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Abstract

Simple Adaptive Control (SAC) is one of the main configurations used in passivity-based

adaptive systems. Since the problems of stability and robustness have been partially

solved, several researchers have set the goal of improving performance on one hand and

simplifying design and implementation on the other. The SAC finds its application in

deterministic systems as well as in disturbed systems. SAC of non-Almost Strictly Positive

Real (ASPR) SISO/MIMO systems is well studied. In the last decades, some applications

of the SAC technique presented a design complexity issue arising from a large number of

parameters and coefficients to select. This issue was recently decreased by the idea of the

Decentralized Simple Adaptive Controller (DSAC), which considers only the diagonal of

the time-varying gain matrices. Therefore, the decreased computational requirements of

the DSAC facilitated real-time implementation.

In the first part of this thesis, we further improve the flexibility of the DSAC by

considering the fractional derivative of the adaptive gains. The proposed new controller is

called Fractional Order DSAC (FO-DSAC). Firstly, the ASPR conditions for the design of

a stable fractional adaptive system are established. A fractional Order parallel feedforward

compensator (FO-PFC) to realize an augmented ASPR system is then provided and a

new ASPR-based FODSAC controller is proposed. The stability analysis of the proposed

control scheme is presented and simulation example comparing the standard DSAC with

the new FODSAC is provided, showing the performance of the proposed method.

In the seconde part of this thesis, a new Adaptive Synergetic Controller (ASC) is

proposed as a solution for the problem of the design of the standard Synergetic Control law

when the system parameters and dynamics are unknown. It is well known that the design

of the SC law requires a thorough knowledge of the system parameters and dynamics.

Such problem obstructs the synthesis of the SC law and the designer is prompted to

pass through the estimation methods, which, in turn, poses a problem of increasing the

computation time of the control algorithm. To cope with this problem, a solution is

proposed by modifying the original SC law to develop an SAC-like adaptive SC law

without the need of prior knowledge of the system. The stability of the proposed adaptive

controller is formally proven via the Lyapunov approach. Experimental application to a

quadrotor system is given to validate the theoretical results.
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Résumé

La commande adaptative simple (SAC) est l’une des principales configurations utilisées

dans les systémes adaptatifs basés sur la passivité. Les problèmes de stabilité et de

robustesse étant partiellement résolus, plusieurs chercheurs se sont fixés pour objectif

d’améliorer les performances d’une part et de simplifier la conception et la mise en uvre

d’autre part. Le SAC trouve son application aussi bien dans les systèmes déterministes

et dans les systèmes perturbés. Le SAC des systèmes SISO / MIMO non ASPR est

bien étudié. Au cours des dernires décennies, certaines applications de la technique SAC

ont présenté un problème de complexité de conception découlant d’un grand nombre de

paramètres et coefficients sélectionner. Ce problème a été récemment résolu par l’idée

du contrôleur adaptatif simple décentralisé (DSAC), qui ne considère que la diagonale des

matrices de gain variant dans le temps. Par conséquent, la diminution des exigences de

calcul du DSAC a facilité la mise en œuvre en temps réel.

Dans la premire partie de cette thèse, nous améliorons encore la flexibilité du DSAC en

considérant la dérivée fractionnelle des gains adaptatifs. Le nouveau contrôleur proposé

est appelé DSAC d’ordre fractionnaire (FODSAC). Premirement, les conditions ASPR

pour la conception d’un systéme adaptatif fractionnaire stable sont établies. Un compen-

sateur à action directe parallèle d’ordre fractionnaire (FOPFC) pour réaliser un système

ASPR augmenté est alors fourni et un nouveau contrôleur FODSAC basé sur ASPR est

proposé. L’analyse de stabilité du schéma de commande proposé est présentée et un

exemple de simulation comparant le DSAC standard au nouveau FODSAC est fourni,

montrant les performances de la méthode proposée.

Dans la seconde partie de cette thèse, un nouveau contrôleur adaptatif synergétique

(ASC) est proposé comme solution au problème de la conception de la loi de commande

synergétique standard lorsque les paramètres et la dynamique du système sont inconnus.

Il est bien connu que la conception de la loi SC nécessite une connaissance approfondie

des paramètres et de la dynamique du système. Tel problème entrave la synthèse de la

loi SC et le concepteur est invité à passer par les méthodes d’estimation, ce qui, à son

tour, pose un problème d’augmentation du temps de calcul de l’algorithme de commande.

Pour faire face à ce problème, une solution est proposée en modifiant la loi du SC originale

pour développer une loi de commande ASC sans avoir besoin d’une connaissance préalable

de la dynamique du système. La stabilité du contrôleur adaptatif proposé est formelle-

ment prouvée via le Lyapunov et le principe d’invariance de Lasalle. Une application

expérimentale sur un quadrirotor est donnée pour valider les résultats théoriques.

ii



Contents

Abstract i

List of Figures v

Notations 1

General Introduction 3

I Extensions in SAC theory 9

1 Extension in DSAC with the WASP conditions 10

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2 System and Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3 Model Following with DSAC . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3.1 Adaptation Law of DSAC . . . . . . . . . . . . . . . . . . . . . . . 13

1.3.2 Ideal control and state trajectory . . . . . . . . . . . . . . . . . . . 15

1.4 Stability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.5 Application to quadrotor vehicle . . . . . . . . . . . . . . . . . . . . . . . . 19

1.6 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2 Extension of the ASP and DSAC to the Fractional domain 23

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.1 Fractional calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.2 Stability of fractional order systems . . . . . . . . . . . . . . . . . . 24

2.2.3 Almost Strict Passivity Extension to Fractional Order System . . . 25

2.3 Realization of ASPR fractional order system . . . . . . . . . . . . . . . . . 27

iii



CONTENTS iv

2.4 Fractional adaptive controller: formulation and design . . . . . . . . . . . . 29

2.4.1 Control objectif . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4.2 Algorithm and Adaptation Law of the FO-DSAC . . . . . . . . . . 30

2.4.3 Ideal control and state trajectories . . . . . . . . . . . . . . . . . . 32

2.4.4 Stability analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.5 Simulation examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.5.1 Example 1: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.5.2 Example 2: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.5.3 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

II Design and experimental validation of an Adaptive Syner-

getic Controller (ASC) 41

3 Adaptive Synergetic Control Design 42

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.1 Synergetic control . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.2 Simple Adaptive Control . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3 The proposed adaptive synergetic control . . . . . . . . . . . . . . . . . . 46

3.3.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3.2 Adaptive Synergetic Control design . . . . . . . . . . . . . . . . . . 47

3.3.3 Error dynamic, ideal control and state trajectories . . . . . . . . . . 48

3.3.4 Stability analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4 Application to quadrotor system . . . . . . . . . . . . . . . . . . . . . . . . 53

3.4.1 Numerical simulation . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4 Experimental Validation 56

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2 Test-bench presentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3 Experimental validation of the proposed ASC . . . . . . . . . . . . . . . . 61

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

General Conclusion 67



CONTENTS v

References 69

Appendix A Proof of lemma 2.4 76

Appendix B The developed platform of the Quadrotor manipulator 78



List of Figures

1.1 Evolution of the Quadrotor attitude angles: desired trajectory (red curve),

actual trajectory (blue curve) . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.2 Tracking errors of the Quadrotor attitude angles . . . . . . . . . . . . . . . 21

1.3 Control inputs of the Quadrotor . . . . . . . . . . . . . . . . . . . . . . . . 22

2.1 Augmented Fractional order system with a FO-PFC . . . . . . . . . . . . . 28

2.2 Simulation results of example 1: The proposed FODSAC compared with

DSAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.3 Simulation results of example 2: The proposed FODSAC compared with

DSAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1 The proposed Adaptive Synergetic Control Scheme . . . . . . . . . . . . . 46

3.2 Simulation results of the stabilization test: a) pitch angle, b) roll angle, c)

error, d) control signals, e) PFC output (for the roll), f) PFC output (for

the pitch) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3 Simulation results of the tracking test: a) pitch angle, b) roll angle, c)

error, and d) control signals, e) PFC output (for the roll), f) PFC output

(for the pitch) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.1 First developed DIY quadrotor . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2 Pixhawk 2 mounting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3 Test bench Quad equipped with the Pixhawk autopilot . . . . . . . . . . . 60

4.4 Experimental results of the stabilization test: a) pitch angle, b) roll angle,

c) error, and d) control signals . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.5 Experimental results of the stabilization with hand push perturbation test:

a) pitch angle, b) roll angle, c) error, and d) control signals . . . . . . . . . 63

4.6 Adaptation gains history of the experimental adaptive gains: a) Ke, b) Kx,

c) Ku, and d) Ks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

vi



LIST OF FIGURES vii

4.7 Experimental results of the tracking test of a variable references: a) pitch

angle, b) roll angle, c) error, and d) control signals . . . . . . . . . . . . . . 65

B.1 Initial developed platform of the Quadrotor manipulator: The Quadrotor

is equipped with a 7 degree of freedom robotic arm. . . . . . . . . . . . . . 78



Nomenclature

Notations

• R denote the field of real numbers.

• R+ denotes the set of non-negative real numbers

• C denote fields of complex numbers.

• Rn denotes the n dimensional Euclidean space.

• Rn×m is the set of all n×m real matrices with n being the number of rows and m

the number of columns.

• diag(a1, ..., an) denote the diagonal matrix whose diagonal elements are a1, ..., an.

• col{A1, ..., Am} denote the block column matrix col{A1, ..., Am} = [AT1 , ..., A
T
m]T .

• (a, b] = {x ∈ R : a < x ≤ b} and [a, b) = {x ∈ R : a ≤ x < b}.

• If any given matrix A ∈ Rn×m or Rn×n, then AT denote its transpose.

• If A ∈ Rn×n , then A = AT > 0 indicates that A is a positive definite symmetric

(PDS) matrix.

• G∗(s) ≡ GT (−s)

• If A is non-singular (i.e., det(A) 6= 0), then A−1 denotes its inverse.

• tr{A} denotes the trace of a matrix A

• I denotes the identity matrix

• ‖·‖ denote the Euclidean norm.

Acronyms / Abbreviations

• ASC Adaptive Synergetic Control

1



NOMENCLATURE 2

• ASP Almost Strictly Passive

• ASPR Almost Strictly Positive Real

• DSAC Decentralized Simple Adaptive Control

• FODSAC Fractional Order Decentralized Simple Adaptive Control

• FOPFC Fractional order Parallel Feedforward Compensator

• FOTF Fractional Order Transfer Function

• PFC Parallel Feedforward Compensator

• PDS Positive Definite Symmetric

• PT Perfect Tracking

• SAC Simple Adaptive Control

• SC Synergetic Control

• SP Strictly Passive

• SPR Strictly Positive Real

• TF Transfer Function

• WASP W Almost Strictly Passive

• WSP W Strictly Passive



General Introduction

It is well-known, in the last decades results of control theory that the notion of passivity,

for a class of nonlinear systems with the representation {A(x), B(x), C}, plays an impor-

tant role in guaranteeing stability in adaptive control, for which, the plant is required

to be strictly passive (SP) or strictly positive real (SPR) for linear time-invariant sys-

tems (LTI). Since most real-world systems are not inherently SP, the SP condition was

mitigated for a class of systems with the representation {A(x), B(x), C} called Almost

SP (ASP) (Almost SPR in LTI systems), which they can be rendered SP via constant

or dynamic, output feedback. Later, in attempting to define what classes of systems

that satisfy the ASP conditions, it was shown that any minimum-phase LTI system with

state-space realization {A,B,C} is ASP if the product CB is positive definite symmetric

(PDS) [1], [2]. However, the feasibility of adaptive control techniques in multivariable

LTI systems was apparently limited by the standard SP conditions that imply that the

product CB must be PDS and the required symmetry of CB seemed to be rather difficult

to fulfill in practice. To this effect, Barkana et all [3] eliminated the symmetry condition

of CB and extended to a class of WASP systems, that is, for any minimum-phase LTI

system with state-space realization {A,B,C} is WASP if the not necessarily symmetric

positive definite product CB is diagonalizable. Recently, the applicability of these pre-

vious results for LTI systems were successfully expanded to nonstationary and nonlinear

systems [4], where the sufficient conditions that allow nonstationary systems to become

stable and strictly passive via static or dynamic output feedback were founded.

The SAC technique has attracted the attention of many researchers in the last few

decades, due to its simplicity and the ease of implementation of its algorithm [5–12] .

The SAC is a type of direct adaptive controller developed by Sobel et al [13]. One of

the main advantages of this technique is that it does not require full state access or any

estimator in the control loop, and the system parameters and dynamics are not necessarily

needed to be known. The only requirement for the implementation of the SAC algorithm

is that the plant to be controlled should satisfy the ASP conditions. Note that the ASP

3



GENERAL INTRODUCTION 4

conditions are not satisfied by most of the systems in the real world and this is why

Barkana and Kaufman [14, 15] extend the applicability of SAC to a class of non-ASP

systems by introducing the so-called Parallel Feedforward Compensator (PFC) [16–20]

with the realisation {Af , Bf , Cf} . By using the latter parallel to the nonlinear system

one can realise an augmented ASP having the representation {Aa(x), Ba(x), Ca}.
However, in some applications the SAC technique may still present a design complex-

ity issue arising from the large number of parameters and coefficients to select. This

design complexity has been mitigated by the recently proposed Modified simple adaptive

control (MSAC) [21], Decentralized MSAC (DMSAC) and Decentralized SAC (DSAC)

methodologies [22]. The DSAC methodology was recently developed based on the recent

ASP results for nonlinear and nonstationary systems [4]. The Lyapunov proof of stability

of DSAC is established using the recent aforementioned ASP condition.

In the first part of this thesis, for completeness of the previous results presented in [22],

we further extend the stability theorem used in the previous DSAC by using the recently

mitigated passivity conditions that do guarantee stability with adaptive model tracking

with the not necessarily symmetric matrix CB. Using the recent Lyapunov Function for

WASP nonlinear systems, under the WASP conditions with symmetric W , we expand the

proof of stability of the DSAC.

As the DSAC technique has mitigated the design complexity issue of the standard

SAC arising from the large number of parameters and coefficients to select, there are

still some exceptional remedies on how to improve tracking performance (flexibility and

accuracy). Fortunately, as numerous previous studies show, the introduction of fractional

order calculus can considerably improve the performance of conventional controllers [23]

[24]. There is another possibility of further improving the flexibility and the tracking

performance of DSAC by utilizing the fractional order calculus. Several researchers have

improved the performance of some adaptive control techniques using fractional calculus.

For example, a Fractional MRAC was studied in [25] [26] in order to achieve better

tracking performance. In [27], an adaptive fractional sliding mode controller is proposed

to improve tracking performance of a class of systems with nonlinear disturbances. In [28],

an adaptive fractional order terminal sliding mode controller is proposed to improve the

control performances ( convergence and precision) of a cable-driven manipulator. In [29],

a fractional order adaptive backstepping controller is proposed for the improvement of

performances of a class of fractional order nonlinear systems.

