
People’s Democratic Republic of Algeria

Ministry of Higher Education and Scientific
Research

University of Ferhat Abbas Setif -1-

Thesis
to obtain the title of

PhD of LMD

Specialty : COMPUTER SCIENCE

Defended by

Adel GOT

Machine Learning using
Multi-Objective Evolutionary

Algorithms
Jury :

President : Mohammed SAIDI MCA University of Ferhat Abbas Setif -1-
Advisors : Abdelouahab MOUSSAOUI Pr. University of Ferhat Abbas Setif -1-

Djaafar ZAOUACHE MCA University of Bordj Bou Arreridj
Examinators : Sadik BESSOU MCA University of Ferhat Abbas Setif -1-

Bilal SAOUD MCA University of Bouira



République Algérienne Démocratique et Populaire

Ministère de l’Enseignement Supérieur et de la
Recherche Scientifique
Université de Ferhat Abbas Sétif -1-

Thèse
Présentée à la Faculté des Sciences

Département d’Informatique
En vue de l’obtention du diplôme de

Doctorat LMD

Option : INFORMATIQUE

Par

Adel GOT

Thème

Apprentissage Automatique par
Algorithmes Evolutionnaires

Multiobjectifs
Devant le jury composé de :

Président : Mohammed SAIDI MCA Université de Ferhat Abbas Sétif -1-
Rapporteurs : Abdelouahab MOUSSAOUI Pr. Université de Ferhat Abbas Sétif -1-

Djaafar ZAOUACHE MCA Université de Bordj Bou Arreridj
Examinateurs : Sadik BESSOU MCA Université de Ferhat Abbas Sétif -1-

Bilal SAOUD MCA Université de Bouira



Acknowledgments

I would like to express my deep gratitude to my supervisors, Pr. Abdelouahab
MOUSSAOUI, for his invaluable advice, time and support throughout this re-
search work. This thesis would not have been possible without his encourage-
ment, motivation, inspiration, and guidance.

I would like to express the appreciation to my co-supervisors, Dr. Djaafar ZA-
OUACHE, for his guidance, encouragement, and his constant support throughout
the course of this work.

I would like to thank Dr. SAIDI MOHAMMED, Dr. Sadick BESSOU, and Dr.
Bilal SAOUD for accepting to be members of the examination committee for this
thesis and for taking time to read and review it. Their suggestions will be taken
into account and will surely significantly improve the final version.

Last but not least, I wish to thank my mother for his love, encouragement and
support.



Contents

1 Introduction 1
1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 From machine learning towards optimization problem . . . . 1
1.1.2 Multiobjective feature selection for classification . . . . . . . . 3

1.2 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Major contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Thesis organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Academic publications . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Machine learning and feature selection 8
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Supervised learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 K-nearest neighbor algorithm (KNN) . . . . . . . . . . . . . . 10
2.2.2 Support Vector Machine (SVM) . . . . . . . . . . . . . . . . . . 11

2.3 Unsupervised learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.1 k-means algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.2 Hierarchical clustering algorithm (HCA) . . . . . . . . . . . . 14

2.4 Dimensionality reduction based on feature selection . . . . . . . . . . 15
2.5 Feature selection problem . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.6 General procedure of feature selection algorithm . . . . . . . . . . . . 16

2.6.1 Generation procedure . . . . . . . . . . . . . . . . . . . . . . . 17
2.6.2 Evaluation procedure . . . . . . . . . . . . . . . . . . . . . . . 18
2.6.3 Stopping criteria . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.6.4 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.7 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Generalities on the optimization problems 22
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 Complexity theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3 Optimization problems . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3.1 Mathematical formulation . . . . . . . . . . . . . . . . . . . . . 25
3.3.2 Resolution of optimization problems . . . . . . . . . . . . . . . 25

3.4 Optimization exact methods . . . . . . . . . . . . . . . . . . . . . . . . 26
3.4.1 Linear programming . . . . . . . . . . . . . . . . . . . . . . . . 26
3.4.2 Branch and Bound (B and B) . . . . . . . . . . . . . . . . . . . 27



Contents iii

3.5 Single solution based metaheuristics . . . . . . . . . . . . . . . . . . . 28

3.5.1 Tabu Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.5.2 Simulated Annealing . . . . . . . . . . . . . . . . . . . . . . . . 29

3.6 Population based metaheuristics . . . . . . . . . . . . . . . . . . . . . 30

3.6.1 Genetic Algorithm (GA) . . . . . . . . . . . . . . . . . . . . . . 30

3.6.2 Particle swarm optimization (PSO) . . . . . . . . . . . . . . . . 32

3.6.3 Ant colony algorithm (ACO) . . . . . . . . . . . . . . . . . . . 33

3.6.4 Whale Optimization Algorithm (WOA) . . . . . . . . . . . . . 35

3.7 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4 Multiobjective optimization: concepts and resolution methods 38
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2 Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2.1 Multiobjective optimization problem formulation . . . . . . . 39

4.2.2 Pareto dominance . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3 Difficulties of multiobjective problem . . . . . . . . . . . . . . . . . . 42

4.4 Classification of multiobjective optimization methods . . . . . . . . . 42

4.4.1 User’s perspective classification . . . . . . . . . . . . . . . . . 43

4.4.2 Designer perspective classification . . . . . . . . . . . . . . . . 44

4.5 Pareto dominance-based multiobjective methods . . . . . . . . . . . . 45

4.6 Non-elitist algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.6.1 Multi Objective Genetic Algorithm (MOGA) . . . . . . . . . . 45

4.6.2 Niched Pareto Genetic Algorithm (NPGA) . . . . . . . . . . . 46

4.7 Elitist algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.7.1 Pareto Archived Evolutionary Algorithm (PAES) . . . . . . . 47

4.7.2 Strength Pareto Evolutionary Algorithm 2 (SPEA2) . . . . . . 48

4.7.3 Non Dominated Sorting Genetic Algorithm (NSGA2) . . . . . 49

4.7.4 Multiobjective Particle Swarm Optimization (MOPSO) . . . . 52

4.8 Performance metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.9 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5 GPAWOA for multiobjective optimization problems 57
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.2 The proposed algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2.1 Updating the archive . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2.2 Density estimator . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.2.3 Leader selection strategy . . . . . . . . . . . . . . . . . . . . . . 61

5.2.4 Outlines of GPAWOA algorithm . . . . . . . . . . . . . . . . . 62



iv Contents

5.2.5 Complexity of GPAWOA . . . . . . . . . . . . . . . . . . . . . 64
5.3 Experimental results and comparisons . . . . . . . . . . . . . . . . . . 64

5.3.1 Results on ZDT test functions . . . . . . . . . . . . . . . . . . . 65
5.3.2 Results on DTLZ test functions . . . . . . . . . . . . . . . . . . 71
5.3.3 Statistical comparison of Wilcoxon test . . . . . . . . . . . . . 77
5.3.4 Application of GPAWOA on engineering design problems . . 79

5.4 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6 Hybride filter-wrapper GPAWOA for feature selection 86
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.2 The propsed algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.2.1 Entropy and mutual information . . . . . . . . . . . . . . . . . 87
6.2.2 GPAWOA for discrete problems . . . . . . . . . . . . . . . . . 88
6.2.3 Outlines of FW-GPAWOA algorithm . . . . . . . . . . . . . . . 88

6.3 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.4 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7 Conclusions and future works 98
7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
7.2 Future works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Bibliography 101



List of Algorithms

3.1 Tabu Search algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 Simulated Annealing algorithm . . . . . . . . . . . . . . . . . . . . . . 29
3.3 Pseudocode of a Genetic Algorithm . . . . . . . . . . . . . . . . . . . . 31
3.4 Particle Swarm Optimization (PSO) . . . . . . . . . . . . . . . . . . . . 33

4.1 SPEA2 algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2 NSGA2 algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.3 Pseudocode of a general MOPSO [Reyes-Sierra 2006] . . . . . . . . . . 54

5.1 Crowding distance computation algorithm . . . . . . . . . . . . . . . . 61
5.2 Pseudocode of GPAWOA . . . . . . . . . . . . . . . . . . . . . . . . . . 63



List of Figures

2.1 K-Nearest Neighbor classification algorithm . . . . . . . . . . . . . . 10

2.2 Optimal hyperplane for Support Vector Machine with two classes . . 11

2.3 Example of clustering using K-means algorithm . . . . . . . . . . . . 14

2.4 Dendrogram for the Hierarchical Cluster Analysis (HCA) . . . . . . . 15

2.5 Four key steps of feature selection algorithm [Dash 1997] . . . . . . . 17

2.6 Overall schematic of filter method . . . . . . . . . . . . . . . . . . . . 19

2.7 Overall schematic of wrapper method . . . . . . . . . . . . . . . . . . 19

3.1 Illustration of local optimum and global optimum . . . . . . . . . . . 25

3.2 Shortest path finding capability of ant colony . . . . . . . . . . . . . . 34

3.3 Bubble-net hunting behavior of humpback whales [Mirjalili 2016a] . 35

4.1 Pareto dominance relationship between five solutions . . . . . . . . . 41

4.2 Illustration of the Pareto front . . . . . . . . . . . . . . . . . . . . . . . 41

4.3 Challenges of MOP: (a) diversity (b) convergence (c) true PF . . . . . 42

4.4 Sharing function [Horn 1994] . . . . . . . . . . . . . . . . . . . . . . . 47

4.5 Truncation method used in SPEA2 [Zitzler 2001] . . . . . . . . . . . . 49

4.6 Crowding distance calculation . . . . . . . . . . . . . . . . . . . . . . 51

4.7 Illustration of adaptive grid procedure [Coello 2004] . . . . . . . . . . 53

5.1 flowchart of the archiving strategy . . . . . . . . . . . . . . . . . . . . 60

5.2 Best Pareto fronts produced by GPAWOA, MOEA/D, MOGWO and
MOPSO of ZDT1 test function . . . . . . . . . . . . . . . . . . . . . . . 68

5.3 Best Pareto fronts produced by GPAWOA, MOEA/D, MOGWO and
MOPSO of ZDT2 test function . . . . . . . . . . . . . . . . . . . . . . . 69

5.4 Best Pareto fronts produced by GPAWOA, MOEA/D, MOGWO and
MOPSO of ZDT3 test function . . . . . . . . . . . . . . . . . . . . . . . 69

5.5 Best Pareto fronts produced by GPAWOA, MOEA/D, MOGWO and
MOPSO of ZDT4 test function . . . . . . . . . . . . . . . . . . . . . . . 70

5.6 Best Pareto fronts produced by GPAWOA, MOEA/D, MOGWO and
MOPSO of ZDT6 test function . . . . . . . . . . . . . . . . . . . . . . . 70

5.7 Best Pareto fronts produced by GPAWOA, MOEA/D, MOGWO and
MOPSO of DTLZ1 test function . . . . . . . . . . . . . . . . . . . . . . 73

5.8 Pareto front of DTLZ2: a comparison of the front found by
MOEA/D, MOGWO, MOPSO, GPAWOA and the true Pareto front . 74



List of Figures vii

5.9 Best Pareto fronts produced by GPAWOA, MOEA/D, MOGWO and
MOPSO of DTLZ3 test function . . . . . . . . . . . . . . . . . . . . . . 74

5.10 Pareto front of DTLZ4: a comparison of the front found by
MOEA/D, MOGWO, MOPSO, GPAWOA and the true Pareto front . 75

5.11 Pareto front of DTLZ5: a comparison of the front found by
MOEA/D, MOGWO, MOPSO, GPAWOA and the true Pareto front . 75

5.12 Pareto front of DTLZ6: a comparison of the front found by
MOEA/D, MOGWO, MOPSO, GPAWOA and the true Pareto front . 76

5.13 Pareto front of DTLZ7: a comparison of the front found by
MOEA/D, MOGWO, MOPSO, GPAWOA and the true Pareto front . 76

5.14 Four bar truss problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.15 Gear train problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.16 Disk brake design problem . . . . . . . . . . . . . . . . . . . . . . . . 80
5.17 Welded beam design problem . . . . . . . . . . . . . . . . . . . . . . . 81
5.18 Comparison of nondominated solutions obtained by MOEA/D,

GPAWOA, MOPSO and MOGWO for the 4-bar truss . . . . . . . . . 83
5.19 Comparison of nondominated solutions obtained by MOEA/D,

GPAWOA, MOPSO and MOGWO for the Gear train . . . . . . . . . . 84
5.20 Comparison of nondominated solutions obtained by MOEA/D,

GPAWOA, MOPSO and MOGWO for the Disk brake . . . . . . . . . 84
5.21 Comparison of nondominated solutions obtained by MOEA/D,

GPAWOA, MOPSO and MOGWO for the Welded beam . . . . . . . . 85

6.1 Experimental results of FW-GPAWOA, MOGWO and MOPSO . . . . 94



List of Tables

5.1 Characteristics of multi-objective test functions . . . . . . . . . . . . . 65
5.2 Parameters of algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.3 Statistical results for IGD on ZDT test functions . . . . . . . . . . . . . 66
5.4 Statistical results for Sp on ZDT test functions . . . . . . . . . . . . . . 67
5.5 Statistical results for IGD on DTLZ test functions . . . . . . . . . . . . 71
5.6 Statistical results for Sp on DTLZ test functions . . . . . . . . . . . . . 72
5.7 The p values of Wilcoxon test for IGD metric . . . . . . . . . . . . . . 78
5.8 The p values of Wilcoxon test for spacing(Sp) metric . . . . . . . . . . 78
5.9 Results of set coverage metric of the four engineering design problems 83

6.1 Summary of utilized datasets . . . . . . . . . . . . . . . . . . . . . . . 90
6.2 Parameter settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.3 Experimental results of FW-GPAWOA, BDE, BPSO and BGWO . . . 91
6.4 The results of HV metric of FW-GPAWOA, MOGWO and MOPSO . 95
6.5 The p values of Wilcoxon test for HV metric . . . . . . . . . . . . . . . 96
6.6 The average running time consumed by the algorithms (unit: min-

utes). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96



CHAPTER 1

Introduction

Contents
1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 From machine learning towards optimization problem . . . . 1
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1.3 Major contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Thesis organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Academic publications . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1 Overview

The present chapter introduces this thesis. It starts with a brief overview in which
the relationship between machine learning and optimization problem is clarified,
consequently, some multiobjective optimization methods for machine learning
will be presented. Then, it outlines the motivations, the major contributions and
the organization of the thesis.

1.1.1 From machine learning towards optimization problem

Historically, the term of machine learning has been known as the development of
computers (machines in broader sense) able to learn and reasone automatically.
That is to say, able to improve without the intervention of human. This ability
for self-learning is done through experience and analytical observation. In
[Nguyen 2008] denoted ”Broadly speaking, machine learning is the process of
finding and describing structural patterns in a supplied dataset”.

Machine learning algorithm is the tool that helps machines to evolve automati-
cally and accomplish complex tasks that cannot done with classical algorithms. A
machine learning algorithm can be defined as the process which takes as input a
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dataset (also known as sample learning or examples) and provides as output the
description of the knowledge that has been learnt. Generally speaking, machine
learning algorithms can be classified into two main categories: unsupervised
(often known as clustering) and supervised learning (often known as classifi-
cation). The first category consists of finding patterns in the data above and
beyond what would be considered pure unstructured noise [Ghahramani 2003].
In the second category, the aim is to create knowledge structures that predict and
classfiy unknown information into predefined classes [Nguyen 2008]. Usually,
the result of any classification algorithm can be viewed as a function (also called
model) which approximate the mapping between the output and a new input
dataset. So, the objective is to build a learning model that enable to a machine to
predict the appropriate output of dataset without being explicitly programmed.
However, the approximation quality can be affected by several factors. Indeed,
the presence of irrelevant and redundant features results in poor accuracy of the
model. Consequently, it is often desirable to identify the most informative features
- a process known as feature selection (also known as dimensionality reduction).

Feature selection is considered as one of the major key in machine learning.
The feature space usually contains a large number of features which can be
divided into relevant/irrevelant features and redundant/non-redundant features.
Irrelevant and redundant features are not useful as they affect the performance
of a classification/learning algorithm [Russell 2003]. Therefore, feature selection
technique is invoked to select the subset of relevant features in order to: decrease
the dimensionality of the feature space, simplify the learning model, improve the
classification performance and reduce the running time [Dash 1997]; [Liu 1998].
However, the high dimensionality of feature space imply high computational
time. For n features, there are 2n subsets possible. In addition, due to the absence
of prior knowledge about the features and the complex interaction between them,
the feature selection process is considered as an NP-hard problem.

Although there exist several feature subsets that can reduce the dimensionality
of the search space, but the optimal subset is the one which contains smaller
number of features and achieved better classification performance [Xue 2014b].
From broadly point of view, two main challenges are taken into account in order
to select the optimal feature subset [Xue 2014a]. The first goal is to reduce as well
as possible the size of feature space, and the second goal is to increase as well as
possible the classification accuracy. Accordingly, feature selection is considered
as a multiobjective optimization problem in which we attempt to minimize the
number of features and maximize the classification performance. Further, these
two criteria (number/performance) are often conflicting to each other and they
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require simultaneous optimization.
Feature selection algorithms are usually grouped into two main categories:

filter and wrapper approaches [Kohavi 1997]. Filter approaches use statistical
measures to evaluate the quality of the selected feature subset, whereas wrapper
approaches use a learning algorithm (or classifier) to evaluate the goodness of the
selected features.

According to this brief state-of-the-art, we can say that the process of selecting
an optimal feature subset is a crucial key to build hight-quality machine learning
model. Additionally, we can say that the process of feature selection is performed
through the resolution of a multi-objective optimization problem by using meth-
ods propre for performing simultaneous optimization. In this thesis, we have
chosen metaheuristic approaches based on the collective intelligence of a set of
individuals to extract knowledge and overcome the complex difficulty to find the
optimal solution.

1.1.2 Multiobjective feature selection for classification

This section attempts to provides a brief survey of multiobjective feature selection
for classification.

Multiobjective optimization problem (MOP) involves optimizing several
conflicting objective functions and possesses a set of solutions rather than single
solution. The aim of any resolution method is on the one hand, to find the
tradeoff non-dominated solutions called Pareto solutions (known as Pareto front),
and on the other hand, to obtain well distributed Pareto solutions in order to
maintain the diversity in the search space [Deb 2014]. In the literature, many
multiobjective optimization algorithms such as non-dominated sorting genetic
algorithm (NSGA) [Srinivas 1994], non-dominated sorting genetic algorithm 2
(NSGA2) [Deb 2002a], non-dominated sorting particle swarm optimizer (NSPSO)
[Li 2003], Multi-Objective Artificial Bee Colony (MOABC) [Akbari 2012] have been
proposed. The effectiveness of these algorithms for solving any multiobjective
problem has encouraged researchers to apply them for tackling feature selection
problems.

In [Hamdani 2007], a wrapper feature selection algorithm using NSGA2 is de-
veloped. This algorithm attempts to minimize both the classification error and the
number of features. K-Nearest Neighbours (KNN) algorithm was incorporated as
classifier to evaluate the goodness of the selected feature subset. In [Xue 2012a],
two binary multiobjective PSO frameworks were first developed. The first called
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NSBPSO by using the NSPSO. The second called CMDBPSO by incorporating
the ideas of crowding, mutation and dominance into PSO algorithm. Then,
based on NSBPSO and CMDBPSO, four filter feature selection approaches are
proposed which are: NSfsMI, NSfsE, CMDfsMI and CMDfsE. All these four
approaches have the same goal which is: minimize the number of features and
minimize the classification error rate. Since that they are filter-based approaches,
mutual information and entropy are used as evaluation criteria. Compared
against single-objective feature selection approaches, the results showed that
the proposed multiobjective approaches perform better. Other multiobjective
wrapper-based algorithms have been proposed by [Xue 2012b] called NSPSOFS
and CMDPSOFS. Since that the two algorithms are wrapper approaches which
need a classification algorithm to evaluate the performance of the selected subset,
both NSPSOFS and CMDPSOFS utilize KNN algorithm (with K=5) as classifier.
The results showed that CMDPSOFS algorithm can evolve a Pareto front which
include a smaller number of features and achieve lower classification error rate. In
[Hancer 2015], the MOABC algorithm is investigated to develop three filter-based
feature selection approaches. Therefore, three filter evaluation criteria are used
which are mutual information, fuzzy mutual information and new fuzzy mutual
information proposed by the authors. The developed approaches are compared
against three single-objective feature selection approaches and the results showed
that the proposed methods perform better in terms of classification accuracy and
especially in terms of the number of features. Recently, Grey Wolf Optimizer
(GWO) [Mirjalili 2014] was investigated to propose new wrapper-based feature
selection approach to improve the classification of cervix lesions [Sahoo 2017]. To
achieve this, a non-dominated sorting based-GWO is developed to minimize the
number of textural features and maximize the classification accuracy of cervix
lesions. By the fact that the proposed algorithm (called NSGWO) is wrapper
approach, Support Vector Machine (SVM) is employed as learning algorithm to
evaluate the selected feature subset. Based on NSGA algorithm, [Waqas 2009]
propose a new wrapper approach for feature selection. ID3 decision tree al-
gorithm was employed as classifier to evaluate the fitness of each individual.
In [Xue 2014a], two filter-based multiobjective feature selection approaches are
proposed called MORSN and MORSE to obtain the set of non-dominated feature
subsets. To achieve this goal, rough set (RS) [Pawlak 1995] is used to construct
two measures: the first measure is to evaluate the classification performance and
the second is to evaluate the number of features.
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1.2 Motivations

After the presentation of the concept of feature selection, its high importance and
its influencing in machine learning, and after showing the relationship between a
feature selection problem and a multiobjective optimization problem, including
the presentation of some feature selection algorithms. We summarize the main
motivations of our work in the following points:

• The tremendous usefulness of machine learning techniques in todays society
and for everyday life. Medical diagnostics, marketing and airport security
are some examples in which machine learning has had remarkable success.

