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Abstract

Recently, the integration of in-board cone beam computed tomography (CBCT)

systems into linear accelerators has provided not only a powerful tool for improving

the accuracy of patient positioning but also it makes it possible to adapt the treatment

planning with the patient anatomy modifications throughout the entire treatment,

known as adaptive radiation therapy (ART). During ART planning, after applying

a rigid registration between daily acquired CBCT images and planning CT (pCT)

scans and getting information about patients structural changes and internal organs

deformations, a repeated acquisition of CT images (repCT) is needed for replanning

if the patients anatomical changes are significative. Although repCT images provide

the most up-to-date information for a human body with an accurate hounsfield unit

(HU) distribution for dose calculation, their repeated acquisition may pose a health

concern to patients due to the additional dose. Therefore, the aim of this thesis is to

investigate the feasibility of daily CBCT images for dose calculation instead of acquiring

repCT images. The main interest is to propose a promising strategy to overcome the

limitations related to the high amount of scatter that reduces the quality of CBCT

images compared to the pCT.

To this end, we proposed three complementary approaches that allow the

correction of the HU distribution in the CBCT images. The first proposed approach is

inspired from the fact that the CBCT and the pCT images have not the same gray-level

histograms. Therefore, we applied the histogram matching (HM) process to resemble

their histograms and offer the possibility to distinguish the different tissue types in

the CBCT images. As a second approach, we proposed the application of multilevel

threshold (MLT) to improve the correctness of the HU distribution obtained with HM.

Finally, in the third approach we proposed the generalization of the previously proposed

approaches to contribute in the minimization of the ART workload requirements. The

main idea is to include the notion of inter-patient deformable registration in order to

investigate the pCT images available in the archive for the correction of CBCT images

rather than acquiring new CT images for each patient.

Results of the visual and statistical analysis showed that the proposed approaches
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can improve the HU distribution in the CBCT images and generate corrected images

in good agreement with the pCT.

Keywords: CBCT correction; deformable registration; histogram matching;

multilevel threshold; adaptive radiation therapy.
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Résumé

Récemment, l’intégration des systèmes de tomodensitométrie à faisceau conique

(CBCT) embarqués dans les accélérateurs linéaires a fourni non seulement un outil

puissant pour l’amélioration de la précision du positionnement du patient mais il a

permis aussi d’adapter la planification du traitement aux modifications de l’anatomie

du patient tout au long du traitement, connu sous le nom de radiothrapie adaptative

(ART). Pendant la planification du ART, après avoir appliqué un recalage rigide

entre les images CBCT du jour et les images CT de planification (pCT) et obtenu

des informations sur les changements structurels du patient et les déformations des

organes internes, une acquisition répétée des images CT (repCT) est nécessaire pour la

replanification si les changements anatomiques sont significatifs. Bien que les images

repCT fournissent les informations du jour sur le corps humain avec une distribution

prcise des unités hounsfield (HU) nécéssaires pour le calcul de dose, leur acquisition

répétée peut poser un problème de santé aux patients à cause de l’accumulation de

dose. Par conséquent, le but de cette thèse est d’étudier la faisabilité du calcul de dose

basé sur des images CBCT au lieu d’acquérir les images repCT. L’intérêt principal est

de proposer une stratégie pour surmonter les limitations liées à la grande quantité du

rayonnement diffusé qui réduit la qualité des images CBCT par rapport aux images

pCT.

À cette fin, nous avons proposé trois approches complémentaires qui permettent

la correction de la distribution des HU dans les images CBCT. La première approche

proposée s’inspire du fait que les images CBCT et pCT n’ont pas les mêmes

histogrammes de niveaux de gris. Par conséquent, nous avons appliqué le processus

de correspondance d’histogramme (HM) pour ressembler leurs histogrammes et offrir

la possibilité de distinguer les différents types de tissus dans les images CBCT.