In this thesis, motivated by the discussions above, we propose a novel Fractional Order

DSAC (FO-DSAC) approach for linear fractional order systems. Based on the DSAC
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scheme [22], we extend the study to fractional order case. Firstly, we try to establish

the ASPR conditions for the design of a stable fractional adaptive system. We provide

a fractional Order parallel feedforward compensator (FO-PFC) to realize an augmented

ASPR system. Then we propose the ASPR-based FO-DSAC controller. The stability

analysis of the proposed control scheme is presented and simulation example comparing

the standard DSAC with the new FO-DSAC is provided, showing the performance of the

proposed approach.

In the second part of this thesis, an Adaptive Synergetic Controller (ASC) for a class

of nonlinear systems with the representation A(x), B(x), C is proposed, based on the

aforementioned SAC technique. The control of such class of nonlinear systems has con-

tinued to attract more researchers: many control techniques like synergetic, sliding mode

control, optimal feedback and adaptive controllers [22, 30–35] have been investigated for

such representation due to its importance since it appears in modeling of many real-world

systems such as robotic and mechatronic systems, electric machines, power converters,

etc. Moreover, in adaptive control theory the representation {A(x), B(x), C} highlights

useful symmetries and simplifies the theoretical analysis [36]: those symmetries could be

otherwise lost in the general nonlinear representation. In non adaptive controllers, the

most used techniques are nonlinear output feedback, synergetic and sliding mode con-

trollers because of their capabilities in controlling nonlinear systems. Besides the sliding

mode control, a synergetic control (SC) technique has recently attracted the attention of

many researchers [37–44] since it shares with the SMC the same idea of forcing the closed-

loop system to move on a desired manifold, but without the chattering phenomenon [45].

The SC theory was firstly introduced by the Russian researcher Kolesnikov [46] and it

has been investigated in hysteretic systems [37], DC-DC boost converters [38], robot ma-

nipulators [41], fault tolerant system [44] and power system stabilisers [47–49]. However,

the control design procedures of the SC and most of the proposed techniques in the lit-

erature require extensive knowledge of the system parameters and dynamics so that the

control law can be designed: the reason why researchers are interested in developing

adaptive techniques based on observers and estimators that can deal with systems with

unknown (unmodelled) parameters (dynamics). For example, in [50] and [51] a fuzzy

based adaptive control methods are proposed for nonlinear systems with unmodelled dy-

namics. In [37, 48], adaptive and optimal adaptive synergetic controllers are proposed

under the idea of estimating the unknown system dynamic by using fuzzy logic. In [49]

a Type-2 fuzzy system to approximate the unknown nonlinear dynamics for the design

of a SC is introduced. One of the main adaptive control techniques used for this class of
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nonlinear systems is aforementioned SAC technique [30,52,53].

Taking into account the advantages of the SAC technique for the aforementioned

class of nonlinear system when the system parameters and dynamics are unknown, a

new adaptive synergetic controller is proposed in this chapter. Starting by defining a

macrovariable to be a function of the augmented error instead of the system states, the

SC law is developed. By handling this law, and after some development leading to extract

an SAC-like structure, one proposes for such a class of systems an adaptive synergetic

controller (ASC) that is independent of the system parameters and dynamics. Unlike

the adaptive synergetic controllers presented in the literature, the proposed one does not

require any prior knowledge of the system nor estimators. Furthermore, thanks to the

structure of the ASC controller with an adequate choice of the lyapunov function, we

were able to achieve the asymptotic stability of the adaptive system. In fact, the stability

analysis of the standard SAC reveals in general a residual term in the derivative of the

lyapunov function that affect negativity of such function. To cope with this problem, some

researchers [4,6,22,30,54] have tried to directly eliminate this residual term by assuming

that either this one may vanish by assuming that the variation of system parameters is slow

compared with the control dynamics, or it is supposed to be bounded and in this case the

stability is analysed by the domination of some quadratic and quartic terms on the residual

one. In our study, for a clear discussion of the system stability, and with a mathematical

sense we substitute the residual term by its Jacobian linear approximation and with an

appropriate choice of the macro-variable one can achieve the asymptotic convergence of

the system to a desired manifold. An experimental application to a quadrotor system is

given to validate the proposed ASC scheme.

Thesis organization

This thesis is divided into two parts: part 1 includes chapter 1 and chapter 2, part 2

includes chapter 3 and chapter 4.

In chapter 1, we extend the stability theorem used in the previous DSAC by using the

recently mitigated passivity conditions that do guarantee stability with adaptive model

tracking with the not necessarily symmetric matrix CB. Using the new WASP conditions

with symmetric W for nonlinear systems, we analytically expand the proof of stability of

the DSAC.

In chapter 2, a passivity based fractional order decentralized simple adaptive control
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(FODSAC) for linear fractional order systems is considered. Almost strictly positive real

(ASPR) conditions for the design of a stable fractional adaptive system will be established.

Further, a fractional Order parallel feedforward compensator (FO-PFC) to realize an

augmented ASPR system will be provided and a FO-DSAC controller will be proposed.

The stability analysis of the proposed FO-DSAC scheme will be presented.

In chapter 3 we presents our new approach, namely, the design of the ASC controller

as well as the stability proof of the obtained adaptive system.

In chapter 4, through a quadrotor test-bench we experimentally validate the theoretical

results of the proposed ASC and confirm the usefulness of the proposed method for real-

world (physical) system.
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Chapter 1

Extension in DSAC with the WASP

conditions

“ The less attachment to the world. The easier your life.

”
Umar ibn Al-Khattab

1.1 Introduction

Recently, the DSAC has been introduced as a new class of direct adaptive controllers.

The DSAC methodology has been proposed on the basis of the recent development of

sufficient conditions which allow non-stationary and nonlinear systems to become stable

and SP via a static or dynamic output feedback. The formal proof of the stability of

the DSAC was also developed on the basis of the standard Lyapunov function for ASP

systems. In this chapter, we extend the stability analysis of the DSAC using the recently

attenuated passivity conditions which guarantee the stability of the adaptive systems in

the case where the CB product is not necessarily symmetrical. Using the new WASP

conditions for nonlinear systems, we analytically develop the proof of the stability of the

DSAC.

10
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1.2 System and Definitions

In this section, we present the basic definitions of passivity and W-strict passivity prop-

erties for a class of nonlinear systems of the form 1.1 with not necessarily symmetric

matrix CB. The following definitions and theorem will be exploited in the subsequent

development. Consider a class of nonlinear systems described by the following formulation

ẋ (t) = A(x)x (t) +B(x)u (t)

y (t) = Cx (t)
(1.1)

Where y(t) ∈ Rm is the output vector. x = [x1 · · ·xn]T ∈ Rn, u = [u1 · · ·um]T ∈ Rm, y =

[y1 · · · ym]T ∈ Rm. Note that the representation {A(x), B(x), C} of the nonlinear model

1.1 does not necessary to be known for the synthesis of the simple adaptive control law,

sufficient informations are required to ensure that the Almost Strict Passivity conditions

are satisfied, thus, stability of the closed loop system can be guaranteed.

Definition 1.1. The nonlinear system {A(x),B(x),C} with the state-space realization 1.1

is called uniformly strictly minimum-phase if its zero dynamics is uniformly asymptotically

stable. In other words, if there exist two matrices M(x) and N(x) satisfying the following

relations

CM(x) = 0 (1.2)

N(x)B(x) = 0 (1.3)

N(x)M(x) = Im (1.4)

such that the resulting zero dynamics given by

ż = (Ṅ(x) +N(x)A(x))M(x)z (1.5)

is uniformly asymptotically stable

Definition 1.2. The nonlinear system {A(x),B(x),C} with the statespace realization 1.1

is called WSP if there exist two uniformly PDS matrices, P (x), Q(x) and an appropriate

PDS matrix W (x) such that the following two relations are simultaneously satisfied

Ṗ (x) + P (x)A(x) + AT (x)P (x) = −Q(x) (1.6)

P (x)B(x) = CT (x)W T (x) (1.7)

In addition, W should satisfies one of the following conditions:
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(C1) the product W (x)CB(x) = R(x) renders R(x) uniformly PDS.

(C2) The PDS matrix W (x) that renders the matrix R(x) in (C1) PDS satisfies the

condition Ẇ (x) ≤ 0 along the trajectories of the controlled system [4].

Relation 1.6 is an algebraic Lyapunov equation which means that a WSP system is asymp-

totically stable, the second relation 1.7 shows that

BTPB = BTCTW T = (WCB)T = WCB (1.8)

which implies that the product WCB is PDS.

Definition 1.3. A nonlinear system {A(x), B(x), C} with the square state-space realiza-

tion 1.1 is called WASP if there exists a positive definit constant output feedback matrix‹Ke such that the resulting closed-loop system with the state-space realization {(A(x) −
B(x)‹KeC), B(x), C} is WSP. In other words, there exists two PDS matrices P (x) and

Q(x) such that the closed-loop system

ẋ(t) = [A(x)−B(x)‹KeC]x(t)

y (t) = Cx (t)
(1.9)

simultaneously satisfies the following WSP relations

Ṗ (x) + P (x)Acl(x) + ATcl(x)P (x)=−Q(x) (1.10)

P (x)B(x) = CT (x)W T (x) (1.11)

Where Acl(x) = [A(x)−B(x)‹KeC].

Theorem 1.1. Any uniformly strictly minimum-phase nonlinear system {A(x), B(x), C}
with the state-space realization 1.1 where all system matrices are uniformly bounded, and

if any one of conditions C1 and C2 is satisfied, is WASP.

Proof. See [4].

1.3 Model Following with DSAC

The DSAC methodology is based on the standard Simple Adaptive Control (SAC) theory

[55], the DSAC strategy is meant to perform model tracking, the plant output is required

to track the outputs of an ideal stable plant called ”model” that serves to generate the
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”reference” trajectory. The model does not need any prior knowledge about the plant

and it can be of any ”large” or ”lower” order. The model is

ẋm (t) = Amxm (t) +Bmum (t)

ym (t) = Cmxm (t)
(1.12)

where xm(t) ∈ Rnm and ym (t) ∈ Rm represent the reference model state vector and output

vector respectively, um (t) ∈ Rpm is the model command input. Am, Bm, and Cm are the

model matrices with appropriate dimensions. The standard SAC algorithm [54] monitors

the output tracking error

ey (t) = ym (t)− y (t) (1.13)

Based on the available model variables, xm and um, the adaptive control signal is defined

as

u(t) = Ke (t) ey (t) +Kx (t)xm (t) +Ku (t)um (t) (1.14)

Where Ke (t) is the feedback stabilizing control gain which is needed to guarantee the

stability of the closed-loop system, Kx (t) and Ku (t) are appropriate feedforward control

gains, and they perform to minimize the output tracking error which allow good track-

ing without requiring large values of the stabilizing gain Ke (t). The SAC gains are a

combination of proportional and integral gains as follows

Ke(t) = Kpe(t) +KIe(t) (1.15)

Kx(t) = Kpx(t) +KIx(t) (1.16)

Ku(t) = Kpu(t) +KIu(t) (1.17)

Note that only the adaptive integral gains are necessary to guarantee the stability of the

adaptive control system, proportional adaptive gains are added to increase the convergence

speed of the adaptive system. So, a low tracking error can be obtained in a very short

time.

1.3.1 Adaptation Law of DSAC

In the DSAC algorithm, the components of the proportional and integral gains of the

stabilizing control gain in 1.15 are updated by the following adaptive law [22]

Kpe(t) = diag{eyeTy }ΓPe (1.18)
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K̇Ie(t) = diag{eyeTy }ΓIe (1.19)

where Kpe(t), KIe(t) ∈ Rm×m and diag{A} with A ∈ Rn×n denotes the diagonalization

operation defined as follows

diag{A} =


a1,1 0 · · · 0

0 a2,2 · · · 0
...

...
. . .

...

0 0 · · · an,n

 (1.20)

The feedforward control gain components Kpx(t), KIx(t) ∈ Rm×nm and KPu(t), KIu(t) ∈
Rm×npm are updated as follows

Kpx(t) = RTdiag{ReyxTm}ΓPx (1.21)

K̇Ix(t) = RTdiag{ReyxTm}ΓIx (1.22)

Kpu(t) = T Tdiag{TeyuTm}ΓPu (1.23)

K̇Iu(t) = T Tdiag{TeyuTm}ΓIu (1.24)

with

R =


Im

Im
...

Im

 ∈ Rnm×m, T =


Im

Im
...

Im

 ∈ Rpm×m (1.25)

where ΓPe , ΓIe ∈ Rm×m, ΓPx , ΓIx ∈ Rnm×nm and ΓPu , ΓIu ∈ Rpm×pm are time-

invariant diagonal weighting matrices that control the rate of adaptation. Defining

K (t) =
î
Ke (t) Kx (t) Ku (t)

ó
= KI (t) + KP (t) and rT (t) =

î
eTy xTm uTm

ó
, the total

adaptive control algorithm can be written as the following form

u (t) = K (t) r (t) (1.26)

where K(t) ∈ Rm×(m+nm+pm) and r(t) ∈ Rm+nm+pm . The total integral and proportional

adaptive control gains KI(t), KP (t) ∈ Rm×(m+nm+pm), are updated as follows

KP (t) = STdiag{SeyrT}ΓP (1.27)

K̇I(t) = STdiag{SeyrT}ΓI (1.28)
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where ΓP ,ΓI ∈ R(m+nm+pm)×(m+nm+pm), and the scaling matrix S is given by

S =


Im

Im
...