• Addressing feature selection problem as it is one of the most important task
in machine learning. Feature selection is a complex problem in which it is
too expensive to discover entire the feature space. Therefore, the search for
an optimal feature subset is NP-hard problem for which we don’t know
any exact approach that can select only the needed features in acceptable
running time.

• Addressing the feature interaction problem. Indeed, the difficulty of feature
selection problem is not only due by the fact that the search space is very
large, but also by the fact that the features are highly interacting between
them. A given feature may be irrelevant, but when it is combining with
other feature, it can becomes extremely relevant and very informative.

• Addressing feature selection as a multiobjective optimization problem.
Although there exist some multiobjective appoaches for solving feature
selection problem, but in the literature, there are rare approaches that
handling feature selection as a multiobjective problem compared to those
that handling it as single-objective problem.

• Taking advantage of metaheuristics based on the evolution of a population
of solutions which offer a high ability to explore a large part of the srach
space in reasonable computational time and overcome the problem of local
optimal feature subset.
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1.3 Major contributions

To solve feature selection problems using metaheuristics methods, our contribu-
tion is made in two phases:

• The first phase consists of developing a resolution approach as a new alter-
native to solve multiobjective optimization problems in a general manner.

• The second phase is to investigate the proposed approach for developing a
new feature selection algorithm.

In the first contribution, we have proposed a new multiobjective optimization
algorithm called GPAWOA (for Guided Population Archive Whale Optimization
Algorithm). The proposed algorithm extend a recent single-objective algorithm
called Whale Optimization Algorithm (WOA) in ordre to be able to deal with
multiobjective optimization problem. The GPAWOA incorporates the Pareto
optimality concept into the standard WOA and uses an additional population
(archive) to guid the search towards the true Pareto front. In addition, the
mechanism of crowding distance is adopted in two steps of the algorithm in order
to obtain well-distributed solutions. The GPAWOA was evaluated using 12 well-
known benchmark functions (5 bi-objective test functions and 7 three-objective
test functions). Moreover, it was applied to four multiobjective engineering design
problems. The exprimental results showed that the proposed GPAWOA is highly
competitive compared against existing multiobjective optimization algorithms,
being able to provides an excellent approximation of Pareto front in terms of
convergence and diversity.

In the second contribution, we have applied the proposed GPAWOA for
solving feature selection problem. This contribution consists of hybriding filter
and wrapper models into a single system at the hope to benefits from the merits
of each model. The proposed algorithm demonstrated its ability to be a good
alternative for handling effectively the feature selection problems.

1.4 Thesis organization

The remainder of this thesis is organised as follows:
Chapter 2 gives a brief review of machine learning and presents some well-

known classification algorithms. Also, it provides a short review of feature
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selection problem, including the key steps of any feature selection approach and
the main types of feature selection algorithms.

Chapter 3 provides a generality of optimization problems. It starts with the
definition of the complexity theory and single-objective optimization problems.
Then, it presents some exisitng resolution methods, in particular, the metaheuris-
tics that use a population of solutions.

Chapter 4 presents the essential background and basic concepts of multiobjec-
tive optimization problems. It provides the essential notions and in particular the
dominance Pareto concept. Also, it gives the main challenges of multiobjective
problems. In addition, it reviews typical and popular resolution approaches.

Chapter 5 presents the proposed GPAWOA algorithm for solving multiobjec-
tive optimization problems. First, it gives a detailed description of GPAWOA
algorithm, including the mechanisms used and the archiving strategy adopted in
the algorithm and its pseudocode. Finally, it provides a summary of an extensive
experimental evaluation.

Chapter 6 devoted to the description of the proposed FW-GPAWOA algorithm
for feature selection. It provides how FW-GPAWOA treat discrete problems and
how combining filter and wrapper approaches. Finally, it provides a summary of
the comparative study.

Chapter 7 summaries the work and attractions overall conclusions of the thesis.
Main research ideas and the contributions of the thesis are established as well. It
also suggests some possible future research directions.

1.5 Academic publications

• Got Adel, Abdelouahab Moussaoui, and Djaafar Zouache. "A guided
population archive whale optimization algorithm for solving multiobjective
optimization problems." Expert Systems with Applications 141 (2020):
112972. https://doi.org/10.1016/j.eswa.2019.112972, impact
factor: 5.452.

• Got Adel, Abdelouahab Moussaoui, and Djaafar Zouache. ”Hybrid
filter-wrapper feature selection using Whale Optimization Algorithm: A
Multi-Objective approach”. Expert Systems with Applications (Under
review), impact factor: 5.452.
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2.1 Introduction

Machine learning is a subfield of Artificial Intelligence (AI) which consists in
building from a set of sample data, a learning model that allows to a machine
to self-learning, that is to say, to analyze and reason in an autonomous manner
with complex data. This ability to learn automatically from analytical observation
of the sample data results in obtaining an intelligent artificial system able for
learning and adapting with new datasets without being explicitly programmed.
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Therefore, machine learning refers to the development of methods that enable to
a machine to evolve automatically and accomplish tasks which are complex for
classical algorithms.

In general, the process of a learning algorithm is divided into two phases
[Aggarwal 2014]. The first phase (learning phase) consists to generate a prediction
model ready to the implementation for the future situations. The second phase
(deployment phase) consists of applying the generated model on the datasets to
accomplish the desired tasks (usually is decision-making). Its clear that the quality
of the final decision is strongly depends on the performance and the accuracy of
the generated learning model. In addition, the input space (dataset) of a learning
algorithm is often divided into a training space and testing space [Muñoz 2018].
The training space constitutes the set of examples used to provide the learning
model, while the testing space is used to check the performance of the generated
model.

Although there exist several types of machine learning, however, supervised
and unsupervised learning that we will present in the following sections, are
the most known types of machine learning and they are the most studied in the
literature.

2.2 Supervised learning

Supervised learning consists in generating a typical prediction model connecting
the predictor variables X and a target variable Y predetermined beforehand. A
supervised learning algorithm takes as input a sample data (training set), where
each data examples is assigned to a categorized variable called the target class
(label). The goal is to build a learning model able to predict with high accuracy
the target classes of new data examples (unseen datasets) that are not belong to
the learning sample [Dougherty 1995].

Formally, given a training set D containing m example, where each example Ei
is represented by the input xi and its associated output target yi :

D = {Ei/Ei = (xi, yi), xi ∈ X and yi ∈ Y, i = 1, 2, 3, ...,m} (2.1)

The objective is to build a learning model called hypothesis function h(x) = y

with x /∈ X , able to predict for any given input datum x, the value of the output
target y. Depending on the nature of the output target Y , there are two types of
supervised learning problems:
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• Supervised classification if the target variable Y takes discrete values
(binary, boolean, ect.). For a classification problem, Y corresponds to a finite
number of classes used to find the model that classifiy the unseen datasets.

• Regression problem if the output target Y is continuous value. There are
several regression forms, the simplest is the linear regression. It tries to fit
data with the best hyperplane which goes through the points. Therefore, the
learning model will be a simple straight line.

2.2.1 K-nearest neighbor algorithm (KNN)

The k-nearest neighbor algorithm (KNN) is considered to be one of the simplest
supervised classification algorithms [Indyk 1998]. Its principle is to assign the
input data to the most represented class among its k-nearest neighbors in terms of
distance as shown in figure 2.1.

Figure 2.1: K-Nearest Neighbor classification algorithm

Given a new unlabeled vector x, the KNN algorithm consists in finding the set
E containing k-closest classes to x, and by majority vote, it determines the most
frequent class in E and assigns it the new vector x.

The choice of the optimal k is important for better classification. Indeed,
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choosing smaller k can be less immunized against the noise in the learning
sample, a large value of k makes it difficult to define the limits between classes.

There are many variants of this algorithm depending on the distance calcu-
lation function used [Chomboon 2015], usually the most used is the Euclidean
Distance. The major advantage of the k-nearest neighbor method is its simplicity
and ease of implementation. On the other hand, the high cost when searching
for neighbors is its main drawback, especially in large databases. In addition, the
choice of k-value might be not obvious.

2.2.2 Support Vector Machine (SVM)

Support Vector Machine method is based on the theoretical work of Vanpik and
Cortes [Cortes 1995]; [Boser 1992]. SVMs are usually used for classification models
and applied to linearly and non-linearly separable problems. The objective is to
find the optimal separating hyperplane among an infinity of hyperplanes, which
linearly separates the learning sample by maximizing the margin (in terms of
distance) between the separating hyperplane and the closest points to the limit of
separation (see figure 2.2). These points are called support vectors.

Figure 2.2: Optimal hyperplane for Support Vector Machine with two classes

SVMs are based on two concepts which are : the maximum margin and the
kernel function. In the linearly separable case, the separating hyperplane is a
simple straight line defined by the function h:
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h(x) =
n∑
i=1

wi.xi + b (2.2)

where, w is the normal vector of the hyperplane and b is the displacement from
the origin.

As we have seen previously, the optimal hyperplane is the one which max-
imizes the minimum distance between the separation limit and the support
vectors. This distance is given as follows:

d(xi, h) =
yi.h(xi)

‖w‖
(2.3)

with, yi is the corresponding class of any point xi.
Maximizing the distance d amounts to minimize the quantity ‖w‖, which leads,

after certain mathematical operations, to the following optimization problem:min
‖w‖2
2

yi.h(xi) ≥ 1, i = 1, 2, 3, ..., n
(2.4)

This problem can be solved using the lagrange multipliers method. Therefore,
the hyperplane function for a new datum x is written as follows:

h(x) =

n∑
k=1

ak.yk.(x.xk) + b (2.5)

where ak are the lagrange multipliers.
In the non-linearly separable case where there is no hyperplane able to sepa-

rates the classes, SVM uses the so-called kernel function to transform the initial
space into a higher dimension space φ in which there is a possibility to perform
a linear separation. Accordingly, the function of the separating hyperplane is
defined in the new space φ and it is given by:

h(x) =

n∑
k=1

ak.yk.K(x, xk) + b (2.6)

K(x, xk) is the kernel function. There are many kernel functions such as
polynomial, gaussian and RBF kernel functions [Schölkopf 2002]. The SVMs have
shown their ability to provide excellent performance in classification problems,
and they have been employed in several areas such as the pattern recognition
[Byun 2002] and medical diagnostics [Pimple 2016]; [Sweilam 2010].
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2.3 Unsupervised learning

Unlike the supervised learning where the database is labeled, unsupervised
learning is used when the learning sample contains only raw data (unlabeled ex-
amples). That is to say, the target classes including their numbers are not defined
a priori. Consequently, this type of problem is often more difficult compared to
supervised problem.

An unsupervised algorithm consists in finding patterns or clusters that group
the dataset based on certain similarity between the data. Therefore, the goal is to
discover the target classes that maximize the intra-class similarity and minimize
the inter-class similarity [Jain 2000]. Various tasks are associated to this type of
learning, in particular, the clustering which involves grouping the dataset into
several classes called clusters, where each cluster is a collection of similar objects.
Usually, this similarity criterion is expressed in terms of distance function.

2.3.1 k-means algorithm

The k-means method proposed in [MacQueen 1967] is one of the most popular
clustering algorithms in the current usage as it is relatively fast and simple to
understand and easy to deploy in practice. As illustrated in figure 2.3, k-means
algorithm consists of partitioning the dataset into K clusters, such that objects
within the same cluster are similar as well as possible, while the objects from
different clusters are dissimilar as well as possible. In k-means algorithm, each
cluster is represented by its center (centroids) that corresponds to the mean of
points assigned to the cluster. The k-means algorithm is given in the following
steps [Selim 1984] :

1. Determine the number K of clusters Ci.

2. Initialize randomly from the data points, K centroids (denoted wi).

3. Assign each data point to the closest cluster (centroid).

4. Update the cluster centroids wi so that the cost function is to minimize:
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V =

k∑
i=1

∑
wi∈Ci

D(xi, wi)
2 (2.7)

with, xi is the point belongs to the cluster having the centroid wi and
D(xi, wi) is the Euclidean distance between wi and xi.

5. If the partitioning does not converge, return to 3.

Figure 2.3: Example of clustering using K-means algorithm

The good accuracy and efficiency of the K-means algorithm motivate re-
searchers to propose several variants such as K-medians [Juan 2000], K-medoids
[Park 2009] which applied different techniques to calculate the centroids of
clusters.

2.3.2 Hierarchical clustering algorithm (HCA)

Hierarchical clustering algorithm (also known as hierarchical cluster analysis) is
a classical clustering algorithm which consists for grouping two individuals or
two groups (clusters) of individuals that are closest together in terms of distance
until all objects are grouped into a single cluster [Ward Jr 1963]. The result of this
type of algorithm is usually represented as a hierarchical tree (or dendrogram). In
order to obtain the desired classes, a division at a certain level of the dendrogram
must be performed (see figure 2.4).
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Figure 2.4: Dendrogram for the Hierarchical Cluster Analysis (HCA)

Let A = {a1, a2, ..., an} be the set of individuals to be grouped, HCA algorithm
takes place in the following way:

1. Initialize the clusters Ci where each cluster contains a single individual of A.

2. Combine the nearest clusters Ci and Cj to form a new cluster Ck.

3. Calculate the distance between Ck and the clusters Cy with y 6= i, j.

4. Repeat 2 and 3 until the aggregation of all individuals of A into a single
cluster.

2.4 Dimensionality reduction based on feature selection

In practice, the performance of any learning algorithm does not depend only to
its design and its manner to deal with the set of data. Indeed, several factors can
affect the quality of the algorithm, including the representation and quality of the
dataset. High dimensionality of data, the existence of irrelevant and redundant
data (features) are some factors which could decrease the algorithm performance
[Dash 1997]. Consequently, it is often necessary to reduce the dimensionality of
the sample learning (dataset) in order to remove the irrelevant and redundant
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features. Generally, the dimensionality reduction strategies are grouped into two
categories :

• Reduction by feature selection, which consists to select the most relevant
features from the dataset.

• Reduction by feature extraction, which attempts to transform the initial
space to lower dimensional space. Principal Component Analysis (PCA) is
one of the typical methods for dimensionality reduction based on feature
extraction [Jolliffe 2016].

In our thesis, we’re interested on the reduction through the use of the feature
selection technique. For this reason, a brief overview on the feature selection
problem will be presented in the following sections.

2.5 Feature selection problem

Feature Selection is one of the core concepts in machine learning which try to select
the most informative (relevant) variables or attributes from highly dimensional
data. It is a technique widely used to reduce the size of the datasets while building
the subset containing the features deemed relevant. The impact of the feature
selection is not limited only to the dimensionality reduction, but extends to the
construction of an efficient and simplest learning model. Hence, improving the
performance of the system and optimizing the running time [Langley 1994]. The
feature selection problem is the process of finding, from the original features, the
optimal subset that is sufficient for solving successfully a classification problem.
The optimal feature subset is the minimum subset that can provide the better
classification accuracy, which makes feature selection a multiobjective problem
[Xue 2012b]; [Oliveira 2002].

2.6 General procedure of feature selection algorithm

According to [Dash 1997], a typical feature selection algorithm includes the four
key steps illustrated in figure 2.5. The search process starts by generating the can-
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didate feature subsets which will be evaluated by using a certain evaluation cri-
terion. These two steps are repeated until a given stopping criterion is satisfied.
Finally, a result validation step is applied to validate the selected feature subset.

Figure 2.5: Four key steps of feature selection algorithm [Dash 1997]

2.6.1 Generation procedure

The generation procedure (also called search procedure) consists of creating
a subset of candidate features from the initial set of features. However, for a
given set containing N features, there are 2N possible subsets, which makes an
exhaustive search very expensive even impossible for a large number of features.
Therefore, three search strategies have been proposed [Liu 2005]:

• Complete search
This strategy can provides the guarantee of finding the best feature subset
according to the employed evaluation criterion. An exhaustive search
is absolutely complete while a non-exhaustive search can be complete.
This is possible by using different heuristic functions to reduce the search
space without compromising the chances of finding the optimal subset by
applying backtracking process (Branch and bound for example) allowing to
go back if the selection is going in the wrong generation direction.

• Sequential search
Also called heuristic search, the principle of sequential search is to add or
delete, iteratively, one or more features. It begins either with an empty set
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and then the features are added one at a time until a stopping criterion is
reached (sequential forward selection SFS), either by the original set and
then eliminates features one at a time (sequential backward selection SBS). A
third search strategy (sequential stepwise selection) consists for combining
the previous strategies while removing or adding the features from the
selected subset.

• Random search
As its name indicates, the random search (also called stochastic search)
consists of randomly generating a finite number of candidate features. The
methods based on such strategy (such as genetic algorithm) are able for
escaping from local optima subset and reducing the running time.

2.6.2 Evaluation procedure

In this step, an evaluation criterion is defined in order to measure the quality of
each features subset generated in the previous step. Obviously, the choice of the
evaluation function is crucial to obtain an optimal subset. The generated subset
using a given evaluation criteria may be not the same using another evaluation
criteria [Xue 2014b]. Additionally, according to the used evaluation criterion, the
feature selection algorithms can be classified into two main categories : Filters and
Wrappers.

• Filter approach
In filter methods, the evaluation is realized without involving any mining
algorithm, which means that the evaluation is independent to the used
classifier. Several measures criterion are proposed to evaluate the goodness
of the candidate features. Consistency, mutual information, correlation
criteria and rough set theory are usually the most employed filter functions
in the literature [Dash 2003]; [Chandrashekar 2014].

Filter algorithms are known as fast to compute and easy to understand.
However, the ignorance of features dependency and the absence of interac-
tion with the classifier are the main disadvantages of filtering methods.
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Figure 2.6: Overall schematic of filter method

• Wrapper approach
In contrast of the filter methods which try to find the optimal feature subset
independently of the classification algorithm, the wrapper methods integrate
the classifier to search and evaluate the candidate feature subset, which re-
sults in increasing the chance to obtain a better subset.

In general, the use of wrapper methods make it possible to obtain a high
accuracy comparing to filter methods thanks to the well interaction of the
selected features with the classifier. However, the big shortcoming of these
methods is they require high computational costs even when using simple
classification algorithm.

Figure 2.7: Overall schematic of wrapper method
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2.6.3 Stopping criteria

Generally, the number of features to be selected is unknown a priori, which makes
the definition of a good stopping criterion a crucial step while ensuring the selec-
tion of the needed features. In fact, a poor choice of the stopping criterion can force
the selection process to stop while the optimal subset is still far away. In practice,
the choice of stopping criterion depends on the search strategy and the evalua-
tion function. Among the most used stopping criteria in the literature, we can cite :

– Predefined number of features to be selected (knowing that this task is not
often achievable as mentioned previously).

– Predefined number of iterations is reached (this type of criterion can reduce
the computational costs but the result is not necessarily optimal).

– Addition or deletion of any feature does not result in a better subset.

– An optimal subset is obtained (for example, given error rate is allowable).

2.6.4 Validation

The result validation is considered as the fourth and the final step in the feature
selection process. It depends on the nature of handled dataset, artificial or real.
A straightforward way for validation is to directly measure the quality of the
obtained features subset. In this case, prior knowledge about the relevant features
is necessary. The database benchmarks are typically used to directly validate the
obtained results.

In real-world applications, generally there is no prior knowledge about the
relevant features. In this case, the validation process utilize some indirect methods
by observing the change of the performance indicator (such as classification error
rate) with the change of features subset [Liu 2005]. Cross-validation technique
might be also used to assess the performance of the selected feature subset.

2.7 Chapter summary

In this chapter, we have presented the basic concepts of machine learning and
its main types; supervised and unsupervised learning, as well as their operating
principles and some algorithms for each type.

We have also presented one of the important related task to machine learning
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which is the dimensionality reduction, in particular, the reduction based on the
feature selection. Consequently, a brief overview for feature selection is given in
which we have presented the main steps to be taken into account when designing
any feature selection algorithm. In addition, feature selection approaches, namely:
filter and wrapper algorithms were presented, including the advantages and
disadvantages of each model.
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3.1 Introduction

Currently, the optimization has become an important multidisciplinary field that
can be used in image processing, engineering design, machine learning, bioin-
formatics, economics, etc. The researchers, decision-makers and engineers are
often faced against high-dimensional problems that might requires an exhaustive
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search, which is not always feasible in a reasonable time.
An optimization problem can be defined as the act of finding the best result

among the set of all feasible solutions. However, most of these problems are NP-
hard where there is no exact resolution method that can find the best solution in
reasonable computation time. Without claiming to be an exhaustive presentation,
we will present in this chapter the main optimization concepts. Hence, some
resolution methods will be presented, in particular, the so-called ”metaheuristics”.

