- A. Lakehal, A. Alti, S. Laborie, P. Roose. A Semantic Agile Approach for Reconfigurable Distributed 

Applications in Smart Environments.  International Journal of Ambient Computing and 

Intelligence (IJACI): Volume 11, Issue 2, pp. 48-67, 2020. DOI: 10.4018/IJAC. (Q2 IF 0.527). 

- A. Lakehal, A. Alti, S. Laborie, P. Roose. Semantic-Based Automatic Generation of Reconfigurable 

Distributed Mobile Applications in Pervasive environments. Accepted and will be published in 

journal Transactions on Large-Scale Data and Knowledge-Centered Systems (tldks), Springer-

Verlag, Vol.44 (2020). 

- A. Lakehal, A. Alti, S. Laborie, P. Roose. Real-Time Ontology-Based Context-Aware Situation 

Reasoning Framework in Pervasive Computing. Submitted to Multimedia Tools and Applications, 

Springer, 2020. 

 

https://doi.org/10.1109/SMAP.2018.8501880
https://doi.org/10.1109/SMAP.2018.8501880
https://doi.org/10.1109/SMAP.2018.8501880
http://icoci.cms.net.my/icoci2019/
https://www.igi-global.com/article/a-semantic-agile-approach-for-reconfigurable-distributed-applications-in-pervasive-environments/250850
https://www.igi-global.com/article/a-semantic-agile-approach-for-reconfigurable-distributed-applications-in-pervasive-environments/250850
https://www.igi-global.com/article/a-semantic-agile-approach-for-reconfigurable-distributed-applications-in-pervasive-environments/250850
https://www.igi-global.com/article/a-semantic-agile-approach-for-reconfigurable-distributed-applications-in-pervasive-environments/250850


 

v 

 

Table of contents 

List of Figures .......................................................................................................................................................... x 

List of Tables ......................................................................................................................................................... xiii 

List of Abbreviations ............................................................................................................................................ xiv 

General Introduction ............................................................................................................................................... 1 

Part 1: Background and Related Work ................................................................................................................... 10 

Chapter 1: Context-aware and Situations in Pervasive Computing: Background and Standard Ontologies ......... 11 

1.1 Introduction ........................................................................................................... 12 

1.2 Pervasive computing ................................................................................................. 13 

1.2.1 Evolution of technology: from ubiquitous to pervasive .................................................... 13 

1.2.2 Smart-* domains applications in pervasive environments .................................................. 15 

1.2.3 Issues and challenges in pervasive environments............................................................. 18 

1.3 Context and context-awareness ................................................................................... 19 

1.3.1 Sensor ............................................................................................................... 19 

1.3.2 Raw sensor data and context information .................................................................... 20 

1.3.3 Actuator ............................................................................................................ 21 

1.3.4 What is context? .................................................................................................. 22 

1.3.5 What is event? ..................................................................................................... 23 

1.3.6 Types of events: simple and complex event .................................................................. 24 

1.3.7 Context-awareness ............................................................................................... 24 

1.3.8 Context types and categorization .............................................................................. 25 

1.3.9 Context life cycle ................................................................................................. 27 

1.4 Situation and situation-awareness ................................................................................. 27 

1.4.1 What is situation? ................................................................................................. 28 

1.4.2 Types of situations: simple and composite situation ........................................................ 29 

1.4.3 Situation-awareness .............................................................................................. 29 

1.4.4 Situation management process .................................................................................. 30 

1.5 Context and situation in pervasive computing .................................................................. 31 

1.6 Ontology and standard ontologies for pervasive environment ................................................ 32 

1.6.1 What is ontology? ................................................................................................. 32 

1.6.2 Semantic representation of smart object ...................................................................... 33 



 

vi 

 

1.6.3 Standard ontologies for pervasive environment ............................................................. 34 

1.6.4 Ontology design process for pervasive environment........................................................ 35 

1.7 Middleware dedicated to pervasive systems ..................................................................... 36 

1.7.1 Background ........................................................................................................ 36 

1.7.2 Existing middlewares for pervasive applications ............................................................. 37 

1.8 Conclusion ............................................................................................................ 39 

Chapter 2: Literature Review on Situation-Based Approaches in Pervasive Computing ....................................... 40 

2.1 Introduction ............................................................................................................................. 41 

2.2 Situations modeling approaches .................................................................................................. 42 

2.2.1 Rule-based situation modeling approaches ............................................................................... 42 

2.2.2 Ontology-based situation modeling approaches........................................................................ 43 

2.2.3 Component-based situation modeling approaches .................................................................... 47 

2.2.4 Comparison and discussion .................................................................................................... 47 

2.3 Situations identification approaches ............................................................................................ 48 

2.3.1 Specification-based situation identification approaches .............................................................. 48 

2.3.1.1 Predicate logic ................................................................................................................ 48 

2.3.1.2 Spatial and temporal logic ................................................................................................. 50 

2.3.1.3 Fuzzy logic-based situation identification .............................................................................. 51 

2.3.1.4 Ontologies-based situation identification ............................................................................... 52 

2.3.2 Learning-based situation identification approaches ................................................................... 53 

2.3.2.1 Bayesian classifier ............................................................................................................ 54 

2.3.2.2 Hidden Markov Model ...................................................................................................... 54 

2.3.2.3 Context-Free Grammar ...................................................................................................... 54 

2.3.2.4 Neural networks .............................................................................................................. 55 

2.3.2.5 Support Vector Machines ................................................................................................... 56 

2.3.3 Comparison and discussion .................................................................................................... 57 

2.4 Recommendation techniques ..................................................................................................... 59 

2.4.1 Content-based filtering .......................................................................................................... 59 

2.4.2 Collaborative-filtering ........................................................................................................... 60 

2.4.3 Hybrid filtering .................................................................................................................... 62 

2.4.4 Context-aware recommendation system ................................................................................. 64 

2.4.5 Comparison and discussion .................................................................................................... 66 

2.5 Synthesis and discussion............................................................................................................. 68 

2.6 Conclusion ............................................................................................................................... 70 



 

vii 

 

Part 2: Contributions .............................................................................................................................................. 71 

Chapter 3: A Semantic Agile Approach for Reconfigurable Pervasive Environments ............................................ 72 

3.1 Introduction ........................................................................................................... 72 

3.2 Semantic agile approach: overview and contributions ......................................................... 74 

3.2.1 A Multi-layered Ontology-based Composite Situation Model ............................................ 75 

3.2.2 A middleware for managing composite situations ........................................................... 76 

3.2.3 Parallel context-aware semantic-based situations identification framework ............................ 77 

3.2.4 A modular flexible orchestration of services ................................................................. 77 

3.2.5 Machine learning for situation rules recommendation and enrichment .................................. 77 

3.3 Proposed framework ................................................................................................ 78 

3.3.1 Framework’s general architecture ............................................................................. 79 

3.3.2 Functional model of the User’s Constraints Processing (at design-time) ................................ 81 

3.3.3 Functional model of the Autonomic microservice-based Composite Situation processing (at run-

time) 82 

3.4 Conclusion ............................................................................................................ 83 

Chapter 4: Context-aware Multi layered Ontology for Composite Situation Model in Pervasive Computing ...... 85 

4.1 Introduction ........................................................................................................... 85 

4.2 Multi-OCSM ontology .............................................................................................. 86 

4.2.1 Smart objects class ................................................................................................ 90 

4.2.2 User’s domain class ............................................................................................... 90 

4.2.3 Context class ...................................................................................................... 90 

4.2.4 Situation class ...................................................................................................... 93 

4.2.5 Modeling prioritized situations ................................................................................. 94 

4.2.6 Service class ........................................................................................................ 95 

4.2.7 Modeling service using component-based approach ........................................................ 96 

4.3 Implementation and validation of Multi-OCSM ................................................................ 98 

4.3.1 Implementation of Multi-OCSM ............................................................................... 98 

4.3.2 Consistent rules of Multi-OCSM ............................................................................... 99 

4.3.3 SPARQL queries for Multi-OCSM ........................................................................... 100 

4.3.4 Evaluation of Multi-OCSM .................................................................................... 102 

4.4 Conclusion ........................................................................................................... 104 

Chapter 5: Real-Time Ontology-based Context-aware Situations Identification in Pervasive Computing .......... 105 

5.1 Introduction .......................................................................................................... 105 

5.2 Real-time dynamic semantic-based situations identification processes ..................................... 106 



 

viii 

 

5.2.1 Dynamic filtering of relevant situation rules ................................................................ 107 

5.2.2 Construction of dynamic situation rules-based factorized tree ........................................... 108 

5.2.3 Parallel creation of events and situations microservices from factorized tree .......................... 110 

5.2.4 Priority-ordered blocking queue .............................................................................. 110 

5.2.5 Threads pool and parallel identification of simple and composite situation ............................ 111 

5.2.6 Orchestration of the situation’s actions ...................................................................... 115 

5.2.7 Services reconfiguration and deployment .................................................................... 116 

5.2.8 Services execution ............................................................................................... 116 

5.3 Use cases and scenarios ............................................................................................. 116 

5.4 Conclusion ........................................................................................................... 120 

Chapter 6: Dynamic Situation Enrichment and Adaptation Mechanism in Pervasive Environment .................... 121 

6.1 Introduction .......................................................................................................... 121 

6.2 Situation-based contextual model: definitions and formalizations .......................................... 123 

6.2.1 The multidimensional recommendation space modeling .................................................. 124 

6.2.2 The user context profile formalization ....................................................................... 125 

6.2.3 The rule preference formalization ............................................................................ 125 

6.2.4 The device context .............................................................................................. 125 

6.2.5 The situation rules formalization .............................................................................. 125 

6.2.6 Classification of situation rules ................................................................................ 126 

6.3 Functional model of the situation enrichment and adaptation system ...................................... 126 

6.3.1 Situation rules learning process ................................................................................ 127 

6.3.2 Recommendation process of situation rules ................................................................. 129 

6.3.2.1 Rule’s content-based approach .............................................................................. 131 

6.3.2.2 Bayesian-classifier approach ................................................................................ 133 

6.3.2.3 Rule-based adaptation approach ........................................................................... 134 

6.4 Illustrative case study ............................................................................................... 135 

6.5 Conclusion ........................................................................................................... 136 

Chapter 7: Prototype and Evaluation ................................................................................................................... 138 

7.1 Introduction .......................................................................................................... 138 

7.2 Prototype implementation ......................................................................................... 139 

7.3 Experimental evaluation ........................................................................................... 140 

7.3.1 Experimental setup .............................................................................................. 140 

7.3.2 Evaluation parameters and metrics ........................................................................... 140 

7.3.3 Evaluation results and analysis ................................................................................. 143 

7.3.3.1 Static evaluation results and analysis ...................................................................... 144 



 

ix 

 

7.3.3.2 Dynamic evaluation and analysis ........................................................................... 149 

7.3.4 Comparison with pipelining-based framework ............................................................. 151 

7.3.4.1 Impact of sensors number .................................................................................... 151 

7.3.4.2 Impact of sensor’s frequency ................................................................................. 153 

7.3.5 Synthesis of results analysis and discussions ................................................................. 155 

7.4 Conclusion ........................................................................................................... 156 

General Conclusion .............................................................................................................................................. 157 

Bibliography ........................................................................................................................................................ 160 

Appendix A: Implementation of Event Task, Situation Identifier Task and Extended Thread Pool Executor ..... 169 

Appendix B: GUIs Establishing and Testing of the Motivating Scenario ............................................................. 175 

Appendix C: Context and Situation Properties Analysis in Smart-* Domains ....................................................1759 

 

 

 

 

 

 

 

 

 

 

 



 

x 

 

 

 

List of Figures  

Figure 1.1: Thesis context. ..................................................................................................... 12 

Figure 1.2: Vision of Mark Weiser, wired and wireless networks link computers to cooperate [22]. ............. 13 

Figure 1.3: The evolution of technologies, ubiquitous computing, IoT and pervasive computing. ................. 15 

Figure 1.4: Application domains of pervasive computing environments. ............................................... 16 

Figure 1.5: The interrelationship between sensors, system, and actuators in pervasive computing. ............... 21 

Figure 1.6: Context categorization based on conceptual and operational perspectives [39]. ........................ 26 

Figure 1.7: Context life cycle in context management system [39]. ..................................................... 27 

Figure 1.8: Information flow in pervasive computing [2]. ................................................................. 28 

Figure 1.9: Conceptual Architecture of context processing in pervasive system. ..................................... 32 

Figure 1.10: Semantic Model of smart objects. ............................................................................. 33 

Figure 1.11: Ontology reasoning based on smart objects. ................................................................. 34 

Figure 1.12: Ontology Design Process for pervasive environment. ..................................................... 35 

Figure 1.13: Pervasive computing architecture based on middleware. .................................................. 37 

Figure 2.1: Recommendation techniques, situation modeling and identification approaches. ....................... 42 

Figure 2.2: Complex events-model [15]. ..................................................................................... 44 

Figure 2.3: IoT-Lite Ontology model [5]. .................................................................................... 45 

Figure 2.4: ADL ontology [59]. ................................................................................................ 46 

Figure 2.5: Composite activities over the time dimension [60]. .......................................................... 47 

Figure 2.6: Situation formalization based predicate logic [40] ............................................................ 50 

Figure 2.7: Allen’s Temporal Logic [71]. .................................................................................... 51 

Figure 2.8: Temporal constraint between an event occurs at time t and its time interval [t-A, t-B] [71]. ......... 51 

Figure 2.9: General structure of KCAR ontological model [75]. ......................................................... 52 

Figure 2.10: An illustrative example of KCAR segmentation and recognition [75]. .................................. 53 

Figure 2.11: General architecture of a neural classifier [81]. .............................................................. 55 

Figure 2.12: 1D time-series multi-axes sensor input signal [82]. ......................................................... 56 

Figure 2.13: Recommendation filtering techniques. ....................................................................... 59 

Figure 2.14: An example of the user-item interaction graph and the high-order connectivity [95]. ................ 62 

Figure 2.15: The multi-criteria CF process [104]. .......................................................................... 63 

Figure 2.16: Framework of context-aware recommendation based on role trust network [99]..................... 65 



 

xi 

 

Figure 3.1: The general architecture of the framework. ................................................................... 80 

Figure 4.1: Multi-OCSM ontology layers. ................................................................................... 87 

Figure 4.2: An overview of generic context-aware composite situation ontology. .................................... 89 

Figure 4.3: Context Smart Object Multi-OCSM sub-ontology. .......................................................... 90 

Figure 4.4: Context Multi-OCSM sub-ontology. ........................................................................... 91 

Figure 4.5: Semantic interpretation of events extended form [112]. .................................................... 92 

Figure 4.6: Situation Multi-OCSM sub-ontology. .......................................................................... 93 

Figure 4.7: Service Multi-OCSM sub-ontology. ............................................................................ 96 

Figure 4.8: Example of Composite Situation Based Model. ............................................................... 97 

Figure 4.9: Implementation of Multi-OCSM ontology in Protégé. ...................................................... 98 

Figure 4.10: An illustrated example of a part of multi-OCSM generated with Jambalaya. .......................... 99 

Figure 4.11: Description and properties of Mohammed profile in Protégé. ........................................... 102 

Figure 4.12: A concrete example of OWL representation for multi-OCSM. ......................................... 103 

Figure 4.13: Multi-OCSM Query execution time comparison. ......................................................... 103 

Figure 5.1: Proposed composite situation reasoning process............................................................. 106 

Figure 5.2: Filtering relevant situation rules. ............................................................................... 107 

Figure 5.3: Construction of factorized tree from relevant situation rules list. ........................................ 109 

Figure 5.4: Parallel situations identification process. ...................................................................... 111 

Figure 5.5: Illustrative example of relevant situations rules filtering. .................................................. 117 

Figure 5.6: Construction of factorized tree. ................................................................................ 118 

Figure 5.7: Submission of events and situations tasks...................................................................... 119 

Figure 5.8: Refreshing of relevant situation rules list. ..................................................................... 119 

Figure 6.1: User’ agenda. ...................................................................................................... 122 

Figure 6.2: Proposed multidimensional recommendation space. ....................................................... 124 

Figure 6.3: Proposed General architecture implemented using Multi-OCSM ontology. ........................... 127 

Figure 6.4: An overview of situation rules learning process. ............................................................. 129 

Figure 6.5: Hybrid rule-based recommendation process. ................................................................ 130 

Figure 6.6: An example of explicit preference. ............................................................................ 135 

Figure 6.7: An example of feature extraction and similarity measurement. ........................................... 136 

Figure 6.8: An example of user agenda history. ............................................................................ 136 

Figure 7.1: Event lifetime. ..................................................................................................... 141 

Figure 7.2: Expired event ratios under different events set in the parallel approach. ................................ 145 

Figure 7.3: Expired event ratio comparison between the parallel and sequential approaches. ..................... 145 

Figure 7.4: Missed situation ratios under different number of situations rules in the parallel approach. ......... 146 

Figure 7.5: Missed situation ratio comparison between the parallel and sequential approaches. ................... 146 

Figure 7.6: Execution time under different numbers of situation’s verification in the parallel approach. ........ 147 

Figure 7.7: Execution time comparison between the parallel and sequential approaches. .......................... 147 



 

xii 

 

Figure 7.8: Number of micro-service vs expired event ratio in the parallel approach. .............................. 148 

Figure 7.9: Number of micro-services vs missed situation ratio in the parallel approach. .......................... 149 

Figure 7.10: Evaluation of expired events on the parallel approach in dynamic scenarios. ......................... 150 

Figure 7.11: Evaluation of missed situations on the parallel approach in dynamic scenarios. ....................... 150 

Figure 7.12: Throughput comparison of the proposed approach vs pipelining-based framework [118] using a) 

overlap operator, b) sequential operator. .................................................................................... 152 

Figure 7.13: Average latency comparison of the proposed approach vs pipelining-based framework [118] using a) 

overlap operator, b) sequential operator. .................................................................................... 153 

Figure 7.14: Throughput comparison of the proposed approach vs pipelining-based framework [118] using a) 

overlap operator, b) sequential operator (number of sensors is fixed to 1000). ....................................... 154 

Figure 7.15: Average latency comparison of the proposed approach vs pipelining-based framework [118] using a) 

overlap operator, b) sequential operator (number of sensors is fixed to 1000). ....................................... 155 

 

 

 

 

 

 

 

 

 

 

 



 

xiii 

 

 

List of Tables 

Table 1.1: A list of used sensors and their types in the smart environment [2]. ........................................ 21 

Table 1.2: Semantic information of a temperature sensor. ................................................................ 34 

Table 1.3: Middlewares’ comparison. ......................................................................................... 39 

Table 2.1: Comparison of situation modeling approaches. ................................................................ 49 

Table 2.2: Comparison of situation reasoning approaches. ................................................................ 58 

Table 2.3: Comparison of recommendation approaches. .................................................................. 67 

Table 4.1: Distributed Mobile Application Extend Concepts on Kali-Smart. .......................................... 97 

Table 4.2: DL example of our ontology. .................................................................................... 100 

Table 4.3: SPARQL selection and filtering queries. ....................................................................... 101 

Table 5.1: User’s situation rules registry. ................................................................................... 117 

Table 6.1: SWRL rule that infers appropriate situation rules based on the terminal capabilities. .................. 135 

 

 

 

 

 

 

 

 



 

xiv 

 

 

List of Abbreviations 

ADL  Activities of Daily Living 

ADSL Asymmetric Digital Subscriber Line 

AGGIR Autonomy Gerontology ISO-Resources Groupe  

ANFIS Adaptive Neuro-Fuzzy Inference System 

API Application Programming Interface 

CF  Collaborative Filtering 

CFG Context-Free Grammar 

CNN Convolutional Neural Network  

CoMeR Context-aware Media Recommendation Platform 

COSAR Combined Ontological/Statistical Activity Recognition  

CPU Central Processing Unit 

CT-PCA Coordinate Transformation and Principal Component Analysis 

DL Description Logic 

DSL Domain Specific Language  

ECA Event Condition Action 

EM Expectation-Maximization 

FOAF Friend of a Friend  

GPS Global Positioning System 

HMM Hidden Markov Model 

HSSN  Hybrid Semantic Sensor Network 

ID Identifier  

IoT  Internet of Things 

IP Internet Protocol 

KCAR Knowledge-driven approach for Concurrent Activity Recognition 

MSSN-Onto Multimedia Semantic Sensor Network Ontology  

Multi-OCSM Multi-layered Ontology-based Composite Situation Model 

NGCF Neural Graph Collaborative Filtering 

OISVM Online Independent Support Vector Machine 

OWL Ontology Web Language  



 

xv 

 

PDA Personal Digital Assistant 

POI Point-of-Interest 

PRS Publication Recommendation System 

QoS Quality of Service  

QSTR Qualitative Spatio-Temporal Reasoning  

RAM Random Access Memory 

RDF Resource Description Framework 

RFID Radio Frequency Identification  

RIMER Rule-based Interface Methodology using the Evidential Reasoning  

SAREF Smart Application Reference  

SNS Social Networks Systems 

SOA Service-Oriented Architecture  

SOSA Sensor Observation Sample Actuator 

SPARQL  Protocol and RDF Query Language  

SSN Semantic Sensor Network  

SVM Support Vector Machine 

SWRL  Semantic Web Rule Language  

TF-IDF Term Frequency and Inverse Document Frequency 

Wi-Fi Wireless Fidelity 

WSSQ Weighted Set Similarity Query 

 

 

 

 

 

 

 



 

xvi 

 

 



 

1 

 

General Introduction 

1. Thesis context  

Within the era of pervasive computing and smart-* (health, home, cities, car, office, etc.), it is not 

surprising that many users own more than one mobile device (e.g., smartphone, smartwatch, and 

headphone) to deal with multiple services simultaneously (6.58 devices per person in 2020 [1]). 

Nowadays, pervasive computing integrates sensors and computational entities that can communicate and 

interact transparently both with users and the environment in which they operate [2]. The integration of 

connected objects in our daily lives allows us to retrieve contextual information directly from the user’s 

physical environment such as location, brightness, neighborhood, and interactions. This contextual 

information can be used to identify different situations depending on the user’s environment, his 

preferences and devices capabilities. In fact, traditional applications were unaware of context information 

in which they neglect information related to user’s environment such as his location, time, accessible 

services, and nearby devices. Neglecting context information may reduce the quality of reconfigurable 

applications that provide relevant services according to the user’s current state. Therefore, several 

applications have adopted the use of context to improve the relevancy of provided services. Recently, 

context and situation have been widely used in pervasive computing systems to describe entities that 

interact with the application. More specifically, context is any information that can be used to characterize 

the situation of an entity. An entity is a person, place, or object that is considered relevant to the 

interaction between a user and an application, including the user and applications themselves [3].  

Pervasive environments incorporate a wide range of sensors to collect context data from the 

physical world. Sensors can be embedded in specific devices or integrated in human bodies. In other 

words, sensing technologies have made great progress in collecting various types of context data. In fact, 

context-aware applications relay on context data acquired from sensors to make adaptation and provide 

services at run-time according to the user’s current state. Nevertheless, considering the entire context in 

pervasive applications to provide relevant services needs a powerful computational capability which is not 

always available. Therefore, considering a meaningful part of context that represents only expressive 

information namely situation, enhances the system’s performance and reduces the computational time. 

This raises a significant challenge in situation modeling and identification. Generally, situation is the set of 

things (events/context) that happens at a given location (where?) and at a given time (when?), and the 

conditions (clauses) that can verify those events, thus identifying the situation. 
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With the growing number of connected objects, managing heterogeneous sensors and devices raises 

a significant challenge regarding continuous context monitoring and services (re-) deployment. The 

current vision of pervasive computing aims to develop an environment that incorporates flexibly 

heterogeneous communication and computing capabilities. Therefore, the use of semantic models and 

middlewares is mandatory. Thus, several standard ontologies of context and connected objects modeling 

have been proposed [4] [5] [6] to hide the heterogeneity of communications protocols and software 

features through semantic abstraction models. Besides, several middlewares have been also proposed [7] 

[8] [9] [10] [11] to act as a mid-level between sensors and pervasive applications. Further, they ensure the 

monitoring of context data from the involved sensors and devices regardless of hardware and software 

features.  

This thesis focuses on handling distributed pervasive applications through the modeling and 

management perspective in the field of smart-*. We are interested in the management of context 

information and the identification of situations in smart environments by handling situations in a specific 

time, starting by serving the most urgent situations. Building a context-aware pervasive application based 

on situation management is becoming the most challenging task in pervasive environments. Therefore, 

we need to construct a flexible and parallel architecture that handles rapidly parallel inputs (i.e., context 

data) and outputs (i.e., action services). However, pervasive applications still have issues to be addressed 

such as scalability and flexibility to support dynamic evolutions of context changes.   

2. Challenges 

In this context, it is necessary to have a flexible and agile approach for situation management and 

identification able to understand the user’s daily life activities regardless of his context changes. 

Nevertheless, before we propose an agile architecture, we should specify problems and challenges facing 

context-aware pervasive applications. In fact, context-aware pervasive applications have dynamic 

environment in which context changes continuously. This dynamicity raises the issue to provide 

reconfigurable applications regardless of context changes.  

The heterogeneity of sensors and devices raises the issue of unifying monitored context data through 

a semantic model. Different approaches in the area of context modeling have been proposed [3] [12] [13] 

[14]. However, they only cover a specific domain such as health domain. We seek for proposing a generic 

model for smart-* domains that models and unifies the heterogeneity of monitored context data. 

Situation modeling raises another challenge in representing user’s daily activities. In real-life, users 

have repetitive and parallel activities (i.e., composite situations) that they can perform on a regular time. 

However, existing works [4] [15] [16] [17] lack flexible models that enabling the representation of parallel 

composite situations using composition operators. We seek for designing a flexible semantic model for 

covering all composite situations to describe real-world activities.  The context-awareness and the 
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adaptation of personalized mobile applications are considered as a difficult task due to the dynamic 

evolution of user’s preferences and the heterogeneous nature of execution contexts. This emphasizes the 

need to design a semantic context-aware framework that targets the management of user’s constraints, 

his preferences, and his usage context. 

Several middlewares based on component architecture have been built for reconfigurable pervasive 

applications [8] [9] [11] [18] . Nevertheless, due to the high connectivity of multiple sensors and devices 

in reconfigurable pervasive applications, performing dynamic reconfiguration (i.e., 

adding/removing/updating services) on the fly may cost a high adaptation time which significantly reduces 

system performance. Moreover, the fast evolution of context generates many reconfiguration scripts to 

adapt to context changes. Therefore, a loosely coupled architecture is needed to reduce the 

reconfiguration time. 

The big amount of context data collected and processed by pervasive systems may take significant 

computational time. In fact, real-time context processing is an essential factor in pervasive computing 

systems. Therefore, systems must provide relevant services according to identified situations in the 

required time, especially when it comes to urgent situations (e.g., heart-attack situation). Moreover, most 

of the interactions in pervasive applications are expected to be executed in real-time. Nevertheless, with 

the growth of user’s expectation and the huge number of users’ situations, it is hard to respond to all 

users’ needs in real-time. Traditional centralized computing systems cannot achieve this goal within a 

reasonable time. Existing middlewares [8] [9] [11] [18]  lack efficient methods of managing and identifying 

composite situations in a parallel way. Thus, a flexible and parallel framework is needed to handle rapidly 

parallel incoming events and urgent situations. Besides, to accelerate the execution of urgent situations, 

we seek for proposing a prioritized mechanism to improve situation’s identification process and speeding 

up queued urgent situations that have high priority. 

3. Objectives  

The main objective of this thesis is to generate a distributed context-aware mobile application in the field 

of smart-* (Home, City, Health, Tourism, etc.) in order to exploit the variety of interactive services 

capabilities according to the user’s current situation and usage context. We take advantage of semantic 

models and IoT infrastructures based on existing middlewares to propose a new intelligent semantic 

composite situation management approach in high reconfigurable smart environments. Overall, the 

objective of this proposal is to provide a user-centered situation-based mobile application able to manage 

everyday situations and react to them by providing relevant services to the user’s needs. Our aim is to 

improve the application flexibility and reusability at design and run time.  

Our proposal is dedicated to assisting users in their everyday activities through widespread devices. 

It provides (re) deployment reconfiguration scripts including adding, updating, removing services to 



General introduction 

4 

 

dynamically adapt to user’s context changes. Therefore, we aim at proposing an efficient approach for 

monitoring context changes from deployed sensors. 

Our aim is to design a modular and hierarchical architecture that ensures a good level of reusability 

and flexibility. Modular architecture allows to reason on composite situations using deployable parallel 

components. The reasoning module may change the design model of the application to react to context 

changes by adding, updating, removing deployable components.  The objective of this architecture is to 

design a flexible loosely coupled application that can resist for context changes. 

4. Contributions 

Our research serves to manage context-aware distributed mobile applications for smart-* domain. 

Therefore, we aim at developing a new framework for composite situation management that adopts 

semantic modeling based on microservice implementation to identify user’s daily life activities. The main 

contributions of this research are:  

• Multi-OCSM (Multi-layered Ontology-based Composite Situation Model) [19], a 

novel user-centric composite situation ontology based on multi-layered context-aware 

semantic services. It describes both simple/composite situation and its semantic description 

including new composition operators (parallel, sequence, recurrence and alternative), 

prioritized situations, and reconfiguration action services in order to ensure service continuity 

and immediate response time. This ontology provides a full modeling of heterogeneous smart 

objects and context data. Also, it provides a flexible and loosely coupled hierarchical model 

that can adapt rapidly for real-time context changes. 

• A novel generic of composite situations parallel identification framework for 

smart environments [19], which allows the parallel identification of user’s situations in 

several smart domains. The main features of our identification framework are: (i) ensuring 

monitoring of parallel streaming context data, (ii) prepossessing of context data, (iii) analyzing 

and reasoning on context changes using our Multi-OCSM ontology to identify context 

situation changes.   

• An extended Multi-OCSM ontology-based context-aware recommendation 

approach for dynamic situations enrichment [20], that enriches automatically profile’s 

situation rules, in order to provide an auto-complete of user’s daily life requirement in 

different domains (shopping, work, travel, etc.). This approach exploits other users’ 

experiences by offering to the users a high level of comfort and a better-customized user 

experience. Our objective is to automate the injection of new situation rules using a new 
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concept called role-situation-services, which aims to enrich dynamically mobile application 

with rich context rules. 

• Development of a prototype for composite situations parallel identification based 

on the Multi-OCSM reasoning for services reconfiguration and adaptation. The prototype 

enables the identification of any abnormal situations and prioritizes the processing of urgent 

situations (e.g., health-heart-situation). Also, it is able to manage and identify composite 

situations under different user’s context changes and triggers relevant action services for 

identified situations. The identification process relies on Java 8 concurrency APIs [21] to 

manage multithreading tasks that process parallel incoming events to improve the parallel 

identification of composite situations. 

5. Motivating case study: multi-smart domains   

We consider here a real case study that involves assisting users in several smart environments (smart-

home, smart-car, and smart-office). These smart environments can react to users according to daily-life 

events that occur in different domains (e.g., health, social and professional). Figure 1 illustrates three 

smart environments (smart-home, smart-car and smart-office) with both wearable smart objects and 

mobile devices. The application's purpose is to manage all the context data of the health domain and daily 

activities in an efficient way by enhancing the monitoring and reporting of critical health conditions. 

 

Figure 1: Smart environments. 

As we can see in figure 1, there are various smart objects. Each smart object serves to monitor information 

such as a motion sensor to monitor the movement, a smart camera to monitor the activity (e.g., watches 

TV, drinks a coffee or checks emails), a smartwatch to monitor the user’s locations and other sensors to 
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detect other contextual information (temperature and humidity level, states of doors, lights, user glucose 

and user movement states). In our case study, the smart home acts as a pervasive environment that is 

composed of many rooms: kitchen, living room, bathroom, study, garage and two bedrooms (bedroom#1 

and bedroom#2) (see figure 2). 

 

Figure 2: An overview of a smart home. 

Each room is equipped with smart objects. Table 1 details a list of available smart objects and devices in 

the smart home. The context information is collected by the set-top-box (e.g., position, time and video). 

This contextual information is useful to identify a set of users' situations. 

Table 1: Partitioning of different smart objects in the smart home. 

Smart home-
rooms 

Sensors Actuators and devices 

Bedroom#1 

Bedroom#2 

Ambient temperature sensor, light 

sensor, state of door sensor, IP camera. 
Light switch actuator, door locking.  

Living room 
Ambient temperature sensor, light 

sensor, motion sensor, IP camera. 

Light switch actuator. Laptop, Tablet, 

Smart TV. 

Kitchen 
Light sensor, IP camera, coffee machine 

sensor. 
Light switch actuator, smart machine 
coffee, Smart TV. 

Bathroom 

Ambient temperature sensor, humidity 

sensor, water temperature sensor, 

motion sensor, Light sensor. 

Light switch actuator, Smart mirror. 

Study 
Ambient temperature sensor, light 

sensor, IP camera 
Light switch actuator, PC 

Garage State of garage door, IP camera. Garage door locking. 
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Now, let us suggest this scenario: we are interested in the daily life of a user (Mohammed). He lives 

in the smart home described above. He is a regular worker of a bank office. He has specific needs according 

to his current context, profile, and preferences (preferred language, media preferences, transport 

preferences, text size, etc.). He is a diabetic, so the system must continuously monitor his health status to 

identify any urgent situations (e.g., high-level glucose or low-level glucose). He is equipped with wearable 

devices (glucose meter and smartwatch). He has an agenda, which accurately describes his planned 

activities. These activities can be performed in a sequential and/or parallel order. Mohammed’s agenda 

can be used to identify various situations during the morning period, from waking up until going to the 

office. Below, we give a short detail about his daily-life activities.  

 In the morning, the system checks his personal Google agenda to find out about his working days, 

then it sets the alarm application on his smartphone. When the time comes, the system increases gradually 

and automatically the lighting of the bedroom. The camera in the bedroom can automatically recognize if 

he wakes up or not. When he wakes up, the system checks Mohammed's next scheduled task, which is: 

(takes a shower). Therefore, when he leaves the bedroom, the system adjusts the water temperature and 

displays it on the smart mirror of the bathroom. When he leaves the bathroom, he heads towards the 

kitchen; the system sends an order to the smart coffee machine to prepare the coffee. After that, he takes 

his coffee and moves towards the study where he drinks his coffee quietly. The system deploys email 

application on his desktop PC with all tools that he can find useful in his working field (e.g., user profile) 

and deploys morning news on his Smartphone. Mohammed’s smartwatch regularly sends GPS coordinates 

to the system to locate his precise location. When it is time to go to work, the system migrates the morning 

news service on his smart car dashboard to ensure the continuity of service. When he enters the garage, 

the system deploys the Google map and selects the fastest route to the office. He takes his car and goes to 

work. The garage is automatically opening and closing according to GPS coordinates of his car. When he 

leaves his smart home (i.e., the situation that nobody is at home is identified) the system triggers the 

intrusion alarm application and fire alarm application for his home security (for each anomaly, Mohammed 

can be notified by an SMS). For any unexpected traffic congestion situation on the current route, the 

system must be notified automatically and must react dynamically to select a new better road towards the 

office. At this time, a new incoming planned event extracted from Mohammed’s agenda (a conference 

meeting). The system identifies this new event as a new situation. As he is late, an audio conference is 

automatically deployed on his Smartphone. When he enters the office, the audio conference is dynamically 

migrated to its desktop PC and the video functionality is added to continue the discussion. The conference 

application is migrated and deployed simultaneously on each participant's mobile device.  

This case study illustrates the variety of sensors (simple or multimedia) used to interpret and detect 

simultaneous events and various users’ situations. This scenario raises several needs and challenges: 
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• Need 1: Ensuring extensibility, unambiguous and semantic meaning of exchanged context 

data and events. 

• Need 2: Representing and handling composite situations using composition operators in real-

time. 

• Need 3: Ensuring flexibility and continuity of services regardless of user’s location and 

context. 

• Need 4: Enriching and suggesting relevant situations for users. 

• Challenge 1: How to define and manage simultaneously semantic context monitoring and 

processing? How to interpret parallel incoming events? For instance, a presence detector 

(motion sensor) can provide Boolean values as input (True/False), others may give you a 

vector of displacement (GPS), it is the same event, but the interpretation is very different. 

• Challenge 2: What are the methods that can be exploited for inferring and managing both 

daily and urgent situations in real-time and effectively? 

• Challenge 3: What are the strategies that can be used to replace a smart object by another 

semantically equivalent in order to ensure the continuity of service? 

• Challenge 4: How to inject new situations to make the application more dynamic and 

complete using external situation rules and various context sources? 

6. Organization of the thesis 

This thesis has been organized into seven chapters. The first two chapters are devoted to a literature review 

related to our research, while Chapters 3, 4, 5, 6, and 7 present our contributions. The resume of each 

chapter is provided below as follows: 

• Chapter 1 gives an overview of pervasive computing systems. It also includes the application 

domains, features and challenges of pervasive environments as well as both context and 

situation concepts. Further, it gives an overview of semantic technologies related to standard 

ontologies in pervasive computing that help us to design specific domain knowledge. 

• Chapter 2 provides a literature review of the research area. It covers the existing literature 

on situations modeling and reasoning approaches and platforms. Moreover, this chapter gives 

comparisons between different approaches to understand both advantages and limitations of 

each solution in order to tackle research problems.   

• Chapter 3 presents an overview of our proposed contributions. Further, it introduces the 

general architecture of the parallel composite situation identification framework as well as its 

functional model at design and run time. 
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• Chapter 4 presents the Multi-OCSM (Multi-layered Ontology-based Composite Situation 

Model) based on standard models such as Semantic Sensor Network (SSN) [49], DOLCE 

Ultra-Light Ontology (DUL) [52], and OWL Service (OWL-S) ontologies [110]. Moreover, 

it presents a novel semantic microservices-based user-centric prioritized composite situations 

modeling and reasoning for pervasive applications.  

• Chapter 5 presents in detail the parallel identification process of semantic-based composite 

situations over heterogeneous smart objects. 

• Chapter 6 presents an extension of the Multi-OCSM ontology to classify new situation rules. 

Further, it presents a new recommendation system based on Multi-OCSM ontology for 

injecting new situation rules into the user's agenda. 

• Chapter 7 presents the implementation of our framework prototype for parallel identification 

of composite situations. Further, it shows comparisons between parallel reasoning approach 

results and the sequential reasoning approach results in order to prove the effectiveness of our 

proposed approach. 

This thesis is concluded by stating the research summary along with research contributions, 

limitations, then suggestions and future directions in order to achieve further research studies.  
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1.1 Introduction 

Pervasive computing incarnates a new era of computers that are perfectly integrating into users’ daily life 

activities, and responding to their needs after processing a set of information provided by sensors deployed 

in various environments. In literature, the term pervasive signifies “existing everywhere”. Pervasive computing 

is the embedding sensing and computational entities that can communicate and interact transparently both 

with users and with the environment in which they operate [2]. Therefore, Systems can customize services 

to users in a context-aware manner based on these pervasive environments with the help of these entities. 

Currently, pervasive applications have many potential application domains, such as intelligent spaces (e.g. 

smart home, smart city, smart car, etc.), healthcare, transport, etc.  

With the growing number of connected devices, sensors are deployed everywhere and embedded 

on any device or human bodies. Their ultimate objective is collecting different kind of context data such 

as user’s location, ambient temperature, humidity, biomedical information. Pervasive context-aware 

applications use this data to provide customized services to users. Moreover, with the huge number of 

sensor data, contextual information exhibits high complexity causes by the inter-dependency links 

between sensor data. Further, this inter-dependency can raise other challenges related to reconfigurable 

pervasive applications when adding/removing/updating service components, resulting in low flexibility 

during context changes (e.g., appearance of new sensors/devices in the network, change of user needs or 

interaction modalities, etc.).  

 
Figure 1.1: Thesis context. 
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In this chapter, we describe some background and preliminaries necessary to understanding the 

related works and our contributions detailed in the rest of this thesis accomplished in the domain of 

pervasive environments. First of all, it is important to underline that our thesis is located at the intersection 

of three main areas of research which are: Pervasive Computing, Middlewares, Context and User’s 

Situations based ontologies as shown in Figure 1.1. First, we start by defining and setting up pervasive 

computing and give an overview of different challenges in this research area. Then we present standard 

definitions of context-awareness and situation-awareness. After that, we present the relationship between 

context-aware and situation in pervasive computing. Then, we present some standard ontologies of context 

modeling and its related heterogeneous connected objects, as well as semantic context representation in 

heterogeneous environments. Finally, we present some existing standard middlewares for pervasive 

application components and context-aware situation models in order to select a middleware solution. 