Im

 ∈ R(m+nm+pm)×m (1.29)

1.3.2 Ideal control and state trajectory

When perfect output tracking occurs between the system 1.1 and the ideal model 1.12,

one can define the following ideal system dynamic and an ideal control input:

ẋ∗ (t) = A (x∗)x∗ (t) +B (x∗)u∗ (t)

y∗ (t) = Cx∗ (t)
(1.30)

u∗ (t) = ‹Kxxm (t) + ‹Kuum (t) + ‹Keea(t) (1.31)

Where ‹Ke is the ideal feedback stabilizing gain matrix, ‹Kx and ‹Ku are the ideal feedfor-

ward control gain matrices. When the ideal system is affected by the ideal control input

signal u∗ (t) then, perfect output tracking error occur. Thus, we can get

ey (t) = ym (t)− y (t) = 0 (1.32)

u∗ (t) = ‹Kxxm (t) + ‹Kuum (t) (1.33)

y∗ (t) = Cx∗ (t) = ym (t) (1.34)

ey (t) = Cx∗ (t)− Cx (t) = Cex (t) (1.35)

And the state error

ex (t) = x∗ (t)− x (t) (1.36)

Taking the time derivative of 1.36, we get

ėx (t) = ẋ∗(t)− ẋ(t)

= A∗(x∗)x∗ +B∗(x∗)u∗ − A(x)x(t)−B(x)u(t) (1.37)

Adding and subtracting A(x)x∗, replacing u(t) and u∗ by 1.26 and 1.33 respectively and

adding and subtracting B(x)‹Keey(t) and rearranging, gives

ėx(t) = A(x)ex(t)−B(x)K(t)r(t) +B∗(x∗)‹Kxxm(t) +B∗(x∗)‹Kuum(t)

+[A∗(x∗)− A(x)]x∗ +B(x)‹Keey(t)−B(x)‹Keey(t) (1.38)
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Adding and subtracting B(x)u∗(t) and replacing ey(t) by 1.35 and rearranging, results in

ėx(t) = [A(x)−B(x)‹KeC]ex(t)−B(x)(K(t)− ‹K)r(t) + [A∗(x∗)− A(x)]x∗(t)

+[B∗(x∗)−B(x)]‹Kxxm(t) + [B∗(x∗)−B(x)]‹Kuum(t) (1.39)

Equation 1.39 can be rewritten as

ėx(t) = [A(x)−B(x)‹KeC]ex(t)−B(x)(K(t)− ‹K)r(t)

+[A∗(x∗)− A(x)]x∗(t) + [B∗(x∗)−B(x)]u∗(t) (1.40)

Where ‹K ∈ Rm×(m+nm+pm) defined as‹K = [‹Ke
‹Kx

‹Ku] (1.41)

Finally, substituting K(t) = KP (t) +KI(t) yields

ėx(t) = [A(x)−B(x)‹KeC]ex(t)−B(x)(KI(t)− ‹K)r(t)−BKP (t)r

+[A∗(x∗)− A(x)]x∗(t) + [B∗(x∗)−B(x)]u∗(t) (1.42)

1.4 Stability Analysis

In this section, we extend the standard theorem of stability used in DSAC [22] with the

new WASP conditions for a class of systems of the form 1.1 with not necessarily symmetric

matrix CB.

Theorem 1.2. Under the WASP conditions with symmetric W, the Adaptive Control law

represented by 1.14-1.24 ensures the boundedness of the system signals under closed-loop

operation, and results in asymptotic convergence of the state and output tracking errors,

in the sense that

‖ey‖ → 0 and ‖ex‖ → 0 as t→∞ (1.43)

where ‖·‖ → 0 denotes the standard Euclidean norm of a vector

Proof. Let V ∈ R be a positive definite function and continuously differentiable

V (t) = eTx (t)P (x) ex (t) + tr
¶
W [KI (t)− ‹K]Γ−1

I [KI (t)− ‹K]T
©

(1.44)

Taking the time derivative of 1.44 results in

V̇ (t) = eTx (t) Ṗ (x) ex (t) + ėTx (t)P (x) ex (t) + eTx (t)P (x) ėx (t)

+tr{WK̇I (t)Γ−1(KI (t)− K̃)T + tr{W (KI (t)− K̃)Γ−1K̇T
I (t)}

+tr
¶
Ẇ [KI (t)− ‹K]Γ−1

I [KI (t)− ‹K]T
©

(1.45)
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Substituting ėx from 1.42 into 1.45 gives

V̇ (t) = eTx (t) Ṗ (x) ex (t)+{[A(x)−B(x)‹KeC]ex(t)−B(x)(KI(t)− ‹K)r(t)

−BKP (t)r + [A∗(x∗)− A(x)]x∗(t) + [B∗(x∗)−B(x)]u∗(t)}TP (x) ex (t)

+eTx (t)P{[A(x)−B(x)‹KeC]ex(t)−B(x)(KI(t)− ‹K)r(t)−BKP (t)r

+[A∗(x∗)− A(x)]x∗(t) + [B∗(x∗)−B(x)]u∗(t)}

+tr{WK̇I (t)Γ−1(KI (t)− K̃)T + tr{W (KI (t)− K̃)Γ−1K̇T
I (t)}

+tr
¶
Ẇ [KI (t)− ‹K]Γ−1

I [KI (t)− ‹K]T
©

(1.46)

Substituting ey from 1.35, KP from 1.27, K̇I from 1.28 into 1.46 results in

V̇ (t) = eTx (t) Ṗ (x) ex (t) + eTx (t) (A(x)−B(x)‹KeC)TP (x)ex (t)

+{[A∗(x∗)− A(x)]x∗(t) + [B∗(x∗)−B(x)]u∗(t)}TP (x)ex (t)

−[B(x)STdiag[SCex(t)r
T (t)]ΓP r(t)]

T × P (x)ex (t)

−rT (KI(t)− ‹K)TBT (x)P (x)ex (t) + eTx (t)P (x)[A(x)−B(x)‹KeC]ex(t)

+eTx (t)P (x){[A∗(x∗)− A(x)]x∗(t) + [B∗(x∗)−B(x)]u∗(t)}

−eTx (t)P (x)B(x)STdiag[SCex(t)r
T (t)]× ΓP r(t)

−eTx (t)P (x)B(x)(KI(t)− ‹K)r(t) + tr{WSTdiag[SCex(t)r
T (t)]ΓI

×Γ−1
I (KI (t)− K̃)T}+ tr{W (KI (t)− K̃)Γ−1

I × ΓIdiag[SCex(t)r
T (t)]S}

+tr
¶
Ẇ [KI (t)− ‹K]Γ−1

I [KI (t)− ‹K]T
©

(1.47)

Rearranging, using the WSP conditions 1.10 and 1.11, 1.47 can be simplified to

V̇ (t) = −eTx (t)Qex (t)− 2eTx (t)CTW T × STdiag[SCex(t)r
T (t)]ΓP r(t)

−rT (t)(KI (t)− ‹K)TWCex (t)− eTx (t)CTW T (KI (t)− ‹K)r(t)

+eTx (t)P (x){[A∗(x∗)− A(x)]x∗(t) + [B∗(x∗)−B(x)]u∗(t)}

+{[A∗(x∗)− A(x)]x∗(t) + [B∗(x∗)−B(x)]u∗(t)}TP (x)ex (t)

+tr{WSTdiag[SCex(t)r
T (t)]× (KI (t)− K̃)T}+ tr{W (KI (t)− K̃)

×diag[SCex(t)r
T (t)]S}+ tr

¶
Ẇ [KI (t)− ‹K]Γ−1

I [KI (t)− ‹K]T
©

(1.48)

The following terms cancels each other

tr{WSTdiag[SCex(t)r
T (t)](KI (t)− K̃)T} − rT (t)(KI (t)− ‹K)TWCex(t) = 0 (1.49)

and similarly

tr{W (KI (t)− K̃)diag[SCex(t)r
T (t)]S} − eTx (t)CTW T (KI(t)− ‹K)r(t) = 0 (1.50)
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Thus, 1.48 can be simplified to

V̇ (t) = −eTx (t)Qex (t)− 2eTx (t)CTW T × STdiag[SCex(t)r
T (t)]ΓP r(t)

+eTx (t)P (x){[A∗(x∗)− A(x)]x∗(t) + [B∗(x∗)−B(x)]u∗(t)}

+{[A∗(x∗)− A(x)]x∗(t) + [B∗(x∗)−B(x)]u∗(t)}TP (x)ex (t)

+tr
¶
Ẇ [KI (t)− ‹K]Γ−1

I [KI (t)− ‹K]T
©

(1.51)

According to [22], for those nonlinear systems with parameters that vary slowly in com-

parison with the control dynamics, one may assume that

A(x) = A∗(x∗) and B(x) = B∗(x∗) (1.52)

In this case, 1.51 can be simplified to

V̇ (t) = −eTx (t)Qex (t)− 2eTx (t)CTW T × STdiag[SCex(t)r
T (t)]ΓP r(t)

−M(x) (1.53)

where M(x) = tr
¶
Ẇ [KI (t)− ‹K]Γ−1

I [KI (t)− ‹K]T
©

. Note that M(x) equal to zero if

the condition (C1) is satisfied or nonnegative-definit if (C2) is satisfied.

The Lyapunov derivative V̇ (t) in 1.53 is negative definite with respect to ex(t) but only

semidefinite with respect to the state-space {ex(t), KI(t)}. According to Lyapunov sta-

bility theory, all dynamic values are bounded. Also, based on LaSalle’s Invariance Princi-

ple [56], all states, errors and adaptive gains are bounded, all system trajectories reache

asymptotically the domain defined by V̇ (t) ≡ 0. Since V̇ (t) is negative definite in ex(t),

then, the system ends with ex(t) ≡ 0 which implies ea(t) ≡ 0. Therefore, the adaptive

control system demonstrates asymptotic convergence of the state and output error and

boundedness of the adaptive gains.

Remark 1.1. When disturbances are considered, the well-know σ terms [57] can be in-

cluded to avoid divergence of the integral adaptive control gains. By adding the σ terms

the time-varying integral adaptive control gains are obtained as follows

K̇Ie(t) = diag{eyeTy }ΓIe − σeKIe(t) (1.54)

K̇Ix(t) = RT [diag{ReyxTm}ΓIx − diag{σxRKIx(t)}] (1.55)

K̇Iu(t) = T T [diag{ReyuTm}ΓIu − diag{σuTKIu(t)}] (1.56)
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and similarly

K̇I(t) = ST [diag{SeyrT (t)}ΓI − diag{σISKI(t)}] (1.57)

where σe ∈ R(m×m), σx ∈ R(nm×nm), σu ∈ R(pm×pm), and σI ∈ R(m+nm+pm)×(m+nm+pm)

are small positive coefficient matrices. With this modification, the Lyapunov derivative

function becomes

V̇ (t) = −eTx (t)Qex (t)− 2eTx (t)CTW T × STdiag[SCex(t)r
T (t)]ΓP r(t)−M(x)

−2tr{WSTdiag[σISKI(t)}Γ−1
I (KI(t)−K̃)T} (1.58)

Thus, according to Lyapunov stability theory and LaSalle invariance principle, the appli-

cation of the DSAC algorithm with the σ terms results in bounded error tracking.

1.5 Application to quadrotor vehicle

For the application of the proposed ASC, the following dynamic of the quadrotor with

respect to its attitude (i.e. Pitch, roll and yaw) [58] is considered:

Jω̇ = Jω × ω + u (1.59)

ω = N(a)ȧ (1.60)

Where × represents the cross product, J ∈ R3×3 and ω denote the inertia matrix

and angular velocity respectively, u ∈ R3 denote the quadrotor control vector. a =

(φ θ ψ)T ∈ R3 presents the three Euler angles of the quadrotor with −π/2 < θ < π/2

and −π/2 < φ < π/2 , N(a) is defined as:

N(a) =

Ü
0 cos(φ) − sin(φ)

1 sin(φ) tan(θ) cos(φ) tan(θ)

0 sin(φ)
cos(θ)

cos(φ)
cos(θ)

ê−1

(1.61)

Taking the time derivative of (1.60) to get

ω̇ = Ṅ(a)ȧ+N(a)ä (1.62)

Substituting (1.62) and (1.60) into (1.59) and rearranging gives

JṄ(a)ȧ+ JN(a)ä− JN(a)ȧ×N(a)ȧ = u (1.63)

recall that JN(a)ȧ× can be represented as a skew symmetric matrix, thus one have

JN(a)ä+
¶
JṄ(a)− {JN(a)ȧ×}N(a)

©
ȧ = u (1.64)
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Equation (1.64) can be rewritten as follows

M(a)ä+ L(a, ȧ)ȧ = u (1.65)

where M(a) = JN(a) and L(a, ȧ) = {JṄ(a) − {JN(a)ȧ×}N(a)}. From (1.65), taking

x1 = a and x2 = ȧ, the nonlinear state space model of the form (1.1) can be obtained

with,

A(x) =

[
0 I3

0 −M(x1)
−1L(x1, x2)

]
, B(x) =

[
0

M(x1)
−1

]
(1.66)

C = [ I3 I3 ], x =
î
x1 x2

óT
(1.67)

In this particular case, by choosing W = I3 one can easily show that the product WCB

is PDS, as follows

WCqBq = I3
î
I3 I3

ó[ 0

M−1(x)

]
= M−1(x) > 0 (1.68)

In this case, since CB is symmetric, then W is chosen to be the unity matrix, thus, the

WSP condition coincides with the standard SP condition.

A simple selection of matrices that satisfy (1.2-1.4) are

M =

[
I3

−I3

]
N =

î
I3 0

ó
(1.69)

Computing

ż = NAq(x, ẋ)Mz = −I3z = −z (1.70)

which shows that the zero dynamics is stable and the quadrotor nonlinear dynamics is

minimum-phase, therefore, based on theorem 1, the system is WASP or simply ASP since

CB is symmetric. Thus, the application of the DSAC control methodology would result

in a stable closed-loop system.

1.6 Simulation results

The DSAC controller parameters are, Γpe = Γpξ = I3,Γpu = 1e6I3 and ΓIe = ΓIξ =

100I3,ΓIu = 1e−2I3 , the reference model is chosen as Gm (s) = 1/ (s2 + 3s+ 2) for the

attitude angles (i.e. roll, pitch and yaw) of the Quadrotor. The initial conditions are set

to zero. A sinusoidal trajectory is chosen for the roll and pitch angles. The desired yaw

angle is 0.6 rad. Figure 1.1 shows the evolution of the Quadrotor. One can see that the

proposed controller was able to stabilize the angles to their desired values. The efficiency

of the proposed controller is verified, and the results are perfect.
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Figure 1.1: Evolution of the Quadrotor attitude angles: desired trajectory (red curve),

actual trajectory (blue curve)

Figure 1.2: Tracking errors of the Quadrotor attitude angles
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Figure 1.3: Control inputs of the Quadrotor

Figure 1.2 and figure 1.3 represent the tracking errors and control signals of the quadro-

tor, respectively. The tracking errors are very small and the convergence to zero is ob-

tained as expected. It can be clearly seen that the control signals applied to the quadrotor

in figure 1.3 is acceptable in value and physically realizable, and this is very important

when moving from simulation toward real application.

1.7 Conclusion

An extension in decentralized simple adaptive control with the new relaxed W-Passivity

conditions is presented in this chapter. A formal proof of stability of the DSAC is estab-

lished using the new WASP theorem for square nonlinear systems with not necessarily

symmetric matrix CB. An application of the proposed DSAC to a Quadrotor system is

given in order to show the effectiveness of the DSAC method.



Chapter 2

Extension of the ASP and DSAC to

the Fractional domain

“ To be alone means that you avoid bad company. But to have a true

friend is better than being alone.

”
Umar ibn al-Khaab

2.1 Introduction

In this chapter, one further improve the flexibility of the DSAC controller by considering

the fractional derivative of its adaptive gains. First, the ASPR conditions for the design

of a stable fractional adaptive system will be established. A fractional order PFC to

realize an augmented ASPR system is then introduced, and a new FODSAC controller

will be proposed. The stability analysis of the proposed control loop is presented and

a simulation example comparing the standard DSAC to the new FODSAC is provided,

showing the performance of the proposed method.

2.2 Preparation

In this section we recall and extend some existing definitions and lemmas about frac-

tional calculus and almost passivity theory. The extended results will be exploited in the

subsequent development.