3.2 Complexity theory

For a given problem, there are several algorithms that can be used for solving it,
and the user is faced with the following question: among this multiplicity of al-
gorithms, which algorithm is performing better ?. The straightforward way to
answer this question is to compare the running time of each algorithm. However,
this comparison is unfair because it is affected by several factors such as the char-
acteristics of the machine in which the algorithms are implemented. Therefore,
other approach independent of any software and hardware resources is necessary
to perform rigorous and an equitable comparison.

The complexity of an algorithm can be defined as the estimation of necessary
number of elementary operations performed by this algorithm to solve a given
problem. The complexity theory consists [Papadimitriou 2003]; [Arora 2009] of
formally studying the difficulty of a decision problem whose the answer is of bi-
nary type (yes/no, true/false, 0/1, ect). Furthermore, some studies [Cook 1971];
[Karp 1972] have shown that there is a fundamental classification of optimization
problems based on the complexity of the algorithms used for solving them.

Définition 3.1 (P class) We distinguish by P class the problems that can be solved
efficiently by an algorithm of polynomial complexity, that is to say in O(Np) where N is
the size of the problem and p is a constant.

Définition 3.2 (NP class) The NP class involves the problems that can be solved by a
non-deterministic algorithm in polynomial time. Moreover, the correctness of a claimed
solution can be checked in polynomial time. From this definition, it is clear that the
inclusion P ⊂ NP is valid, but the reverse was never been affirmed.
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Définition 3.3 (NP-complete class) This class contains NP problems that are consid-
ered more difficult than any other NP problem. A problem Q known to be NP-complete
if it is in NP and if any NP problem can be reduced to Q in polynomial time. Among
the well-known NP-complete problems we can cite: the boolean satisfiability (SAT) and
knapsack problem.

3.3 Optimization problems

Each optimization problem is characterized by its search space, an objective
function and a set of constraints:

• The search space is the set of the feasible solutions and it is defined by a
finite set of decision variables, each of them with a finite domain.

• The objective function represents the goal to be reached (minimizing the
cost, the error rate, or maximizing the profit, the measure, etc.) according to
the problem context.

• The constraints are the set of conditions that should be respected during the
optimization process. They are often of inequality or equality equations and
they allow to boundary the search space.

An optimization problem is defined as the act of searching within the search
space, the solution that minimizes (or maximizes) the objective function while sat-
isfying the constraints. This solution is called optimal solution or the global opti-
mum. However, for a given optimization problem, a candidate solution might be
optimal for a part of search space but not for all the search space: we talk about
local optima and global optima. These two notions are illustrated in figure 3.1.
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Figure 3.1: Illustration of local optimum and global optimum

3.3.1 Mathematical formulation

Mathematically, an optimization problem is formulated as follows:

min f(x)

gi(x) ≤ 0, i = 1, 2, 3, ...,m

hj(x) = 0, j = 1, 2, 3, ..., k

xL ≤ x ≤ xU

(3.1)

where x ∈ S is the vector of decision variables and S is the search space, f(x)

is the objective function to optimize, gi and hj are, respectively, the inequality
and equality constraints. xL and xU are, respectively, lower and upper bounds of
decision variables. The aim is to find the point x∗ that satisfy the constraints gi, hj
and ∀x ∈ S , f(x∗) ≤ f(x) [Schoen 1991].

3.3.2 Resolution of optimization problems

The main objective when solving optimization problems is finding the global
optima rather than the local optima. In order to achieve this goal, an exploitation
strategy of the search space must be defined [Chen 2009]. Additionally, due to the
existence of several local optima, an exploration strategy is necessary to overcome
the local optimality problem [Xu 2014]. The exploration attempts to visit a large
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part of the search space, while the exploitation express the ability of the resolution
method to focus in the regions that probably containing an optimal solution.
According to this description, we can say that the performance of such resolu-
tion method depends on the manner to deal with the exploration/exploitation
dilemma.

In the literature, there exist several solution methods which are usually catego-
rized into exact and approximate (metaheuristics) approaches [Talbi 2009]. In the
following, some existing methods will be presented.

3.4 Optimization exact methods

The exact approaches include all algorithms which are guaranteed to find an
optimal solution and to prove its optimality for every instance of the combina-
torial optimization problem [Puchinger 2005]. Generally, they take the form of
exhaustive search. These methods have an exponential computational complexity,
indeed, the time to solve the problem grow exponentially with its size.

3.4.1 Linear programming

Linear programming (also called linear optimization) is a decision mathematical
support tool which is dedicated for solving optimization problems whose the ob-
jective function and the constraints are in the form of a system of linear equations.

The general form of a linear program (LP) is given as:
min f(x) =

∑n
i=1 cixi

Ax ≥ b

xi ≥ 0, x ∈ Rn, A ∈ Rm∗n, x ∈ Rm
(3.2)

with, ci are the coefficients of the objective function f(x), A and b are the
matrix and vector, respectively, of constraints. x is the vector of decision variables.
The solution of a linear program is a values assignment to the decision variables
of the problem. The solution is feasible if it satisfy all the constraints. One of
the well-known optimization algorithms in linear programming is the simplex
algorithm [Bartels 1969].
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3.4.2 Branch and Bound (B and B)

Branch and Bound [Land 1960]; [Lawler 1966] is a technique usually used for
solving combinatorial optimization problems. It consists of an enumeration
systematic non-exhaustive of the solutions space while eliminating the subsets
of solutions that does not lead to the desired solution. Its operating principle is
inspired by the classic computer science paradigm ”Divide to conquer” and it is
based on two concepts:

• Branching which is the process of spawning subproblems from the initial
problem while building a ”decision tree” in which the nodes represent the
sub-problems, each one is associated to a reduced solutions space.

• Bounding which attempts to guide the search tree by using the so-called
”lower” and ”upper” bounds. It consists to maintain the current subset
as a potential search space, or pruning it if its associated bound is worse
than the best known solution. The classical bounding strategies are; either
browsing the decision tree in depth first (Deep-First Search), or in width first
(Breadth-First Search), or handle the best subset not yet treated (Best-First
Search).

Branch and Bound algorithm can obtains an optimal solution and enumerates
the search space in acceptable complexity if the problem is of limited size. Due to
its efficiency and simplicity, several variants have been proposed such as Branch
and Cut [Padberg 1991] and Branch and Price [Barnhart 1998].

As mentioned above, the computational cost of exact approaches increase
exponentially with the problem size. Thus, due to the ”combinatorial explosion”
nature of the real-world problems, such approach is not efficient and even not
applicable. In this case, the so-called ”metaheuristics” represent an interesting
alternative which aimed at providing high-quality solution (instead of guaran-
teeing a global optimum solution) in acceptable computing time [Gogna 2013].
Based on a stochastic search, the metaheuristics progress iteratively by alternating
effectively between exploration and exploitation techniques in order to converge
as well as possible towards the optimal solution. Many criteria may be used
to categorized the metaheuristic, the classification of metaheuristics, which
differentiates between Single solution-based and Population-based, is often taken
to be a fundamental distinction in the literature [BoussaïD 2013].
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3.5 Single solution based metaheuristics

Single solution methods manipulate a single point of the search space throughout
the progression of the algorithm. Also called trajectory methods, they start with
a random initial solution and try to, iteratively, evolve and improve the current
configuration in it local neighborhood while constructing a trajectory path within
the search space. Tabu Search and Simulated Annealing are considered as the
most popular single-based algorithms in the literature.

3.5.1 Tabu Search

Tabu search proposed by Glover in 1986 [Glover 1986] is a local search method
that inspired by the human memory. In fact, Tabu Search (TS) utilizes an adaptive
memory called tabu list in which the promising regions already visited are listed.
This mechanism allows to prevent the search process to perform backwards moves
to the solutions previously explored. The principle of Tabu search is the use of the
neighborhood notion that consists in replacing the current solution by the best so-
lution among all of its neighbors. However, this strategy may lead to a premature
convergence. Therefore, Tabu search permits moves that deteriorate the objective
function in ordre to overcome local optima.

Algorithm 3.1: Tabu Search algorithm

1 Initialize the tabu list T = ∅
2 Choose an initial solution s
3 V (s) : neighborhood of the current solution s
4 Sbest = s
5 while t < itermax do
6 Choose the best solution s′ from V (s)
7 if f(s′) < f(Sbest) then
8 Sbest=s′

9 end
10 Update the tabu list T
11 s = s′

12 t=t+1
13 end
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3.5.2 Simulated Annealing

Simulated Annealing (SA) is one of the simplest and effective method, it is
based on the physical annealing process used by metallurgists [Kirkpatrick 1983];
[Černỳ 1985]. Annealing aims to obtain homogeneous and well structured mate-
rials by alternating slow cooling and heating cycles until reaching the thermody-
namic equilibrium. A metal in the liquid state (at high-temperature) is a metal
whose the atoms that compose it are unstable. The cooling act (lowering of tem-
perature) enable to stabilize these atoms while minimizing their energies of dis-
placement. However, the sharp cooling may unbalance the atoms. Hence, the
lowering of temperature must be done in a regular and careful manner. This phys-
ical phenomenon has been perfectly applied in Simulated Annealing algorithm to
solve optimization problems where: the temperature becomes a control parameter
and the energy becomes the objective function to be optimized [BoussaïD 2013].

Algorithm 3.2: Simulated Annealing algorithm

1 s← initial solution
2 N(s) : neighborhood of the current solution s
3 Sbest = s
4 T ← maxTemperature
5 while t > minTemperature do
6 iter ← 0
7 while iter < MaxIter do
8 Select a random solution s′ from N(s)
9 ∆ = f(s′)− f(s)

10 if ∆ < 0 then
11 s = s′

12 if f(s′) < f(Sbest) then
13 Sbest = s′

14 end
15 else
16 if rand(0, 1) < e

−∆
T then

17 s = s′

18 end
19 end
20 iter = iter + 1

21 end
22 T ← T × (1− α)

23 end
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At the start of the algorithm, the T parameter is initialized to a high value
and the search begins with a random initial solution. At each iteration, another
solution s′ is chosen from the neighborhood of the current solution s. If this
solution improves the objective function, it will be accepted. Otherwise, it will be
accepted but with a certain probability P which depends on T parameter. Indeed,
P is higher whenever T is higher. Initially, T parameter is high enough in order to
favored the exploration of the search space, thereby escaping from local optima.
During the iterations, T parameter decreases and consequently, the probability P
of accepting a degradation within the solution quality decreases. This mechanism
improve the ability of the algorithm to focus on promesing regions while accepting
only the configurations that enhance the objective function in order to converge to
the optimal solution.

Due to its high ability to provides an excellent approximation of the global
optima, Simulated Annealing algorithm has been successfully applied in several
academic optimization problems [Elmohamed 1997]; [Malek 1989]; [Drexl 1988]
and it has a broad range of real applications [Suman 2006].

3.6 Population based metaheuristics

Unlike single solution-based methods, population-based metaheuristics ma-
nipulate a set of solutions called population and they are usually inspired by
natural phenomena. These methods represent a powerful tool for solving
different types of optimization problems thanks to their ability for perform-
ing global search. Additionally, using a population of solutions increase their
ability to explore very large part of the search space in reasonable running time.
In the following paragraphs, some population-based algorithms will be presented.

3.6.1 Genetic Algorithm (GA)

Genetic Algorithms (GAs) are considered as the well-known population-based
metaheuristics belonging to the larger class of evolutionary algorithms (EAs). The
origins of GAs dates back to the early 1970s in Holland’s work [Holland 1975] by
inspiring the process of natural evolution of living things and genetics. Genetic
algorithms simulate the Darwins theory of evolution ”survival of the fittest”: fitter
organisms have a better chance of surviving and to produce offsprings to the next
generation.
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Without having delved too much into the genetic aspect, the best individuals
(parents) of the current population are selected to produce offsprings by applying
two genetic operators known as crossover and mutation. An individual (chromo-
somes) is composed of a sequence of genes. The crossover allows to create new
childrens by exchanging the genes of two parents, while the mutation is a random
pertubation on the genes of the borne children. Finally, the fittest children’s re-
place the weakest parents to generate new population, hopefully, better than the
original parental population.

Despite the field of genetic algorithms was established by John Holland. How-
ever, their mathematical formulations for solving optimization problems have
been introduced by David Goldberg [Goldberg 1989].

Algorithm 3.3 provides the operating principle of GA. The population of indi-
viduals (solutions) are maintained within the search space. For each individual is
applied a fitness score, that is, the evaluation of the objective function. At each
iteration, the best solutions are chosen by using a given selection strategy such
as roulette wheel selection, rank selection and tournament selection (for more de-
tails on selection schemes, you can see [Goldberg 1991]). Once the solutions are
selected, crossover and mutation operators are applied with a certain probability
in order to create an intermediate population. Mutation operators are mostly used
to increase the exploration ability, whereas crossover operators are widely used
to lead the population towards promesing points in the search space (i.e, increase
the exploiatation ability of the algorithm). Finally, the fittest solutions in the in-
termediate population are selected to replace the weakest solutions in the current
population in order to reproduce a new population better than the old population.

Algorithm 3.3: Pseudocode of a Genetic Algorithm

1 Generate an initial random population P of individuals
2 gen = 0
3 while gen < GenMax do
4 Evaluate the fitness of each individual
5 Q=Selection(P)
6 IntPop=Crossover(Q)
7 PopChild=Mutation(IntPop)
8 Evaluate the fitness of PopChild
9 new_Pop=Replacement(worst(P) with best(PopChild))

10 gen = gen+ 1

11 end
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Genetic algorithms have become an essential tool to solve many opti-
mization problems and they have been successfully applied in several fields
[Chaiyaratana 1997]. However, the choice of some parameters such as the rate of
crossover and mutation should be defined carefully as they affect the algorithm’s
performance.

3.6.2 Particle swarm optimization (PSO)

Particle Swarm Optimization (PSO) proposed in [Kennedy 1995] is an evolu-
tionary optimization technique that mimic the collective intelligent behavior
observed in swarms of bird flocking or fish schooling. The swarm incorporates a
set of particles that possess a local memory and attempt to improve their current
positions in order to attain a common goal. Each particle moves according to its
velocity by using its own knowledge and the information shared by its teammates.
Indeed, each particle utilize its previous experiences (its best position obtained so
far) and the best position reached by the whole swarm to update both its current
position and velocity to gets the best position within the swarm.

The general principle of PSO (as shown in algorithm 3.4) is to deal with
population of particles (solutions) and improve it iteratively in order to reach the
global optima by always following the best position found so far. A particle is
characterized by its current position in the search space and its velocity. Over the
iterations, each particle updates its own velocity according to its current position,
its best position achieved so far as well as the best position obtained by entire
population.

vi(t+ 1) = wvi(t) + c1r1(pBest(t)− xi(t)) + c2r2(gBest(t)− xi(t)) (3.3)

where, xi(t) and vi(t) represent, respectively, the current position and velocity of
the particle i. pBest(t) is the best personal position of this particle and gBest(t) is
the global best position. c1 and c2 are the acceleration coefficients. r1 and r2 are
random numbers between 0 and 1. w is an inertia weight introduced to balance
between global and local search and t is the current iteration. Therefore, the
particle i updates its current position as follows:

xi(t+ 1) = xi(t) + vi(t+ 1) (3.4)

One of the strengths of PSO is the simplicity of the movements rules which
make it easy to understand and to program. Unlike the genetic algorithms where
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the evolution is based on competition between individuals, the PSO is based on a
cooperative evolution in which only the best informative individuals can share
its knowledge, which allow to converge towards high quality solutions within
a few iterations. Moreover, PSO has less computation efforts compared to GAs.
However, PSO usually suffers from the premature convergence problem and be-
ing trapped in local optima.

Algorithm 3.4: Particle Swarm Optimization (PSO)

1 Initialize particles population xi and volicity vi
2 Initialize pBest and gBest
3 while t < itermax do
4 for each particle xi do
5 Update vi using equation 3.3
6 Update xi using equation 3.4
7 Calculate the fitness f(xi)
8 if f(xi) < f(pBest) then
9 pBest[i] = xi

10 end
11 if f(xi) < f(gBest) then
12 gBest = xi
13 end
14 end
15 t = t+ 1

16 end

3.6.3 Ant colony algorithm (ACO)

The biologists have demonstrated that the colony of insects is not a ”blind” and
”stupid” world as some people thought, but it is an impressive world in which
insects form an intelligent systems. By observation of an ant colony, the ants can
easily find the shortest path from the nest to the food source.

Such behavior is possible via the communication between the ants. Indeed, it
has been found that the ant deposits, along its path, a chemical substance called
pheromone that can be detected by other ants. In addition, it has been observed
that the ants prefer to move towards the path which possess higher pheromone
intensity. As the pheromone evaporates over the time, it is clear that the long path
will be less marked by pheromone and the shortest path will be more marked.
Since that the ants are attracted by highest rate of pheromone, the shortest path
has a greater chance to be followed by the whole colony.
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Figure 3.2: Shortest path finding capability of ant colony

Ant Colony Optimization (ACO) is inspired by these observations and it
was originally designed for solving traveling salesman problem [Dorigo 1991];
[Dorigo 2006]. ACO deal with a set of agents called artificial ants. Each ant
moves from city to another with probability P kij given as follow:

P kij(t) =


(τij(t))

α.(ηij)
β∑

I∈Jk
i

(τiI(t))α.(ηiI)β
if j ∈ Jki

0 otherwise

(3.5)

with, α and β are two parameters which controle the influence of the pheromone.
τij(t) is the intensity of pheromone in the path connecting city i and city j.
ηij = 1

dij
is the visibility (dij is the distance). Jki represent the cities not yet visited

by the ant k. After a full turn, each ant deposits a quantity of pheromone ∆ηkij(t)

which depends on the quality of the found solution:

∆ηkij(t) =


Q

Lk(t)
if (i, j) ∈ T k(t)

0 otherwise
(3.6)

where, T k(t) is the tour performed by the ant k at iteration t, Lk(t) is the length of
T k(t) and Q is a parameter setting. As well the pheromone is updated to simulate
the evaporation behavior:

τij(t+ 1) = (1− ρ).τij(t) + ∆τij(t) (3.7)

where, ρ ∈]0, 1] is the pheromone evaporation coefficient.
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3.6.4 Whale Optimization Algorithm (WOA)

One of the recent evolutionary computation techniques is the Whale Optimization
Algorithm (WOA) developed in 2016 by Mirjalili in [Mirjalili 2016a]. WOA is
inspired by the bubble-net hunting strategy of humpback whales. These latter
attack small fish close to the surface of ocean by creating distinct air bubbles
along a circle in a ”9”-shaped path as illustrated in figure 3.3. These air bubbles
act as barriers to prevent fish from escaping. Morever, it has been observed that
the behavior of bubbles is performed in conjunction with another mechanism
so-called encircling of prey. In this mechanism, the whales dive down and then
begin to create bubbles and swim toward the surface in a spiral shape around the
prey within a shrinking circle.

Similar to previous algorithms, WOA uses a random population of agents

Figure 3.3: Bubble-net hunting behavior of humpback whales [Mirjalili 2016a]

(solutions) and uses three mechanisms to improve the position of the candidate
solutions. The encircling mechanism and the spiral model are incorporated
for ensuring the exploitation phase, whereas the searching for prey mechanism
maintains the exploration phase. The mathematical formulas of WOA algorithm
are described in the following paragraphs:

• Searching and encircling prey
The whales attempt to hunt prey by encircling them. Hence, they update
their positions with respect to the best hunting agent as follow:

D = |C.X∗(t)−X(t)| (3.8)
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X(t+ 1) = X∗(t)−A.D (3.9)

where, X(t) the current position and X∗(t) is the best solution obtained so
far. A and C are two vectors given as:

A = 2a.r − a (3.10)

C = 2.r (3.11)

r ∈ [0, 1] and a linearly decrease from 2 to 0 during iterations. If |A| < 1, the
algorithm promotes the exploitation phase. If |A| ≥ 1, the exploration phase
is favored to perform a global search. Thereby, whales update randomly
their positions according to the following equations:

D = |C.Xrand −X(t)| (3.12)

X(t+ 1) = Xrand −A.D (3.13)

Xrand is a point in the search space chosen randomly.

• Spiral model
To imitate the helix-shaped movement, the whales update their positions by
using a spiral equation as follow:

X(t+ 1) = X∗(t) +D.ebk. cos(2π.k) (3.14)

D = |X∗(t)−X(t)| (3.15)

D is the distance between the current position and the target prey. k is a
random number between -1 and 1 and b is a constant to define the spiral
shape.

Whales swim around the prey in a shrinking circle along a spiral-shaped path,
this behavior can be formulated mathematically as follows:

X(t+ 1) =

X∗(t)−A.D if(p < 0.5)

X∗(t) +D.ebk. cos(2π.k) if(p ≥ 0.5)
(3.16)

where, p is a random number between 0 and 1, which indicates that there is
probability of 50% to choose between the shrinking encircling mechanism and the
spiral system.
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The whale optimization algorithm has been shown to be powerful in searching
for an optimal solution. Indeed, despite its recent appearance, it has been widely
used successfully in different fields such as image processing [Hassan 2018] and
electrical engineering [Saha 2017].