Comme deuxième approche, nous avons proposé l’application d’un seuillage à plusieurs

niveaux (MLT) pour améliorer l’exactitude de la distribution des HU obtenue avec

HM. Enfin, dans la troisième approche, nous avons proposé la généralisation des

approches proposées précédemment pour contribuer à la réduction des exigences de

charge de travail de l’ART. L’idée principale est d’inclure la notion du recalage
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RÉSUMÉ

déformable inter-patients afin d’exploiter les images pCT disponibles dans l’archive

pour la correction des images CBCT au lieu d’acquérir de nouvelles images CT pour

chaque patient.

Les résultats de l’analyse visuelle et statistique ont montré que les approches

proposées peuvent améliorer la distribution des HU dans les images CBCT et générer

des images corrigées en bon accord avec les images pCT.

Mots clés: Correction des CBCT; recalage déformable; correspondance des

histogrammes; seuillage à plusieurs niveaux; radiothérapie adaptative.
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Introduction

Recently, the growing use of modern imaging modalities in radiotherapy (RT) has

allowed a better medical care for cancer patients under the treatment machine. Thanks

to the integration of in-room imaging systems as the cone beam computed tomography

(CBCT), the verification and the correction of the patient’s setup during the course

of treatment in three dimensions with sufficient soft tissue contrast and low patient

dose become possible. Moreover, the development of CBCT systems in terms of

images acquisition, rapidity and improved image quality has allowed the appearance

of more sophisticated treatment techniques as adaptive radiation therapy (ART). This

technique aims to adapt the treatment planning with patient anatomy modification

throughout the entire treatment; it is mainly based on three complex and consuming

time processes: acquisition of daily CBCT images for making decision if the re-planning

is necessary by comparing them to the CT images, the second process deals with the

acquisition of new planning CT (pCT) images and the delineation of volumes of interest

to provide a base for the last process which is the dose re-calculation.

The development of such treatment techniques has offered a huge place to integrate

the medical image processing field in clinical routine. With its various processes, this

field has enabled the improvement of delivered treatment in terms of precision and

execution time. Deformable registration (DR) process could be considered as the most

used in ART because it highlighted the importance of investigating different imaging

modalities as CBCT images to quantify organs deformation [1], propagate contours [2]

or calculate the dose accumulation [3], all by deforming the pCT to the CBCT images.

Nowadays, another application of DR aiming to generate from the daily CBCT images

a basis for dose calculation without the need to acquire new pCT images and keep the

dose to the patient as low as possible has been carried out. Yet, the use of CBCT

images for such application is a challenge due to the high amount of scatter that

reduces their quality and causes a lack of CT number, called also Hounsfield units

(HU), accuracy compared to the pCT images [4]. Therefore, many approaches for

the correction of CBCT images, either by the combination of DR with medical image

processing methods or by direct correction approaches, can be found in literature.
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In DR-based approaches, the main idea is to apply a medical image processing

methods as the HU mapping [5], multilevel threshold [6], histogram matching [7],

creation of shading map [8] or the use of deep learning [9] after deforming the pCT

to the CBCT images in order to transfer the HU distribution to the CBCT images.

Direct approaches have also been employed to correct CBCT images; they can be

classified into three approaches: the first one, which is the most obvious, is the use of

physical scatter rejection techniques as anti-scatter grids [10] or bow-tie filters during

the data acquisition. The second approach is the scatter correction based on Monte

Carlo modeling of the imaging system [11] and the last approach is the calibration of

CBCT systems using phantoms [12].

Most of these studies converge to the use of DR-based approaches due to their

efficiency and rapidity compared to the integration of hardware or the use of simulation.

Therefore, to justify this choice, this thesis aims first to review the different methods

existing in the literature and determine their points of strength and weakness. Then,

based on the results of comparison, it proposes a new approach for the correction of

HU distribution in the CBCT images.

Thesis outline

The thesis is divided into five chapters, the first two ones present the basic clinical

and technical notions required for the comprehension of the different techniques cited

in this work. The remaining three chapters present the main contributions for the

generation of corrected CBCT images.