23
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2.2.1 Fractional calculus

Definition 2.1 (Caputo Fractional Derivative [59]). The Caputo fractional derivative of

order α ∈ R+ on the half axis R+ is defined as follows

C
t0
Dα
t x(t) =

1

Γ(n− α)

∫ t

t0

xn(τ)

(t− τ)α−n+1
dτ, t > t0 (2.1)

with n = min{k ∈ N/k > α}, α > 0. Γ is the well known Gamma function.

Lemma 2.1. [60] Let x(t) ∈ Rn be a differentiable vector. Then, for any time instant

t > t0
1

2
C
t0
Dα
t

[
xT (t)x(t)

]
6 xT (t)Ct0D

α
t x(t), ∀α ∈ (0, 1) (2.2)

Lemma 2.2. [61] Let x(t) ∈ Rn be a vector of differentiable functions. Then, for any

time instant t > t0, the following relationship holds

1

2
C
t0
Dα
(
xT (t)Px(t)

)
6 xT (t)P C

t0
Dαx(t), ∀α ∈ (0, 1] (2.3)

where P ∈ Rn×n is a constant positive definit symmetric matrix.

Lemma 2.3. [61] Let A(t) ∈ Rm×n be differentiable. Then, ∀t > t0, the following

relationship holds

C
t0
Dα
t

[
tr
{
AT (t)A(t)

}]
6 2tr

{
AT (t)Ct0D

α
t A(t)

}
, ∀α ∈ (0, 1]. (2.4)

Remark 2.1. We remark that lemma 2.3 is limited to calculating the fractional derivative

of the trace of a rectangular matrix and its transpose only. Below, we extend the results

to the case where a positive definite diagonal matrix appears between this product.

Lemma 2.4. Let A(t) ∈ Rm×n be differentiable, let W > 0 be a diagonal matrix and

W 6= λI. Then, ∀α ∈ (0, 1], ∀t > t0, the following relationship holds

C
t0
Dα
t

[
tr
{
AT (t)WA(t)

}]
6 2tr

{
AT (t)W C

t0
Dα
t A(t)

}
. (2.5)

Proof. See Appendix A

2.2.2 Stability of fractional order systems

A recent results [61] regarding the stability analysis of FOS when the fractional derivative

of the Lyapunov function is negative semidefinite can be stated in theorem 2.1. A FOS

using the Caputo derivative can be expressed in a general form as:

C
t0
Dα
t x(t) = f(x, t) (2.6)

In this study we will consider α ∈ (0, 1)
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Definition 2.2. A continuous function γ : [0, t) → [0,∞) is said to belong to class-K if

it is strictly increasing and γ(0) = 0 [62].

Theorem 2.1. [61] Let x = 0 be an equilibrium point for the non autonomous FOS

(2.6). Assume that there exists a continuous Lyapunov function V (x(t), t) and a scalar

class-K function γ1(·) such that, ∀x 6= 0

γ1(‖x(t‖) 6 V (x(t), t) (2.7)

and
C
t0
Dβ
t V (x(t), t) 6 0, with β ∈ (0, 1] (2.8)

then the origin of the system 2.6 is Lyapunov stable. If, furthermore, there is a scalar

class-K function γ2(·) satisfying

V (x(t), t) 6 γ2(‖x(t)‖) (2.9)

then the origin of the system 2.6 is Lyapunov uniformly stable.

2.2.3 Almost Strict Passivity Extension to Fractional Order Sys-

tem

In this section we present and generalize some of the existing results of the concept of

almost passivity theory from ordinary to fractional order LTI systems. Consider the

controllable and observable LTI system

ẋp (t) = Apxp (t) +Bpup (t)

yp (t) = Cpxp (t) +Dpup(t)
(2.10)

where xp(t) ∈ Rn and yp (t) ∈ Rm represent the state vector and output vector respec-

tively, up (t) ∈ Rm is the control input. Ap ∈ Rn×n, Bp ∈ Rn×m, Cp ∈ Rm×n and

Dp ∈ Rm×m.

Definition 2.3. [63] An m×m transfer function matrix Gp(s) is called SPR if: (i) All

elements of Gp(s) are analytic in Re(s) > 0, (ii) Gp(s) is real for real s, (iii) Gp(s) +

GT∗
p (s) > 0 for Re(s) > 0 and finite s or (Gp(s) + GT∗

p (s) > εI for some ε > 0 when

Gp(s) is proper).

It was shown that if (2.10) is a minimal realization of Gp(s) which is SPR, then one

can ensure the following relations [64]

PAp + ATp P = −Q− LTL < 0 (2.11)
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PBp = CT
p − LTW (2.12)

Dp +DT
p = W TW (2.13)

Solving (2.12) for L and substituting this and (2.13) into (2.11) gives

PAp + ATp P + [PBp − CT
p ][Dp +DT

p ]−1[BT
p P − Cp] = −Q < 0 (2.14)

where L ∈ Rm×n, W ∈ Rm×m,and where P ∈ Rn×n and Q ∈ Rn×n are positive definite

matrices. Also Cp and Bp are assumed to be of maximal rank. For strictly proper systems

when Dp = 0, we get W = 0, and including LTL in Q, thus, the SPR relations become

PAp + ATp P = −Q < 0 (2.15)

PBp = CT
p (2.16)

In [65], it was also shown that the classical SPR definitions and concepts apply to FOS

as well. Based on these results we have the following definitions and lemmas.

Definition 2.4. A FO LTI system with the state-space representation

C
t0
Dα
t xs (t) = Asxs (t) +Bsu (t)

ys (t) = Csxs (t)
(2.17)

where As ∈ Rn×n, Bs ∈ Rn×m and Cs ∈ Rm×n is called Strictly Passive (SP) and its

transfer function matrix Gs(s) = C(sαI −A)−1B Strictly Positive Real (SPR) if it simul-

taneously satisfies the time-domain relations (2.15)-(2.16).

Definition 2.5. Let Gs(s) be an m × m fractional order transfer function matrix. Let

{As, Bs, Cs} be the minimal realization of Gs(s), Assume that there exists a positive defi-

nite constant gain matrix, K̃e, such that the closed-loop system

C
t0
Dα
t xs(t) = (As −BsK̃eCs)xs(t) +Bsu(t)

ys (t) = Csxs (t)
(2.18)

is Strictly passive and its transfer function SPR. Then, the original FO system

{As, Bs, Cs} is called ASP and its transfer function matrix Gs(s) ASPR.

Lemma 2.5. [65] Let a fractional order transfer function matrix Ga(s) be ASPR and let

K̃e be a constant positive gain that satisfies 2.18. Then the closed loop denoted by Gc(s)

is SPR for any gain Ke that satisfies Ke > K̃e.
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Remark 2.2. The fractional order ASPR plant is not necessarily stable, actually, the

fictitious gain Ke will stabilize it.

Lemma 2.6. Any proper (but not strictly proper) and strictly minimum-phase m × m

fractional order transfer matrix Gs(s) with the realization {As, Bs, Cs, Ds} is ASPR.

Proof. The detailed proof in [66] for integer system case apply for FOS as well, as shown

in [65], any ASPR plant must also be proper which completes the proof.

Lemma 2.7. [66] Let G(s) be any m×m transfer matrix of arbitrary MacMillan degree.

G(s) is not necessarily stable or minimum-phase. Let H(s) be any dynamic stabilizing

controller. Then

Ga(s) = G(s) +H−1(s) (2.19)

is ASPR if the MacMillan degree of G(s) is p/p or (p−m)/p, for any p.

2.3 Realization of ASPR fractional order system

Consider a strictly proper non ASPR FO-LTI system given by

G :

C
t0
Dα
t xp (t) = Apxp (t) +Bpu (t)

yp (t) = Cpxp (t)
(2.20)

where xp(t) = col{x1, · · · , xnp} ∈ Rnp , yp (t) = col{y1, · · · , ym} ∈ Rm and up (t) =

col{u1, · · · , um} ∈ Rm. Ap, Bp and Cp are bounded matrix with appropriate dimen-

sion. In order for this system to satisfy the ASPR conditions, we consider augmentation

with a FO-PFC of the form

F :

C
t0
Dα
t xf (t) = Afxf (t) +Bfu (t)

yf (t) = Cfxf (t) +Dfu(t)
(2.21)

The parallel interconnection with this FO-PFC is shown in figure 2.1. The resulting

augmented system Ga = G+ F is expressed as

Ga :

C
t0
Dα
t xa (t) = Aaxa (t) +Bau (t)

ya (t) = Caxa (t) +Dfu(t)
(2.22)

where xa = col{xp, xf} ∈ Rn, u (t) ∈ Rm and Aa = diag{Ap Af}, Ba = col{Bp Bf} and

Ca = [Cp Cf ].
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F

G

yf

yp

yau +
+

Figure 2.1: Augmented Fractional order system with a FO-PFC

The FO-PFC is designed so that the augmented FO system is ASPR. Concerning the

existence and design of the FO-PFC, we have the following theorem

Theorem 2.2. Assume that the FO LTI system (2.20) can be stabilized by a linear feed-

back dynamic of the form

C
t0
Dα
t xd (t) = Adxd (t) +Bdyp (t)

yd (t) = Cdxd (t) +Ddyp(t)

u(t) = −yd (t) .

(2.23)

The inverse system of (2.23) with u(t) as input and yf (t) = −yp as output is given by

C
t0
Dα
t xf (t) = (Ad −BdD

−1
d )Cd −BdD

−1
d u(t)

yf (t) = D−1
d Cdxf +D−1

d u(t)
(2.24)

Consider an augmentation with the inverse system as a PFC, as shown in figure 2.1.

Then the augmented FO system is minimum phase.

Proof. Using the control input u(t) = −yd(t), one obtains the closed loop system C
t0
Dα
t x0 =

A0x0, where x0 = col{xp, xd} and

A0 =

[
Ap −BpDdCp −BpCd

BdCp Ad

]
(2.25)

which is a stable system by assumption.

Now, consider the inverse of (2.23) given in (2.24), and consider the parallel intercon-

nection (figure 2.1) with the inverse system as a FO-PFC, the augmented open loop system

can then be given by (2.22), where Aa = diag{Ap Ad−BdD
−1
d Cd}, Ba = col{Bp BdD

−1
d },

Ca = [Cp D−1
d Cd] and Df = D−1

d with ya(t) = yp(t) + yf (t).
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The zeros of this augmented FOS are the eigenvalues of the matrix A1 = Aa−BaD
−1
f Ca

[67], substituting the corresponding matrices to obtain

A1 =

[
Ap −BpDdCp −BpCd

BdCp Ad

]
(2.26)

By Comparison of (2.26) with (2.25) we find A1 = A0, thus the zeros of the augmented

FOS are stable and therefore is minimum phase.

This theorem indicates that using the inverse of a stabilizing controller as a FO-PFC

makes the resulting augmented system minimum phase. Furthermore, since deg[F (s)] =

p/p (proper) then by lemma 2.7 we obtain deg[Ga(s) = (p+ n)/(p+ n)], therefore, using

lemma 2.6 the augmented FO system is ASP.

We focus in the subsequent developments on designing controller for proper and strictly

proper systems (i.e. for both cases D = 0 and D > 0). Thus, a more general proof for

theorem (2.2) when D = 0 can be given. If G can be stabilized by a linear stabilizing

dynamic F such that the closed loop is Gcl = (I + FG)−1F = (G + F−1)−1 = G−1
a , then

∃Ke > 0 (sufficiently large) such that G1 = Gcl +Ke is SPR. Here G−1
1 = (Gcl +Ke)

−1 =

(G−1
a +Ke)

−1 = (I +GaKe)
−1Ga is also SPR, therefore Ga = G+ F−1 is ASPR.

2.4 Fractional adaptive controller: formulation and

design

Assumption 2.1. There exist a known FO-PFC of the form (2.21) that can render the

augmented system (2.22) ASPR, and the resulting strictly proper augmented system can

be made SPR via constant feedback, in other words the augmented system (2.22) satisfies

the SPR conditions 2.11 - 2.13 .

Remark 2.3. We call any minimum phase system with relative degree r ∈ (0 , 1) ASPR.

Under assumption 2.1, there exist a static feedback K̃e such that the resulting aug-

mented closed-loop system

C
t0
Dα
t xa(t) = (Aa −Ba[I + K̃eDf ]

−1K̃eCa)xa(t) +Ba[I + K̃eDf ]
−1ud(t)

ya (t) = [I +DfK̃e]
−1Caxa (t) +Df [I +DfK̃e]

−1ud(t)
(2.27)

satisfies relations (2.11 - 2.13) .
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Thus, if the control input

u(t) = −K̃eya(t) + ud(t) (2.28)

can be designed, then one can obtain a stable control system.

Now, we want to design under assumption 2.1 a fractional adaptive feedback control

system based on the DSAC methods. The control objective is shown below.

2.4.1 Control objectif

Consider the augmented system defined in (2.22), if we define the augmented output to

be controlled

ya(t) = yp(t) + yf (t) (2.29)

Then, the objective is to design an adaptive control signal u(t) = K(t)r(t) (to be de-

fined subsequently) based on the proposed FO-DSAC adaptation laws, which makes the

augmented system output (2.29) track the output of a given ideal fractional order model

reference which leads to the boundedness of all signals in the closed-loop system. The

model reference is given by

C
t0
Dα
t xm (t) = Amxm (t) +Bmum (t)

ym (t) = Cmxm (t)
(2.30)

where Am ∈ Rnm×nm , Bm ∈ Rnm×qm and Cm ∈ Rm×nm . xm(t) = col{xm1 , . . . , xmnm} ∈
Rnm , ym (t) = col{ym1 , . . . , ymm} ∈ Rm and um (t) = col{um1 , . . . , umqm} ∈ Rqm represent

the model state vector, output vector and command input respectively. For this model

the order nm and the number of inputs qm are both assumed to be multiples of m and

thus satisfying nm = knm and qm = kqm.

Remark 2.4. This model can be much lower than the order of the plant and not neces-

sarily square, it is permissible to have n = dim(xa) >> dim(xm) = nm.

Remark 2.5. We define Perfect Tracking (PT) the case where ya(t) perfectly track ym(t)

with zero steady state error, that is ym(t) = ya(t). The PT possibility of occurrence will

be discussed subsequently.

2.4.2 Algorithm and Adaptation Law of the FO-DSAC

As in the standard SAC, the FO-DSAC algorithm monitors the augmented output tracking

error

ea (t) = ym (t)− ya (t) (2.31)
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the adaptive control signal to be designed has the following form

u(t) = Ke (t) ea (t) +Kx (t)xm (t) +Ku (t)um (t) (2.32)

where Ke (t) is the main feedback gain that should guarantee the stability of the closed-

loop system under assumption 2.1. Kx (t) and Ku (t) are additional feedforward gains,

they allow good tracking without requiring large values of Ke (t). Each of these control

gains is a combination of proportional and integral gains defined as

Ke(t) = Kpe(t) +KIe(t) (2.33)

Kx(t) = Kpx(t) +KIx(t) (2.34)

Ku(t) = Kpu(t) +KIu(t) (2.35)

The components of the stabilizing control gain in (2.33) are adaptively computed as follow

Kpe(t) = diag{eaeTa }ΓPe (2.36)

C
t0
Dα
t KIe(t) = diag{eaeTa }ΓIe (2.37)

where Kpe(t), KIe(t)∈Rm×m.