1.2 Pervasive computing 

1.2.1 Evolution of technology: from ubiquitous to pervasive 

In 1991, Mark Weiser [22]  coined the term ubiquitous computing. He defines the ubiquitous computing 

as a new vision of computing technology where data is everywhere and great number of devices is 

embedded unobtrusively in several smart spaces. This vision is summarized by his famous opening 

statement: “The most profound technologies are those that disappear. They weave themselves into the fabric of everyday 

life until they are indistinguishable from it.” Ubiquitous computing (or “ubicomp”) means that computers are 

embedded, invisible and provide transparent services everywhere and every time. More specifically, all 

computers communicate and cooperate in order to achieve the sole purpose of satisfying our humanly 

needs. However, in 1991 the internet has just started to catch the new era. In this decade radio frequency 

and infrared were the most popular technologies used for devices communications. Therefore, Mark 

Weiser envisioned radio frequency and infrared to link computers to cooperate (see figure 1.2).  

 
Figure 1.2: Vision of Mark Weiser, wired and wireless networks link computers to cooperate [22]. 
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In the last decade of the 90s, the Internet was at the top of communication technologies and became 

mandatory support to link and connect different devices. In 1999, Kevin Ashton [23] takes benefit from 

the Internet where he envisioned that any things can be connected through Internet (e.g. devices, 

computers, laptops, PDA, vehicles, TV, watch, etc.) namely "Internet of Things" (IoT). He was the first 

person who coined this term. In fact, many overviews of IoT including Kevin Ashton rely on the definition 

given by Mark Weiser. According to Friedemann et al. [24] they define the IoT as: “The Internet of Things 

represents a vision in which the Internet extends into the real world embracing everyday objects. Physical items are no 

longer disconnected from the virtual world, but can be controlled remotely and can act as physical access points to 

Internet services. An Internet of Things makes computing truly ubiquitous”, this concept has been initially put 

forward by Mark Weiser in the early of 90s.  

Naturally, terms and concepts can change and evolve over time according to incoming new 

technologies. New terms can be based beforehand on old terms that may have same definitions with some 

improvement to cope with new technologies. Historically, pervasive computing has its roots in the 

definition of ubiquitous computing coined by Mark Weiser. The term pervasive computing has a very 

similar meaning to ubiquitous computing. In 2002, Mark Weiser [25] introduced a pervasive computing 

environment as connected objects have processing power with wireless or wired connections to a global 

network in which these objects can be spread everywhere in the user environment. The vision of pervasive 

computing characterized by the development of an environment that incorporates heterogeneous 

communication and computing capabilities with smooth integration of human interventions. This vision 

and aspirations to develop an entire pervasive system were limited due to the required hardware. After the 

tremendous advancement in hardware and software technologies that has known currently, the required 

elements and technologies in pervasive systems have become available. This new generation of hardware 

can be wearable, implanted in the human body or embedded in the environment, mobile, wireless, and 

intelligent with sensing and control capabilities. Therefore, we are living in a new era where we can take 

benefits from these new generations of hardware and software technologies (e.g., embedded sensors in 

human body, small and sophisticated sensors, actuators, smart watch, smart TV, mobile devices with 

different protocol of communication ad-hoc, Bluetooth, Wi-Fi, GPS, 4G, ADSL) to pursue the vision 

stated by Mark Weiser. Figure 1.3 illustrates the evolution of the new era of computers for the 21st century. 
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Figure 1.3: The evolution of technologies, ubiquitous computing, IoT and pervasive computing. 

 

 

Ubiquitous/pervasive computing and IoT are terms that can be used interchangeably. Pervasive 

computing and IoT face similar problems and challenges. Both concepts support similar use cases 

such as smart homes, cities, healthcare, transport, agriculture. However, there is a slight difference 

between them. Pervasive computing focuses more on computational capability in linked objects 

(smart TVs, smart cars, smart homes, wearable devices and implanted sensors in the human body). 

On the other hand, IoT focuses to have these objects connected to the Internet. 

1.2.2 Smart-* domains applications in pervasive environments 

Pervasive environments can have a significant impact on our daily lives in many domains. In fact, pervasive 

computing provides an environment that can sense the localization of a person in a given smart area to 

react intelligently to its needs. In other words, intelligent systems in pervasive environments provide useful 

information to the user based on his location and other user-centered context information. Further, new 

infrastructures including smart-* domains (e.g., smart-home, smart-city, smart-office, smart-car, smart-

shopping, etc.) that have been deployed in different spaces, facilitate the creation of new applications in 

several business domains. These applications will automate different tasks in our life such as make our 

home safe, increase the productivity of our work, and customize our shopping experiences. Therefore, 

pervasive systems will intelligently execute these tasks based on contextual information collected from 

these smart-* domains in order to improve the use of resources such as water and electricity. Figure 1.4 

shows some smart-* application domains. Common and specific concepts of different smart domains 

(Appendix C) will be analyzed in chapter 3.  

Ubiquitous/Pervasive Computing vs IoT 
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Figure 1.4: Application domains of pervasive computing environments. 

For instance, pervasive computing systems may support many potentials use cases including smart-

health, smart-transport, smart-home, and smart-office as follows: 

• Smart Health Domain 

Since humans can be implanted with sophisticated sensors, pervasive computing has been integrated widely 

in the health domain. The main purpose of smart-health systems is to ensure that patients or our loved 

ones are safe and healthy while performing their daily life activities. In fact, smart-health systems rely on 

pervasive environments to recognize human activities, follow their diet, and detect any abnormal changes 

or anomalies. In other words, pervasive applications in the health domain follow patients’ health state by 

collecting and analyzing their context information. The context information of patients can be monitored 

either by implanted sensors in human body (e.g., glucose sensor, blood pressure sensor, heart rate sensor, 

body temperature sensor, respiratory rate, etc.) or by embedded sensors in pervasive environment (e.g., 

camera, movement detector, etc.). The system analysis this context information and identifies abnormal 

situations (e.g., high glucose level) to intervene automatically (e.g., inject insulin). For instance, in case of 

critical anomalies (e.g., like heart-attacks), the system triggers an immediate response to the closest urban 

gateway and requests an urgent medical intervention where the coordinates of the victim are determined 

and sent. After that, the system searches for the closest available ambulance and requests the nearest 

hospital for immediate preparation for hosting the patient. Therefore, pervasive environment capabilities 

can be used in healthcare applications to enhance intervention services while reducing the heavy load of 

nurses in hospitals. 
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• Smart Transport Domain 

Currently, pervasive computing has found its way to integrate into the transport domain. Further, stations, 

buses, trains, airplanes and cars can be equipped with several sensors (e.g., camera/for image processing 

and vehicle identification, GPS sensors/for vehicle tracking, distance sensor/for preventing collision, 

speed sensor, temperature sensor, etc.) that can provide pervasive system with context information. 

Pervasive system analyzes this context information to make predictions, preventive actions, and plans for 

the future (e.g., cancellation of flights in advance due to the weather conditions, change trajectory in the 

satnav due to an accident occurred in the previously selected trajectory).  

We spend a significant part of our lives traveling to different destinations in various ways. The user’s 

experience during traveling can be customized based on his preferences to make transportation smoother, 

more efficient, and safer. Therefore, numerous pervasive applications in the transport domain intersect 

passenger safety, trajectory planning and optimization, entertainment and communication systems, and 

data collection for maintenance and prediction. For instance, smart-car applications span several domains 

including vehicle tracking, communications between vehicles (e.g., interchanging context information 

such as speed, destination, distance between them, etc.), coordination between vehicles and traffic control 

systems to avoid congestions.  Therefore, an intelligent traffic control system is deployed to avoid crowded 

streets based on potential traffic congestion, and offer more efficient navigation systems for users. 

• Smart Home Domain 

Pervasive environments have been integrated widely in smart home domains. In fact, a smart home can be 

embedded with rich sensors (e.g., temperature sensor, humidity sensor, luminosity sensor, movement 

sensor, camera, noisy sensor, kitchen sensor, etc.), devices (e.g., smart tv, laptop, temperature dashboard, 

alarm system dashboard, curtain system dashboard, etc.), and actuators (e.g., temperature regulator, light 

switch, door mechanism, curtain mechanism, etc.)  connected to the Internet through the set-top box. 

These sensors and devices capture home context information and monitor user daily life activities in his 

smart home without human intervention. Currently, people are able to control their smart home through 

pervasive context-aware applications using their smartphone or tablet (e.g., open the curtain, adjust the 

lighting, turn on the air conditioner, open the garage, activate the alarm system, turn on the kitchen, etc.). 

These commands can be either triggered manually based on user decisions, or automatically based on home 

context information and user preferences. Pervasive smart-home applications may incorporate many fields 

including security (e.g., providing assistance when a potentially dangerous situation occurs such as fire 

detection, where the system can trigger automatically the fire extinguishing system), comfort (e.g., 

adjusting the temperature automatically), and energy saving (e.g., controlling the use of lights). 
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• Smart Office Domain 

Pervasive applications have been integrated widely in enterprises to achieve better goals and benefits. These 

applications may facilitate the management and distribution of tasks to workers. Therefore, a smart office 

is an intelligent workspace enriched with pervasive technology to enhance important aspects of the work 

process, such as employee safety and task management. Most smart offices use pervasive technology to 

deduce where the staff is by following their locations and what tasks they have performed. For instance, 

the system relies on radio frequency identification (RFID) and global positioning system (GPS) 

technologies to tag and track staff in the workplace. As workers are equipped with RFID readers, the 

system can track automatically the development of activities and indicates the remaining daily tasks of the 

employee.  

1.2.3 Issues and challenges in pervasive environments  

Pervasive computing raises several problems due to its specific design, methodology, and tools. The main 

important challenges in this domain of application are as follows:  

• Heterogeneity. Millions of devices will be connected all running on different processor 

architectures and operating systems, and communicating through various protocols, and 

communication supports. 

• Adaptability and Scalability. Pervasive computing is far from a static environment. It is 

ultimately dynamic and subject to change of components. Therefore, the system must be scalable 

and adaptive enough to accept any added functionality at any given time. More precisely, pervasive 

computing is composed of a growing number of smart objects where these objects communicate 

with each other. The system should have the ability to effectively manage the increasing number of 

objects and perform their functions with the required efficiency. 

• Flexibility. Pervasive computing requires fast responses to user’s current needs, his situations and 

usage context (i.e., at run time) and services availability cannot be known a priori. The service 

selection and reconfiguration are not easy due to the dynamic context changes. This raises other 

challenges when one or more services are no longer available (e.g., due to network capacity or poor 

network connection) while running the application. So, the system must be flexible enough with 

less cost for basics service reconfigurations (add/migrate/remove service). 

• Real-time processing (precision). Pervasive computing is a system that consists of  three main 

phases: event monitoring, context reasoning, and query processing. Pervasive computing is a real-

time system only and only if it performed  all these phases in real-time which is a very complex task 

especially with the growth of users' expectations (e.g., user's preferred modality interaction). 

Further, most of the interactions in pervasive environments are expected to be performed  in real-
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time. However, this paradigm has been rarely addressed by the research community in pervasive 

computing systems. Another important factor that we can find in real-time systems is precision. 

When dealing with precision machines that can fail if timing is off by a millisecond, adhering to 

strict requirements becomes pivotal to the health and safety of the machine operators. Originated 

in distributed computing, but more challenging in pervasive computing due to the important 

cruciality of network latency. Best example of crucial precision is airplanes' communication and 

coordination with airdromes. 

• Mobility. A coherent and stable state of the network topology is an important factor for the 

management of pervasive applications. However, mobility of nodes (e.g., smartphones, wearable 

sensors or actuators, smartwatch, etc.) in a pervasive environment can cause the loss of connection 

to certain devices, or new connections to different devices can be established. 

• Distributed and parallel aspect. The massive amount of information that can be collected and 

processed by pervasive systems may result in a significant computational time. Traditional 

centralized computing systems cannot process all these data within a reasonable time. Further, 

centralized architecture suffers from the traditional problem the single point of failure. Therefore, 

a distributed strategy based on parallel computing is needed to accelerate the processing time 

allowing autonomy and mobility. However, this strategy requires patterns to guaranty the context 

consistency and integrity.  

1.3 Context and context-awareness  

Context is a key concept of any pervasive computing system. In order to understand the concepts of 

context and context-awareness used in this section, it is necessary to provide some useful definitions of 

concepts that will appear later.   

1.3.1 Sensor  

Sensor is an electronic component that can sense physical phenomenon such as movement, temperature, 

and humidity. All pervasive systems must rely on a wide range of sensors to collect data from the physical 

world. Nowadays, sensing technologies have made significant progress in designing sensors with a smaller 

size, lighter weight and longer battery life [26]. Thus, sensors can be embedded in particular objects and 

human bodies. Sensors can capture a different range of context information as the following aspects:  

• Environment: temperature, barometric pressure, humidity, light level, noise level in an ambient 

environment;  

• User: location, schedule agenda, motion, biometrical data like heart rate, glucose level, and blood 

pressure; 

• Device: Size of memory, CPU speed, the resolution of screen, device availability; 
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• Interaction: interacting with devices through virtual sensors using different modalities (click, 

touch, gesture, and voice), interacting with real objects through RFID [27], etc. 

The huge number and diversity of sensors in pervasive environment lead to high complexity in 

terms of interpreting: huge data volumes, different modalities, inter-dependence and real-time update. 

Moreover, in real world, sensors produce imperfect data that my result in misunderstanding of user’s 

activities or environment state. As a consequence, the execution of pervasive applications leads to 

incorrect behavior. There are also many limitations as incomplete, redundant and contradictory context 

data that may produce uncertainty issue. In fact, pervasive applications should take into account all these 

issues which complicate the process of making these data immediately understandable, efficient and 

consistent to applications [28]. To cope with this problem, developers need to know how to monitor these 

imperfect data using recognizing patterns that may give us better predicting of human activities [29]. 

1.3.2 Raw sensor data and context information 

To differentiate between raw sensor data and context, Sanchez et al. [30] define raw sensor data and 

context information as follows:  

 

• Raw sensor data: is unprocessed data that is observed directly from the data source such as 

sensors (e.g., GPS coordinate). 

• Context information: is generated by processing raw sensor data. In other words, it represents 

checked data for consistency where metadata is added (e.g., geographical location extracted from 

GPS coordinate). In other words, context information represents well-structured information 

that describes interrelationships and properties between concepts of an environment or a user. 

 

Generally, the raw sensor data that are used to generate context information can be identified as 

context. Raw data values have different types, including numeric, binary, and feature values. Each type 

has different chosen techniques to analyze it. The diversity of sensors categories and their data types is a 

major challenge for pervasive applications to analyze and process each type separately. Numeric values are 

sensed by the majority of sensors, including ambient sensors; Biometric sensors, spatial sensors, etc. The 

basic data type is binary that relies on two values: true (1) or false (0) (e.g. motion sensor produces true 

value for the human presence or false instead). The featured values are the most complex type, generally 

produced from more sophisticated sensors based on images such as a camera. Table 1.1 summarizes a list 

of used sensors and their types of context data in a smart environment [2]. 
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Table 1.1: A list of used sensors and their types in the smart environment [2]. 

Sensor types Type of values 

Positioning detection Numeric 

Interaction witch objects Binary, numeric 

Acceleration Numeric 

Biometric parameters Numeric 

Resource usage Numeric 

Ambient parameters  Numeric, binary 

Processed video Features  

1.3.3 Actuator 

An actuator is a component based on mechatronic mechanism (i.e., technology combining electronics and 

mechanical engineering) that is responsible for moving a mechanism or controlling systems. It operates in 

two phases including control signal and source of energy for a given action (e.g., opening a door, activating 

alarm, etc.). The control signal may be electric energy, hydraulic pressure, or pneumatic pressure. 

Generally, the control signal is sent by the system to control an environment (e.g., home, car, etc.). After 

receiving the signal to perform an action, the actuator needs a source of energy that may be electric energy, 

hydraulic fluid pressure, or pneumatic pressure.    

Sensor and actuator are primordial components to build and control a pervasive environment. 

Figure 1.5 illustrates the interrelationship between sensors, pervasive system, and actuators. Sensor sense 

physical phenomenon from physical world resulting in raw sensor data. These data are used to generate 

context information which in turn is used by the system. The system processes and analyses context 

information then takes decisions resulting in sending control signals to actuators. Actuators move or 

control a mechanism in the pervasive environment.   

 
Figure 1.5: The interrelationship between sensors, system, and actuators in pervasive computing. 
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1.3.4 What is context? 

In the literature context is the interrelated conditions in which something exists or occurs. More precisely, 

the context is the mutual relationship between a set of conditions that define a given state of an object in 

which some events can occur. 

According to the Oxford Dictionary, context is defined as “The circumstances that form the setting for 

an event, statement, or idea, and in terms of which it can be fully understood” [31]. 

According to the Cambridge Dictionary, context is defined as “The situation within which something 

exists or happens, and that can help explain it” [32]. 

These definitions are very large and when applied to the field of pervasive computing it is hard to 

specify which elements of the context are important. Therefore, many definitions in the scientific 

literature were given to the term context. Researchers in diverse domains tried to define the term context 

basing on the necessities and the investigated field to be more applicable to computer applications. In fact, 

there are two kinds of definitions, a user-centered focus and a system centered focus. In the following, we 

present the most common of context definition proposals ordered chronologically:      

- Schilit et al. [12] were among the first researchers who present a formalization of the user-

centered understanding of context applied to the field of mobile computers as “three important 

aspects of context are: “where you are, who you are with, and what resources are nearby ". They stated 

that context is more than just knowledge of the user’s location; there are other important aspects 

of interest to the user that may also mobile and constantly changing. So, they formalize the 

contextual information as the relationship between the user and the different things around him. 

The formalization defined by Schilit et al. [12] gives a more specific and tangible definition that 

we can apply to computer applications. Later researchers adapted this definition of context.  

- Brown et al. [13] considered context as “location, identities of the people around the user, the 

time of day, season, temperature, etc.” 

- Pascoe [14] defined context as “the subset of physical and conceptual states of interest to a 

particular entity”.  

- Brézillon et al.[33] considered context as “all the knowledge that constrains a problem-solving 

at a given step without intervening in it explicitly”.  

- One of the most complete definitions was given by Dey and Abowd [3] in 1999, they refined 

the definition given by Schilit et al. and defined the context in the following way: “Context is any 

information that can be used to characterize the situation of an entity. An entity is a person, place, or object 

that is considered relevant to the interaction between a user and an application, including the user and 

applications themselves”. This definition is a more general definition of context. It operates with 

any information that can be used to identify the situation of an entity. An entity is every element 
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of the context that can be found in an environment, including the user, the application, and the 

interaction between them. Unlike other user-centric or application-centric approaches, Dey and 

Abowd have focused on what is relevant to the interaction between them. This approach gives 

designers an abstract level to capture all the context elements that are relevant to a given design, 

regardless of the design view on which the application is based (user-centric approach or 

application-centric approach).  

In this thesis we have relied on this definition to express what context is, basing on three aspects of 

the context monitoring: capturing new incoming events from sensors, context updating, and context 

analyzing.   

-  Schmidt [34] defined context as “the knowledge about the state of the user and device, including 

surroundings, situation, and tasks”. 

- Strassner et al. [35] give a specific definition of context as: “The Context of an Entity is a 

collection of measured and inferred knowledge that describes the state and environment in 

which an Entity exists or has existed’. 

1.3.5 What is event?  

After defining the context, there is a clear relationship between context and event. Ahn et al. [36] define 

the interrelation between context and event as follows “context is a set of interrelated events with logical 

and timing relations among them”. Further, they define an event as an occurred data tagged with 

occurrence time that triggers a condition in a target area. Hence, a sensor deployed in a target area has to 

detect the given event.  

We distinguish two categories of events including discrete event and continuous event. If we 

consider that a sensor has a specific frequency in which it is periodically awakes at every sampling period 

p to observe an event: 

• Discrete event: an event occurs at time t as first event instance, and t+p as second event 

instance, both event instances are considered as separated (e.g., a door open, kitchen on, etc.) 

• Continuous event: an event occurs at time t as first event instance, and t+p as second event 

instance, both event instances cannot be considered as separated (e.g., eating, driving, raining, 

etc.)  

After analyzing the previous definitions of the term context and event, both are semantic terms. They 

are similar but not identical. The difference between “state” and “transition” is the same as between 

“context” and “event” respectively. From my point of view, we define the interrelation between context 

and event as follows:  
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Context is the state of the application at a specific time, while event is the transition that can change 

the state of the application (i.e. context change). In the field of pervasive computing, applications 

undergo many context changes. Thus, applications must be aware of these changes to react to new 

incoming events and to provide relevant information and services according to the user’s current needs 

and usage context. 

1.3.6 Types of events: simple and complex event 

We distinguish two types of events including simple events and complex events. 

• Simple Event. A simple event is the value of a context-attribute (e.g., 1.45 g/l is the simple 

event sensed by the glucose meter sensor for the glucose context attribute). The context attribute 

can be associated with qualitative comparators (e.g., inside, outside, near and far for Location; 

before, after and equal for Time, etc.). Each simple event is detected by using a sensor. Urgent 

events (e.g., health events and social security events) require immediate actions to deal with the 

situation, such as high glucose level and very high home temperature. Each event is defined 

formally as a set of metadata: event location, appearance time, valid period, sensed value. 

• Complex Event. A complex event is considered as a set of aggregated simple events in order to 

deduce a composed value of a complex event (e.g., a four-room flat with a motion sensor in each 

room, a motion event in a single room is considered as a simple event, a flat motion event is the 

aggregation of all the motion room’s events). A complex event can be interpreted as an event that 

requires multiple sensors at the same time. 

In the next section, we will present the foremost definitions given to the term context-awareness. 

1.3.7 Context-awareness 

The original of the term context-aware computing was first introduced by Schilit and Theimer [37] in 

1994, they defined it as: “the ability of a mobile user's applications to discover and react to changes in the 

environment they are situated in”.  

• Next, Schilit et al. [12] redefined the first definition of context-awareness as the ability to” adapt 

according to the location of user, the collection of nearby people and objects, as well as changes to 

those objects over time”. This means that software is able to collect the contextual information of the 

environment that surrounds it and reacts according to the context changes. 

• Abowd and Dey [3] have given a more general definition of what is a context-aware system. They 

define it as: “A system is context-aware if it uses context to provide relevant information and/or 

services to the user, where relevancy depends on the user's task”. It is obvious that the term context 

Context vs Event 
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is within the definition which gives a tangible link between context-aware and context and shows the 

dependency between both terms. This definition is more suitable and compatible with the definition 

of context given by Abowd and Dey in [3]. Thus, in this thesis, we have relied on this definition to 

express what context-awareness is. 

From the presented definitions, we notice that the context-awareness can be based on two 

important mechanisms:  the ability to monitor the contextual information and the ability to exploit and 

react for environment changes. In the next section, we are interested in presenting different 

categorizations and the classifications of context information given by different researchers. 

1.3.8 Context types and categorization  

The context and its related information can be classified into different types and categorization schemes. 

Therefore, researchers have categorized context based on different perspectives. Van et al. [38] classified 

the context categorization into two broader categories including operational and conceptual 

categorization. 

• Operational categorization: consists of classifying context based on the way it is acquired, 

modeled, and treated. 

• Conceptual categorization: consists of classifying context based on the meaning and 

conceptual relationships between context information.  

a) Generally, from the operational perspective, Perera et al. [39] classified the context into two 

general classes as primary and secondary contexts. The collected information from sensors is classified as 

primary context (i.e., raw sensor data). On the other side, information that combines data from different 

sources to find new significant information is called secondary context. In other words, secondary context 

is generated using data fusion operations of the primary context. For instance, if we collect the glucose 

level directly from a sensor implanted in the patient, this context information is classified as a primary 

context. Besides, if we infer the same context information from combining multiple sources of primary 

context data such as heart rate and sweating rate, this context information is classified as a secondary 

context.  

b) From the conceptual perspective, there are several categorizations that highlight relationships 

between contexts. Several researchers propose different categorization schemes to the context. Schilit et 

al. [12] classified context into three categories based on three questions: 

• Where you are: consist of all contextual information related to location such as GPS 

coordinates (e.g., home, university, office, shopping mall, etc.). 

• Who you are with: represents contextual information about the people nearby the user. 

• What resources are nearby: represents contextual information about available resources 
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around the user’s location (e.g., devices nearby the user in a specific area).  

Henricksen et al. [40] define four context categories as follows: 

• Sensed: sensor raw data received from sensors such as humidity value measured by humidity 

sensor. In this category values are changing dynamically over time with a high frequency. 

• Static: this category represents static information that will not change over time such as 

device’s capabilities, sensor’s capabilities, etc. 

• Profiled: this category represents information that changes over time with a low frequency 

such as IP of sensor and ID of sensor. 

• Derived: this category represents information calculated using other context information 

such as distance between two users calculated using two GPS sensors. 

Perera et al. [39] classify context from the conceptual perspective in four categories including 

location, identity, time and activity. Figure 1.6 illustrates context categorization based on two perspectives 

(conceptual and operational) as defined by Perara et al.  [39].  

 
Figure 1.6: Context categorization based on conceptual and operational perspectives [39]. 

None of the presented categorization schemes can be considered as the best classification for 

context. Therefore, each categorization scheme can be suitable and reasonable in a specific situation. 

However, pervasive computing system needs to consider more comprehensive categorization schemes in 

hierarchical manner, such as generic categories, subcategories, and so on. The hierarchical categorization 

schemes of context can play a significant role in classifying and arranging context information in a smooth 

way. This hierarchical categorization of context information facilitates to give a clear vision of context’s 

changes over time and thus react rapidly to these changes.  
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1.3.9 Context life cycle 

Context life cycle represents data moves from several software modules. More specifically, it shows the 

life cycle of perceived data from the generation until consumption. Bernardos et al. [41] design four phases 

in a typical context life cycle management system including context acquisition, context modelling and 

processing, context reasoning, and context decision. Figure 1.7 illustrates the four-phase context life cycle 

proposed by Bernardos [41]. The first phase consists of acquiring data from different sources including 

sensors and user inputs (context acquisition).  The second phase consists of collecting data and representing 

them according to a conceptual model (context modeling). The third phase consists of taking modeled 

data and processed them to drive high-level context from low-level raw sensor data (context reasoning). 

The final phase consists of disseminating high-level context information to corresponding applications in 

order to make decisions according to context changes (context dissemination). 

 

Figure 1.7: Context life cycle in context management system [39]. 

Considering the entire context in a pervasive system needs a powerful computational capability that is not 

always available. Besides, context is changing dynamically over time which may make context-awareness 

a hard task to achieve. Therefore, it may reduce the performance in terms of precision and real-time 

reaction. Further, some changes in context are meaningless and can produce an additional computational 

time. Hence, considering a part of context that represents only meaningful information namely situations, 

reduces this additional computational time and enhances the system’s performances. In the next section, 

we are going to present the foremost definitions given to the term situation and situation-awareness.  

1.4 Situation and situation-awareness  

Situation and situation-awareness are subjective concepts in pervasive systems, their definitions rely on 

context and context awareness concepts. This section presents definitions given to situation and situation-

awareness concepts.  
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1.4.1 What is situation? 

According to Ye et al. [2] “a situation can be defined by collecting relevant contexts, uncovering meaningful 

correlations between them, and labeling them with a descriptive name”.  The descriptive name represents a 

descriptive definition of a situation, that is to say how a simple user or an expert defines this situation in 

reality. Further, users or experts can specify a situation logically using logical expressions of correlated 

context predicates. Therefore, with situation description and situation specification, a situation can bridge 

sensor data and applications. In other words, sensors raw data can be abstracted to a specific situation by 

evaluating its specification, while this situation is identified logically, the system triggers automatically 

actions correlated for the identified situation. 

For instance, figure 1.8 shows a general architecture of information flow in pervasive computing, 

including the three main hierarchical concepts in any pervasive system, namely sensor raw data, context, 

and situation. As we see at the bottom of figure 1.8, sensor produces raw sensor data which can be 

characterized into a set of concepts namely context. A location context studyRoom is mapped to a set of 

coordinates GPS sensor data. This context has semantic relationships between other context information 

that can give the same interpretation as GPS sensor data such as user's interaction with the keyboard located 

in the desktop of the studyRoom. StudyRoom context and KeyboardAccessed context are considered relevant in 

which they share semantically the same location. These semantic relationships can be explored through a 

specification-based approach or learning-based approach. We will show the difference between these two 

approaches in chapter 2.  After exploring the context information, a situation “working” can be identified – 

working is its descriptive name. A logical specification can define this situation as follows: “if a user is in the 

study room and accessing the keyboard of the desktop, this user is considered in a working situation”. From 

the application perspective, it consumes the identified situation and runs automatically a set of actions 

associated with this situation (e.g., adjusting the sound level of the background music).  

 

Figure 1.8: Information flow in pervasive computing [2]. 
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Karchoud et al. [42] define situation as a projection on three axes including time, location and activity. 

Where activity represents the task that the user is performing. At some level user’s activity and user’s 

situation seem similar terms. In fact, what distinguishes activity from situation, is that the situation includes 

rich context information, namely location and time. A situation is specified with a particular location and 

time where/when it may happen. 

After analyzing the previous definitions of the term context, event, and situation, we can give a 

definition that interrelates between all these concepts as follows: 

 

Situation is the set of things (i.e., events/context) that happens at a given location (i.e., where?) and 

at a given time (i.e., when?), and the conditions (i.e., clauses) that can verify those events, thus 

identifying the situation.  

We specify a situation through a set of clauses namely a situation rule. When all the clauses are 

verified (i.e., the situation is identified), the system triggers automatically the set of actions associated with 

the identified situation. For example, a high glucose situation results in injecting insulin in the human body 

automatically.  

1.4.2 Types of situations: simple and composite situation 

The situation can be either a simple situation or a composite situation. A simple situation is defined by a 

situation rule as a set of conditions and a set of actions. A composite situation is a composition of multiple 

situations using different composition operators (e.g., parallel, sequence, recurrence, and alternative). For 

example, a diabetic who has a not so good diet situation that may be modeled as a composite situation, 

which consists of a high glucose recurrence situation. The high glucose situation, without the recurrence 

composition operator, is considered as a simple situation. A simple high glucose situation results in 

injecting insulin. In contrast, the composite situation results in sending diagnostic results of the patient to 

the doctor. 

1.4.3 Situation-awareness 

Situation and situation awareness are different concepts but they complement each other. The situation 

concept represents the conceptual model specified by the designer to identify a situation. Whereas, 

situation-awareness is a cognitive process in decision-making after identifying a situation during context 

changes. Endsley et al. [43] define situation-awareness as “the perception of elements in the environment 

within a volume of time and space, the comprehension of their meaning, and the projection of their status 

in the near future”. They modeled situation-awareness system in three main layers including perception, 

comprehension, and projection. The perception layer represents all the necessary information collected from 

Context, Event and Situation 
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the environment through sensors and devices. More specifically, we can consider the perception layer as 

context layer. The comprehension layer interprets and explores semantic relationships of received 

information in order to understand and identify the current state of the environment, namely situation. 

The projection layer has a direct relationship with the identified situation to predict its future state. 

Situation-awareness is a related concept to the notion of context-awareness. These two concepts can 

be used interchangeably. However, a system is a context-aware if it uses context to provide relevant 

information and services to the user [3].  Based on this definition, we can say that a system is a situation-

aware if it uses situation to provide relevant information and services to the user. 

1.4.4 Situation management process 

The situation management process in pervasive computing systems aims to facilitate mobile services 

delivery in various smart domains through a situation identification process where each situation is linked 

semantically to a set of mobile services. Moreover, contextual information acquired from pervasive 

environments must be represented and modeled into situation specification to unify and facilitates the 

situation identification mechanism. The situation management process consists of four main steps as 

follows: 

• Situation representation: aims to define logic primitives (e.g., temporal primitive, location 

primitive, etc.) that are used to construct situation rules called situation’s logical specification. 

• Situation specification and modeling: aims to specify and model how a situation can be 

built using a situation’s logical specification based on situation model (e.g., ontology model for 

situation specification). Several situation modeling techniques proposed in pervasive computing 

will be detailed in the next chapter. 

• Situation identification and reasoning: represents how to infer and identify situations 

from a huge amount of raw sensor data. Several identification techniques are used to reason on 

situations’ relationships. We distinguish two essential approaches for situation identification 

namely specification-based approaches and learning-based approaches. Both approaches will be 

detailed in the next chapter. 

• Situation recommending: situation recommendation techniques are responsible for 

enriching user's agenda with useful situation rules. Several recommendation techniques will be 

discussed in the next chapter.  

After defining the concept of context and situation, we need to clarify the relationship between 

pervasive computing systems and these concepts. The next section presents the conceptual architecture of 

pervasive computing systems based on context and situation.    
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1.5 Context and situation in pervasive computing 

Traditional applications were unaware of the context in which they neglect context information related to 

the user’s environment. In other words, they do not discern where the user is, what is he doing, who is 

nearby, and other context information. They settled only for explicit inputs from the user (e.g., know his 

ID, pointing to an icon with the cursor, etc.). Recently, several applications adopt the use of context to 

improve the quality of provided services by adapting them relevantly to the user’s current context.  

Therefore, context has been integrated into different computing domains such as: IoT [39], healthcare 

[44], and even pervasive computing [45]. In this thesis, we are focused on context-awareness in the 

pervasive computing. 

Pervasive computing is a complex system that requires a combination of existing technologies and 

mechanisms. To build up a full pervasive computing system, there are important elements needed which 

are hardware, business model, and software. Therefore, the development of a pervasive system involves 

three main elements: 

 

• Hardware: sensors, actuators, and devices. 

• Model: Context and situation models. 

• Software: represents the application part that can control: context life cycle, situation 

identification, and adaptation.  

 

Figure 1.9 provides an overview of a full hierarchical layers of pervasive system. Its layers consist of 

four main modules including raw sensor data acquisition, context processing, situation identification, and 

adaptation. The adaptation module is responsible for triggering actions according to context changes. The 

context can be determined after the processing of raw sensors data and user inputs. The first step consists 

of receiving heterogeneous input data, where they are collected as raw sensor data. These data are viewed 

as low-level context. After that, these data are processed (i.e., add metadata to raw sensor data, verify 

consistency, aggregation, semantic interpretation) to generate context information known as high-level 

context [46]. In pervasive computing, situation identification and situation-awareness are built on a high-

level context to formalize and deduce real-life situations out of context. In other words, the situation 

concept is properly designed to extract the most relevant information from the context, while situation-

awareness takes place to perform the adaptation for identified situations. Finally, according to the provided 

inputs and situation-aware system, the adaptation module sends commands to actuators to execute various 

actions (e.g., adjust the air conditioner temperature according to the sensed temperature in the office).  



Chapter 1                                                                         Context-aware and Situations in Pervasive Computing: Background and Standard Ontologies 

32 

 

 

Figure 1.9: Conceptual Architecture of context processing in pervasive system. 

In the next section, we will investigate the importance of ontology that aims to represent 

heterogeneous smart objects from the technical view in pervasive computing. 

1.6 Ontology and standard ontologies for pervasive environment  

Recently, various standard ontologies have been modeled in pervasive computing to provide semantic level 

facilities that allow the management of user situations based on heterogeneous services in order to adapt 

to its current needs. In addition, ontologies enhance application dynamicity and interoperability based on 

common context information for a better unification, flexibility, adaptation, and customization of mobile 

applications. 

This section presents both ontology and semantic representation of heterogeneous smart objects, 

and shows some standard ontologies designed for pervasive environments. 

1.6.1 What is ontology? 

An ontology is a set of concepts that provide information semantically. The concepts are organized in a 

graph whose relations can be semantic relations, composition, and inheritance relations. However, the most 

mentioned definition is Gruber's: "An ontology is an explicit and formal specification of a particular area 
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of knowledge" [47]. An explicit and formal definition allows software agents to reason and infers new 

knowledge. The main purpose of an ontology is to model a set of knowledge in a specific domain. In the 

domain of the semantic web, there are two main description languages for ontologies: RDF (Resource 

Description Framework) and OWL (Ontology Web Language). 

Ontologies provide a common vocabulary of a particular domain and define the meaning of terms 

and relationships between them. The knowledge in the ontologies is mainly formalized using four types of 

components [48] called: concepts (or classes), relations (or properties), axioms (or rules) and instances (or 

individuals). 

1.6.2 Semantic representation of smart object 

A pervasive environment consists of various smart-* domains with various heterogonous smart objects 

(serval sensors and actuators). To represent such domain, we need an ontology domain. Ontology is a 

semantic model that provides the relationship between smart objects whatever their communication 

protocols and context data type. This allows the system to access and reason with the context data in a 

uniform way.  For instance, figure 1.10 presents a hierarchical representation of sensors and actuators for 

pervasive smart objects ontology. While figure 1.11 illustrates an ontology reasoning for controlling 

concretely a radiator in a smart home under abnormal temperature detected by a temperature sensor (i.e., 

low temperature implies turn on the radiator, high temperature implies turn off the radiator). 

 

Figure 1.10: Semantic Model of smart objects. 
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Figure 1.11: Ontology reasoning based on smart objects. 

A semantic representation of smart objects helps to describe capabilities and additional information 

useful for interoperability and reasoning tasks. Table 1.2 illustrates some semantic information of a 

temperature sensor. 

Table 1.2: Semantic information of a temperature sensor. 

Temperature sensor 

Property 

is_sensor 

sensor_type 

sensor_id 

sensor_location 

frequency 

temperature_value 

Type Values 

      Boolean, true, as Default 

      Domain (temperature) 

      Sensor identifier 

      Domain (home, office, indoor) 

      Numeric 

      float, valid > 22 && < 38 

1.6.3 Standard ontologies for pervasive environment 

During the analysis of certain ontologies relevant to our research area, we found several ontologies that 

model pervasive environments, smart objects, and user’s profiles as follows: 

• Semantic Sensor Network (SSN) [49]: is a standardized W3C ontology that describes five 

fundamental concepts (sensor, sensor’s observations, sensor data samples, actuator, and services) 

and also the relationships between these concepts.  

• Sensor, Observation, Sample, and Actuator (SOSA) [50]: offer sophisticated capabilities 

including social sensing, observation-driven and context monitoring. 

• Smart Applications Reference Ontology (SAREF) [51]: is a reference ontology for IoT 

devices and IoT applications for energy efficiency solutions. 

• DOLCE Ultra-Light Ontology (DUL) [52]: is an ultra-light version of 

ontologies DOLCE (Descriptive Ontology for Linguistic and Cognitive Engineering) and DnS 

(Descriptions and Situations ontology), which provides simplification and enrichment of some 

concepts of DOLCE. 
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• Friend of a Friend Ontology (FOAF) [53]: is an RDF ontology for modeling users, their 

personal data, their relationships, and social concepts. 

1.6.4 Ontology design process for pervasive environment 

This section presents shared guidelines that help developers to design an ontology. Ontologies are used to 

cover the knowledge sharing between users, smart domains, and smart services to provide a better 

representation of heterogeneous context information in order to infer users' situations for smart mobile 

applications. In knowledge engineering, a top-down approach is a good technique to reduce design 

complexity by enabling hierarchical knowledge representation and ensuring a high level of abstraction in 

pervasive environments. There are different approaches for modeling an ontology for pervasive 

environments and their smart-* domains (home, city, health, car, etc.). Before we start developing such 

ontology, we should consider reusing existing standard ontologies to save costs and achieve interoperable, 

flexible, semantic, and open linked models. The ontology design process consists of the flowing 

fundamental steps (see figure 1.12):    

 

Figure 1.12: Ontology Design Process for pervasive environment. 

• Firstly, we build a top-level ontology (upper ontology) that is simple and use common concepts 

in different smart-* domains. Based on the common building concepts of these smart domains, 

we identify ontology vocabularies that should be covered in all-pervasive domains. 

• Identified key vocabularies in the previous step are used to define most general concepts (classes) 

and the relationship between concepts in the top-level ontology. 
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• For each specific smart-domain, we follow a top-down approach in which we derive from top-

level ontology concepts, hierarchical domain-specific concepts. The main goal is to ensure 

cohesion, consistency, and a high level of reuse of top-level ontology. 

• Definition of properties and properties’ constraints for smart domain ontology. 