Each chapter can be described as follows:

Chapter 1 presents the main concepts frequently used in the clinical routine of

radiotherapy. It also presents the evolution of RT techniques with emphasis on the

reasons behind the integration of CBCT imaging and image registration in the RT

domain, particularly, the ART. Finally, it discusses the limitations of treatment by

this latter and explains how research is being oriented towards the generation of

corrected CBCT images for dose calculation in ART;

Chapter 2 reviews the different CBCT correction approaches available in literature

and compares the results of their application on several cases. It also discusses the

advantages and limitations of each approach. Finally, it proves the choice of the used

approach in this thesis;
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Chapter 3 presents two contributions, the first is a preliminary work consisting

of the evaluation of different CT to CBCT registration algorithms in terms of their

accuracy and computation time. In the second contribution, the proposed correction

approach is presented and based on the results of the performed tests, the impact of

the chosen algorithms on the correction accuracy is assessed;

Chapter 4 focuses on the optimization of the previously proposed approach by

hybridizing it with another one. The new developed approach is referred to as hybrid,

because it applies consecutively two correction approaches and attempts to improve

the HU distribution in the CBCT images obtained from the previously used method.

Chapter 5 presents the fourth contribution that aims to generalize the use of the

hybrid approach in order to minimize the workload requirements in ART. The main

idea is to include the notion of inter-patient image registration that allows investigating

the CT scans already available in the archive for the correction of CBCT images rather

than acquiring new CT images for each patient.
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Chapter 1

Clinical and Technical Notions

1.1 Introduction

Radiotherapy (RT), also known as radiation therapy, is a field that has rapidly advanced

over the last three decades, thanks to the breakthrough of multi-modal imaging

systems and the development of computer technology and treatment machines. These

technological advances has allowed to treat very complicated target volumes while

sparing the adjacent normal structures. In this chapter we started by describing the

standard workflow of RT, introducing the main concepts frequently used in clinical

routine. Then, we discussed the evolution of RT techniques focusing on the reasons

behind the integration of modern imaging modalities and image processing tools.

Finally, we focused on the latest treatment technique, its limitations and the main

proposed solutions that aim to increase its performance.

1.2 External radiotherapy

External radiotherapy is a treatment technique that aims to destroy cancer cells using

high-energy ionizing radiation produced by an external source. Depending on the

tumor type, its location, size and stage, it can be curative, palliative or symptomatic.

Curative radiotherapy is the most common and its main purpose is to sterilize the

tumor and preserve as possible the surrounding normal critical structures known as

organs at risk (OARs).

1.2.1 Workflow of radiotherapy

Generally, the workflow of external radiotherapy goes through different complex

processes starting from the data acquisition to the treatment delivery as illustrated
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Figure 1.1: The workflow of external radiotherapy.

in Figure 1.1. Each part of the workflow can be described as follows:

1.2.1.1 CT scans acquisition

The 3D planning begins with the acquisition of CT scans, called planning CT (pCT),

for the patient in the treatment position. Numerous immobilization devices could be

used to help duplicate the same position throughout the treatment course.

1.2.1.2 Definition of target volumes and OAR

From the acquired CT scans, radiation oncologists define target volumes and OAR

according to a comprehensive guidelines provided by the International Commission on

Radiation Units and Measurement reports 50, 62 and 83 [13, 14, 15].

For the target volume delineation, several concentric volumes are described

(Figure 1.2). First, the extent of malignant cells, including any involved nodes, is

called the gross tumor volume (GTV). Next, a margin arround the GTV is added

to account for potential local-regional subclinical extension, and is called the clinical

target volume (CTV). The GTV and CTV are based only on anatomic and biological

considerations. Another volume, called the internal target volume (ITV), taking into

account variation in the position, shape and the size of the CTV was lately defined

[14]. The final volume is the planning target volume (PTV). This volumetric expansion
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Figure 1.2: Graphical representation of the volumes of interest, as defined in ICRU
reports 50 and 62 [16].

takes into account the uncertainties of the CTV position from day-to-day, the patient

movement (e.g., breathing), and differences in the patient positioning.