The feedforward control gain components Kpx(t), KIx(t) ∈ Rm×nm and KPu(t), KIu(t) ∈
Rm×qm are updated as follows

Kpx(t) = RTdiag{ReaxTm}ΓPx (2.38)

C
t0
Dα
t KIx(t) = RTdiag{ReaxTm}ΓIx (2.39)

Kpu(t) = T Tdiag{TeauTm}ΓPu (2.40)

C
t0
Dα
t KIu(t) = T Tdiag{TeauTm}ΓIu (2.41)

with R = col{Im, Im, ..., Im} ∈ Rnm×m, T = col{Im, Im, ..., Im} ∈ Rqm×m , where ΓPe , ΓIe ∈
Rm×m, ΓPx , ΓIx ∈ Rnm×nm and ΓPu , ΓIu ∈ Rqm×qm are time-invariant diagonal weighting

matrices that control the rate of adaptation. Defining K (t) , [Ke(t), Kx(t), Ku(t)] =

KI (t) +KP (t) and r(t) = col{ea(t), xm(t), um(t)}, the adaptive control algorithm can be

rewritten as

u (t) = K (t) r (t) (2.42)

where K(t) ∈ Rm×(m+nm+qm) and r(t) ∈ Rm+nm+qm . The total integral and proportional

adaptive control gains KI(t), KP (t) ∈ Rm×(m+nm+qm), are updated as follows

KP (t) = STdiag{SearT}ΓP (2.43)
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C
t0
Dα
t KI(t) = STdiag{SearT}ΓI (2.44)

with the scaling matrix S = col{Im, Im, ..., Im} ∈ R(m+nm+qm)×m , ΓP =

diag{Γpe Γpx Γpu} ∈ R(m+nm+qm)×(m+nm+qm) and ΓI = diag{ΓIe ΓIx ΓIu} ∈
R(m+nm+qm)×(m+nm+qm).

2.4.3 Ideal control and state trajectories

When PT occure, in this case the system will have reached a bounded ideal state trajec-

tories denoted by x∗a(t) ∈ Rn, and then it is asked to move along them. Mathematically,

ya(t) = y∗a(t) = Cax
∗
a(t) = Cmxm(t) = ym (2.45)

ea(t) = ym(t)− ya(t) = ym(t)− y∗a(t) = 0 (2.46)

and the ideal plant
C
t0
Dα
t x

∗
a (t) = Aax

∗
a (t) +Bau

∗
p (t)

y∗a (t) = Cax
∗
a (t) +Dfu

∗(t)
(2.47)

the ideal control u∗p(t) that would keep the system (2.47) moving along x∗a(t) is defined as

u∗p (t) = ‹Kxxm (t) + ‹Kuum (t) (2.48)

where ‹Kx and ‹Ku denote the ideal feedforward gains.

Concerning the existance of x∗(t), we have the following lemma.

Lemma 2.8. There exist a matrices X1 ∈ Rn×nm and X2 ∈ Rn×qm such that the following

ideal trajectories

x∗(t) = X1xm(t) +X2um(t) (2.49)

which makes a relation between the system’s state and model’s state, exist. Furthermore,

define ‹Kx = D−1(Cm − CaX1) and ‹Ku = −D−1CaX2, then y∗a(t) = ym(t) is satisfied and

thus PT is allowed.

Proof. Equation (2.49) consist of more variable than equation and then it has at least a

solution for X1 and X2. Substituting (2.48) and (2.49) in (2.47.b) gives y∗a(t) = ym(t).

Thus, PT is achievable.

Define a state error ex(t) ∈ Rn

ex(t) = x∗a(t)− xa(t) (2.50)
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thus (2.46) can be rewritten as

ea(t) = Cax
∗
a(t) +Dau

∗(t)− Caxa(t)−Dau(t) (2.51)

Adding and subtracting Da
‹Keea, substituting u(t) and u∗(t) from (2.42) and (2.48) to get

ea(t) = Caex +Da
‹Kxxm +Da

‹Kuum +Da
‹Keea −Da

‹Keea −DaKr (2.52)

Define ‹K(t) , [‹Ke, ‹Kx, ‹Ku] ∈ Rm×(m+nm+qm), and rearranging to get,

ea(t) = Caex −Da(K(t)− ‹K)r −Da
‹Keea

= (I +Da
‹Ke)

−1Caex − (I +Da
‹Ke)

−1Da(K(t)− ‹K)r

ea(t) = Caex −Da(K(t)− ‹K)r (2.53)

The error equation can be then derived by taking the Caputo fractional derivative of

(2.50)

C
t0
Dα
t ex = C

t0
Dα
t x

∗
a −Ct0 D

α
t xa(t)

= Aax
∗
a +Bau

∗
p − Aaxa −Baup

= Aaex +Ba(up(t)− u∗p(t)) (2.54)

Adding and subtracting Ba
‹Keea, substituting ea from (2.53), u(t) and u∗(t) from (2.42)

and (2.48) to get

C
t0
Dα
t ex(t) = Aaex −Ba(K(t)− ‹K)r −Ba

‹Ke[(I +Da
‹Ke)

−1Caex

−(I +Da
‹Ke)

−1Da(K(t)− ‹K)r]

C
t0
Dα
t ex(t) = Aaex −Ba

‹Ke(I +Da
‹Ke)

−1Caex

−{Ba[I − ‹Ke(I +Da
‹Ke)

−1Da]}(K(t)− ‹K)r (2.55)

Using binomial inverse theorem (A+UBV )−1 = A−1−A−1UB(B+BV A−1UB)−1BV A−1

from Woodbury matrix identity for the case where A = IA and B = IB, one obtain

C
t0
Dα
t ex(t) = Aaex −Ba

‹Ke(I +Da
‹Ke)

−1Caex

−Ba(I + ‹KeDa)
−1(K(t)− ‹K)r (2.56)

Finally, let Aa = Aa − Ba
‹Ke(I + Da

‹Ke)
−1Ca and B = Ba(I + ‹KeDa)

−1, thus, one can

write

C
t0
Dα
t ex(t) = Aaex −Ba(K(t)− ‹K)r(t) (2.57)

Equation (2.57) represents the error equation for the overall fractional closed loop system

with PFC.
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2.4.4 Stability analysis

Consider the obtained adaptive system described by (2.57) and (2.44). Let V (ex, KI) ∈ R
be a PDS function given by

V (ex, KI) = eTx (t)Pex(t) + tr{(KI(t)− ‹K)Γ−1
I (KI(t)− ‹K)} (2.58)

where ΓI > 0 and (KI(t)− ‹K) ∈ Rm×(m+nm+qm).

Here, we try to examine the stability of the system (2.57) and (2.44) in one hand, and to

show the usefulness of lemma (2.4) in the other hand.

Taking the Caputo fractional derivative of (2.58) we get:

C
t0
Dα
t V (ex, KI) 6

C
t0
Dα
t [eTx (t)Pex(t)] + C

t0
Dα
t [tr{(KI(t)− ‹K)Γ−1

I (KI(t)− ‹K)}] (2.59)

Applying lemma (2.2) and the new lemma (2.4) gives

C
t0
Dα
t V (ex, KI) 6 2eTx (t)P C

t0
Dα
t ex(t) + 2tr{(KI(t)− ‹K)Γ−1

I
C
t0
Dα
t (KI(t)− ‹K)} (2.60)

Substituting 2.57 into 2.60 gives

C
t0
Dα
t V (ex, KI) 6 2eTx (t)PAaex(t)− 2eTx (t)PBa(K(t)− ‹K)r(t)

+2tr
¶

(KI(t)− ‹K)Γ−1
I

C
t0
Dα
t K

T
I (t)
©

6 eTx (t)(PAa + AaP )ex(t)− 2eTx (t)PBa(K(t)− ‹K)r(t)

+2tr
¶

(KI(t)− ‹K)Γ−1
I

C
t0
Dα
t K

T
I (t)
©

(2.61)

Let δ(t) = (K(t) − ‹K), substituting C
t0
Dα
t KI(t) from (2.44) into the above equation to

obtain

C
t0
Dα
t V (ex, KI) 6 eTx (t)(PAa + AaP )ex(t)− 2eTx (t)PBaδ(t)r(t)

+2tr
¶

(KI(t)− ‹K)diag(Sea(t)r
T (t))S

©
(2.62)

using passivity relation to obtain

C
t0
Dα
t V (ex, KI) 6 −eTx (t)Qex(t)− eTx (t)LTLex(t)

−2eTx (t)PBaδ(t)r(t)

+2tr
¶

(KI(t)− ‹K)diag(Sea(t)r
T (t))S

©
(2.63)

Using KI(t) = K(t)−KP (t), and obtain

C
t0
Dα
t V (ex, KI) 6 −eTx (t)Qex(t)− eTx (t)LTLex(t)

−2eTx (t)PBaδ(t)r(t)

+2tr{δ(t)diag(Sea(t)r
T (t))S}

−2tr{STdiag(Sea(t)r
T (t))TPdiag(Sea(t)r

T (t))S} (2.64)
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Using the relation (PB = CT − LTW ) one get

C
t0
Dα
t V (ex, KI) 6 −eTx (t)Qex(t)− eTx (t)LTLex(t)

−2eTx (t)CT δ(t)r(t) + 2eTx (t)LTWδ(t)r(t)

+2tr{δ(t)diag(Sea(t)r
T (t))S}

−2tr{STdiag(Sea(t)r
T (t))TPdiag(Sea(t)r

T (t))S} (2.65)

we have eTa = eTxC
T

a + Dfδr, therefore, the third and the fifth terms cancel each other,

thus one get

C
t0
Dα
t V (ex, KI) 6 −eTx (t)Qex(t)− eTx (t)LTLex(t)

−2rT δT (t)DT
f δ(t)r + 2eTx (t)LTWδ(t)r(t)

−2tr{STdiag(Sea(t)r
T (t))TPdiag(Sea(t)r

T (t))S} (2.66)

using (DT
f = W TW −Df ) one obtain

C
t0
Dα
t V (ex, KI) 6 −eTx (t)Qex(t)− eTx (t)LTLex(t)− 2rT δT (t)W TWδ(t)r

+2rT δT (t)Dfδ(t)r(t) + 2eTx (t)LTWδ(t)r(t)

−2tr{STdiag(Sea(t)r
T (t))TPdiag(Sea(t)r

T (t))S} (2.67)

rearranging,

C
t0
Dα
t V (ex, KI) 6 −eTx (t)Qex(t)− {Lex(t)−Wδ(t)r(t)}T{Lex(t)−Wδ(t)r(t)}

−rT δT (t)W TWδ(t)r(t) + 2rT δT (t)Dfδ(t)r(t)

−2tr{STdiag(Sea(t)r
T (t))TPdiag(Sea(t)r

T (t))S} (2.68)

we have 2rT δT (t)Dfδ(t)r(t) = 2rT (t)δT (t)W TWδ(t)r(t)− 2rT (t)δT (t)DT
f δ(t)r(t). Substi-

tuting this into the above equation to get

C
t0
Dα
t V (ex, KI) 6 −eTx (t)Qex(t)− {Lex(t)−Wδ(t)r(t)}T{Lex(t)−Wδ(t)r(t)}

+rT δT (t)W TWδ(t)r(t)− 2rT δT (t)Dfδ(t)r(t)

−2tr{STdiag(Sea(t)r
T (t))TPdiag(Sea(t)r

T (t))S} (2.69)

rearranging,

C
t0
Dα
t V (ex, KI) 6 −eTx (t)Qex(t)− {Lex(t)−Wδ(t)r(t)}T{Lex(t)−Wδ(t)r(t)}

−2tr{STdiag(Sea(t)r
T (t))TPdiag(Sea(t)r

T (t))S}

−rT δT (t)[DT
f −Df ]δ(t)r(t) (2.70)
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Finally,

C
t0
Dα
t V (ex, KI) 6 −eTx (t)Qex(t)− {Lex(t)−Wδ(t)r(t)}T{Lex(t)−Wδ(t)r(t)}

−2tr{STdiag(Sea(t)r
T (t))TPdiag(Sea(t)r

T (t))S} (2.71)

For strictly proper systems we have L = 0 and W = 0, thus,

C
t0
Dα
t V (ex, KI) 6 −eTx (t)Qex(t)

−2tr{STdiag(Sea(t)r
T (t))TPdiag(Sea(t)r

T (t))S} (2.72)

From this result, the Caputo fractional derivative of Ct0D
α
t V (ex, KI) is negative semidef-

inite. Thus, using theorem (2.1), we can conclude that all the signals in the augmented

fractional control system are bounded, and the origin of the system (2.57) and (2.44) is

uniformly stable in the Lyapunov sense.

Finally, we have the following theorem

Theorem 2.3. Under the Assumptions (2.1), and remark (2.3) all the signals in the

resulting augmented closed loop FO system with the control input (2.32) and the fractional

adaptation laws (2.33-2.41) are uniformly bounded.

2.5 Simulation examples

2.5.1 Example 1:

Consider the following fractional order system:

G(s) =
3

2s1.2 + s0.6
(2.73)

One can see that the relative degree of the above system is 1.2, therefore, it is not ASPR.

One considers the following FOPFC in order to realize an augmented ASPR system:

F (s) =
0.01

0.61177s0.6 + 0.467
(2.74)

The augmented system is:

Ga(s) =
0.002s1.2 + 1.8363s0.6 + 1.401

1.2235s1.8 + 1.5458s1.2 + 0.467s0.6
(2.75)
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The augmented system is minimum phase and of relative degree 0.6, therefore, by as-

sumption 2.3 is ASPR. The state space form of the above FOTF is:

C
t0
D0.6
t =

 −1.2634 −0.3817 0

1 0 0

0 1 0

x(t) +

 1

0

0

u(t)

y =
î

0.0016 1.5008 10145
ó
x(t)

(2.76)

2.5.2 Example 2:

Consider the following fractional order system:

G(s) =
5s0.4

2s0.4 + 1
(2.77)

One can see that the above system is not minimum phase, therefore, it is not ASPR.

One considers the following FOPFC with α = 0.4 in order to realize an augmented ASPR

system:

F (s) =
0.000305s0.4

0.00014372s0.8 + 7.564e− 05s0.4 + 0.0124
(2.78)

The augmented system is:

Ga(s) =
0.00071858s1.2 + 0.0009882s0.8 + 0.062305s0.4

0.00028743s1.2 + 0.000295s0.8 + 0.024876s0.4 + 0.0124
(2.79)

The augmented system is minimum phase and of relative degree 0, therefore, by assump-

tion 2.3 is ASPR. The state space form of the above FOTF is:

C
t0
D0.6
t =

 −1.0263 −86.5444 −43.1406

1 0 0

0 1 0

x(t) +

 1

0

0

u(t)

y =
î

0.8722 0.4032 −107.8516
ó
x(t) + 2.5u(t)

(2.80)

2.5.3 Simulation results

The above two examples are simulated through MATLAB in order to verify the perfor-

mances of the proposed FODSAC controller. The controller parameters used for these

tests are: TI = diag(5, 5, 5), Tp = diag(5, 5, 5). The adaptive control gains were initialized

with Ke = Kx = Ku = 0. The model reference is chosen as Gm(s) = 1/(1s0.5 + 1).