• Creation of instances for the classes.  

In our research work, we are interested in the management of situations-oriented mobile 

application at different levels: 

• Semantic-level that depends on generic top-level ontology model to facilitate the design of mobile 

applications and the management of various composite situations with multiple handled devices. 

We use an ontology model to cover all context information and situations that respond to the 

user’s daily life activities for context-aware mobile application structured on three levels: (1) 

context upper ontology, (2) specific domains ontology, and (3) application of context ontology 

for a given smart domain.  

• Design-level that describes situation-oriented application design model at different smart domains 

(health, home, tourism, health, etc.) as a set of situations components. The use of components in 

such applications reduces the complexity of situations management into small manageable parts, 

namely situation component, and thus provides a more flexible architecture. The situation 

component is a combination of knowledge-based ontology modeling, situation rules (constraints), 

and usage context-based ontology (scenarios).   

• Runtime-level that ensures the management of application based on context monitoring 

mechanisms from different sensors, composite user’s situation reasoning, and the auto-generation 

of (re-) deployment script of action services.   

We note that design-level and runtime-level integrate the use of components and services to manage 

and deploy action services in order to respond to user context changes. Managing these components and 

services (add/remove/migrate) on different devices and platforms without tool support is a difficult task 

to achieve. Therefore, a dedicated middleware is needed to manage and deploy these services on mobile 

devices. The next section presents the standard middlewares for pervasive systems.  

1.7 Middleware dedicated to pervasive systems  

1.7.1 Background 

Pervasive computing is a heterogeneous environment where the modularity of mobile applications 

becomes crucial. Therefore, the use of middleware in such environments is mandatory. In pervasive 

computing architectures, a middleware is a distributed layer of software that provides services to pervasive 

applications. It acts as a mid-level agent between service providers (i.e., sensors) and service consumers 
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(i.e., pervasive applications). In other words, middleware is a software layer used to bridge the gap 

between sensors and top-level applications (see figure 1.13). In addition, it ensures the communication 

between the involved devices and applications regardless of network protocols, hardware and software 

features. The most popular technique of communication and information exchange between devices and 

applications is to invoke remote action services by adding, removing, or migrating component-based 

services. From the perspective of Service-Oriented Architecture (SOA), a component is viewed as the 

cornerstone to build a service in which a service is the combination of one or more components. 

Middleware handles these components and services to provide context information for users through 

specific devices.  

 

Figure 1.13: Pervasive computing architecture based on middleware. 

In the next section, we present some existing middlewares solutions for pervasive applications. 

1.7.2 Existing middlewares for pervasive applications 

Several middlewares have been proposed for building context-aware applications. These middlewares unify 

and harmonize the reception of context information from deployed sensors in pervasive environments 

according to the current users’ needs and usage situations. In the following, we present some middleware 

solutions for pervasive applications: 

• SATIN [10] is a middleware based on components architecture. It provides reusable components 

that the developer can reuse them to create new applications. It relies on a modular architecture 

that allows us to add new functionalities at runtime. Therefore, to build an application based on 

SATIN middleware, it is mandatory to decompose it into modular functionalities. This feature 

provides reusability and interoperability between applications running on the same middleware. 
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Nonetheless, all applications built on SATIN depend on the middleware core component which 

leads to a centralized point of failure.  

• MUSIC [7] is a middleware that enables reconfiguration of context-aware mobile applications. It 

supports component-based architecture adaptation. MUSIC is based on predefined adaptation 

rules that allow dynamic application reconfiguration according to context changes. Applications 

built based on MUSIC are modeled as component frameworks respecting the MUSIC 

implementations. Hence, this feature may reduce the flexibility of developed applications.  

• CARISMA [11] is a middleware that adopts a peer-to-peer architecture. it enables to build 

context-aware adaptive application based on install/uninstall services on the online. CARISMA 

can detect context changes and triggers adaptation actions automatically for deployed 

applications. However, CARISMA does not provide service discovery in distributed 

environments.  

• WComp [18] is a middleware for context-aware applications based on three main paradigms: 

event-based web services, a lightweight component-based application, and adaptation approach 

using the assembly aspect. These paradigms ensure a dynamic design model for ubiquitous 

computing applications through a decomposition/composition aspect. The adaptation approach 

uses a set of composite services in reaction to context changes. However, the adaptation design 

model is strongly coupled which may reduce the response time. 

• Kalimucho [8] is a supervision middleware that manages the execution of services on available 

distributed devices. It is based on component architecture. Context changes is monitored through 

the components and connectors deployed on sensors and devices. The middleware ensures the 

communication between devices through connectors that Kalimucho sets up between the 

components.  The middleware supports applications reconfiguration through supervised scripts as 

they are running by adding/removing/migrating component-based services while considering 

context changes.    

• Kali-smart [9] is a middleware based on Kalimucho that allows dynamic reconfiguration of 

distributed mobile applications on desktops, laptops and mobile devices. It relies on component 

architecture to represent context information and user situation. The middleware is distributed on all 

mobile devices involved in the application and enables automatic decision-making.  Moreover, Kali-

Smart is a generic and flexible infrastructure that enables dynamic management of components to 

generate reconfiguration scripts on the fly.  

Table 1.3 summarizes the limitations and strengths of studied middlewares. These middlewares are 

portable and runs on Smartphones, PCs and Laptops. Moreover, they ensure a better management of 
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context-aware functionalities. In this work, to improve flexibility and achieve high scalability (handling a 

big amount of context data and user’s mobility), we rely on Kali-smart middleware [9] that enables 

automatic decision-making and semantic situations modeling. 

Table 1.3: Middlewares’ comparison. 

Middlewares  
Context 

Modeling 
Mobility  Architecture  Adaptation Portability  Flexibility 

SATIN   ✓ Component  ✓ Low 

MUSIC  ✓ ✓ Component ✓ ✓ Low 

CARISMA  ✓ ✓ Peer-to-peer ✓ ✓ Low 

WComp  ✓ ✓ Web service ✓ ✓ Low 

Kalimucho  ✓ ✓ Component ✓ ✓ Medium 

Kali-Smart  ✓ ✓ Component ✓ ✓ Medium 

1.8 Conclusion  

The evolution of context-aware situation-based applications is leading us through pervasive computing 

which is a dominating paradigm. These applications have great potentials to facilitate people’s lives and 

make the pervasive environment more friendly for citizens. In this chapter, we have presented three 

research domains related to our work’s context, namely Pervasive Environments, Context-awareness and 

Situations based ontologies, and Middlewares. Firstly, we have described the pervasive environments and 

their different features challenges. After that, we have given potential definition related to context-

awareness and situations concepts. We have investigated how these concepts offer a well understanding of 

user’s context and easy management of user’s situations through context and situation modeling. Then we 

have shown the relationship between pervasive computing and context-aware system in which pervasive 

applications adopt the use of context to improve the quality of provided services by adapting them 

relevantly to the user’s current context. Then we have examined some existing standard ontologies which 

are used to unify the representation of heterogeneous context information and facilitate the management 

of a large number of heterogeneous connected objects and services. Finally, we have seen some 

middlewares dedicated to pervasive applications. 

In the next chapter, we will describe the state of the art in modeling, identifying, and recommending 

services related situations. We will present the main research works in the field of situations identification 

and recommendation in pervasive environments. 
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2.1 Introduction 

Nowadays, we live in an age of pervasive computing that have the ability to serve users in sustainable 

context changes regardless of their locations, activities, and situations. However, human activities in real 

life know an endless possibility of user scenarios and situations. One of the main challenges in pervasive 

computing refers to the real-time identification and management of user’s situations. The diversity of user’s 

scenarios makes the management of user’s situations very complex. In addition, identifying a huge number 

of situations under several moving scenarios (e.g., at home, at work, at car, etc.) and dynamic context 

evolution exhibiting varying degrees of precision, accuracy and processing time. Therefore, pervasive 

systems must offer a flexible, extensible, and dynamic model for collecting context information from 

sensors, identifying situations, then providing appropriate and adaptive services for identified situations. 

Further, with the huge number of situations in real-life scenarios, variety of user’s needs, and multiplicity 

of devices to adapt to context changes, it becomes a necessity for pervasive systems to provide a dynamic 

solution that guarantees accurate recognition of situations. Nevertheless, the situation identification 

process may be ineffective or incomplete as it could be based beforehand on predefined situation rules, 

identified either by experts or users. In fact, it is a tedious task for each user to define his specific situation 

rules in any daily life scenario. Thus, a dynamic injection mechanism for new specific situations based on 

recommendation techniques is needed to predict and recommend the right situation in the right context 

for the right person. 

Research into human activity recognition and situation identification in pervasive environments have 

been widely exhibited. This chapter explores different fields and approaches that serve as a frame for our 

work including situation modeling, reasoning and recommendation that have been proposed in the last 

decades. In this scope, we analyze the strengths and limitations of available works proposed in literature. 

Figure 2.1 summarizes different techniques and approaches for situation-based modeling, identification 

and recommendation. Several aspects are considered to synthesize the specification of each approach, 

namely composite situation modeling, priority, accuracy, scalability and flexibility. Our goal is to overcome 

the limitations of existing approaches and come out with a new flexible system that models composite 

situations model based on priority in multi-domain smart environments. 

This chapter is organized as follows: Section 2.2 presents situations modeling approaches that aim 

to present different approaches addressing situation modeling. While section 2.3 presents situation 

identification approaches.  Section 2.4 presents different recommendation approaches. Section 2.5 

presents a synthesis section. Finally, section 2.6 presents the conclusion.   
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Figure 2.1: Recommendation techniques, situation modeling and identification approaches. 

2.2 Situations modeling approaches  

In this section, we review some recent relevant approaches addressing situation modeling and identification 

in pervasive environments. Most existing approaches able to identify everyday situations for pervasive and 

mobile environments. However, the related works suffer from various limitations including composite 

situations modeling and parallel situations reasoning. Our work is based on the semantic-based context-

aware composite situation design model for mobile distributed applications. We first proposed a semantic 

representation of both complex events and composite situations of smart environments using composition 

operators parallel, sequence, recurrence and alternative for identifying and deducing composite situations.  

2.2.1 Rule-based situation modeling approaches      

In [1], the author uses the Event Condition Action (ECA) rule model to perform adaptation actions 

regarding incoming events checked by appropriate conditions. This model may be used to enable any 

adaptation behavior in pervasive applications.  ECA rule consists of three parts including event, condition, 

and action. The event part describes and represents incoming events from sensors. The condition part 

represents a condition for checking incoming events (e.g., true or false). The action part performs planned 
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actions. This work ensures better management of context changes through monitoring and evaluating 

incoming events using ECA rule model. It covers context information representation and reasoning on 

various data collected from several sensors and devices. However, the main drawback of this work is the 

sequential checking of parallel incoming events that may increase the system’s response time. Therefore, 

parallel checking techniques are needed to enhance the system’s response time. 

The CybreMinder [54] is an Eclipse plug-in that allows the explicit specification of a context as a 

combination of sub-contexts using diverse relations, such as =, <=, >=, <, or > as well as pre-defined 

contextual events. However, CybreMinder does not provide a range of composite operators such as 

parallel, sequence, alternative, and recurrence for mobile context-aware applications. Besides, 

CybreMinder neither supports multimodal actions to perform multi adaptations nor the combination of 

atomic distributed multimodal actions. 

Recently, Karchoud et al. [55] propose a novel vision of user’s long-life applications that relies on a 

rule-based spatiotemporal model for continuous context understanding and situation identification. 

However, this work lacks the support to manage accurately all contextual constraints. In other words, it 

does not take into account semantic composite relations between simple situations to create composite 

situations (e.g., recurrence of high glucose level as a composite situation). 

More recently, Butt et al. [56] propose a priority model to manage and respond to patients’ urgent 

situations. This work uses an objective function based on the patients’ locations and their diseases to 

prioritize the situations. The goal of prioritizing situations is to reduce the system workload where only 

situations with high priority are firstly handled. However, the objective function used in this work neglects 

other important metrics such as user’s current activity and situation’s category.  To deal with this problem, 

we have used four metrics including situation’s category, user’s activity, user’s location, and situation’s 

coverage to calculate the situation’s priority. A weighted linear combination of these metrics is used to 

compute the final score for each situation (more details about the calculation of situation priority are given 

in chapter 4). 

2.2.2 Ontology-based situation modeling approaches        

Many initiatives have been taken in ontologies specification for semantic situation modeling and reasoning 

in pervasive environments. Despite the benefits of these works towards situation identification concerns, 

there are research works do not take into account context assumptions such as unhandled composite 

situations and situations’ priority. In our work, a composite situation is described using different 

composition operators, while a situation priority is defined through predefined policies (for more details 

see chapter 4). 
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Roberto et al. [57] propose SHERLOCK system that provides semantic techniques to exchange 

contextual knowledge between devices, and to assist user in different context changes by selecting 

appropriate services for his current needs. SHERLOCK relies on OWL for knowledge modeling and 

reasoning using local ontology where several smart objects and user situations are specified. However, 

there is an apparent lack of a new way to manage composite situations and users’ needs at one time in a 

dynamic and intelligent way. 

 Da et al. [8] propose an ontology-based context-driven management for Kalimucho middleware. 

This ontology offers the management of context information at a semantic level on the shared domain. 

This work provides monitoring techniques for context changes to ensure dynamic reconfiguration 

decisions. Based on reconfiguration decisions, Kalimucho offers predefined control policies for 

deployment strategies.  However, this context-driven management model fails in distributed situation 

inferring and complex event processing due to the lack of parallel event processing strategy that can split 

the events into parallel sub-events (e.g., define “nobody at home” as an abstract complex event by 

aggregating all outputs values of motion sensors deployed in each room).  To address this issue, 

Angsuchotmetee et al. [15] presented an ontology model (see Figure 2.2), known as Multimedia Semantic 

Sensor Network Ontology (MSSN-Onto), to model and process in real-time complex events in 

Multimedia Sensor Network. The approach uses pipeline-based technique for complex events detection 

by observing and combining several sensors. It provides a distributed logic-based detection and continuous 

monitoring technique to identify events that occur on multimedia sensors networks. The proposed system 

can achieve high accuracy detection with short processing time. However, it still has limitations, as it does 

not identify dynamically composite situations and critical anomalies (e.g., fire situations, heart attacks and 

other urgent situations). Therefore, this work lacks the reconfiguration aspect and priority integration 

among situations on distributed applications. 

 

Figure 2.2: Complex events-model [15]. 
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Other ontologies emerged based on Semantic Sensor Network (SSN) [4] such as HSSN Ontology 

(Hybrid Semantic Sensor Networks) [6], HealthCare Ontology [16], and SmartHome Ontology [17]. They 

provide a direct mapping between event-based sensors and OWL context-oriented patterns. However, 

these ontologies lack a high semantic-based description with the growth of heterogeneous smart objects. 

Our proposed work ensures the continuity of service reconfiguration at the semantic level and enhances 

the response time through explicit semantic dependency between situations and their relevant context 

sources. 

Lu et al. [5] present a core lightweight ontology for IoT (IoT-Lite) which has been extended from 

the standard SSN ontology [4]. IoT-Lite ontology models the key concepts of IoT environment (i.e., 

coverage, actuators, services, entity, and virtual entity, attribute and measure unit). This ontology allows 

the interoperability and discovery of sensors data on heterogeneous platforms with low complexity and 

fast processing time. However, IoT-Lite does not describe essential concepts such as user profiles, its 

preferences, explicit descriptions of user’s composite situations and its context usage. This poor 

description may lead to a lean user experience resulting in weak service customization. In our work, 

similarly to that IoT-Lite ontology, we describe sensors/actuators, event, situations as semantic services 

to obtain the same genericity. Furthermore, we incorporate the concept of microservices (i.e., small unit 

of code) in these semantic services that allow different functionalities such as observing sensors, and 

identifying parallel situations at a semantic level in a specific smart domain. In comparison to the IoT-Lite 

ontology, the objective of our research is to conduct a user-centric approach, where user needs and its 

composite situations in multi-domain smart environments are well described. 

 

Figure 2.3: IoT-Lite Ontology model [5]. 

In an attempt to recognize complex daily living activities (ADLs) [58] in a smart environment, 

Okeyo et al. [59] propose an ontology-based approach for composite activity (e.g., interleaved and 

concurrent activities) recognition in smart homes. The knowledge bases are modeled as daily living activity 
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(ADL) ontology for both simple and composite activities (see figure 2.4). This approach provides a multi-

agent framework to enable multiple activities to be simultaneously monitored and recognized. This 

framework uses SWRL with JESS engine to infer logical composite activities. However, this work lacks 

the concept of activity’s priority that can play a significant role in human activities scheduling to determine 

urgent activities. 

 

Figure 2.4: ADL ontology [59]. 

Ramírez et al. [60] introduce a graphical framework based on DSL (Domain Specific Language) for 

specification and evaluation of elderly/handicapped Daily Living Activities (ADL) according to the AGGIR 

(Autonomy Gerontology ISO-Resources Groups) grid variables. This DSL has been used for integrating 

spatiotemporal operators to manage time and location of composite activities and complex events within 

a home environment. Therefore, they define a situation as a set of occurred events (or set of composite 

activities as shown in figure 2.5). Three of the AGGIR variables (i.e., dressing, toileting, and transfer) 

have been picked for evaluation purposes. Results demonstrate the accuracy of the proposed framework 

to monitor and manage the occurred events and activities of the elderly. However, this DSL-based 

complex event has been criticized for the lack of monitoring situations of elderly outside home domains 

which makes the assistance of the elderly restricted in limit areas. This DSL does not handle the 

composition of multi-domain situation in which situations from different smart domains (e.g., health with 

transport) can be combined through combination operators such as parallel, sequential, recurrence, and 

alternative. The multi-domain situation combination can offer a new user’s experience by incorporating 

different smart domain situations where users can manipulate and take benefit from all the existed smart-
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* domains. In addition, this work lacks the concept of activity’s priority that can play a significant role in 

human activities scheduling to determine urgent activities for elderly.  

 

Figure 2.5: Composite activities over the time dimension [60]. 

2.2.3 Component-based situation modeling approaches         

Other works use component-based architecture for context and situation modeling such as WComp [61], 

DiaSuite [62], DynamicWright [63], Kali-Smart [8] [9], and SensSocial [64] to manage continuously 

context changes and respond to users’ needs. 

Ferry et al. [61] propose WComp middleware that relies on context-aware component-based 

architecture for pervasive applications. They design events as component-based services to collect context 

data from different sources according to user’s current situation. This paradigm ensures a flexible design 

model for the system through reconfiguration decisions by easily adding/migrating/removing event 

components. This work reacts rapidly and efficiently to deal with context changes, but lacks semantic 

mechanisms to handle complex events at run-time.  

Kali-Smart [9] is an autonomic semantic-based context-aware middleware. It relies on component 

architecture to represent context information and user situation. This architecture supports dynamic application 

reconfiguration through automatic decision making during its running by adding/removing/migrating 

situation component-based services while considering context changes. Moreover, Kali-Smart is a generic 

and flexible infrastructure that enables dynamic management of situation components to generate 

reconfiguration scripts on the fly. However, this work neither handles parallel incoming events nor models 

composite situation. 

2.2.4 Comparison and discussion 

Table 2.1 is a summary of the limitations and strengths of the situation modeling approaches cited bellows. 



Chapter 2                                                                                                          Literature Review on Situation-Based Approaches in Pervasive Computing  

 

48 

  

The works are compared in terms of composite situation modeling, multi-smart domains situation 

modeling, situation’s priority, scalability and flexibility. These works have many limitations regarding 

several reasons. The first reason, major solutions lack scalability (handling big volumes of context data, 

continuous sensor’s events monitoring, and user’s mobility), which directly influences the whole reasoning 

process. The second reason, major solutions have been carried out in supporting specific smart domain 

that affect flexibility under several moving locations in several smart environments.  

2.3 Situations identification approaches 

Research into situation identification in pervasive environments has been extensively studied by 

researchers. As we show above in Figure 2.1, various techniques and approaches for situation identification 

have been classified into two categories, namely specification-based approaches and learning-based 

approaches.     

2.3.1 Specification-based situation identification approaches  

Specification-based approaches consist of representing expert knowledge in logic rules, concepts, or 

probabilistic models in which reasoning engines can be applied to infer new situations from context raw 

data. Different approaches have been developed from earlier efforts resulting in first-order predicate logic 

towards more formal ontologies models. Ontologies models have shown expressive capability to support 

formal analysis, and provide efficient reasoning engines. This section introduces the mainstream of 

specification-based approaches, namely predicate logic, spatial and temporal logic, fuzzy logic, and 

ontologies.     

2.3.1.1 Predicate logic 

There are several approaches based on predicate logical rules such as formal logic models to define a 

situation, including Gu et al. [65], Ranganathan et al. [66], Henricksen et al. [40]. These approaches provide 

formal foundation based on rule representation, which offers a theoretical foundation for building a 

situation-aware system. Henricksen et al. [40] express situations using a predicate logic. They define a 

situation as logical expressions of the form S(v1, …, vn): ϕ, where S is the name of situation, v1 to vn are 

variables, and ϕ is a logical expression that contains free variables correspond to the set {v1, …, vn}. The 

logical expression uses logical connectives such as, and (∧), or (∨), and not (¬), and other quantifiers. For 

instance, figure 2.6 illustrates an Occupied situation for a person. This situation describes the fact that a 

person can be engaged in an activity that generally should not be interrupted: in meeting or talking call. 
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Table 2.1: Comparison of situation modeling approaches. 

Approaches  

Situations Modeling Concepts 
Extension 

Mechanism  
Extensibility  Scalability Flexibility 

Composite 
Situation Modeling 

Multi-Domains 
Situation Modeling 

Situations
’ Priority 

Rule-based situation 
modeling approaches      

 [67] ✗ Generic ✗  XML Partial ✗ ✗ 
 [54] Partial Generic ✗  Toolkit Partial ✗ ✗ 
 [56] Partial Smart-Health Partial ✗ ✗ ✓ ✗ 
[55] ✗ Generic Defined ✗ ✗ Partial Partial 

Ontology-based situation 
modeling approaches        

 [8] ✗ Generic ✗  OWL &  XML ✓ Partial ✗ 
 [57] ✗ Smart-City ✗  OWL/RDF ✓ Partial Partial 

[15]  Partial Generic Defined  OWL &  DSL ✓ Partial ✓ 
 [6] ✗ Generic ✗  OWL/RDF ✓ ✗ ✗ 
[16] ✗ Smart-Health ✗  OWL/RDF ✓ ✗ ✗ 
[17] ✗ Smart-Home ✗  OWL/RDF ✓ ✗ ✗ 
[5] ✗ Generic ✗  OWL/RDF ✓ ✗ ✗ 

[59] × Smart-Home ✗  OWL/RDF ✓ ✗ ✗ 
[60] Composite Activity Smart-Home ✗  DSL Partial ✗ ✗ 

Component-based situation 
modeling approaches         

[63] ✗ Generic ✗  Component Partial ✗ Partial 

[61] ✗ Generic Defined  Comp& Service ✓ ✗ Partial 

[62] ✗ Generic ✗  DSL Partial ✗ ✗ 
 [64] ✗ City ✗ ✗ ✗ ✗ ✗ 
[9] ✗ Generic Defined  Comp & OWL ✓ ✗ Partial 

 [68] ✗ Generic ✗ ✗ ✗ Partial ✗ 
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Figure 2.6: Situation formalization based predicate logic [40] . 

2.3.1.2 Spatial and temporal logic 

The spatial and temporal logic specifies its logical expressions with spatial and temporal primitives and 

knowledge. It has been used to representing and identifying situations based on both objects' locations and 

the current time. Juan et al.  [69] use the methodology RIMER (Rule-based Interface Methodology using 

the Evidential Reasoning) [70], extended within a spatiotemporal logic to monitor and recognize human 

activities in smart homes. They have introduced two temporal operators: ANDlater (i.e. A ANDlater B; means 

that A is true and later B is true), and ANDsim (i.e. A ANDsim B; means that A is true and simultaneously B 

is true).  They rely on Event-Condition-Action [67] rules to specify situations based on temporal 

knowledge and human activities. For instance, the following situation rule describes an urgent situation 

that may happen when a user fainted in a kitchen:  

“IF at_kitchen_on ANDlater tdRK_on ANDlater no_movement_detected THEN assume the 

occupant has fainted”. Where:   

• “at_kitchen_on” represents the motion sensors detect movement in the kitchen,  

• “tdRK_on” represents that a person triggers an RFID sensor while passing through the kitchen 

door that communicates with the reception area,  

• “no_movement_detected” represents no movement has been detected.  

However, this work lacks other complex temporal operators such as overlaps, before, recurrence, 

during, equals, etc. 

Michael et al. [71] propose a Qualitative Spatio-Temporal Reasoning (QSTR) system in smart 

environment for assisting the elderly at home.  QSTR is an essential pillar in the field of knowledge 

representation and reasoning. It is used to obtain qualitative descriptions from different types of sensors 

deployed in smart homes, in order to monitor a spatial timeline of the elderly’s daily life activities. Figure 

2.7 illustrates Allen’s temporal logic utilized to represent, constrain, and reason on temporal sequences 

between two events. The reasoning system is enriched with time constraints in which the activity is 
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represented as an event tagged with its occurrence time where each event is evaluated using a precondition 

(i.e., specific situation). An event has a certain life-time which represents a temporal distance from its 

occurrence time. Each event is expected to be identified during a certain time interval [t-A, t-B] which is 

predefined in its precondition (see figure 2.8).  

 

Figure 2.7: Allen’s Temporal Logic [71]. 

 

Figure 2.8: Temporal constraint between an event occurs at time t and its time interval [t-A, t-B] [71]. 

2.3.1.3 Fuzzy logic-based situation identification    

There are some related learning techniques to identify accurately contextual situations. The fuzzy logic 

presented in [72] has been employed to handle context information by relying on the Fuzzy rules to classify 

situation rules according to fuzzy context attributes before applying the situation identification. However, 

this work does not offer the specification of composite situations based on the composition of atomic 

situations nor the definition of priority-based situations. 

Previous works on logic-based situation identification techniques specify user’s situations and their 
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preferences  [40] [65] [66] [69] [70] [71] [72] using logical and temporal expressions. The studied 

techniques strictly depend on specific syntactic vocabularies and do not take into account all smart 

domains' terms and concepts. In the next section, we will describe how ontologies define the semantic 

description of different terms and concepts in smart domains.  

2.3.1.4 Ontologies-based situation identification 

Ontologies have been used widely for formal representation and reasoning on complex activities and 

situations in different domains knowledge through semantics relationships and formal axioms [73]. 

Ontology offers a hierarchically structured terminology to formally represent a pervasive environment 

with its different concepts such as sensors, context data, smart places, human activities, user situations, 

services with different QoS, etc. Different from the learning-based approaches, ontology as a knowledge-

driven approach does not need any training data for a potential complex model and thus reduces the 

computational complexity. 

Riboni et al. [74] adopt ontologies for ontological reasoning combined with statistical inferencing 

to recognize context-aware human activities (COSAR/Combined Ontological/Statistical Activity 

Recognition). They defined an otology that models different concepts such as human activities, person, 

symbolic locations, etc. This technique uses semantics relationships to infer and reason on context sensor 

data collected from sensors worn by a community of people performing different activities. However, this 

work consumes a significant time for identifying human activities which makes this work non-adaptable 

for real-time identification. In addition, it does not handle concurrent human activities.    

 

Figure 2.9: General structure of KCAR ontological model [75]. 

To address this issue, Ye et al. [75] propose a Knowledge-driven approach for Concurrent Activity 

Recognition (KCAR) to recognize multi-user concurrent activities. KCAR adopt an ontology model based 

on semantic hierarchical structure that allows the extraction of semantic properties of sensor events into 
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spatiotemporal and thematic aspects. In this ontology model, the human activities are described through a 

number of semantic properties linked with different conditions in which they are linked with sensor events. 

Figure 2.9 illustrates a general structure of KCAR ontological model. It receives and segments the 

continuous sensor events and processes the input using the ontology models through semantic relationships 

between conditions and sensor events (see figure 2.10). However, KCAR is used only to assist users in a 

specified domain without addressing the need to consider adopting multiple domains. 

 

Figure 2.10: An illustrative example of KCAR segmentation and recognition [75]. 

Recently, Meditskos et al. [76] merge ontology-driven and data-driven approaches to reach a great 

daily life activities recognition accuracy and better activities representation. They define activities as 

lightweight DUL-based situation descriptors and build RDF graph with the goal to capture the contextual 

information between event-based observations and high-level activities. RDF graph describing partial 

contexts from the observation and enrich the representation of complex activities and relations among 

them. This work achieved an accuracy of 82% through SPARQL rules. However, this work ignored multi 

smart-domains within different situations and combination between them. Thus, this approach needs lots 

of additional work to identify properly interlinked situations of several smart-domains. 

Previous models on situation-based identification ontologies [74] [75] [76] provide the semantic 

representation of heterogeneous context data and situations rules to assist users in their daily activities. 

However, existing semantic models based on predefined situation rules, not able to support undefined user 

situations. To provide such support, we will detail in the next section the existing learning-based situation 

identification techniques that enable the automatic recognition of user’s daily activities without predefined 

rules. 

2.3.2 Learning-based situation identification approaches 

Recently, sensors have been evolved to more specific sensors such as 3D accelerometers, and 3D 

gyroscope. Advances in sensor technologies compromise the performance of specification-based solutions. 

In other words, it is inadequate to use only expert knowledge to identify situations from a huge number 
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of these specific sensors data. Therefore, learning-based techniques have been adopted to explore more 

complex relationships between sensor data and specific situations. The knowledge base and semantic links 

between sensor data and situations can be gained from the learning process that requires a large amount 

of training data to set up the context model and determine the correlations of relevant contexts. This 

section introduces the mainstream of learning-based approaches, namely, Bayesian classifier, Hidden 

Markov Model, Context-Free Grammar, Neural network, and Support Vector Machines.     

2.3.2.1 Bayesian classifier 

Jiménez et al. [77], propose a situation classification and identification model based on the Bayesian 

classifier. They use the Bayesian classifier to group and classify contextual situations into predefined classes. 

Despites that, this work lacks the semantic classification of situations that provides new insights on 

identifying efficiently hierarchical composite situations. In addition, this work has poor scalability for 

identifying parallel situations. On the other hand, Swapna et al. [78], propose a hybrid machine learning 

algorithm as well as situations classification techniques, which accurately improve the identification of 

user’s situations. However, this work neither supports composite situation modeling using composition 

operators (parallel, sequence, recurrence, and alternative) nor provides priority mechanisms to react 

rapidly to urgent situations. 

2.3.2.2 Hidden Markov Model 

Wojek et al. [79] propose an approach for multi-user activity recognition in an office environment based 

on a multi-level Hidden Markov Model. It uses gathered audio and video features in five offices with one 

camera and microphone per room. These features are used as inputs to employ the multi-level Hidden 

Markov Model (HMM). It can track users by distributed camera networks to identify users’ activities. 

Besides, this work has handled only a small range of users’ activities (e.g. nobody in the office, meeting 

activity, a user has a phone call). In contrast, a real-life scenario can have more complex human activities. 

Although this work employs a multi-level Hidden Markov Model that can recognize plenty of users’ 

situations, it is hard to identify a large number of real-life situations in a very specific time. In addition, 

this work can’t handle with dynamic reconfiguration (e.g., camera unavailability is a challenging issue for 

HMM) on the fly during the run time which influence the flexibility of the system.  

2.3.2.3 Context-Free Grammar 

Ryoo et al. [80] propose a general approach based on a context-free grammar (CFG) for automated 

recognition of complex human activities. Naturally, human activities can be composed of multiple sub-

action. These human activities are categorized into three categories including atomic action, composite action, 

and interaction. This approach uses CFG to formally represent complex human activities. The system 

follows the production rules of CFG to recognize and identify represented composite actions and 
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interactions. However, this work suffers from a poor grammar that can represent only small training sets 

where it can identify only eight interactions: shake-hands, depart, approach, point, hug, punch, kick and push. A 

pervasive environment is assumed to be highly dynamic in the sense that a user can move rapidly 

introducing new moves which may produce ambiguous interpretations in such a system. 

2.3.2.4 Neural networks 

Yang et al. [81] propose a learning-based approach based on multilayer neural networks (see figure 2.11) 

to recognize human activities using a triaxial accelerometer sensor. The acceleration data is collected from 

a triaxial accelerometer sensor mounted on the user’s dominant wrist. Based on these data, the neural 

networks can generate complex discriminating surfaces for human activity recognition and classification 

(e.g. sitting, standing, walking, running, scrubbing, working at a PC, vacuuming, and brushing teeth). This 

work is limited to identifying a small range of human activities and neglecting spatiotemporal context 

information. Besides, as we know, human activities in a pervasive environment are several and can be 

sensed using many sensors that require large and deep neural networks with a significant processing time 

to identify such activities.  

 

Figure 2.11: General architecture of a neural classifier [81]. 

As an improvement of neural network, Ronao et al. [82] develop a deep convolutional neural 

networks (CNN) to recognize human activity using a 3D accelerometer sensor (acc-x, acc-y, and acc-z) 

and a 3D gyroscope sensor (gyro-x, gyro-y, and gyro-z). Figure 2.12 illustrates raw time-series sensor data 

for both 3D accelerometer and 3D gyroscope. The CNN extracts reliable features and knowledge from 

raw data and classifies human activities such as sitting, standing, laying, walking, walking upstairs, and 

walking downstairs. The major lack of this approach is the complexity level and the computational time 

that increase with every additional layer in purpose of extracting more complex features. 
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Figure 2.12: 1D time-series multi-axes sensor input signal [82]. 

2.3.2.5 Support Vector Machines 

Recently, Support Vector Machines (SVM) have been used in pervasive computing for human activity 

recognition. SVMs are one of classification methods for both linear and nonlinear data. SVMs classifiers 

have been used to handle a wide range of feature spaces since they use overfitting protection, which does 

not necessarily depend on the number of features [83].  Kanda et al. [84] present a series of techniques to 

differentiate potential buyers or customers, such as window-shoppers, from those in a public space such 

as a shopping center. These techniques are used by a robot for anticipating people’s behavior based on 

accumulated trajectories to offer different services for potential customers. This work uses SVMs to classify 

human motion trajectories based on their velocity (i.e., stop, wait, run, fast-walk, and idle-walk), direction 

(i.e., right-turn, left-turn, straight, wandering, U-turn, and stop), and shape features. Based on ubiquitous 

location sensors (i.e., GPS) and motion sensors (i.e., laser range finder) implanted in both the shopping 

mall and the robot, the robot can predict the areas in which people are probable to perform these behaviors 

a few seconds in the future. However, this work does not take into consideration users’ profiles and 

preferences and neglect others context information such as QoS, user interest. 

Chen et al. [85] propose a robust human activity recognition system based on Coordinate 

Transformation and Principal Component Analysis (CT-PCA) and Online Independent Support Vector 

Machine (OISVM). It discriminates different human activities including walking, static, running, going 

upstairs, and going downstairs. The sensed data (e.g., acceleration and orientation) are extracted from 

acceleration and orientation sensors embedded in smartphones. Due to the orientation variation of using 

a smartphone, the recognition accuracy will decrease with different orientation and position of the 

smartphone (e.g., holding it in the hand, in a backpack, in the pocket, etc.). CT-PCA scheme was proposed 
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to avoid the orientation variation effect which can give abnormal acceleration and gyroscope orientation. 

After the prepossessing of coordinate data, the recognition system uses OISVM with a portion of sensed 

data to update the parameters of the SVM on the fly in order to classify human activities. Experimental 

results show the effectiveness of this approach in terms of orientation variation and human activity 

recognition. However, this work neglects other important context data such as living behavior, aging, 

gender, etc. Furthermore, the feature extraction and selection are also crucial for activity recognition, 

which are not well represented in this work.   

2.3.3 Comparison and discussion 

Table 2.2 shows the comparison of the different situation identification techniques.  The works are 

compared in terms of composite situation reasoning, real-time parallel situation reasoning, comparison 

techniques, scalability and flexibility. These works have many limitations regarding several reasons. The 

first reason, most of the existing works lack the identification of composite situations using combination 

operators such as parallel, sequence, recurrence, and alternative. The second reason, several works do not 

define a priority mechanism to advance urgent situations. The third reason, the majority of works lack a 

real-time parallel situation management strategy under several moving locations.  

Previous studies of situation identification approaches showed that we cannot ensure a complete 

identification process and govern all user situations. Further, the situation identification process may be 

ineffective or incomplete as it could be based beforehand on predefined situation rules, defined either by 

experts or users. In fact, it is a tedious task for each user to define his specific situation rules in any daily 

life scenario. Thus, a dynamic injection mechanism for new specific situations based on recommendation 

techniques is needed to predict and recommend the right situation in the right context for the right person. 

To ensure such a recommendation, we will study in the next section different recommendation techniques 

that enable to enrich automatically different items in different domains (shopping, work, travel, etc.). The 

main goal is to build a comparative analysis of existing recommendation techniques that allows us to drive 

the challenges facing future pervasive computing systems and help us to ensure a comprehensive and 

adaptative mechanism for pervasive recommendation system. 
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Table 2.2: Comparison of situation reasoning approaches. 

Situation identification approaches 

Composite 

Situation 

Reasoning  

Real-time 

Situation 

Reasoning 

Validation and 

Comparison 

Techniques 

Scalability Flexibility 

Specification-based  

 Predicate Logic 

 Spatial and temporal Logic 

 

 Ontology-based 

 

 Fuzzy logic 

 

Henricksen et al. [40] 

 

✗ 

 

✗ 

 

Use Case (Comm-Channels) 

 

✗ 

 

✗ 

Augusto et al. [69] Complex Activity ✗ Use Case (smart-home) Partial ✗ 

Sioutis et al. [71] Complex Activity ✗ Use Case (smart-home) Partial ✗ 

Riboni et al.  [74] ✗ ✗ Use Case (walking activities) ✗ ✗ 

Ye et al.  [75]  ✗ ✗ Real-world Sensed Data Set ✓ Partial 

Al-Jawad et al. [72] ✗ ✗ RFID Synthetic Data Set ✗ ✗ 

Learning-based  

 Bayesian Classifier 

 Context-Free Grammar 

 Neural Networks  

 Convolutional Neural Networks  

 Support Vector Machine  

 

Jiménez et al.  [77] 

 

✗ 

 

✗ 

 

Real-Time Generated Data  

 

✗ 

 

✗ 

Ryoo et al. [80] ✗ ✗ Gestures Collected Videos ✗ ✗ 

Yang et al.  [81] ✗ ✗ Acceleration Collected Data  ✗ ✗ 

Ronao et al.  [82] ✗ ✗ Acceleration Collected Data Partial ✗ 

Kanda et al.  [84] ✗ ✗ Motions Collected data ✗ ✗ 

 Chen et al.  [85] ✗ ✗ Acceleration Collected Data ✗ ✗ 
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2.4 Recommendation techniques 

Recently, recommendation systems have been used in several domains such as movies, tourism e-

commerce, health and social network. A recommendation system is a computer program able to predict 

which items are the most relevant for a specific user according to its preferences. So far, several works 

based on different filtering techniques have been proposed in the field of recommendation systems, 

including content-based filtering, collaborative filtering, and hybrid filtering (see figure 2.13).  In this 

section, we present and categorize these filtering techniques and strategies proposed in the literature. 

 

Figure 2.13: Recommendation filtering techniques. 

2.4.1 Content-based filtering  

Content-based filtering approaches provide recommendation based on analyzing the content of items 

which have been rated previously by the users and the content of items to be recommended [86]. Namely, 

content-based filtering approaches aim to recommend similar items to those rated items by a user in the 

past. These approaches can be used in different domains such as recommending restaurants, hotels, web 

pages, movies, and journals. Many algorithms have been proposed for content-based filtering that predict 

a numeric value (i.e., rating of an item) shows how far an item can interest a user. 

Tkalč ič  et al. [87] propose a content-based filtering approach for images recommendation. This 

approach utilizes affective metadata (i.e. metadata that describe emotions of user, “this image gives me a sad 

feeling”) and the content of an image to recommend. This work shows that the use of affective metadata in 

a content-based recommendation system for images yields a significant improvement in the performance 

of the recommendation much better than using generic metadata (e.g., genre). Further, a Support Vector 

Machine algorithm is used for the calculation of items’ rating estimates, where it shows its effectiveness. 