3.7 Chapter summary

This chapter has been devoted to explain the basic concepts of optimization
problem. This latter is, quite simply, a mathematical modeling of a real-world
problem in the form of an objective function subject (or not) to constraints. The
resolution of an optimization problem consists in finding the global optimum
while respecting the constraints. Due to the NP-completeness nature of opti-
mization problems, there is no exact method able to solve them in reasonable
computing time. Thereby, many approximate methods have been proposed, in
particular the so-called population-based metaheuristics.

Population-based metaheuristics are based on a stochastic search and manip-
ulate a set of solutions. They have demonstrated a high ability to achieve very
satisfactory results in reasonable computation costs by incorporating different
diversification and intensification techniques. The aim of diversification tech-
niques (exploration) is to encourage the algorithms to explore more extensively
the search space, while the intensification techniques (exploitation) attempts to
improve the searching ability to focus on promising regions.

Finally, it should be note that all concepts, definitions and approaches pre-
sented in this chapter are related only to single-objective problems. The next
chapter will be devoted to one of the most difficult problems which are the
multiobjective optimization problems.
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4.1 Introduction

In reality, real-world problems are rarely formulated as a single-objective opti-
mization problems because the most problems in practice involve a multiplicity
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of criteria rather than single criterion [Deb 2014]. For example, a business owner
follows a policy which aimed at increase its profits by minimizing the production
cost and maximizing the products quality. This policy involves two criteria, cost
and quality, which are clearly contradictory. Indeed, greater product quality often
requires higher production costs. Conversely, reducing the costs can results in
poor product. In this case, we talk about multi-criteria problem or multiobjective
optimization problem.

Multiobjective optimization find its roots in the 19th century in the economic
works of Edgeworth and Pareto [Talbi 2012], and since then, it has known an
increasing application in several areas. As its name indicates, multiobjective
optimization involves several objective functions that are often in conflict. Unlike
single-objective optimization where the solution is unique, solving multiobjective
optimization problems (MOPs) consists of finding a set of solutions called optimal
Pareto solutions. This set represent the best trade-off in which the solutions are
balanced based on a dominance relationship. ”Balanced solutions” terms means
that improving one solution cannot be done without decreasing at least one other
solution, which makes the resolution of multiobjective optimization problem
more difficult compared to single-objective problem.

4.2 Concepts

We provide in this section the mathematical foundations of multiobjective opti-
mization and the basic concepts related to this research field, in particular, the
so-called Pareto dominance notion.

4.2.1 Multiobjective optimization problem formulation

A multiobjective optimization problem (MOP) is defined as a problem for which
we attempt to optimize several objective functions while respecting a set of
constraints. In mathematical terms, MOP can be formulated as:

Optimize F (x) = [f1(x), f2(x), ..., fm(x)], m ≥ 2

gi(x) ≤ 0, i = 1, 2, ..., n

hj(x) = 0, j = 1, 2, ..., k

xL ≤ x ≤ xU , x ∈ S

(4.1)
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F (x) is a vector composed of m objective functions, hi(x) are the equality con-
straints, gj(x) are the inequality constraints. x is the vector of decision variables.
xL and xU are, respectively, the lower and upper bounds of the decision variables.
S represents the set of feasible solutions associated with all the constraints and the
decision space. On the other hand, we denote by Y = F (S) the objective space
which corresponds to the image of the feasible space S by the objective function
F . In addition, we distinguish by fitness the value of the solution s in the objective
space Y .

Unlike single-objective optimization problems where the comparison relation
is of total order. If s1 and s2 are two candidate solutions, s1 is better than s2 if
only if f(s1) ≤ f(s2). In MOP, there is no unique solution, but a set of solutions in
which a solution may be better than another on some objectives and worst on the
remaining ones. Consequently, the total order relation when comparing between
solutions is not useful and another partial order relation should be defined.

4.2.2 Pareto dominance

The concept of Pareto dominance is of fundamental importance in multiobjective
optimization when comparing between solutions [Emmerich 2018]. Let u and v

be two candidate solutions, we say that u dominates v (denoted by u ≺ v) if and
only if:

∀i ∈ {1, 2, ...,m} : fi(u) ≤ fi(v) and ∃j ∈ {1, 2, ...,m} : fj(u) < fj(v) (4.2)

with, m is the number of objective functions. Figure 4.1 illustrates this dominance
relation between five solutions where f1 and f2 two objective functions to be min-
imized.

In this example, the fitness value of x2 is lower than that of x4 and x5 on the
two objective functions f1 and f2. In this case we say that x4 and x5 are dominated
by x2. In addition, the solutions x1, x2 and x3 are nondominated by any other
solution because there is no solution that dominates them on both objective func-
tions.

Définition 4.1 (Pareto optimality) A given solution u is called Pareto optimal solution
if it is not dominated by any other solution in the feasible search space:

6 ∃v ∈ S | u ≺ v (4.3)
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Figure 4.1: Pareto dominance relationship between five solutions

The set of Pareto optimal solutions (or even called nondominated solutions) form the
Pareto set PS:

PS = {u ∈ S| 6 ∃v ∈ X,u ≺ v} (4.4)

Définition 4.2 (Pareto front) The projection of Pareto optimal set (PS) by the objective
function F in the objective space Y is called Pareto Front PF :

PF = {F (x)|x ∈ PS} (4.5)

Figure 4.2: Illustration of the Pareto front
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4.3 Difficulties of multiobjective problem

The main difficulty of MOP is not due only by the fact that it need the optimization
of a multiplicity of criteria, but also because the conflicting design of its objectives.
An improvement in one objective degrades the quality at least one of the other ob-
jectives. For such situation, there is no single solution, but a set of solutions called
Pareto solutions. However, faces of the absence of an exact approach, the general
goal of solving MOP is to find a solutions surface very close to the Pareto front.
We talk about the convergence towards the true Pareto front.

On the other hand, having a surface very close to the Pareto front is not enough
to judge the performance of the resolution method. Indeed, for a given surface,
if the choice of a solution risks to considerably decreasing the quality of other ob-
jective, this solution is not useful for the decision-maker although it is a Pareto
optimal solution. Therefore, it is probably that the solutions are localised in spe-
cific zone of the surface. In this case, the solutions are poorly distributed. So, we
talk about the diversity of solutions along the Pareto front.

To sum-up, when solving multiobjective optimization problem, two major chal-
lenges are taken into account [Talbi 2012]; [Deb 2014]. Firstly, the convergence
which consists of finding the front closest to the true Pareto front. Secondly, main-
taining the diversity which consists of obtaining well distributed solutions along
the obtained front. These two concepts are illustrated in figure 4.3.

Figure 4.3: Challenges of MOP: (a) diversity (b) convergence (c) true PF

4.4 Classification of multiobjective optimization methods

Due to the growing interest of multiobjective optimization and its usefulness in
the real-world, a large number of resolution methods have been proposed which
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can be grouped into two types of classification. The first classification adopts
a user (or decision-maker) perspective while the second classification adopts a
designer perspective.

4.4.1 User’s perspective classification

In this classification, the decision-maker can intervene in different steps of the op-
timization process and choose the method that appears better with respect to his
preferences and its desired tasks. There are three possible schemes [Hwang 1980]
connecting the decision-maker with the solver according to the intervention level
of the decision-maker and its cooperation degree with the optimization method:

• Priori methods
These methods attempt to combine the different objective functions into
single utility function based on the preferences of the decision-maker.
This amounts to convert the multiobjective problem into single-objective
problem. The priori methods enable to the user to specify its preferences in
terms of goals or relative importance of different objectives [Marler 2004]. In
this case, a prior knowledge is necessary about the problem and about the
weight of each objective.

• Posterior methods
This type of methods try to offer a set of solutions for the decision-maker
which choose the most preferred configuration among the offered alterna-
tives.

• Progressive or interactive methods
The presence of the decision-maker is essential during the optimization
process in order to progressively informing the solver. They enable the
decision-maker to provide its preferences during the optimisation process
[Rostami 2017]. Therefor, the decision-maker preferences are well taken into
consideration so that the most preferred solutions can be achieved.
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4.4.2 Designer perspective classification

These methods are classified with respect to the processing manner of the objective
functions. We distinguish aggregated methods, non-Pareto methods and Pareto
dominance-based methods.

• Aggregated mathods
These methods consist in transforming the multiobjective problem into a
single-objective problem by combining the set of objective functions fi into
single-objective function F . There are many aggregation methods such as
goal programming [Narasimhan 1980] and min-max method [Rao 1987].
However, The commonly used aggregation is based on the weighted sum
which uses an additive model and assigns a weight coefficients which
determine the relative importance of each objective function, then summing
them [Jin 2002] :

F (x) =
m∑
i=1

wifi(x) (4.6)

wi : the weight assigned to the objective function fi with, wi ≤ 0 and∑m
i=1wi = 1. The aggregated methods are considered as naive methods,

simple and easy to understand. In addition, by the fact that the initial
problem is transformed into a single-objective problem, a classical resolu-
tion method is sufficient for solving it. However, prior knowledge on the
problem is necessary in order to establish the correct weight of each objective.

• Non-Pareto mathods
Unlike aggregated methods, these methods do not transform the original
problem into a single-objective problem. Non-Pareto methods (also called
non-aggregated methods) attempt to deal with the different objectives
separately. One of the most known non-aggregated methods is the Vector
Evaluated Genetic Algorithm (VEGA) proposed by [Schaffer 1985].

• Pareto mathods
The Pareto methods are based on Pareto dominance criterion when com-
paring between solutions. Further, they refuse to separate the objective
functions and try to optimize them simultaneously. These methods will be
detailed in the next section.
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4.5 Pareto dominance-based multiobjective methods

Let us remember that the major goal of any multiobjective optimization method
is to maintains both hight convergence and wide diversity of the obtained front.
Pareto-based approaches could achieve this aim through the use of the optimality
Pareto concept in cooperation with different techniques. This type of approaches
generate a set of balanced solutions, that is to say, they are not dominated between
them. Thus, no solution is better than the others on the whole criteria of the
problem. The choice of the final solution is left to the decision-maker.

In reality, the major effort of scientific community has focused on Pareto-
based multiobjective algorithms. However, the most popular and appropriate
algorithms for handling MOPs remain, without a doubt, those that comes from
metaheuristics based on evolutionary theories such as GAs and PSO. Pareto-based
algorithms are commonly grouped on non-elitist algorithms and elitist algorithms.

4.6 Non-elitist algorithms

The term ”non-elitist” means that the elite individuals (Pareto optimal solutions)
found during the iterations are not kept. Thus, some relevant solutions might be
lost and the convergence towards the Pareto front becomes slower.

4.6.1 Multi Objective Genetic Algorithm (MOGA)

Multi Objective Genetic Algorithm (MOGA) introduced in [Fonseca 1993] is one
of the non-elitist algorithms which has a great ability to explore diverse regions of
the search space. MOGA algorithm adopts a rank-based fitness assignment which
consists to attribute a Pareto rank to each individual in the population based on
the number of individuals which dominates it.

Given an individual xi at the iteration t, dominated by pi(t) individuals. The
rank of this individual is:

rank(xi, t) = 1 + pi(t) (4.7)

All non-dominated individuals (that is to say pi(t) = 0) are attributed rank 1.
Inversely, the dominated individuals are attributed to a high rank. Then, a fitness
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value is assigned to each individual so that individuals with the lowest ranks have
the best fitness. The traditional fitness assignment may be described as follows:

1. Sort the population according to the rank.

2. Assign the fitness of individuals by interpolation from the best (rank 1) to
the worst (rank n) using a scaling function usually linear.

The high pressure exerted by this selection strategy risks to converge towards a
single region in the front. To avoid this problem, the authors propose to integrates
a sharing function in the fitness value calculation within the objective space
rather than the search space in order to uniformly distribute the solutions along
the obtained front. MOGA is considered to be an easy algorithm to implement
and provides good results. However, MOGA is strongly sensitive to the σshare
parameter of the sharing function.

4.6.2 Niched Pareto Genetic Algorithm (NPGA)

This algorithm utilize the concept of Pareto dominance and binary tournament
selection operator in conjunction with sharing function [Horn 1994]. In NPGA,
two individuals are chosen randomly and compared against subpopulation of
size tdom also chosen randomly. If one of the individuals is not dominated, it
will be selected to be present in the next population. If the two individuals
are non-dominated or dominated, a sharing function (or niching) is applied to
determine the winner of the tournament competition while ensuring well spread
of solutions. To achieve this, NPGA accepts a degradation of an individual’s
fitness fi according to the nich count mi (i.e, the number of individuals contained
in its niche):

Sharing − fitness =
fi
mi

(4.8)

mi =
∑N

j=1 Sh(d(i, j)), with d(i, j) is the distance between two individuals and Sh
is the sharing function given by:

Sh(d(i, j)) =

1− d(i,j)
σshare

if d(i, j) < σshare

0 Otherwise
(4.9)
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Figure 4.4: Sharing function [Horn 1994]

Unlike MOGA algorithm, the comparison and the sharing function are applied
only to a portion of the population which explains the fast convergence of NPGA
algorithm compared to MOGA. However, in addition to the σshare parameter,
NPGA requires another parameter setting which is the subpopulation size tdom.
The authors have shown that a value of 10% can provides good results.

4.7 Elitist algorithms

Elitist algorithms preserve the non-dominated solutions found during the course
of optimization by using an external population called archive [Zitzler 2004];
[Laumanns 2001]. The elitism concept can really improve the performance of
the algorithm [Fieldsend 2003]. However, at some point, the number of Pareto
solutions may exceed the size of the archive. Therefore, an archive update strate-
gies are usually employed to manage the archive and also to maintain the diversity.

4.7.1 Pareto Archived Evolutionary Algorithm (PAES)

The Pareto Archived Evolution Strategy (PAES) [Knowles 1999] is an oldest elitist
optimizer. Instead the use of population of solutions, PEAS utilize one individual
during the search process. To ensure a good approximation towards the Pareto
front, PAES algorithm maintains an external archive of non-dominated solutions
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to estimate the quality of the new candidate solutions.
In PAES, the current solution ci generates by random mutation a new candidate

solution mi. If mi dominates ci, mi is accepted. If ci dominates mi, the generated
solution mi is rejected. If neither solution dominates, the generated solution
mi is compared with the archive members. To generate well-distributed Pareto
frontier, PAES algorithm uses a new grid location based on recursively dividing
the objective space in 2kd hypercube, where k is the number of bisecitons of the
space carried out for each objective and d is the number of objective functions
[Knowles 2000].

Compared to previous algorithms, The PAES algorithm eliminates the use of
the niche size parameter because it incorporates an efficient adaptive grid method
instead the sharing function. Nonetheless, the effectiveness of PAES algorithm is
very sensitive to the subdivision parameter of the objective space.

4.7.2 Strength Pareto Evolutionary Algorithm 2 (SPEA2)

SPEA2 algorithm was introduced by [Zitzler 2001] at the aim to correct the short-
comings observed in SPEA algorithm proposed by the same authors [Zitzler 1998].
Three major points that make the difference between SPEA and SPEA2: fitness
assignment, density estimation and the archiving strategy.

In addition of the main population P , SPEA2 utilize an external archive A of
fixed-size Tmax that stores the non-dominated solutions, and it adopts an efficient
fitness assignment strategy which take into consideration, for each individual,
both the individuals it dominates and individuals by which it is dominated. At
each iteration and for each individual i in the set (P ∪ A), the algorithm calculate
the strenght value S(i) representing the number of solutions it dominates:

S(i) = |{j/j ∈ {P ∪A}, i dominate j}| (4.10)

Then, the raw fitness R(i) is calculated using S(i) value :

R(i) =
∑

j∈{P∪A},j dominate i

S(j) (4.11)

R(i) = 0 corresponds to a nondominated solution. In order to preserve the
diversity of the population, the authors propose to added a density estimation
measure D(i) to the raw fitness R(i), which yields the final fitness F (i):

F (i) = R(i) +D(i) (4.12)
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where, D(i) is estimated by the kth nearest neighbor method as follows:

D(i) =
1

σki + 2
(4.13)

σki is the distance between individual i and the kth nearest neighbor, with
k =
√
N + Tmax.

Figure 4.5: Truncation method used in SPEA2 [Zitzler 2001]

To update the archive, SPEA2 uses a truncation technique while improving the
spread of non-dominated solutions. The first step is to copy all the non-dominated
individuals from population P and archiveA to the archive of the next generation.
If the number of non-dominated individuals is less than the archive size, the best
dominated individuals in (P ∪ A) are inserted in the archive. If the number of
non-dominated individuals exceeds the archive size, the truncation procedure is
invoked for iteratively removes the individual which has the minimum distance
to another individual. If there are several candidate solutions with the same min-
imum distance, the decision is made by considering the second smallest distance.
This truncation procedure is illustrated in figure 4.5 for an archive size of five ele-
ments. Further, algorithm 4.1 provides the pseudocode of SPEA2.

4.7.3 Non Dominated Sorting Genetic Algorithm (NSGA2)

On of the most popular and the most cited multiobjective algorithms in the litera-
ture is the famous Non Dominated Sorting Genetic Algorithm (NSGA2) proposed
by [Deb 2002a]. The basic idea of NSGA2 is the use of a fast-non-dominated
sorting ranking scheme to create several non-dominated fronts in order to de-
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Algorithm 4.1: SPEA2 algorithm

1 Initialize population P
2 Create empty external archive A, |A| = N
3 for i = 1 to MaxIter do
4 Evaluate each individual in P and A
5 A=Nondominated(P ) ∪Nondominated(A)
6 if |A| < N then
7 Complete the archive A with dominated solutions in P
8 else
9 Remove elements from A using the truncation operator

10 end
11 Perform binary tournament selection
12 Apply crossover and mutation
13 end

termine the rank of each individual in the population. For each solution i, the
non-dominated sorting procedure starts by calculating the number of solutions
ni that dominate the solution i and determine the set of solutions Si dominated
by the solution i. The solutions with ni = 0 form the first level F1. Then, for each
element i in F1, nj value should subtract 1 (nj = nj − 1 with j ∈ Si). Each solution
j whose nj = 0 is saved in a separate list H . Therefore, The solutions contained in
the list H form the second level F2. The same reasoning is followed and applied
on the members of the list H to identify the third level. This procedure is repeated
until all solutions are processed and all fronts are identified.

To maintain the diversity in the population, NSGA2 uses a new crowded-
comparison operator based on a novel density measure called ”crowding
distance”. As shown in figure 4.6, the crowding distance try to estimate the
density of solutions surrounding a particular solution by computing the average
side-length of the cuboid formed by the two points closest to this solution.
Accordingly, each individual i is characterized by two attributes:

• irank which corresponds to the front in which the individual i belongs (if the
individual i belongs to the front F1 it is assigned an irank = 1).

• idistance which represents the crowding distance of the individual i.
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So, the crowded-comparison operator (denoted by ≺n) is defined as :

i ≺n j if (irank < jrank) ∨ ((irank = jrank) ∧ (idistance > jdistance)) (4.14)

In other words, when comparing between two solutions, the chosen solution is
the one with the lower rank. If the two solutions have the same rank, the chosen
solution is the one with highest crowding distance, which enable to obtain well
distributed Pareto front.

Figure 4.6: Crowding distance calculation

Algorithm 4.2 provides the pseudocode of NSGA2. At each generation t, an off-
spring population Qt of size N is generated from the parent population Pt of iden-
tical size. The two populations are combined in an external populationRt = Pt∪Qt
of size 2N . The individuals of this population are then sorted into different front
levels using non-dominated sorting method to create the next population Pt+1 by
integrating successively the fronts Fi, starting from the first front F1 to the last
front. However, the population Rt is of size 2N and Pt+1 is of size N . Therefore,
all the fronts cannot be integrated into Pt+1. Indeed, (N − |Pt+1|) solutions are
selected from the last front (to be preserved) to complete the population Pt+1. To
do this, the solutions of the front to be preserved are organized in descending or-
der according to their crowding distance. Then, the best (N − |Pt+1|) solutions are
selected. This selection maintains the elitism concept while preserving the non-
dominated solutions found during iterations. Finally, the new parent population
Pt+1 is subjected to crossover and mutation operators to reproduce the new off-
spring population Qt+1.

NSGA2 replaces the sharing function with a non-parametric density estimator.
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In addition, it uses an effective and fast elitist strategy that allow, on the one hand,
to reduce the complexity of the algorithm to O(mN2), and on the other hand, to
get closer to the true Pareto front and preserve diversity without using an external
archive. NSGA2 algorithm is considered as a reference algorithm and it is widely
used not only for solving multiobjective optimization problems, but also as bench-
mark to test against.

Algorithm 4.2: NSGA2 algorithm

1 Generate P0 at random
2 P0 = (F1, F2, ...) = fast− nondominated− sort(P0)
3 Q0=(Selection, Crossovor, mutation)(P0)
4 |P0|=|Q0| = N
5 t = 0
6 while t < MaxIter do
7 Rt = Pt ∪Qt
8 F = fast− nondominated− sort(Rt)
9 Pt+1 = ∅ and i = 1

10 while |Pt+1|+ |Fi| < N do
11 crowding − distance− assignment(Fi)
12 Pt+1 = Pt+1 ∪ Fi
13 i = i+ 1

14 end
15 Sort(Pt+1,≺n)
16 Pt+1 = Pt+1 ∪ Fi[1 : (N − |Pt+1|)]
17 Qt+1=make-new-pop(Pt+1)
18 t = t+ 1

19 end

4.7.4 Multiobjective Particle Swarm Optimization (MOPSO)

Although there are many multiobjective versions of Particle Swarm Optimization
(see survey papers [Reyes-Sierra 2006]; [Zhou 2011]), but the Multi-Objective
Particle Swarm Optimization (MOPSO) proposed in [Coello 2004] that we will
present below, is considered as the most popular multiobjective PSO-based and
the most cited in the literature.