The simulation results of the two examples are presented in figure 2.2 and 2.3. Com-

pared with the the classical DSAC, thanks to the fractional operator, the proposed ASC

controller managed to improve the tracking performances.
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Figure 2.2: Simulation results of example 1: The proposed FODSAC compared with

DSAC
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Figure 2.3: Simulation results of example 2: The proposed FODSAC compared with

DSAC
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2.6 Conclusion

In this chapter we considered an almost passivity based fractional order Decentralized sim-

ple adaptive control design for linear fractional-order systems. We first presented a lemma

related to the Caputo fractional derivative of the trace function where a Positive-definite

diagonal matrix appears between a product of a rectangular matrix and its transpose.

Thereafter, the almost passivity conditions for the design of the adaptive system were es-

tablished. A new fractional order simple adaptive controller was proposed and the formal

proof of the stability of the passivity-based fractional adaptive system was established. A

numerical simulation showing the effectiveness of the proposed method was given.
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Chapter 3

Adaptive Synergetic Control Design

“ Once you eliminate the impossible, whatever remains, no matter how

improbable, must be the truth.

”
Arthur Conan Doyle

3.1 Introduction

In this chapter, a simple adaptive synergetic controller ensuring the asymptotic conver-

gence of the system to a desired manifold is proposed as a solution to the design of the

Synergetic Control where the system parameters and dynamics are unknown. It is well

known that the design of the synergetic control (SC) law requires a thorough knowledge

of the system parameters and dynamics. Such problem obstructs the synthesis of the

SC law and the designer is prompted to pass through the estimation methods, which,

in turn, poses a problem of increasing the computation time of the control algorithm.

To cope with this problem, a solution is proposed by modifying the original SC law to

develop an SAC-like adaptive SC law without the need of prior knowledge of the system.

The stability of the proposed adaptive controller is formally proven via the Lyapunov

approach.

42
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3.2 Preliminaries

This section presents some used notations and specifies fundamentals on the synergetic

control technique and Simple Adaptive Control method.

3.2.1 Synergetic control

Consider a class of nonlinear systems of the form:

ẋ (t) = A(x)x (t) +B(x)u (t)

y (t) = Cx (t)
(3.1)

where x ∈ Rn is the system states, u ∈ Rm and y ∈ Rm represent the control input

and system output respectively.

The synergetic controller design procedure for the system (3.1) consists of the following

steps:

1. Define a macro-variable ϕ for constructing a manifold M given as follows:

M = {x : ϕ(x) = 0, ϕ ∈ Rm} (3.2)

the macro-variable ϕ is a function of the system states.

2. Synthesize a control law that would force the system to exponentially reach the

desired manifold M with a dynamic evolution of ϕ which can be stated as:

T ϕ̇(x) + ϕ(x) = 0 (3.3)

where the T = T T > 0 specifies the convergence rate of the system states. The

dynamic evolution (3.3) will make the macro-variable ϕ and its derivative ϕ̇ reach

zero.

3. Calculation of the control law uSC by solving the system (3.1) with the evolution

condition (3.3) as follows:

T ϕ̇(x) + ϕ(x) = Tϕx(x) (A(x)(x) +B(x)uSC(t)) + ϕ(x) = 0

where ϕx(x) = ∂ϕ(x)/∂x. The resulting synergetic control law uSC can be expressed

as:

uSC(t) = − (Tϕx(x)B(x))−1 ϕx(x)A(x)x(t)− (Tϕx(x)B(x))−1 ϕ(x) (3.4)

Note that the control law (3.4) requires the knowledge of the system parameters.
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3.2.2 Simple Adaptive Control

Consider the system given by equation (3.1). For the design of the SAC control law, the

system realisation {A(x), B(x), C} does not necessary need to be known but just requires

the system (3.1) to be ASP. The Almost strict passivity of a system of the form (3.1) is

defined as follows [4, 30]:

Definition 3.1. A nonlinear system {A (x) , B (x) , C} is called SP if there exists two ma-

trices P (x) > 0 and Q (x) > 0 such that the system satisfies simultaneously the following

relations [30, 54]:

Ṗ (x) + P (x)A (x) + AT (x)P (x) = −Q (x) < 0 (3.5)

P (x)B (x) = CT (3.6)

Relation (3.5) means that an SP system is asymptotically stable, and relation (3.6) shows

that CB (x) = (CB (x))T > 0 .

Definition 3.2. For the nonlinear system {A (x) , B (x) , C} if there exists a constant

feedback matrix ‹Ke > 0 such that the resulting closed-loop system with the state-space reali-

sation {(A (x)−B (x) ‹KeC), B (x) , C} is SP, then the open-loop system {A (x) , B (x) , C}
is called ASP.

Since most real world systems are not inherently ASP, then, one needs the following

lemma [54]:

Lemma 3.1. Let the system G : {A (x) , B (x) , C} be a stabilisable nonlinear system

and let F be any stabilising linear controller for G. Assume that the inverse F−1 (exist,

proper or strictly proper) is added as parallel feedforward along G, such that the augmented

system Ga = G + F−1 has the form Ga : {Aa (x) , Ba (x) , Ca}, in this case, Ga is called

ASP. That is there exists some constant feedback matrix ‹Ke > 0 such that the augmented

closed-loop system Gcl
a : {(Aa (x)− Ba (x) ‹KeCa), Ba (x) , Ca} satisfies relations (3.5) and

(3.6) [4, 54]

Now, consider the system (3.1) and assume it is ASP. The principle of the SAC algo-

rithm is to design a control signal u(t) which forces the outputs of the system to track

the outputs of an ideal linear model of the form:

ẋm (t) = Amxm (t) +Bmum (t)

ym (t) = Cmxm (t)
(3.7)
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where x(t) ∈ Rnm is the model state vector, um(t) ∈ Rqm is the command and ym(t) ∈ Rm

is the model output signal. Am, Bm and Cm are the model matrices with appropriate

dimensions.

Therefore, to specify the control objective, one define the output tracking error ea(t) ∈
Rm as follows:

ea(t) , ym(t)− ya(t) (3.8)

The SAC control law that would force the outputs of the plant to asymptotically track

the outputs of the reference model is given as [52]:

uSAC(t) = Ke(t)ea(t) +Kx(t)xm(t) +Ku(t)um(t) (3.9)

where Ke(t) ∈ Rm×m, Kx(t) ∈ Rm×nm and Ku(t) ∈ Rm×qm are adaptive gains.

By defining K(t) = [Ke(t) Kx(t) Ku(t)] ∈ Rm×(m+nm+qm) and rT (t) =

[eTa (t) xTm(t) uTm(t)] ∈ R(m+nm+qm), the adaptive controller (3.9) can be written into matrix

form as follows:

uSAC(t) = K(t)r(t) (3.10)

According to the SAC theory, the adaptive gain K(t) is a combination of proportional

gain KP (t) and an integral gain KI(t):

K(t) = KP (t) +KI(t) (3.11)

where Kp(t) = [Kpe(t) Kpx(t) Kpu(t)] ∈ Rm×(m+nm+qm) and KI(t) =

[KIe(t) KIx(t) KIu(t)] ∈ Rm×(m+nm+qm), they are adapted as follows:

KP (t) = ea(t)r
T (t)Tp (3.12)

K̇I(t) = ea(t)r
T (t)TI (3.13)

with, Tp = diag(Tpe , TPx , Tpu) > 0 ∈ R(m+nm+qm)×(m+nm+qm) and TI = diag(TIe , TIx , TIu) >

0 ∈ R(m+nm+qm)×(m+nm+qm) are diagonal weighting matrices that define the adaptation

rates of the control gains.

In the next section, the proposed ASC will be presented. One imposes the following

assumption:

Assumption 3.1. There exist a PFC mentioned in lemma (3.1) that can render the

augmented system ASP.
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3.3 The proposed adaptive synergetic control

The whole basic structure of the proposed control method is shown in Fig. 3.1. The

controller design procedures will be shown in the subsequent developments.

Figure 3.1: The proposed Adaptive Synergetic Control Scheme

3.3.1 Problem statement

Consider the class of nonlinear system (3.1) with CB = 0 and assume it is not ASP.

The matrices A(x) and B(x) are not needed to be known. To fulfill the ASP conditions

required by the SAC, one consider under assumption (3.1) an augmentation with a PFC

of the form:
ẋf (t) = Afxf (t) +Bfu (t)

yf (t) = Cfxf (t)
(3.14)

where Af = diag(af1 , ..., afm) ∈ Rm×m, Bf = diag(bf1 , ..., bfm) ∈ Rm×m and Cf =

diag(cf1 , ..., cfm) ∈ Rm×m . Where the elements cfi , bfi > 0, ∀ i = 1, ...,m. The aug-

mented system is:

ẋa (t) = Aa(xa)xa (t) +Ba(xa)u (t)

ya (t) = Caxa (t)
(3.15)

where xa = col{x, xf} ∈ Rna , ya ∈ Rm, Aa = diag[A Af ], Ba = col{B,Bf}, Ca = [C Cf ] .

Lemma 3.2. For the class of nonlinear system (3.1) with CB = 0, CaBa = (CaBa)
T > 0

hold true.

Proof. The proof is straightforward, we have CaBa = [C Cf ][B
T BT

f ]T = CfBf . Since

CfBf = (CfBf )
T > 0, then CaBa = (CaBa)

T > 0.
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The control objective is to design without prior knowledge of the system parameters

and dynamics, an adaptive synergetic control law that would force the outputs of the

system (3.15) to track the outputs of the model (3.7). For this purpose, instead of using

an estimate of unknown parameters for the adaptation process, one try to bring out a

synergetic like SAC structure.

3.3.2 Adaptive Synergetic Control design

To develop the adaptive SC law for the case of augmented system (3.15), the design

method considers the following two steps:

Step 1: Define the macro-variable ϕ as function of augmented error ea that is defined

as ea = ym − ya, and the manifold Mea defined as:

Mea = {ea : ϕ(ea) = 0, ϕ ∈ Rm} (3.16)

By choosing ϕ(ea) = ea(t), the SC law can be obtained by solving the system (3.15) with

the evolution T ϕ̇(ea) + ϕ(ea) = 0, which gives

T ėa + ea = 0 (3.17)

Substituting ėa = ẏm − ẏa, ym = Cmxm and ya = Caxa into (3.17) gives

T ėa + ea = TCmAmxm + TCmBmum

−TCaAa(xa)xa − TCaBa(xa)uSC + ea = 0 (3.18)

from (3.18) one can extract usc(t) to obtain

uSC(t) = − (TCaBa(xa))
−1 TCaAa(xa)xa

+ (TCaBa(xa))
−1 TCmAmxm

+ (TCaBa(xa))
−1 TCmBmum

+ (TCaBa(xa))
−1 ea (3.19)

Define k1 = − (TCaBa(xa))
−1 TCaAa(xa) ∈ Rm×na , k2 = (TCaBa(xa))

−1 TCmAm ∈
Rm×nm , k3 = (TCaBa(xa))

−1 TCmBm ∈ Rm×qm , and k4 = (TCaBa(xa))
−1 , then one

can write

uSC(t) = k1xa + k2xm + k3um + k4ea (3.20)

Step 2: As the parameters of the control (3.20) are unknown, only xa is supposed

to be available, one consider similar to the adaptation law of standard SAC gains, the
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nonlinear adaptive gains Kx(t), Ku(t), Ke(t) and Ks(t) and propose the following ASC

law:

uASC(t) = Ke(t)ea +Kx(t)xm +Ku(t)um +Ks(t)xa (3.21)

where Ke ∈ Rm×m, Kx ∈ Rm×nm , Ku ∈ Rm×qm and Ks ∈ Rm×na . Note that the

parameters k1, k2, k3 and k4 of (3.20) are target to which the adaptive gains in (3.21) try

to converge so that the system asymptotically reaches the desired manifold (3.16).

Defining Ka(t) = [Ke(t) Kx(t) Ku(t) Ks(t)] ∈ Rm×(m+nm+qm+na) and rTa (t) =

[eTa (t) xTm(t) uTm(t) xTa (t)] ∈ R(m+nm+qm+na), the final ASC law can be expressed as

uASC(t) = Ka(t)ra(t) (3.22)

with the adaptation law

Ka(t) = KP (t) +KI(t) (3.23)

KP (t) = ea(t)r
T
a (t)Tp (3.24)

K̇I(t) = ea(t)r
T
a (t)TI (3.25)

where Tp = T TP > 0 ∈ R(m+nm+qm+na)×(m+nm+qm+na) and TI = T TI > 0 ∈
R(m+nm+qm+na)×(m+nm+qm+na). They are defined as

Tp = diag(Tpe , TPx , Tpu , Tps)

TI = diag(TIe , TIx , TIu , TIs) (3.26)

3.3.3 Error dynamic, ideal control and state trajectories

Let t∗ define the moment where the system output ya(t) perfectly match the output of

the ideal model ym(t) (i.e.,ya(t) = ym(t)), in that case, the system will have reached

a bounded ideal trajectories denoted by x∗a(t) ∈ Rn (for details about the existence of

such ideal trajectories refer to [54, 68], and then it is asked to move along them (i.e.,

∀t > t∗, xa = x∗a). Thus, one have

y∗a(t) = Cax
∗
a(t) = Cmxm = ym (3.27)

ea(t) = ym(t)− ya(t) = 0 (3.28)

for the perfect tracking, define the ideal plant

ẋ∗a(t) = Aa(x
∗)x∗a (t) +Ba(x

∗)u∗p (t)

y∗a (t) = Cax
∗
a (t)

(3.29)
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The ideal control that would keep the system (3.29) moving along x∗a(t) is defined as:

u∗ (t) = ‹Kxxm (t) + ‹Kuum (t) + ‹Ksxa (t) . (3.30)

where ‹Kx ∈ Rm×nm , ‹Ks ∈ Rm×na and ‹Ku ∈ Rm×qm denote the ideal feedforward gains.

