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Notation

Throughout this thesis, we shall adopt the following standardized notation that can be

found in [48], unless we specify otherwise.

(i) Classes and functions

- Y, Z,... classes of groups.

- YZ is the class of all groups G containing a normal Y-subgroup N such that G=N

belongs to Z.

Special classes of groups

- F the class of �nite groups.

- A the class of abelian groups

- PF the class of polycyclic-by-�nite groups.

- C the class of Chernikov groups.

- M the class of soluble-by-�nite minimax groups.

- R the class of �nite rank groups

- N (Nk) the class of nilpotent groups (of class at most k).

- ZA the class of hypercentral groups.

- LN the class of locally nilpotent groups.

Closure operators on group classes

- SY is the class of all groups whose subgroups belong to Y.

- HY is the class of all groups whose homomorphic images belong to Y.

- NY is the class of all groups generated by normal Y-subgroups.

- LY is the class of all groups such that every �nite subset is contained in a Y-subgroup;
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in particular, if SY = Y, then LY is the class of all groups whose �nitely generated

subgroups belong to Y.

- PY is the class of all groups admitting a �nite series with Y-factors.

- �PY is the class of all groups admitting an ascending series with Y-factors.

- �PY is the class of all groups admitting a descending series with Y-factors.

- RY is the class of all groups which can be embedded in a cartesian product of Y-

subgroups.

(ii) Elements and groups

- x; y; z;... group elements.

- The commutator of x and y, denoted [x; y], is x�1y�1xy.

- For n 2 N, the iterated commutator is de�ned by [x1; x2; :::; xn] = [[x1; x2; :::; xn�1] ; xn].

- G;H;... groups, subgroups, etc.

- Gn subgroup generated by all nth powers gn where g 2 G.

- CG(H) and NG(H) denote, respectively, the centralizer and the normalizer of H in G.

- HG and HG denote, respectively, the normal closure and the normal interior of H in G.

(iii) Special subgroups

- G0; [G;G] the derived subgroup of G.

- G(�) the � term of the derived series of G.

- 
�(G) the � term of the lower central series of G.

- �(G) the centre of G.

- ��(G) the � term of the upper central series of G.

(iv) Miscellaneous

- GF (q) Galois �eld with q elements.

- GL(n;R) general linear group of all invertible n� n matrices over the ring R.

- PGL(n;R) projective general linear group.

- Sz(R) Suzuki group.
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Introduction

One of the central topics of research in group theory (�nite or in�nite) is the study of the

in�uence of given systems of subgroups of a group on the structure of the group itself.

The structure of a group depends, to a signi�cant extent, on the presence of a system

of subgroups with the property of belonging to some class Y of groups, the size of this

system, and the interaction of this system with other subgroups. There is a wide variety

of cases that can be studied. Sometimes the presence of a single subgroup with given

properties can be very in�uential on the structure of a group whereas, in other cases,

a group can have many subgroups with some given property, but the in�uence of this

system of subgroups needs not to be signi�cant.

A group G is said to be a minimal non-Y group, MNY-group in short, if all its proper

subgroups belong to Y, while G itself is not in Y. The study of MNY groups, or more

generally of groups whose proper subgroups are Y-groups has been one of the important

themes in group theory. The �rst step of the study may be traced back to 1903 when

G.A. Miller and H.C. Moreno [39] characterized �nite MNA-groups, where A is the class

of abelian groups. They proved, among many things, that such groups are metabelian

and have order divisible by at most two prime numbers. In 1924, O.J. Schmidt classi�ed

�nite MNN-groups [50], whereN is the class of nilpotent groups. He proved, in particular,

that such groups, which are now called Schmidt groups, are soluble of derived length at

most 3 and have order divisible by exactly two primes. The existence of Tarski groups,

those in�nite simple 2-generator groups in which every proper subgroup is cyclic of prime
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order (see [42]), shows that the above ideas are much more complicated in the in�nite

case. To avoid such situation it is standard to restrict attention to the class of locally

graded groups, where a group G is locally graded if every non-trivial �nitely generated

subgroup has a non-trivial �nite image. It is easy to prove that any locally graded group

whose proper subgroups are abelian is either �nite or abelian. In other words, locally

graded MNA-groups are �nite. On the other hand, H. Heineken and I.J. Mohamed

[32] constructed an extension of a countably in�nite, elementary abelian p-group by a

quasicyclic p-group (where p is a prime) with the following properties: all their proper

subgroups are subnormal and nilpotent, but the centre is trivial. Heineken and Mohamed

construction was studied and extended by many authors (see e.g. [12, 31]) and it became

customary to call a group G of Heineken-Mohamed type if G is not nilpotent and all

of its proper subgroups are nilpotent and subnormal. The structure of in�nite locally

graded MNN-groups was later investigated by M. Newman, H. Smith and J Weigold

([41, 51]), who proved in particular that such groups are either Chernikov groups or

groups of Heineken-Mohamed type. Many authors have continued these investigations

in both �nite and in�nite groups. The situation is especially promising, but challenging,

in in�nite group theory.

In the last two decades, research activity has moved to study the in�uence of the structure

of the proper subgroups of in�nite rank of a group on the entire group, and this theme

is of course related to the previous one. Recall that a group G is said to have �nite (or

Prüfer or special) rank r if every �nitely generated subgroup of G can be generated by at

most r elements, and r is the least positive integer with such property. If no such integer

r exists then we say that the group has in�nite rank. Thus groups of rank 1 are just

the locally cyclic groups, while any free non-abelian group has in�nite rank. A classical

theorem of A.I. Mal�cev [37] states that a locally nilpotent group of in�nite rank must

contain an abelian subgroup of in�nite rank. On the other hand, M.R. Dixon, M.J. Evans

and H. Smith [27] proved that a (generalized) soluble group of in�nite rank in which all

proper subgroups of in�nite rank are abelian is itself abelian. The investigation of groups
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whose proper subgroups of in�nite rank belong to a given class Y has been continued

in a series of papers (see for instance [20], where a full reference list on this subject can

be found). The results obtained show that the subgroups of in�nite rank of a group of

in�nite rank have the power to in�uence the structure of the whole group and to force

also the behavior of the subgroups of �nite rank.

The main goal of this thesis is to give a further contribution to the above-mentioned

themes. More speci�cally, for a chosen class of group Y, we consider groups in which

the system of Y-subgroups coincide with the family of all proper subgroups and with the

family of all proper subgroups of in�nite rank.

We now describe the organization of the thesis. The thesis consists of four chapters.

Chapter 1 is preliminary in nature and intended to present most of the results used in

this thesis providing appropriate references for them. Then while using these results we

refer to the �rst Chapter instead of referring to the original papers. Chapter 2, 3 and 4

report the work done by the author.

In Chapter 1, we give a brief summary of some results that have been obtained on groups

in which the system of Y-subgroups coincide with the family of all proper subgroups and

with the family of all proper subgroups of in�nite rank. Our choice of what to include

and that to omit has been guided by our own interests and undoubtedly there are many

interesting results that will not be mentioned. For this reason, we have decided to frame

our discussion in the context of properties such as nilpotency and its generalizations. We

cite, for example, the results obtained in [1], [2], [6], [17], [18], [21], [23], [24], [27], [28],

[29], [40], [41], [55].

In Chapter 2, we give a complete characterization of (generalized) soluble groups of

in�nite rank in which every proper subgroup of in�nite rank is a YN-group; where Y is a

subclass of the class of soluble-by-�nite minimax groups with certain conditions of closure

operations. As we will see, Y can be chosen to be the class C, PF or M of Chernikov,

polycyclic-by-�nite or soluble-by-�nite minimax groups, respectively. At the end of this
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chapter, we consider the dual situation�groups in which every proper subgroup of in�nite

rank is a NY-group. Our results should be seen in relation with the description of groups

whose proper subgroups are YN-groups and NY-groups, respectively.

In Chapter 3, we consider a (generalized) soluble group of in�nite rank whose proper

subgroups of in�nite rank are CZA, then we prove that such group have all their proper

subgroups in CZA. A corresponding result is holding for the dual property�groups in

which every proper subgroup of in�nite rank is in ZAC; where ZA denotes the class of

hypercentral groups.

In Chapter 4, we show that a locally graded group whose proper subgroups are Engel

(respectively, k-Engel) is either Engel (respectively, k-Engel) or �nite. At the end of this

chapter, we take the opportunity to study (generalized) soluble groups of in�nite rank in

which all proper subgroups of in�nite rank are Engel (respectively, k-Engel).
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Chapter 1

Groups with many subgroups in a

given class of groups

1.1 Introduction

In a number of papers, authors studied groups many of whose subgroups belong to a given

group class Y. Two interpretations of the requirement that �many Y-subgroups�have

been that �all proper subgroups of in�nite rank belong to Y�, and, more generally, that

�the family of all proper subgroups belong to Y�. The results have included structure

theorems, and sometimes assertions that such groups either belong to Y or must be small

in some sense, at least for several natural choices of Y. In this chapter, we will give an

overview of the main results that have been obtained in this context. In particular the

results that are used in this thesis.

1.2 Groups in which every proper subgroup is in Y

A group G is said to be minimal non-Y if it is not a Y-group but all its proper subgroups

belong to Y. We denote the minimal non-Y-groups by MNY. Many results have been

obtained on MNY-groups, or more generally on groups whose proper subgroups are Y-
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groups, for several choices of Y. Already in 1903, G.A. Miller and H.C. Moreno [39]

investigated properties of �nite MNA-groups, proving in particular that such groups are

metabelian and that the orders of their elements are divisible by at most two primes;

where A is the class of abelian groups. Then Schmidt [50] classi�ed �nite MNN-groups,

where N is the class of nilpotent groups. Later, this kind of investigation has been dealt

with also in the in�nite case by several authors. In this section, we will give a brief

summary of the main results obtained in this context.

1.2.1 Groups in which every proper subgroup is in N

Throughout this thesis, Nk denotes the class of nilpotent groups of class at most k, where

k is a positive integer. In 1964, M.F. Newman and J. Wiegold [41] described the structure

of in�nite MNN-groups. It is clear that such groups are either �nitely generated or locally

nilpotent groups.

Theorem 1.2.1.1. Let G be an in�nite �nitely generated MNN-group or MNNk-group,

then G=Frat(G) is non-abelian and simple.

This theorem means that if in�nite �nitely generated MNN-groups and MNNk-groups

exist so do simple ones. This led M.F. Newman and J. Wiegold [41] to list some of the

properties that such a simple group must-have.

Theorem 1.2.1.2. Let G be a �nitely generated simple MNN-group or MNNk-group.

Then:

(i) every pair of maximal subgroups of G has trivial intersection;

(ii) to every non-identity element x of G, there is an element g of G such that x; xg

generate G;

(iii) there are no elements of order 2.

Since the publication of the paper of M.F. Newman and J. Wiegold there have appeared

the examples due to A.Yu. Ol�shanskii (see [42]) and E. Rips of in�nite simple 2-generator
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groups with all proper subgroup cyclic of prime order (the so-called Tarski monsters).

Note that the Tarski monsters are, obviously, examples of �nitely generated simple MNN-

groups.

Theorem 1.2.1.3. Let G be a locally nilpotent MNN-group. Then:

(i) G is countably in�nite;

(ii) the commutator factor-group of G is a locally cyclic p-group for some prime p; if

G=
2(G) is non-trivial, then G is a p-group.

These are the only results that M.F. Newman and J. Wiegold have obtained on locally

nilpotent MNN-groups. This led them to assume further that the groups in question

have maximal subgroups. Thus, they obtained a complete description of locally nilpotent

MNN-groups with maximal subgroups.