For the OAR delineation, all normal tissues surrounding the tumor and may receive a

significant dose from the treatment plan are taken in consideration [17, 18].

1.2.1.3 Treatment planning

Once the geometrical information concerning the shapes of the volumes of interest

(VOIs) is complete, medical physicists determine the beams arrangement (number of

beams, weights, shapes, orientations, energies, use of beams modifiers,...) that allows

the generation of acceptable treatment plan respecting the dose prescription provided

by the radiation oncologist. The dose calculation is performed according to the ICRU

guidelines and it should be normalized at the center of PTV to 100% with the dose

elsewhere within the PTV being in the range 100± 5%.

The acceptance of the treatment plan is based on qualitative and quantitative

evaluation of the dose distribution; the qualitative evaluation consists of integrating the

dose distribution in two or three-dimensional (2D, 3D) patient model (Figure 1.3.a),

presented in the observer’s view, which gives a fast impression about the global dose

distribution. It should be ensured that the target volume is covered by the 95% isodose

line. For the quantitative evaluation the dose-volume histograms (DVHs) present a

powerful parameter that enables getting a precise information about the percentage of

dose received by a particular volume (Figure 1.3.b). 95% of the PTV should receive

at least 95% of the prescribed dose while for the OARs a set of tolerances should be

respected.

Another statistical parameters as the minimum, maximum and the mean dose (Dmin,

Dmax and Dmean) can be also examined.

6



CHAPTER 1. CLINICAL AND TECHNICAL NOTIONS

Figure 1.3: Example of treatment plan evaluation for prostate cancer by the verification
of the isodose distribution (a) and the dose-volume histograms (b) [19].

1.2.1.4 Dose delivery

This process aims to correctly transfer the planned irradiation technique to the patient.

So that, it is critically important to position the target volume under the treatment

machine as during the acquisition of CT scans. First, the skin marks made at the

simulation session are aligned to the room-mounted positioning lasers. Then, the

in-room imaging systems are used to verify the position of the target volume and

the OARs.

1.2.2 Evolution of radiotherapy techniques

In the past two decades, the use of modern imaging modalities, efficient 3D treatment

planning systems and developed treatment machines has allowed the appearance of

more sophisticated treatment techniques such as the 3D conformal radiotherapy (3D

CRT), intensity modulated radiotherapy (IMRT), volumetric modulated arc therapy

(VMAT), image guided radiotherapy (IGRT) and adaptive radiotherapy (ART). The

application of these techniques in clinical practice is based on the standard workflow

described in the section 1.2.1; however, some significant differences exist, particularly

in the treatment planning and dose delivery processes. This section focuses on the

description of the evolution of radiotherapy from the 3D CRT to the ART by explaining

in details the contribution of each technique to improve the dose targeting to the tumor

and spare the normal tissues.

1.2.2.1 3D Conformal radiation therapy

3D-CRT is a technique where the beams of radiation used in treatment are shaped

to match the tumor [20]. In its beginning, the beam shaping was performed with
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metal blocks, called “cerrobend” blocks, which allowed to introduce fields with irregular

shapes and conform the dose distribution closely to the tumor. Individual realization of

these blocks turned out to be time-consuming and expensive; therefore, great progress

in 3D CRT was achieved by the development and the integration of computer-controlled

multileaf collimator (MLC) in the linear accelerators (Linac).

With this technology, the delivery of dose distribution with high conformity

became possible; however, conformal and homogeneous dose distribution can not be

obtained in all cases. This is particularly true for complex-shaped target volumes,

especially, the concave-shaped ones that remained a challenging task.

1.2.2.2 Intensity modulated radiation therapy

To tackle the problem of complex-shaped target volumes, intensity modulated radiation

therapy was introduced into clinical use. As its name implies, this technique allows

the modulation of the intensity or fluence of multiple radiation beams incident from

different directions, so that each beam delivers intentionally non-uniform dose to the

target. The superimposition of such beams results in more conformal dose distribution

and allows for lower doses to OARs as seen in Figure 1.4 [20, 21].