MOPSO integrates the Pareto optimality into the PSO to make it able to handle
several objective functions. As well, it maintains a fixed-size repository (archive)
to save the best flights performed by the particles so far. The repository is then
used to guide the swarm towards the Pareto front. In order to avoid stagnation in
a local front, the authors propose to apply a turbulence operator (mutation) while
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increasing the exploration ability of PSO.

Figure 4.7: Illustration of adaptive grid procedure [Coello 2004]

To update the archive, the algorithm incorporates a controller whose role is to
accept a solution to be inserted in the archive, or to eliminate some solutions from
the archive. Each candidate solution is compared with the elements of the archive.
If the archive is empty, the solution is accepted. If the solution is dominated by
an element of the archive, it is therefore rejected. If this solution dominates some
elements of the archive, these elements will be deleted from the archive. Finally, if
the external archive reaches its maximum size, the most crowded solutions should
be removed using an adaptive grid procedure.

To maintain the diversity of the swarm, MOPSO algorithm uses an adaptive
grid (similar to PAES algorithm) represents the space formed by hypercubes that
can be interpreted as a geographic regions having several solutions. The particles
of the external population can be inserted outside the current limits of the grid.
In this case, the grid is recalculated again with each addition of non-dominated
solution (see figure 4.7).

Remember that in the standard PSO, the particles always try to follow the best
particle gBest in the swarm. In MOPSO, the gBest (called leader) is selected by
dividing the explored space into hypercubes. Each hypercube is assigned a fitness
value that is inversely proportional to the number of particles it contains. Then, a
selection by roulette is first applied on the fitness values to identify the hypercube
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from which the leader will be choosen. Once the hypercube is identified, a random
selection is performed to choose the leader.

Algorithm 4.3: Pseudocode of a general MOPSO [Reyes-Sierra 2006]

1 Initialize swarm
2 Initialize leaders in an external archive
3 Quality(leaders)
4 g = 0
5 while g < gmax do
6 for each particle do
7 Select leader
8 Update Position (Flight)
9 Mutation

10 Evaluation
11 Update pbest
12 end
13 Update leaders in the external archive
14 Quality(leader)
15 g + +

16 end
17 Report results in the external archive

4.8 Performance metrics

To evaluate the quality of any multiobjective optimizer, several performances
metrics are used to quantify the convergence and the diversity of the obtained
Pareto front, and also to visualize the characteristics of the solutions set obtained.
In our thesis, the following three performance metrics are employed:
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• Inverted Generational Distance metric (IGD)
The IGD-metric [Van Veldhuizen 2000] uses as a reference the true Pareto
front to calculate the distance between each reference point and the nearest
nondominated solution in the Pareto front, and it is formulated as follows:

IGD =

√∑n
i=1 d

2
i

n
(4.15)

where n is the number of solutions in the true Pareto front and di is the
Euclidean distance between the ith solution in the true Pareto front and
the nearest member of the Pareto front obtained by an algorithm. The
IGD-metric is frequently used to measure the convergence of the Pareto
front obtained by an algorithm.

• Spacing (Sp) metric
In order to quantitatively compare the algorithms in terms of diversity, the
Spacing (Sp) metric is commonly used to estimate how far the obtained
non-dominated solutions are evenly distributed [Schott 1995]. Sp-metric is
defined as:

Sp =

√√√√ 1

n− 1

n∑
i=1

(d̄− di)2 (4.16)

where di is defined as:

di = minj(
m∑
k=1

∣∣f im − f jm∣∣) (4.17)

i, j = 1...n and n is the number of solutions in the front obtained by the
algorithm, d̄ is the average of all di and m is the number of objective
functions.
It should be noted that the smaller values of IGD and SP indicates better
performance to the compared algorithm.

• Set coverage metric C
This metric is usually employed for comparing between two non-dominated
Pareto sets A and B and is given as follows :

C(A,B) =
|{b ∈ B|∃a ∈ A : a � b}|

|B|
(4.18)
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This quantity corresponds to the proportion of the solutions of the set B,
that are weakly dominated by at least one solution of A. It should be noted
that C(A,B) is not necessarily equal to 1 − C(B,A). To compare A and B

sets, both values of C(A,B) and C(B,A) must be calculated.

4.9 Chapter summary

This chapter offers a brief state-of-the-art on multiobjective optimization problems
(MOPs) and their resolution methods. Over the past two decades, MOP has be-
comes the interest’s center of many researchers because the majority of real-world
problems involve multiple contradictory criteria. For a long time, the conversation
of multiobjective problem into a single-objective problem was the most intuitive
and simplest reasoning to solve such problem. However, this method requires
prior knowledge about the problem, which is not always the case. Furthermore,
these methods are turns out to be useless and ineffective because they are not able
to provides a set of solutions and they cannot optimize simultaneously whole the
objective functions. These drawbacks gave birth to other methods which do not
requires any prior knowledge on the problem and optimize simultaneously entire
the objective functions while obtaining a set of optimal solutions.

Pareto-based algorithms can obtain a set of solutions closer to the Pareto
optimal solutions and they are able to distribute uniformly the obtained set in
the search space. Consequently, they offer to the decision-maker a set of relevant
and useful trade-off configurations. In the last decades, several Pareto-based
algorithms have been proposed, and which have showed a great performance,
in particular, those which maintain the elitist concept. These algorithms use
often an external memory to store the best configurations and apply different
updating techniques in order to converge towards promising regions in terms of
convergence and diversity.

In the remain, we will present the two contributions that we have achieved
during this thesis. Therefore, the next chapter is devoted to the multiobjective
optimization method that we have developed. The last chapter is dedicated to the
application of the proposed algorithm on machine learning.
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5.1 Introduction

In the last few years, several population-based algorithms have been proposed
for solving multiobjective optimization problems such as NSGA2 [Deb 2002a] and
SPEA2 [Zitzler 2001]. The remarkable success of these algorithms has motivated
researchers to propose other alternatives. For example, Multiobjective Evolution-
ary Algorithm Based on Decomposition (MOEA/D) proposed in [Zhang 2007]
where the MOP is decomposed into a set of single objective optimization subprob-
lems. The objective of each subproblem is a (linearly or nonlinearly) weighted
aggregation of the individual objectives. Neighborhood relations among these
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subproblems are defined based on the distances between their aggregation weight
vectors. In MOEA/D, each subproblem is optimized by using the information of
its neighboring subproblems.

Recently, many multiobjective optimization algorithms have been published.
These proposals focus mainly on the extension of exisiting optimization algo-
rithms that are initially developed to solve single-objective problems in order
to make them able to deal with multiobjective optimization problems. Since
the first version multiobjective PSO-based proposed by Moore and Champan
[Moore 1999], several versions of MOPSO have been proposed such as the Swarm
Metaphor [Ray 2002] where Pareto dominance is used and the concepts of evolu-
tionary techniques are combined with PSO. To maintain diversity, the crowding
technique is applied and multilevel sieve is employed to handle constraints.
Nondominated Sorting Particle Swarm Optimizer (NSPSO) proposed in [Li 2003]
incorporates the main mechanisms of NSGA2 into PSO. This algorithm combines
the population of particles and the best personal position of each particle into a
temporary population, and from this population, the best are selected to form
the next population. To maintain diversity, NSPSO applied both the niche count
and the crowding distance. Ant Colony Optimization (ACO) [Dorigo 1991] was
also originally proposed to deal with single-objective optimization problems
and which was afterward extended to solve MOPs [Alaya 2007]; [Angus 2007];
[Doerner 2004].

Over the past years, other multiobjective optimization algorithms have been
published, the basic and common idea of these proposals is simply: extending of
existing algorithms developed initially to solve single-objective problems in ordre
to be able to deal with multiple objectives by incorporating different techniques
and mechanisms. Among them we can cite the following algorithms: Multi-
Objective Cat Swarm Optimization (MOCSO) [Pradhan 2012] by extending the
Cat Swarm Optimization (CSO) [Chu 2006]. Multi-Objective Grey Wolf Optimizer
(MOGWO) [Mirjalili 2016b] which is another prominent work which extend the
recent Grey Wolf Optimizer (GWO) [Mirjalili 2014].

This chapter proposes a new multiobjective optimization algorithm called
A Guided Population Archive Whale Optimization Algorithm (GPAWOA) by
extending the recent nature inspired Whale Optimization Algorithm (WOA)
[Mirjalili 2016a] to deal with multiple objectives. In this algorithm, we integrate
the concepts of Pareto dominance, updating strategy and density estimation
into the standard WOA. The rest of the chapter is organized as follows: The
proposed GPAWOA is detailed in section 5.2. Section 5.3 summarizes extensive
experimental evaluation.
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5.2 The proposed algorithm

In the following, we present the proposed algorithm GPAWOA which is based on
the Pareto dominance and employs an external archive as a repository to store the
nondominated solutions found so far and to guide the main population towards a
well accurate approximation of the true Pareto front. Over the course of iterations,
the number of nondominated solutions increase rapidly, therefore, the size of
the archive also increase and this affects, definitely, on the complexity of the
algorithm. To avoid this problem, the external archive is limited to a maximum
size Tmax.

For a good performance in terms of convergence and diversity, two important
strategies are taken into account when designing our algorithm:

i Adopting an efficient strategy of updating the external archive in order to
improve the convergence of the obtained front.

ii Adopting an efficient leader selection strategy in order to guide the popula-
tion agents towards promising and sparse regions within the search space.

To obtain an uniform distribution of the nondominated solutions, these two
strategies employ the mechanism of crowding distance computation as a diversity
criterion. Additionally, the crowding distance is used again in the deletion
operation from the archive whenever it is full.

5.2.1 Updating the archive

The archiving strategy is an important step for a good performance of any
multiobjective algorithm. In our algorithm, the archive is updated as follows:
at each iteration, we create a repository which contains the union of the current
population and the current archive, then we determine all the nondominated
solutions of this repository, and store them in the new archive. In this way, we
ensure that the external archive prepared to the next iteration contains only the
nondominated solutions.

After updating the archive, the number of nondominated solutions might
exceed the maximum size of the archive Tmax. In this case, we use the crowding
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distance technique to reduce the size of the archive to its maximum size as follows:

i The crowding distance of each nondominated solution in the archive is cal-
culated.

ii The nondominated solutions are sorted in the archive in decreasing order
according to their crowding distance.

iii The most crowded solution is removed from the archive, this step is repeated
until the archive reaches its maximum size Tmax.

Figure 5.1: flowchart of the archiving strategy

5.2.2 Density estimator

In order to maintain uniformly distributed solutions in the obtained front, we in-
corporate a widely-used crowding distance computation mechanism [Deb 2002a]
as a density estimator of solutions surrounding a particular solution in the archive
by computing the average side-length of the cuboid formed by the two nearest
neighbors of this solution (see figure 4.6 in chapter 4).

The distance of each solution in the archive is initialized to 0. For each objec-
tive m, the nondominated solutions are sorted in ascending order according to
their values in the objectivem. The boundary solutions which have the lowest and
highest objective values are assigned an infinite crowding distance. The crowding
distance of the other solutions in the archive is calculated by computing the dif-
ference between the two nearest neighbors of the solution for the corresponding
objective function m, and sums it to the solution crowding distance.
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Algorithm 5.1: Crowding distance computation algorithm

1 A is the external archive
2 I = |A|
3 for i ∈ A do
4 A[i]distance = 0
5 end
6 for each objective m do
7 A=Sort(A,m)
8 A[1]distance = A[I]distance =∞
9 for i = 2 to (I − 1) do

10 A[i]distance = A[i]distance + (A[i+ 1]m −A[i− 1]m)
11 end
12 end

To produce well-distributed solutions on the obtained front, our approach
uses the crowding distance computation in two steps of the algorithm:

Step 1. In the archiving strategy (as discussed previously).

Step 2. In the leader selection, we use the crowding distance once again to choose
a leader from the archive in order to guide the population towards well-
spread regions.

5.2.3 Leader selection strategy

The leaders are the individuals that guide the population towards a better ap-
proximation of the true Pareto front and towards well-distributed regions, which
makes the selection of an appropriate leader a crucial step to further improve the
performance of the algorithm. In GPAWOA, the leader is selected as follows:

• Calculate the crowding distance of each solution in the external archive.

• Sort the archive members in descending order according to their crowding
distance.

• Determine the higher part of the sorted archive (highest 10 % of the sorted
archive) which contains the less crowded solutions.
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• From the upper part of the sorted archive determined in the previous step,
select randomly a solution as a leader for each individual to guide it towards
the least crowded space in order to improve the spread of the achieved
Pareto front.

We note that the mathematical model used to update the individuals position
is similar to that used in the standard WOA, the difference is in the Equations
(3.8, 3.9, 3.15 and 3.14 in chapter 3) where the best solution X∗ becomes the leader
chosen from the archive, so these equations can be rewritten as follows:

D = |C.leader(t)−X(t)| (5.1)

X(t+ 1) = leader(t)−A.D (5.2)

D = |leader(t)−X(t)| (5.3)

X(t+ 1) = leader(t) +B.ebk. cos(2π.k) (5.4)

5.2.4 Outlines of GPAWOA algorithm

The algorithm 5.2 summarizes how the Guided Population Archive Whale
Optimization Algorithm (GPAWOA) works.

The GPAWOA algorithm starts by generating randomly the set of search
agents. Based on the concept of Pareto dominance, the algorithm identifies the
nondominated solutions and store them in the external archive. After preparing
the archive to the first iteration, the algorithm enters in the main loop: In each
iteration, the crowding distance of each solution is calculated, and then all the
nondominated solutions are sorted in descending order with respect to their
crowding distance. For each search agent, the A,C parameters are updated
using Equations 3.10 and 3.11 respectively. Then, the algorithm selects randomly
a leader for the current search agent from the top part of the sorted archive.
Depending on the values of p and A, the algorithm switches between three cases
to update the position of the current search agent using Equations 5.2, 3.13 and 5.4
(as shown in Algorithm 5.2). After updating the position of all the search agents of
the population, the algorithm updates the archive and checks whether the archive
is full or not to prune it to its allowable size Tmax. This main loop is repeated until
the maximum number of iterations iter_max is reached. Finally, the algorithm
returns the external archive which contains the final Pareto front.
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Algorithm 5.2: Pseudocode of GPAWOA

1 Initialize the whales population Xi = (1, 2, ..., n)
2 Evaluate each search agent in Xi by calculating its fitness value
3 Initialize Archive Ar (with maximum size equal to Tmax)
4 while t < iter_max do
5 Calculate the crowding distance of each solution in Ar
6 Sort Ar in descending order according to crowding distance values
7 for each search agent do
8 update a,A,C, k and p
9 randomly select a leader from the top part of the sorted archive.

10 if (p < 0.5) then
11 if (|A| < 1) then
12 calculate D using Equation 5.1
13 update the position of the current search agent by using the

Equation 5.2
14 else
15 select a random search agent Xrand

16 calculate D using Equation 3.12
17 update the position of the current search agent by using the

Equation 3.13
18 end
19 else
20 calculate D using Equation 5.3
21 update the position of the current search agent by using the

Equation 5.4
22 end
23 end
24 update the Archive Ar.
25 if (the archive Ar is full) then
26 calculate the crowding distance of each solution in Ar.
27 sort Ar in descending order according to crowding distance values.
28 remove the last solution in the sorted archive Ar.
29 end
30 t = t+1.
31 end
32 Return Ar.
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5.2.5 Complexity of GPAWOA

In terms of computational complexity, GPAWOA performs one loop and two
basic operations when considering the complexity of one iteration. Let N the
number of individuals in the main population and in the external archive, and
M the number of objectives. The loop has an O(N) complexity (the same com-
plexity of the single-objective Whale optimization Algorithm). The first operation
(updating archive) need M(N + N) = 2MN comparisons, so the complexity
of this operation in its worst case is O(MN2). The second operation (crowding
distance computing) has an O(2Nlog(2N)) complexity [Deb 2002a]. Therefore,
the complexity of GPAWOA is max(O(N), O(MN2), O(2Nlog(2N))) = O(MN2).
This complexity is equal to other well-known multi-objective meta-heuristics
such as NSGA-II [Deb 2002a], SPEA2 [Zitzler 2001], MOPSO [Coello 2004] and
MOGWO [Mirjalili 2016b]. However, the complexity of GPAWOA is higher than
that of MOEA/D which is equal to O(mNT ) (T: the number of weight vectors in
the neighborhood) [Zhang 2007].

5.3 Experimental results and comparisons

To evaluate the performance of the proposed GPAWOA algorithm, we use two
sets of benchmark functions taken from the specialized literature : five bi-objective
problems (ZDT-series [Zitzler 2000]) and seven tri-objective problems (DTLZ-
series [Deb 2002b]). The characteristics of muli-objective test functions are listed in
Table 5.1. Moreover, the GPAWOA is applied to four engineering design problems.
In order to know the competitivity of our approach, we compare qualitatively and
quantitatively its results with respect to three well-regarded algorithms: MOEA/D
[Zhang 2007], MOPSO [Coello 2004] and MOGWO [Mirjalili 2016b]. For each test
function, we performed 30 independent runs per algorithm with the parameters
settings summarized in Table 5.2. All algorithms were run using a population size
of 100, an archive size of 100, the number of generations is set to 5000 for ZDT test
functions and 30.000 for DTLZ test functions.

For qualitative comparison, we plot the best Pareto front obtained by all algo-
rithms over the 30 runs. In order to perform the quantitative comparison, three
widely used performance metrics (detailed in chapter 4 section 4.8) are employed
to quantify the convergence and the diversity of the Pareto front obtained by an
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Table 5.1: Characteristics of multi-objective test functions
Bi-objective test function

Test function Characteristics

ZDT1 with a convex front
ZDT2 with a non-convex front
ZDT3 with a discontinuous front
ZDT4 with 221 local Pareto-optimal fronts and therefore is highly multi-modal
ZDT6 with a non-uniform search space

Three-objective test functions

Test function Characteristics

DTLZ1 with a linearl Pareto-optimal front
DTLZ2 with a spherical Pareto-optimal front
DTLZ3 with a many Pareto-optimal fronts
DTLZ4 with Pareto-optimal front has dense set of solutions to exist near the fM − f1
DTLZ5 This problem will verify the ability of MOEA to converge to a degenerated curve.
DTLZ6 This problem has 2M−1 disconnected Pareto-optimal front.
DTLZ7 This problem has Pareto-optimal front which is a combination of a straight line and a hyper-plane.

Table 5.2: Parameters of algorithms
Algorithm Parameters

MOPSO φ1 = φ2 = 2.05, φ = φ1 + φ2, Inertia weight: w = 2

φ−2+
√
φ2−4φ

Personal coefficient: c1 = w ∗ φ1, Social coefficient: c2 = w ∗ φ2,
Number of grids per each dimension: nGrid = 10

MOGWO Grid inflation : α = 0.1, Archive member selection pressure: γ = 2
Grids number per each dimension: nGrid = 10,
Leader selection pressure parameter : β = 4

MOEA/D Subproblems: N = 100, Mutation rates: CR = F = 0.5
Number of neighborsr: T = 10, Distribution index : η = 30
Probability that parent solutions are selected from the neighborhood : δ = 0.9
Maximal number of solutions replaced by each child solution : nr = 1

GPAWOA b = 1, Parcentage which determine the top part of the archive : a = 0.1

algorithm. The algorithms MOEA/D, MOPSO, MOGWO and GPAWOA were run
on Matlab2016b programming environment under 32-bits Windows 8.1, the exper-
imental tests were performed on the same computer: Intel Core i3, 2.39 GHz and
4 GB RAM.

5.3.1 Results on ZDT test functions

The statistical results of IGD and Spacing(Sp) metrics obtained by the different
algorithms after 30 runs are summarized in Tables 5.3 and 5.4 where the best
results (minimum average of each metric) are shown in boldface. In addition, we
illustrate in figures 5.2-5.6, the graphical Pareto fronts corresponding to the lowest
IGD-value obtained by each algorithm.
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Table 5.3: Statistical results for IGD on ZDT test functions
Algorithm best worst median average Std.