Let p be a prime number, n a positive integer and r = 0 or 1. Let B be the set of groups

B(p; n; r), where B(p; n; r) is the group generated by the set fb; h1; h2; :::g with de�ning

relations:

8<: [hi; hj] = [hi; b
p] = 1; [h

i+1
; b] = hi; i; j : 1; 2; :::;

[h1; b] = 1; bp
n
= hr1:

Theorem 1.2.1.4. (i) Every locally nilpotent MNN-group with maximal subgroups is

isomorphic to a group in B;

(ii) Every group in B is a locally nilpotent MNN-group with maximal subgroups;

(ii) No two groups in B are isomorphic.

The previous theorem admits the following consequence.

Corollary 1.2.1.5. If G is a locally nilpotent MNN-group with maximal subgroups,

then G is a metabelian Chernikov p-group, for some prime p, and hence hypercentral.

The only information provided by M.F. Newman and J. Wiegold on MNN-groups with-
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out maximal subgroups is that they are countable and, if soluble, p-groups for some prime

p (Theorem 1.2.1.3). Four years or so after the publication of [41], there appeared the ex-

amples of H. Heineken and I.J. Mohamed [32]: for every prime p there exists a metabelian,

non-nilpotent p-group G having all proper subgroups nilpotent and subnormal; further,

G has no maximal subgroups. These examples led H. Smith to begin the investigation

of in�nite locally nilpotent MNN-groups without maximal subgroups, distinguishing the

soluble case from the non-soluble case. However, a recent amazing theorem of A.O. Asar

[2] shows that every locally graded group, all of whose proper subgroups are nilpotent,

is soluble. The following result supplements this theorem of A.O. Asar very nicely and

was obtained by H. Smith in [51].

Theorem 1.2.1.6. Let G be a locally nilpotent MNN-group, and suppose that G has no

maximal subgroups. Then:

(i) G is a countable p-group for some prime p and G=G0 ' Cp1;

(ii) Every subgroup of G is subnormal;

(iii) (G0)p 6= G0, and every hypercentral image of G is abelian. In particular, G0 = 
n(G)

for all n � 2;

(iv) Every radicable subgroup of G is central;

(v) The centraliser of G0 is abelian, and G0 is omissible (that is, HG0 = G implies

H = G); in particular, G has no proper subgroups of �nite index;

(vi) G0 is not the normal closure in G of a �nite subgroup;

(vii) The hypercentre of G coincides with its center.

When a bound is placed on the nilpotency classes things are more straightforward. In

fact, B. Bruno and R.E. Phillips [10] studied locally graded MNNk-groups and they

proved the following result.

Theorem 1.2.1.7. Let k be a positive integer and let G be a locally graded MNNk-group.

Then G is �nite.

It follows that locally graded MNA-groups are �nite, more generally, each locally graded
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group in which proper subgroups are Nk-groups is �nite or in Nk.

1.2.2 Groups in which every proper subgroup is in FA or AF

Let FA and AF denote the class of �nite-by-abelian and abelian-by-�nite groups, re-

spectively. In 1983, B. Bruno and R.E. Phillips [11] investigated the structure of locally

graded MNFA-groups. In particular they have shown.

Theorem 1.2.2.1. Let G be a locally graded MNFA-group. Then:

(i) for some prime p and positive integer n � 0 there is a normal subgroup A of G with

A ' Cnp1 and an element y in G of prime power of order qs with G = A hyi, and

(ii) V = hyi =Chyi(A) has order q and A is a divisibly irreducible V -module.

B. Bruno in [6] began the study of periodic locally graded MNAF-groups and obtained

important properties distinguishing the cases of p-groups and non p-groups. Later, com-

bined e¤orts of a number of people; see B. Bruno and R.E. Phillips [13], F. Napolitani

and E. Pegoraro [40] and A.O. Asar [2], showed that locally graded MNAF-groups are

periodic and non-perfect. More precisely, we have the following result.

Theorem 1.2.2.2. Let G be a locally graded.

(i) If G is not a p-group, for any prime p. Then G is a MNAF-group, if and only if,

G = G0oA, where A ' Cr1, for some prime r, and G0 is an elementary abelian minimal

normal q-subgroup of G, for some prime q 6= r.

(ii) If G is a p-group. Then G is a MNAF-group, if and only if, G0 is abelian, the

quotient G=G0 ' Cp1, and for all proper subgroups H of G, HG0 < G.

Note that the Heineken-Mohamed groups are examples of p-groups MNAF. This fact

follows from [32, Lemma 1] since if H < G then HG0 < G. Hence HG0=G0 is �nite and

H is abelian-by-�nite.
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1.2.3 Groups in which every proper subgroup is in FN or NF

Let FN and NF denote the class of �nite-by-nilpotent and nilpotent-by-�nite groups,

respectively. In 1996, M. Xu [55] investigated the structure of MNFN-groups, distin-

guishing the �nitely generated case from the non-�nitely generated.

In the �nitely generated case, M. Xu has extended Theorem 1.2.1.1 of M.F. Newman and

J. Wiegold for MNFN-groups. More precisely, he proved the following result.

Theorem 1.2.3.1. If G is a �nitely generated MNFN-group, then G0 = G, G has no

non-trivial �nite factor groups, and G=Frat(G) is a simple group.

Note that the Tarski monsters assert the existence of �nitely generated MNFN-groups.

Theorem 1.2.3.2. A group G is an in�nitely generated MNFN-group if and only if G

is of one of the following types:

(i) a non-perfect MNFA-group;

(ii) a MNN without maximal subgroup.

B. Bruno in [7, 8] extended the results obtained on MNAF-groups by replacing the term

�A-group�by �N-group�, and gave the important properties of periodic locally graded

MNNF-groups by distinguishing the cases of locally nilpotent and the non-locally nilpo-

tent. Later, combined e¤orts of a number of people; see B. Bruno and R.E. Phillips [13],

A.O. Asar [2] and F. Napolitani and E. Pegoraro [40], show that locally graded MNNF-

groups are periodic and non-perfect. Thus, we have the following result.

Theorem 1.2.3.3. (i) Let G be a locally graded non-locally nilpotent MNNF-group.

Then G = V o H is a semidirect product of a normal subgroup V and a quasicyclic p-

subgroup H, where V is a special q-group, V is centralized by H and V=V 0 is a minimal

normal subgroup of G=V ( p and q are distinct primes).

(ii) Let G be a locally nilpotent MNNF-group. Then G is a p-group, for some prime p.
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1.2.4 Groups in which every proper subgroup is in (PF)N or

N(PF)

Denote by (PF)N andN(PF) the class of (polycyclic-by-�nite)-by-nilpotent and nilpotent-

by-(polycyclic-by-�nite) groups, respectively. In 1999, S. Franciosi, F. De Giovanni and

Y.P. Sysak [18] established results on locally graded MN(PF)N-groups. They proved, in

particular, that such groups are periodic so that they are also MNFN-groups.

Theorem 1.2.4.1. A group G is a locally graded MN(PF)N if and only if it is a count-

able locally �nite MNFN-group.

In the same paper [18], they considered the dual situation studying locally graded

MNN(PF)-groups. They have shown in particular that such groups are precisely the

locally �nite MNNF-groups.

Theorem 1.2.4.2. A group G is a locally graded MNN(PF) if and only if it is a locally

�nite MNNF-group.

1.2.5 Groups in which every proper subgroup is in CN or NC

Let CN and NC denote the class of Chernikov-by-nilpotent and nilpotent-by-Chernikov

groups, respectively. In the paper [1], A. Arikan and N. Trabelsi classi�ed locally graded

MNCN-groups. In particular, they showed that locally graded MNCN-groups are locally

nilpotent MNN-groups without maximal subgroups that have been described by H. Smith

(Theorem 1.2.1.6).

Theorem 1.2.5.1. A group G is a locally graded MNCN-group if and only if it is a

MNN-group without maximal subgroup.

Note that the Heineken-Mohamed groups are examples of MNCN-groups.

In 1997, F. Napolitani and E. Pegoraro [40] studied locally graded groups in which

every proper subgroup belongs to NC. They proved, in particular, that such groups are

16



themselves NC-groups, if they are not locally �nite p-groups. But in 2000, A.O. Asar [2],

studied this case where he proved, among other things, that the locally �nite p-groups do

not constitute an exception to the former statement. Combining these results, we have

the following.

Theorem 1.2.5.2. Let G be a locally graded group in which every proper subgroup is

NC, then G is a NC-group.

1.2.6 Groups in which every proper subgroup is in RN or NR

A group G is said to have �nite (or Prüfer or special) rank r if every �nitely generated

subgroup of G can be generated by at most r elements, and r is the least positive integer

with such property. In particular, a group has rank 1 if and only if it is locally cyclic. It

is clear that the class of �nite rank groups is S, H and P-closed.

The structure of locally graded groups with all proper subgroups of �nite rank, and even

the structure of locally graded groups of �nite rank, is unknown, although well-researched

in other classes of groups. In 1990, N.S. µCernikov [16] considered the class X obtained by

taking the closure of the class of periodic locally graded groups by the closure operations

Ṕ, P̀, R, L. Clearly X is a subclass of the class of locally graded groups, it is unknown

whether X exhausts the class of all locally graded groups. In his paper [16], µCernikov

proved that an X-group of �nite rank is (locally soluble)-by-�nite. The X-groups form a

large S-closed class of generalized soluble groups containing, in particular, the classes of

locally (soluble-by-�nite) groups, residually �nite groups, and generalized radical groups.

We remark that the class X is not H-closed� as the consideration of the free non-abelian

group shows.

The result obtained by J. Otal and J.M. Peña [45] has inspired many generalizations.

For example, in [29], M.R. Dixon, M.J. Evans and H. Smith considered groups with all

proper subgroups belongs to RN. The following result was obtained.

Theorem 1.2.6.1. Let G be an X-group and suppose that every proper subgroup of G
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belongs to RN.

(i) If G is a p-group for some prime p then either G 2 RN or G=G0 ' Cp1 and every

proper subgroup of G is nilpotent.

(ii) If G is not a p-group then G 2 RN.

Combining Theorem 1.2.6.1 and Theorem 1.2.5.1, we obtain the following consequence.

Corollary 1.2.6.2. Let G be an X-group. Then the following properties are equivalent.

(i) G is a MNCN;

(ii) G is a MNRN;

(iii) G is a MNN without maximal subgroup.

In [28], M.R. Dixon, M.J. Evans and H. Smith investigated the groups all of whose proper

subgroups are NR-groups. More precisely, they established the following results.

Theorem 1.2.6.3. Let G be a locally (soluble-by-�nite) with all proper subgroups belongs

to NR. Suppose that G is not a p-group. If G has no in�nite simple images then

G 2 NR.

Theorem 1.2.6.4. Let G be a group with all proper subgroups belongs to NR and

suppose that G is locally (soluble-by-�nite) and locally of �nite rank (and therefore locally

minimax). Suppose that G is not locally �nite, then G 2 NR.

1.2.7 Groups in which every proper subgroup is in LN or ZA

Let LN denotes the class of locally nilpotent groups. In a paper published in 1988, J.

Otal and J.M. Peña [44] characterized locally graded MNLN-groups. More precisely,

they have shown the following result.

Theorem 1.2.7.1. Let G be a locally graded MNLN-group. Then G is �nite.

Recall that a group is called hypercentral (or a ZA-group) if it admits an ascending

central series. The hypercentral groups are known to be locally nilpotent (see [49, P.
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365]). In 2015, F. De Giovanni and M. Trombetti [24] described the main properties

of in�nite MNZA-groups, extending the result of H. Smith on in�nite MNN-groups

(Theorem 1.2.1.6).

Theorem 1.2.7.2. Let G be an in�nite locally graded MNZA-group. Then:

(i) G is a locally �nite p-group for some prime number p;

(ii) G is hyperabelian;

(iii) If G0 6= G, then G=G0 is a group of type p1;

(iv) Z(G) is the last term of the upper central series of G, and G0 is the last term of the

lower central series of G;

(v) The centraliser of G0 is abelian;

(vi) All subgroups of G are ascendant;

(vii) If N is any proper normal subgroup of G, then HN 6= G for every proper subgroup

H of G;

(viii) G0 cannot be the normal closure of a �nite subgroup of G.