Define a state error ex(t) ∈ Rna

ex(t) = x∗a(t)− xa(t) (3.31)

thus (3.28) can be rewritten as

ea(t) = Cax
∗
a(t)− Caxa(t) = Caex(t) (3.32)

The error equation can be then derived by taking the time derivative of (3.31)

ėx = Aa(x
∗
a)x

∗
a +Ba(x

∗
a)u

∗ − Aa(xa)−Ba(xa)u (3.33)

Adding and subtracting Aa(xa)x
∗ and Ba(xa)u

∗ to obtain

ėx = Aa(xa)ex + (Aa(x
∗
a)− Aa(xa))x∗

+ (Ba(x
∗
a)−Ba(xa))u

∗ +Ba(xa)(u
∗ − u) (3.34)

Adding and subtracting Ba(xa)‹Keea and substituting ea = Caex gives

ėx = (Aa(xa)−Ba(xa)‹KeCa)ex

+(Aa(x
∗
a)− Aa(xa))x∗ + (Ba(x

∗
a)−Ba(xa))u

∗

+Ba(xa)(u
∗ − u) +Ba(xa)‹Keea (3.35)

Substituting u∗ from (3.30) and u from (3.22) into (3.35) gives

ėx = (Aa(xa)−Ba(xa)‹KeCa)ex

+(Aa(x
∗
a)− Aa(xa))x∗ +Ba(xa)‹Kxxm

+Ba(xa)‹Kuum +Ba(xa)‹Ksxa +Ba(xa)‹Keea

−Ba(xa)Kara + (Ba(x
∗
a)−Ba(xa))u

∗ (3.36)

Finally, substituting Ka(t) from (3.23) and rearranging to obtain

ėx = Acex −Ba(xa)Kpr −Ba(xa)(KI − ‹Ka)r +R (3.37)
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where Ac = Aa(xa) − Ba(xa)‹KeCa , ‹Ka = [‹Ke
‹Kx
‹Ku
‹Ks] and the residual term R =

(Aa(x
∗
a) − Aa(xa))x∗ + (Ba(x

∗
a) − Ba(xa))u

∗. Let F (x) = A(x)x∗ + B(x)u∗ and F (x∗) =

A(x∗)x∗ +B(x∗)u∗ thus, R can be rewritten as

R = F (x∗)− F (x) (3.38)

Equation (3.37) represents the error dynamic of the overall augmented closed loop system

with PFC.

The following assumption and remark are needed before proceeding to the stability

analysis:

Assumption 3.2. The Jacobian linear approximation of F (x) at x∗ is bounded.

Remark 3.1. The parameters k1, k2, k3 and k4 of (3.20) are therefore, respectively, the

ideal gains ‹Ks, ‹Kx, ‹Ku and ‹Ke that the adaptive gain Ks, Kx, Ku and Ke in (3.21) try to

reach in order for the system to exponentially reach the desired manifold (3.16).

3.3.4 Stability analysis

Theorem 3.1. Under assumptions (3.1-3.2), the application of the adaptive synergetic

control (3.22) with the adaptation laws (3.24-3.25) to the nonlinear system (3.15) results

in asymptotic convergence of the state and output error and boundedness of the adaptive

gains.

Proof. Let V (ex, ϕ,KI) ∈ R be a differentiable Lyapunov function defined as:

V (ex, ϕ,KI) = eTxP (xa)ex + ϕ(ea)
Tϕ(ea)

+tr{(KI − ‹K)T−1
I (KI − ‹K)T}

+tr{(KI − ‹K)CaBaT
−1
I (KI − ‹K)T} (3.39)

Where P (xa) > 0. Note that V (0, 0, K̃) = 0, V (ex, ϕ,KI) > 0 ∀ {ex, ϕ,KI} 6= {0, 0, ‹K}
and V (ex, ϕ,KI) → ∞ if ||ex|| → ∞ , ||ϕ|| → ∞ or ||KI || → ∞. The time derivative of

V (ex, ϕ,KI) is

V̇ = ėTxP (xa)ex + eTx Ṗ (xa)ex + eTxP (xa)ėx

+2ϕT (ea)ϕ̇(ea) + 2tr{(KI − ‹K)T−1
I K̇T

I }

+2tr{(KI − ‹K)CaBaT
−1
I K̇T

I } (3.40)
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where V ≡ V (ex, ϕ,KI). Substituting ėx from (3.37), Kp from (3.24), K̇I from (3.25) and

using passivity relation (3.5) to get

V̇ = −eTxQ(xa)ex − 2eTxP (xa)Ba(xa)ear
T
a Tpra

−2eTxP (xa)Ba(xa)(KI − ‹K)ra + 2eTxP (xa)R

+2ϕT (ea)ϕ̇(ea) + 2tr{(KI − ‹Ka)rae
T
a }

+2tr{(KI − ‹K)CaBarae
T
a } (3.41)

Where Q(xa) > 0. In the relation ϕ̇(ea) = ėa = ẏm − ẏa, substituting ym = Cmxm and

ya = Caxa to get ϕ̇(ea) = CmAmxm + CmBmum − CaAaxa − CaBaKara, by adding and

subtracting CaBa
‹Kara and by remark (3.1) one get ϕ̇(ea) = −T−1ϕ(ea)−CaBa(Ka−‹Ka)ra,

substituting this into equation (3.41) to get

V̇ = −eTxQ(xa)ex − 2eTxP (xa)Ba(xa)ear
T
a Tpra

−2eTxP (xa)Ba(xa)(KI − ‹Ka)ra − 2eTa T
−1ea

−2eTxC
T
a CaBa(Ka − ‹Ka)ra + 2tr{(KI − ‹Ka)rae

T
a }

+2tr{(KI − ‹K)CaBarae
T
a }+ 2eTxP (xa)R (3.42)

using Ka(t) = Kp +KI and substituting Kp from (3.24) to get,

V̇ = −eTxQ(xa)ex − 2eTxP (xa)Ba(xa)ear
T
a Tpra

−2eTxP (xa)Ba(xa)(KI − ‹Ka)ra − 2eTa T
−1ea

−2eTxC
T
a CaBa(KI − ‹Ka)ra + 2eTxP (xa)R

−2eTxC
T
a CaBaear

T
a Tpra + 2tr{(KI − ‹Ka)rae

T
a }

+2tr{(KI − ‹Ka)CaBarae
T
a } (3.43)

knowing that tr{αTβ} = αTβ, and tr{AB} = tr{BA}, the third and eighth, the fifth

and ninth terms cancel each other, thus, one get by substituting P (xa)Ba(xa) = CT
a and

eTa = eTxC
T
a

V̇ = −eTxQ(xa)ex − 2eTa ear
T
a Tpra − 2eTa T

−1ea

+2eTxP (xa)R− 2eTaCaBaear
T
a Tpra (3.44)

The residual term R that appears in the derivative of the lyapunov function (3.44)

may affect negativity. In general, in the standard SAC [4, 6, 22, 30, 54], researchers have

tried to directly eliminate this residual term by assuming that this term may vanish
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under the assumption that the variation of system parameters is slow compared with

the control dynamics. Or, it is supposed to be bounded and the stability is analysed by

the domination of some quadratic and quartic terms on the residual one. In the present

study and with the help of the ASC structure (3.47) one try to avoid these philosophical

suppositions that seem to be ambiguous. For a clear discussion of the system stability,

and with a mathematical sense we try to substitute the residual term by its Jacobian

linear approximation in order to achieve the asymptotic convergence of the states.

Recall that R = F (x∗)−F (x), using the Jacobian linear approximation to F (x) at x∗

to obtain,

F (x) ≈ F (x∗) + JF (x∗)(x− x∗) ≈ F (x∗)− JF (x∗)ex (3.45)

substituting the above equation into R to get

R = JF (x∗)ex (3.46)

substituting the above into (3.44) and rearranging to get

V̇ = −2eTa ear
T
a Tpra − 2eTaCaBaear

T
a Tpra

−eTx [Q(xa) + 2CT
a T

−1Ca − 2P (xa)JF (x∗)]ex

(3.47)

Under assumption (3.2), the term [Q(xa) + CT
a T

−1Ca − P (xa)JF (x∗)] becomes positive

under an appropriate choice of T−1. It can be checked if the eigenvalues of T−1 are taken

quite high, i.e T is positive with small eigenvalues and thus T can be found considering

the extreme values of A(xa) and B(xa). Also, according to the SAC theory, selecting

higher values of Te is sufficient in order for the systems to returns immediately to the

stable region [30]. Indeed, one can show that the choice of T−1 is in fact related to the

choice of Te and that T−1 is indirectly included in the control law (3.21). From (3.19) one

can have usc = k1xa + k2xm + k3um + k4T
−1ea. After replacing k1, k2, k3 and k4 by the

adaptive gains one get uasc = KeT
−1ea+Kxxm+Kuum+Ksxa. Substituting Ke = eae

T
a Te

to get uasc = eae
T
a TeT

−1ea + Kxxm + Kuum + Ksxa. It is obvious that T can be merged

with Te since both the two matrices are chosen for the fast adaptation rate. Thus, the

ASC law ends with (3.21).

After having developed the residual term R to better analyze the negativity of V̇ , and

thus to be able to conclude on the stability of the system and the asymptotic convergence

of the gains, one can now have the third term of V̇ in (47) negative. It follows that

V̇ is negative definite with respect to ex and negative semi-definite with respect to the
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state-space {ex, KI}. Thus, according to the Lyapunov stability theory, all signals in the

closed loop adaptive system with the ASC law (3.22,3.24-3.25) are bounded.

Furthermore, according to ( [54], p. 43) and the new theorem of stability [69, 70],

for a Lyapunov derivative of the form (3.47) the entire state [ex, ϕ,KI ] ultimately

reaches the domain Ωf = Ω0 ∩ Ω, where the domain Ω = V̇ ([ex, ϕ,KI(t)] ≡ 0 and

Ω0 = {[ex, ϕ,KI ]|V ([ex, ϕ,KI(t)], t) ≤ V ([ex0 , ϕ0, KI0 ], 0)} is the domain that contains

the trajectories of the system. Because V̇ ([ex, ϕ,KI(t)], t) < 0 in ex, the system ends with

ex ≡ 0 ⇒ ex(t) = 0 ⇒ ea(t) = 0. Thus, asymptotic stability of the state and output

tracking errors is guaranteed.

3.4 Application to quadrotor system

For the application of the proposed ASC, the following nonlinear state space of the quadro-

tor in used:

A(x) =

[
0 I3

0 −M(x1)
−1L(x1, x2)

]
, B(x) =

[
0

M(x1)
−1

]
(3.48)

C = [ I3 03 ], x =
î
x1 x2

óT
(3.49)

where M(x1) and L(x1, x2) are defined in section (1.5)

3.4.1 Numerical simulation

Two simulation tests are presented in order to verify the performances of the proposed

ASC controller, i) stabilisation test and ii) variable references test. The controller param-

eters used for these tests are: TI = diag(2e6, 1, 1, 10), Tp = diag(1, 1, 1, 10). The adaptive

control gains were initialized with Ke = Kx = Ku = Ks = 0. We just started by such a

selection of TI and Tp, and all initial gains are set to zero because one have no knowledge

about the system, only xa is available. While the parameters of adaptation Tx, Tu, Ts

could have been independently selected to improve the tracking performance, Te should

be selected high in order to ensure the rapid convergence to the stability region. Thanks

to the adaptation mechanism, the controller will find the closest gain values that perform

asymptotic perfect tracking at the end of the steepest descent minimization process from

any initial gain values . The model reference is chosen as Gm(s) = 1/(0.1s + 1). The

selected matrices of the PFC are Af = diag(−5.92,−7.615,−5.92), Bf = diag(1, 1, 1),

and Cf = diag(1.113, 0.7615, 1.113). The inertia matrix J = diag(0.0104, 0.0104, 0.0196)
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is used for the stabilisation test. For the second test we increased the inertia to 400% than

the nominal value and the reference inputs were set to 200sin(2π/5t) for the pitch angle

and −200sin(2π/5t) for the roll angle. In both simulation tests, the initial conditions

were set to φ0 = 5.8◦ and θ0 = −5.8◦.

Figure 3.2: Simulation results of the stabilization test: a) pitch angle, b) roll angle, c)

error, d) control signals, e) PFC output (for the roll), f) PFC output (for the pitch)

Figure 3.3: Simulation results of the tracking test: a) pitch angle, b) roll angle, c) error,

and d) control signals, e) PFC output (for the roll), f) PFC output (for the pitch)

The simulation results of the first test are presented in figure 3.2. A good stabilization

of the roll and pitch angles (figure 3.2a-b) is obtained. The errors is very small (figure
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3.2c) and the control signal is practically realisable (figure 3.2d). The outputs yf (t) of

the PFC are shown in figure 3.2e-f, one can observe that yf (t) is small enough and thus

satisfies ya(t) ≈ y(t). For the second test, the obtained results are shown in figure 3.3.

The proposed ASC controller managed to maintain the roll and pitch angles tracking the

desired trajectories even after increasing the inertia value to 400% from its nominal value

(figure 3.3a-b). One can remark that the tracking error (figure 3.3c) is relatively small

and the control inputs (figure 3.3d) do not require much effort in order to achieve the

objective of minimizing the error. The outputs yf (t) of the PFC are shown in figure 3.3e-f,

again, one can observe that yf (t) is small enough and thus satisfies ya(t) ≈ y(t).

3.5 Conclusion

In this chapter, an adaptive synergetic controller for a class of nonlinear systems without

requiring knowledge of the system parameters and dynamics is proposed. Derived from

the synergetic control theory, a SAC-like adaptive synergetic control structure is synthe-

sised. The stability analysis of the closed loop adaptive system is formally established.

To validate the theoretical results, the proposed algorithm is tested on an experimental

quadrotor system without prior information about the system. The obtained experi-

mental results confirm the effectiveness and robustness of the adaptive controller. For

practical applications, the proposed controller only requires a PFC in order to satisfy the

almost passivity condition of the system. The latter becomes a constraint and therefore it

presents a challenge to be addressed in the future for the purpose of relaxing the passivity

conditions and having an implementable controller without PFC.



Chapter 4

Experimental Validation

“ The less attachment to the world. The easier your life.

”
Umar ibn Al-Khattab

4.1 Introduction

One of the most used research platform for experimental tests is probably the quadrotor

aerial robot. Basically, this is often due to their simple structure and low cost. For this,

numerous universities have designed their own quadrotor and a curiously open source

projects are developing.

The best way to use such platforms is to start from an open source project. The use

of this type of project provides a functional solution with the ability to make any kinds

of changes, both hardware and software. One of the most famous open-hardware and

open-software multirotor projects is DIY drone project [2]. The open source software

code named ArduCopter is a generic customized code that can be used for many type of

aerial multirotor robots. The hardware is developed and marketed by 3DR [3] and a set

of platforms are available, see Figure 4.3. The software development follows the evolution

of material and two types of autopilots are available, the APM2.6 and PixHawk, that can

be used on any platform. The cheaper solution was selected based on DIY Quad and

APM2.6 autopilot. The cost of all hardware needed do not exceed 800 Euros. Figure 4.2

presents the developed DIY drone.

This chapter presents the experimental used test-bench (see, Figure 4.3). The effectiveness

56
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and the performances of the proposed ASC in this thesis are validated by performing many

experiments using this platform.

4.2 Test-bench presentation

Experiments were done based on the open-hardware and open-software DIY drone project.