ZDT1
MOEA/D 7.068.E-4 7.154.E-3 9.614.E-4 1.454.E-3 1.581.E-3
MOPSO 6.271.E-4 1.104.E-3 5.791.E-4 5.385.E-4 2.481.E-4
MOGWO 4.866.E-4 7.410.E-4 5.404.E-4 5.641.E-4 2.501.E-4
GPAWOA 4.236.E-4 5.907.E-4 4.223.E-4 4.180.E-4 5.120.E-5
ZDT2
MOEA/D 2.110.E-3 9.195.E-2 2.521.E-2 3.127.E-2 2.371.E-2
MOPSO 6.852.E-4 1.154.E-3 6.114.E-4 7.068.E-4 1.179.E-4
MOGWO 4.112.E-4 7.233.E-4 6.853.E-4 5.341.E-4 1.667.E-5
GPAWOA 4.445.E-4 6.567.E-4 5.074.E-4 4.048.E-4 4.431.E-5
ZDT3
MOEA/D 1.091.E-2 1.935.E-2 1.430.E-2 1.466.E-2 2.958.E-3
MOPSO 4.417.E-3 2.051.E-2 1.120.E-2 1.157.E-2 4.221.E-3
MOGWO 4.823.E-4 7.104.E-4 5.528.E-4 5.600.E-4 1.791.E-4
GPAWOA 1.113.E-3 2.159.E-3 7.113.E-3 1.544.E-3 4.105.E-4
ZDT4
MOEA/D 1.745.E-2 6.297.E-1 8.991.E-2 1.264.E-1 1.336.E-1
MOPSO 4.031.E-2 7.321.E-1 2.638.E-1 2.578.E-1 1.465.E-1
MOGWO 5.977.E-4 7.963.E-4 5.219.E-4 5.353.E-4 1.311.E-4
GPAWOA 4.511.E-4 6.497.E-4 5.408.E-4 4.843.E-4 2.281.E-5
ZDT6
MOEA/D 5.135.E-4 1.598.E-1 8.348.E-4 2.491.E-2 5.191.E-2
MOPSO 3.290.E-4 6.864.E-4 4.833.E-4 4.025.E-4 1.440.E-4
MOGWO 3.067.E-4 7.122.E-4 4.882.E-4 5.042.E-4 1.491.E-5
GPAWOA 3.119.E-4 9.702.E-4 5.975.E-4 6.257.E-4 2.345.E-4

From Table 5.3 which shows the comparison among the four algorithms
considering IGD-metric, it can be seen that our approach accomplished the best
average IGD in ZDT1, ZDT2 and ZDT4 test problems, which means that our
approach outperforms the other algorithms in three among the five test problems.
Figures 5.2-5.3 show the graphical results of ZDT1 and ZDT2 respectively. It
can be seen that GPAWOA produce a good convergence toward the true Pareto
optimal front. For ZDT4 test functions, as it can be easily seen in figure 5.5,
GPAWOA algorithm is significantly better than MOEA/D and MOPSO in terms
of convergence.

Also, the results of Table 5.3 indicate that GPAWOA is better than MOEA/D
and MOPSO on ZDT3 and ranks second after the MOGWO algorithm. In addition,
figure 5.4 which illustrates the Pareto fronts produced by all algorithms on ZDT3,
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Table 5.4: Statistical results for Sp on ZDT test functions

Algorithm best worst median average Std.

ZDT1
MOEA/D 6.407.E-3 2.071.E-2 1.474.E-2 1.466.E-2 4.368.E-3
MOPSO 6.511.E-3 1.120.E-2 8.065.E-3 7.815.E-3 1.703.E-2
MOGWO 5.702.E-3 1.062.E-2 7.612.E-3 7.901.E-3 1.245.E-3
GPAWOA 5.411.E-3 1.025.E-2 7.715.E-3 7.595.E-3 6.022.E-3
ZDT2
MOEA/D 4.497.E-3 2.091.E-2 6.351.E-3 9.802.E-3 5.127.E-3
MOPSO 6.503.E-3 1.410.E-2 7.913.E-3 8.515.E-3 2.171.E-3
MOGWO 6.344.E-3 1.109.E-2 8.046.E-3 8.255.E-3 9.206.E-4
GPAWOA 5.701.E-3 1.042.E-2 7.802.E-3 7.911.E-3 7.015.E-4
ZDT3
MOEA/D 4.034.E-3 3.019.E-2 1.260.E-3 1.381.E-2 8.875.E-3
MOPSO 4.833.E-3 1.230.E-2 6.395.E-3 6.613.E-3 1.402.E-3
MOGWO 9.014.E-3 1.502.E-2 1.107.E-2 1.138.E-2 1.614.E-3
GPAWOA 5.377.E-3 1.608.E-2 1.077.E-2 9.995.E-3 3.366.E-3
ZDT4
MOEA/D 2.405.E-3 3.748.E-2 1.029.E-2 9.234.E-3 9.602.E-3
MOPSO 4.202.E-3 1.005.E-2 6.352.E-3 6.445.E-3 6.321.E-3
MOGWO 6.524.E-3 9.012.E-3 8.445.E-3 8.211.E-3 8.131.E-4
GPAWOA 7.533.E-3 1.039.E-2 8.397.E-3 9.055.E-3 7.867.E-3
ZDT6
MOEA/D 5.914.E-3 9.791.E-3 7.614.E-3 8.112.E-3 1.426.E-3
MOPSO 5.813.E-3 1.327.E-2 7.144.E-3 8.235.E-3 2.805.E-3
MOGWO 6.401.E-3 2.761.E-2 8.160.E-3 1.089.E-2 6.375.E-3
GPAWOA 3.227.E-3 7.146.E-3 7.518.E-3 5.288.E-3 2.605.E-3

show the ability of our approach to approximate the true Pareto front and cover
different disconnected regions.

The behavior of algorithms on ZDT6 test function indicates that GPAWOA is
preferred rather than MOEA/D and is slightly worse compared to MOPSO and
MOGWO. However, since the best result (minimum of IGD) on ZDT6 is obtained
by MOGWO, the best IGD obtained by GPAWOA is getting closer to the best
IGD of MOGWO. Therefore, these results indicate that GPAWOA has a better
convergence ability with respect to the other algorithms.

This conclusion can be confirmed by seeing figures 5.2-5.6. From these figures,
we can see clearly that our approach attains a good convergence on all the five
test functions.
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The statistical results of the Sp metric presented in Table 5.4 show that GPA-
WOA wins on three among the five test functions, and ranks second and third on
ZDT3 and ZDT4 respectively, but with highly competitive results with respect to
MOEA/D and MOGWO. Additionally, the visual comparisons in figures 5.1-5.2
show that the nondominated solutions produced by the proposed GPAWOA al-
gorithm on the test functions ZDT1 and ZDT2, respectively, are well-distributed
along the obtained Pareto front.

Also, we observed that the proposed GPAWOA algorithm can easily obtains a
well-extended Pareto front in ZDT3 and ZDT4 (Figures 5.3 and 5.4). By observ-
ing figure 5.5 which illustrates the Pareto fronts of ZDT6 obtained by GPAWOA,
MOEA/D and MOPSO, we can seen that GPAWOA produce well-distributed non-
dominated solutions within the search space.

Overall, we can say that the performance of GPAWOA is very competitive even
superior on the most bi-objectives test functions when compared with the selected
state-of-the-art algorithms. In the next section, we evaluate the performance of the
proposed algorithm on the tri-objectives test functions, these functions are consid-
ered more difficult than the first test functions.
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5.3.2 Results on DTLZ test functions

The results of IGD and Spacing(Sp) are reported in Tables 5.5 and 5.6 respectively,
whereas Figures 5.7-5.13 illustrate the graphical results produced by each algo-
rithm on DTLZ test functions.

By observing the IGD values obtained by each algorithm in Table 5.5, the

Table 5.5: Statistical results for IGD on DTLZ test functions
Algorithm best worst median average Std.

DTLZ1
MOEA/D 2.045.E-2 3.112.E-1 5.167.E-1 6.140.E-1 5.711.E-2
MOPSO 5.261.E-3 7.580.E-2 1.964.E-2 2.472.E-2 1.912.E-2
MOGWO 4.518.E-2 1.432.E-1 9.962.E-2 9.821.E-2 2.643.E-2
GPAWOA 1.185.E-1 4.277.E-1 3.703.E-1 3.520.E-1 8.868.E-2
DTLZ2
MOEA/D 1.352.E-3 2.014.E-3 1.698.E-3 1.623.E-3 2.018.E-4
MOPSO 3.541.E-3 4.711.E-3 4.197.E-3 4.035.E-3 4.678.E-4
MOGWO 1.934.E-3 7.566.E-3 5.278.E-3 5.023.E-3 6.002.E-4
GPAWOA 1.310.E-3 4.322.E-3 2.549.E-3 2.733.E-3 1.145.E-3
DTLZ3
MOEA/D 8.023.E-1 7.114.E+0 5.166.E+0 6.615.E+0 3.409.E-1
MOPSO 5.155.E-1 4.163.E+0 1.625.E+0 1.423.E+0 5.098.E-1
MOGWO 1.737.E+0 3.518.E+0 3.387.E+0 2.454.E+0 4.580.E-1
GPAWOA 3.102.E-1 2.483.E+0 1.110.E+0 1.379.E+0 6.035.E-1
DTLZ4
MOEA/D 1.455.E-3 8.725.E-3 1.633.E-3 2.341.E-3 2.228.E-3
MOPSO 1.509.E-3 6.277.E-3 5.044.E-3 4.418.E-3 1.795.E-3
MOGWO 2.444.E-3 3.388.E-3 2.563.E-3 2.625.E-3 1.109.E-3
GPAWOA 2.078.E-3 5.118.E-3 2.741.E-3 3.156.E-3 9.845.E-4
DTLZ5
MOEA/D 2.854.E-4 5.995.E-4 3.477.E-4 4.236.E-4 1.137.E-4
MOPSO 2.560.E-4 9.011.E-4 4.225.E-4 5.487.E-4 2.113.E-4
MOGWO 5.416.E-4 7.166.E-4 6.020.E-4 6.309.E-4 1.166.E-4
GPAWOA 1.035.E-4 5.012.E-4 4.136.E-4 3.995.E-4 1.457.E-4
DTLZ6
MOEA/D 3.925.E-4 9.005.E-4 5.097.E-4 4.921.E-4 1.187.E-4
MOPSO 2.915.E-4 5.231.E-2 3.019.E-3 1.259.E-2 1.970.E-2
MOGWO 2.447.E-4 2.514.E-3 1.709.E-3 1.522.E-3 4.097.E-4
GPAWOA 2.038.E-4 5.007.E-4 2.991.E-4 3.257.E-4 1.077.E-4
DTLZ7
MOEA/D 9.322.E-3 4.271.E-2 1.366.E-2 2.227.E-2 1.362.E-2
MOPSO 1.108.E-2 1.157.E-2 1.138.E-2 1.132.E-2 1.075.E-4
MOGWO 8.044.E-4 7.814.E-3 9.106.E-4 1.611.E-3 2.235.E-3
GPAWOA 1.577.E-3 2.861.E-3 1.430.E-3 1.419.E-3 5.087.E-4
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Table 5.6: Statistical results for Sp on DTLZ test functions

Algorithm best worst median average Std.

DTLZ1
MOEA/D 4.321.E-2 5.126.E-2 4.767.E-2 4.530.E-2 3.437.E-2
MOPSO 2.582.E-2 2.042.E-1 4.639.E-2 7.444.E-2 5.650.E-2
MOGWO 5.036.E-2 8.838.E-2 7.389.E-2 7.264.E-2 1.226.E-2
GPAWOA 9.030.E-3 8.160.E-2 2.117.E-2 3.303.E-2 2.628.E-2
DTLZ2
MOEA/D 3.542.E-2 5.081.E-2 4.189.E-2 4.342.E-2 5.221.E-3
MOPSO 2.271.E-2 4.071.E-2 3.411.E-2 3.425.E-2 6.599.E-3
MOGWO 3.306.E-2 4.540.E-2 3.621.E-2 3.782.E-2 4.822.E-3
GPAWOA 2.551.E-2 6.885.E-2 4.281.E-2 4.307.E-2 5.891.E-3
DTLZ3
MOEA/D 1.032.E-2 2.433.E-1 3.189.E-2 1.132.E-1 5.302.E-2
MOPSO 2.876.E-2 6.536.E-2 4.142.E-2 4.510.E-2 1.352.E-2
MOGWO 3.134.E-2 9.140.E-2 7.455.E-2 6.759.E-2 1.871.E-2
GPAWOA 1.945.E-4 2.736.E-2 3.646.E-2 3.117.E-2 8.558.E-2
DTLZ4
MOEA/D 3.691.E-2 5.170.E-2 4.321.E-2 4.435.E-2 4.209.E-3
MOPSO 7.955.E-2 1.285.E-1 4.250.E-2 9.402.E-2 3.111.E-2
MOGWO 4.605.E-2 6.193.E-2 5.120.E-2 5.271.E-2 5.733.E-3
GPAWOA 2.143.E-2 6.301.E-2 3.715.E-2 3.740.E-2 1.975.E-2
DTLZ5
MOEA/D 2.702.E-2 7.453.E-2 4.128.E-2 4.243.E-2 4.822.E-3
MOPSO 6.312.E-2 7.699.E-2 4.174.E-2 7.009.E-2 2.665.E-3
MOGWO 1.451.E-2 2.163.E-2 1.799.E-2 1.754.E-2 2.956.E-3
GPAWOA 4.402.E-3 1.711.E-2 5.143.E-3 9.067.E-3 4.035.E-3
DTLZ6
MOEA/D 9.798.E-3 1.311.E-2 1.212.E-2 1.170.E-2 1.250.E-3
MOPSO 1.022.E-2 4.541.E-2 1.790.E-2 2.045.E-2 1.128.E-2
MOGWO 9.223.E-3 1.270.E-2 1.075.E-2 1.079.E-2 1.445.E-3
GPAWOA 2.667.E-3 5.115.E-3 4.885.E-3 4.052.E-3 1.054.E-3
DTLZ7
MOEA/D 1.781.E-3 3.171.E-3 3.005.E-3 3.027.E-3 9.633.E-3
MOPSO 2.887.E-3 3.809.E-2 3.404.E-2 3.365.E-2 3.387.E-3
MOGWO 3.993.E-3 3.289.E-2 2.641.E-2 2.340.E-2 8.477.E-3
GPAWOA 5.025.E-3 3.499.E-2 1.831.E-2 4.857.E-2 1.130.E-2

proposed algorithm is considered superior to the other algorithms in terms
of convergence by obtaining four best average values of IGD, on DTLZ3 and
DTLZ5-7 test functions, while MOEA/D and MOPSO achieve two and one,
respectively, best average of IGD on the other test functions.

On DTLZ1 test function, GPAWOA performed worst comparing to MOPSO
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and MOGWO (MOPSO was the best performer) and is better than MOEA/D.
The results of IGD on DTLZ2 indicate that the GPAWOA produces better approx-
imation towards the true Pareto front comparing to MOPSO and MOGWO. As
compared with MOEA/D, our algorithm ranks second with highly competitive
results. On DTLZ4, GPAWOA is preferred than MOPSO and it places slightly
blow MOEA/D and MOGWO with a lower standard deviation.

Regarding Spacing(Sp) results highlighted in Table 5.6, it can be seen that our
approach wins on five test functions (DTLZ1 and DTLZ3-6). On DTLZ2 and
DTLZ7, MOPSO and MOEA/D gets, respectively, the best average Sp. However,
it can be noticed that the proposed algorithm produces a results reasonably good
on these two functions. Moreover, we can clearly observe in figure 5.13 that
GPAWOA is able to attain a raisonable distribution of nondominated solutions on
DTLZ7. Figure 5.8 shows the fronts produced by the algorithms on DTLZ2. It can
be seen that GPAWOA is better than MOPSO in term of diversity. On DTLZ5 and
DTLZ6, all the algorithms have a similar behavior except MOGWO on DTLZ5
which failed the Pareto optimal front (see figures 5.11 and 5.12).
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Figure 5.12: Pareto front of DTLZ6: a comparison of the front found by MOEA/D,
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5.3.3 Statistical comparison of Wilcoxon test

To confirm the above conclusions, we applied the statistical comparison called
”Wilcoxon test” [Derrac 2011] to judge, according to p-value and a given sig-
nificance level α, the significant differences between the performances of two
compared algorithms by confirming the null hypothesis H0 (no significant differ-
ence between the results of a pair algorithms) if p_value > α, or the alternative
hypothesis H1 (there’s a significant difference between the results of a pair
algorithms) if p_value ≤ α

We performed the wilcoxon test between GPAWOA and each peer algorithm
(MOEA/D, MOGWO and MOPSO) on the results of the IGD and Sp metrics
obtained for 30 independently runs for each test function, with a significance level
which equals 5%. We present the results of GPAWOA as µ1 and the results of
each peer algorithm as µ2 and we define the following hypotheses for IGD and Sp
metrics:

• H0 : µ1 = µ2, which indicates that the IGD and Sp of GPAWOA are similar
to the IGD and Sp of the other algorithms.

• H1 : µ1 < µ2, which indicates that the IGD and Sp of GPAWOA are smaller
than to the IGD and Sp of the other algorithms.

The results of p-value obtained by Wilcoxon test for the IGD metric, as shown
in Table 5.7, indicate that GPAWOA is equivalent to MOGWO and significantly
outperforms MOEA/D and MOPSO for the most test functions. From Table 5.8,
which shows the results of p-value on the basis of Sp metric, it can be seen that
GPAWOA is comparable to MOGWO and it is performing better than MOEA/D
and MOPSO for large test functions.

Since IGD and Spacing(Sp) are good metrics to measure the convergence and
diversity, respectively, of an algorithm, so from the numerical results of these
metrics and the graphical results and the significant comparison performed using
the wilcoxon test, we can conclude that our approach is highly competitive when
compared with the selected state-of-the-art approaches.

As a summary, the performance of the GPAWOA algorithm and its ability to
get closer to the true Pareto front can be explained, well-obviously, by the high
performance of the original WOA on the one hand, and on the other hand, by the
effectiveness of the archiving and leader selection strategies adopted. Moreover,
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Table 5.7: The p values of Wilcoxon test for IGD metric
GPAWOA vs

MOEA/D MOGWO MOPSO

ZDT1 5.412E-6 2.621E-2 5.412E-6
ZDT2 5.412E-6 0.3696 5.412E-6
ZDT3 5.412E-6 0.9919 5.412E-6
ZDT4 5.412E-6 5.250E-4 5.412E-6
ZDT6 1.044E-3 0.6303 0.6847
DTLZ1 0.9698 0.9862 1
DTLZ2 1 3.150E-2 3.934E-2
DTLZ3 2.621E-2 7.523E-4 2.621E-2
DTLZ4 0.2406 0.9783 0.6847
DTLZ5 6.917E-3 5.412E-6 4.465E-3
DTLZ6 1.044E-3 7.523E-4 1.623E-4
DTLZ7 5.412E-6 0.5441 5.412E-6

Table 5.8: The p values of Wilcoxon test for spacing(Sp) metric

GPAWOA vs

MOEA/D MOGWO MOPSO

ZDT1 3.150E-2 0.4347 0.2893
ZDT2 0.3696 0.3421 1.773E-2
ZDT3 0.1736 4.460E-2 0.5225
ZDT4 2.162E-2 0.8762 0.8034
ZDT6 1.044E-3 2.435E-4 2.435E-4
DTLZ1 1.161E-2 1.044E-3 1.161E-2
DTLZ2 0.8089 0.6782 0.9496
DTLZ3 1.439E-3 1.623E-4 7.523E-4
DTLZ4 0.6578 0.2179 5.412E-6
DTLZ5 5.412E-6 3.788E-5 5.412E-6
DTLZ6 5.412E-6 5.412E-6 5.412E-6
DTLZ7 0.9895 0.3979 0.2893

its ability to produce well-distributed solutions along the obtained front reflects
the impact of the crowding distance mechanism employed to improve the diver-
sity of the final Pareto front.
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5.3.4 Application of GPAWOA on engineering design problems

As mentioned above, the proposed algorithm is applied to 4 real engineering de-
sign problems [Sadollah 2015], [Askarzadeh 2016] whose two problems without
constraints (Four-bar truss design problem and gear train problem), and two prob-
lems with constraints (Disk brake design problem and welded beam design prob-
lem):

• Four bar truss problem
This problem attempt to minimize the volume and displacement of a 4-bar
truss. It is mathematically formulated as follows:

Figure 5.14: Four bar truss problem

minimize

f1(x) = L(2x1 +
√

2x2 +
√
x3 + x4)

f2(x) = FL
E ( 2

x2
+ 2
√
2

x2
− 2
√
2

x3
+ 2

x4
)

(5.5)

where
F = 10, E = 2e5, L = 200

1 ≤ x1, x4 ≤ 3,
√

2 ≤ x2, x3 ≤ 3

• Gear train problem
The aim of this problem is to minimize the maximum size of any one of the
gear and minimize the error between the obtained gear ratio and a required
gear ratio of 1

1.931 . This problem can be stated as::

minimize

f1(x) = ( 1
6.931 −

x1x2
x3x4

)2

f2(x) = max(x1, x2, x3, x4)
(5.6)

where
12 ≤ x1, x2, x3, x4 ≤ 60
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Figure 5.15: Gear train problem

• Disk brake design problem
The disk brake design problem has two objectives to be minimized which are
the mass of the brake and the stopping time.

Figure 5.16: Disk brake design problem

minimize

f1(x) = 4.9e− 5(x22 − x21)(x4 − 1)

f2(x) = (9.82e6)
x2

2−x2
1

x3x4(x3
2−x3

1)

(5.7)

Subject to :
g1 = 20 + x1 − x2
g2 = 2.5(x4 + 1)− 30
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g3 = x3

3.14(x2
2−x2

1)
2 − 0.4

g4 = 2.22e− 3x3
x3

2−x3
1

(x2
2−x2

1)
2 − 1

g5 = 900− 2.66e−2x3x4(x3
3−x3

1)

x2
2−x2

1

where
∀gi ≤ 0

55 ≤ x1 ≤ 80, 75 ≤ x2 ≤ 110, 1000 ≤ x3 ≤ 3000, 2 ≤ x4 ≤ 20

• Welded beam desing problem
In this problem, the fabrication cost and deflection of the beam of a welded
beam should be minimized.