1.3 Groups in which every proper subgroup of in�-

nite rank is in Y

A group G is said to have �nite rank if there exists a positive integer r such that all

�nitely generated subgroups of G can be generated by at most r elements and r is the

least positive integer with such property; otherwise, if such an r does not exist, the group

is said to have in�nite rank. It is not di¢ cult to see that in some universes of gener-

alized soluble groups, if a group G has in�nite rank, then it must be rich in subgroups

of in�nite rank. Moreover, in recent years, a series of papers have been published by

many authors (among which M. De Falco, F. De Giovanni, M.R. Dixon, J. Evans, C.

Musella, H. Smith, N. Trabelsi) which show that the subgroups of in�nite rank of a group

of in�nite rank have the power to in�uence the structure of the whole group and to force
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also the behavior of the subgroups of �nite rank. In fact, it has been proved that, for

some choices of group classes Y, if G is a group in which all subgroups of in�nite rank

belong to Y, then the samehappens also to the subgroups of �nite rank. So, now it will

give a brief summary of results on this subject. The results described in this section will

be usually stated for strongly locally graded groups that can be de�ned as follows. Let X

be the µCernikov�s class of groups de�ned in Chapter 1. Following [17], we shall say that

a group G is strongly locally graded if every section of G is an X-group. In particular

every strongly locally graded group is an X-group. Thus strongly locally graded groups

form a large class of generalized soluble groups, which is S and H-closed, and contains

all locally (soluble-by-�nite) groups.

It is not our intention here to dwell too much on the history of groups satisfying rank

conditions, but it is helpful to put some of the results in context by brie�y discussing some

of the main results. The structure of abelian groups A of �nite rank r is well-known (For

example see L. Fuchs [19]). Thus for each prime p, the p-component of A is a direct prod-

uct of at most r groups which are either cyclic groups or quasicyclic groups. The factor

group of A modulo its torsion subgroup embeds into a direct product of at most r copies

of the additive group of the rationals. As expected, classes of groups containing many

abelian sections can be described particularly well if they have �nite rank. Appropriate

classes of groups considered in the literature are generalized nilpotent and generalized

soluble groups. The �rst result that we state here as a lemma is due to V.S. µCarin [14],

and shows in particular that locally soluble groups of �nite rank are hyperabelian (i.e.

they have an ascending normal series with abelian factors).

Lemma 1.3.1. Let G be a locally soluble group of �nite rank r. Then there exists a

positive integer k = k(r) such that the subgroup G(k) is a periodic hypercentral group with

Chernikov p-components.

A natural question to ask here, of course, is whether locally soluble groups of �nite rank

are soluble. Kegel�s example (see Baer [4]) shows that a periodic locally soluble or even
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hypercentral group with �nite rank need not be soluble.

For locally nilpotent groups of �nite rank, very precise structure results are the following.

Lemma 1.3.2. Let G be a locally nilpotent group of �nite rank r.

(i) G is hypercentral (see [48, Corollary 1 of Theorem 6.36]).

(ii) If G is torsion-free, then it is nilpotent of nilpotency class at most r (V.S. µCarin

[15, Theorem 9]).

(iii) If G is periodic, then it has Chernikov p-components (see [48, Corollary 2 of The-

orem 6.36]).

The structural results on hyperabelian groups of �nite rank are listed in the next lemma.

Lemma 1.3.3. Let G be a hyperabelian group of �nite rank r.

(i) If G is torsion-free, then G is soluble of r-bounded derived length (see [48, Corollary

1 of Theorem 10.38]).

(ii) If G is periodic, then for any prime p, the Sylow p-subgroups of G are conjugate

(R. Baer and H. Heineken [5]).

(iii) Each chief factor of G is �nite and every maximal subgroup of G has �nite index

in G (D.J.S. Robinson [47, Theorems C and D]).

(iv) G is F-perfect if and only if G is radicable nilpotent with central torsion group (see

[48, Theorem 9.31]).

Here, a group is F-perfect if it has no non-trivial �nite homomorphic images. The group

G is called radicable if for every n 2 N and every g 2 G, there exists an element h 2 G

such that hn = g.

A relevant result by A.I. Mal�cev [37] states that any locally nilpotent group of in�nite

rank must contain an abelian subgroup of in�nite rank, and a corresponding result for

locally �nite groups was later proved by V.P. �unkov [52]. Mal�cev�s theorem was im-

proved by R. Baer and H. Heineken [5], to the case of radical groups of in�nite rank. For

locally soluble groups things are not quite so nice since Y.I. Merzljakov [38] has shown
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that there exist locally soluble groups of in�nite rank in which every abelian subgroup has

�nite rank. Consequently there is no analogue of the Baer-Heineken theorem for locally

soluble groups. More recently, M.R. Dixon, M.J. Evans and H. Smith [27] has shown

that a locally soluble group of in�nite rank contains a proper subgroup of in�nite rank.

As in many problems concerning groups of in�nite rank, also in our case, the existence

of proper subgroups of in�nite rank plays a crucial role.

Lemma 1.3.4. Let G be an X-group of in�nite rank. Then G contains a proper sub-

group of in�nite rank.

Proof. Suppose, for a contradiction, that every proper subgroup of G has �nite rank.

If G is �nitely generated then, since G is locally graded, there exists N C G such that

G=N is a non-trivial �nite group and clearly N has in�nite rank, a contradiction. Thus

G is not �nitely generated and it follows that every �nitely generated subgroup of G has

�nite rank. A result of µCernikov [16] implies that G is locally (soluble-by-�nite). Since

G has in�nite rank, it must contain a locally soluble subgroup H of in�nite rank [26],

and hence H = G is locally soluble. Therefore G has �nite rank [27, Lemma 1], and this

contradiction proves the lemma.

The �rst relevant result for our purposes was obtained 20 years ago by M.R. Dixon, M.J.

Evans and H. Smith [27], and deals respectively with the class Nc and LN of nilpotent

groups of given class at most c and locally nilpotent groups.

Theorem 1.3.5. Let c be a positive integer and let G be an X-group of in�nite rank.

(i) If all proper subgroups of in�nite rank of G are in Nc, then G itself belongs to Nc.

(ii) If all proper subgroups of in�nite rank of G are in LN, then G itself belongs to LN.

Of course there is no corresponding result if we replace Nc by N the class of all nilpotent

groups, since the Heineken-Mohamed type groups are locally nilpotent, non-nilpotent

and of in�nite rank but have all proper subgroups nilpotent. However, the existence of

such groups is essentially the only reason why we cannot replace Nc by N in the results
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mentioned above.

The structure of groups of in�nite rank in which all proper subgroups of in�nite rank are

in AF (respectively, in NF) was investigated by F. De Giovanni and F. Saccomanno [21].

They proved in particular that such groups either belong to AF or are MNAF (respec-

tively, belong to NF or are MNNF). More speci�cally, the following theorem is valid.

Theorem 1.3.6. Let G be a strongly locally graded group of in�nite rank whose proper

subgroups of in�nite rank are AF-groups (and NF-groups). Then so are all proper sub-

groups of G.

M. De Falco, F. De Giovanni, C. Musella and N. Trabelsi have proved that, in [17], if G

is a group of in�nite rank in which all proper subgroups of in�nite rank are in (LF)A,

then some informations can be obtained on the structure of such group.

Theorem 1.3.7. Let G be a strongly locally graded group of in�nite rank whose proper

subgroups of in�nite rank are in (LF)A. Then G itself belongs to (LF)A.

Some interesting results in this context are due to F. De Giovanni and M. Trombetti [23].

Theorem 1.3.8. Let G be a strongly locally graded group of in�nite rank.

(i) If all proper subgroups of in�nite rank of G are in (LF)N, then G itself belongs to

(LF)N.

(ii) If all proper subgroups of in�nite rank of G are in (LF)(LN), then G itself belongs

to (LF)(LN).

23



Chapter 2

Groups with many subgroups in NM

or MN

2.1 Introduction

As we have already mentioned, many results have been obtained on groups with many

subgroups in a given group class Y. A result of A. Arikan and N. Trabelsi states that

locally graded MNCN-groups are precisely the locally nilpotent MNN-groups without

maximal subgroups (Theorem 1.2.5.1). Whereas F. Napolitani, E. Pegoraro and A.O.

Asar have proved that locally graded groups in which every proper subgroup is in NC

are themselves NC-groups (Theorem 1.2.5.2). In other words, there are no locally graded

MNNC-groups. In this chapter we give the soluble-by-�nite minimax M version of the

above results.

It follows from a result of B. Bruno and R.E. Phillips (Theorem 1.2.2.1) that X-groups

of in�nite rank all of whose subgroups of in�nite rank belong to FA are themselves FA-

groups. Moreover, F. De Giovanni and F. Saccomanno considered strongly locally graded

groups of in�nite rank in which all proper subgroups of in�nite rank belong to AF, they

proved in particular that these groups have all their proper subgroups are AF-groups

(Theorem 1.3.6). Here we provide a further contribution by replacing the terms �A-
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group�by �N-group�and �F-group�by �Y-group�, where Y is a subclass of the class

of soluble-by-�nite minimax groups with certain conditions of closure operations. As we

will see, Y can be chosen to be the class C, PF or M of Chernikov, polycyclic-by-�nite

or soluble-by-�nite minimax groups, respectively.

Recall that a group G is called minimax (cf. Baer [3]) if there is in G a series of �nite

length in which every factor satis�es either Max (the maximal condition on subgroups)

or Min (the minimal condition on subgroups). Such a series is called a minimax series.

The structure of soluble minimax groups has been described by D.J.S. Robinson (see

[48, Part 2, Chapter 10]). Note that soluble minimax groups have �nite rank, because

polycyclic and Chernikov groups do, while a �nitely generated soluble group of �nite

rank is minimax, as follows from Theorem 10.38 of [48]. Thus the class of locally soluble

minimax groups is precisely the class of locally soluble groups that are locally of �nite

rank. It is also the case to observe that a periodic soluble minimax group is a Chernikov

group, since a periodic polycyclic group is �nite. For our convenience we quote a well-

known fact about nilpotent groups, which will be freely used in what follows: Let G be

a nilpotent group. Then G is minimax if and only if G=G0 is minimax.

2.2 The class of MN-groups

In this section we are interested in the classes FN, CN, (PF)N, MN. We shall give

the complete characterization of X-groups of in�nite rank in which all proper subgroups

of in�nite rank are in these classes. The knowledge of the structure of MNFN-groups

(and MNCN-groups, MN(PF)N-groups, MNMN-groups) will be relevant in our consid-

erations.

In the �rst part we study MNMN-groups as a continuation of characterizations of lo-

cally graded MNN-groups (Theorem 1.2.1.4, 1.2.1.6), MNFN-groups (Theorem 1.2.3.2),

MN(PF)N-groups (Theorem 1.2.4.1) and MNCN-groups (Theorem 1.2.5.1).

The following result will be often used in our proofs.
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Let Y and Z be two group classes, we say that Y is Z-characteristic (a generalization

of the idea of [25]) if any YZ-group G contains a characteristic Y-subgroup A such that

G=A is a Z-group. Note that ifY is any subgroup closed class, thenY isN-characteristic.

Lemma 2.2.1. Let Y and Z be two group classes such that Y is Z-characteristic and

N0-closed and Z is fH;N0g-closed. Then YZ is also N0-closed. Therefore if G is a

MNYZ-group, then every nilpotent image of G is a (possibly trivial) locally cyclic p-group

for some prime p.