However, affective metadata models have a restricted field to imply in recommendation systems. 

 Videos are one of the most difficult items to extract their content automatically (i.e., implicit 

content). More specifically, video files that have no meta-data, such as popular video sharing websites (e.g., 

YouTube) where users upload videos with no associated information (i.e., explicit content). Deldjoo et al. 

[88] propose a content-based video recommendation system that includes a technique to automatically 
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analyze video content and extract a set of videos’ features (i.e. low-level stylistic features such as lighting, 

color, shadows and camera motion). These features can be used to predict intended emotional, aesthetic, 

or informative effects in order to provide users with recommendations. This technique extracts few low-

level videos’ features and neglect high-level semantic features such as, title of film, year of production, 

nationality, video genre, names of the actors, original language and subtitle. Despite that, the collection of 

high-level semantic features is more costly because it requires an editorial effort which is not always 

available.   

To help authors find the most appropriate journal and speed up the submission process, Wang et al. 

[89] propose a content-based recommendation system for journals or conferences publication known as 

Publication Recommendation System (PRS). This system can suggest the best conferences or journals 

based on the abstract of manuscript through a priority order process. The PSR uses two methods including 

Term Frequency and Inverse Document Frequency (TF-IDF) and Chi-Square feature selection. The first 

method TF-IDF offers a way to recognize the important terms of an article by associating a weight for each 

term [90]. While the second method chi-Square statistic calculates the degree of dependence between the 

term t and a class c, such as computer journals or conferences [91]. Further, the PSR adopts a real-time 

online system that uses a web crawler to automatically update the training model. However, this system 

achieves 61.37% accuracy for paper recommendation, which is quite low. We believe that accuracy can be 

improved significantly if the system takes into account other criteria such as authors’ preferences, impact 

factors, first decision, and special issues.  

The major problem in content-based filtering approach in recommendation systems is the 

overspecialization problem. In which the system provides recommendations based only on the user’s 

profile and neglects the user’s future interests. In fact, the system retrieves items similar to those the user 

has already liked. In other words, it does not provide novelty from the user perspective and prevents 

recommending surprising items that users have not discovered yet. 

2.4.2 Collaborative-filtering  

Collaborative Filtering (CF) approaches are based on collecting and analyzing users’ experiences in the 

past, then predicting users’ interests in the future. As collaborative filtering approaches rely on user’s 

feedback, they are able to recommend accurately complex items (e.g., video or music content) than 

content-based filtering. As we have seen in the previous section, the extraction of visual features of videos 

is quite difficult. However, recommending relevant items to a user based on their preferences extracted 

from their feedbacks appears naturally easier. 

One of the major issues in CF is the sparsity of users’ rating.  To address this issue, Zhang et al. [92] 

present an item-based collaborative filtering recommendation algorithm based on Slope one scheme 
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smoothing. The Slope one scheme offers an intuitive principle to predict differential between items [93]. 

This approach predicts unrated items by employing two main phases to produce recommendations. The 

first step is calculating the average deviation of two items based on Slope one scheme. The second step is 

producing the prediction based on Pearson correlation similarity. 

Hernando et al. [94] propose a collaborative filtering technique based on Bayesian probabilistic 

model for predicting the tastes of users. This technique relies on the factorization of the rating matrix into 

two non-negative matrixes (i.e., item matrix and user matrix). Unlike the classical matrix factorization, 

this technique associates a vector k ranging from [0, 1] with an understandable probabilistic model which 

allows identifying groups of users sharing the same tastes. In fact, the new factorization technique offers a 

significant improvement in terms of quality of prediction and recommendation accuracy. However, this 

technique imposes a significant computational time during the decomposition of the initial matrix into 

two matrixes.    

Recently, deep learning-based methods find a way to submerge in recommendation systems. Wang 

et al. [95] propose a recommendation framework based on Neural Graph Collaborative Filtering (NGCF). 

This framework integrates user-item interaction graph into high-order connectivity graph-based 

embedding function preserving collaborative signal. Figure 2.14 illustrates the difference between user-

item interaction graph and high-order connectivity graph. The user of interest for recommendation is user 

u1. The right subfigure illustrates a rich semantics tree knowledge that carry collaborative signal extracted 

from the left subfigure for the user u1. For instance, the behavior similarity between users can be extracted 

easily, the path u1 ← i2 ← u2 ← i4 (of layer l = 3) indicates that u1 has similar behavior with u2. More 

precisely, the path indicates that item i4 is likely to interest u1. To explore different knowledge layers, they 

design a neural network to propagate embeddings recursively on the high-order connectivity graph. This 

work was tested using three public benchmarks to verify the performance of the NGCF, which 

demonstrates the rationality, and effectiveness of incorporating the user-item interaction graph into the 

embedding learning process. However, the user-item interaction structure used for understanding user 

behaviors is quite poor and based only on collaborative signal. More specifically, there are many other 

forms of knowledge models that can be used to better understand user behavior, such as context-aware 

model [96] [97] [98] and social networks [99] [100]. 
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Figure 2.14: An example of the user-item interaction graph and the high-order connectivity [95]. 

So far, several collaborative filtering recommendation systems have been proposed and evaluated. 

The major problem in collaborative filtering is the cold start (i.e., when a new user has not provided 

enough ratings, or a new item has not been rated yet, the system is not able to generate reliable 

recommendations). Furthermore, the cold start problem procreates a related issue, namely the sparsity of 

the rating data. The sparsity measures the ratio of available ratings to all possible ratings [101]. In real 

recommendation systems, the sparsity is very close to 1 (100%) because users rate a very small subset of 

the overall database [101]. For this reason, it is challenging for CF to provide accurate recommendations 

addressing these problems. To deal with these problems, researchers use hybrid recommendation 

techniques where they combine two or more techniques, e.g., combine collaborative and content-based 

filtering [102].  

2.4.3 Hybrid filtering  

As we have shown above, each collaborative and content-based technique has its limitations, like the 

overspecialization, the clod start, and the sparsity problem. In fact, hybrid approaches have been proposed 

to enhance the recommendation accuracy and avoid the above-mentioned limitations of collaborative and 

content-based techniques.  

Soboroff et al. [102] propose a hybrid recommendation technique combining collaborative and 

content-based filtering to get out the best of both approaches. Content-based filtering is used to build user 

profile from the content of past relevant documents. Furthermore, collaborative filtering is used to 

recommend new items based on correlation of users’ rating of past items where a correlation coefficient 

is calculated between each user.  However, this work neglects the contextual aspect of users such as 

location, time and role-based user preferences which reduces the quality of recommendation. 
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Yu et al. [103] develop a context-aware media recommendation platform (CoMeR) based on hybrid-

processing approach. It combines three different approaches, including, content-based approach, Bayesian-

classifier approach, and rule-based approach. Furthermore, it employs a context-aware model that 

represents the user profile including, spatiotemporal information, and user preferences. This platform 

supports media adaptation and recommendation for smart mobile applications. This work shows good 

results with precision values around 0.8 and recall values ranging from 0.63 to 0.75. However, CoMeR 

platform lacks flexibility . It provides a static model in which the database is updated in an offline manner. 

Therefore, we intend to fix this problem by using a learning process classifier that updates automatically 

and dynamically the database in an online manner.  

Nilashi et al. [104] develop a hybrid method using multi-criteria based collaborative filtering for 

hotel recommendation (see figure 2.15). Further, to improve the recommendation accuracy of multi-

criteria CF, they combined three techniques, including, Expectation-Maximization (EM) algorithm, 

Adaptive Neuro-Fuzzy Inference System (ANFIS), and Principal Component Analysis (PCA) for 

dimensionality reduction. Experimental results on the TripAdvisor dataset demonstrate the accuracy of 

this approach. However, items’ model and users’ model are updated in an offline manner, which makes 

this work incapable to incrementally adapt new data ratings. Therefore, incremental learning is needed to 

consider new updates on the fly.  

 

Figure 2.15: The multi-criteria CF process [104]. 

Services recommendation becomes an important aspect in pervasive environments due to their 

dynamicity and heterogeneity. Various recommendation approaches that we have studied in previous 
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sections focus only on rating and similarity measurement and neglect context information. Neglecting the 

context in recommendation systems remains inappropriate for such dynamic environments (i.e., context 

changing). Therefore, it will be necessary to consider context-aware approaches in recommendation 

systems in order to recommend more relevant services for the user's needs and usage context. We will 

review existing context-aware recommendation systems in the next section. 

2.4.4 Context-aware recommendation system 

Recently context has been widely used in multiple disciplines [96]. For instance, classic recommendation 

systems can take advantage of contextual information such as location, time, user activity, and social 

information, in order to improve recommendation accuracy. In fact, the integration of context information 

has been adopted by many researchers in many areas including pervasive environments, marketing, smart 

domains, and IoT [96].  

Some works exploit the time and location information to reduce the search space that enables to 

enhance recommendation accuracy, namely time-aware and location-aware recommendation [105] [106]. 

Point-of-interest (POI) recommendation is one of the most context-aware recommendation systems that 

is based on spatiotemporal context information. It recommends places where users have not visited before. 

Yuan et al. [97] introduce a spatiotemporal-aware POI recommendation system to recommend a list of 

POIs for a given user’s location at a specific time, e.g., recommend for a user to visit a nearby restaurant 

at midday. In fact, they develop a POI recommendation model based on human behaviors, namely, 

temporal behaviors and spatial behavior. Moreover, temporal and spatial behavior can play a significant role 

in analyzing users’ activities and improve the recommendation accuracy. For instance, if many users visit a 

restaurant at midday but very few users visit a library at the same time, then the restaurant should be given 

a higher priority than the library during recommending POIs for a user to visit at midday. However, this 

work tends to produce a pool of unrelated POIs that the user may not continuously visit due to the lack of 

related associations between POIs. To cope with that issue, Zhou et al. [98] propose a recommendation 

system based on user effective Point-of-interest path (POI) that can recommend POIs by considering both 

possible associations and diversity features of POIs. In that case, they develop a top-k POI recommendation 

model based on effective path coverage to improve the performance of the recommendation algorithm. 

People in real life tend to seek advice from their entourage based on social context before trying or 

purchasing something new. Integrating social context in recommendation systems increase significantly 

the performance of the recommendation in term of accuracy. Researchers have used social information 

(e.g., family, followed and followers, friends list, relationships, trusted and untrusted users) to improve 

the prediction when providing recommendations. Hong et al. [99] propose context-aware 

recommendation using a role-based trust network. They use the term role to model common context-
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aware interests within a group of users. The user can play different roles (e.g., diner, movie fan, and reader), 

which may change dynamically by context changes. They use Weighted Set Similarity Query (WSSQ) 

algorithm to calculate the value of trust between two users in order to build the user’s role-based trust 

network in a given context. The recommendation is made based on both calculated user’s role-based trust 

network and user-item rating matrix (see figure 2.16). However, user context and role sets are predefined 

in an offline manner, which makes this work incapable to incrementally adapt to new context users. Young 

et al. [100] propose a personalized recommendation system based on friendship strength using Twitter as 

a source of big Social Networks Systems (SNS). It recommends interests to users by considering various 

characteristics of big SNS. This approach is based on social information for measuring closeness between 

users that is defined as friendship strength. Friendship strength is calculated using three categories of social 

data, including contents generated by users, relationships information, and interaction information. More 

precisely, three similarities are calculated for each social data category, including personal, group, 

interaction similarity, where the friendship is the combination of these three similarities. However, this 

work ignores user context and may suffer from the cold start problem especially when the user has few 

friendships in his social circle.  

We also cite a method based on a collaborative social environment and external providers. 

Currently, Karchoud et al. [107] propose a proactive injection mechanism to inject new situations from 

external context sources into the user’s long-life application. This mechanism uses a collaborative social 

environment to generate a user-friendly situation model in order to inject new situations considering user’s 

context information. Wen et al. [108] propose a rule-based recommendation system for mobile 

applications based on user’s context information. They use a semantic model to define correlations among 

user’s context information.  To perform the recommendation, they use a probability model to predict 

user’s interests based on the context semantic model.  

 

Figure 2.16: Framework of context-aware recommendation based on role trust network [99]. 
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2.4.5 Comparison and discussion 

In recent years, various recommendation techniques [86] [92] [96] [102] have been developed to improve 

accuracy, adaptation and flexibility using different filtering techniques and strategies. Table 2.3 illustrates 

a comparison between several approaches in terms of accuracy, online learning process, data set, scalability, 

adaptation, and flexibility. We have concluded that the content-based recommendation systems [87] [88] 

[89] support the cold start problem in case of updating the data set with new items. However, they suffer 

from low accuracy compared to collaborative filtering systems. In fact, collaborative filtering techniques 

[92] [93] [94] provide a better accurate recommendation but suffer from the cold start problem. The 

existing hybrid approaches [102] [103] [104] aim to combine different recommendation approaches to 

yield better recommendations across the board. However, these approaches are not flexible against context 

changes and evolution of user’s needs. In other words, they neglect context awareness during the 

recommendation process. Considering context information during the recommendation process improves 

the recommendation accuracy. Thus, several recommendation approaches adopt context awareness [100] 

[105] [106] [108] to achieve a high recommendation accuracy.
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Table 2.3: Comparison of recommendation approaches. 

Approaches Accuracy Online Learning Dataset Scalability Adaptation Flexibility 

Content-based filtering 

 

Tkalčič et al. [87] 63.00 % ✗ images ✗ ✗ ✗ 

Wang et al. [89] 72.30 % ✗ Scientific papers ✗ ✗ ✗ 

Deldjoo et al. [88] 70.50 % ✗ Movies ✗ ✗ ✗ 

Collaborative-Filtering 

 

Zhang et al.  [92] 80.70 % ✗ Movies Lens ✓ Partial ✗ 

Hernando et al.  [94] 84.60 % ✗ NetFlix ✓ Partial ✗ 

Wang et al.  [95] 84.60% - 97.30 % ✗ Gowalla - Book ✓ Partial ✗ 

Hybrid Filtering 

  

Soboroff et al.  [102] 83.50 % ✗ Movies ✓ Partial ✗ 

Yu et al.  [103] 80.00 % ✗ Movies ✓ ✓ Partial 

Context-aware-based 

 Location-aware  

 Time-aware  

 Spatiotemporal-aware  

 role-based  

 Trust-aware  

 

Suria et al.  [105] 

 

64.50 %  

 

✗ 

 

Web Services 

 

✓ 

 

✗ 

 

Partial 

Zhong et al.  [106] 43.40 % ✗ Web Services ✓ ✗ Partial 

Yuan et al.  [97] 51.00 % ✗ Foursquare- Gowalla ✓ ✗ Partial 

Hong et al.  [99] 63.50 % ✗ Epinions - Dianping ✓ ✗ Partial 

Young et al.  [100] 80.39% - 87.84 % ✗ Web Services ✓ ✓ Partial 

 Environment-aware Karchoud et al.  [107] - ✗ Case Study- Tourism ✓ ✓ ✓ 

 Mobile-aware  Wen et al. [108] - ✗ Tourism activities ✓ ✓ Partial 
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2.5 Synthesis and discussion 

We have analyzed and compared existing semantic models and ontology approaches according to five 

criteria: 1) complex events and composite situations modeling, 2) situations’ priority, 3) 

parallel/sequential centralized/distributed based situations reasoning and managing, 4) scalability and 5) 

flexibility. Most related works lack a real-time management and reaction to composite situations under 

dynamic user’s real-life scenarios. To cope with it, a flexible and parallel model for pervasive applications 

is needed to respond quickly to user’s current needs. Thus, a semantic model is used to describe smart 

domains, user’s domain, user’s mobility, both user’s simple and composite situations, priority-based 

situations, and user contexts to guide lightweight and automatic reconfiguration. The objective is to 

ensure: 

 

• Semantic relationships among composite situations: currently, there is no semantic 

model capable of fully representing semantic relationships among composite situations 

(parallel, sequential, recurrence, alternate). Existing works do not represent various smart 

objects and their advanced data formats (multimedia and features vector) with different mobile 

platforms. Providing a more detailed representation of both simple and composite situations 

as well as simple and complex events among heterogeneous smart objects regardless of their 

data source and data format that may help us to improve dynamic monitoring and continuous 

situations reasoning.  

• Parallel distributed ontology-based composite situations reasoning: few existing 

frameworks offer the management of distributed context at the semantic level such as  [9] [55]. 

We define three layered infrastructure  (user’s constraints preprocessing layer, autonomic 

microservice-based composite situation processing layer and Knowledge management layer) that includes 

several independent distributed events listeners and composite situations identifiers for 

detecting simultaneously various user’s composite situations and trigger their corresponding 

actions services. We opt for parallel ontology-based microservices reasoning system in order 

to filter and factorize the relevant events and situations according to user’s location and time 

(more details are presented in chapter 4). 

• Priority-based Situations: existing approaches do not consider customized criteria as 

situations’ priorities and do not cover all criteria that are relevant to situation management. In 

other words, they do not provide an efficient mechanism for reacting rapidly to urgent 

situations. To address this issue, we opt to provide a new strategy to introduce a situation 
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priority model based on situation category, user activity, user location, and situation coverage 

(more details are presented in chapter 5). 

• Context and Situations’ scalability: Most existing approaches lack a support to manage 

efficiently the explosion of user’s situations and relations among them, and to monitor parallel 

incoming events for mobile applications.  Besides, they are heavily linked to a specific 

application domain such as smart-health [16] or smart-home [17]. We opt for a generic parallel 

semantic-based approach in order to cover all smart-* domains and handle large context 

information according to the user’s current needs and his context. 

• Flexibility: In spite of the diversity and heterogeneity of users’ profiles, user’s domains, and 

smart objects, the existing works have adopted rigid strategies. To address this issue, we come 

up with new context-aware semantic composite situation microservices model, through a 

hierarchical loosely coupled infrastructure based on open semantic standards. Thus, by adding, 

removing, or replacing context/situation-oriented services in real-time, user’s constraints and 

preferences are managed much better, and distributed mobile applications will be flexible 

enough to evolve and adapt according to the environment’s requirements. 

 

To sum up, all of the related work cited above use different techniques to deal with heterogeneity 

and complexity of smart environments for achieving intelligent reconfigurable mobile applications. In 

general, none of the existing works provides a semantic representation of high-level microservices at the 

run-time level. We believe that the composition of simple situations must be managed using a hierarchical 

model. We suggest a powerful semantic modeling approach, which has the ultimate purpose of describing 

new concepts and relationships that may help to overcome related works limitations: (semantic 

representation of both simple and composite situations as well as simple and complex events among 

heterogeneous smart objects regardless of their data source). For the management perspective, we opt for 

context-aware parallel situation reasoning approach according to the current user’s needs and his context 

usages. This will give the application the flexibility and the dynamicity under different user’s mobility and 

context changes. A naive solution could be the simple combination of different ontologies or context data 

models for composite situations modeling and reasoning, and the build of a framework based on parallel 

microservices. Thus, a more complex solution could be also the alignment of the best-suited top-k smart 

domains ontologies. Nonetheless, this would partially solve some current limitations as shown in Table 

2.1. Furthermore, we aim to provide a novel flexible, modular and hierarchical loosely coupled framework 

that is able to adapt in specific domains (e.g., the smart home) but also can be extended into any other 

smart-* domain. 
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2.6 Conclusion  

In the last years, different researchers have addressed various situations modeling, identification and 

recommendation techniques. Each technique has its advantages as well as drawbacks. In this chapter, we 

have detailed many situations modeling, identification and recommendation methods and comparisons 

between them. The performances of these approaches are compared through many factors: composite 

situation consideration, priority, flexibility, missed situations ratio and missed events ratios. From the 

comparative study of these methods, we conclude that the challenging problem of situation identification 

is still ongoing to develop a framework that can provide parallel and agile technique while keeping 

continuous user’s evolution context, composite situation management and priority among situations. In 

light of this context, in the future works we try to propose a method that can provide better performances.  

The next chapters will focus on our contributions in parallel semantic-based composite situation 

modeling and identification approach.  
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Chapter 3   

A Semantic Agile Approach for Reconfigurable Pervasive 

Environments 

Summary 

3.1 Introduction 

3.2 Semantic agile approach: overview and contributions 

3.2.1 A Multi-layered Ontology-based Composite Situation Model 

3.2.2 A middleware for managing composite situations  

3.2.3 Parallel context-aware semantic-based situations identification framework 

3.2.4 A modular flexible orchestration of services 

3.2.5 Machine learning for situation rules recommendation and enrichment 

3.3 Proposed framework 

3.3.1 Framework’s general architecture 

3.3.2 Functional model of the User’s Constraints Processing (at design-time) 

3.3.3 Functional model of the Autonomic microservice-based Composite Situation 

Processing (at run-time) 

3.4 Conclusion 

3.1 Introduction  

Nowadays, physical sensors and mobile applications are the key aspects in pervasive computing. 

Exchanging data between these two domains through a semantic level makes pervasive computing as an 

intelligent environment. Intelligent environments provide meaningful context data for mobile applications 

through several sensors. Mobile applications analyze context data and provide appropriate services for 

users to carry out their daily activities. However, mobile applications must generate a high semantic level 

of knowledge to receive and classify these raw sensor data. In fact, several sensors and mobile applications 

in pervasive environment are able to provide information for users. The main recognized challenges refer 

to the huge information exchanged in pervasive environments. This amount of information makes the 

management and the monitoring of sensors a very complex task. However, current user’s needs usage 

context and interactions modalities need to be customized and respond at the right time in the right way 

according to user’s mobility and limited resources capabilities (low bandwidth, etc.). Moreover, the huge 

number of users’ situation rules increases the processing time of the system which leads to missing some 

urgent situations. Now, context-aware smart mobile applications have become increasingly demanding a 

lot of speed in terms of data processing and situation identification. 

Most existing smart mobile applications have neglected the evolution of users’ current needs and 

their contexts. So, a new flexible semantic conceptual model and new effective techniques are needed in 
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order to resolve these challenges. Therefore, our aim is to process all these data in a specific period of 

time by providing a new framework offering loosely coupled architecture combined with semantic 

reasoning. This combination would perform the connectivity between different components and reduce 

the processing time. 

In this chapter, we present the major contributions that we have proposed.  For the first, we present 

a smooth and semantic flexible model based on ontology to guarantee a shared vision of the 

conceptualization of the user profile, his preferences, connected objects, smart environments, context, 

situation, etc. We design new loosely coupled semantic hierarchical layers able to represent pervasive 

environments and facilitate the application maintenance under dynamic user mobility and limited devices 

capabilities (low battery, etc.). The separation of layers reduces the cost of the application reconfiguration 

under context changes, where each layer handles small part of the application model rather than 

reconsidering the whole model. In the second contribution, we fully exploit all available computing 

resources (i.e. processor cores). Thus, we propose a parallel composite situation identification framework 

that uses all the available processor cores to monitor parallel incoming events and identify situation rules. 

Also, we propose a new prioritization model assigned to parallel incoming events and situation rules to 

speed up urgent situations. In the third contribution, after the situation identification, it comes the phase 

of service orchestration to meet all the requested services for identified situations. It also provides a 

dynamic reconfiguration (i.e., add, update or migrate, remove of services) to ensure service continuity 

and modality adaptation while finding an appropriate device. To complete the task of deployment, the 

service orchestration relies on the Kali-smart platform [9] that scans the available devices and orchestrate 

the best way to deploy services. Finally, we have noticed that newly registered users in the system suffer 

from the cold starting problem where their profiles are empty or have few information and situations 

rules. Otherwise, the identification process may be incomplete as it could be based beforehand on 

predefined situation rules, defined either by users or by developers. Moreover, it is a cumbersome task 

for each user to define his specific rules in any daily life cases. Therefore, we need to develop an injection 

mechanism to inject new situation rules extracted from users’ agendas to rapidly fill up the agendas of 

newly registered users. This emerges the need to recommend the right situation rule in the right context 

for the right person. A context-aware recommendation system for situation rules enrichment and 

adaptation is proposed. We aim at providing a personalized context-aware recommendation framework 

that can automatically enrich profile rules. We use hybrid classification methods in various levels of the 

recommendation process for better user profile enrichment to respond to evolving situations in different 

domains (e.g., shopping center, at work, etc.). 

This chapter presents a global flexible composite situations identification and service adaptation 

approach. We first start with a general description of our main contributions. Then we will focus on the 
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proposed farmworker and its different modules at design and run time. Finally, we conclude this chapter 

with a conclusion. 

3.2 Semantic agile approach: overview and contributions  

Our aim is to provide a new parallel management approach for context-aware semantic composite 

situations in high reconfigurable smart environments. Therefore, we aim to process parallel incoming 

events in a specific period of time by providing a new framework offering loosely coupled architecture 

combined with semantic reasoning. This combination would perform the connectivity between different 

components and reduce the processing time. In this context, we exploit semantic information at multiple 

levels, i.e., from users’ profiles to the deployment of adapted interactive services.  

The main goal is the development of a new framework for situation management that is the 

intersection of the adoption of semantic web technologies and IoT domain with microservice-based 

approach in the field of smart-* (home, health, cities and vehicles). In this section, we briefly summarize 

the major contributions of this thesis. We classify them according to the area they naturally belong to: 

• In the area of ontology semantic conceptualization and formalization, our contribution is: 

We conceptualize a new Multi-layered Ontology-based Composite Situation Model (Multi-

OCSM) to identify and deal with user’s daily lives composite situations [19]. The main 

properties of our model are the following ones: (i) full modeling of heterogeneous smart 

objects and context data, (ii) describing both simple and composite situation, both simple and 

complex event, (iii) including new composition operators (parallel, sequence, recurrence, and 

alternative) that can compose between simple or composite situation, (iv) a flexible and loosely 

coupled hierarchical model that can adapt rapidly for real-time context changes, (v) an 

extensible model that ensure extensibility with different other smart domains.   

• In the area of situation-based component composition architecture, our contribution is: 

Proposed composition operators such as parallel, sequence, alternative, and recurrence among 

component-based situations provide a flexible architecture during the run-time level. To 

construct a loosely coupled component architecture we separate the design level from the 

execution level. Thus, this contribution includes the separation of the business logic 

application-concerns from the composition/connections of situation component concerns. 

We opt for using middleware for component management (adding/removing/migrating). 

Also, we rely on Kali-smart middleware [9] for decentralized context and situation 

components management. However, existing middlewares do not handle composite situations 

based on composition operators. Therefore, we extend Kali-smart middleware with 

composite situations based on composition operators at design and run-time levels. This 
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contribution allows the modeling of composite situations in smart-* domains and provides a 

loosely coupled architecture which implies better and flexible adaptability. The extended Kali-

smart middleware performs the following features: (i) offering a high-semantic level on both 

user-defined constraints and remote smart services, (ii) providing an easy way to manage 

distributed mobile applications (iii) ensuring flexible and data exchanges between distributed 

services [109]. 

• In the area of situation-aware identification process, our contribution is: 

We design a novel generic distributed framework for smart environment that responds to 

users’ context changes, current user’s needs and preferences [19]. The main features of our 

framework are the following ones: (i) parallel monitoring of parallel streaming context data, 

(ii) accelerating and optimizing the situation identification process using the parallel paradigm, 

(iii) assisting users in their daily lives activities using parallel services-oriented ontology-based 

management system, (iv) providing higher efficiency in term of system’s response time and 

identification of urgent situations in very specific time (v) supports pseudo real-time, and for 

instance, it can be easily integrated for real lives scenarios. 

• In the area of service orchestration, our contribution is: 

We develop a new actions orchestrator module that scans the environment with the help of 

the kali-smart platform [9] in order to know the available devices and orchestrate the best way 

to deploy services. It measures the distance of available interactive mobile devices from the 

user’s location and stores all distances in the ontology. After that, the application sends a 

request to the nearest available device for the user's interaction facility. It provides a dynamic 

reconfiguration (i.e., add, update or migrate, remove of services) to ensure service continuity 

and modality adaptation while finding an appropriate device.   

• In the area of machine learning and recommendation, our contribution is: 

We extend our multi-OCSM for ontology-based dynamic context-aware recommendation 

system that enriches automatically profile’s situation rules in different smart domains 

(shopping, work, travel, etc.). It exploits users’ experiences by offering to the users a high 

level of comfort and better-customized user experience. A new hybrid customized situation 

rules’ learning process is proposed to classify situation rules according to rule ontology before 

applying the recommendation process to achieve a high quality of recommendation considering 

three context categories (user preference, situation context, and device capability) [20]. 

 

3.2.1 A Multi-layered Ontology-based Composite Situation Model 
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Real-life scenarios and user’s daily lives situations are getting more and more complex in recent trends. 

Moreover, the enormous and heterogeneous context data collected by different sensors embedded in 

smart spaces must be able to be quickly exploited with distributed devices. A formal model is needed to 

conceptualize semantic aspects of heterogeneous context data and provide advanced reasoning capabilities 

for real-life scenarios and complex situations. We provide a novel multi-layered ontology called Multi-

OCSM (Multi-layered Ontology-based Composite Situation Model). The main purpose of this ontology 

is to describe both simple and composite situation rules and its semantic description including composition 

operators (parallel, sequence, recurrence and alternative), prioritized situations rules, and reconfiguration 

actions in order to ensure service continuity and immediate response time. This ontology facilitates the 

management of a large number of heterogeneous smart objects and services, semantic features related to 

the context data for the interpretation of parallel events (e.g., a GPS sensor that provides coordinates, is 

semantically linked to give many interpretations such as interpreting these coordinates as a presence 

detection event or a user location change event), interoperability of different incoming events and 

highlights the semantic rules of user. 

3.2.2 A middleware for managing composite situations  

Several middlewares [8] [10] [11] [18] have been proposed for the design and management of context-

aware mobile applications. However, these middlewares do not handle composite situation modeling 

through composition operators in which the adaptation model may trigger different actions for composite 

situations rather than simple situations (i.e., simple situations that compose composite situation may have 

different actions). For instance, a diabetic who has a not so good diet situation that may be modeled as a 

composite situation, which consists of a high glucose recurrence situation. The high glucose situation, 

without the recurrence composition operator is considered as a simple situation. A simple high glucose 

situation results in injecting insulin action service. In contrast, the composite situation results in sending 

diagnostic results of the patient to the doctor. The variation of triggered actions regarding 

simple/composite situations increases the complexity of adaptation process. Therefore, we introduce a 

composite situation-oriented component architecture for Kali-smart middleware that allows context 

management of component-based services on available distributed devices and ensure long-life 

applications. Composite situation-oriented component supports four composition operators including 

parallel, sequence, alternative, and recurrence. Nevertheless, with the huge number of users’ situations, 

the management and reconfiguration of applications during the execution time regarding the design model 

requires more computational resources and high reconfiguration cost which are not always available. Thus, 

we introduce a flexible model that separates the design model from the execution model in order to adapt 

and improves the reusability and extensibility of deployable components.  
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3.2.3 Parallel context-aware semantic-based situations identification framework  

Few years ago, factories have tried to build processors that offer better performance for users by increasing 

their speed. Now, the majority of factories try to add more cores so that systems can execute more than 

one task at time in different processor cores (i.e., parallelism). We propose a novel generic framework 

for parallel composite situations identification process for smart environments, which describes situation 

rules using context-aware microservices-based approach. We start with a generic set of situation rules and 

transform them into a factorized tree to support parallel events monitoring and relevant composite 

situation reasoning. We explicitly separate between the event, situation and action layers and generate a 

very weak coupling between the microservices in order to achieve reconfiguration scale at different levels, 

ranging from atomic component/service to composite components/services or complete application 

reconfiguration. Moreover, the weak coupling between layers speeds up the process of situation reasoning 

by launching simultaneously independent parallel event/situation microservices in different processor 

cores. The more cores a machine has, the more events detection and situations identification tasks can be 

performed simultaneously. 

We develop a framework prototype for the parallel composite situations reasoning and services 

reconfiguration based on the Multi-OCSM. The prototype enables the filtering and the factorization of 

relevant situation rules as a dynamic context monitoring, parallel composite situations reasoning and 

actions services reconfiguration. This process relies on Java 8 concurrency APIs to exploit the power of 

multithreading and by receiving concurrent events and process them at the same time to make sure that 

the system can identify composite situations (parallel, sequence, recurrence, alternative.). 

3.2.4 A modular flexible orchestration of services  

Our framework is a modular and flexible system for the rapid orchestration of mobile and interactive 

services. It generates adaptive components representing the initial configuration based on the user’s 

domain by exploiting semantic situations rules. Also, it offers a good mechanism to add/remove/update 

easily one or more events/situations/actions components to deal with new identified situations or context 

evolutions based on the semantic reconfiguration engine. New application reconfiguration scripts may be 

generated dynamically as soon as the new specification of situations rules filtering or user’s domain are 

changed. This is achieved with the help of the Kali-smart platform [9] that is able to identify the available 

resources and orchestrates the nearest available terminals to deploy the action components. 

 

 

3.2.5 Machine learning for situation rules recommendation and enrichment  
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The cold start facing adaptive systems based on users’ agendas and rules is a classical problem to be solved 

imperatively. Recommendation of situation rules is one of the best techniques to inject and full the user’s 

agenda automatically. Nowadays, recommendation systems are becoming extensively used for rule-based 

recommendation. In fact, a rule-based recommendation system is used to suggest meaningful rules and 

has the ability to guide users to useful and relevant situation rules, which meets their needs in a large space 

of available rules. We provide a personalized context-aware recommendation framework that can 

automatically enrich profile rules in order to respond to evolving situations and thus comply with an auto-

complete of user’s daily life requirement (e.g., his needs in the shopping center, at work, at home, etc.) 

in different domains. Our recommendation system considers three aspects: the user’s contexts, preferences 

(e.g., preferred activities) and constraints (e.g., available time) while respects the device constraints (e.g. 

device characteristics or device capacity). We extended our multi-OCSM ontology for context-aware 

recommendation system. A new situation rules’ learning process based on extended multi-OCSM is 

proposed to classify situation rules according to rule ontology before applying the recommendation 

process to achieve a high quality of recommendation considering three context categories (user 

preference, situation context and device capability). 

3.3 Proposed framework 

As noted in chapter 2, the issues related to composite situations modeling and processing are currently 

curbing the management of context-aware distributed smart mobile application designed to assist users in 

their daily activities. The identification of a composite situation plays a primary role in this context. It 

becomes more complicated due to the availability of a huge number of different and heterogeneous 

connected objects (IoT). However, with the large variety of user situation rules and multiplicity of devices 

in different smart domains, the aspects of Event-Conditions-Actions (ECA) [67] are diminished, and they 

lose their performance and effectiveness in terms of the response time. 

To cope with these problems, we propose an ontology-based parallel context-aware reasoning 

microservices engine approach within a generic framework. The novelty of our approach is to provide: 1) 

parallel identification process of composite situations combined from multiple deduced atomic situations 

based on a generic ontology of smart domains and 2) factorized context-aware tree representing relevant 

situations regarding the specific smart environment. These two elements improve the performance of the 

identification process of the user’s situations while detecting a huge number of parallel incoming events. 

When a situation is identified, the system calls the reconfiguration generator, which is responsible for 

triggering a list of actions (e.g., adding/deleting/updating a service or migrating of services from a device 

to another in the context of the users’ mobility). 
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We propose a matching and filtering techniques to simultaneously manage spatiotemporal situation 

rules (i.e., rules required user’s location and/or time). In other words, the system matches and filters 

situation rules according to user’s current location and time. The filtered situations rules are transformed 

into a factorized tree based on the explicit links between situation rules and context attributes. Next, the 

factorized tree is explored in order to submit and deploy parallel autonomic microservices-based events 

listeners and situations identifiers. Finally, the application can yield a set of situations and their associated 

action services in an attempt to serve several users at the same time.  

3.3.1 Framework’s general architecture  

This section presents a novel generic framework for a smart environment that responds to the current 

user’s context usage, needs, and preferences in a parallel and intelligent way. The main purpose is to assist 

and support users in their daily activities and in urgent situations with a parallel micro services-oriented 

ontology-based management system. It provides higher efficiency of the user’s situation identification 

process and efficient management of the user’s situations over heterogeneous smart objects. As shown in 

figure 3.1, the architecture is made of three interconnected layers where each layer uses context data and 

services provided by other layers. 

The main purpose of the Knowledge management Multi-OCSM layer is to describe 

composite/atomic situations and their related concepts in smart domains. It provides OWL (Web 

Ontology Language) description of different user’s profiles and semantic services using a multi-layered 

Ontology-based Composite Situation Model (Multi-OCSM). This layer includes:  

- User’s profiles registry: it provides a semantic description of the user’s profiles and his 

preferences. 

- Situation rules registry: it provides all the situations rules set categorized by smart 

domain, location, time and situation type (urgent or normal). 

- Services registry: it provides a set of all functional services, where these services will be 

deployed according to each identified situation, taking into account the semantic link 

between the situation and its suitable action services.  

- User’s domain registry: it provides relevant information about the available smart and 

interactive devices in the managed mobile application such as the status of device (used or 

not, context information, etc.).  

The Autonomic microservice-based Composite Situation Processing layer (At run-

time) contains several components for identifying situations based on user-defined rules. This is done 

through situations identifiers providing the user with appropriate action services according to their 

identified situations. It consists of four main components to identify the user’s situations:  
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- Situations Manager is responsible for filtering a set of relevant situations rules according 

to user’s current location and time from the situation rules registry followed by the situation 

rules factorization. This component outputs the factorized tree of situations and its related 

common context attributes.   

- Task Manager: is responsible for encapsulating all situations and their context attributes 

from the factorized tree into several situations’ identifiers and events listeners respectively.  

- Event Listener: is responsible for monitoring a specific user’s context data (events) using a 

specific sensor, then sends them to their corresponding situation identifier components in 

order to be semantically interpreted and analyzed. 

- Situations Identifier is a parallel reasoning engine with two kinds of microservices: simple 

situations identifiers and composite situations identifiers. They check the situation rules and 

identify current situations.  

- Service Controller: It generates and orchestrates the appropriate action services according 

to the identified situations and available mobile devices. 

 

Figure 3.1: The general architecture of the framework. 

The User’s Constraints Preprocessing layer (At design-time) that provides a semantic 

user’s situation rules preprocessing based on spatiotemporal user’s specified constraints. 

- Situations Rules Analyzer is responsible for receiving and understanding the user’s rules 

specified using GUI and translates it into its internal knowledge structure. 
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- Situations Rules Classifier is responsible for grouping situations rules related to their 

similar location, time and smart domain.  

- Situations Rules Ranker is responsible for providing a ranked list of rules according to 

expert’s defined priorities.  

The novelty of the proposed framework architecture is to provide: (i) a Knowledge Management 

module for preprocessing of raw sensor data using  Multi-OCSM ontology, (ii) a User’s Constraints 

module that easily defines and configures composite situation rules by combining several simple situation 

rules at design-time, (iii) an Autonomic Microservice-based Composite Situation module for events 

monitoring and situations management and reasoning at run-time.     

We detail in the next section the functional model of the User’s Constraints Processing module and 

the Autonomic Microservice-Based Composite Situation Processing module. 

3.3.2 Functional model of the User’s Constraints Processing (at design-time) 

At design-time level, as shown in Figure 3.1, this module is used to build different usage contexts (i.e. 

context situation rules and their associated actions) to specify and define user situation rules that represent 

user’s daily life activities. It consists of the following steps:    

• Step 1. Specification and analysis of situations rules. The first step relates to the 

specification of situations rules through a graphical tool in which situation rules are specified and 

defined based on the Event-Condition-Action (ECA) model. With the new composition 

operators (i.e., parallel, sequence, negation and recurrence) among existing simple situations, 

users can create a hierarchy between ECA models and build composite situation application 

model. The ECA model can describe a situation rule using different concepts including 

simple/complex events, simple/composite conditions, and action services. The Situation Rule 

Analyzer component analyzes and checks the semantic coherence of user-defined situation rule. 

If there is no constraint violation, the Situation Rule Analyzer component translates checked 

situation rules to OWL individuals using JAVA code in order to unify and insert them into Multi-

OCSM OWL model.    

• Step 2. Classification of situations rules.  The Situation Rule Classifier component 

classifies contextual situations rules based on their similar location, time and smart domain 

(smart-health, smart-tourism, smart-transport, smart-home, etc.). This classification improves 

the extraction of relevant situation rules and builds a global generic situation profile. Also, it 

enriches Multi-OCSM ontology with rich situation classes that helps to recommend and identify 

relevant situation rules according to user’s current domain and needs. 
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• Step 3. Ranking of situation rules. The Situation Rule Ranker component classifies the 

situation rules into three categories, urgent, important and normal situation. The classification 

is performed through the calculated priority score, which falls into one of the predefined priority 

score intervals of each category. The calculation of priority score is based on four criteria 

including situation category, user current activity, user location, and situation coverage. The 

Situations Rules Ranker component sorts the situation rules from the highest to the lowest 

priority score. At run-time, during the management of situations, situations with high priority 

will be handled before situations with low priority.  