Figure 5.17: Welded beam design problem

minimize

f1(x) = 1.10471x21x2 + 0.04811x3x4(14 + x2)

f2(x) = del
(5.8)

Subject to :
g1 = −(tau− taumax)

g2 = −(sig − sigmax)

g3 = −(x1 − x4)
g4 = −(P − pc))
where,

pc = (
4.013∗E

√
x2
3x

6
4

36

L2 )(1− (( x3
2L)
√

E
4G))

del = 4PL3

Ex3
3x4

sig = 6PL
x4x2

3

J = 2 ∗ (
√

2x1x2((
x2

2
12 ) + (x1+x3

2 )2))

R =

√
(
x2

2
4 ) + (x1+x3

2 )2
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M1 = P ∗ (L+ x2
2 )

tau2 = M1R
J

tau1 = P√
2x1x2

tau =
√
tau12 + 2.tau1.tau2. x2

2R + tau22

∀gi ≥ 0

P = 6000, L = 14, E = 30e6, G = 12e6, taumax = 13600, sigmax = 30000

0.125 ≤ x1, x4 ≤ 5, 0.1 ≤ x2, x3 ≤ 10

To handle the constraints in the algorithm in order to keep the search within
feasible regions, we use the static penalty method [Rao 2019] by adding a penal-
ized value into the objective function as follows:

fm(x) = fm(x) +

p∑
i=1

Pi.max(gi(x), 0) +

K∑
i=1

Pi.max(|hi(x)| − δ, 0) (5.9)

where
fm(x),m = 1, 2, ...M are the objective function to be optimized.
gi(x) ≤ 0, i = 1, 2, ...P are inquality constraints.
hi(x) = 0, i = 1, 2, ...K are equality constraints.
Pi and δ are, respectively, the penalty facteur and the tolerance on the equality
constraints.

The results (covergae metric) are reported in Table 5.9. In addition, figures 5.18-
5.21 depicts the graphical comparisons among the proposed approach and the oth-
ers reported algorithms.

From results in Table 5.9, it can be evidently found that for the metric C,
C(MOEA/D, GPAWOA); C(MOGWO, GPAWOA); C(MOPSO, GPAWOA) are al-
most all near of 0 value for all considered engineering design problems ex-
cept C(MOPSO, GPAWOA) for welded beam design problem. Conversely, in
the case where the coverage metric computes the dominance proportion of non-
dominated solutions found by the proposed algorithm compared with the set of
nondominated solution found by the other algorithms, C(GPAWOA, MOEA/D);
C(GPAWOA, MOGWO); C(GPAWOA, MOPSO) are almost all near 1 except
C(GPAWOA, MOPSO) for welded beam problem. This means that most of the
nondominated solutions obtained by MOEA/D, MOGWO and MOPSO are dom-
inated by solutions generated by the proposed algorithm. Moreover, from the
Pareto fronts shown in figures 5.18-5.21, we can seen that the diversity of GPA-
WOA is better compared to its competitors for all the selected engineering design
problems.
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Table 5.9: Results of set coverage metric of the four engineering design problems

Algorithms GPAWOA MOEA/D MOGWO MOPSO

4-bar truss
GPAWOA / 1 1 0.991
MOEA/D 0 / 0 0
MOGWO 0 1 / 0.028
MOPSO 0.011 1 0.942 /
Gear train
GPAWOA / 1 1 0.926
MOEA/D 0 / 0.215 0.076
MOGWO 0 0.769 / 0.510
MOPSO 0.010 0.986 0.433 /
Disk brake
GPAWOA / 0.997 965 0.982
MOEA/D 0.007 / 0.019 0.232
MOGWO 0.021 0.810 / 0.912
MOPSO 0.013 0.734 0.009 /
Welded beam
GPAWOA / 1 1 0.746
MOEA/D 0 / 0.217 0.556
MOGWO 0 0.705 / 0.681
MOPSO 0.326 0.433 0.176 /
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Figure 5.18: Comparison of nondominated solutions obtained by MOEA/D, GPA-
WOA, MOPSO and MOGWO for the 4-bar truss



84 Chapter 5. GPAWOA for multiobjective optimization problems

0 0.2 0.4 0.6 0.8

f1

10

20

30

40

f2
MOEA/D

0 0.2 0.4 0.6 0.8

f1

10

20

30

40

f2

GPAWOA

0 0.2 0.4 0.6 0.8

f1

10

20

30

40

f2

MOGWO

0 0.2 0.4 0.6 0.8

f1

10

20

30

40

f2

MOPSO

Figure 5.19: Comparison of nondominated solutions obtained by MOEA/D, GPA-
WOA, MOPSO and MOGWO for the Gear train
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Figure 5.20: Comparison of nondominated solutions obtained by MOEA/D, GPA-
WOA, MOPSO and MOGWO for the Disk brake
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Figure 5.21: Comparison of nondominated solutions obtained by MOEA/D, GPA-
WOA, MOPSO and MOGWO for the Welded beam

5.4 Chapter summary

In this chapter, we have developed a new multiobjective optimizer named A
Guided Population Archive Whale Optimization Algorithm (GPAWOA) by
extending the recently Whale Optimization Algorithm. The proposed GPAWOA
incorporates an external archive as a guide of the main population towards
the optimal front; an effective leader selection strategy is integrated to improve
both convergence and diversity. Finally, the mechanism of crowding distance is
employed as a density estimator in the update of the archive and leader selection
strategy to maintain a good coverage of the objective space.

A comparative study of the proposed approach with three well-regarded
algorithms has been performed on twelve challenging benchmark test functions
widely used in this field. The numerical and graphical results showed clearly
that the proposed GPAWOA is highly competitive even outperforms the selected
algorithms on most test functions. The proposed algorithm was also applied to
four multiobjective engineering design problems to demonstrate its applicability
in practical problems and the results obtained by GPAWOA were very satisfactory.
Hence, the proposed algorithm can be effectively applied to real-world optimiza-
tion problems to arrive at desired solutions. According to this comprehensive
study, we can conclude that the proposed GPAWOA is a viable alternative for
solving multiobjective optimization problems.
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6.1 Introduction

Feature selection aims at finding the minimum number of features that result in
high classification accuracy. It plays a crucial role in machine learning as it is the
best weapon against the so-called ”curse of dimensionality” problem. The feature
space usually contains a large number of features which can be relevant, irrevelant
or redundant [Xue 2015]. Irrelevant and redundant features are not useful as they
affect the performance of the learning algorithm. Therefore, feature selection is
invoked to select the optimal subset of relevant features in order to: decrease the
dimensionality of the feature space, simplify the learned classifier, improve the
classification performance and reduce the running time [Dash 1997], [Unler 2010].

In this chapter, we investigate our GPAWOA algorithm to propose a novel
approach for handling feature selection problem. The proposed algorithm takes
on one hand; the searching ability of GPAWOA to get promising regions in the
feature space. On the other hand, it merges the merits of filter and wrapper
models into a single system in order to achieve better performance. Two objective
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functions are taken into account during the optimization process. The first objec-
tive estimate the relevance and redundancy between features by using mutual
information (MI) as filter fitness function to identify the non-dominated subsets
that result in minimum redundancy and maximum relevance of features to the
target class, while the second objective estimate the classification accuracy by
using a learning classifier as wrapper fitness function.

6.2 The propsed algorithm

6.2.1 Entropy and mutual information

Information theory, including entropy and mutual information, offers a means for
measuring the information of random variables [Shannon 1948]. The entropy is a
measure of uncertainty of random variable X . It is defined as:

H(X) = −
∑
x∈X

p(x) log2 p(x) (6.1)

where, x a discrete value and p(x) = Pr(X = x) stands for the probability
density function of X . For two discrete random variables X and Y with their
probability density function p(x, y), the joint entropy H(X,Y ) is defined as:

H(X,Y ) = −
∑

x∈X,y∈Y
p(x, y) log2 p(x, y) (6.2)

In the case when a certain variable Y is identified and others are unidentified,
the remaining uncertainty is measured by the conditional entropy H(X|Y ):

H(X|Y ) = −
∑

x∈X,y∈Y
p(x, y) log2 p(x|y) (6.3)

The common information quantity of two random variablesX and Y is defined
as the mutual information between them:

I(X;Y ) = −
∑

x∈X,y∈Y
p(x, y) log2

p(x, y)

p(x)p(y)
(6.4)

If the two variables X and Y are independant, that is p(x, y) = p(x)p(y), then
I(X;Y ) will be zero. Otherwise, I(X;Y ) will be large.
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6.2.2 GPAWOA for discrete problems

Feature selection occur in a discrete search space - i.e, the solutions are restricted
to 0 or 1 values, for this reason, it is preferable to develop firstly a binary variant
of the GPAWOA.

A simple way to convert the continuous version of GPAWOA to the binary
version is to use a transfer function. In our case, the hyperbolic tangent function
is used as follows:

T (xi+1) =
e−λ(x

i+1) − 1

e−λ(xi+1) + 1
(6.5)

where, λ = 1 is examined in this work, xi+1 is the real-value of the current search
agent, thus, the binary update is carried out as:

xbin =

1 if µ < T (xi+1)

0 Otherwise
(6.6)

with, µ is a random number with uniform distribution in (0, 1).
Each search agent in the population represents a subset of features. For a

n-dimensional feature search space, each whale is encoded by a n-bit binary
string. The ith whale’s position is a n-dimensional vector Xi = [x1, x2, ..., xn]

with xj = {0, 1}. xj = 1 indicates that the corresponding jth feature is selected,
whereas xj = 0 means that the corresponding feature is not selected.

6.2.3 Outlines of FW-GPAWOA algorithm

The proposed algorithm, namely FW-GPAWOA (for Filter-Wrapper Guided
Population Archive WOA), combines filter and wrapper measures into a single
model. Here, it should be noted that FW-GPAWOA considers both filter and
wrapper measures simultaneously during the optimization process. In other
words, all iterations are attributed to evaluate and optimize the two objectives
in the same time, which make the difference between our algorithm and other
existing hybrid filter-wrapper feature selection algorithms which attribute a
certain number of iterations to filter evaluation and attribute the rest of iterations
to wrapper evaluation (two-stage), which may lead to eliminate some relevant
features in the filter stage without considering to their contribution in the wrapper
stage.

Mutual information (filter function) and classification accuracy (wrapper
function) are used to formulated our objective function. Mutual information (MI)
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is a filter metric that can be used as a measure of the relevance of any feature
to the target class, and also as a measure of the redundancy among a set of
features. Since that our main objective is to select the smaller subset of features
that increase the classification accuracy, we propose to use a mixed filter fitness
function MI-based which combines the relevance and the redundancy into a
single function so that the average relevance of the selected feature subset is to be
maximized, while the average redundancy among the selected features is to be
minimized.

Fit1 = Avg(I(x; c))−Avg(I(xi;xj)) (6.7)

where, x, xi, xj ∈ X , c is the target class and X is the selected feature subset. Fit1
is a maximization function that attempt to increase the classification accuracy
by maximizing Avg(I(x; c)) which stands for the average relevance between
the selected subset and the target class, and reduce the number of features by
minimizing Avg(I(xi;xj)) which indicates the average redundancy among the
selected feature subset.

In Fit1, the relevance and the redundancy are equally important. However, as
known in classification problems, the classification accuracy is more important
than the number of features. Therefore, Fit1 is weighted as follows:

Fit1 = α.Avg(I(x; c))− (1− α).Avg(I(xi;xj)) (6.8)

where, α is a constant number in the interval ]0.5, 1[.
The second objective function Fit2 maintains the wrapper evaluation which

aimed at maximize the classification accuracy (Acc) given by the following
equation:

Fit2 = Acc =
TP + TN

TP + TN + FP + FN
(6.9)

where, TP, TN, FP, and FN stand for true positives, true negatives, false positives,
and false negatives, respectively. Fit2 is evaluated by using a preselected classi-
fier; K-nearest neighbors (KNN) in the current case.

Accordingly, our feature selection problem is formulated by the following
multi-objective optimization problem:

Maximize F it1 = α.Avg(I(x; c))− (1− α).Avg(I(xi;xj))

Maximize F it2 = TP+TN
TP+TN+FP+FN

Subject to xi ∈ {0, 1}

(6.10)
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6.3 Experimental results

In order to assess the performance of the proposed algorithm, 10 benchmark
datasets chosen from UCI machine learning repository [Frank 2010] are used in
the experiments. Each dataset is randomly divided into two sets: 70% as the
training set and 30% as the test set. The training set is used to select a feature
subset(s), whereas the test set is used to evaluate the classification performance
of the selected features by using a learning algorithm. In our case, the K-Nearest
Neighbour (KNN) with K=5 was chosen as a learning algorithm to calculate the
classification accuracy (Acc) of the selected features on the test set.

Table 6.1: Summary of utilized datasets

Datasets No. of samples No. of features No. of classes

Breast cancer 699 9 2
Lymphography (Lymph) 148 18 4
Musk 476 166 2
Semeion 1593 265 2
Cervical cancer (Sobar) 72 19 2
Spect 267 22 2
Spectf 160 44 2
Sports articles 1000 59 2
Vehicle 846 18 4
Wholesale customers 440 7 2

Five algorithms including three algorithms are single-objective, BDE
[Too 2019a], BPSO [Too 2019b] and BGWO [Too 2018], and two algorithms
are multi-objective, MOPSO [Coello 2004] and MOGWO [Mirjalili 2016b], are
used as benchmark techniques in the comparative study. For all algorithms
and during the training evolutionary process, KNN (K=5) with 10-fold cross-
validation is employed to assess the prediction accuracy of the selected features
on the training set. To ensure the fairness of the comparison, the population size
and the number of iterations in all algorithms are set to be 30 and 50, respectively.

All the algorithms have been conducted for 10 independent runs for each
dataset, and they are implemented using Matlab2016b under 32-bit Windows 8.1.
All experiments have been performed on the same computer: Intel Core i3, 2.39
GHz and 4 GB RAM.
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Table 6.2: Parameter settings
Algorithm Parameters

BDE Crossover rate: CR = 0.9

BPSO c1 = 2, c2 = 2, Vmax = 6, wmax = 0.9, wmin = 0.4

BGWO -

MOPSO φ1 = φ2 = 2.05, φ = 4.1, Inertia weight: w = 0.73
Personal coefficient: c1 = 1.4962, Social coefficient: c2 = 1.4962, nGrid = 10

MOGWO Grid inflation : α = 0.1, Archive member selection pressure: γ = 2, nGrid = 10
Leader selection pressure parameter : β = 4

GPAWOA b = 1, Parcentage which determine the top part of the archive : a = 0.1

Table 6.3 shows the results obtained by FW-GPAWOA, BDE, BPSO and BGWO
where, ”Size” means the average number of the selected features and ”Acc”
means the average of the classification accuracies achieved by the algorithms. The
values in brackets show the classification accuracies obtained by all the available
features, while the best results on each dataset are marked in boldface.

Table 6.3: Experimental results of FW-GPAWOA, BDE, BPSO and BGWO
Datasets Breast cancer (9, 98.35 %) Lymph (18, 76.92 %)
Method FW-GPAWOA BDE BPSO BGWO FW-GPAWOA BDE BPSO BGWO
Size 2.06 6.1 5.7 7.3 3.3 11.6 7.3 10.8
Acc % 97.14 96.70 96.85 95.05 85.89 80.76 60.25 82.56
Datasets Musk (166, 84.67 %) Semeion (265, 97.35 %)
Method FW-GPAWOA BDE BPSO BGWO FW-GPAWOA BDE BPSO BGWO
Size 36 139.9 82.8 110.7 120 218.6 133.6 197.8
Acc % 85.16 79.67 84.03 84.75 97.37 97.40 96.78 96.58
Datasets Sobar (19, 89.47 %) Spect (22, 82.85 %)
Method FW-GPAWOA BDE BPSO BGWO FW-GPAWOA BDE BPSO BGWO
Size 3.8 12.4 9.4 11.2 3.4 15.9 8.7 15.6
Acc % 93.68 86.31 90 88.42 85.71 83.57 70 82.14
Datasets Spectf (44, 81.42 %) Sports (59, 81.60 %)
Method FW-GPAWOA BDE BPSO BGWO FW-GPAWOA BDE BPSO BGWO
Size 4.82 34.9 21.5 29.9 9.1 45.2 30.3 42.7
Acc % 84.28 76.28 73.85 74.57 83.18 82.26 78.35 78.65
Datasets Vehicle (18, 66.06 %) Wholesale (7, 86.08 %)
Method FW-GPAWOA BDE BPSO BGWO FW-GPAWOA BDE BPSO BGWO
Size 9.05 13.1 9.3 12.1 2.49 2.9 5,1 4
Acc % 71.49 70.22 69.55 73.48 92.17 86.95 90.78 90.60

According to Table 6.3, it can be seen that the proposed approach could
effectively select fewer number of features with higher classification accuracy in
almost all datasets. For example, in Breast cancer dataset, FW-GPAWOA selected
on average of 2.06 from 9 features, which means around 23 % of the initial feature
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set, selected 2.49 from 7 features in Wholesale dataset, i.e, 36 % of the original
feature set, and it was able to select approximately 11 % of the available features
(on average of 4.82 from 44 features) in Spectf dataset.

Regarding the classification performance, it can be seen clearly that FW-
GPAWOA could achieve higher classification accuracy than using all features in
most datasets. Indeed, except on Breast cancer dataset where the classification
accuracy was slightly decreased from 98.35 % to 97.14 %, FW-GPAWOA was able
to increase the prediction accuracy in all remaining cases. Generally speaking,
the results suggest that the proposed algorithm can obtain feature subsets that
included a smaller number of features with superior classification performance
than using all features. Hence, FW-GPAWOA can be successfully used in feature
selection to reduce the dimensionality while improving the classification perfor-
mance.

Compared with the other algorithms, the results of Table 6.3 indicate that
FW-GPAWOA performs better in terms of classification accuracy and the number
of selected features in almost all datasets. For example, compared against BPSO,
in all datasets, FW-GPAWOA accomplished higher classification accuracy and
selected feature subsets with smaller size. Further, on eight from the ten used
datasets (Breast cancer, Lymph, Musk, Sobar, Spect, Spectf, Sports and Wholesale),
FW-GPAWOA achieved better results than BDE and BGWO in terms of both
the number of features and the classification performance. However, it obtains
a lower classification accuracy than BDE and BGWO in Semeion and Vehicle
datasets, respectively, but with smaller feature subset size. Accordingly, the
proposed algorithm showed a higher ability to better explore the features space
than the selected single-objective approaches.

From the above comparison and discussion, we can say that FW-GPAWOA
effectively reduces the dimensionality of the feature space by removing the
unnecessary (irrelevant/redundant) features, while improving the classification
performance in almost all cases.

In the following, we will compare the performance of the proposed method
with the selected multi-objective algorithms. For each dataset, FW-GPAWOA,
MOGWO and MOPSO generate different subsets of non-dominated features in
each of the 10 independent runs. In order to compare these results, the features
subsets obtained by each algorithm are combined into one union set. From this
union, the non-dominated solutions are identified as the best Pareto front and they
are used in the comparison. Figure 6.1 illustrates the non-dominated results of
FW-GPAWOA, MOGWO and MOPSO. In each chart, the horizontal axis shows the
number of selected features, and the vertical axis shows the classification accuracy.
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According to figure 6.1, in eight datasets, we can observe that the best Pareto
front produced by FW-GPAWOA, contains at least two solutions that selected
less than half of the available features and increased the classification accuracy
regarding to that provided using all the features. For example, in Lymphography
dataset, FW-GPAWOA selected 3 from 18 features and increased the classification
accuracy from 76.92 % to approximately 90 %, and selected around 3 features from
the 19 features of Sobar dataset, while it was able to increase the classification
accuracy until 100 %. However, in Breast cancer and Musk datasets, our approach
selected only one subset which includes fewer features and obtained higher
classification performance than using all features.

Comparing FW-GPAWOA against MOGWO and MOPSO, in six datasets
(Breast, Lymph, Sobar, Spect, Spectf and Wholesale), it can be seen that the Pareto
fronts resulted by FW-GPAWOA significantly dominate those of MOGWO and
MOPSO. In other words, the proposed algorithm outperforms its competitors in
terms of both the number of features and classification performance. However,
in Vehicle dataset, the Pareto front of FW-GPAWOA is dominated by those of
MOGWO and MOPSO, especially for the number of feature criterion. In the other
datasets, our method can always get better results than MOGWO and MOPSO
in terms of feature subsets size or classification accuracy. For instance, compared
with MOGWO on Semeion dataset, FW-GPAWOA obtained some solutions that
include smaller features size, but with lower classification performance, and
inversely, compared with MOPSO on Sports dataset, the proposed approach can
achieve better classification performance, but with a larger feature subset.

In order to further evaluate the performance of the multi-objective algorithms,
the hyper-Volume (HV) metric [Auger 2009] is applied to compute the volume
of the objective space bounded by the obtained Pareto front and a reference
point r. This metric has been frequently used for comparing the multi-objective
optimization algorithms as it can evaluate both the convergence and the diversity
of solutions.