Proof. Let H and K be normal YZ-subgroups of a group G. Then there exists two

subgroups A and B such that A (resp. B) characteristic in H (resp. K), A, B are

Y-groups and H=A; K=B are Z-groups. Clearly AB is a normal Y-subgroup of G by the

hypothesis. We also have that HK=AB is a Z-group, as it is the product of HB=AB and

KA=AB. Hence HK is a YZ-group. The rest of the claim follows by [41, Theorem 2.12].

Our next result is well-known, but we give a proof.

Lemma 2.2.2. Let G be an hypercentral group. If G=G0 is periodic, then G is periodic.

Proof. Assume that the result is false and let T denote the torsion subgroup of G. Obvi-

ously, G=T is likewise a counterexample, so without lose of generality it can be assumed

that G is torsion-free. Since G=G0 is periodic, we deduce that G is non-abelian, and let

h be an element in the set Z2(G) n Z(G). Then the map

� : g 2 G! [h; g] 2 Z(G)

is a non-zero homomorphism of G onto a torsion-free abelian group, so that G=ker(�) is

an abelian non-periodic group which is a contradiction.

Theorem 2.2.3. A group G is a locally graded MNMN if and only if it is a MNN-group

without maximal subgroup.

Proof. Let G be a locally graded MNMN-group. In particular, G cannot be �nitely
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generated. As �nitely generated MN-groups are obviously in M, it follows from the

hypothesis that every �nitely generated subgroup of G is a M-group. So G is locally in

M and, by Theorem 1.2.6.1, it is either a RN-group or G=G0 is p-quasicyclic for some

prime p and every proper subgroup of G is nilpotent. Assume for a contradiction that G

is a RN-group; then G is of �nite rank By Lemma 2.2.1.

Let us suppose �rst that G has a proper normal subgroup N of a �nite index. Then N

belongs to MN and 
c(N) is a M-group for some positive integer c; there is no loss of

generality if we assume that 
c(N) = 1 and so N is nilpotent. If G is periodic, then all

its proper subgroups are in CN, and hence so is G by Theorem 1.2.5.1. Therefore G is

non-periodic, and N is non-periodic. We deduce by [49, 5.2.6], that also the factor group

N=N 0 is non-periodic. Let M=N 0 be a maximal free abelian subgroup of N=N 0; then

(N=N 0)=(M=N 0) is periodic. Since G=N 0 has �nite rank and M=N 0 has a �nite number

of conjugates in G=N 0, the abelian group (M=N 0)G is �nitely generated. Furthermore,

Theorem 1.2.5.1 shows that the periodic group (G=N 0)=(M=N 0)G belongs to CN hence,

since every nilpotent image of G is Chernikov, (G=N 0)=(M=N 0)G is a Chernikov group. It

follows that G=N 0 belongs toM, and therefore N=N 0 is anM-group. Since N is nilpotent

we deduce that N also belongs to M. But this contradict our assumption.

Thus G has no proper subgroup of �nite index. By [16], G is locally soluble, and hence

it has an ascending normal abelian series whose factors are of rank at most r and either

torsion or torsion-free. Let F be a factor of the series. If F is periodic, then A = hxiG

(x 2 F ) has �nite exponent and is therefore �nite and hence centralized by G. If F

is torsion-free, then G=CG(F ) embeds in a rationally irreducible linear group of degree

r. But locally soluble linear groups are soluble by [48, Corollary to Theorem 3.23], so

applying [48, Corollary 1 to Lemma 5.29.1] gives that G=CG(F ) is free abelian-by-�nite.

We conclude again that F is central. Consequently, G is hypercentral. Since G=G0 is

periodic, we deduce that G is also periodic by Lemma 2.2.2. This contradiction gives the

result.

We turn now to give information about groups of in�nite rank in which all proper sub-

27



groups of in�nite rank belong to YN, where Y is an S-closed subclass of the class of

soluble-by-�nite minimax groups.

Theorem 2.2.4. Let Y be a subclass of the class of soluble-by-�nite minimax groups

which is S-closed. If G is an X-group of in�nite rank whose proper subgroups of in�nite

rank are YN-groups, then so are all proper subgroups of G.

Proof. It is an immediate consequence of Theorem 1.2.6.1. Clearly we may assume that

G is a RN-group. Then G contains a proper normal subgroup N such that G=N is nilpo-

tent. Hence G=G0 is of in�nite rank, and so there exists a subgroup M of G of in�nite

rank such that G0 � M and G=M has in�nite rank. The product HM is a proper sub-

group of in�nite rank of G, and hence it is a YN-group. Therefore all proper subgroups

of G are YN-groups, as desired.

Next, we derive some results on X-groups of in�nite rank in which all proper subgroups

of in�nite rank are FN (resp. CN, (PF)N, MN).

The class F of �nite groups satis�es the hypotheses of Theorem 2.2.4; moreover, MNFN

of in�nite rank are MNN-groups without maximal subgroups by the results quoted in

Theorem 1.2.3.2, 1.2.2.1. The following result is valid.

Corollary 2.2.5. Let G be an X-group of in�nite rank. If all proper subgroups of in�nite

rank of G are in FN, then G is either in FN or it is a MNN-group without maximal

subgroup.

Since the class PF of polycyclic-by-�nite groups satis�es the hypotheses of Theorem

2.2.4. Then by Theorem 1.2.4.1 and Corollary 2.3.5, we have the following consequence.

Corollary 2.2.6. Let G be an X-group of in�nite rank. If all proper subgroups of in�-

nite rank of G are in (PF)N, then G is either in (PF)N or it is a MNN-group without

maximal subgroup.

The class C of Chernikov groups also satis�es the hypotheses of Theorem 2.2.4, together
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with the result quoted in Theorem 1.2.5.1, we deduce the following result.

Corollary 2.2.7. Let G be X-group of in�nite rank. If all proper subgroups of in�nite

rank of G are in CN, then G is either in CN or it is a MNN-group without maximal

subgroup.

As the class M of soluble-by-�nite minimax groups satis�es the hypotheses of Theorem

2.2.4, 2.2.3, we have the following consequence.

Corollary 2.1.8. Let G be X-group of in�nite rank. If all proper subgroups of in�nite

rank of G are in MN, then G is either in MN or it is a MNN-group without maximal

subgroup.

2.3 The class of NM-groups

In this section, we consider the dual property, that is the case in which proper subgroups

of in�nite rank of an X-group of in�nite rank are NC (resp. N(PF), NM). Our results

should be seen in relation with the structure of MNNC-groups (resp. MNN(PF)-groups,

MNNM-groups).

In view of Theorem 1.2.5.2, locally graded groups whose proper subgroups are in NC

are themselves NC-groups. A corresponding result is proved for groups whose proper

subgroups are NM, whereM is the class of soluble-by-�nite minimax groups. The proof

requires a few lemmas.

The following result is a key ingredient in the proof of Lemma 2.3.2.

Lemma 2.3.1. Let Y be a class of groups contained in the class of �nite rank groups

which is H-closed. If G is a NY-group, then G has a characteristic nilpotent subgroup

N such that G=N is a Y-group.

Proof. We follow almost the same way of the proof of [28, Lemma 1]. Let A be a normal

nilpotent subgroup of G of nilpotency class c such that G=A is a Y-group and has rank
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r. Consider the characteristic closure of A in G, and we write A = h�(A); � 2 Aut(G)i.

Then A is characteristic in G and G=A is a Y-group. Since �(A) C G and �(A) ' A

for all � 2 Aut(G), A is generated by normal nilpotent subgroups and hence it is locally

nilpotent. Let H be a �nitely generated subgroup of A�it su¢ ces to prove that the

nilpotency class of H is bounded by a function of r and c. The subgroup H is generated

by some products of elements in the �(A). Therefore, H is contained in a subgroup H1

generated by �nitely many elements in the �(A). Now let K be a normal subgroup of H1

with H1=K a �nite p-group for some prime p. Applying the Burnside Basis Theorem [49,

5.3.2] on H1=(H1 \ A)K, gives that H1=K is nilpotent of class at most (r + 1)c. Since

H is �nitely generated nilpotent, the intersection of all such subgroups K (as p varies)

is trivial and the lemma is proved.

Lemma 2.3.2. Let Y be a class of groups contained in the class of �nite rank groups

and fH;Pg-closed. If G is a group containing a normal NY-subgroup N such that G=N

is in Y, then G is in NY.

Proof. By Lemma 2.3.1, there exists a characteristic nilpotent subgroup B of N such

that N=B is a Y-group. Since G=N and N=B are Y-groups, and the class Y is P-closed,

we deduce that G=B is likewise a Y-group. It follows that G is a NY-group.

Corollary 2.3.3. Let G be a group whose proper normal subgroups belong to NM. If G

is imperfect, then G itself belongs to NM.

Proof. If the quotient group G=G0 is decomposable, then G = MN is a product of two

proper normal subgroups M and N . Since M and N are NM-groups, G is such as well

by Lemma 2.3.1 and Lemma 2.2.1. Now let G=G0 be an indecomposable group. Then by

[41, Lemma 2.9] G=G0 is a Chernikov group and so G lies in NM by Lemma 2.3.2.

For the next result, we recall that if G be a group and H is a subgroup of G, the isolator
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IG(H) of H in G is the set,

IG(H) = fg 2 G : gn 2 H for some n � 1g :

For a good account of the properties of isolators the reader is referred to [36, Section

2.3] (see also [46]). A group in which the isolator of every subgroup is a subgroup is said

to satisfy the isolator property. Thus a locally nilpotent group G satis�es the isolator

property and if in addition G is torsion-free, then a subgroup H is hypercentral or soluble

implies that IG(H) also is hypercentral or soluble respectively by [36, 2.3.9 (ii) and (iv)].

Lemma 2.3.4. Let G be a locally nilpotent group whose proper subgroups are in NM.

Then G 2 NM.

Proof. Assume for a contradiction that G is a MNNM-group. Then G is perfect and has

no non-trivial �nite images. Since the class of soluble groups is countably recognizable,

G is countable. Let T be the torsion subgroup of G and assume that T 6= G. Then G=T

is a countable locally nilpotent torsion-free group, so it admits a proper subgroup H=T

with IG=T (H=T ) = G=T . Now H (and H=T ) is soluble, whence G=T is soluble by [36,

2.3.9 (iv)], contradicting our assumption. Thus T = G, and so G lies in NC by Theorem

1.2.5.2.

The following lemma is a part of Proposition 1 and Theorem 2 of [30].

We recall that the Hirsch-Plotkin radical of a group G is the unique maximal normal

locally nilpotent subgroup of G containing all the ascendant locally nilpotent subgroups

of G (see [49, 12.1.4]).

Lemma 2.3.5. Let G be a countable in�nite simple locally (soluble-by-�nite) group.

Then G contains a locally soluble and residually �nite proper subgroup R such that G is

periodic over R, that is, for every g 2 G there exists an integer n > 0 such that gn 2 R.
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Moreover, if R has non-trivial Hirsch-Plotkin radical, then G is locally �nite.

We are now ready to prove the following result.

Theorem 2.3.6. Let G be a locally graded group whose proper subgroups are in NM.

Then G 2 NM.

Proof. Suppose for a contradiction that G is a MNNM-group. In particular, G has no

non-trivial �nite images, see Lemma 2.3.2. Moreover, from Corollary 2.3.3 and Lemma

2.3.4, we deduce that G is perfect non-locally nilpotent. Let V be the Hirsch-Plotkin

radical of G. Of course, the factor group G=V is a MNNM-group and hence it is likewise

a counterexample. Replacing G by G=V , it can be assumed without loss of generality

that all ascendant subgroups of G are of �nite rank. It is easy to see, using [28, Theorem

2], that if G has no simple images, then it is radicable nilpotent. By this contradiction

G contains a normal subgroup M such that G = G=M is an in�nite simple group.