3.3.3 Functional model of the Autonomic microservice-based Composite 
Situation processing (at run-time) 

This module performs the identification of user’s situations during his daily activities. It ensures the 

monitoring and analysis of incoming events and context changes during the run-time. This module is based 

on real-time agile situation identification mechanism using an autonomic microservices architecture. It 

consists of the following steps:      

• Step 1. Dynamic filtering of relevant situation rules. The Situation Rules Filter 

component provides relevant user’s situation rules list filtered by the user’s current location and 

time. Initially, a list of the user’s relevant rules contains a set of anytime and anywhere rules 

(i.e., situation rules that do not requires location and time constraints). Then, the Situation 

Rules Filter component refers to the situation rules registry to filter a list of relevant situation 

rules that match the user’s current location and time. 

• Step 2. Construction of dynamic situation rules-based factorized tree. The Situation 

Rule Factorizer component transforms the relevant situation rules list into a factorized tree. The 

factorized tree consists of three layers: composite situations layer, simple situations layer and 

common context attribute layer for all situations. The factorized tree is sent to Task Manager 

Component.  

• Step 3. Creation of events and situations microservices from the factorized tree. In 

this step, the Task Manager component encapsulates each event monitor entity and situation 

identifier entity in a single deployable unit of code known as a microservice entity. Two types 

of microservices are used, the event listener microservice for monitoring sensed data and the 

situation identifier microservice for identifying user’s situations. The Event Listener is 

continuously monitoring the surrounding environment to acquire dynamic context data and 

preprocesses context information from smart sensors. The Event Listener receives new context 

information (i.e. newly detected events or contextual changes), converts them into a triple 
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pattern in OWL format, and inserted them in our Multi-OCSM ontology. Finally, the Event 

Listener component dispatches the detected event to the appropriate situation identifier 

components. 

• Step 4. Parallel Identification of simple and composite situations. In this step, the 

Situation Identifier component receives parallel incoming events from Event Listener 

component in order to analyses semantically context changes. The incoming events are checked 

semantically according to the predefined situation rules. The situation is identified if and only if 

the situation rule is checked. In this case, the Situation Identifier component dispatches the 

identified situation to its appropriate Composite Situations Identifier component. The 

Composite Situation Identifier component infers new composite situations from identified 

simple situations. Finally, the system sends all identified situations to Service Controller module 

to trigger appropriate action services. 

• Step 5. Orchestration of the situation’s actions. The Actions Orchestrator component 

scans the smart environment with the help of Kali-smart middleware to select available services 

and devices in order to orchestrate the best way to deploy action services. 

• Step 6: Services reconfiguration and deployment. The Reconfiguration Generator 

component receives the orchestrated actions provided by the Action Orchestrator component 

and generates the output reconfiguration script via the semantic links between situations and 

services. 

• Step 7: Services execution. The Services Execution component consults the available 

microservices (e.g., the availability of light switch service) located in services repository to 

execute them.  

3.4 Conclusion  

This chapter is devoted to exhibiting generally the contributions of our thesis with its various axes. First, 

we presented the necessity to have a semantic model that conceptualizes the environment. So, we 

proposed a new ontology model called Multi-OCSM that conceptualizes composite situations and 

different concepts in pervasive environments. Then, in the need to have an efficient and powerful system 

that can monitor context changes and identify a huge number of situation rules, we presented generally a 

new agile framework for composite situation identification process based on the multi-OCSM ontology. 

The strength of our framework is the simplicity of the situation identification mechanism basing on a 

modular structure. Therefore, we designed a services' orchestration module in order to achieve agility in 

distributed context-aware situation-driven mobile applications using our approach. Finally, we showed 

that newly registered users in the system suffer from the cold staring problem where their profiles agendas 
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are empty or have some few information and situations rules. Therefore, we presented a new context-

aware recommendation system for situation rules enrichment. 

The next chapter is dedicated to present the multi-layered Ontology for Composite Situation 

Management model with its different semantic concepts and relationships between them.  
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Chapter 4   

Context-aware Multi layered Ontology for Composite 

Situation Model in Pervasive Computing 

Summary 

4.1 Introduction 

4.2 Multi-OCSM ontology  

4.2.1 Smart objects class 

4.2.2 User’s domain class 

4.2.3 Context class 

4.2.4 Situation class 

4.2.5 Modeling prioritized situations 

4.2.6 Service class 

4.2.7 Modeling service using component-based approach 

4.3 Implementation and validation of Multi-OCSM 

4.3.1 Implementation of Multi-OCSM  

4.3.2 Consistent rules of Multi-OCSM 

4.3.3 SPRAQL queries of Multi-OCSM 

4.3.4 Evaluation of Multi-OCSM 

4.4 Conclusion 

4.1 Introduction 

Currently, the smart connected objects (IoT) are multiplied and distributed by different providers. It 

leverages heterogeneous smart objects with various communication protocols (i.e., ZigBee, 3G, Wi-Fi, 

etc.) and a variety of context data types (i.e., text, audio, image, video, etc.). In addition, different 

languages express the client’s needs and constraints. A large number of daily life activities and urgent 

situations are increasing, thus a unified semantic model is needed in order to easily identify situations 

regardless of their natures, their expressed language, and their context sources. To identify user situations 

in pervasive computing, there are various approaches available such as specification-based approaches and 

learning-based approaches [77] [75] [85]. Ontology-based approaches have been widely used for modeling 

a set of concepts in the domain of pervasive computing, which represents physical concepts (i.e., smart 

object, device) and abstract concepts (i.e., context, situation, service).  

The existing semantic ontologies models presented in chapter two offers appropriate capabilities, 

including the semantic description of context and user’s needs. However, the proposed ontologies do not 

deal with various composite situations (parallel, sequential, recurrence and alternative), nor do they handle 

multiple devices and smart objects at run-time. In real-life at a semantic level, situations have different 
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priorities ordering from low priority, normal priority, and high priority where high priority situations are 

handled before the situations having low priority. Nevertheless, existing ontologies neglect the situation 

priority concept under several user’s locations (moving through different smart domains) during the run time. 

This may make reconfiguration applications suffers from reacting rapidly to urgent situations. This issue 

is clearly noticeable when an urgent health situation (e.g., heart-attack health situation) needs to be firstly 

handled during a specific deadline defined by an expert. In fact, we must ensure continuous monitoring 

and quick processing time regardless of user location and context changes in order to rapidly perform 

urgent situation. The semantic contextual description of smart services is an important aspect for managing 

a large number of heterogeneous smart objects, managing semantic user-centric situations, and providing 

suitable services according to users’ needs.  

In this chapter, we designed a new model called Multi-OCSM (Multi-layered Ontology-based Composite 

Situation Model) [19] which is based on novel semantic microservices-based user-centric composite 

situations modeling and reasoning for pervasive applications. We offer a smart framework for efficient 

situations management based on the semantic of incoming events to achieve context-aware smart mobile 

applications. This ontology aims to model smart objects, smart domains, context, simple and composite 

situations, and applications services. In fact, real-life situations are more complex: parallel, sequence, 

interlacing, etc. This ontology has new modeling of composite situations pertaining to smart environments 

using specific combination operators: parallel, sequence, recurrence and alternative. The combination of 

these operators allows creating real-life composite situations. 

4.2 Multi-OCSM ontology    

Multi-OCSM ontology [19] is a novel generic ontology that can be applicable in different smart domains 

(health, home, cities, car, office, etc.). This ontology extends standard ontologies including the Semantic 

Sensor Network (SSN) ontology [49], the DOLCE Ultra-Light ontology (DUL) [52] and the OWL Service 

(OWL-S) ontology [110] which are already reusable. In fact, it includes concepts that model all the 

functionalities of smart environments (i.e., event services, situation services and action services). Multi-

OCSM is a formal context and situation-based ontology that can play a vital role in facilitating reasoning 

by formally representing domain knowledge. It considers many concepts in smart space such as services, 

devices, places, context-awareness, events, situations and user profiles. The main objective of our 

proposed Multi-OCSM (MULTI-layered Ontology-based Composite Situation Model) ontology is to:  

1) describe heterogeneous smart objects as well as their various protocols (ZigBee, 3G, Wi-Fi, 

etc.) and data formats (text, audio, image, video, etc.),  

2) provide classification of simple and composite situations according to the context of user for 

efficient and effective situations managing, 
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3) provide formal semantics for user’s domains structure as well as relations between them, 

4) represent semantic service information such as service role (adaptation, interaction, context 

analysis, etc.), service category (health, home, transport, tourism, etc.), semantic of 

inputs/outputs, 

5) unify the properties and constraints of user for easier managing and sharing,  

6) automatic deduction of service events and actions corresponding to semantic specifications 

of user’s constraints. 

Moreover, this ontology accelerates the process of identifying relevant situations by matching user 

profiles and context information on a semantic level. A semantic classification of situations rules is useful 

for intelligent decision-making process according to the current user’s needs and its context. The purpose 

of situations classification is to improve the efficiency of the identification process by prioritizing them 

according to one or more criteria such as situation category, activity of user, user’s location and situation 

coverage. Our ontology aims to capture the user’s context at the semantic level.  Figure 4.1 presents an 

overview of Multi-OCSM layers for pervasive applications. 

 
Figure 4.1: Multi-OCSM ontology layers. 
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Multi-OCSM ontology can be used for several ends.  Members of a given community of a specific 

user’s domain can communicate and share knowledge between them using Multi-OCSM. Also, it can be 

used to develop distributed mobile applications for several purposes: security of smart spaces, energy-

saving, health monitoring, etc. To conceptualize our ontology, we have used a combination of the top-

down and bottom-up approaches. First, we have created for each layer its main concepts to build the core 

model of Multi-OCSM. Then, we have appropriately identified their specialization and allocate them into 

their taxonomy of smart domain concepts. Finally, we have created a logical relationship between those 

concepts to enable reasoning using our ontology. The Multi-OCSM consists of four layers as follows: 

• Layer 1 (smart objects and devices layer): this layer contains several physical/logical 

sensors and devices depending on its type and its features. These sensors serve as acquirers of raw 

contextual data, which will be processed by layer 2 to translate it to semantic context data. 

• Layer 2 (context layer): this layer is used to classify contextual information provided by the 

smart objects and devices layer using multi-dimensional aspects such as environment context 

(e.g., location, time, network) and user’s context (e.g., user’s role such as a student, employer 

or teacher, user’s current location, time and user’s agenda). Our ontology uses context 

information to identify the corresponding user’s situations.  

• Layer 3 (situation layer): a composite situation is specified as a combination of sub-situations 

based on the semantics provided by the context layer. Within situations, diverse relations, such 

as parallel, sequence, alternative and recurrence can be applied.  

• Layer 4 (service and application layer): as previously presented, each situation identified 

by the situation layer corresponds to a set of appropriate action services. Each service is described 

by its distributed microservices on mobile applications. It is possible to dynamically adapt to an 

application by reconfiguring its microservices according to the relevant context changes.  

The proposed layers are applicable in different smart domains (health, home, cities, car, office, etc.) 

through Kali-smart middleware [9]. Each smart domain defines specific situations described in a domain-

specific ontology and covers specific context data. We use Kali-smart for dynamic reconfiguration that 

enables adding/removing/updating services on distributed devices. The middleware is deployed on all 

mobile devices involved in the application.  At the end of the design process, we got our Multi-OCSM 

ontology as shown in figure 4.2. The ontology is defined in five key classes: Context (a), Situation (b), 

Smart Object and Device (c), Domain (d), and Service (e). These classes represent generic concepts, 

which can be used in any smart context-aware environments that aim at providing appropriate services to 

users according to their current situations. 
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Figure 4.2: An overview of generic context-aware composite situation ontology.
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4.2.1 Smart objects class  

The first-class consists of several heterogeneous sensors and actuators. Each one has a unique identifier, a 

local name, a location and other attributes describing its properties (figure 4.3). It contains several sensors 

depending on its type (logic or physic) and its features (size, frequency, name, URL). These sensors acquire 

raw contextual data, which will be processed using the reasoning techniques based on common 

functionalities. We have two main types of sensors: logic and physical sensors. Physical sensors can include 

bio-sensor (e.g., data captured by bio-sensors, like blood pressure, blood sugar, body temperature, etc.), 

weather sensor, environment sensor (e.g., data captured by environmental sensors, like room 

temperature, humidity, etc.). Logic sensors include device sensors (e.g., data captured by sensors, like 

CPU speed, battery energy, etc.), network sensors, calendar sensors, email sensors, etc. 

 

Figure 4.3: Context Smart Object Multi-OCSM sub-ontology. 

4.2.2 User’s domain class  

A user’s Domain (e.g., home domain or work domain) is composed of several devices. Each device is 

responsible for the execution of several services. Each service contains one or more Context-aware 

Intelligent Micro-Services (CxIMicroService). Each CxIMicroService is deployed on a specific smart device. 

It provides a specific need and has hardware and software requirements (using CxIMicroService description 

profile) in order to run in an optimal mode. 

4.2.3 Context class  

The third class Context plays a significant role to enable the provision of adequate services to users based 

on their surrounding environments (see figure 4.4). It aims to classify the contextual information using 

multi-dimensional aspects: 
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• The User Context can include a user’s role, user’s current location, time, and user’s agenda that 

describes all tasks performed in daily life (e.g., watches TV or listens to music). 

• The Environment Context describes both location and time, which are very relevant context 

information for situation identification. Location: is described either by geographical coordinates, 

text-description or by using GeoNames ontology [111]. Time: the time can support multiple 

values such exact time (h: 20, min: 30) or timestamp (start time, end time, current time) or a 

semantic keyword such `morning' or by using time ontology. 

 

Figure 4.4: Context Multi-OCSM sub-ontology. 

• The Host Context represents various physical object (smart objects, devices) and its related 

properties. For example, a sensing device is characterized by the memory size, CPU speed and battery 

level. 

• The Interaction Context describes the different interaction modalities (click, gesture, voice, 

touch). The interaction context specifies a set of properties related to a specific modality type. 



Chapter 4                                                                        Context-aware Multi layered Ontology for Composite Situation Model in Pervasive Computing  

92 

  

• The Document Context specifies the type of documents (text, image, video, audio) and its 

properties related to a specific media type. 

• The QoS Context describes the quality of service and smart mobile application, which is defined 

as a set of QoS parameters. These QoS parameters are (1) continuity of service; (2) speed and 

efficiency of service; and (3) safety and security. 

• The Social Context describes the context information generated from different social networks 

and high-level relations among multiple users. 

Each context category has a set of different context attributes (SSN:Property). Each context 

attribute is associated with an event (i.e., the sensed data value by a specific sensor) as presented in figure 

4.4. We extend the work of Dromzée & al. [112] by employing two types of attributes in interpreting 

events: region, a vector of features (image, video, and audio). It helps in interpreting events regardless of their 

sources using semantic value. Indeed, a semantic value, like "Low" may be applied on several context-

attributes, such as the outside temperature level, the glucose level, the bandwidth. Hence, the meaning 

of a semantic can be completely different depending on the context used. Moreover, even in a specific 

context, for several smart domains (smart home, smart office), a semantic value may have different 

interpretations. For instance, the semantic value "Presence" which belongs to a user corresponds to a 

vector of GPS coordinates when we consider smartwatch as the data source, or it corresponds to different 

feature values when we consider surveillance camera as the data source or corresponds to Boolean value 

when we consider motion sensor as the data source. Actually, this proposal may be used for a wide variety 

of semantic values (see figure 4.5). For instance, one may define semantic values for spatial information, 

such as \closeTo", \farFrom", \intersectWith", etc. 

 

Figure 4.5: Semantic interpretation of events extended form [112]. 
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4.2.4 Situation class  

Situation is the basic concept of any context-aware application. It is the set of events that are occurring at 

a given location (where) and time (when), and the conditions (rules) that can verify those events, thus the 

need to identify the situation. Figure 4.6 presents a situation sub-ontology, delineating the user’s context, 

rule modeling, data semantic value, situation. Each user context has distinct sets of situations. A situation 

is identified by a situation rule. A rule is represented by a combination of multiple conditions. Each 

condition has a context attribute (e.g., location, time, role or glucose level.).  

The context attribute can be attached to a  semantic value (e.g., home for the context attribute 

location, morning for the context attribute time, student for the context attribute role and high for the 

context attribute glucose level) using a comparator (e.g., inside, outside, near and far for Location; before, 

after, while and equal for Time; is for Role; etc.) to enrich the description of the condition. Besides the 

process of situation identification, we need to know what the user expects when this situation happens 

(i.e., situation rule is verified). So, we need to determine which actions to activate when the situation is 

identified through a semantic link between a situation and actions. 

 

 

Figure 4.6: Situation Multi-OCSM sub-ontology. 
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4.2.5 Modeling prioritized situations  

Once there are urgent situations with lives at stake such as heart-situations, time is a crucial factor for 

handling such situations in specific period. The application searches as quickly as possible for the closest 

available services to prevent damage and serious health evolution. At first, a priority value is set by an 

expert in the offline (e.g., a doctor specifies high priority value in case of a serious health situation). Then, 

the situation priority is updated online using a new weight based on the situation’s category, user’s activity, 

user’s location, and situation’s coverage.  

• Situation Category (P1). Situation category defines the important level of the situation depending 

on the emergency evaluation of the triggered actions. The priority value of a situation ‘s’ is used to 

identify whether a given situation is normal, important or urgent. Therefore, the priority value is 

attributed based on the evaluation of situation rule that an expert can evaluate its importance level. 

Each situation is assigned a priority value from 1 to 3, where the lowest value represents the highest 

priority and vice versa. In our work, we used three different semantic levels:  

- Normal situations: situations with the least priority (i.e., priority value =3) representing 

the user’s daily life situations. 

- Important situations: medium priority situations (i.e., priority value =2) representing the 

user’s situations related to work, travel, etc. 

- Urgent situations: highest priority situations (i.e., priority value =1) representing the 

user’s urgent situations (e.g. healthcare situations). 

• User Activity (P2). User activity is another factor that determines the priority level of a situation. 

In our proposed work, we defined three levels of activity priority depending on the user’s state:  

- Free: this state has the lowest priority that allows daily life activities (e.g., priority value =3). 

- Active: this state has a medium priority that allows important activities (priority value =2). 

- Busy: this state has the highest priority for urgent activities (e.g., priority value =1). 

• User Location (P3). A user’s location is another factor that determines the priority of a situation. 

The user with the closest distance to his situation’s location should be given a higher priority to be 

filtered and identified because the probability that he leaves the situation’s area is higher. Here, we 

used the normalized Euclidean distance between the situations' locations and the current user’s 

location to compute the priority value. The highest priority value is assigned to the smallest distance 

and vice versa. The normalized Euclidean distance Ds of the situation s with the current user’s location 

is: 

                    𝑃3 = 𝐷𝑆 =
√(𝑥𝑢−𝑥𝑠

𝑐)2+(𝑦𝑢−𝑦𝑠
𝑐)2

√(𝑥𝑠
𝑚𝑎𝑥−𝑥𝑠

𝑐)2+(𝑦𝑠
𝑚𝑎𝑥−𝑦𝑠

𝑐)2
                                                 (1) 
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Where: 

xu, yu: current location coordinates of user u, 

xs
c, ys

c: position center coordinates of situation s, 

xs
max, ys

max: maximum coordinates coverage of situation s. 

• Situation Coverage (P4). Situation coverage is another factor that determines the priority of a 

situation. The coverage of the situation can be found in different sizes (individual situations, 

community situations, and public situations).  Furthermore, the population size of a situation changes 

with time. The situation with the highest population should be given a higher priority to be identified. 

Here, we used the average of population coverage over a period of time, instead of the instant value, 

to calculate its priority as follows: 

                                                   𝑃4 =
∑ 𝐶𝑠

𝑡𝑁
𝑡=0

𝑁
                                                                        (2) 

Where  𝐶𝑠
𝑡  denotes the population coverage for a situation s in an instant t, and N is the 

number of time instances.  

After the calculation of the four priorities (P1, P2, P3, P4), the weight value PS of a situation s is 

calculated as follows: 

 𝑃𝑆 = 𝑤1 ∗ 𝑃1 + 𝑤2 ∗ 𝑃2 + 𝑤3 ∗ 𝑃3 + 𝑤1 ∗ 𝑃4                                                 (3) 

Where 𝑤𝑖 are the weighting factors that allow an expert to specify the importance of corresponding 

metrics, with ∑ 𝑤𝑖 = 14
𝑖=1 . 

4.2.6 Service class  

The distributed smart mobile application consists of a set of distributed services. A service is an 

autonomous Context-aware Intelligent microservices that make up an application and empower reasoning 

capabilities over context data (CxIMicroService see figure 4.7). The benefit of decomposing the 

application service into different small services is that it improves modularity and flexibility to provide 

support in managing situations under the mobility of users. Another benefit is that each CxIMicroService 

runs in its process, which collaborates and communicates with other microservices. Likewise, each 

CxIMicroService has an autonomic functionality (i.e., task implements the runnable interface in Java code) 

that serves as the body of a thread. The latter will be deployed using the Service Executor of our 

framework. We extend the CxIMicroService with a CxISituationIdentifierMicroService, 

CxIEventListenerMicroservice, and CxIActionMicroservice to define situation rule identifier, situation’s 

event listener and situation’s actions respectively. These parallel microservices are capable of making some 

useful reasoning tasks on its context smart domain (location, context entity, etc.) with the help of an 

https://en.wikipedia.org/wiki/Modular_programming
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ontology-based model. Using our service Multi-OCSM sub-ontology, we can construct a hierarchy of 

collaborated CxIMicroservices using other specialized CxIMicroservice classes in the situation reasoning 

process. In this case, a supporting framework has the capability of sharing parallel-detected events and 

identified situations in different smart environments through distributed mobile applications.  

 

Figure 4.7: Service Multi-OCSM sub-ontology. 

4.2.7 Modeling service using component-based approach 

As mentioned earlier in section 4.2.6, mobile applications are built using several available microservices. 

In fact, a large number of microservices may affect negatively the application’s flexibility and 

maintainability. Thus, a level of abstraction is needed in order to resolve this challenge. We exploit the 

architectural entities (i.e., components) of the Kali-smart middleware [9] to build microservice-based 

composite situations. We distinguish four types of composition component operators:  sequence, parallel, 

negation and recurrence (as shown in table 4.1). We integrate these operators into Kali-smart middleware 

for managing composite situations at design and runtime levels. For instance, figure 4.8 introduce a design 

model of a composite situation called “Low Battery & Meeting composite situation” built with the 

combination of two simple situations “Low Battery simple situation, and Meeting simple situation” using 

parallel composition component operator. The identification of this composite situation triggers a set of 

action services including: exclude audio output and migrate the meeting application on another available 

device according to user’s preferences.    
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Table 4.1: Distributed Mobile Application Extend Concepts on Kali-Smart. 

Concept Definitions Graphic notations 

Services and 
Components 

The components are entities composing 
the service run simultaneously in a 
distributed environment composed of 
the users' devices. The components can 
be divided into three categories: Input, 
Core, and Output.   

Situations 

Situations could be atomic or 
composite, represent a set of events that 
are happening at a given location and 
time and the conditions. Situations are 
mapped to services. Services represent 
the services performed by the application 
within each situation.  

Composite 
situations 

A composite situation is an 
abstraction of multiple situations 
combined from multiple atomic 
situations.  

 

Sequence 
Sequence operator allows the 
composition of two dependent situations 
in a sequence order  

Parallel 
Parallel operator allows the 
composition of two independent 
situations in parallel order  

Negation 
Negation operator specifies that a 
certain situation must not detect in any 
location in a given period.  

Recurrence 
Recurrence operator specifies that a 
certain situation must be detected many 
times  

 
Figure 4.8: Example of Composite Situation Based Model. 

 

 



Chapter 4                                                                        Context-aware Multi layered Ontology for Composite Situation Model in Pervasive Computing  

98 

  

4.3 Implementation and validation of Multi-OCSM 

4.3.1 Implementation of Multi-OCSM 

After the conceptualization of the ontology Multi-OCSM, we can start the implementation process. The 

implementation process consists of two steps. First, we implement the ontology Multi-OCSM (classes, 

subclasses, and their object properties) and instantiates some individuals from each class, while the second is to 

fill it by defining some formal logics as well as interrogation rules.  Both steps were generated using the 

Protégé 7.1 editor [113]. This visual modeling tool provides OWL (i.e., Ontology Web Language) for 

describing our Multi-OCSM ontology that has been used to reason about its defined classes and individuals. 

The Multi-OCSM ontology is made-up of four upper-level classes: Smart Objects and Devices, Context, 

Situation, and Service & Application. First, we create Multi-OCSM hierarchical classes and its subclasses 

(Figure 4.9.a). For instance, the class Context has seven sub-classes: ContextActivity, ContextDocument, 

ContextEnvironment, ContextHost, ContextInteraction, ContextQoS and ContextUser. Then we add for each class 

its datatype properties (Figure 4.9.b) and objects properties (Figure 4.9.c) which defines the semantic 

relationships between classes. For instance, the Situation class has an object property “HasCondition” which 

is linked to Condition class. This relationship means that the Situation class can have one or more conditions. 

 

Figure 4.9: Implementation of Multi-OCSM ontology in Protégé. 

Figure 4.10 illustrates a part of Multi-OCSM. It shows four fundamental classes: Situation, Condition, Event 

and Action. In addition, it shows the semantic links between these classes (e.g., Situation has Condition, 

SimpleCondition Is-a Condition, ComplexEvent ComposedOf SimpleEvent, etc.). 
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Figure 4.10: An illustrated example of a part of multi-OCSM generated with Jambalaya. 

4.3.2 Consistent rules of Multi-OCSM 

Verifying the consistency of Multi-OCSM instances is an essential part of our implementation, especially 

the consistency structure of composite situations and user-defined constraints (with various context 

properties) while providing more formal semantics. To deal with it, we use the Description Logic (DL) 

[114] to represent Multi-OCSM in a formal and structured way. The Multi-OCSM expressed in a DL is 

constituted by two components, traditionally called TBox and ABox [115]: 

• TBox (assertions on concepts): describes terminological information by defining basic or 

derived concepts. Also, it defines how these concepts relate to each other. 

The TBox is a finite set of inclusion assertions of the form: 𝐶1  ⊑  𝐶2, where 𝐶1 and 𝐶2 are 

concepts. Note that: 𝐶 ≡  𝐸 as an abbreviation of 𝐶 ⊑  𝐸 and 𝐸 ⊑  𝐶.  

• ABox (assertions on individuals): describes the information that characterizes individuals. 

This information is expressed by specific or local assertions. 

The ABox is a finite set of instance assertions of the form: 𝐶(𝛼), where 𝐶 is a concept, and α is an 

individual name, or of the form: 𝑃(𝛼1, 𝛼2)where 𝑃 is a primitive role and 𝛼1, 𝛼2 two individuals names. 

Two fundamental aspects then characterize a DL system: 1) - the language used for building the concepts 

and the roles mentioned in TBox and ABox, 2) - the reasoning mechanisms on the knowledge bases 

expressible in the system. The first aspect was ensured via the protégé editor [113], where concepts, 
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relationships between concepts, concepts properties and creation of individual were created using the 

visual interface of Protégé. Besides that, the reasoning mechanism is fundamentally based on three parts: 

1) – the source of knowledge Multi-OCSM, 2) – the interaction between the ontology and the system 

through the SPARQL query language and 3) – the reasoning engine based on parallel semantic-based 

composite situation identification framework. Table 4.2 presents DL example of our ontology.  

Table 4.2: DL example of our ontology. 

TBox ABox 

𝐶𝑜𝑛𝑡𝑒𝑥𝑡 ⊑ 𝑇ℎ𝑖𝑛𝑔 

𝑈𝑠𝑒𝑟𝐶𝑜𝑛𝑡𝑒𝑥𝑡 ⊑ 𝐶𝑜𝑛𝑡𝑒𝑥𝑡 

≥ 𝐻𝑎𝑠𝐼𝐷 ⊑ 𝑆𝑡𝑟𝑖𝑛𝑔 

≥ 𝐻𝑎𝑠𝑁𝑎𝑚𝑒 ⊑ 𝑆𝑡𝑟𝑖𝑛𝑔 

≥ 𝐻𝑎𝑠𝐴𝑔𝑒 ⊑ 𝐼𝑛𝑡 

≥ 𝐻𝑎𝑠𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛 ⊑ 𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛 

𝑈𝑠𝑒𝑟𝐶𝑜𝑛𝑡𝑒𝑥𝑡(𝑈𝑠𝑒𝑟_𝐴) 

𝐻𝑎𝑠𝐼𝐷(𝑈𝑠𝑒𝑟_𝐴, 𝑈_1) 

𝐻𝑎𝑠𝑁𝑎𝑚𝑒(𝑈𝑠𝑒𝑟_𝐴, 𝐴𝑑𝑒𝑚) 

𝐻𝑎𝑠𝐴𝑔𝑒(𝑈𝑠𝑒𝑟_𝐴, 25) 

𝐻𝑎𝑠𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛(𝑈𝑠𝑒𝑟_𝐴, 𝑆1) 

𝐻𝑎𝑠𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛(𝑈𝑠𝑒𝑟_𝐴, 𝑆2) 

𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛 ⊑ 𝑇ℎ𝑖𝑛𝑔 

≥ 𝐻𝑎𝑠𝐼𝐷 ⊑ 𝑆𝑡𝑟𝑖𝑛𝑔 

≥ 𝐻𝑎𝑠𝑁𝑎𝑚𝑒 ⊑ 𝑆𝑡𝑟𝑖𝑛𝑔 

≥ 𝐻𝑎𝑠𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 ⊑ 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 

≥ 𝐻𝑎𝑠𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦 ⊑ 𝑑𝑜𝑢𝑏𝑙𝑒 

≥ 𝐻𝑎𝑠𝑆𝑒𝑟𝑣𝑖𝑐𝑒 ⊑ 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 

𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛(𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛_𝑆1) 

𝐻𝑎𝑠𝐼𝐷(𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛_𝑆1, 𝑆_1) 

𝐻𝑎𝑠𝑁𝑎𝑚𝑒(𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛_𝑆1, 𝐻𝑖𝑔ℎ_𝐺𝑙𝑢𝑐𝑜𝑠𝑒) 

𝐻𝑎𝑠𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛(𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛_𝑆1, 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛_𝐻𝑖𝑔ℎ_𝐺𝑙𝑢𝑐𝑜𝑠𝑒) 

𝐻𝑎𝑠𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦(𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛_𝑆1, 0.81) 

𝐻𝑎𝑠𝑆𝑒𝑟𝑣𝑖𝑐𝑒(𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛_𝑆1, 𝑆𝑒𝑟𝑣𝑖𝑐𝑒_𝐼𝑛𝑗𝑒𝑐𝑡_𝐼𝑛𝑠𝑢𝑙𝑖𝑛) 

 

4.3.3 SPARQL queries for Multi-OCSM 

SPARQL (SPARQL Protocol and RDF Query Language) [116] is used to express queries across diverse 

data sources that can be used for semantic data extraction. The use of SPARQL is based on two functional 

properties, simplicity and rapidity.  We utilize SPARQL queries to extract semantic data from our multi-

OCSM ontology. Thus, we develop many interrogation SPARQL queries based on Multi-OCSM. The 

primary goal of these queries is extracting the semantic features related to monitored user context, then 

filtering relevant situations of the user in order to accelerate the situation identification process. Table 4.3 

shows some selection and filtering queries.   
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Table 4.3: SPARQL selection and filtering queries. 

Query 1 selects the user’s location event. It takes as parameter “user name”. 

PREFIX OCSMOnto: <http://www.owl-ontologies.com/Ontology1430403694.owl#> 

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> 

SELECT  ?idEvent   

WHERE {   

  ?user OCSMOnto:UserName\""+user.getUserName()+"\".   

  ?user OCSMOnto:HasLocationEvent ?locationEvent .   

  ?locationEvent OCSMOnto:IdEvent ?idEvent .  

} 

Query 2 selects all the situations that do not have any spatiotemporal constraint. It takes as parameter “user 

name”. 

PREFIX OCSMOnto: <http://www.owl-ontologies.com/Ontology1430403694.owl#> 

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> 

SELECT  ?situation ?idSituation  ?locationTime 

WHERE {  

  ?user OCSMOnto:UserName\""+user.getUserName()+"\". 

  ?user OCSMOnto:UserHasSituation ?situation.  

  ?situation OCSMOnto:IdSituation ?idSituation .   

  ?situation OCSMOnto:AtLocationTime ?locationTime .  

  FILTER( ?locationTime = \"AnyWhere#AnyTime\"). 

} 

Query 3 returns all situations that have a spatiotemporal constraint. It takes as parameter “user name, user 

location and time” 

PREFIX OCSMOnto: <http://www.owl-ontologies.com/Ontology1430403694.owl#> 

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> 

SELECT  ?situation ?idSituation  ?locationTime 

WHERE {  

  ?user OCSMOnto:UserName\""+user.getUserName()+"\". 

  ?user OCSMOnto:UserHasSituation ?situation.  

  ?situation OCSMOnto:IdSituation ?idSituation .   

  ?situation OCSMOnto:AtLocationTime ?locationTime .  

  FILTER(?locationTime = \""+location+"#AnyTime\"|| 

  ?locationTime = \""+location+"#"+time+"\"|| 

  ?locationTime = \"AnyWhere#"+time+"\"). 

}"; 

Query 4 returns all the sub situations of a given composite situation. It takes as parameter “id of composite 

situation” 

PREFIX OCSMOnto: <http://www.owl-ontologies.com/Ontology1430403694.owl#> 

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> 

SELECT ?subSituation ?idSubSituation                     WHERE {  

  ?situation OCSMOnto:IdSituation 

                   \""+situation.getIdSituation()+"\".  

  ?situation OCSMOnto:HasSubSituation ?subSituation.  

  ?subSituation OCSMOnto:IdSituation ?idSubSituation   

} 
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4.3.4 Evaluation of Multi-OCSM  

Figure 4.11 shows an instance of individual profile and its properties. As we can see, the individual 

MohammedProfile of the class IndividualProfile has object properties (e.g., isLocatedAt, 

HasScheduledActivity, HasSituation, etc.) and datatype properties (e.g., UserName, LastName, Age, 

Profession, etc.).  

 

Figure 4.11: Description and properties of Mohammed profile in Protégé. 

After the implementation of the multi-OCSM ontology, we would like to show a concrete example 

represented by OWL. Figure 4.12 shows an example of a concrete model based on the Multi-OCSM 

ontology represented by OWL. This example describes a garage within a smart home. The garage is a 

subdomain of the domain smart home (line 8). The datatype property “PlaceID” (line 4) represent a unique 

identifier of the garage. The garage has a domain where we can define provided smart objects (i.e. sensors 

and actuators) (lines 9-20).  As we can see in figure 4.12, the garage has a camera sensor (lines 10-13) and 

a garage door opener actuator (lines 16-29). The camera sensor has an ID (line 11) and uses the service 

“Service_GetCamera” (line 12). In addition, the garage door opener actuator has ID (line 17) and uses the 

service “Service_Garage_Door_Opener” (line 18). 

We have evaluated the execution time of several SPARQL queries on some ontology individuals. 

The goal is to demonstrate how Multi-OCSM ontology can perform SPARQL queries based on the 

combination of multiple operators among queries. Note that all evaluations have been performed on a PC 

running Windows 10 (64 bits) on an Intel processor core i5-2430 2.4 GHz, and 8 GB RAM. We have 

compared the execution time of different SPARQL queries (query 1, query 2, query 3, and query 4 of 

table 4.3) on Multi-OCSM with 100, 200, 300… 1000 times. First, we run query 1 and query 2 separately 

multiple times. Then we combine query 1, query 2, query3 and query 4 using sequential operator and run 
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them multiple times. Figure 4.13 shows the execution time of requesting Multi-OCSM with different 

SPARQL queries. The execution time of a single query repeated 500 times shows an average of 1000ms. 

Nevertheless, combining different SPARQL queries shows an average increase in the execution time of 

2000ms. Our aim is to optimize the execution time. To achieve our goal, we propose a parallel 

microservices-based approach while combining multiple queries (for more details see Chapter 5).  

 

Figure 4.12: A concrete example of OWL representation for multi-OCSM. 

 
Figure 4.13: Multi-OCSM Query execution time comparison. 
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4.4 Conclusion 

In this chapter, we have proposed a novel generic user-centric composite situation ontology called Multi-

OCSM (multi layered ontology for composite situation model) for representing the majority of concepts 

of smart-* domains and user’s profile. This ontology contains five key classes: Context, Situation, Smart 

objects, Domain, and Service.  It describes both simple and composite situation rules and its semantic 

description including composition operators (parallel, sequence, recurrence and alternative). This 

ontology facilitates the management of a large number of heterogeneous smart objects and services, 

semantic features related to the context data for the interpretation of parallel events, interoperability of 

different incoming events and highlights the semantic rules of user. Moreover, the Multi-OCSM supports 

SPARQL queries, which allow users to explore the ontology and to customize the situations filtering 

according to their constraints and preferences.  

In the next chapter, we will present a novel parallel semantic-based composite situation 

identification framework for optimizing the situation identification process. Also, we present the whole 

process of situation identification illustrated with a uses case and possible scenarios. To cope with that, we 

have based on the multi-OCSM ontology that plays a fundamental role in our approach.    
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Chapter 5   

Real-Time Ontology-based Context-aware Situations 

Identification in Pervasive Computing 

Summary 

5.1 Introduction 

5.2 Real-time dynamic semantic-based situations identification processes 

5.2.1 Dynamic filtering of relevant situation rules 

5.2.2 Construction of dynamic situation rules-based factorized tree  

5.2.3 Parallel creation of events and situations microservices from factorized tree 

5.2.4 Priority-ordered blocking queue 

5.2.5 Threads pool and parallel identification of simple and composite situation 

             5.2.6 Orchestration of the situation’s actions 

             5.2.7 Services reconfiguration and deployment 

             5.2.8 Services execution 

5.3 Use cases and scenarios 

5.4 Conclusion 

5.1 Introduction 

Nowadays, users are looking for flexible and effective solutions that are suitable to automate their daily 

activities. The objective is to have a reconfigurable distributed mobile application adapted to the user’s 

current needs according to the environment changes. Reconfigurations are needed due to the users' 

activities as well as their possible evolution scenarios. Besides, the major challenge we face today is the 

management of urgent situations that must be identified rapidly and processed in a short time. To address 

this issue, a parallel identification process of context-aware semantic-based composite situation is an 

effective and efficient solution for automatic and flexible reconfigurable mobile application. 

In the previous chapter, we presented the Multi-OCSM ontology, which is considered as the 

backbone of our approach. This ontology is used to describe the semantic aspects of various concepts of 

distributed mobile application with its changing context. Furthermore, it unifies the description of 

heterogeneous smart devices and various composite situations of users’ daily life to meet their needs in a 

specific context.  

In this chapter, we present a novel parallel identification process of semantic-based composite 

situations. The main purpose of this process is to submit tasks as much as the number of user’s situations 

running simultaneously across multiple processor cores. In addition, it provides users with a customized 

context-aware distributed mobile application based on our ontology. Our approach relies on the parallel 

identification of composite/simple situations and the automatic generation of reconfiguration actions 
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based on the Multi-OCSM. Moreover, we add the notion of priority to the situation rules to perform the 

situation’s identification process and speeding up the queued urgent situation rules in order to process 

urgent situations with high priority before the normal situations having low priority.  

The rest of this chapter is organized as follows. We detail the identification process of context-

aware composite situation. After that, we define a priority strategy for speeding up pending urgent 

situations. Then we illustrate our process with a use of case and possible scenarios. Finally, we close this 

chapter with a conclusion.  

5.2 Real-time dynamic semantic-based situations identification processes   

This section presents an autonomic dynamic semantic-based composite situation reasoning and 

identification process over heterogeneous smart objects. It enables the filtering and factorization of the 

user’s situations rules. In addition, it allows the parallel identification of composite/simple situations and 

provides an automatic generation of reconfiguration actions based on the Multi-OCSM as illustrated in 

Figure 5.1.   