HV = volume
( ⋃
s∈P

v(s, r)
)

(6.11)

For each algorithm, 10 Hyper-volumes over the 10 independent runs are
calculated based on the obtained testing Pareto fronts, and then Wilcoxon test
(with significance level α equal to 5 %) is applied to check, according to p_value,
whether there exists a significant difference between the algorithms by confirming
the null hypothesis H0 (no significant difference between the results of a pair



94 Chapter 6. Hybride filter-wrapper GPAWOA for feature selection

0 2 4 6 8

Number of features

90

92

94

96

98

100

A
c
c
u
ra

c
y
 (

%
)

Breast (9, 98.35 %)

FW-GPAWOA

MOGWO

MOPSO

0 1 2 3 4 5 6

Number of features

75

77.5

80

82.5

85

87.5

90

92.5

95

A
c
c
u
ra

c
y
 (

%
)

Lymph (18, 76.92 %)

FW-GPAWOA

MOGWO

MOPSO

0 10 20 30 40 50 60 70 80 90 100 110

Number of features

75

77.5

80

82.5

85

87.5

90

A
c
c
u
ra

c
y
 (

%
)

Musk (166, 84.67 %)

FW-GPAWOA

MOGWO

MOPSO

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

Number of features

90

92

94

96

98

100

A
c
c
u
ra

c
y
 (

%
)

Semeion (265, 97.35 %)

FW-GPAWOA

MOGWO

MOPSO

0 2 4 6 8 10

Number of features

75

80

85

90

95

100

A
c
c
u
ra

c
y
 (

%
)

Sobar (19, 89.47 %)

FW-GPAWOA

MOGWO

MOPSO

0 2 4 6 8 10 12

Number of features

70

75

80

85

90

A
c
c
u
ra

c
y
 (

%
)

Spect (22, 82.85 %)

FW-GPAWOA

MOGWO

MOPSO

0 2 4 6 8 10 12 14 16

Number of features

70

72.5

75

77.5

80

82.5

85

87.5

90

92.5

95

A
c
c
u
ra

c
y
 (

%
)

Spectf (44, 81.42 %)

FW-GPAWOA

MOGWO

MOPSO

0 5 10 15 20 25 30 35

Number of features

70

72.5

75

77.5

80

82.5

85

87.5

90

A
c
c
u
ra

c
y
 (

%
)

Sports (59, 81.60 %)

FW-GPAWOA

MOGWO

MOPSO

0 2 4 6 8 10 12

Number of features

55

57.5

60

62.5

65

67.5

70

72.5

75

77.5

80

A
c
c
u
ra

c
y
 (

%
)

Vehicle (18, 66.06 %)

FW-GPAWOA

MOGWO

MOPSO

0 1 2 3 4 5 6

Number of features

88

89.5

91

92.5

94

A
c
c
u
ra

c
y
 (

%
)

Wholesale (7, 86.08 %)

FW-GPAWOA

MOGWO

MOPSO

Figure 6.1: Experimental results of FW-GPAWOA, MOGWO and MOPSO
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algorithms) if p_value > α, or confirming the alternative hypothesis H1 (there’s a
significant difference between a pair algorithms) if p_value < α. We performed
the Wilcoxon test between FW-GPAWOA and each peer algorithm (MOGWO,
MOPSO) on the results of HV-metric for each dataset. We present the results of
FW-GPAWOA as µ1 and the results of each peer algorithm as µ2 and we define
the following hypothesis:

• H0 : µ1 = µ2, which indicates that the results of FW-GPAWOA are similar
”=” to the results of each peer approach.

• H1 : µ1 6= µ2, which indicates that the results of FW-GPAWOA are signifi-
cantly better ”+” (or worse ”-”) than those of each peer algorithm.

Table 6.4: The results of HV metric of FW-GPAWOA, MOGWO and MOPSO

Algorithms
FW-GPAWOA MOGWO MOPSO

Average Best Worst Average Best Worst Average Best Worst

Breast cancer 0.8237 0.8498 0.8061 0.7988 0.8165 0.7017 0.8108 0.8144 0.8084
Lymph 0.6082 0.7453 0.4169 0.7564 0.8894 0.6931 0.7228 0.8339 0.6949
Musk 1.0240 1.0540 0.9777 0.7344 0.7964 0.7119 0.7094 0.7537 0.6832
Semeion 0.5094 0.5258 0.5026 0.3327 0.3450 0.3239 0.3505 0.3599 0.3366
Sobar 0.8598 0.9302 0.7558 0.8139 0.8550 0.7182 0.6720 0.8276 0.3693
Spect 0.9328 0.9990 0.8192 0.7253 0.7967 0.6802 0.8233 0.8833 0.7484
Spectf 1.2404 1.3120 1.1358 1.0126 1.0633 0.9410 0.8233 0.8833 0.7484
Sports 1.7042 1.7648 1.6217 1.3923 1.5150 1.2931 1.3997 1.4851 1.3461
Vehicle 0.4819 0.6168 0.4264 0.6739 0.7649 0.6055 0.6365 0.6781 0.5797
Wholesale 0.7035 0.7079 0.6879 0.5565 0.6492 0.4715 0.6823 0.6946 0.6679

The results of HV-metric, as shown in Table 6.5, indicate that FW-GPAWOA
achieves larger HV values for eight out of the ten datasets. Comparing by
MOGWO, the proposed method outperforms its competitor on eight cases,
and compared against MOPSO, the results show that FW-GPAWOA has better
HV-metric on all datasets. Therefore, we can say that our algorithm presents
solutions near to the true Pareto front as well as preserving the diversity within
the whale’s population. Additionally, the results of p-value of Wilcoxon test, as
listed in Table 6.5, indicate that the HV-metrics obtained by FW-GPAWOA were
significantly better than those obtained by MOGWO for seven datasets, similar
for one dataset, and significantly worse for two datasets, while the superior
performance of the proposed algorithm is more obvious with respect to MOPSO
algorithm. Broadly speaking and for the 20 p-values (2 algorithms × 10 datasets),
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Table 6.5: The p values of Wilcoxon test for HV metric
FW-GPAWOA vs

MOGWO Sig. diff MOPSO Sig. diff

Breast 4.860E-3 + 1.697E-2 +
Lymph 1.213E-2 - 0.060 =
Musk 7.936E-3 + 7.936E-3 +
Semeion 1.082E-5 + 1.082E-5 +
Sobar 0.089 = 8.324E-3 +
Spect 1.082E-5 + 5.033E-3 +
Spectf 1.082E-5 + 1.082E-5 +
Sports 1.082E-5 + 1.082E-5 +
Vehicle 7.577E-5 - 4.330E-3 -
Wholesale 1.418E-2 + 1.082E-5 +

our algorithm obtains similar or significantly better results for 17 cases, and it gets
significantly worse results than its counterparts only for 3 cases.

The computational cost of FW-GPAWOA, MOGWO and MOPSO is also com-
pared in our simulations. Table 6.6 shows the average running time (in minutes)
of over the 10 independent runs. Here, it shoulde be remember that all algorithms
have the same population size, the same number of iterations, and they have been
executed on the same machine.

Table 6.6: The average running time consumed by the algorithms (unit: minutes).

FW-GPAWOA MOGWO MOPSO

Breast 2.62 3.73 4.25
Lymph 4.42 4.15 4.35
Musk 3.54 3.66 4.02
Semeion 6.97 6.55 7.63
Sobar 3.87 3.49 3.57
Spect 4.18 3.81 4.04
Spectf 4.23 3.88 3.98
Sports 4.30 3.76 4.12
Vehicle 4.85 4.99 4.33
Wholesale 2.29 3.64 4.21

From Table 6.6, it can be seen that our approach consumes a longer running
time than the other approaches for most datasets. Although the proposed algo-
rithm selected smaller feature subsets, which be supposed to lead to less wrapper
evaluation, hence, low computational time should be required. So, the reason why
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the proposed approach spent more time can be explained, mainly, because it uses
the Crowding distance (that requires high computational cost) in the archiving
strategy and in the deletion process whenever the external archive is full. The
other reason may be that MOGWO and MOPSO use the ratio between the selected
features and the original features set as a filter fitness function, which requires
obviously less computational effort than using mutual information. However,
the growth in the running time consumed by FW-GPAWOA was acceptable for
effectively reducing the dimensionality and keeping a highest prediction accuracy.
Indeed, the FW-GPAWOA tends to increase the computational time in the hope of
improving its performance.

As a summary, all the above results showed that our algorithm gets a superior
performance and outperforms the benchmarking algorithms in almost all cases.
The experiments demonstrated that the proposed algorithm could effectively
explore the Pareto front to accomplish the main challenges of the feature selection
problem which are the curse of dimensionality of the features space and the
improvement of the classification performance.

6.4 Chapter summary

This chapter presented a new multi-objective optimizer for solving feature selec-
tion problem. The proposed algorithm investigates our GPAWOA algorithm and
combines filter and wrapper models into a single scheme in the hope of benefits
from each model’s merits. Therefore, mutual information and KNN classifier
are used as filter and wrapper evaluation criteria during the training process. In
addition, the hyperbolic tangent function is employed to make GPAWOA able to
deal with discrete problems.

A comparative study with five well-regarded algorithms has been performed
on ten benchmark datasets. Experimental results show that the proposed algo-
rithm generally outperforms the selected approaches in terms of both number
of features and classification performance. However, we have observed that the
proposed algorithm usually requires more running time due to the crowding
distance computation and the used filter function. Therefore, as part of future
work, we plan to investigate other objective functions with the aim of maintaining
better performance without increasing the running time. The ration between the
selected features and the original set may be a future direction.



CHAPTER 7

Conclusions and future works

Contents
7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7.2 Future works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7.1 Conclusions

This thesis focuses, mainly, on the impactful application of the concept of multi-
objective optimization in machine learning. The overall goal was to explore the
ability of the evolutionary techniques faced on the challenges of machine learning
by developing a new multi-objective optimization algorithm for addressing
feature selection problem. This goal was successfully achieved by investigating
two main resources: The first is the collective intelligence of population-based
bio-inspired metaheuristics, while the second resource is the concepts of filter and
wrapper evaluations. Hence, two methods, namely GPAWOA and FW-GPAWOA,
were developed for solving multi-objective optimization problems and tackling
the feature selection problem, respectively.

The first proposed approach, i.e., GPAWOA algorithm, extended the standard
Whale Optimization Algorithm in order to be able to solve multi-objective prob-
lems. GPAWOA uses the concept of the Pareto dominance and equipped with
an external-archive to keep the best configurations at the aim of maintaining the
elitism. Moreover, the crowding distance computation was used in the archiving
strategy and the deletion process for maintaining as well as possible the diversity
of solutions in the search space.

In this thesis, we have also developed a new algorithm called FW-GPAWOA
for solving feature selection problem. The proposed algorithm combines filter and
wrapper models into the GPAWOA algorithm during the training process to better
explore the feature space. Since that the feature selection is a discrete problem, we
have adapted the proposed algorithm to be able to deal with discrete problems.
In addition, we have adopted the mutual information and a classifier learning as
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filter and wrapper evaluations in order to handle the ”curse of dimensionality”
of the feature space while enhancing the classification performance. The results
have shown a clear pattern that the proposed approach can be effectively used to
treat feature selection problem for reducing the number of features and achieving
similar or even better classification performance than using all the original
features.

Finally, we can say that this thesis has achieved the following research objec-
tives:

� Discovering the domain of multi-objective optimization: its definition, mod-
eling, challenges, and its hight relationship with the real-world applications.

� Discovering the domain of feature selection: its problems, its methods, and
its importance in machine learning.

� Developing effective algorithms based on the domains evoked below
to solve optimization problems and adapting them to machine learning
applications.

7.2 Future works

Understanding in depth the mentioned above research lines and propose sub-
stantial contributions in this field remains my long term objective. This thesis is
a first step in this investigation process which will need further efforts and years
of training and work. My short-term objectives consist in completing the works
initiated in the present thesis, namely:

� Concretely, develop a new population-based metaheuristic for solving single
and multi-objective optimization problems

� Applying the proposed GPAWOA for other machine learning problems
such as the optimization of Support vector machine (SVM) parameters.
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� Using and even developing other techniques and mechanisms for solving
optimization problems.

� Addressing the application of machine learning and feature selection in the
real life such as medical field.
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Machine Learning using Multi-Objective Evolutionary Algorithms
Abstract

Broadly speaking, machine learning consists of handling a large amount of data.
The the quality of these data affect so much the accuracy of the learning model
whatever the performance of the employed learning algorithm. Therefore, a
technique should be invoked to improve the representation of the dataset.

Feature selection try to offer to the learning algorithm well-represented dataset
by removing irrelevant and redundant features and selecting the most infor-
mative features. This act results, mainly, in decreasing the number of features
and improving the prediction accuracy of the learning algorithmn. However,
the conflicting design between number/accuracy makes feature selection a
multi-objective problem. Therefore, it is more suitable to treat such as situation
by using a multi-objective optimization algorithm rather than single-objective
approach. Consequently, we propose in this thesis, two evolutionary computation
algorithms for solving multi-objective optimization problems in general manner,
and for tackling feature selection problem.

The first algorithm called Guided Population Archive Whale Optimization Al-
gorithm ”GPAWOA”. The proposed algorithm represents a viable alternative for
solving multi-objective optimization problems. It uses the notion of Pareto domi-
nance to compare between the candidate solutions, adopts an external archive to
maintain the elitism concept and guide the population towards promising regions
within the search space, and employed the computation of the crowding distance
to improve the distribution of solutions.

The second algorithm investigates GPAWOA for addressing feature selection in
classification problem. The proposed algorithm, namely FW-GPAWOA, employs
a transfert function to make it able to deal with discrete problems, and combines
filter and wrapper models into a single system to benefits from each model’s
merits in order to reduce the feature set cardinality and improve the prediction
accuracy of the learning algorithm.

Keywords: Machine Learning; Dimensionality Reduction; Feature Selection;
Optimization Problems; Multi-objective Optimization; Evolutionary Computation



Apprentissage Automatique par Algorithmes Evolutionnaires
Multiobjectifs

Résumé

En général, l’apprentissage automatique consiste à gérer une grande quantité de
données. La qualité de ces données influence tellement sur la précision du modéle
d’apprentissage quelque soit la performance de l’algorithme utilisé.

La sélection d’attributs tente à offrir à l’algorithm d’apprentissage un ensem-
ble de données bien représentées en supprimant les attributs non pertinents et
redondants, et en sélectionnant les attributs les plus informatrifs. Cet acte mène,
principalement, à diminuer le nombre d’attributs et à améliorer la précision de la
prédiction de l’algorithme d’apprentissage. Cependant, la conception contradic-
toire entre nombre / précision fait la sélection d’attributs un problème multiobjec-
tif. Par conséquent, nous proposons dans cette thèse, deux algorithmes évolution-
naires pour résoudre les problèmes d’optimisation multiobjectifs d’une manière
générale, et pour aborder le problème de sélection d’attributs.

Dans la premir̀e contribution, nous avons proposé un nouvel algorithme
d’optimisation multiobjectifs appelé GPAWOA. L’algorithme proposé utilise la no-
tion de dominance de Paréto, et il maintient un répertoire externe pour sauve-
garder les solutions dites ”élites”. De plus, il utilise le mécanisme de la dis-
tance d’encombrement pour avoir des solutions bien réparties dans l’espace de
recherche.

Dans la deuxiéme contribution, nous avons appliqué l’algorithme GPAWOA
pour résoudre le problème de la sélection d’attributs. Pour cela, nous avons
adapté, en premier lieu, l’algorithme GPAWOA avec les problèmes d’optimisation
combinatoire, puis, nous avons combiné les approches ”filtrantes et envelop-
pantes” dans un seul système pour bénéficier des avantages de chaque modèle
afin de minimiser le nombre d’attributs et maximiser la précision de l’algorithme
d’apprentissage.
Keywords: Apprentissage Automatique; Réduction de Dimensionnalité; Sélec-
tion d’Attributs; Problèmes d’Optimisation; Optimisation Multiobjectif; Calcul
Evolutionnaire



 التعلم الآلي باستخدام الخوارزميات التطورية متعددة الأهداف

 ملخـــــــــص

اختيار المميزات هي تقنية من التقنيات التي تسمح بتحسين جودة البيانات المراد معالجتها و 
التقنية بتحديد المميزات  و في المقابل تسمح هاته ،خلال إزالة المميزات الغير هامة ذلك من

تطبيق هاته التقنية يساهم، خصوصا، في تخفيض . البيانات قاعدةالأكثر الأهمية داخل 
البيانات، كما تساهم كذلك في الرفع من دقة التنبؤ  أبعادعدد المميزات و بالتالي تخفيض 

دقة يجعل من تقنية اختيار  /غير أن التناقض بين الهدفين عدد  .لدى خوارزمية التعلم
خوارزميتين و بالتالي، نقترح في هاته الأطروحة، . المميزات مشكلة متعددة الأغراض

 متعددة الأهداف بصورة عامة، و كذا من أجل التحسينتطوريتان من أجل حل مشاكل 
 .معالجة مشكلة تحديد المميزات

 
الجماعية لدى الحوت الأزرق و الخوارزمية الأولى المقترحة مستوحاة من طريقة الصيد 

تعتمد على ما يسمى بهيمنة باريتو للمقارنة بين الحلول، كما تستعمل ذاكرة اضافية تسمى 
كما تستخدم تقنية حساب مسافة الإكتظاظ و ذلك . ''النخبة''لتخزين أفضل الحلول '' أرشيف''

د داخل مجموعة من أجل الحصول على حلول جد قريبة من جبهة باريتو و ذات انتشار جي
 .البحث

 
في المساهمة الثانية فقد قمنا ياستغلال الخوارزمية الأولى في حل مشاكل اختيار أما 

و على هذا الأساس، فإن الخوارزمية الثانية المقترحة تستعمل دالة تحويل و ذلك . المميزات
فالخوارزمية الثانية المقترحة  من أجل التأقلم مع مشاكل التحسين التوافقية، إضافة إلى هذا،

التغليف و ذلك قصد الاستفادة من مزايا هي خوارزمية هجينة بين طريقة التصفية و طريقة 
 .كل طريقة قصد تخفيض عدد المميزات و الرفع من دقة نموذج التعلم

 
و خلصنا في الأخير إلى نتائج مشجعة سواء بالنسبة لحل مشاكل التحسين متعددة الأهداف 

 .مشاكل اختيار المميزات، و ذلك مقارنة بالحلول المتوفرة على الساحة العلميةأو 
 

التعلم الآلي، تقليص الأبعاد، اختيار المميزات، مشاكل التحسين، التحسين  : كلمات مفتاحية
   متعدد الأهداف، الخوارزمية التطورية  

 
   


	Introduction
	Overview
	From machine learning towards optimization problem
	Multiobjective feature selection for classification

	Motivations
	Major contributions
	Thesis organization
	Academic publications

	Machine learning and feature selection
	Introduction
	Supervised learning
	K-nearest neighbor algorithm (KNN)
	Support Vector Machine (SVM)

	Unsupervised learning
	k-means algorithm
	Hierarchical clustering algorithm (HCA)

	Dimensionality reduction based on feature selection
	Feature selection problem 
	General procedure of feature selection algorithm
	Generation procedure
	Evaluation procedure
	Stopping criteria
	Validation

	Chapter summary

	Generalities on the optimization problems
	Introduction
	Complexity theory
	Optimization problems
	Mathematical formulation
	Resolution of optimization problems

	Optimization exact methods
	Linear programming
	Branch and Bound (B and B)

	Single solution based metaheuristics
	Tabu Search
	Simulated Annealing

	Population based metaheuristics
	Genetic Algorithm (GA)
	Particle swarm optimization (PSO)
	Ant colony algorithm (ACO)
	Whale Optimization Algorithm (WOA)

	Chapter summary

	Multiobjective optimization: concepts and resolution methods
	Introduction
	Concepts
	Multiobjective optimization problem formulation
	Pareto dominance

	Difficulties of multiobjective problem
	Classification of multiobjective optimization methods
	User's perspective classification
	Designer perspective classification

	Pareto dominance-based multiobjective methods
	Non-elitist algorithms
	Multi Objective Genetic Algorithm (MOGA)
	Niched Pareto Genetic Algorithm (NPGA)

	Elitist algorithms
	Pareto Archived Evolutionary Algorithm (PAES)
	Strength Pareto Evolutionary Algorithm 2 (SPEA2)
	Non Dominated Sorting Genetic Algorithm (NSGA2)
	Multiobjective Particle Swarm Optimization (MOPSO)

	Performance metrics
	Chapter summary

	GPAWOA for multiobjective optimization problems
	Introduction
	The proposed algorithm
	Updating the archive
	Density estimator
	Leader selection strategy
	Outlines of GPAWOA algorithm
	Complexity of GPAWOA

	Experimental results and comparisons
	Results on ZDT test functions
	Results on DTLZ test functions
	Statistical comparison of Wilcoxon test
	Application of GPAWOA on engineering design problems

	Chapter summary

	Hybride filter-wrapper GPAWOA for feature selection
	Introduction
	The propsed algorithm
	Entropy and mutual information
	GPAWOA for discrete problems
	Outlines of FW-GPAWOA algorithm

	Experimental results
	Chapter summary

	Conclusions and future works
	Conclusions
	Future works

	Bibliography