Since the class of (locally soluble)-by-�nite groups is countably recongnizable by [26,

Lemma 3.5] and G has no non-trivial �nite images, we deduce that G is countable. It fol-

lows that the hypotheses of Lemma 2.3.5 are satis�ed, and let R be the proper subgroup

of G as described in Lemma 2.3.5. So R belongs to NM and hence, as G is non-locally

�nite by Theorem 1.2.5.2, the Hirsch-Plotkin radical of R is trivial. It follows that R is

�nite and therefore G is periodic, as G is periodic over R. But G is non-locally �nite,

and we have a contradiction that establishes the result.

It is known that a strongly locally graded group of in�nite rank whose proper subgroups

of in�nite rank are AF-groups have all their proper subgroups AF-groups (see Theorem

1.3.6). In the last part we prove that similar results are holding for X-groups of in�nite

rank in which the proper subgroups of in�nite rank have certain slightly stronger prop-

erties.

Note that the main tool we used in the proof of our theorems is the description of in�nite

locally �nite simple groups in which all proper subgroups are (locally soluble)-by-�nite
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given in [35, 43] and without this description our results would be di¢ cult to prove.

Lemma 2.3.7. If G is a locally (soluble-by-�nite) group of in�nite rank whose proper

subgroups of in�nite rank are hypercentral-by-M, then G is not simple.

Proof. Assume for a contradiction that G is simple. Note that the proper subgroups of

G are either locally (soluble-by-�nite) of �nite rank or hypercentral-by-M. Since G is

locally (soluble-by-�nite), we deduce that the hypercentral-by-M subgroups are (locally

soluble)-by-�nite. Therefore all proper subgroups of G are (locally soluble)-by-�nite. We

deduce that G is countable as the class of (locally soluble)-by-�nite groups is countably

recognizable by [26, Lemma 3.5]. The hypotheses of Lemma 2.3.5 are satis�ed and so

G has a proper subgroup R as described in Lemma 2.3.5. If R has a non-trivial nor-

mal locally nilpotent subgroup then its Hirsch-Plotkin radical is non-trivial, while if R

has �nite rank then its Hirsch-Plotkin radical is also non-trivial by Lemma 1.3.1. We

deduce, using Lemma 2.3.5, that G is locally �nite. By [35], G is isomorphic to either

PSL(2; F ) or Sz(F ) for some in�nite locally �nite �eld F containing no in�nite proper

sub�eld. But each of these groups has a proper non hypercentral-by-Chernikov subgroup

of in�nite rank [43], our �nal contradiction.

Theorem 2.3.8. Let Y be a subclass of the class of soluble-by-�nite minimax groups

which is fP;S;R0g-closed. If G is a perfect X-group of in�nite rank whose proper sub-

groups of in�nite rank are in NY, then all proper subgroups of G are in NY.

Proof. Assume for a contradiction that the statement is false. Let N be a proper normal

subgroup of �nite index in G. So there is a normal nilpotent subgroup A of N such that

N=A is a Y-group. Since A has only �nitely many conjugates in G and Y is R0-closed,

N=AG is a Y-group, where, of course, AG is the core of A in G. But then, as AG is

nilpotent and G=N belongs to Y, G is a NY-group. Hence G has no non-trivial �nite

images and so it cannot be �nitely generated. Now using [16], all proper subgroups of G

are (locally soluble)-by-�nite; in particular G is locally (soluble-by-�nite).

Let N be a proper normal subgroup of in�nite rank of G. If G=N has �nite rank, then, in
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particular, all its proper subgroups are NM-groups, and hence G=N itself a NM-group

by Theorem 2.3.6. Then G=N is soluble, a contradiction, because G is perfect. It follows

that G=N has in�nite rank, so that if H is a proper subgroup of G of �nite rank, then

HN is a proper subgroup of in�nite rank. We deduce that HN belongs to NY, and

so H is a NY-group. Therefore all proper normal subgroups of G have �nite rank, and

hence G contains a normal subgroupM such that G = G=M is a simple group of in�nite

rank [28, Theorem 2]. But Lemma 2.3.7 shows that G cannot be simple, and we have a

contradiction that completes the proof of the theorem.

The following result shows that the subgroups of in�nite rank of a group G force the

behaviour of its normal subgroups.

Lemma 2.3.9. Let Y be a subgroup closed class of groups. If G is a strongly locally

graded group of in�nite rank whose proper subgroups of in�nite rank are Y-groups, then

each proper normal subgroup of G is a Y-group.

Proof. LetM be a proper normal subgroup of G, and it can be obviously assumed thatM

has �nite rank. Then the factor group G=M has in�nite rank, and Lemma 1.3.4 ensures

that G=M contains a proper subgroup of in�nite rank, say K=M . Thus K, and hence

M , is a Y-group.

Now combining Theorem 2.3.6 and 2.3.8, we obtain the following consequence.

Corollary 2.3.10. Let G be an X-group of in�nite rank. If all proper subgroups of

in�nite rank of G are in NM, then G itself is in NM.

Proof. Clearly we may assume that G is in�nitely generated, see Lemma 2.3.2. So G

is locally (soluble-by-�nite) and by Lemma 2.3.9, we conclude that all proper normal

subgroups are in NM. By Corollary 2.3.3 we may assume that G is perfect. Application

of Theorem 2.3.8 yields that all proper sugroups of G belong to NM, so that G itself is
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in NM by Theorem 2.3.6.

Following a similar argument as in Corollary 2.3.10 by using Theorem 2.3.8 and 1.2.5.2,

we can deduce the following result.

Corollary 2.3.11. Let G be an X-group of in�nite rank. If all proper subgroups of

in�nite rank of G are in NC, then G itself is in NC.

We turn now to X-groups of in�nite rank whose proper subgroups of in�nite rank are in

N(PF), but we are immediately confronted with the non-perfect case of these groups.

The objective, then, is to settle that situation.

Lemma 2.3.12. If G is a non-perfect group of in�nite rank whose proper subgroups of

in�nite rank belong to N(PF). Then either G 2 N(PF)-group or G=G0 is quasicyclic

and G0 is nilpotent.

Proof. Assume that G does not belong to N(PF). In particular, G has no non-trivial

�nite images and so it is locally (soluble-by-�nite). By Lemma 2.3.9, all proper normal

subgroups ofG are inN(PF). If the factor groupG=G0 is decomposable, thenG =MN is

a product of two proper normal subgroupsM and N . SinceM and N are N(PF)-groups,

G is such as well by Lemma 2.3.1 and Lemma 2.2.1. Now let G=G0 be an indecomposable

group. Then by [41, Lemma 2.9] G=G0 is a quasicyclic group. Let L be the G-invariant

nilpotent subgroup of G0 such that G0=L is polycyclic-by-�nite. Then (G=L)=CG(G0=L)

is polycyclic-by-�nite by [48, Theorem 3.27]. So that CG(G0=L) = G=L, as G has no

�nite images, and hence the factor group G=L is centre-by-locally cyclic. It follows that

G=L is even abelian, and so G0 = L is nilpotent.

The next lemma is useful for our purpose, was proved by B. Bruno and R.E. Phillips (see

[9, Lemma 2.3]). Before stating it, we have to recall some notions we shall use. Let G be

a group and A an additive abelian group. We say, following [54, Chapter 3], that A is a

right G-module if there is a map of A�G into A, denoted by (a; g)! ag, such that
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(a1 + a2)g = a1g + a2g; (ag1)g2 = a(g1g2) and a1 = a:

for all a; a1; a2 in A and g; g1; g2 in G. The �rst identity here says that g 2 G de�nes an

endomorphism 'g of the abelian group A. The other two imply that (ag)g
�1 = a(gg�1) =

a, so 'g is actually an automorphism of A. The second identity then says that ' : g ! 'g

is a (group) homomorphism of G into the automorphism group AutZA of A. Observe that

' can be extended to a ring homomorphism ~' of ZG (the free Z-module with basis G)

into EndZA. De�ne an action of ZG on A by ax = a(x~') for a 2 A and x 2 ZG. Then A

becomes a right ZG-module. Hence this amounts to gives a ZG-module structure on A.

To summarize, if A is a right G-module, then A becomes a right ZG-module by linearly

extending, that is by setting a(
P

g �gg) =
P

g �g(ag), where the �g lie in Z and almost

all are zero. Conversely if A is a right ZG-module, then A becomes a right G-module

simply by restricting the acting set from ZG to G.

Recall also that, for any group G, the symbol �(G) denotes the set of all prime numbers

p such that G has elements of order p.

Lemma 2.3.13. Let G be a periodic abelian group and A 6= f0g be a ZG-module which

is torsion-free as a group. Then for any �nite set � of prime numbers, there is a ZG-

submodule N of A such that the quotient module A=N is periodic as a group and, for all

p in �, contains an element of order p.

Lemma 2.3.14. Let E be group, and let A be a torsion-free abelian non-trivial normal

subgroup of E such that E=A is periodic. Then for any �nite set � of prime numbers,

there exists an E-invariant subgroup N of A such that A=N is periodic and � is contained

in �(A=N).

Proof. Set G = E=A and consider the action of G on A by aeA = e�1ae for a 2 A and

e 2 E. Then A becomes a right G-module and the linearly extending gives the ZG-

module structure on A. Since the submodules of A are exactly the normal subgroups of

E contained in A then, using Lemma 2.3.13, we deduce that N contains an E-invariant
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subgroup A such that A=N is periodic and, for all p in �, contains an element of order p.

Theorem 2.3.15. Let G be an X-group of in�nite rank. If all proper subgroups of in�nite

rank of G are N(PF), then all proper subgroups of G are N(PF).

Proof. Assume for a contradiction that the statement is false. In particular, G has no

non-trivial �nite images and an application of Theorem 2.3.8 and Lemma 2.3.12 yields

that G is imperfect and G=G0 is quasicyclic with G0 is nilpotent. Suppose �rst that G0

is periodic, then G is periodic and hence all it�s proper subgroups of in�nite rank are

nilpotent-by-�nite, the result follows by [21]. Thus G0 is non-periodic and by [49, 5.2.6],

G0=
2(G
0) is non-periodic. Let T=
2(G

0) be the torsion subgroup of G0=
2(G
0). SoG0=T is

non-trivial, abelian and torsion-free. Now G=G0 is a periodic abelian (in fact quasicyclic)

group, and G0=T is abelian and torsion-free group. Hence we can apply Lemma 2.3.14

and get that for each pair of primes p1 and p2 with p1 6= p2, there exists a G-invariant

subgroupM of G0, such that T < M and G0=M is an abelian group contaning elements of

orders p1 and p2. If the periodic group G=M has �nite rank then all its proper subgroups

are NF-groups, while if G=M has in�nite rank then all its proper subgroups are also

NF-groups by Theorem 1.3.6. We deduce that G=M is either in NF or it is a MNNF-

group. Assume that G=M is in NF, then it is nilpotent. It follows, as G has no proper

subgroup of �nite index, that G=M is even abelian, and so G0 = M . Hence G=M is a

MNNF-group. But the commutator subgroup of G=M cannot be cannot be a p-group

for any prime p, contradicting Theorem 1.2.3.3. The statement is proved.

We may, therefore, draw the following consequence.

Corollary 2.3.16. Let G be an X-group of in�nite rank. If all proper subgroups of

in�nite rank of G are in N(PF), then G is either in N(PF) or it is a MNNF-group.
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Chapter 3

Groups in which every proper

subgroups of in�nite rank is in CZA

or ZAC

3.1 Introduction

In this chapter, we focus on the in�uence of the proper subgroups of in�nite rank on the

structure of the groups themselves. The description of groups of in�nite rank in which

the proper subgroups of in�nite rank satisfy the condition of being (LF)(LN) was given

by F. de Giovanni and M. Trombetti. In particular, they proved that strongly locally

graded groups of in�nite rank with this property are themselves belong to (LF)(LN),

and hence so does all their proper subgroups (see Theorem 1.3.8). Here we will extend

this result by proving that X-groups of in�nite rank whose proper subgroups of in�nite

rank are in the class CZA have all their proper subgroups CZA-groups. Moreover, a

similar result is obtained for groups whose proper subgroups of in�nite rank are in the

class ZAC.
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3.2 The class of CZA-groups

In this section we give the characterization of X-groups of in�nite rank in which the

proper subgroups of in�nite rank are CZA-groups.