 

Figure 5.1: Proposed composite situation reasoning process. 

The dynamic semantic-based composite situation identification process takes as inputs situations rules 

registry, user’s domain, user’s current location and time, and provides as output identified situations list 

and actions reconfiguration file. The process complete steps are detailed as follows. 
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The first step consists of filtering relevant situation rules according to new incoming events and 

context changes. The second step is based on the construction of the tree that factorizes common filtered 

situation rules with their attributes. The factorized tree gives us a semantic decomposition and accord 

between simple/composite situation and their context attributes. The third step consists of creating and 

encapsulating situation rules and their context attributes in micro-service classes. The fourth step consists 

of ordering the blocked situation rules by attributing each one a priority in order to forward them for 

execution. The fifth step is to run parallelly micro-services into threads to ensure the parallel identification 

of simple and composite situations. Threads management is going to be ensured through different 

synchronization mechanisms (e.g., semaphores, locks, monitors, atomic operation, etc.).  The sixth step 

consists of service orchestration. The seventh step consists of services reconfiguration and deployment. 

The last step consists of reading the reconfiguration file and execute available services. 

5.2.1 Dynamic filtering of relevant situation rules  

As detailed in Algorithm 1, the Situation Rules Filter component provides relevant user’s situation rules 

list filtered by the user’s current location and time (see Figure 5.2). Initially, a list of the user’s relevant 

rules contains a set of anytime and anywhere rules (line 1). For each iteration, we add a situation rule ‘s’ 

from the user’s situation rules registry to the relevant situation rules list (lines 2-14) that match the user’s 

current location and time.  

 
Figure 5.2: Filtering relevant situation rules. 

We distinguish three main different spatiotemporal classes rules:(1) the rule-based localization and time 

that depends on both current user’s location and time (lines 3-4), (2) the time-based rule depends only 

on the current time (lines 6-7), and (3) the localization-based rule depends only on the current user’s 

location (lines 9-10). A list of relevant situation rules will be sent to the Situation Rules Factorizer 

component for further processing.  
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Algorithm 1: Dynamic filtering of relevant situation rules 

Inputs:  
              Current user’s location: Location; 
              Current user’s time: Time; 
              User’s situation rules registry: Rules_registry; 
Outputs:   
              Relevant list of user’s situation: Filtered_user_rules_vector = Ø;    /*each 20 milliseconds 
                                                                                we refresh this vector in case of context changes */ 
Begin 
1:      Filtered_user_rules_vector.add(Rules_registry.pullAnyWhere_AnyTime_Rules()); 
2:      For each s from Rules_registry do 
3:             If (s.getLocation().closet(Location) && s.getTime().isCloseTo(Time)) then 
4:                     Filtered_user_rules_vector.add(s); 
5:             else  
6:                      If (s.getLocation() == “Anywhere” &&  s.getTime().isCloseTo(Time)) then 
7:                                  Filtered_user_rules_vector.add(s); 
8:                      else 
9:                                  If (s.getLocation.isCloseTo(Location) &&  s.getTime() == “AnyTime”) then 
10:                                               Filtered_user_rules_vector.add(s);  
11:                                end if  
12:                    end if  
13:            end if  
14:      end for  
15:      return Filtered_user_rules_vector; 
End 

5.2.2 Construction of dynamic situation rules-based factorized tree  

The Situation Rule Factorizer component transforms the relevant situation rules list into a factorized tree 

as detailed in Algorithm 2. This tree ensures an optimal representation of composite situations structure 

in order to enhance the situation identification process. The factorized tree consists of three layers: 

composite situations layer, simple situations layer and common context attribute layer for all situations. 

Figure 5.3 presents an illustration of a composite situation, three simple situations, and five contexts 

attributes. The factorized tree promotes the efficiency and the effectiveness of the reasoning process of 

the situation rules. The Situation Rule Factorizer component inspects if the new situation is yet to exist 

then creates a new root branch for it (lines 2-4) as a start node for the tree traversal of the next step. 

Alternatively, in case of a composite situation that has sub situations, if a sub situation already exists in the 

tree, the Situation Rule Factorizer component will assign it to its parent composite situation (lines 6-16) 

to construct composite situations progressively. Then it aggregates the common context attributes of the 

situation rules, which are created in the tree leaves. A context attribute may be assigned to one or more 

situations (lines 17-25) to dispatch sensed events to shared situations. This process is repeated until all the 

relevant situations have been treated. When Algorithm 2 finishes, it produces the factorized tree as shown 

in figure 5.3.  
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Figure 5.3: Construction of factorized tree from relevant situation rules list. 

Algorithm 2: Factorized tree Construction 

Inputs: Relevant list of user’s situation: Filtered_user_ rules _vector; 
Outputs: Factorized tree: Factorized_Tree = Ø; 
Begin 
1: For each rule from Filtered_user_rules_vector do 
2:                If (Not(Factorized_Tree.hasSituation(rule.getSituation()))) then 
3:                                         SituationNode sn = new Node(rule.getSituation()); 
4:                                         Factorized_Tree.addSituationNode(sn); 
5:                end if 
6:                If (rule.hasCompositeSituations()) then 
7:                       For each subSituation from rule.getSubSituations() do 
8:                                   If (Not(Factorized_Tree. hasSituation(subSituation))) then 
9:                                           SituationNode sn = new Node(subSituation); 
10:                                         Factorized_Tree.addSituationNode(sn); 
11:                                         Factorized_Tree.getSituation(subSituation).linkWith(rule.getSituation()); 
12:                                  else 
13:                                         Factorized_Tree.getSituation(subSituation).linkWith (rule.getSituation()); 
14:                                  end if 
15:                      end for 
16:               end if 
17:         For each attribute from rule.getAttributes() do 
18:                     If (Factorized_Tree.hasAttribute(attribute)) then 
19:                               Factorized_Tree. getAttribute(attribute).linkWith(rule.getSituation()); 
20:                     else  
21:                                AttributeNode an = new Node(attribute); 
22:                                Factorized_Tree. add(an);   
23:                                Factorized_Tree.getAttribute(attribute).linkWith(rule.getSituation()); 
24:                    end if  
25:          end for 
26:  end for 
27:  return Factorized_Tree; 
End 
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5.2.3 Parallel creation of events and situations microservices from factorized tree  

In this step, the Task Manager component encapsulates each event monitor entity and situation identifier 

entity in a single deployable unit of code known as a microservice entity (i.e., task implements the Runnable 

interface of Java API) as detailed in Algorithm 3 (see figure 5.4). This encapsulation promotes autonomy, 

flexibility, reuse of code, and ensures a decomposition scale of different simple/composite situations and 

simple/complex events. Two types of microservices are used: the event listener microservice for 

monitoring sensed data, and the situation identifier micro-service for identifying user’s situations. The 

Task Manager component explores the factorized tree to encapsulate situations in situation microservices 

entities taking into account all the dependencies between the composite situations and their simple 

situations (lines 1-9) that allow all granularity levels of situation microservices. Then we iterate all 

common context attributes of the tree leaves to encapsulate them in event microservices entities (lines 

10-13). Later, all microservices will be sent to the Executor Service for submission (see figure 5.4). 

Algorithm 3: Creation of events and situations microservices from the factorized tree  

Inputs: Factorized tree: Factorized_Tree; 
Outputs: List of events tasks:  Event_Task_List = Ø; 
                 List of situations tasks:  Situation_Task_List = Ø; 
Begin 
1:       For each situation from Factorized_Tree.getSituations() do 
2:               If(situation.isComposite()) then 
3:                    SituationMicroService situationTask = new CompositeSituationMicroService(situation); 
4:                    Situation_Task_List.add(situationTask); 
5:                else 
6:                    SituationMicroService situationTask = new SimpleSituationMicroService(situation); 
7:                    Situation_Task_List.add(situationTask); 
8:               end if 
9:       end for 
10:     For each attribute from Factorized_Tree.getAttributes() do 
11:            EventMicroService eventTask = new EventMicroService(attribute); 
12:            Event_Task_List.add(eventTask); 
13:     end for  
End 

5.2.4 Priority-ordered blocking queue  

Once there is an emergency situation (such as heart-situations) with lives at stake, time is a crucial factor 

for a health and social organization where the platform searches as quickly as possible for the closest 

available services to prevent damage and serious health evolution. A priority value is set by an expert in 

the offline (e.g., a doctor specifies high priority value in case of a serious health situation) and the situation 

is updated online using a new weight based on the situation’s category, user’s activity, user’s location, and 

situation’s coverage (see Chapter 4 Section 4.2.5).  
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Figure 5.4: Parallel situations identification process. 

5.2.5 Threads pool and parallel identification of simple and composite situation  

In this step, the Executor Service component is responsible for exploring how intelligently microservices 

can be synchronized to identify new situations and how they can share the detected events to a group of 

situations identifiers. We use several structures including events buffers, hierarchical reasoning, thread 

pool, and priority-ordered blocking queue. We intend to optimize the number of missed situations and 

reduce the checking time by implementing a parallel approach. Another benefit is that our parallel 

approach exploits all available processor cores. Instead of only one processor executing the whole process 

of situations identification, we will split the process into several microservices, each one of them is going 

to be executed simultaneously by different processors. 

The Executor Service component creates a thread pool and monitors the execution of the 

concurrent events listeners, composite and simple situations microservices. This step includes 

microservices reception and submission, concurrent context collection (occurred events), and parallel 

situations identifications (see the right side of figure 5.4).  
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a) Receiving and submitting microservices 

The Executor Service component provides improved performance when executing large 

numbers of events and situations microservices simultaneously. It iterates both lists of events 

and situations tasks in order to send them for execution as detailed in Algorithm 4 (lines 2-13). 

The Executor Service component manages all the process of tasks execution from reception 

until submission using the submit function (lines 4 and 10). When receiving a new task for 

execution, the Executor Service component verifies if there is a free thread in the pool. If there 

is a free thread, then associate the task to this thread directly for launching. Otherwise, send the 

task to the priority-ordered blocking queue (see figure 5.4). The task will be placed in the right 

place in the queue based on its priority and waits until there is a free thread in the pool. The task 

with the highest priority in the queue (i.e., urgent task) will be pulled first and sent to the pool 

for execution. 

Algorithm 4: Receiving and Submitting tasks algorithm 

Inputs:  
               List of events tasks:  Event_Task_List; 
               List of situations tasks:  Situation_Task_List; 
Outputs:  
               List of submitted tasks in the executor: Submitted_Task_List = Ø;  
Begin 
1:    ExtendedThreadPoolExecutor executor = new ExtendedThreadPoolExecutor(); 
2:    For each situationTask from Situation_Task_List do 
3:               If (Not(Submitted_Task_List.has(situationTask))) then 
4:                        executor.submit(situationTask);  
5:                        Submitted_Task_List.add(situationTask);    
6:           end if 
7:    end for 
8:    For each eventTask from Event_Task_List do 
9:              If (Not(Submitted_Task_List.has(eventTask))) then 
10:                       executor.submit(eventTask); 
11:                       Submitted_Task_List.add(eventTask);    
12:            end if     
13:    end for  
Return Submitted_Task_List; 
End 

b) Context data monitoring  

The event listener thread is continuously monitoring and capturing new context data (i.e. event 

formatted as <event time, sensed value, appearance time, event valid period>) from sensors as 

detailed in Algorithm 5. After the reception of a new event, it will be sent to the associated 

situations identifiers threads to identify the user’s situations (line 6). In this step, we can notice 

that events listeners threads are executed in a parallel way. The synchronization between two 

or more threads is ensured to avoid any data race condition.  
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Algorithm 5: Event listener thread algorithm 

Inputs:  
               Factorized Tree: Factorized_Tree: 
               Attribute: CxA; 
Outputs: 
               Sensed value of event: event; 
Begin 
1:     Boolean loop = true; 
2:     While (loop) do 
3:          event = CxA.receiveEvent(); /* receive event from sensor */ 
4:          For each situation from Factorized_Tree.getSituationRules() do 
5:                     If (situation.hasAttribute(CxA)) then 
6:                               situation.getBuffer().add(event)); 
7:                     end if 
8:          end for 
9:          sleep(CxA.getSensor().getSensorFrequency().toMillis()); /*sleep, for example 20 ms)*/ 
10:   end while 
End 

 

c) Dynamic identification of simple situations 

The pseudo-code of Algorithm 6 describes the simple situation identification process. With the 

concurrent simple situations identifiers threads, we have the possibility to identify several 

situations at the same time. The simple situation identifier component receives the occurred 

events and then checks them through simple situation conditions. Finally, it returns the 

situation’s checked value. This is done in the following four major steps: 

 

• Step1 (lines 4-6): When a new event is received, the simple situation identifier thread 

checks the simple situation’s condition and returns the situation’s checked value.  

• Step2 (lines 7-9): During the check process of the simple situation’s condition, if the 

simple situation thread finds at least one expired event (i.e. an event that exceeds its 

lifetime), it increments the number of missed situations and the number of expired 

events. 

• Step 3 (line 11): The simple situation identifier calls the reconfiguration service that will 

trigger appropriate action services to the user.  

• Step 4 (lines 12-14): Finally, the simple situation identifier thread shares the situation’s 

checked value with its associated composite situation threads through buffers. 
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Algorithm 6: Simple Situation identifier thread algorithm 

Inputs:  
            Simple situation: SS; 
            Factorized tree: Factorized_Tree; 
Begin 
1:      SS.setChecked(false); 
2:      Boolean loop = true; 
3:      While (loop) do  
4:               Event event = SS.getBuffer().getEvent();  /*wait for receiving new event */ 
5:               SS.refreshNewEvent(event); 
6:               SS.check(); 
7:               If (SS.isMissed()) then 
8:                     SS.incrementMissedSituation(); 
9:                     SS.incrementExpiredEvent(SS.getNumberOfExpiredEvents()); 
10:             else 
11:                  Reconfig(); 
12:                  For each compositeSituation from Factorized_Tree.getCompositeDependsOn(SS) do                                  
13:                                            compositeSituation.getBuffer().add(SS); 
14:                  end for 
15:           end if 
16:     end while          
End 

d) Dynamic identification of composite situations  

The Composite Situation Identifier thread is responsible for identifying composite contextual 

situations based on the user’s situations rules. It involves the collaboration of its sub situations 

identifiers’ threads that share their situations’ checked values with their parent composite 

situation. Algorithm 7 describes the composite situation identification steps. It receives as inputs 

the occurred events and the situations’ checked values. Then it verifies the set of conditions and 

sub situations of the composite situation. Finally, it returns the situation s’ checked value. This 

is done by following the four major steps: 

• Step 1 (lines 4, 8 and 22): The first step relates to the detected events and situations 

checked values received from the appropriate events listeners threads, and situations 

identifiers threads respectively (line 4). The composite situation identifier thread 

verifies the set of conditions and sub situations of the composite situation (lines 8 and 

22) and returns the situation’s checked value.  

• Step 2 (lines 9-11 and 23-25): During the check process of the composite situation, if 

the composite situation thread finds at least one expired event (i.e. an event that exceeds 

its lifetime), it increments the number of missed situations and expired events. 

• Step 3 (lines 13 and 27): The composite situation identifier thread calls the 

reconfiguration service that will trigger appropriate action services for the user.  
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• Step 4 (14-16 and 28-31): Finally, the composite situation identifier thread shares the 

situation’s checked value with its associated composite situation threads through buffers. 

Algorithm 7: Composite Situation identifier thread algorithm 

Inputs:  
            CompositeSituation: CS; 
            Factorized tree: Factorized_Tree; 
Begin 
1: CS.setChecked(false); 
2: boolean  loop = true; 
3:  While (loop) do  
4:     Object object = CS.getBuffer().getObject(); /*wait for receiving new object*/  
5:     If(object instanceof Event) then  
6:              Event event = (event) object; 
7:              CS.refreshNewEvent(event); 
8:              CS.check(); 
9:            If(CS.isMissed()) then 
10:                     CS.incrementMissedSituation(); 
11:                     CS.incrementExpiredEvent(CS.getNumberOfExpiredEvents()); 
12:           else 
13:                    Reconfig(); 
14:                    For each Dependent_CS from Factorized_Tree.getCompositeDependsOn(CS) do 
15:                                         Dependent_CS.getBuffer().add(CS); 
16:                    end for 
17:           end If 
18:    else 
19:            If(object instanceof Situation) then 
20:                    Situation situation = (Situation) object; 
21:                    CS.refreshSubSituation(situation); 
22:                    CS.check(); 
23:                    If(CS.isMissed()) then 
24:                              CS.incrementMissedSituation(); 
25:                              CS.incrementExpiredEvent(CS.getNumberOfExpiredEvents()); 
26:                   else 
27:                              Reconfig(); 
28:                              For each Dependent_CS from 
29:                                          Factorized_Tree.getCompositeDependsOn(CS) Do 
30:                                                     Dependent_CS.getBuffer().add(CS); 
31:                              end for 
32:                   end If 
33:           end If 
34:     end If 
35:  end while          
End 

5.2.6 Orchestration of the situation’s actions  

The Actions Orchestrator scans the smart environment with the help of the Kali-smart middleware [9] in 

order to know the available devices and orchestrate the best way to deploy the microservices. It takes into 

account the identified situations’ list and the user’s domain to ensure the multimodality interactions and 

find the appropriate device. 
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5.2.7 Services reconfiguration and deployment  

It receives the orchestrated actions provided by the Actions Orchestrator component and generates the 

output reconfiguration file. 

5.2.8 Services execution 

The Services Execution component consults the available microservices located in the Knowledge micro-

services to execute them. For example, the availability of light switch service. 

 

5.3 Use cases and scenarios  

In this section, we illustrate the proposed approach using a motivating scenario described in the general 

introduction. The possible scenarios are varied and vast. We used our framework to deal with several 

situations in four smart domains (smart health, smart home, smart car, and smart office). We intend to 

support the user’s mobility in different smart domains using the situation filtering process 

(add/remove/migrate services) basing on the user’s spatiotemporal information. First of all, we assume 

that the user has a registry of all his situation rules classified as urgent/daily-life in our Multi-OCSM 

ontology. As shown in table 5.1, the user has four domains (Health domain, Security domain, Home 

domain, Office domain). We can distinguish two types of situation rules: Simple Situation (SS) and 

Composite Situation (CS). 

A first scenario involves the user, Mohammed, who can be located in his smart home. The system 

filters relevant situations rules according to the current user’s location and time. Figure 5.5 shows a list 

of relevant home situation rules (e.g., home fire situation, shower situation, etc.) and health situation 

rules that are going to be checked anywhere and anytime (e.g., high glucose level situation, diet is not a 

good situation, etc.). The list of relevant situation rules is passed to the Situation Factorizer component 

for further processing. This list of relevant situation rules will be updated at each filter by adding and/or 

removing situation rules. 

 

 

 

 

 

 

 

 

 

https://fr.wiktionary.org/wiki/%CE%BC
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Table 5.1: User’s situation rules registry. 

Smart 
Domain 

Situation 
ID 

Situation 
 Name 

Situation  
Rule 

Health 

SS_0 
High Glucose Simple 
Situation 

IF [GlucoseLevel = 'High']  
THEN Deploy[(Inject_Insulin_Service)] 

SS_1 
Low Glucose Simple 
Situation 

IF [GlucoseLevel = 'Low']  
THEN Deploy[(Inject_Glucagon_Service)] 

CS_0 
Diet Is Not Good 
Composite Situation 

IF [ Recurrence(SS_0; 10; 5; day)] 
THEN Deploy[(Diet_Is_Not_Good_Service)] 

CS_1 
Risk Of Death 
Composite Situation 

IF [Sequential(UserPhysicalState = 'Rest'; SS_0; HeartBeating 
= 'High')]  
THEN Deploy[(Risk_Of_Death_Service)] 

Security 
SS_2 

Home Fire Simple 
Situation 

IF [HomeTemperature = 'VeryHigh']  
THEN Deploy[(Firefighting_Service)] 

SS_3 
Home Intrusion 
Simple Situation 

IF [Overlay(Location = 'Outside' &&  HomeMotion= 'ture')] 
THEN Deploy[(Intrusion_Home_Service)] 

Home 

SS_4 
Wake Up Simple 
Situation 

IF [Sequential(Time = 'Wake up time'; WorkDay ='On' )] 
THEN Deploy[(Wake_Up_Service)] 

CS_3 
Shower Composite  
Situation 

IF [Sequential(SS_4; UserState = 'waked up'; Location = 
'Bathroom'; Time = 'Shower time')]  
THEN Deploy[(Shower_Service)] 

CS_4 
Drink Coffee 
Composite Situation 

IF [Sequential(CS_3; Location = 'Kitchen')]  
THEN Deploy[(Coffee_Machine_Service)] 

CS_5 
Check Email 
Composite Situation 

IF [Sequential(CS_4; Location = 'Study')] 
THEN Deploy[(Email_Service && News_Service)] 

CS_6 
Going To Work 
Composite Situation 

IF [Sequential(CS_5; Location = 'Garage')]  
THEN Deploy[(Car_Controlling_Service && 
Car_GPS_Service && Garage_Controlling_Service)] 

Office 

SS_5 
At Work Simple 
Situation 

IF [Location = 'Office']  
THEN Deploy[(Work_Service)] 

SS_6 
Meeting Simple 
Situation 

IF [Overlay(Location = 'Meeting room' && Time = 'Meeting 
time')]  
THEN Deploy[(Meeting_Service)] 

 

 

Figure 5.5: Illustrative example of relevant situations rules filtering. 
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After the situation filtering process, the Situation Factorizer component factorizes the list of 

relevant home’s situation rules into common context attributes and situation rules in order to remove 

duplicate situation rules and context attributes. This factorization is useful for creating a loose coupling of 

events/situations and for optimizing the situations’ identification process. Then, the Situation Factorizer 

component builds a factorization tree and creates dependency links between the situation rules and their 

context attributes or with other situation rules, as shown in Figure 5.6. 

 

 

Figure 5.6: Construction of factorized tree. 

 

After the factorization process, the factorized situation rules and their context attributes (i.e., event) will 

be encapsulated in small runnable microservices-based tasks. Task Manager takes these tasks and sends 

them to the Executor Service. The Executor Service has a thread pool and implements a priority-based blocking 

queue where it put pending tasks (see figure 5.7). If the number of free threads in the pool equals “0” then 

the submitted tasks will be put in the blocking queue. Otherwise, the submitted tasks will be sent to a free 

thread, and the number of free threads will be decremented by one. When a thread finishes its execution, 

the number of free threads will be incremented by one and the thread will be killed if and only if the 

blocking queue is empty. Otherwise, the priority blocking queue will be notified to take a pending task 

and passing it to submission. 
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Figure 5.7: Submission of events and situations tasks. 

A second scenario is when a user arrives at his office, a notification is sent to the Situation Filter 

Component, and the list of pertinent situation rules is dynamically updated (see figure 5.8). Of course, 

his office situation rules will be added to the list (e.g., at work situation, meeting situation). Previous 

home’s situation rules will be removed (e.g., shower situation, drink coffee situation, etc.). The system 

deploys meeting services on his desktop PC with all tools that he can find them useful in his working 

domain. All this while he can always check the state of his health (e.g., glucose level, if it is high then 

deploy insulin service). 

 

Figure 5.8: Refreshing of relevant situation rules list. 
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5.4 Conclusion 

During this chapter, we present a composite situation identification process based on ontology and parallel 

approach in order to help user to have an adequate reconfigurable distributed mobile application. First, 

we give a detailed parallel approach for composite/simple situation identification exploiting all processor 

cores. In addition, we show how we filter and factorize user’s situations rules through Multi-OCSM 

ontology. To perform our system and respond to urgent situations rapidly, a priority strategy is proposed 

for speeding up the queued urgent situation rules that run simultaneously across collaborating 

microservices. Finally, we illustrate the proposed approach using a motivating scenario using both simple 

and composite situation rules in order to illustrate the identification process and its different steps. 

As next chapter, we aim to propose situations enrichment mechanism in order to achieve the 

complete work in research task. 
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Chapter 6   

Dynamic Situation Enrichment and Adaptation Mechanism 

in Pervasive Environments 

Summary 

6.1 Introduction 

6.2 Situation-based contextual model: definitions and formalizations 

6.2.1 The multidimensional recommendation space modeling 

6.2.2 The user context profile formalization  

6.2.3 The rule preference formalization 

6.2.4 The device context 

6.2.5 The situation rules formalization 

6.2.6 Classification of situation rules 

6.3 Functional model of the situation enrichment and adaptation system 

6.3.1 Situation rules learning process 

6.3.2 Recommendation process of situation rules 

                 6.3.2.1 Rule’s content-based approach   

                 6.3.2.2 Bayesian-classifier approach 

                 6.3.2.3 Rule-based adaptation approach 

6.4 Illustrative case study 

6.5 Conclusion 

6.1 Introduction 

Currently, we are living in the era of ubiquitous environments, which introduces the possibility to serve 

users in multiple context situations. Yet, with this large variety of situations, diversity of preferences, and 

multiplicity of devices to respond to users’ needs, it becomes a necessity to have an effective solution that 

ensures the correct identification of specific situations. Otherwise, the identification process may be 

incomplete as it could be based beforehand on predefined situation rules, identified either by users or by 

the developers. As we see in figure 6.1, there are lot of gaps in the user's agenda that should be specified 

by the user himself. Moreover, it is a cumbersome task for each user to identify his specific rules in any 

daily life cases. This emerges the need to recommend effectively the right situation rule in the right context 

for the right person. In fact, a rule-based recommendation system is used to suggest meaningful rules and 

has the ability to guide users to useful and relevant rules, which meets their needs in a large space of 

available rules.   

Nowadays, with the rapid development of both social, smart environments and their related 

technologies, a huge volume of metadata from crowdsourcing is available, such as context-aware 

properties, a large variety of situations, diversity of needs, a multiplicity of devices to respond to users’ 
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needs, etc. This overloaded information is one of the main reasons that trigger the construction of an 

efficient recommendation system based on situation rules. Traditional recommender systems are mostly 

built to provide recommendations only based on user preferences, using the content or a collaborative 

approach and neglect situational context information, such as location, time and role. Recently, several 

surveys and studies in the field of rule-based recommendation [107] [108] have only focused exclusively 

on the techniques applied in the recommendation process regardless of the following questions: what is 

the context information taken into consideration for a better understanding and an effective result? Which 

device is the best to use considering the immediate situation? In this scope, to recommend the right 

situation rule in the right context for the right person, a context-aware semantic model for rule-based 

recommendation system needs to be considered. 

 

Figure 6.1: User’ agenda. 

In this chapter, we propose a new ontology-based context-aware recommendation system for dynamic 

situation rules enrichment. Thus, we extend our Multi-OCSM ontology to provide unified representation 

and classification of situations rules. Also, it provides a formal way to explicitly specify common meaning 

of users’ contexts, their preferences (e.g., preferred activities) and their constraints (e.g., available time) 

while respecting the device constraints (e.g., device characteristics or device capacity). In this way, the 

system can exploit users’ experiences and offers to users an auto-complete daily life user requirement 

(e.g., his needs in the shopping center, at work, at home, etc.) with better-customized user experience. 

Moreover, a new situation rules’ learning process is proposed to classify situation rules according to 

ontology rule before applying the recommendation process to achieve a high quality of recommendation. 

The learning process constituted of rules profiles collector, rules filter, rules analyzer and rules classifier. 

This classification is based on semantic rules ontology that helps in reducing the searching time and 

enhances the recommendation by offering useful and relevant rules depending on user’s context and 
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preferences. Thus, the recommendation system considers three context categories: user’s preferences, 

situation context and device’s capability. The recommendation process built on three main steps. Starting 

by the calculation of the similarity of both user’s explicit and implicit preferences. Passing to calculating 

the probability for recommending a situation rule corresponding to user’s situation context, through a 

Bayesian-classifier, that focuses on the user’s role in a specific location and time and in a particular domain 

(e.g., shopping, working, driving, etc.). Finally, the selection of the appropriate rules list by checking the 

semantic coherence of the devices capabilities constraints with the recommended rules requirements based 

on SWRL rules. To illustrate the applicability and adaptability of our approach, we present a case study 

using user’s context preferences to detail how the whole process works with our recommendation system. 

The rest of this chapter is organized as follows. We provide some useful concepts for situation rules 

enrichment. After that, we present the context-aware ontology-based recommendation system and the 

situation enrichment mechanism. Then we illustrate our process with a use of case. Finally, we conclude 

this chapter with a conclusion. 

6.2 Situation-based contextual model: definitions and formalizations 

Situations are increasing in unprecedented ways in different areas of pervasive environments. Users can 

be found in different situations surrounded by various mobile devices, such as personal mobile phones to 

accomplish their daily tasks. In practice, the specification of a huge number of situations for each user is 

quite difficult. However, previous studies [107] [108] reveal that the recommendation of the right 

situation rule in the right context is also a real problem for users, even beyond the users’ experiences. 

Therefore, it is necessary to recommend useful rules through a recommendation process according to the 

available devices with current context to enrich automatically user’s agenda. In this context, there are 

three types of recommendation systems: content-based filtering, collaborative filtering, and hybrid 

filtering. In this work of recommendation of relevant situation rules, ontology and hybrid filtering with 

Bayesian-classifier can play a crucial role to implement context-aware rules classification that enhance 

relevancy of suggested rules.  

Realizing an ontology-based context-aware recommendation system for situations enrichment and 

adaptation gives two main benefits for both semantic and relevance recommendation. The first benefit is 

achieved through the generic and flexible ontology model Multi-OCSM to unify the representation of 

situation rules as well as the sharing and classification of context rules. The second benefit is attained 

through the combination of three context categories: user preference, situation context, and device 

capability with the ultimate goal of covering a multidimensional recommendation space and performing 

the recommendation system. To handle with altogether the three context categories, we deployed three 

different approaches and then combined them to create a hybrid approach.  
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6.2.1 The multidimensional recommendation space modeling   

The recommendation model provides situation rules over multiple dimensions to generate output. As 

input, we define location, time, role and user preference as user context dimensions. In addition, we 

define CPU speed, RAM size, storage, network, and so on as device capability dimensions. Besides, we 

define rule item dimension, which describes the rule’s content. These input dimensions are the base to 

develop the recommendation system intended to suggest useful and relevant situations rules to the user 

based on his context (i.e., user location, user roles) and his device capabilities. The dimension of user 

context reflects different spatiotemporal information related to prior usage rules as well as the assigned 

rules scores, information related to possible roles that a user can play in the smart space (driver, student, 

etc.), and information related to user’s explicit and implicit preferences.  The rule item dimension consists 

of multiple projections on different context attributes. Each projection is a combination of location, time, 

role, etc. The device dimension defines device’s features and their capabilities. As output, we can define 

the rule item’s score. The score represents the degree of user interest in the recommended situation rule 

item, ranging from -1 (least preferred) to 1 (most preferred) (see figure 6.2). In another word, the 

recommendation score is obtained as a combination of these inputs as follows: 

𝑅(𝑈𝑠𝑒𝑟𝐶𝑜𝑛𝑡𝑒𝑥𝑡, 𝑅𝑢𝑙𝑒𝐼𝑡𝑒𝑚, 𝐷𝑒𝑣𝑖𝑐𝑒𝐶𝑎𝑝𝑎𝑏𝑖𝑙𝑖𝑡𝑦) = 𝑠𝑐𝑜𝑟𝑒 

 

 

Figure 6.2: Proposed multidimensional recommendation space. 

We assume as inputs: 

• UserPreference (i) = {(security; 0.67), (health; 0.43), (home; 0.55), (work; 0.43)}. 

• RuleItem (j) = {(domain;” home”), (day; “weekday”), (field; “security”)}. 

• DeviceCapability (k) = {(CPU; 4.5 Ghz), (RAM, 4 GB), (Modality, [text, audio, image, video])}. 

We obtain as output: 

• Score = 0.88. 
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6.2.2 The user context profile formalization  

The user context profile contains the user-related information: location, time, agenda and role (e.g., role 

is ’student’, ‘citizen’, ‘driver’, etc.). User’s role can be identified continuously using location, time and 

agenda: 

∃ 𝑙, 𝑡 / 𝑎𝑔𝑒𝑛𝑑𝑎(𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛(𝑙); 𝑡𝑖𝑚𝑒(𝑡)) →  𝑅𝑜𝑙𝑒𝑖 

In another case, the location is not necessary to identify a user’s role, so in such situation, we can 

use only the time and agenda: 

∃  𝑡 / 𝑎𝑔𝑒𝑛𝑑𝑎(𝑡𝑖𝑚𝑒(𝑡)) →  𝑅𝑜𝑙𝑒𝑖 

6.2.3 The rule preference formalization 

The rule preference denotes explicit and implicit user’s preference regarding the rule content. It is defined 

by the couple <term, weight>. The Weight ∈ [-1; 1] indicate the degree of the user interest in such terms 

(e.g., <Home; 0.85>; <Health; −0.75>).  

6.2.4 The device context 

The device context presents device capability (i.e., CPU speed, RAM size, storage space, network 

bandwidth and protocols). 

6.2.5 The situation rules formalization 

Situation is the basic concept of any context-aware application. It is the set of events that are happening at 

a given location (where?) and time (when?), and the conditions (rules) that can verify those events, thus 

identifying the situation. Each user has an agenda that in turn contains user situations. Each situation is 

detected by a situation rule.  

At the abstract modeling level, the rule is represented by a combination of data and concepts. A 

rule is a combination of multiple projections. Each projection has different axes (e.g., Location, Time, 

Role, Sensor Value, etc.). The axis can attach with primitive (e.g. inside, outside, near and far for Location; 

before, after, while and equal for Time; is for Role; etc.) to enrich the description of the rule. Moreover, 

there may be exceptions that can give another dimension to rule modeling. Besides the process of situation 

identification, we need to know what the user expects when this situation happens (i.e., situation rule is 

verified). So, we need to determine which actions to activate when the situation is identified through a 

semantic link between a situation and actions. A situation rule is presented textually in the following 

format, where P is a projection. 

𝑹 ∶ 𝑵𝒂𝒎𝒆 ; 𝑷𝟏[𝑨𝒙𝒊𝒔(𝑷𝒓𝒊𝒎𝒊𝒕𝒊𝒗𝒆(𝒗𝒂𝒍𝒖𝒆, 𝒕𝒐𝒍𝒆𝒓𝒂𝒏𝒄𝒆) … ); … ]  

𝑷𝒏 [… ]  𝑬𝑿𝑪𝑬𝑷𝑻[𝑺𝒊𝒕𝒖𝒂𝒕𝒊𝒐𝒏/𝑨𝒙𝒊𝒔(… ) ] → 

𝑨𝒄𝒕𝒊𝒐𝒏𝒔[𝑨𝒄𝒕𝒊𝒐𝒏𝟏, 𝑨𝒄𝒕𝒊𝒐𝒏𝟐, … ] 
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6.2.6 Classification of situation rules  

We propose to classify the situation rules according to their content.  

• Role-based rules: This type of rules depends only on the role of user. For example, R1 (Work) 

that verifies when the time is equal to the Planed Time (PT) “work” and user’s role is a worker. 

The exception is being on holiday. This rule is described as follows: 

𝑹𝟏 ∶ 𝑾𝒐𝒓𝒌 ;  𝑷𝟏[𝑻𝒊𝒎𝒆(𝑷𝑻(work)); 𝑹𝒐𝒍𝒆(𝒊𝒔(𝒘𝒐𝒓𝒌𝒆𝒓))]  

𝑬𝑿𝑪𝑬𝑷𝑻[𝑺𝒊𝒕𝒖𝒂𝒕𝒊𝒐𝒏(𝒉𝒐𝒍𝒊𝒅𝒂𝒚𝒔) ] → 

𝑨𝒄𝒕𝒊𝒐𝒏𝒔[𝒅𝒆𝒑𝒍𝒐𝒚 𝒘𝒐𝒓𝒌 𝒔𝒑𝒂𝒄𝒆, 𝒑𝒖𝒕 𝒕𝒉𝒆 𝒑𝒉𝒐𝒏𝒆 𝒔𝒊𝒍𝒆𝒏𝒕] 

• Localization-based rules: This type of rules depends only on the location of user. For 

example, R2 (Alarm home) verifies when the user is either outside his home with 20 meters 

tolerance (P1) or if the time is between 21h and 6h with 20 minutes tolerance (P2). The exception 

is being on Sunday. O and I represent the location axis primitives outside and inside, respectively. 

A and B represent the time axis primitives after and before, respectively. This rule is described as 

follows: 

𝑹𝟐: 𝑨𝒍𝒂𝒓𝒎 𝒉𝒐𝒎𝒆 ; 𝑷𝟏[𝑳𝒐𝒄𝒂𝒕𝒊𝒐𝒏(𝑶(𝑯𝒐𝒎𝒆, 𝟐𝟎))] 𝑶𝑹 

𝑷𝟐[𝑻𝒊𝒎𝒆(𝑨(𝟐𝟏, 𝟑𝟎)𝑩(𝟔, 𝟑𝟎); 𝑳𝒐𝒄𝒂𝒕𝒊𝒐𝒏(𝑰(𝑯𝒐𝒎𝒆, 𝟏𝟎)]  

𝑬𝑿𝑪𝑬𝑷𝑻[𝑻𝒊𝒎𝒆(𝑺𝒖𝒏𝒅𝒂𝒚) ] → 

𝑨𝒄𝒕𝒊𝒐𝒏𝒔[𝒅𝒆𝒑𝒍𝒐𝒚 𝒔𝒆𝒄𝒖𝒓𝒊𝒕𝒚 𝒂𝒍𝒂𝒓𝒎 𝒂𝒑𝒑𝒍𝒊𝒄𝒂𝒕𝒊𝒐𝒏] 

• Rules-based on localization and role: This type of rules depends on both location and role 

of user. For example, R3(Meeting) situation rule verifies when user is inside the meeting room 

with 2 meters tolerance and time axis is equal to the PT meeting and his role axis is worker. 

𝑹𝟑 ∶ 𝑴𝒆𝒆𝒕𝒊𝒏𝒈 ; 𝑷𝟏[𝑳𝒐𝒄𝒂𝒕𝒊𝒐𝒏(𝑰("𝑴𝒆𝒆𝒕𝒊𝒏𝒈𝑹𝒐𝒐𝒎, 𝟐)) 

𝑻𝒊𝒎𝒆(𝑷𝑻(meeting)); 𝑹𝒐𝒍𝒆(𝒊𝒔(𝒘𝒐𝒓𝒌𝒆𝒓))] → 

𝑨𝒄𝒕𝒊𝒐𝒏𝒔[𝒅𝒆𝒑𝒍𝒐𝒚 𝒎𝒆𝒆𝒕𝒊𝒏𝒈 𝒂𝒑𝒑𝒍𝒊𝒄𝒂𝒕𝒊𝒐𝒏] 

6.3 Functional model of the situation enrichment and adaptation system 

In this section, we propose ontology-based dynamic context-aware recommendation system that enriches 

automatically profile’s situation rules in different domains (shopping, work, travel, etc.). The objective 

of the situation enrichment system is to provide suitably adapted rules to users. These rules have to fit 

with users’ preferences, users’ current situations and device's capabilities. Figure 6.3 exhibits an overview 

of the functional model of the enrichment system. This system is described in two main processes including 

respectively the learning process and the recommendation process. The learning process classifies 

situations rules according to their content after applying pre-processing and filtering techniques. It is based 



Chapter 6                                                                                    Dynamic Situation Enrichment and Adaptation Mechanism in Pervasive Environments 

127 

  

on four main phases, 1) rules profiles collection, 2) pre-processing & filtering rules, 3) rules analysis & 

classification, and 4) situation rule storage in rules metadata repository. The recommendation process 

calculates the final score and recommends new rule items for the user. It is based on five main phases, 1) 

calculate the similarity of rules items, 2) calculate the probability-based context of rules items, 3) calculate 

the final score and sorting rules, 4) select compatible rules using SWRL, and 5) recommend new rule 

items. In the next section, we will highlight each part’s different steps of the recommendation system.  

 
Figure 6.3: Proposed General architecture implemented using Multi-OCSM ontology. 

6.3.1 Situation rules learning process 

The proposed learning process classifies situation rules according to semantic rule ontology.  The learning 

process takes a collection of situations rules and outputs classes of learned rules. It consists of the following 

four main steps (figure 6.4):  
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• Step.1 – Collection of rules profiles. In this step, we collect situation rules from users’ 

agendas in which these situations have defined by other users or developers. Further, users can 

rate collected situation rules in order to provide a personalized context-aware recommendation 

by calculating their similarity scores and injecting new rules. After the collection of new 

situations, system sends them to the preprocessing module for filtering and prepossessing.   