We have used the platform shown in Figure 4.3. It is a test-bench with DIY Quad used for

indoor tests. Specially, to validate the developed adaptive controllers for attitude control.

In this experiment, due to the quality of the measurements, one consider only the roll and

pitch motions.

The test bench for attitude control is composed of a support and the DIY Quad. The

DIY Quad is a Quadcopter equipped with:

1. Holder with rotation ball joint

2. Quad frame

3. Pixhawk autopilot

4. Four electronic speed controllers (ESCs)

5. Four brushless motors with propellers

6. Graupner RC receiver

7. 3DR Telemetry Radios

8. u-blox GPS with compass

9. Power distribution board and LiPo battery

10. APM Power module for current consumption and battery voltage measurements

In addition, the RC transmitter is used to perform manual control and fly mode

selection. The open source ground station (QGroundControl or Misson Planner) is used

to visualize telemetry data and to configure flight mode parameters and to calibrate

sensors. See Figure 4.2 for Pixhawk 2 mounting with different other components.

The Pixhawk autopilot is based on a 32-bit STM32F427 Cortex M4F core, 168

Mhz/256 KB RAM/2 MB Flash and 32 bit STM32F103 failsafe co-processor. The embed-

ded system is equipped with a 6 DoF Accelerometer/Gyro MPU-6000 and an ST Micro
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Figure 4.1: First developed DIY quadrotor

LSM303D 3-axis accelerometer/magnetometer. The pixhawk is also equipped with a mi-

croSD card for high-rate logging over extended periods of time. The main loop operating

frequency of the firmware and the acquisition frequency of accelerometer and gyros mea-

surements are both 400Hz. Thus, stability will be better and the measurements will be

more reliable than using the APM2.6 which operates at 100hz.
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Figure 4.2: Pixhawk 2 mounting
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Figure 4.3: Test bench Quad equipped with the Pixhawk autopilot
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4.3 Experimental validation of the proposed ASC

In this experiment, due to the quality of the measurements, one consider only the roll

and pitch motions. The adaptive synergetic controller is designed in Matlab / Simulink,

by using the PX4 Support from Embedded Coder one can generate the C / C ++ code

from Simulink and then deploy the code into the micro controller.

The ASC controller is applied to this quadrotor without prior knowledge of its parameters.

The same controller parameters above used for the simulation are used in this experiments.

The adaptive control gains were again initialized with Ke = Kx = Ku = Ks = 0. If one

has full knowledge about the system, one could shorten the cycle of adaptation and

further improve the performance after a first test, when better initial gains K conditions

that makes the system SP could be used. The figures 4.4, 4.5 and 4.7 below illustrate

the experimental results. Three test were done in order to show the effectiveness of the

proposed controller: i) Stabilisation test (figure 4.4), ii) Stabilisation with hand push

perturbation test (figure 4.5) and iii) Variable reference test by using the ”Graupner SJ

mx-20” remote control (figure 4.7).

For the first test, the initial conditions were set to φ0 = −8.5◦ and θ0 = −9◦, a

good stabilisation (figure 4.4a-b) of the quadrotor with a very small error (figure 4.4c) is

obtained for both roll and pitch angles. For the second test, a hand push perturbations

were introduced at the ends of the quadrotor arms at t ∈ [10s, 65s] in order to show the

ability of the proposed controller to dealing with such perturbations. As shown in figure

4.5a-b, despite these perturbation, the ASC controller managed to maintain the stability

of the quadrotor without much effort (figure 4.5d). The history of the adaptation gains

Ke(t), Kx(t), Ku(t) and Ks(t) corresponding to this second test is shown in Figure 4.6, one

can see the rapid adaptation of the gains which aim to minimize the error. Also, figure

4.6 shows that the adaptive gains do converge towards their ideal values that satisfy the

asymptotic tracking, which confirms the theoretical results. For the third test, the ASC

controller was put into a tough challenge where a variable reference was given by the

remote control and the variation becomes fast when t > 75s (figure 4.7). A good tracking

is obtained for both roll and pitch angles as shown in figure 4.7a-b. The tracking error is

relatively small and again the controller only demands minimum values (figure 4.7d) in

order to achieve the objective of minimizing the error.
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Figure 4.4: Experimental results of the stabilization test: a) pitch angle, b) roll angle, c)

error, and d) control signals
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Figure 4.5: Experimental results of the stabilization with hand push perturbation test:

a) pitch angle, b) roll angle, c) error, and d) control signals
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Figure 4.6: Adaptation gains history of the experimental adaptive gains: a) Ke, b) Kx,

c) Ku, and d) Ks
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Figure 4.7: Experimental results of the tracking test of a variable references: a) pitch

angle, b) roll angle, c) error, and d) control signals

4.4 Conclusion

The Unmanned Aerial Vehicles markets are in exponential developments. Especially, due

to widening of the civil application fields and high potentials of aerial robotics. Generally,

it is difficult to utilise commercial aerial robot for research purposes, due to the fact

that researchers should develop their own flight controller so that they can access all the

sensor information they need and control the robot properly. Such problem is solved by

the emergence of open source projects in this domain. Probably, one of the most known
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open source project in aerial robots community is ArduCopter project. Sponsored by

3DRobotics, the project offer a complete open source solution to control various types of

aerial robots. For this reason, we used this project as a start point to make experimental

research.

ArduCopter project was modified and used successfully to validate research theoretical

results. Indeed, the proposed ASC was validated using DIY Quadcopter hardware and

ArduCopter software project. A test-bench for attitude control was assembled using

holder with rotation ball joint for security purposes. The obtained experimental results

show the effectiveness and performances of the proposed solutions.



General Conclusion

This thesis gaves some contributions on the theoretical background of the SAC and on the

problem of the Synergetic Controller design when the system to be controlled is unknown.

There are especially three majors contributions presented in this dissertation :

The first one was given in chapter 1, where an extension in decentralized simple adap-

tive control with the new relaxed W-Passivity conditions is presented. A formal proof of

stability of the DSAC is established using the new WASP theorem for square nonlinear

systems with not necessarily symmetric matrix CB.

The second contribution of this dissertation was presented in Chapter 2, in which a

novel fractional order decentralized simple adaptive control law were proposed. Firstly,

the ASPR conditions for the design of a stable fractional adaptive system were estab-

lished. A fractional Order parallel feedforward compensator (FO-PFC) to realize an aug-

mented ASPR system were then provided and a new ASPR-based FODSAC controller

were proposed. The stability analysis of the proposed control scheme were presented and

simulation example comparing the standard DSAC with the new FODSAC were provided,

showing the performance of the proposed method.

The third contribution was presented in Chapter 3, where a new Adaptive Synergetic

Controller was proposed as a solution for the problem of the design of the standard

Synergetic Control law when the system parameters and dynamics are unknown. Thanks

to the structure of the ASC controller with an adequate choice of the lyapunov function,

we were able to eliminate the residual term in the derivative of the lyapunov function

of the standard SAC, that affect negativity of such function. For a clear discussion of

the system stability, and with a mathematical sense we substitute the residual term by

its Jacobian linear approximation and with an appropriate choice of the macro-variable

we were able to achieve the asymptotic convergence of the system to a desired manifold.

The performances and effectiveness of the proposed solution were illustrated via simulation

results and compared with existing work. Experimental application to a quadrotor system

was given to validate the proposed ASC scheme.

67
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Throughout the completion of the quadrotor project, several future challenges were

identified. The first one related to the proposed ASC controller, in which the computation

time of its algorithm could be decreased by taking only the diagonal elements, as in the

standard DSAC presented in chapter 1. The second challenge is the implementation

of the proposed controllers (ASC and the FODSAC) into a ”Quadrotor manipulator”.

The Quadrotor manipulator project is still under developments, and the developed initial

platform of the project can be seen in appendix B, wich it is a quadrotor equipped with

a 7 degree of freedom robotic arm. The motion control of such vehicle is a challenging

issue since the vehicle is characterized by an unstable dynamics and the presence of the

object causes non trivial coupling effects. The proposed adaptive controllers presented in

this thesis will be then tested in this vehicle.
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Appendix A

Proof of lemma 2.4

Using matrix trace properties and definitions we have

tr
{
AWAT

}
= tr

{
WATA

}
= tr

{
W (ATA)

}
(4.1)

Since W is diagonal, then one can write:
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W (ATA)

}
=
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T
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}
(4.2)

since ATij = Aji, then we can write

tr
{
AWAT

}
=

n∑
i=1

m∑
j=1

WiiA
2
ji (4.3)

for the case of the time varying matrix A(t), expression (4.3) can be written as

tr
{
A(t)WAT (t)

}
=

n∑
i=1

m∑
j=1

wiia
2
ji(t) (4.4)

where wii are diagonal elements of W , and aji are the elements of the matrix A(t).

Applying the caputo fractional derivative to (4.4) we get, ∀α ∈ (0, 1), ∀t > t0

C
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(4.5)
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Using the caputo fractional derivative property of linearity, we get

C
t0
Dα
t

[
tr
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A(t)WAT (t)

}]
=

n∑
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wii
C
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(4.6)

Applying lemma 2.1 we get
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since wii are diagonal elements of W , then the following relationship holds
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(4.8)

substituting (4.8) in (4.7), relation (4.7) can be written as

C
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t

[
tr
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A(t)WAT (t)

}]
6 2tr
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(4.9)

this complete the proof for the case when α ∈ (0, 1). When α = 1 the result coincide with

the standard integer order derivatives, where d
dt

[tr{A(t)WAT (t)}] = 2tr{A(t)W d
dt
AT (t)}.

Finally, this ends the proof.



Appendix B

The developed platform of the

Quadrotor manipulator

Figure B.1: Initial developed platform of the Quadrotor manipulator: The Quadrotor is

equipped with a 7 degree of freedom robotic arm.
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ارها. تم تعقيد التصميم الناشئة عن عدد كبير من المعاملات التي يتم اختي البسيط مشكلةكيفي قدمت بعض تطبيقات تقنية التحكم الت ملخص:

 فوفات المتغيرةالمصقطر والتي تأخذ بعين الاعتبار فقط  اللامركزية،تقليل هذه المشكلة مؤخرًا من خلال فكرة وحدة التحكم التكيفي البسيط 

. في الجزء الأول في الوقت الفعلي اللامركزية التنفيذية المنخفضة لـوحدة التحكم التكيفي البسيط سهلت المتطلبات الحساب لذلك،مع الزمن. 

فية.  خلال النظر في المشتق الكسري للمكاسب التكي اللامركزية منمرونة وحدة التحكم التكيفي البسيط  بزيادة تحسينقمنا  الأطروحة،من هذه 

به لتصميم نظام تكيف كسري مستقر. بعد ذلك يتم توفير معوض تغذية كسري حيث يتم تركي إيجابي بدقةقي يتم وضع شروط تقريبا حقي أولاً،

وفير مثال محاكاة مع ت المقترحة،معزز. تم اثبات استقرار وحدة التحكم  إيجابي بدقةالأصلي بغرض تحقيق نظام تقريبا حقيقي  للنظامموازيا 

وحدة التحكم التكيفي البسيط اللامركزية الكسرية الجديدة. في الجزء الثاني من هذه  اللامركزية معط مقارنة وحدة التحكم التكيفي البسي

لمشكلة تصميم قانون التحكم التآزري القياسي عندما تكون معلمات النظام ودينامياته  جديدة كحلتكيفية  ثآليلتم اقتراح وحدة تحكم  الأطروحة،

وحدة التحكم التكيفية المقترحة رسمياً. تم تجريبيا تطبيق وحدة التحكم المقترحة على نظام طائرة بدون طيار  غير معروفة. تم اثبات استقرار

 .للتحقق من صحة النتائج النظرية

 نظام كسري طيار،بدون  الاستقرار، طائرة التكيفي،التحكم التآزري  البسيط،التحكم التكيفي  مفتاحية:كلمات 

 

Résumé : Certaines applications de la technique SAC ont présenté un problème de complexité de conception 

découlant d’un grand nombre de paramètres et coefficients sélectionné. Ce problème a été récemment résolu par l’idée 

du contrôleur adaptatif simple décentralisé (DSAC), qui ne considère que la diagonale des matrices de gain variant 

dans le temps. Par conséquent, la diminution des exigences de calcul du DSAC a facilité la mise en œuvre en temps 

réel. Dans la première partie de cette thèse, nous améliorons encore la flexibilité du DSAC en considérant la dérivée 

fractionnelle des gains adaptatifs. Le nouveau contrôleur proposé est appelé DSAC d’ordre fractionnaire (FODSAC). 

Premièrement, les conditions ASPR pour la conception d’un système adaptatif fractionnaire stable sont établies. Un 

compensateur à action directe parallèle d’ordre fractionnaire (FOPFC) pour réaliser un système ASPR augmenté est 

alors fourni et un nouveau contrôleur FODSAC basé sur ASPR est proposé. L’analyse de stabilité du schéma de 

commande proposé est présentée et un exemple de simulation comparant le DSAC standard au nouveau FODSAC est 

fourni, montrant les performances de la méthode proposée. Dans la seconde partie de cette thèse, un nouveau 

contrôleur adaptatif synergétique (ASC) est proposé comme solution au problème de la conception de la loi de 

commande synergétique standard lorsque les paramètres et la dynamique du système sont inconnus. La stabilité du 

contrôleur adaptatif proposé est formellement prouvée via le Lyapunov et le principe d’invariance de Lasalle. Une 

application expérimentale sur un quadrirotor est donnée pour valider les résultats théoriques. 

Mots-clés: Commande adaptatif simple, Commande synergétique adaptative, stabilité, quadrirotor, systéme d’ordre 

fractionnaire 

 

Abstract: Some applications of the Simple Adaptive Control (SAC) technique presented a design complexity issue 

arising from a large number of parameters and coefficients to select. This issue was recently decreased by the idea of 

the Decentralized Simple Adaptive Controller (DSAC), which considers only the diagonal of the time-varying gain 

matrices.  Therefore, the decreased computational requirements of the DSAC facilitated real-time implementation. In 

the first part of this thesis, we further improve the flexibility of the DSAC by considering the fractional derivative of 

the adaptive gains. The proposed new controller is called Fractional Order DSAC (FO-DSAC). Firstly, the ASPR 

conditions for the design of a stable fractional adaptive system are established. A fractional Order parallel feedforward 

compensator (FO-PFC) to realize an augmented ASPR system is then provided and a new ASPR-based FODSAC 

controller is proposed. The stability analysis of the proposed control scheme is presented and simulation example 

comparing the standard DSAC with the new FODSAC is provided, showing the performance of the proposed method. 

In the second part of this thesis, a new Adaptive Synergetic Controller (ASC) is proposed as a solution for the problem 

of the design of the standard Synergetic Control law when the system parameters and dynamics are unknown. The 

stability of the proposed adaptive controller is formally proven via the Lyapunov approach. Experimental application 

to a quadrotor system is given to validate the theoretical results. 

Keywords: Simple Adaptive Control, Adaptive synergetic control, stability, quadrotor, fractional order system 
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