First, we need some preliminary results.

Lemma 3.2.1. If G is a CZA-group, then G has a characteristic Chernikov subgroup

N such that G=N is hypercentral.

Proof. Let C be a normal Chernikov subgroup of G such that G=C is hypercentral.

Consider the non-empty set,

H := fE j E � C, E C G and G=E is hypercentralg :

Since C satis�es the minimal condition on subgroups, the set H admits a minimal ele-

ment, noted M . Let � 2 Aut(G). Then �(M) is normal in G and G=�(M) ' G=M .

We next consider the map 	 : G ! G=M � G=�(M) with g 7! (gM; g�(M)), so

Ker	 = M \ �(M), and therefore G=M \ �(M) ' Im	. Since the direct product

of two hypercentral groups is hypercentral, we deduce that Im	 is hypercentral and

hence so is G=M \�(M). Then M =M \�(M) by minimality of M , and it follows that

M � �(M). But ��1 2 Aut(G), then M � ��1(M). Therefore G contains a character-

istic Chernikov subgroup M such that G=N is hypercentral.

By Lemma 3.2.1, one can prove the following lemma.

Lemma 3.2.2. Let G be a group without proper subgroups of �nite index. If N is a

normal subgroup of G in the class CZA, then N is hypercentral.

Proof. Since N is in CZA, then it has a characteristic Chernikov subgroup K such that

N=K is hypercentral. Let D be the divisible part of K. Put G = G=D so that K is a

�nite normal subgroup of G, and hence G=CG(K) is �nite. Since G is F-perfect we have

that K is central in G, and we deduce that N is an hypercentral group. Now let Dq
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denote the q-component of D, for some prime q. By [53, Lemma 2.4], the automorphism

group of a divisible abelian q-group of �nite rank is residually �nite, so G=CG(Dq) is

trivial. Hence Dq is central in G and so does D. It follows that N is hypercentral.

Now we give a general result on X-groups.

Lemma 3.2.3. Let G be a group containing a proper normal subgroup N such that G=N

is an X-group of �nite rank. Then G has non-trivial homomorphic image which is either

�nite or abelian.

Proof. Assume that G has no non-trivial �nite images. By [16], G=N is (locally soluble)-

by-�nite, and hence it is locally soluble. We deduce by Lemma 1.3.1 that there exists a

positive integer n such that (G=N)(n) is hypercentral, and it follows that the commutator

subgroup G0 is properly contained in G.

Our next result is useful, in order to reduce our arguments to certain special situation.

Lemma 3.2.4. Let G be a locally (soluble-by-�nite) group of in�nite rank. If all proper

subgroups of in�nite rank of G are in CZA, then G is either in CZA or it is locally �nite.

Proof. Assume for a contradiction that G is neither a CZA-group nor locally �nite. As

all proper subgroups of in�nite rank of G belong to (LF)(LN), it follows from Theorem

1.3.8 that G itself belongs to (LF)(LN). Let T be the torsion part of G. Then T is locally

�nite and G=T is locally nilpotent and torsion-free. It is easy to see, using Lemma 1.3.2

(i), that all proper subgroups of G=T are hypercentral. Hence G=T is hypercentral by

Theorem 1.2.7.2 (i). Since G=G0 is periodic by Lemma 3.2.1 and 2.2.1, we deduce that

G=T is also periodic, a contradiction. Therefore G is as claimed.

Lemma 3.2.5. Let G be a locally �nite group of �nite rank having a non-trivial �nite

homomorphic image. If all proper subgroups of G are CZA-group, then so is G.

Proof. LetG = FN , whereN is a proper normal subgroup ofG and F is a �nite subgroup

of G. Then N has a characteristic subgroup K, K 2 C, such that N=K is hypercentral;
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there is no loss of generality in assuming that K = 1 and so N is an hypercentral group.

Since locally �nite p-groups of �nite rank are Chernikov groups, we may assume that N

is the direct product of in�nitely many maximal p-subgroups for di¤erent primes p, and

hence we can write N = Drp2�(N)Np; where �(N) is the set of primes dividing the orders

of the elements of N . Now we choose q 2 �(N) such that q - jF j. Write N = Nq � A,

where A := Drq 6=p2�(N)Np. Then we have that B := FA is a proper subgroup of G and

hence it is a CZA-group. Therefore G itself is a CZA-group and the result follows.

There is no doubt that a major di¢ culty one encounters in proving theorems concerned

groups of in�nite rank in which proper subgroups of in�nite rank are Y-groups, is the

possible presence of simple groups. However, our next lemma shows that this situation

cannot occur in our case.

Lemma 3.2.6. If G is a locally �nite group of in�nite rank whose proper subgroups of

in�nite rank are CZA-groups, then G is not simple.

Proof. Assume for a contradiction that G is simple. First we claim that periodic

Chernikov-by-hypercentral subgroups are hypercentral-by-Chernikov. LetH be a Chernikov-

by-hypercentral subgroup of G. Then H has a normal Chernikov subgroup A such that

H=A is hypercentral. Since G is periodic, we deduce that H=CH(A) is a Chernikov group

by [48, Theorem 3.29]. Now the group CH(A)=A \ CH(A) is hypercentral, as H=A

is hypercentral. On the other hand, H \ CH(A) is contained in the centre of CH(A),

and hence CH(A) is hypercentral. Consequently, H is hypercentral-by-Chernikov. More-

over, as locally �nite groups of �nite rank are (locally soluble)-by-�nite [16], we deduce

that every proper subgroup of G is (locally soluble)-by-�nite. Hence G is isomorphic

either to PSL(2; F ) or to Sz(F ) for some some in�nite locally �nite �eld (see [35]). But

each of these groups has a proper non-(hypercentral-by-Chernikov) of in�nite rank [43],

and therefore a proper non-(Chernikov-by-hypercentral) of in�nite rank. This leads to a
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contradiction.

Our �nal requirement for the proof of Theorem 3.2.8 is the following.

Lemma 3.2.7. Let G be a locally �nite group of in�nite rank whose proper subgroups

of in�nite rank are CZA-groups. If G has a non-trivial �nite image, then all proper

subgroups of G are CZA-groups.

Proof. Assume for a contradiction that the lemma is false. Let N be a proper normal

subgroup with G=N is �nite. Then N is a CZA-group and, by Lemma 3.2.2, there is no

loss in assuming that N is hypercentral. Hence N is the direct product of its maximal

p-subgroups, and we can write N = Drp2�(N)Np, where �(N) is the set of primes dividing

the orders of the elements of N . Let p a prime that belongs to �(N) such that r(Np) =1.

If the factor group G=Np has in�nite rank, then XNp is a proper subgroup of in�nite rank

of G, where X is a proper subgroup of �nite rank of G. We deduce that XNp and fortiori

X is a CZA-group. This contradiction shows that G=Np has �nite rank, so that its all

proper subgroups are in the class CZA, and by Lemma 3.2.5 G=Np is itself in CZA. Since

X is not contained in any proper subgroup of in�nite rank, G = XNp. Then X=X \Np
is a CZA-group. Moreover, X \Np is a locally �nite p-subgroup of �nite rank of G, so it

is Chernikov. Thus X is a CZA-group, and this contradiction shows that for all primes p

belong to �(N), Np have �nite but unbounded ranks. We can write N = B � C, where

B has bounded rank and C is a direct product of countably many maximal p-subgroups,

the bound is strictly increasing i.e, C = F1 � F2 � F3 � � � �, where Fi is a pi-group,

pi�s are distinct primes, r(Fi) of each Fi is �nite, r(Fi) < r(Fj) if i < j and r(Fi)�s are

unbounded. Let C = T �R, where T = F1 � F3 � F5 � � � � and R = F2 � F4 � F6 � � � �.

Then, T and R are proper subgroups of in�nite rank of G. It follows that XT is proper

subgroup of in�nite rank of N . This last contradiction completes the proof.

It is now easy to prove the main result of this section. It shows in particular that groups

of in�nite rank in which all proper subgroups of in�nite rank are in the class CZA have
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all their proper subgroups in the class CZA.

Theorem 3.2.8. Let G be an X-group of in�nite rank. If all proper subgroups of in�nite

rank of G are in the class CZA, then G is either in CZA or it is a MNCZA-group.

Proof. If G is �nitely generated then since it is locally graded it contains a proper normal

subgroup of �nite index. It follows that G is (Chernikov-by-polycyclic)-by-�nite, which

gives the contradiction that G has �nite rank. Therefore �nitely generated subgroups

of G are proper, so that they are either Chernikov-by-hypercentral or X-groups of �nite

rank and hence soluble-by-�nite by [16]. It follows that G is locally (soluble-by-�nite).

Assume for a contradiction that the statement is false, so that in particular G has a

proper subgroup H of �nite rank which is not a CZA-group. Lemma 3.2.4 implies that

G is locally �nite. Let us suppose �rst that the commutator subgroup G0 is properly

contained in G. By Lemma 3.2.1 and Lemma 3.2.7, we deduce that G=G0 is quasicyclic.

An application of Lemma 3.2.2 yields that all proper normal subgroups of G are hyper-

central. In particular, hG0; Ei, is hypercentral for all �nitely generated subgroups E of

G, and we see that G is locally nilpotent. Now a locally nilpotent group of �nite rank is

hypercentral and so all proper subgroups of G are in the class CZA. This contradiction

shows that G is a perfect group. Let N be any normal subgroup of in�nite rank of G.

Then the rank of the quotient G=N is �nite. This leads to the contradiction that G has a

�nite non-trival homomorphic image. Thus all proper normal subgroups of G have �nite

rank. By Lemma 3.2.6, G has no simple images. Hence we may apply [28, Theorem 2]

to deduce that G is nilpotent, and we have a contradiction that establishes the result.

3.3 The class of ZAC-groups

The aim of this section is to prove that X-groups of in�nite rank in which all proper

subgroups of in�nite rank are ZAC-groups have all their proper subgroups ZAC-groups.

It turns out that, the behavior of subgroups of �nite rank in these groups can be neglected.
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The proof is accomplished through some lemmas that have been already mentioned above.

Theorem 3.3.1. Let G be an X-group of in�nite rank. If all proper subgroups of in�nite

rank of G are ZAC, then all proper subgroups of G are ZAC.

Proof. Since �nitely generated subgroups of G of �nite rank are soluble-by-�nite [16] and

since �nitely generated hypercentral-by-Chernikov are nilpotent-by-�nite, G is locally

(soluble-by-�nite). Assume for a contradiction that the statement is false. In particular,

G has no proper subgroups of �nite index. For, if there is a proper normal subgroup

N of �nite index in G, then N has a normal hypercentral subgroup A such that N=A

is Chernikov. Since the normalizer NG(A) of A in G contains N , the normal closure

AG of A in G is the product of �nitely many normal hypercentral subgroups of N and

hence AG is hypercentral. Therefore G is hypercentral-by-Chernikov. Suppose �rst that

all proper normal subgroups of G are of �nite rank. Clearly G has no simple images by

Lemma 2.3.7 and so Theorem 2 of [28] gives that G is nilpotent, which is a contradiction.