• Step.2 – Pre-processing and filtering of rules profiles. This step consists of eliminating 

redundant and insignificant rules (e.g. rule without consequence, rule without antecedent, etc.). 

Step.3 – Analysis and classification of rules profiles. We propose to analyze and classify 

the candidate rules with three context aspects (location, time, and role). From situation rules, we 

extract first a list of context data that explain the meaning of user’s role, user’s location or both 

and their synonyms from WordNet [117]. We define three classes that represent generic context 

rules according to the location and the role of user, namely, role & location-based, location-based, 

and role-based. A given situation rule is classified into one of these generic classes based on the 

location of user (Home, University, Office, Hospital, Car, City, Parking, Market) and his role 

(Citizen, Student, Worker, Driver). If the condition of rule contains both location and role terms 

then we classify it into role & location-based class. If not, we check if it contains only location 

terms, so we classify it into location-based class. If not, we classify it into role-based class. Then, 

we determine the most popular situation rules based on the users' ratings. The user’s rating is 

ranging from 1 (useless rule) to 5 (excellent rule). Each user can give his opinion about a given 

situation rule. Situations with high popularity that match the user’s current location and role are 

going to be used for the recommendation. The popularity of a situation rule is calculated using 

the following formula: 

 

𝑃𝑆𝑖 =
∑ 𝑅𝑎𝑡𝑖𝑛𝑔_𝑆

𝑖

𝑈𝑗𝑁
𝑗=1

𝑁
                                                     (1) 

 

Where: 

𝑃𝑆𝑖: the popularity of situation i. 

𝑅𝑎𝑡𝑖𝑛𝑔_𝑆
𝑖

𝑈𝑗
: the rating of user j for situation i. 

𝑁: the number of users who have rated the situation i. 

• Step.4 – Storage of situation rules. Each situation rule is stored comprising the identifier and 

the search context-term. 
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Figure 6.4: An overview of situation rules learning process. 

 

6.3.2 Recommendation process of situation rules 

This section presents a hybrid recommendation strategy for situation enrichment and adaptation based on 

a weighted linear combination equation. This latter, is a combination of two approaches, the first consist 

of rule’s content-based semantic similarity, while the second is a Bayesian-classifier. The objective of the 

recommendation process is to provide suitable rules to users. It takes the user’s preferences, situational 

context and device information as input to calculate the situation rules’ scores and returns the relevant 

rules ranked according to their correspondence final scores. The proposed recommendation process 

operates in the following six main steps (see figure 6.5): 
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Figure 6.5: Hybrid rule-based recommendation process. 

• Step.1 – Calculation of rule semantic similarity based on content. The first step consists 

of taking all the classified rules in order to calculate the similarity between rule items and user’s 

preferences. It matches rule item content with the user’s preferences-terms (explicit and implicit 

preference).  

• Step.2 – Calculation of rule probability based on situational context. To deal with 

user situation context, we use the classical Bayesian classifier approach to evaluate rule items 

against the situation context. Thus, in the second phase, we calculate the probability for 

recommending the rule item knowing that we take into account the user situation context.  

• Step.3 – Calculation of rule final score and sorting rules. In the third step of 

recommendation, we calculate the final score of each rule item including three aspects (i.e., 

explicit/implicit preferences and Bayesian classifier). Then, we use the final score to sort the rule 

items ordered from the highest to the lowest score. 
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• Step.4 – Selection of compatible rules based on the device’s capability. The content-

based approach and probability-based Bayesian classifier described above do not take into account 

if the available devices have the ability to check and use the recommended rule. In fact, the 

recommended item has to fit with devices capabilities and hardware compatibilities, for example, 

CPU speed, sensor availability, RAM size of the current devices. Moreover, the recommended 

item has a feature file, which describes several services and recommended devices often used to 

check and execute this rule item.  We relied on rule-based approach to evaluate rule items against 

capability context to determine which rules can be used and executed by user domain, using 

SWRL language. The SWRL rule infers the situation rules which have the requirements (e.g., 

CPU speed) to run correctly in user domain and finally add them into the user agenda. 

• Step 5. Recommendation of new rules. In this step, we take recommended rules with the 

highest scores and update both the ontology model and the user’s agenda basing on user’s needs. 

• Step 6. Agenda and ontology update. In the sixth step, we create a semantic link between 

the user’s agenda and situation rules stored in the ontology model. When the user’s situation is 

evolved, the recommended list is changed accordingly. 

6.3.2.1 Rule’s content-based approach   

The proposed approach deals with situation rule’s content to evaluate rule items against user context. It 

compares rule item content with terms that characterize user preferences (explicit and implicit 

preference) to determine either the user likes or not that item. Only rule items with a high degree of 

similarity will be recommended.  User’s preferences can be extracted implicitly from his rules content or 

can be specified explicitly by the user. User can define many configurable preferences (i.e., Which domain 

he is interested in? What day? Which field? etc.).  In addition, the user can specify the range of rules for 

the recommendation in terms of rules’ popularity (i.e., low, medium and high popularity). 

We define the user explicit preference as a vector EP = (CP1… CPn), where CPi is configuration 

preference defined by the user. Each CP contains four features: domain of application (e.g. home, hospital, 

work, university, car, city, parking, market …etc.), days of rule’s verification (e.g. weekday, weekend, 

etc.), time (e.g. morning, afternoon, evening …etc.) and the field of rules (e.g. study, demotics, security, 

shopping, work …etc.). From the vector EP we can extract a vector of terms (see Algorithm 1), where 

EP_Term = (t1… tm), then we calculate the vector W = (w1, …, wm), where wi is the weight of term ti. Given 

EP, wi is calculated according to the equation (2): 

𝑤𝑖 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒 𝑜𝑓 𝑡𝑒𝑟𝑚 𝑡𝑖 𝑖𝑛 𝐸𝑃

𝑒|𝐸𝑃|
                                                    (2) 
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Algorithm 1: Extract terms from Explicit Preferences (EP). 

Input: Explicit preference vector EP = (CP1, …, CPn); 

Output: Term vector EP_Term = Ø; 

Begin 
1 for each element CPi from EP 
2 for each term tj from CPi 

3 if (ti ∉ EP_Term) 

4 EP_Term = EP_Term ∪ tj; 
End; 

Similarly, we define Rules Repository (RR) for each user as a vector RR = (r1, …, rn), where ri is a 

rule’s metadata. Also, we define user implicit preference as a vector IP_Term = (t1, …, tm), where ti is a 

term extracted automatically from RR (see Algorithm 2). For each term ti we assign a weight wi where a 

weight vector can be also represented as W = (w1, …, wm). The weight wi  is computed according to the 

equation (3):      

𝑤𝑖 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒 𝑜𝑓 𝑡𝑒𝑟𝑚 𝑡𝑖 𝑖𝑛 𝑅𝑅

𝑒|𝑅𝑅|
                                                (3)  

 

Algorithm 2: Extract terms from Rules Repository (RR). 

Input: Rules repository vector RR = (r1, …, rn); 

Output: Implicit preference vector IP_Term = Ø; 

Begin 

1 for each element ri from RR 

2 for each term tj from ri 

3 if (ti ∉ IP_Term) 

4 IP_Term = IP_Term ∪ tj; 

End; 

Finally, we can get two vectors of preference pair PP = ((term1, weight1)… (termm, weightm)), for each 

explicit and implicit preference.  

Using PP vector, we define the user preference as a vector P = (w1… wm), where wi is the weight of 

term ti. Similarly, a rule item can be also represented as a vector with m elements, C = (u1, …, um), where 

ui is the weight assigned to term ti, which is the same as that in the user preference vector P. It’s clearly 

that terms aren’t equally important (i.e., by their nature, terms in the location or field tag might be more 

important than subfield tag), so we assign importance factors to give each term’s relative importance for 

rule item metadata.  

We define tag set, S = {Location, Role, field, sub field}, and importance factor set, 𝑊 = {𝑊𝑥 | 𝑥 ∈

𝑆}. Wx is the importance factor weight assigned to terms in tag x to give their relative importance (assuming 

Wlocation = 0.75, Wrole = 0.45, Wfield = 0.75, WsubField = 0.35). The vector C is generating using the algorithm 3 

below (e.g. see figure 6.7): 
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Algorithm 3: Generating the vector C  

Inputs:  Rule item’s metadata R (item to recommend); 

           The vector PP; 

Output: The vector C; 

Begin 

1 for each term value ti from PP 

2 if (ti   is merely included in tag x of R) 

3 ui = Wx; 

4 if (ti   is included in two or more tags of R) 

5 ui = Max{Wx} 

6 if (ti isn’t included in any tag of R) 

7 ui = 0; 

End; 

Finally, we calculate the similarity between the two vectors of rule item and user preference. We 

use the commonly used similarity metric (i.e., the cosine value of the angle between the rule item and 

user preference). The cosine similarity is calculated as: 

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 =  
𝐶 × 𝑃

‖𝐶‖ × ‖𝑃‖
=  

∑ 𝑢𝑖𝑤𝑖
𝑚
𝑖=1

√∑ 𝑢𝑖
2𝑚

𝑖=1 ∑ 𝑤𝑖
2𝑚

𝑖=1

                                             (4) 

6.3.2.2 Bayesian-classifier approach 

Content-based approach handles only with rule item content and user preference. To deal with user 

situation context we use the classical Bayesian classifier approach to evaluate rule items against the situation 

context. In our multidimensional recommendation model, we can group each situation context into 

classes (e.g., the situation (work, weekday and worker) can be represented as a class). Therefore, we have 

three dimensions that we can divide into classes.  

For example, we can divide a user’s location into four classes (home, university, office, outdoors: 

in a car for example), and divide day rule into two classes (Weekday, Weekend), also we divide a user’s 

role into four classes (Citizen, Student, Worker, and Driver).  Finally, we get the cartesian product for 

the 3 dimensions, 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 × 𝑑𝑎𝑦 × 𝑟𝑜𝑙𝑒,  as a result, 32 classes.  

Suppose C = {C1… C32} are classes of a considered situation.  In this approach, we evaluate the 

probability of a rule item belonging to a certain class of C. The general form of a user rules repository is 

< 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛|𝑑𝑎𝑦|𝑟𝑜𝑙𝑒||𝑟𝑢𝑙𝑒 𝑚𝑒𝑡𝑎𝑑𝑎𝑡𝑎 >, where location and day determine where and when the rule 

was checked, respectively; role determine the role that the user has to play; and rule metadata show the 

other tags (field, subfield, etc.). For example, if we considered the class Ci = (home, weekend, citizen), then 

we can calculate the probability of rule situation item �⃗� belonging to this class Ci through mathematical 

repository analysis of the user rules using the equation below: 
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𝑃(𝐶𝑗|�⃗�) =  𝑃(�⃗�|𝐶𝑗) 𝑃(𝐶𝑗)/𝑃(�⃗�)                                                               (5) 

𝑃(�⃗� |𝐶𝑗) =  ∏ 𝑃(𝑓𝑖|𝐶𝑗)

4

𝑖=1

 

𝑃(𝐶𝑗) = 𝑘(𝐶𝑗) / 𝑇 

𝑃(�⃗�) = ∑ 𝑃(�⃗�|𝐶𝑗)𝑃(𝐶𝑗)

𝑘

𝑗=1

 

𝑃(𝑓𝑖|𝐶𝑗) =
𝑛(𝑓𝑖, 𝐶𝑗) + 0.5

𝑛(𝐶𝑗) + 0.5|𝑉𝑗|
 

Where : 

• 𝑓𝑖  denotes the ith tag of �⃗�, 

• 𝑘(𝐶𝑗) denotes the number of user rules in 𝐶𝑗, 

• 𝑇 denotes the total rules number in user repository, 

• 𝑛(𝑓𝑖 , 𝐶𝑗) denotes how many times 𝑓𝑖   occurs in  𝐶𝑗, 

• 𝑛(𝐶𝑗)  denotes the sum of times all tags occur in 𝐶𝑗,  

• |𝑉𝑖| denotes the total number of tags occurring in 𝐶𝑗. 

For example, we can calculate the probability that a user will be interesting to add such rule item 

(house security’s field) in his repository outdoors on a weekday (here the role isn’t important in such 

situation, so we can base only on the two other dimensions).  

At last, the final score of the rule item will be measured using both content-based approach and 

Bayesian-classifier approach. The final score is given by the weighted linear combination equation;  

𝑆𝑐𝑜𝑟𝑒 =  𝑊𝐸𝑃 × 𝑆𝑖𝑚𝐸𝑃 + 𝑊𝐼𝑃 × 𝑆𝑖𝑚𝐼𝑃 + 𝑊𝑆 ×  𝑃(𝐶𝑗|�⃗�)                            (6)  

Where  𝑊𝐸𝑃, 𝑊𝐼𝑃, 𝑊𝑠 are weight assigned to explicit similarity, implicit similarity and situation 

probability respectively ( 𝑊𝐸𝑃 + 𝑊𝐼𝑃 + 𝑊𝑠  = 1;  0 ≤ 𝑊𝐸𝑃 ≤ 1;  0 ≤ 𝑊𝐼𝑃 ≤ 1; 𝑎𝑛𝑑 0 ≤ 𝑊𝑆 ≤ 1) given 

the relative importance of explicit and implicit preference and situation context.  

Rule items will be ranked according to the scores achieved through the equation described above. 

Then, we use the rule-based approach to select which rule items are able to check and execute through 

the user domain (devices, sensors, actuators, etc). 

6.3.2.3 Rule-based adaptation approach  

Both recommendations described above, do not consider if the user domain (available devices) has the 

ability to check and use the recommended rule. Moreover, the recommended item has a feature file that 

describes the services and recommended devices to use to check and execute this rule item, for example, 
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CPU speed, sensor availability, RAM size and so forth should satisfy the capability context. We relied on 

rule-based approach to evaluate rule items against capability context. In this scope, after the generation of 

recommendation list of rule items, we have to determine which rules can be used and executed by user 

domain, using SWRL language (see Table 1). Our system applies an inference engine that is responsible 

to infer pertinent rules for a given domain situation. For example, the SWRL rule in Table 1 infers the 

situation rules which have the requirement (e.g., CPU speed) to run correctly on user domain and then 

add them to the user recommended agenda. 

Table 6.1: SWRL rule that infers appropriate situation rules based on the terminal capabilities. 

UserProfile (?user) ∧ userDomain (?user, ?device) ∧ hasCPU (?device, DeviceCPUSpeed) ∧ hasRAM 
(?device, DeviceRAMSize) ∧ network (?device, DeviceNetwork) ∧ SituationRule (?rule, “House_Alarm”) 
∧ ruleHasCPURrequirement (?rule, RuleCPUSpeed) ∧ ruleHasRAMRrequirement (?rule, RuleRAMSize)  
∧ ruleHasNetworkRrequirement(?rule, RuleNetworkSpeed)  ∧ greaterThan (DeviceCPUSpeed, 
RuleCPUSpeed) ∧ greaterThan (DeviceRAMSize, RuleRAMSize) ∧ greaterThan (DeviceNetwork, 
RuleNetworkSpeed) → agenda(?user, ?rule) 

6.4 Illustrative case study  

In this section, we illustrate our approach with an illustrative use case. As an example, we clarify the whole 

process of ontology-based context-aware recommendation. First of all, after the user sets his explicit 

preference (see Figure 6.6), we extract the PP vector (preference pair) for explicit preference as we show 

above (Also, the PP vector for implicit preference is extracted as we have shown previously). 

 
Figure 6.6: An example of explicit preference. 

 

Figure 6.7 illustrates the process of feature extraction and similarity measurement (we can use it 

for both implicit and explicit preference), we assume W a set of weight (Wlocation = 0.75, Wrole = 0.45, Wfield 

= 0.75, WsubField = 0.35). The rule item represents a house alarm situation rule that happens when the user 

is outside his home with 20 meters tolerance value and it has two fields value (Security and Domotics). 

The similarity calculated for explicit preference is 0.88 (same as explicit preference, the similarity 

calculated for implicit preference is 0.71). 
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Figure 6.7: An example of feature extraction and similarity measurement. 

After the similarity measurement, we can estimate the probability that a user will use the rule 

item “House_Intrusion_Alarm” outdoors on a weekday. The probability will calculate using the Bayesian 

classifier approach as we show above, where the class Cj = (Outdoors, Weekday, Citizen). Figure 6.8 shows 

an example of user agenda history. According to the Bayesian equations we have presented above: 

P(Cj|”House_Intrusion_Alarm”)= P(”House_Intrusion_Alarm”| Cj) P(Cj) / P(”House_Intrusion_Alarm”) = 0.48 

 
Figure 6.8: An example of user agenda history. 

After that, the final score of the rule item (“House_ Intrusion_ Alarm”) will be measured using the 

weighted linear combination equation (assuming, WEP = 0.35, WIP = 0.35, WS =0.30). The final 

recommendation score is: 

𝑆𝑐𝑜𝑟𝑒 =  0.35 × 𝑂. 88 + 0.35 × 0.71 +  0.30 ×  0.48 = 0.7  

Finally, we rank all rule items according to the scores reached through these three steps and choose 

the rule items which have the highest score. Next, we use the rule-based approach to select rule items that 

can be used and executed by user domain, using SWRL language. 

6.5 Conclusion 

In this chapter, we have presented an ontology-based context-aware approach for user’s situation rules 

classification and recommendation for adaptable context-aware mobile application. Our approach is 

mainly consisting on two processes, the learning process and the recommendation process. The former 
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can be summarized in the semantic classification of user’s situations rules. While the latter is based on the 

dynamic injection of situations rules at run-time through the hybridization of the content-based approach, 

the Bayesian classifier approach, and the ontology-based SWRL rules. The recommendation process 

leverages the benefit of explicit and implicit user’s preferences rules, user’s roles and Bayesian network 

to increase significantly performances for relevant situation rules recommendation. Besides, the use of 

ontology model on learning and recommendation processes facilitates the filtering and customization of 

situation rules. The approach has been demonstrated through a simple case study to simulate its overall 

execution flow.  

The next chapter is dedicated to present the implementation and validation of the proposed 

semantic context-aware rule-based composite situation management approach. 
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Chapter 7    

Prototype and Evaluation  

Summary 

7.1 Introduction 

7.2 Prototype implementation  

7.3 Experimental evaluation  

             7.3.1 Experimental setup  

             7.3.2 Evaluation parameters and metrics 

             7.3.3 Evaluation results and analysis  

                               7.3.3.1 Static evaluation results and analysis   

                               7.3.3.2 dynamic evaluation and analysis 

              7.3.4 Comparison with pipelining-based framework 

                               7.3.4.1 Impact of sensors number 

                               7.3.4.2 Impact of sensor’s frequency   

              7.3.5 Synthesis of results analysis and discussions 

7.4 Conclusion 

7.1 Introduction 

The huge number and diversity of sensors in pervasive environment lead to high complexity in terms of 

interpreting: huge data volumes, parallel incoming events, different modalities, inter-dependence and 

real-time update. Moreover, in real world, sensors produce parallel data that my result in sensing of user’s 

activities or environment state. Consequently, the execution of pervasive applications leads to monitor 

parallel incoming event in order to interpret different users’ behaviors. Many limitations in pervasive 

environments as incomplete, redundant and contradictory context data that may produce uncertainty 

issue. Traditional context monitoring systems monitor parallel incoming event sequentially. This may 

slow down the identification process of user’s composite parallel situations, which decrease the 

performance of systems. Our challenge is to provide a system that allows monitoring parallel incoming 

events and parallelly processing different users’ situations.   

This chapter presents the implementation and validation of the proposed semantic context-aware 

rule-based composite situation management approach in the context of distributed smart Environments. 

We developed a new framework with agile situations management process and parallel distributed 

microservices-based tasks that reduce the complexity of user’s situations management and provides quick 

response time. The experiments were conducted by generating a specific number of situations and various 

types of attribute-based sensors events to demonstrate the efficiency and the effectiveness of the presented 

approach. We showed the interest of the proposed solution basing on two different approaches, sequential 
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approach and parallel approach. The sequential approach had only a single task that ran in a single processor 

to check all the users’ situations. In contrast, the parallel approach had tasks as much as the number of 

user’s situations that simultaneously ran at the same time in different processors’ cores (multi-core 

processor). 

In this chapter, we present in section 7.2 a prototype implementation of parallel identification 

process for composite situations. Then, we present in section 7.3 the different experimental evaluation of 

our prototype, where we define the used parameters and evaluated metrics, as well as results validation. 

Finally, section 7.4 concludes this chapter.   

7.2 Prototype implementation  

Our prototype is implemented with IntelliJ IDEA 17.2. The agile process of situation’s identification is the 

main part of our framework. The prototype is able to manage and identify composite situations under 

different user context changes. The context changes are frequently captured and sensed (every 20 

milliseconds) by different sensors. It allows as much capturing of incoming events as possible in a parallel 

way in order to process them in a parallel way, which improves the performance system and reduces the 

response time. In addition, it can frequently filter user situations (using SPARQL queries as shown in 

Table 4.3 Chapter 4) according to two parameters (current user’s location and time) trying to submit only 

pertinent users’ situations that are executed at a given location and/or time and thus enhancing the 

situation identification process. After the filtering process, the selected situations may include redundant 

events, as well as redundant situations. Before sending them to the Executor, they have to be factorized 

to eliminate all the redundant events and situations. After that, the factorized events and situations will be 

encapsulated in the Runnable microservices classes in order to send them to the Executor to execute them 

in different threads. The prototype manages the life cycle of a situation as a thread, according to user’s 

spatiotemporal values by dynamically creating/updating/killing this thread.  

Our framework is smart enough to identify any abnormal situations and prioritizes the processing 

of urgent situations. In case of urgent situations like health-heart-situations, the expert (i.e., a doctor in 

the case of smart health domain) set situations priorities based on the user’s context condition (i.e., 

patient’s health and disease’s type). The system autonomously calls the urgent event processing. The Event 

Listener component monitors the user’s events and sends them to the appropriate Situation Identifier 

component. When the situation is identified, the Service Deployer component searches for the closest 

available services and requests the nearest service for immediate management of identified user’s situation. 

The main objective of our Java-based framework is to automatically manage composite user 

situations in different smart environments (smart-home, smart-university, smart-car, smart-hospital, etc.) 

in an efficient way using parallel paradigm in order to improve the situation identification process. The 
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situation identification process is the core part of our framework, which is responsible for receiving and 

aggregating context data from the smart object layer and then send them to each specific situation as 

required. The Multi-OCSM offers an automatic matching between the events’ context data and their specified 

situation rules using the semantic links between them. 

7.3 Experimental evaluation  

For evaluation purposes, we included two generator modules. The first one is the situation generator 

module that creates a specified number of situations in order to simulate the identification process of 

situations. The number of situations is varied in each execution; thus, we can simulate the scalability 

experiment for a different number of situations. Moreover, we have observed and calculated different 

metrics such as (execution time, expired/unexpired events, missed/unmissed situations, a number of 

worker threads), to evaluate the performance of the prototype. The second one is the dataset generator 

module, which is responsible for generating various types of sensor events. The event’s valid period is set 

to a specific lifetime. During the verification process, if there is an event that exceeds its lifetime, it will 

be marked as an expired event.  

7.3.1 Experimental setup 

To evaluate the performance of parallel and sequential approach with their processing algorithms, we 

conducted many experimental evaluations by means of simulations. All simulations have been performed 

on a PC running Windows 10 (64 bits) on an Intel processor core i5-2430 2.4 GHz, and 8 GB RAM.   

With simulation, we included two generator modules: the situation generator and the dataset 

generator. The situation generator module that creates a specified number of situations permits the 

identification process of situations to be simulated. We have simulated both approaches with different 

number of situations that gradually increased after each run. Thus, we can simulate the scalability 

experiment for a large number of situations. The dataset generator module is responsible for generating 

various types of sensor events (states of doors, lights, home temperature, user location, user glucose level, 

user movement states), resulting in 50,000 sensor events. 

The performance of a parallel and sequential approach can be measured using different metrics such 

as an expired event ratio, missed situation ratio, number of submitted microservice and execution time. 

7.3.2 Evaluation parameters and metrics 

In order to evaluate the efficiency and effectiveness of the proposed approach, several parameters and 

metrics have been adopted. We have defined four parameters including the sensor’s frequency time, the 

event’s appearance time, the event’s validity period and the event’s expired time. The sensor’s frequency-

time defines the frequency-time of sending the sensing data to the system. The event’s appearance time 

(tcapture) is the time when the event is captured by the sensor. The event’s validity period is the interval 
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time between the event’s appearance time (tcapture) and the event’s expired time (texpired). The event’s 

expired time (texpired) is its expiration time (see figure 7.1) after the validity period has expired. 

 

Figure 7.1: Event lifetime. 

To evaluate the performance of parallel and sequential approaches, we have defined five evaluation metrics 

during the situation’s verification process, including expired event ratio, missed situation ratio, number 

of situations’ verifications, number of submitted threads, and execution time. Expired event ratio and 

missed situation ratio are used to assess the approach effectiveness and the quality of the proposed situation 

identification process. The number of situations’ verifications and number of submitted threads are used 

to measure the scalability of the proposed approach. The execution time is used to assess the system 

performance in static and moving scenarios.  

• Expired event ratio: the ratio of the number of expired events to the total amount of the 

events: 

𝐸𝑥𝑝𝑖𝑟𝑒𝑑 𝐸𝑣𝑒𝑛𝑡 𝑅𝑎𝑡𝑖𝑜 =  
𝐸𝑥𝑝𝑖𝑟𝑒𝑑𝐸𝑣𝑒𝑛𝑡

𝐸𝑥𝑝𝑖𝑟𝑒𝑑𝐸𝑣𝑒𝑛𝑡 + 𝑈𝑛𝑒𝑥𝑝𝑖𝑟𝑒𝑑𝐸𝑣𝑒𝑛𝑡
                             (1) 

Where, 

o Expired event is the total number of events that have exceeded their lifetime, where each 

event that exceeds its lifetime is marked as an expired event. 

o Unexpired event is the total number of events that have not exceeded their lifetime, 

where each event that does not exceed its lifetime is marked as an unexpired event. 

• Missed situation ratio: the ratio of the number of missed situations to the amount of total 

missed and unmissed situations: 

𝑀𝑖𝑠𝑠𝑒𝑑 𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑖𝑜𝑛 =  
𝑀𝑖𝑠𝑠𝑒𝑑𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛

𝑀𝑖𝑠𝑠𝑒𝑑𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛 + 𝑈𝑛𝑚𝑖𝑠𝑠𝑒𝑑𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛
                 (2) 

Where, 

o Missed situation: the total number of situations that have at least an expired event; each 

situation has at least an expired event is marked as a missed situation. 

o Unmissed situation: the total number of all situations that do not have any expired 

events: each situation that does not have any expired event is marked as unmissed 

situation. 



Chapter 7                                                                                                                                                                                              Prototype and Evaluation  

142 

  

• Number of situations’ verifications: the total number of verifications of all situations. Each 

time a situation receives a required event, it starts its verification, then incrementing the number 

of situations’ verifications. 

𝑁𝑏𝑠𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛𝑠_𝑣𝑒𝑟𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠 =  ∑ 𝑁𝑏𝑣𝑒𝑟𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛(𝑆𝑖) 

𝑛

𝑖=1

                                         (3) 

Where, 

o 𝑵𝒃𝒗𝒆𝒓𝒊𝒇𝒊𝒄𝒂𝒕𝒊𝒐𝒏(𝑺𝒊): number of verifications of the situation i. 

• Number of submitted threads (micro-services): the sum of submitted events and situations 

as threads executed by different cores of the processor. 

𝑁𝑏𝑚𝑖𝑐𝑟𝑜𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑠 = 𝑁𝑏𝑠𝑢𝑏𝑚𝑖𝑡𝑡𝑒𝑑_𝑒𝑣𝑒𝑛𝑡𝑠 + 𝑁𝑏𝑠𝑢𝑏𝑚𝑖𝑡𝑡𝑒𝑑_𝑠𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛𝑠                           (4) 

Where, 

o 𝑵𝒃𝒎𝒊𝒄𝒓𝒐𝒔𝒆𝒓𝒗𝒊𝒄𝒆𝒔: total number of microservices. 

o 𝑵𝒃𝒔𝒖𝒃𝒎𝒊𝒕𝒕𝒆𝒅_𝒆𝒗𝒆𝒏𝒕𝒔: total number of submitted events. 

o 𝑵𝒃𝒔𝒖𝒃𝒎𝒊𝒕𝒕𝒆𝒅_𝒔𝒊𝒕𝒖𝒂𝒕𝒊𝒐𝒏𝒔: total number of submitted situations. 

• Execution time: the time needed to accomplish the verification of a specific number of 

situations’ verifications.  

𝑇𝑒𝑥𝑒𝑐 = ∑ 𝑇𝑓𝑖𝑙𝑡(𝑖)

𝑛1

𝑖=1

+ ∑ 𝑇𝑠𝑒𝑛𝑠𝑖𝑛𝑔(𝐸(𝑗))

𝑛2

𝑗=1

+ ∑ 𝑇𝑣𝑒𝑟𝑖𝑓(𝑆(𝑘))

𝑛3

𝑘=1

+ ∑ 𝑇𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑(𝑧)

𝑛4

𝑧=1

        (5) 

Where, 

o 𝑻𝒆𝒙𝒆𝒄: the execution time of all the processes. 

o 𝑻𝒇𝒊𝒍𝒕(𝒊): the execution time of the filter i.  

o 𝑻𝒔𝒆𝒏𝒔𝒊𝒏𝒈(𝑬(𝒋)): the time needed for sensing the event j.    

o 𝑻𝒗𝒆𝒓𝒊𝒇(𝑺(𝒌)): the time needed to verify the situation k. 

o 𝑻𝒐𝒗𝒆𝒓𝒉𝒆𝒂𝒅(𝒛): the overhead time that can be spent in tasks management (i.e. 

synchronization, place new tasks into the queue and take queued tasks for execution) 

o 𝑛1: number of filtering of the situations. 

o 𝑛2: number of sensed events. 

o 𝑛3: number of verified situations. 

o 𝑛4: number of managed tasks. 

Assume that several user’s situations are intended to be analyzed and identified. Therefore, the 

main objective of an approach is to minimize the missed situations and expired events ratio for a specific 

period of time. We consider an approach to work well if it can verify as many situations in a very specific 
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time with a very low ratio of expired events and thus a very low ratio of missed situations. That is, the 

approach will be measured in four metrics, expired event ratio, missed situation ratio, number of 

submitted threads and execution time. 

On the other hand, we intend to compare our proposed parallel framework vs pipelining-based 

framework [118]. Therefore, two metrics have been used to evaluate and compare performance between 

these frameworks, namely, event detection latency and throughput. 

•  Event detection latency: the time delay between event acquisition and event detection.  

𝑙𝑎𝑡𝑒𝑛𝑐𝑦 =  
∑ (𝑇𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑖

−  𝑇𝑎𝑐𝑞𝑢𝑖𝑠𝑖𝑡𝑖𝑜𝑛𝑖
)𝑛

𝑖=1  

𝑛
                                 (6)  

Where, 

o 𝑻𝒂𝒄𝒒𝒖𝒊𝒔𝒊𝒕𝒊𝒐𝒏𝒊
: the acquisition time of event i. 

o 𝑻𝒅𝒆𝒕𝒆𝒄𝒕𝒊𝒐𝒏𝒊
: the detection time of event i. 

o 𝑛: number of detected events. 

• Throughput: number of detected events per minute. 

In the next sections, we evaluate and compare the performance of different proposed strategies 

including parallel and sequential approaches. Furthermore, we evaluate our parallel proposed approach vs 

pipelining-based approach [118].  

7.3.3 Evaluation results and analysis  

In this section, we show the evaluation of the proposed solution based on two different approaches, 

sequential and parallel. Parallel and sequential approaches have different strategies concerning user 

situations identification and event detection. The sequential approach uses only a single task that runs in a 

single processor to check all user’s situations. In contrast, the parallel approach uses tasks as much as the 

number of user’s situations that run simultaneously at the same time in different processor cores. The 

more cores a machine has, the more events detection and situations identification tasks can be performed 

simultaneously. 

We evaluated and compared the performance of the implemented approaches by measuring four 

metrics: execution time, expired event ratio, missed situation ratio, a total of submitted microservices. 

The expired event ratio and missed situation ratio were crucial factors. The high ratio showed the poor 

performance of the approach and it created negative user experiences leading to the famous problem of 

oscillation. This problem concerning a user’s mobility happened when the system took a significant delay 

to check a situation. The triggered actions were meaningless in some urgent cases because 

the user’s context changes and this can have a negative impact on the system. To cope with this problem, 

we marked each event with an appearance time. Then we obtained the event’s expired time by adding the 
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event’s appearance time to the event’s validity period and compared it with the current time. If the current 

time was after the event’s expired time, then the event would be marked as an expired event. As a 

consequence, it causes a missed situation. In a cycle of situation verification, if a situation receives more 

than one event and there is more than one expired event, the number of missed situations would be 

incremented only by 1. Unlike the number of expired events, it would be incremented each time we had 

an expired event. When the situation was marked as missed, the actions would not be triggered and thus 

avoid meaningless triggered actions. 

In the next sections, to validate the performance of the proposed implemented approaches, we 

present a comparison of four defined metrics on parallel and sequential approaches for identifying urgent 

composite situations. We used two kinds of scenarios: static and dynamic. For the static scenario, we 

focused on a specific user’s location (i.e., user at home) in high workload user situations with a varied 

number of situations’ verifications from 1,000 to 10,000. While for the dynamic scenario, we handled 

continuous context changes (i.e., the mobility of user) with dynamic filtering of situation rules according 

to each relevant context changes. In this case, we implemented two alternatives without/with the 

situation filtering process as a static number of situation rules and dynamic number of situation rules 

respectively. Thus, we can better observe the different effects that can be introduced using the filtering 

process. For all the evaluated experiments, the sensor’s frequency-time it was set to 20 milliseconds, and 

the event’s valid period was set to 50 milliseconds. During the situation verification process, if there was 

an event that exceeds its lifetime (i.e., 50 milliseconds), it will be marked as an expired event.  

7.3.3.1 Static evaluation results and analysis   

For the first scenario, a user has a specific location (i.e., at home). We want in this experiment to simulate 

a high workload case (i.e., a large number of situations and events) on sequential and parallel approaches. 

The goal is to minimize both the ratio of expired events and the ratio of missed situations, as well as the 

execution time. 

a. Evaluation and comparison of Expired Event Ratio  

We have evaluated the expired event ratio with different number of situation’s verifications (1000 – 5000) 

under varied events set size (34 – 64).   As shown in figure 7.2, we observe that the expired event ratio is 

very low, ranging from 0 to 0.073 that shows better performance of the parallel approach.   
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Figure 7.2: Expired event ratios under different events set in the parallel approach. 

We compare the expired event ratios of parallel approach with the expired event ratios of the sequential 

approach. As shown in figure 7.3, we can notice that the obtained results of parallel are much better than 

using the sequential approach. Clearly, the parallel approach yields better-expired event ratios on all 

events set involved in the simulation. This caused by multiple events detection microservices deployed at 

the same time on the processor cores. Thus, a system can manage a large number of incoming events in a 

parallel way. However, the sequential approach uses only one single task running in a single processor to 

check all the incoming events and user’s situations. 

 

Figure 7.3: Expired event ratio comparison between the parallel and sequential approaches. 

b. Evaluation and comparison of Missed Situation Ratio 

The missed situation ratio is an important performance factor in pervasive environments, which reflects 

the ability of the system to check a large number of situations in a specific time. In order to evaluate the 

impact of different approaches on the missed situation ratio, we have evaluated the missed situation ratio 
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with a different number of situation’s verifications (1000 – 5000) under varied situations rules (20 – 53).   

As shown in figure 7.4, we observe that the missed situation ratio is very low from 0 to 0.11, which shows 

better performance of the proposed parallel approach.   

 

Figure 7.4: Missed situation ratios under different number of situations rules in the parallel approach. 

The missed situation ratios of the parallel approach were compared to the missed situation ratios of the 

sequential approach. As shown in figure 7.5, the obtained results of the parallel approach are much better 

than the sequential approach. In 5000 situations verifications, the system with the parallel approach has 

better-missed situation ratios of 0.015 using 37 microservices while the system with sequential approach 

can achieve 0.073 using 23 microservices. Therefore, the parallel approach identifies various composite 

situations in several simultaneous microservices while the sequential approach adopts a single task for a 

situation identification.   

 

Figure 7.5: Missed situation ratio comparison between the parallel and sequential approaches. 
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c. Evaluation and comparison of execution time 

We have evaluated the execution time with a different number of situations’ verifications (1000 – 5000) 

under a varied number of microservices (20 – 53).   As shown in figure 7.6, we observe that the execution 

time of the parallel approach is very satisfactory, ranging from 500ms to 4500ms.   

 
Figure 7.6: Execution time under different numbers of situation’s verification in the parallel approach. 

We compared the execution time of the parallel approach with the execution time of the sequential 

approach. As shown in figure 7.7, we can notice that the obtained results from 1000 till 3000 situations’ 

verifications are nearly equal in both approaches. After the 3000th situations’ verifications, the parallel 

approach became better than the sequential approach. The parallel approach yields lower execution time 

than the sequential approach due to the use of several situations and events microservices deployed 

simultaneously on different processor cores while the sequential approach considers only a single 

processing task inside the same processor.   

 
Figure 7.7: Execution time comparison between the parallel and sequential approaches. 
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d. Evaluation of Expired Event Ratio vs Number of microservices  

Figure 7.8 shows the expired event ratio of the parallel approach versus the number of microservices. We 

set the number of situation’s verification to 10000, and we increase the number of microservices from 20 

to 53. Obviously, our parallel approach has very low expired event ratios between 0 and 0.13. The parallel 

approach has a high number of simultaneous processing microservices, which may increase the processing 

load and further lead to increase the expired event ratio. In addition, the parallel approach can rise the 

processing overload, so a high-performance machine is required to fully exploit available computing 

resources in order to handle a significant number of incoming parallel events.  

 

Figure 7.8: Number of micro-service vs expired event ratio in the parallel approach. 

 

e. Evaluation of Missed Situation Ratio vs Number of microservices  

Figure 7.9 illustrates the missed situations ratio of the parallel approach versus the number of 

microservices ranging from 20 to 53. The missed situation ratio for the parallel approach is considerably 

low in all the experiments. The parallel approach has a high number of simultaneous processing 

microservices, which may increase the processing load and further lead to increase the missed situation 

ratio. This ratio must be improved in future works using a high-performance machine.  
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Figure 7.9: Number of micro-services vs missed situation ratio in the parallel approach. 

 

7.3.3.2 Dynamic evaluation and analysis   

Unlike the first evaluation scenarios approach, the dynamic evaluation scenario considers dynamic context 

changes (mobility of the user, various events for each smart-domain and various context sources). In order 

to verify and evaluate the proposed approach that we have conducted in this study to simulate user 

mobility, such that the user changes his location from one smart-domain to another to show the 

performance evolutions.  Two experiments were conducted to demonstrate the efficiency of the proposed 

approach in terms of the number of expired events and the number of missed situations.  

a. Expired Event vs.  #Event’s Microservices vs. # Situation’s verification 

Figure 7.10 shows the number of expired events of the parallel approach versus the numbers of events 

microservices ranging from 22 to 64 and the number of situation’s verification ranging from 1000 to 8000. 

Obviously, when the number of situations verification increases with the number of events microservices, 

the number of expired events increases due to the limited number of processor cores and the time 

consumed by the filtering process. Therefore, the system will not be able to detect all occurred events. 
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Figure 7.10: Evaluation of expired events on the parallel approach in dynamic scenarios. 

b. Missed Situations vs. #Situation’s Microservices vs. # Situation’s verification  

In this experiment, we have evaluated the number of missed situations versus the number of submitted 

microservices as well as the number of situation’s verification. When the number of situation’s verification 

increases with the number of situations microservices, the number of missed situations increases as shown 

in figure 7.11. Furthermore, the limited number of processor cores, the time consumed by the filtering 

process and simultaneous execution of situations identifier microservices cause the increase of the number 

of missed situations.  

 

Figure 7.11: Evaluation of missed situations on the parallel approach in dynamic scenarios. 
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7.3.4 Comparison with pipelining-based framework  

7.3.4.1 Impact of sensors number 

In this section, we seek to study the impact of sensors number on the event detection latency and 

throughput. We have performed several tests under varied number of sensors ranging from 200 to 1000. 

Experiments are performed using two types of sensors: scalar (temperature sensor) and multimedia 

(camera sensor) with a fixed sensor frequency of 500ms to collect context data. Therefore, we have 

developed a simulator that generates random values of temperature based on standard deviation with 

configurable sampling frequency. In addition, it produces a random image frame that represents an image 

of an office with no one inside, or with at least people inside. Temperature and camera events are 

considered as simple events. An atomic event condition high_temp is associated with the temperature 

sensor to detect if the sensed temperature is higher than 22 °C. An atomic event condition face_detected is 

associated with the camera sensor to detect if the image frame contains at least one person. 

To evaluate the performance of our parallel microservice-based framework, 4 main steps have been 

applied: (1) deploying 200 sensors with a fixed frequency of 500ms, where each sensor is executed by a 

microservice; (2) defining two complex events statement (using two combination operators: overlap and 

sequential)   for temperature and camera stream detection associated with temperature and camera sensors 

respectively: face_detected OVERLAPS high_temp and SEQ(face_detected, high_temp), (3) performing 

complex events detection through a simulation of 10 minutes, and evaluating the throughput and event 

average detection latency per minute, (4) repeat all previous steps with 400, 600, 800 and 1000 sensors.   

We have compared the proposed parallel microservice-based framework with the pipelining-based 

framework [118] by evaluating the events detection performance. Figure 7.12 shows a throughput 

comparison of the proposed approach vs pipelining-based framework with varied number of sensors (200 

– 100) using overlap operator (part a) and sequential operator (part b). Results show that the proposed 

approach promotes better performance in terms of throughput than pipelining-based framework. Clearly, 

temporal operators including OVERLAPS (figure 7.12.a) and SEQ (figure 7.12.b) have slightly different 

performance since they have different detection processes that can affect the throughput. Furthermore, as 

we can see in figure 7.12, results show that the proposed approach can support up to 60 163 events per 

minute with OVERLAPS operator and 60 148 events per minute with SEQ operator.  On the other part, 

the pipelining-based framework can up only to 11 631 events per minute with OVERLAPS operator and 

10 034 events per minute with SEQ operator. The proposed approach outperforms the pipelining-based 

framework, which yields better throughput values across all number of sensors employing either 

sequential or overlap operators. This shows that our parallel microservice-based framework can support 

a high workload case compared to the pipelining-based framework. 
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Figure 7.12: Throughput comparison of the proposed approach vs pipelining-based framework [118] 

using a) overlap operator, b) sequential operator. 

 

Latency is one of the main metrics that can evaluate the system performance in terms of speed of event 

detection. Research studies in pervasive computing suggest that the defection latency should be less than 

1000ms in most cases [118]. Figure 7.13 shows a Latency comparison of the proposed approach vs 

pipelining-based framework [118] using overlap operator (part a) and sequential operator (part b). Results 

show that increasing the number of sensors has no effect on the event detection latency in both approaches. 

Furthermore, as we can see in figure 7.13, results show that the proposed approach has an average event 

detection latency of 2.4ms with OVERLAPS operator and 20ms with SEQ operator.  On the other part, 

the pipelining-based framework has an average event detection latency of 522ms with OVERLAPS 

operator and 588ms with SEQ operator. The proposed approach outperforms the pipelining-based 

framework, which yields low latency across all number of sensors employing either overlap or sequential 

operators. 
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Figure 7.13: Average latency comparison of the proposed approach vs pipelining-based framework 

[118] using a) overlap operator, b) sequential operator. 

 

7.3.4.2 Impact of sensor’s frequency   

In pervasive environment we can find various sensors with different sampling frequencies. In fact, small 

sampling frequencies may overload the system by receiving a huge number of incoming events in a small 

period of time, which may affect negatively the system’s performance in terms of throughput and event 

detection latency. In order to verify how our proposed approach performs under different sampling 

frequency, we have conducted a set of experiments with the same applied steps in the previous 

experiments, except varying sensors frequency ranging from 50ms to 1000ms. In these experiments, we 

have fixed the number of sensors to 1000 sensors. 

We have compared the impact of varying sensor’s frequency on the event detection throughput on 

both proposed approach and pipelining-based framework [118]. Figure 4.14 shows a throughput 

comparison of the proposed approach vs pipelining-based framework using overlap operator (part a) and 

sequential operator (part b). As shown in figure 4.14 at 200ms sampling frequency, results show that the 

proposed approach can support up to 149 750 events per minute with OVERLAPS operator and 149 737 

events per minute with SEQ operator. On the other part, the pipelining-based framework can up only to 

28 600 events per minute with OVERLAPS operator and 25 000 events per minute with SEQ operator. 

The proposed approach outperforms the pipelining-based framework, which yields better throughput 

values across all varied sensor’s frequency employing either sequential or overlap operators.  
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Figure 7.14: Throughput comparison of the proposed approach vs pipelining-based framework [118] 

using a) overlap operator, b) sequential operator (number of sensors is fixed to 1000). 

 

In addition, we have compared the impact of varying sensor’s frequency on the event detection latency on 

the proposed approach and pipelining-based framework [118]. Figure 4.15 shows an event detection 

latency comparison of the proposed approach vs pipelining-based framework using overlap operator (part 

a) and sequential operator (part b). As shown in figure 7.15 at 400ms sampling frequency, results show 

that the proposed approach has an average event detection latency of 1.3ms with OVERLAPS operator 

and 7.7ms with SEQ operator. On the other part, the pipelining-based framework has an average event 

detection latency of 800ms with OVERLAPS operator and 850ms with SEQ operator. The proposed 

approach outperforms the pipelining-based framework, which yields low latency across all varied sensor’s 

frequency employing either overlap or sequential operators. 
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Figure 7.15: Average latency comparison of the proposed approach vs pipelining-based framework 

[118] using a) overlap operator, b) sequential operator (number of sensors is fixed to 1000). 

As observed from the experiments above, the proposed approach is better than the pipelining-based 

framework in terms of managing and detecting complex events. Furthermore, the proposed approach is 

more efficient and decreases considerably the latency, which makes it practicable to be used in near-real-

time pervasive environments.  

To sum up, the pipelining-based framework adopts the process paradigm for handling event 

detections [118]. In fact, it creates for each event detection unit an entire process where each process is 

responsible for handling the detection of atomic or complex events. However, creating, running, and 

managing processes for small units of code (tasks) is not feasible and may slow down system performances. 

Therefore, we have used a lightweight implementation (threads) to improve the system performance. We 

conclude that using parallel threads as microservices for events detections improves event detection in 

terms of throughput and latency. 

7.3.5 Synthesis of results analysis and discussions   

The experiments on the proposed parallel approach using events random dataset attain promising results 

compared to the sequential approach in terms of expired event ratio, missed situation ratio, and execution 

time. As a result, the proposed parallel approach is much better than the sequential approach in managing 

and identifying composite situations. In fact, the proposed parallel approach achieves a near-real-time 

situation identification for context-aware pervasive applications. Further, we have achieved satisfying 

scalability in terms of task management and thread execution on an Intel processor core i5-2430 2.4 GHz 

in which the system can manage 100 thread easily (see figures 7.8 and 7.9). 
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Furthermore, we have conducted several experiments to compare the performance of the proposed 

parallel approach vs pipelining-based approach. Experiments examine the impact of increasing the number 

of sensors and varying sensor’s frequency on both approaches. The proposed parallel approach 

outperforms the pipelining-based approaches. Compared to the pipelining-based approach, results show 

an average improvement of 82.4 % in terms of throughput. Also, we have seen an average improvement 

of -520ms in terms of event detection latency. As result, using shared threads instead of processes 

implementation yields better performance in terms of both throughput and latency. 

In future works, we intend to experiment our proposal using real-world connected objects. 

Therefore, we plan to go into a real IoT infrastructure to perform large-size applications and improve the 

execution time using high-performance machines. 

7.4 Conclusion 

In this Chapter, we have proposed an implementation and evaluation of prototype framework for 

managing context-aware composite situations of the smart environment. It is based on a multi-layered 

ontology model to describe the composite situations semantically. They are expressed through numerous 

simple situations and rich composition operators (parallel, sequence, alternative and recurrence). We take into 

account a large number of situations on the fly. Thus, we dynamically and easily filter new relevant 

situations rules using flexible context-aware microservices-based architecture. Several experiments were 

conducted using a real-life motivating scenario. Experimental results have shown that the proposed 

approach provides better efficiency while ensuring a very low number of missed situations. A comparison 

with the sequential approach shows that the proposed parallel approach is more efficient and decreases the 

number of expired events. However, the situation checking number must be improved in future works. 

Further, we have conducted several experimental comparisons between the proposed parallel approach 

and the pipelining-based approach. Experimental results have shown that the proposed parallel approach 

outperforms the pipelining-based approaches in terms of throughput and event detection latency.  

Future work can focus on the validation of the proposed architecture by implementing a global 

framework using real-world multimedia sensors devices (Arduino, Raspberry), smart objects and 

semantic web technologies. 
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General Conclusion 

1. Summary  

The emerging idea of context-aware pervasive computing systems is rapidly finding its path in assisting 

users everywhere, anytime, through widespread sensors and mobile devices. In this thesis, our main goal 

is to serve users during their daily life activities in various smart domains (health, transport, home, drive, 

etc.) by providing them with relevant services according to their current needs, preferences and situations. 

Despite the dynamicity of user’s needs and the heterogeneity of smart objects in terms of 

hardware/software features, communication protocols, and context data types in pervasive environment, 

we have opted for using generic ontology models to hide this dynamicity and heterogeneity. This choice 

aims to achieve a shared and common knowledge representation model. Therefore, we have introduced 

a new ontology entitled Multi-OCSM (Multi-layered Ontology-based Composite Situation Model), which 

is based on SSN (Semantic Sensor Network ontology) [49], DUL (DOLCE Ultra-Light Ontology) [52], 

and OWL-S (OWL-based Web service ontology) [110] to represent and manage both simple/composite 

situations in pervasive computing systems including composition operators (parallel, sequence, recurrence 

and alternative). Moreover, it supports SPARQL queries allowing users to explore the ontology and 

customize the situations filtering according to their constraints and preferences.   

Furthermore, we have found that the management and identification of a large number of user’s 

composite situations cost a significant processing time. Therefore, we have opted to propose a real-time 

ontology-based approach for parallel composite situation reasoning to accelerate the identification of 

urgent situations. In this scope, we have used Java 8 concurrency APIs [21] to manage multithreading tasks 

that process parallel incoming events to improve the parallel identification of composite situations. In 

addition, we have proposed a priority strategy for speeding up the queued urgent situation rules that run 

simultaneously across collaborating microservices.  

Due to the huge number of user’s daily activities, it is a cumbersome task for each user to identify 

his specific rules in any daily life cases. Therefore, we have proposed a rule-based recommendation system 

for injecting new situation rules into user’s agenda. In fact, we have relied on the Multi-OCSM ontology 

to suggest meaningful situation rules that meet users’ needs during their movements through different 

smart domains. 

To summarize, the main contributions of this thesis are: 

The first contribution realizes a novel user-centric composite situation ontology based on multi-

layered context-aware semantic microservices called Multi-OCSM (Multi-layered Ontology-based 



General conclusion  

158 

  

Composite Situation Model) [19]. It described both simple and composite situation rules and its semantic 

description including composition operators (parallel, sequence, recurrence and alternative), prioritized 

situations rules, and reconfiguration actions in order to ensure service continuity and immediate response 

time. This ontology facilitated the management of a large number of heterogeneous smart objects and 

services, semantic features related to the context data for the interpretation of parallel events and 

interoperability of different incoming events and highlights the semantic rules of user. 

The second contribution realizes an extension of Kali-smart middleware [9]. It provides 

composition operators including parallel, sequence, alternative, and recurrence in the modeling of 

composite situations. The main virtue of such extension is to automate the generation of reconfigurable 

mobile applications and to ensure a loosely coupled architecture, which implies flexible adaptability in 

pervasive environments. 

The third contribution consists in proposing a novel parallel identification framework of composite 

situations for smart environments [19], which describes situation rules using context-aware microservices-

based approach. It ensures parallel monitoring and processing of streaming context data in order to 

identify both simple/composite situations. The identification process is based on the Multi-OCSM 

ontology to identify dynamically situation changes. Further, a priority mechanism is proposed to improve 

the situation’s identification process and speeding up queued urgent situations that have high priority. 

The fourth contribution realizes a context-aware recommendation system for suggesting and 

injecting meaningful situation rules into user’s agenda [20]. Further, it extends our Multi-OCSM to 

classify situation rules before applying the recommendation process to achieve a high quality of 

recommendation considering three context categories (user preference, situation context and device 

capability). 

To validate our work, we have a prototype developed for composite situations parallel identification 

based on the Multi-OCSM reasoning for services reconfiguration and adaptation. To realize our prototype, 

we have relied on Protégé [113] to implement the Multi-OCSM and Java 8 concurrency APIs [21] to 

implement the parallel identification framework. The prototype provides several functionalities including 

monitoring and management of context, filtering and the factorization of relevant situation rules, 

prioritizing of situation rules, and parallel identification of both simple/composite situations. Further, we 

have conducted a set of experiments on a continuous context monitoring according to a real-life 

motivating scenario based on two approaches including parallel and sequential identification processes. 

Experimental results have shown that the proposed parallel approach provides better efficiency while 

ensuring a very low number of missed situations. A comparison with the sequential approach shows that 

the proposed parallel approach is more efficient and decreases both the number of expired events and the 

response time. 
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Our contributions are very interesting for various smart application domains. We have proposed 

an agile framework for parallel identification and injection of composite situation in smart-* domains. The 

main advantages of the proposed solution compared to existing related works are the real-time semantic 

composite situation management approach in reconfigurable smart environments, as well as, less 

execution time for identifying urgent situations, and remarkable effectiveness and flexibility.  

2. Future Works 

The work presented in this thesis has addressed various research areas in pervasive computing systems 

regarding situations modeling, identification, and recommendation through loosely coupled and flexible 

architecture. To this end, we have elaborated some perspectives that seem relevant to be addressed in 

future works in order to improve our proposal. These perspectives are: 

➢ Extending Multi-OCSM ontology  

Technologies and concepts continuously evolve across generations. Therefore, we seek for 

extending our Multi-OCSM with rich new concepts and technologies such as new 

communication protocols (5G).  We intend for proposing a Domain Specific Language 

(DSL) for easy specification of user constraints. In addition, we seek for integrating 

consistency techniques with the ontology model to check semantic violations of user 

constraints. 

➢ Improving the performance of situation identification system  

We have noticed that overloading the processor (i5-2430 2.4 GHz) with a significant 

number of threads (>100) gradually increases the execution time of the identification 

process. Therefore, we intend to propose a new intelligent thread-based management 

algorithm that collects the current state of each processor (number of cores, number of 

threads in each core) then splits the queued tasks on processor cores with the slightest load. 

This makes the identification process more scalable while receiving parallel tasks for 

execution. 

➢ Ongoing to real-world smart objects  

Our prototype has been tested on a dataset resulting in 50,000 sensor events generated 

using a random events generator. We intend to experiment our proposal using real-world 

multimedia sensors and devices (Arduino, Raspberry, etc.). Therefore, we plan to go into 

a real IoT infrastructure to perform large-size applications using high-performance 

machines.
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 Appendix A 
Implementation of Event Task, Situation Identifier Task 

and Extended Thread Pool Executor 

A.1     Source code of Event Task class 

 

package sample.concurrent.tasks; 

 

import sample.console.ColorConsole; 

import sample.datastructure.event.Event; 

import sample.datastructure.event.SimpleEvent; 

import sample.knowledgebase.DatabaseConnector; 

import sample.datastructure.buffer.Buffer; 

import sample.runnableTask.SituationManagerTask; 

import java.util.Vector; 

import java.util.concurrent.Future; 

import java.util.concurrent.TimeUnit; 

import java.util.concurrent.atomic.AtomicInteger; 

import java.util.concurrent.locks.ReadWriteLock; 

import java.util.concurrent.locks.ReentrantReadWriteLock; 

 

public class EventTask extends ConcurrentTask { 

private int nextValue 

private Event event; 

private DatabaseConnector databaseConnector; 

private Vector<Buffer> producerBufferVector;   

private Vector<SituationIdentifierTask> situationIdentifierTaskVector;    

private Future<?> future 

private boolean cancellable; 

private ReadWriteLock readWriteLock = new ReentrantReadWriteLock(); 

public static AtomicInteger numOfEvents = new AtomicInteger(0); 

 

public EventTask(Event event, DatabaseConnector databaseConnector, int priority) { 

        super(priority); 

        this.nextValue = 1; 

        this.event = event; 

        this.databaseConnector = databaseConnector; 

        this.producerBufferVector = new Vector<>(); 

        this.producerBufferVector.add(SituationManagerTask.consumerBuffer); 

        this. situationIdentifierTaskVector= new Vector<>(); 

        cancellable = true; 

} 

 

@Override 

public void execute() { 

try 

{ 

numOfEvents.incrementAndGet(); 

SimpleEvent simpleEvent = (SimpleEvent) event; 

while(!Thread.currentThread().interrupted()) 

{ 

readWriteLock.writeLock().lock(); 

databaseConnector.updateNextSensorMeasuredValue(simpleEvent, nextValue++); 

readWriteLock.writeLock().unlock(); 

for(Buffer producerBuffer : producerBufferVector) 

producerBuffer.add(((SimpleEvent) event).clone()); 

TimeUnit.MILLISECONDS.sleep(simpleEvent.getSensor().getSensorFrequency().toMillis()); 

                     

} 

}  

catch (InterruptedException e) { 

System.out.println("Event interrupted "+event.getEventName()); 

} 

} 
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@Override 

public Object getObject() { 

return this; 

} 

 

public Future<?> getFuture() { 

return future; 

} 

 

public void setFuture(Future<?> future) { 

this.future = future; 

} 

 

public boolean isCancellable() { 

return cancellable; 

} 

 

public void setCancellable(boolean cancellable) { 

        this.cancellable = cancellable; 

} 

 

public void addEventBuffer(Buffer buffer){ 

if(!producerBufferVector.contains(buffer)) 

producerBufferVector.add(buffer); 

} 

public boolean addSituationIdentifierTask(SituationIdentifierTask sitIdTask){ 

if(!situationIdentifierTaskVector.contains(sitIdTask)){ 

situationIdentifierTaskVector.add(sitIdTask); 

situationIdentifierTask.getEventTaskVector().add(this); 

return true; 

} 

else { 

return false; 

} 

} 

 

public boolean removeSituationIdentifierTask(SituationIdentifierTask sitIdTask){ 

return situationIdentifierTaskVector.remove(sitIdTask); 

} 

 

public boolean kill(){ 

if (situationIdentifierTaskVector.size()==0 && cancellable) 

{ 

return future.cancel(true); 

} 

else 

{ 

            if(situationIdentifierTaskVector.size()==0 && !cancellable) 

            { 

                SituationManagerTask.mapIdEventToSituations.remove(event.getEventId()); 

            } 

        } 

        return false; 

} 

 

public boolean killNow(){ 

if (situationIdentifierTaskVector.size()==0) 

return future.cancel(true); 

return false; 

} 

 

public String getId() { 

return event.getEventId(); 

} 

 

public boolean compareAndSetIfHighPriority(int priority) { 

//the highest priority has the lowest number 

if(this.priority > priority) 

{ 

this.priority = priority; 

return true; 

} 

return false; 

} 

 

public Event getEvent() { 
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try { 

readWriteLock.readLock().lock(); 

return event; 

} finally { 

readWriteLock.readLock().unlock(); 

} 

} 

 

public SimpleEvent getClonedEvent() { 

try { 

readWriteLock.readLock().lock(); 

return ((SimpleEvent) event).clone(); 

} finally { 

readWriteLock.readLock().unlock(); 

} 

} 

} 

 

A.2     Source code of Situation Identifier Task class 

package sample.concurrent.tasks; 

 

import sample.console.ColorConsole; 

import sample.datastructure.event.SimpleEvent; 

import sample.datastructure.buffer.Buffer; 

import sample.datastructure.situation.Situation; 

import sample.datastructure.situation.SituationStatus; 

import sample.datastructure.situationRule.condition.SimpleCondition; 

import sample.runnableTask.SituationBinder; 

import sample.runnableTask.SituationManagerTask; 

import java.util.Vector; 

import java.util.concurrent.ConcurrentHashMap; 

 
public class SituationIdentifierTask extends ConcurrentTask{ 

private Situation situation; 

private String status; 

private Buffer producerBuffer; 

private SituationBinder situationBinder; 

private Vector<EventTask> eventTaskVector;       

private ConcurrentHashMap<String, EventTask> eventTaskRegistry; 

private Object object; 

 

public SituationIdentifierTask(Situation situation, int priority) { 

super(priority); 

this.situation = situation; 

this.producerBuffer = consumerBuffer; 

this.eventTaskVector =new Vector<>(); 

status = SituationStatus.IDLE; 

situationBinder = null; 

} 

 

public void refreshObject(Object object){ 

this.object = object; 

} 

 

@Override 

public void execute() { 

if(situationBinder == null) 

this.situationBinder = new SituationBinder(situation); 

try { 

if(object instanceof SimpleEvent) 

{ 

SimpleEvent consumedEvent = (SimpleEvent) object; 

SimpleCondition simpleCondition = 

situationBinder.bindSimpleConditionToNewSimpleEvent(consumedEvent); 

situation.check(); 

if(situation.isChangedStatus()) 

{ 

if(situation.isChecked()) 

                        System.out.println(+"Situation :" + situation.getSituationName() + "        

             Is changed status now / Checked ="+situation.isChecked() 

else 

System.out.println("Situation :" + situation.getSituationName() + " 
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Is changed status now / Checked ="+situation.isChecked()); 

} 

else 

{ 

                        System.out.println("*Situation : " + situation.getSituationName()  

" Is not changed status / Checked ="+situation.isChecked()); 

} 

} 

else 

{ 

if(object instanceof Situation) 

{ 

Situation consumedSituation = (Situation) object; 

                       

situationBinder.bindAndUpdateSituationWithNewSituation(consumedSituation); 

situation.check(); 

if(situation.isChangedStatus()) 

{ 

if(situation.isChecked()) 

{ 

System.out.println(+ "Composite Situation :" + 

situation.getSituationName() + " Is changed status now / Checked 

=" + situation.isChecked()); 

} 

else 

{ 

System.out.println("Composite Situation :" + 

situation.getSituationName() + " Is changed status now / Checked 

=" + situation.isChecked()); 

} 

} 

else 

{ 

System.out.println("Composite Situation : " + 

situation.getSituationName() + " Is not changed status / Checked 

="+situation.isChecked()+); 

} 

} 

} 

if(situation.isInvolved()) 

producerBuffer.add(situation); 

} catch (NullPointerException e){ 

e.printStackTrace(); 

} 

} 

 

public Object getObject() { 

return this; 

} 

 

public void setEventTaskRegistry(ConcurrentHashMap<String,EventTask> eventTaskReg) { 

this.eventTaskRegistry = eventTaskReg; 

} 

 

public Situation getSituation() { 

return situation; 

} 

 

public void setSituation(Situation situationRule) { 

this.situation = situationRule; 

} 

 

public Buffer getProducerBuffer() { 

return producerBuffer; 

} 

 

public void setProducerBuffer(Buffer consumerBuffer) { 

this.producerBuffer = consumerBuffer; 

} 

 

public SituationBinder getSituationBinder() { 

if(situationBinder == null) 

this.situationBinder = new SituationBinder(situation); 

return situationBinder; 

} 

 

public Vector<EventTask> getEventTaskVector() { 
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return eventTaskVector; 

} 

 

public void setEventTaskVector(Vector<EventTask> eventTaskVector) { 

this.eventTaskVector = eventTaskVector; 

} 

 

public String getId(){ 

return situation.getIdSituation(); 

} 

 

public void setActive(){ 

status = SituationStatus.ACTIVE; 

} 

 

public void setKilled(){ 

status = SituationStatus.KILLED; 

} 

 

public boolean isActif(){ 

return status.equals(SituationStatus.ACTIVE); 

} 

 

public boolean isKilled(){ 

return status.equals(SituationStatus.KILLED); 

} 

 

public boolean kill(){ 

if (situation.getSituationIdentifierTaskOfParentSituationMap().size()==0) 

{ 

for (EventTask event : eventTaskVector) 

{ 

event.removeSituationIdentifierTask(this); 

if(event.kill()) 

{ 

eventTaskRegistry.remove(event.getId());                     

SituationManagerTask.mapIdEventToSituations.remove(event.getId()); 

} 

} 

return true; 

} 

return false; 

} 

} 

 

 

A.3     Source code of Extended Thread Pool Executor class 

 

package sample.concurrent.executor; 

 

import sample.concurrent.tasks.ConcurrentFutureTask; 

import sample.concurrent.tasks.ConcurrentTask; 

import sample.parallel.log.Logger; 

import java.util.Date; 

import java.util.Map.Entry; 

import java.util.concurrent.*; 

 

public class ExtendedThreadPoolExecutor extends ThreadPoolExecutor { 

 

private ConcurrentHashMap<Runnable, Date> startTimes; 

private ConcurrentHashMap<String, ExecutorStatistics> executionStatistics; 

private static int CORE_POOL_SIZE = 1000; 

private static int MAXIMUM_POOL_SIZE = 1000; 

private static long KEEP_ALIVE_TIME = 10 

private static RejectedTaskController REJECTED_TASK_CONTROLLER =  

                                                    new RejectedTaskController(); 

 

 

public ExtendedThreadPoolExecutor() { 

super(CORE_POOL_SIZE, MAXIMUM_POOL_SIZE, KEEP_ALIVE_TIME, TimeUnit.SECONDS,  

  new PriorityBlockingQueue<>(),REJECTED_TASK_CONTROLLER); 



Appendix A 

 

174 

  

startTimes = new ConcurrentHashMap<>(); 

executionStatistics = new ConcurrentHashMap<>(); 

} 

 

@Override 

protected void afterExecute(Runnable r, Throwable t) { 

super.afterExecute(r, t); 

} 

 

@Override 

protected void beforeExecute(Thread t, Runnable r) { 

super.beforeExecute(t, r); 

startTimes.put(r, new Date()); 

} 

 

@Override 

protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) { 

return new ConcurrentFutureTask<>((ConcurrentTask) runnable); 

} 

 

 

public void writeStatistics() { 

for(Entry<String, ExecutorStatistics> entry: executionStatistics.entrySet()) { 

String user = entry.getKey(); 

ExecutorStatistics stats = entry.getValue(); 

Logger.sendMessage(user+":"+stats); 

} 

} 

} 
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 Appendix B 
GUIs Establishing and Testing of the Motivating Scenario  

B.1     Login GUI 

To start using the application prototype, the user Mohammed needs to install and subscribe to the 

application using a unique user email and password. Firstly, he logs in using the login GUI. Figure B.1 

illustrates user login GUI. 

 

Figure B.1: Login GUI. 

B.2     Main GUI  

The login GUI checks the username and password. If they are correct, the application displays the main 

GUI with user details. Figure B.2 illustrates a screenshot of the main GUI. It contains three main options. 

The first one is Domain Management option that allows a user to manage his smart domains (smart-home, 

smart-office, smart-university, etc.). The second one is Agenda option that allows a user to manage his 

agenda. The third one is Constraint Management option that allows a user to define and manage his 

constraints in different smart domains. 



Appendix B 

 

176 

  

 

Figure B.2: Main GUI. 

B.3     Home Domain GUI  

When Mohammed is located in his smart home, the application can display him his smart home map with 

its all available devices as illustrated in figure B.3. 

 

Figure B.3: A smart home schema with its embedded sensors and devices. 
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B.4     Situations definition GUI  

Since Mohammed wants to exploit different available services in his smart home, he needs to define his 

constraint according to his preferences. Therefore, the application offers a situation definition GUI to 

manage and define his different constraints and situations as shown in figure B.4.  

 

Figure B.4: Situation definition (Constraint Management) GUI. 

B.5     Agenda GUI  

While Mohammed can plan and define his daily activities using Constraint Management GUI, the 

application can display his parallel/sequential activities on the time axis. Figure B.5 illustrates scheduled 

activities of Mohammed in agenda GUI. 

 

Figure B.5: Agenda GUI. 
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B.6     Automatic generation of reconfiguration script  

After the definition of user’s daily activities and situations, the reasoning engine filters relevant situation 

rules (recorded in the situation rules registry) according to current spatiotemporal contexts and current 

usage context. As the motivating scenario involves different locations, times and activities, the system 

cheeks continuously Mohammed’s situations and triggers reconfigurations actions according to user’s 

context and available devices in the smart home (see figure B.6). 

 

Figure B.6: The generation of initial script configuration. 
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Appendix C 
 Context and Situation Properties Analysis in Smart-* 

Domains 

C.1    Concept extraction based on case studies 

This section revealed four categories of smart case studies that are extremely important for extracting the 

common and specific concepts which represent context and composite situations properties in assisting 

users in various environments (smart assisted living, smart workspace, guided and control car and 

healthcare). These smart environments can react to users according to the daily-life events that occur in 

different domains (e.g., health, social and professional). The context properties can fall under any of the 

corresponding subclasses of the five key classes (Context, Situation, Smart objects, Domain, and Service). 

This will be followed by a comparison between the four categories of smart-* domains (home, health, car 

and office). 

C.1.1    Smart-Home case study: Smart Assisted Living for People using Smart 

Devices 

Looking first case study is about smart home that use heterogeneous sensors (e.g., temperature sensor, 

humidity sensor, luminosity sensor, movement sensor, camera, noisy sensor, kitchen sensor, etc.), 

assistive devices (e.g., smart-TV, laptop, temperature dashboard, alarm system dashboard, etc.) to 

capture home context information and activities of user in his smart home with daily situations such as 

open the curtain, adjust the lighting, turn on the air conditioner, open the garage, activate the alarm 

system, turn on the kitchen, etc. Home context information are analyzed for successful detection and 

generation of commands. These commands can be either triggered manually based on user decisions, or 

automatically based on home context information and user preferences. Moreover, the availability of 

smart devices has involved in many other fields including security (e.g., providing assistance when a 

potentially dangerous situation occurs such as fire detection, where the system can trigger automatically 

the fire extinguishing system), security (e.g., automated temperature adjustment), and energy saving 

(e.g., lights control). All the components of the smart home are summarized in Table C.1. 
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C.1.2    Smart-Home case study: Smart Assisted Living for People using Smart 

Devices 

The next case study is about a proactive system that enable greatest fear for elderly people and afford 

healthy and safe lifestyle for patients or loved people. It is necessary to detect cancer, heart diseases, and 

diabetes as such urgent situations that speed up the care services for people. For this kind of monitoring 

there needs to be dedicated human body sensors (e.g., glucose sensor, body temperature sensor, etc.) or 

embedded sensors in pervasive environment (e.g., camera, movement detector, etc.). The system analysis 

this context information and identifies abnormal situations (e.g., high glucose level) to intervene 

automatically (e.g., inject insulin). 

For instance, in case of critical anomalies (e.g., like heart-attacks), the system triggers an immediate 

response to the closest urban gateway and calls for immediate urgent medical attention where the victim’s 

coordinates are found and submitted. After that, the system searches for the closest available ambulance 

and requests the nearest hospital for immediate preparation for hosting the patient. Therefore, pervasive 

environment capabilities can be used in healthcare applications to enhance intervention services while 

reducing the heavy load of nurses in hospitals. All the components of the smart healthcare monitoring 

system for diabetic people are summarized in Table C.1. 

C.1.3    Smart-Car Case Study: Automated Guided and Traffic Control Smart 

Car 

This case study about a pervasive monitoring system that spans several components including vehicle 

tracking, communications between vehicles (e.g., interchanging context information such as speed, 

destination, distance between them, etc.), coordination between vehicles and traffic control systems to 

avoid congestions. Therefore, an intelligent traffic control system is deployed to avoid crowded streets 

based on potential traffic congestion, and offer more efficient navigation systems for users. Looking 

outside of the immediate home environment, it is necessary that for any unexpected traffic congestion 

situation on the current route, the system must be notified automatically and must react dynamically to 

select a new better road towards the user’s destination. The summary of system components based on 

the proposed model is shown in Table C.1. 
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C.1.4    Smart Office case study: Building a successful and efficient 

workspace Service   

The final case study, smart office application can offer a great potential for the better goals and benefits. 

The application facilitates the management and distribution of tasks to workers and enhance employee 

safety. This is critical because, even if employee are totally stressed out, the system provides information 

on whether the employee is in good location of workspace, or whether tasks have performed, and whether 

the relative needs to take action. For instance, the system depends on RFID and GPS technologies to track 

and identify workplace employees. As workers are equipped with RFID readers, the system can track 

automatically the development of activities and indicates the remaining daily tasks of the employee. These 

are examples of the basic context information that we are summarizing in Table C.1. 

Table C.1: The generation of initial script configuration. 

Main Concepts Domain Concepts Smart-Home Smart-Health Smart-Office Smart-Car 

C
o

n
te

x
t 

User 

Profile User √  √ √ √ 

 Patient ×  √ × × 

 Physics × × × × 

 Worker × × √ × 

 Driver × × × √ 

Preference Implicit √ √ √ √ 

Host 

 Explicit √ √ √ √ 

 Laptop √ √ √ × 

 Smart TV √ × √ × 

 Tablet √ √ √ √ 

 Mach. Coffee √ √ √ √ 

 Smartphone √ √ √ √ 

QoS 

 Continuity √ √ √ √ 

 Efficiency √ √ √ √ 

 Safety √ √ √ √ 

 Interoperability √ √ √ √ 

 Scalability √ √ √ √ 

Environment 

Location Absolute  √ √ √ √ 

 Relative  √ √ √ √ 

Time Absolute √ √ √ √ 

 Interval  √ √ √ √ 

Condition   Noise √ √ √ √ 

 Humidity √ √ √ × 

Document 

Multimedia Video. Image √ √ √ Text 

Modality Click... Touch √ √ √ Voice 

Social 

 Accounts  √ √ √ × 

 Friends  √ √ √ V2V 

U
se

r’
s 

 

S
it

u
at

io
n
 

Simple Situation 

Normal  Wake Up  √ × × × 

 Shower  √ × √ × 

 Drink Coffee  √ × √ × 

 Working  √ √ √ × 

 Meeting  √ √ √ × 

 Driving  × × × √ 
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Urgent Low Glucose  √ √ √ √ 

 Fire  √ × √ √ 

 Intrusion  √ × √ √ 

 Car Accident  × × × √ 

Composite Situation 

Normal Wake up-shower √ × × × 

 Shower-Drink √ × √ × 

 Drink  Email √ × √ × 

Urgent Low Glucose × √ × × 

 High Glucose × √ × × 

 Glucose -Heart × √ × × 

S
er

v
ic

e 

Service Listener 

 User Monitor. √ √ √ √ 

 Health Monitor. × √ × × 

 Activity Track. × √ × × 

 Cardiac Implant × √ × × 

 Location  √ √ √ √ 

 Time Service √ √ √ √ 

 Care Message  × √ × × 

 Remote Ctrl  × √ √ √ 

 Road Ctrl  × × × √ 

Action Service 

 Wake Up  √ × × × 

 Shower  √ × × × 

 Coffee Mach. √ × √ × 

 Message  √ √ √ √ 

 Intrusion  √ × √ × 

 Fire Fighting  √ × √ × 

 Inject Insulin  × √ × × 

 Risk of Death  × √ × × 

 Remote Diag.  × √ × × 

 Car Ctrl × × × √ 

S
m

ar
t 

o
b

je
ct

s 

Sensor 

 Temperature  √ × √ × 

 Light  √ × √ × 

 Motion  √ × √ × 

 IP Camera √ √ √ √ 

 State Of Door  √ √ √ √ 

 Coffee Mach.  √ × × × 

 Humidity  √ × × × 

 Water Temp. √ × × × 

 Garage  √ × × × 

 Body Temp.  √ √ √ √ 

 Heart Rate  √ √ √ √ 

 Insulin Level  √ √ √ √ 

 Location  √ √ √ √ 

 Time Sensor √ √ √ √ 

 Traffic  × × × √ 

 Video Recorder √ × √ √ 

 RFID Sensor  × × × √ 

Actuator 

 Light Switch  √ × √ × 

 Door Locking √ × √ × 

 Smart Mirror √ × √ × 

 Inject Insulin  × √ × × 

 Fire Alarm √ × √ √ 

 Intrusion Alarm √ × √ √ 

 Alert  √ √ √ √ 

 Light Switch  √ × √ × 

D
o

m
ai

n
 User’s Domain 

 Security  √ √ √ √ 

 Home  √ × × × 

 Health  √ √ √ √ 

 Office  × × √ × 
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Abstract. Currently, pervasive computing incarnates a new era in assisting users during their daily activities everywhere 

and anytime. Although there are many mobile applications that may handle various context data, they neglect the real-time 

factor for composite/urgent situation management and identification. To ensure managing and identifying situations 

efficiently, we have brought many contributions in pervasive computing systems. Our main contribution is the proposition 

of a new ontology model called Multi-OCSM (Multi-layered Ontology-based Composite Situation Model) representing 

composite situations pertaining to smart environments using specific composition operators. The second contribution is 

the proposal of a novel flexible, modular, and hierarchical loosely coupled framework that can be employed for parallel 

composite situations management and reasoning. In addition, it ensures the automatic reconfiguration of distributed 

pervasive applications by providing relevant action services regarding context changes. The last contribution refers to a 

context-aware recommendation system for situation rules enrichment and adaptation. 

 

Résumé. Actuellement, l'informatique pervasif incarne une nouvelle ère pour aider les utilisateurs dans leurs activités 

quotidiennes partout et à tout moment. Bien qu'il existe de nombreuses applications mobiles qui peuvent gérer diverses 

données de contexte, elles négligent le facteur temps réel pour la gestion et l'identification des situations composites / 

urgentes. Pour assurer une gestion et une identification efficaces des situations, nous avons apporté de nombreuses 

contributions aux systèmes informatiques pervasif. Notre principale contribution est la proposition d'un nouveau modèle 

d'ontologie appelé Multi-OCSM (Multi-layered Ontology-based Composite Situation Model) représentant des situations 

composites relatives aux environnements intelligents en utilisant des opérateurs de composition spécifiques. La deuxième 

contribution est la proposition d'un nouveau cadre flexible, modulaire et hiérarchique faiblement couplé qui peut être 

utilisé pour la gestion et le raisonnement parallèles de situations composites. De plus, il assure la reconfiguration 

automatique des applications pervasif distribuées en fournissant des services d'action pertinents concernant les changements 

de contexte. La dernière contribution fait référence à un système de recommandation sensible au contexte pour 

l'enrichissement et l'adaptation des règles de situation. 

 

. في الوقت الحالي، تجسد الحوسبة المنتشرة حقبة جديدة في مساعدة المستخدمين أثناء أنشطتهم اليومية في كل مكان وزمان.  ملخص

ن تطبيقات الهاتف المحمول التي قد تتعامل مع بيانات السياق المختلفة، إلا أنها تتجاهل عامل الوقت على الرغم من وجود العديد م

قدمنا   بكفاءة،  المواقف  إدارة وتحديد  لضمان  وتحديدها.  المركبة/العاجلة  الحالة  لإدارة  أنظمة  الحقيقي  في  المساهمات  من  العديد 

)نموذج الموقف المركب متعدد   Multi-OCSMراح نموذج جديد للأنطولوجيا يسمى  الحوسبة المنتشرة. مساهمتنا الرئيسية هي اقت

. المساهمة الثانية محددةالطبقات القائم على علم الوجود( الذي يمثل مواقف مركبة تتعلق بالبيئات الذكية باستخدام عوامل تكوين  

المواقف المركبة المتوازية.    لتحديد واستنتاجدامه  هي اقتراح إطار جديد مرن، نمطي، وتسلسل هرمي ضعيف الاقتران يمكن استخ

ذات الصلة فيما   متنوعةبالإضافة إلى ذلك، فإنه يضمن إعادة التكوين التلقائي للتطبيقات المنتشرة الموزعة من خلال توفير خدمات  

 وتكييفها.نظام توصية مدرك للسياق لإثراء قواعد الموقف  تمثل يتعلق بتغييرات السياق. المساهمة الأخيرة 