Thus G has a proper normal subgroup M of in�nite rank. If G=M has in�nite rank,

then XM is a proper subgroup of in�nite rank, where X is a proper subgroup of G of

�nite rank. So XM and hence X is in the class ZAC. By this contradiction G=M is a

group of �nite rank. Then, by Lemma 3.2.3, G has a non-trivial abelian image and so

G is not perfect. If G=G0 is decomposable, then G = MN is a product of two proper

normal subgroups M and N . Since M and N are locally nilpotent-by-Chernikov, G is

such as well. We deduce that, by Lemma 1.3.2 (i), X is an ZAC-group. Therefore G=G0 is

indecomposable; in particular, G=G0 is a quasicyclic group. Now, as G0 is an ZAC-group

there exists a normal hypercentral subgroup A of G0 such that G0=A is a Chernikov group.

Consider AG = hAg j g 2 Gi the normal closure of A in G. Clearly Ag is an hypercentral

normal subgroup of G0 for all g 2 G, since we have (Ag)g01 = Agg01 = Ag02g = Ag, for some

g01; g
0
2 2 G0. It follows that AG is locally nilpotent. But G0=AG and G=G0 are Chernikov

and therefore G is locally nilpotent-by-Chernikov. We deduce that, using Lemma 1.3.2
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(i), all proper subgroups of G are ZAC-groups.

By this observation it is natural to ask the following question:

Question. Let G be a group with every proper subgroup ZAC-group. Is G a ZAC-group?

In other words, does there exist a MNZAC-group?
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Chapter 4

Groups with many Engel subgroups

4.1 Introduction

In the previous chapters we attempted to answer the question �What happens if a group

G has manyY-subgroups�, for various classes Y concerning nilpotency and related ideas.

In this chapter we pursue our search for further structure theorems to that question. The

structure of locally graded MNLN-groups has been described by J. Otal and J.M. Peña;

in paticular they showed that such groups are �nite and hence they are Schmidt groups

(Theorem 1.2.7.1). B. Bruno and R.E. Phillips considered the locally graded MNNk-

groups, where Nk denotes the class of nilpotent groups of class at most the integer k � 0,

which turn out to be just the Schmidt groups (Theorem 1.2.1.7). Our �rst object is to

improve these results by proving that a locally graded minimal non-Engel group is �nite

and hence is a Schmidt group, and that a locally graded minimal non-k-Engel group is

�nite where k is a positive integer.

Investigating groups in terms of their subgroups of in�nite rank is one of the most �our-

ishing and active areas of research. Thus, M.R. Dixon, M.J. Evans and H. Smith proved

that an X-group of in�nite rank in which all proper subgroups of in�nite rank are in

LN (respectively, in Nk) is itself belongs to LN (respectively, to Nk), see Theorem 1.3.5.

Here we obtain similar results by showing that an X-group of in�nite rank whose proper
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subgroups of in�nite rank are Engel (respectively, k-Engel) is itself Engel (respectively,

k-Engel), where k is a positive integer.

In the case of this chapter we considered independently the above-mentioned topics. This

work started when the author visited the Department of Mathematics of the University of

Isfahan. Professor Alireza Abdollahi suggested to work with him on minimal non-Engel

groups.

We recall that a group G is said to be Engel if for every x; y 2 G there exists a positive in-

teger n (possibly depending on x; y) such that [x;n y] = 1. Clearly, every locally nilpotent

group is an Engel group. However we have the famous examples of E.S. Golod [22] that

give for each prime p an in�nite 3-generator residually �nite p-group with all 2-generator

subgroups �nite. In particular these groups are non-locally nilpotent Engel. Thus Engel

groups represent a rather wide generalization of nilpotent groups. By a k-Engel group is

meant a group G such that [x;k y] = 1 for all x; y 2 G. Thus the class of k-Engel groups

is the variety determined by the law [x;k y] = 1. For example, a nilpotent group of class

k is a k-Engel group. On the other hand , k-Engel groups need not be nilpotent; indeed,

for any given prime p, the standard wreath product CpwrC1p is a (p+ 1)-Engel p-group

that is non-nilpotent. A group is a bounded Engel group if it is k-Engel for some k.

4.2 The class of Engel groups

In this section, we consider groups which are rich in Engel subgroups. In particular, it

turns out that such groups either Engel groups or must be small in some sense.

Our �rst theorem shows that locally graded minimal non-Engel groups must be �nite.

The proof will be accomplished in two steps.

Lemma 4.2.1. Let G be a locally graded group containing a proper normal subgroup

N such that G=N is polycyclic and N is a �nitely generated Engel group. If all soluble
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factors of G have bounded derived length, then G is polycyclic.

Proof. Let G be a group as stated. Since N is a �nitely generated restrained group,

N (i) is �nitely generated for each positive integer i [34, Corollary 4]. We claim that N

is soluble. We argue by contradiction and suppose that N is non-soluble. Then for each

positive integer i, G=N (i) is a proper soluble factor group of G. Therefore there exists

a postive integer d such that N (d) � N (i) and hence N (d) is perfect. It follows that

N (d) = R, where R is the soluble residual subgroup of N . Since N=R is soluble, R has no

non-trivial soluble images. But R is a non-trivial �nitely generated locally graded group,

so it must contains a non-trivial �nite image. Now [49, Theorem 12.3.4] ensures that such

image is nilpotent, a contradiction. Thus N is soluble. Now using [49, Theorem 12.3.3],

we get that N is nilpotent and so it is polycyclic.This implies that G is polycyclic, as

claimed.

Lemma 4.2.2. Let Y be a subgroup closed class of groups and let G be a group whose

proper normal subgroups are Y-groups. If G=G0 is non-cyclic, then hxy; xi is a Y-group

for all x; y in G.

Proof. Let G be a group whose proper normal subgroups are Y-groups and let x; y 2 G.

Since the factor G=G0 is non-cyclic, then there is a proper normal subgroup K of G such

that hxy; xi � K, and hence hxy; xi is a Y-group.

We are now in a position to prove the �rst main result.

Theorem 4.2.3. If G is a locally graded minimal non-Engel group, then G is �nite

minimal non-N2 group, where N2 denotes the class of nilpotent groups of class at most

2.

Proof. Let G be a locally graded minimal non-Engel group. Then G = hx; yi for some x; y

in G. Let N be a proper �nitely generated normal subgroup of G such that G=N is �nite.

Since every �nite homomorphic image of G is either a Schmidt group or nilpotent group,

we conclude that G=N is polycyclic. Further, Lemma 4.2.2 shows that G=G0 is cyclic.
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Thus every nilpotent image of G is cyclic. Since locally graded minimal non-(locally

nilpotent) groups are �nite, we have that each soluble image of G is either nilpotent or

a Schmidt group by [49, Theorem 12.3.3]. So such images are soluble of length at most

3. An application of Lemma 4.2.1 yields that G is polycyclic, and hence G is soluble

satis�es max. Again by [49, Theorem 12.3.3], we conclude that every proper subgroup of

G is nilpotent. But in Theorem 1.2.1.1, it is it is proved that a �nitely generated minimal

non-N group is either �nite or its Frattini factor-group is a non-abelian simple group,

hence G is �nite. Therefore G is a Schmidt group and hence for some primes p and q,

there is a unique Sylow p-subgroup P and a Sylow q-subgroup Q such that G = QP , Q

is cyclic and P is nilpotent of class at most 2. Now let H be any proper subgroup of G.

Since H is nilpotent, H ' P1�Q1, where Q1 is cyclic and P1 is nilpotent of class at most

2. It follows that H is nilpotent of class 2 and hence G is a minimal non-N2 group, as

required.

We turn now to determine the structure of groups of in�nite rank in which all proper

subgroups of in�nite rank are Engel.

Theorem 4.2.4. Let G be an X-group of in�nite rank. If all proper subgroups of in�nite

rank of G are Engel, then so is G.

Proof. Assume that G is not an Engel group. If G is �nitely generated, then G contains

a proper �nitely generated normal subgroup N such that G=N is �nite. Since every �nite

homomorphic image of G is either nilpotent or a Schmidt group, we deduce that G=N

is polycyclic and so G is certainly imperfect. Moreover, since G is not an Engel group,

there exist x; y 2 G such that hx; [x; y]i is not an Engel group, and hence hx;G0i is not

an Engel group. Then the factor group G= hx;G0i cannot contain proper subgroups of

in�nite rank. Now as abelian groups of in�nite rank contain proper subgroups of in�nite

rank, we deduce that G= hx;G0i has �nite rank, and in particular hx;G0i has in�nite

rank. It follows that G = hx;G0i, and hence G=G0 is cyclic. Suppose that G=M is a

soluble image of G of in�nite rank. Then, by [49, Theorem 12.3.3], proper subgroups
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of in�nite rank of G=M are locally nilpotent and hence so is G=M by Theorem 1.3.5

(ii). This implies the contradiction that G=M has �nite rank. Therefore each soluble

image, G=M , of G is of �nite rank. It follows that M has in�nite rank and so all proper

subgroups of G=M are Engel and hence locally nilpotent. We deduce that G=M is either

nilpotent or a Schmidt group. Therefore each soluble image of G is of length at most

3. An application of Lemma 4.2.1 yields that G is polycyclic, and in particular G has

�nite rank, a contradiction. Thus G is in�nitely generated. Since hx; yi is a non-Engel

subgroup of G, we deduce that all �nitely generated subgroups of G are of �nite rank,

since hhx; yi ; F i is also non-Engel, for each �nitely generated subgroup F of G. Now we

conclude, using [16], that any �nitely generated subgroup of G is soluble-by-�nite. Hence

G is locally (soluble-by-�nite). Now let K be any proper subgroup of in�nite rank of G

and let E be a �nitely generated subgroup of K. By [49, Theorem 12.3.4] we have that E

is soluble and hence it is nilpotent. Thus, K is locally nilpotent. Again by by Theorem

1.3.5 (ii), we get that G is locally nilpotent. So that G is an Engel group, which is a

contradiction.

4.3 The class of bounded Engel groups

The aim of this section is to prove that for a positive integer k and a locally graded

group, the property of being minimal non-k-Engel is enough to force the �niteness of

that group. In the last section, we study groups of in�nite rank in which all proper

subgroups of in�nite rank are k-Engel.

In the �rst part we give the description of locally graded minimal non-k-Engel groups.

Let begin with a very easy result.

Lemma 4.3.1. Let G be a locally graded k-Engel group. Then G is locally nilpotent.

Proof. By [34, 33], we have that G is locally (polycyclic-by-�nite). But polycyclic-by-
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�nite Engel groups are nilpotent. Hence the result.

Theorem 4.3.2. Let k be a positive integer and let G be a locally graded minimal non-

k-Engel group. Then G is �nite.

Proof. Let G be a locally graded minimal non-k-Engel group and assume that G is

in�nite. By Theorem 4.2.3, G is an Engel group and there exist x; y in G such that

G = hx; yi. Then G contains a normal proper subgroup N such that G=N is �nite. Now

locally graded k-Engel groups are locally nilpotent by Lemma 4.3.1 and so N is nilpotent.

Since every �nite homomorphic image of G is either nilpotent or a Schmidt group, G is a

polycyclic group. Therefore G is nilpotent by [49, Theorem 12.3.3]. It follows that G has

a normal torsion-free subgroup K such that G=K is �nite. Let p be any prime number

not dividing jG=Kj. Since K is a residually �nite p-group, there exists a family of nor-

mal subgroups (Li)i2I of K such that K=Li is a p-group and \i2ILi = 1. Consider the

factor group G=(Li)G which is a �nite nilpotent group with at least two distinct Sylow

subgroups. Thus G=(Li)G is a k-Engel group, and it follows that [a;k b] � \i2I(Li)G for

all a; b 2 G and so [a;k b] = 1. This implies the contradiction that G is k-Engel. Therefore

G is �nite, as claimed.

Theorem 4.3.3. Let k be a positive integer and let G be a �nite minimal non-k-Engel

group. Then G is either a minimal non-N2 group or a (k+1)-Engel p-group that satis�es

[xp;k y] = 1 for all x; y in G, where p is a prime.

Proof. Obviously, proper subgroups of G are nilpotent. If G is not nilpotent, then G is

a minimal non-N2 group by Theorem 4.2.3. Now suppose that G is nilpotent. Since G

cannot be the direct product of two proper subgroups, then only one primary component

may exist, and so G is a p-group for some prime p. It follows that G=G0 is not cyclic

since G0 � Frat(G). Then, by Lemma 4.2.2, we deduce that hxy; xi is k-Engel for all

x; y 2 G, and this implies that G is (k+1)-Engel. Now let M be any maximal subgroup

of G, then M is normal and has index p. Since G=Frat(G) cannot be cyclic, hxp; yi 6= G
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and hence is k-Engel, so that [xp;k y] = 1 for all x; y in G.

The consideration of the symetric group of degree 3 and the Quaternion group of order

8 shows that both cases in Theorem 4.3.3 can occur.

Now we analyze groups of in�nite rank with k-Engel proper subgroups of in�nite rank.

Lemma 4.3.4. Let G be a locally nilpotent group and let R be a perfect normal subgroup

of G. Then hxiG is a proper subgroup of R, for every element x in R.

Proof. We argue by contradiction and suppose that R := hxiG for some 1 6= x 2 R.

Since R is perfect, R = R0 = [x;G]. Then x = [x; g1]"1 � [x; g2]"2 � � � [x; gr]"r for some gi
in G and "i = �1. Put H := hx; g1; :::; gri and A := hxiH . Then x 2 [A;H] and hence

A = [A;H]. Thus there exists a positive integer n such that A � 
n(H) = 1 as H is

nilpotent, a contradiction.

Our next two lemmas are useful in order to reduce our arguments to certain special sit-

uations.

Lemma 4.3.5. Let k be a positive integer and let G be a locally nilpotent group of

in�nite rank whose proper subgroups of in�nite rank are k-Engel. If G is not k-Engel,

then G is imperfect and G=G0 is 2-generated and hence it has �nite rank.

Proof. Assume that G is perfect. As G is not k-Engel, there exist x; y in G such that

hx; yi is not k-Engel. It follows from Lemma 2.3.9 that hx; yi cannot be contained in any

proper normal subgroup of G, and so G = hx; yiG. By Lemma 4.3.4 we also have that

H := hxiG < G. By Zorn�s Lemma we conclude that G contains a normal subgroup K

such that H � K and y =2 K and K is maximal for these conditions. Thus G=K is a

simple group and hence it is cyclic of prime order, a contradiction which gives that G is

imperfect. Now, since G is not k-Engel, we have that G = G0 hx; yi. Therefore G=G0 is
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a 2-generated group.

Lemma 4.3.6. Let k be a positive integer and let G be a locally nilpotent group of

in�nite rank whose proper subgroups of in�nite rank are k-Engel. If G=G0 is �nite, then

G is k-Engel.

Proof. Assume that G is not k-Engel. By Lemma 4.3.5, G is imperfect. Let N be a

proper normal subgroup of �nite index in G. Then N has in�nite rank and G = hx; yiN

for some x; y 2 G. Thus the nilpotency class of G=N is at most the nilpotency class of

hx; yi. Therefore there exists a positive integer c such that 
c(G) � N and hence G=R

is nilpotent, where R is the �nite residual subgroup of G. Since G=G0 is �nite, then

every nilpotent homomorphic image of G is �nite. So R has no non-trivial �nite images.

Suppose that R is perfect and let A := aG, where a is an arbitrary element of R. If A

has in�nite rank, then G = hx; yiA and hence G=A is �nite, a contradiction. Thus A

has �nite rank. Let T be the torsion subgroup of A. By Lemma 1.3.2 (iii), each maximal

p-subgroup Tp of T is Chernikov. Consider the subgroupM := hRp : p 2 �(T )i, where Rp
is the �nite residual subgroup of Tp. Clearly M is abelian. So in order to prove that A is

soluble, one can assume thatM = 1, so that each Tp is �nite and hence it is contained in

Z(R) as R has no proper subgroup of �nite index. Therefore T � Z(A). But A=T , as a

torsion-free locally nilpotent group of �nite rank, is nilpotent. Consequently, A is soluble.

Therefore A has a G-invariant series of �nite length whose factors are either elementary

abelian p-groups of order � pr for certain primes p; or torsion-free abelian of rank � r

where r is the rank of A. Let Xi be a factor of the lattest type. Then R=CR(Xi) embeds

as a subgroup in GL(r;R), therefore is soluble [48, Corollary to Theorem 3.23] and hence

Xi is contained in the center of R. Now if Xi is �nite, then again Xi � Z(R). We deduce

that a 2 A � Z1(R). Hence Z1(R) = R a contradiction, since R is perfect. It follows

that R is imperfect. Let N � R such that R0 � N and R=N is of �nite rank. Since

R=R0 is of �nite index in G=R0, we have that K=R0 := (N=R0)G=R0 is the intersection of

a �nite number of conjugates of N=R0, so R=K is of �nite rank, since the class of �nite
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rank is R0-closed. Therefore G=K is of �nite rank and hence K has in�nite rank, so

that G = hx; yiK. We have that G=K is �nite as it is nilpotent, this leads to the �nal

contradiction that R has a proper subgroup of �nite index.

The following remark is nearly obvious and we omit its proof.

Lemma 4.3.7. Let G be a non-periodic �nitely generated abelian group. Then for each

prime p, G contains a proper subgroup M such that G=M is a p-group.

Now we are able to prove our last result.

Theorem 4.3.8. Let k be a positive integer and let G be an X-group of in�nite rank. If

all proper subgroups of in�nite rank of G are k-Engel, then G itself is k-Engel.

Proof. Assume that G is not k-Engel. As locally graded k-Engel groups are locally

nilpotent, we deduce that G is also a locally nilpotent group by Theorem 1.3.5 (ii). It

follows from Lemmas 4.3.5 and 4.3.6 that the abelian group G=G0 is 2-generated non-

periodic. Thus we may apply Lemma 4.3.7 and get that for each prime p, there exists

a G-invariant subgroup M of G, such that G=M is an abelian p-group. Suppose that

�k(x; y) is a k-word of G de�ned by �k(x; y) = [x;k y] for some x; y in G, and denote

by �k(G) the subgroup generated by all the k-Engel words of G. Notice that G is the

p-isolator of M in G and so by [36, Thorem 2.3.5], we get that �k(G) is a p-group, for all

primes p, since �k(M) is trivial. Hence we must have that �k(G) = 1. Thus G is k-Engel

as claimed.
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Conclusion

One of the classical and broad topics in group theory is de�ned by the investigations of

groups many of whose subgroups have a prescribed property. With researches on this

subject, many important notions such as �niteness conditions, locally nilpotency, locally

solubility, ranks, and many others have been introduced. Imposing of some natural

restrictions on speci�cally chosen subgroups, we de�ne concrete classes of groups having

these properties. Here, we gave a further contribution to this topic by studying groups

satisfying conditions somewhat larger than many of those hitherto studied in this context.

We were primarily concerned with groups in which all proper subgroups belong to a group

class Y, for certain values of Y concerning to nilpotency and its generalizations. We also

proved that in a group of in�nite rank the behavior of subgroups of �nite rank with

respect to the main generalizations of nilpotency is neglectable.
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 Y إذا كان  .نفسها زمرةالبنية ما على  زمرةلللزمر الجزئية هدف هذه الرسالة إلى دراسة تأثير النظم المعينة ت  :ملخص

  . Yالجزئية إلى  هازمرة ولكن تنتمي جميع زمر-Yإذا لم تكن صغرية  أ Y-ليست G زمرةقال أن ال يعندئذٍ  ،صف من زمر

من ناحية  . الآبلية زمرالهو صف  A ، حيثزمرة منتهية درجة محليا هي صغرية متأ A-زمرة ليست أي  من المعروف أن 

متدرجة  صغريةأ  N-ليست منتهية غيرزمر  أوصاف سميث وفيقولد ،نيومان ،محمد ،كل من هاينيكان أعطى أخرى،

 -k) جلأن و  MN(NM) :صفوفالمذكورة أعلاه إلى ال المسائلنا نقدم صف الزمر عديمة القوة. ه هي N، حيث محليا

 أن كل زمرة و سميث إيفانز ،نديكسوبرهن  منتهية( مينيماكس.-بواسطة-هي صف الزمر )قابلة للحل M ، حيثجل(أن

هي نفسها آبلية،   آبليةهي الغير منتهية  من الرتبزمرها الجزئية حيث جميع  غير منتهيةرتبة  من  ()معممة حل قابلة لل

حيث  ،جل(أن -k) جلأن و MN(NM) ، CZA(ZAC) :صفوفئج مماثلة لللنا إلى نتاصتو زمرها الجزئية.جميع وبالتالي 

 ، على التوالي.  تشارنيكوفوفوق مركزية ال  صف الزمرإلى  Cو  ZAيشير 

 

 متدرجة محليا. ،بروفار رتبة ، مينيماكس  ،جلأن ،فوق مركزية :كلمات مفتاحية

 

 .20E07، 20F18،20F19 ، 20F45 : 2010الجمعية الأمريكية  تصنيف

 

Abstract: This thesis aims to study the influence of given systems of subgroups of a group on 

the structure of the group itself. If Y is a class of groups, then a group G is said to be minimal 

non-Y if it is not a Y-group but all its proper subgroups belong to Y. It is known that any 

locally graded minimal non-A-group is finite, where A is the class of abelian groups. On the 

other hand, the descriptions of infinite locally graded minimal non-N were given by H. 

Heineken, I.J. Mohamed, M. Newman, H. Smith, and J. Wiegold, where N is the class of 

nilpotent groups. Here we extend the above problems to the classes: MN(NM) and Engel (k-

Engel), where M denotes the class of soluble-by-finite minimax groups. M.R. Dixon, M.J. 

Evans and H. Smith proved that a (generalized) soluble group of infinite rank in which all 

proper subgroups of infinite rank are abelian is itself abelian, and hence so does all its proper 

subgroups. We have established similar results for the classes: MN(NM), CZA(ZAC) and 

Engel (k-Engel), where ZA and C denote the class of hypercentral and Chernikov groups, 

respectively. 

 

Key words: Hypercentral, Engel, minimax, Prüfer rank, locally graded. 

 

AMS Subject Classification 2010: 20E07, 20F18,  20F19, 20F45. 

 

Résumé: Le but de cette thèse est d’étudier l’influence de systèmes donnés de sous-groupes 

d’un groupe sur la structure du groupe lui-même. Si Y une classe de groupes, alors un groupe 

G est dit non-Y minimal s'il n'est pas un Y-groupe mais tous ses sous-groupes propres le sont.  

On sait que tout groupe non-A minimal localement gradué est fini, où A est la classe des 

groupes abéliens. D'autre part, les descriptions des groupes non-N minimaux infini localement 

gradué  ont été données par H. Heineken, I.J. Mohamed, M. Newman, H. Smith et J. Wiegold, 

où N est la classe des groupes nilpotents. Ici, nous étendons les problèmes ci-dessus aux 

classes: MN(NM) et Engel (k-Engel), où M désigne la classe des groupes résolubles-par-finis 

minimax. M.R. Dixon, M.J. Evans et H. Smith ont prouvé qu'un groupe résoluble (généralisé) 

de rang infini dans lequel tous les sous-groupes propres de rang infini sont abéliens est lui-

même abélien, et donc tous ses sous-groupes le sont. Nous avons établi des résultats similaires 

pour les classes: MN(NM), CZA(ZAC) et Engel (k-Engel), où ZA et C désignent 

respectivement la classe des groupes hypercentraux et de Chernikov. 

 

Mots clés: Hypercentral, Engel, minimax, rang de Prüfer, localement gradué. 
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