Compared to the 3D-CRT where the number, position, shape and intensity of

used beams are configured manually; the IMRT is based on inverse planning concept

that begins the treatment planning with the ideal dose prescription and ends with the

IMRT radiation beams providing more degree of freedom to optimize the plan [22].

Despite the clear benefits of IMRT in terms dose escalation and normal tissue

Figure 1.4: Comparison of the principals of 3D-CRT and IMRT. In (a), the use of
uniform fields yields a convex dose distribution that include the OARs; while in (b),
the combination of multiple beams produces the desired dose coverage of the target
volume and sufficient sparing of OARs [21].
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sparing, there are some limitations. First, the use of multiple gantry angles, fixed

fields and differential beam intensity increases the treatment delivery time which

may impact patient reproducibility and increase intrafraction organ motion variability.

Second, the use of IMRT is an increase in low dose radiation to non-target tissue (i.e.,

integral dose) due to higher monitor unit (MU) requirements for IMRT delivery and

increased number of beams which raises some concern regarding the risk of secondary

radiation-induced cancer. Finally, all uncertainties related to daily inter-fraction

positioning, displacement and distortions of internal anatomy and intra-fraction motion

of tumors and normal tissues during the course of treatment, may also limit the

applicability and efficiency of IMRT.

1.2.2.3 Volumetric modulated arc therapy

Arc therapy has emerged as a technique to address some of the limitations of fixed

fields treatments. In contrast to fixed field IMRT, arc therapy incorporates rotation of

the Linac gantry while the beam is on [23]. In most cases the patient is treated from

all angles in one or more 360-degree rotations (Figure 1.5).

The major conceptual advantage of VMAT over standard IMRT is that since the

Figure 1.5: Principal of VMAT. The moving source rotates along a circle indicated
by the outermost circle in the diagram. The green and blue rectangles represent the
position of the leaves at each gantry angle. The next circle shows the segment weighting
plotted as a grey rectangle of varying height and intensity which both vary in proportion
to the segment weighting. The next circle in represents the reconstructed maps from
re-sorted parallel rays shown with the associated parallel rays. It can be seen that
these re-sorted rays have an intensity modulation. [24].
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rotation of the source is performed around the patient, all angles are available to deliver

radiation to the target volume while avoiding normal tissues, and time is used efficiently

because the radiation delivery does not stop in between different angles. Furthermore,

the decreased monitor unit required for this technique can result in a lower dose to

normal tissues.

1.2.2.4 Image guided radiation therapy

As mentioned previously, internal organs motion, patient’s shapes changes and patient’s

setup errors may limit the efficiency of IMRT or VMAT and result in under-dosage of

target volume or over-dosage of OARs. Therefore, optimal treatment delivery relies on

accurate image guidance.

Usually, image guidance refers to the use of different imaging systems in order

to detect and correct random and systematic errors that occur before or during the

treatment delivery. Several imaging modalities such as kilovoltage cone-beam CT

(kV-CBCT), megavoltage cone-beam CT (MV-CBCT), magnetic resonance imaging

(MRI) and positron emission tomography (PET) can be used to acquire information

on the patient’s body position or the position of the target organs, including bone

structures, soft tissues, or a tumor itself [21, 25, 26].

With these modalities, the image guidance intervention in the workflow of

radiotherapy appears in three main levels that could be summarized as follows:

• Image guidance for delineation: CT scans are the standard imaging modality

in radiation treatment planning since it combines high geometrical accuracy

with a measure of electron density which enables dose calculations. However, in

comparison with MRI, the quality of CT scans is inferior in the detailed definition

of soft tissues, particularly, microscopic tumor extensions. Therefore, coupling

MRI with CT scans should be applied for an accurate delineation of volumes of

interest. Furthermore, the use of biological imaging as PET provides additional

information about the proliferating areas of the tumor and allows differentiating

areas of biological importance within the boundaries of target volumes [27].

• Image guidance for patient’s setup: In-room imaging systems as the

MV-CBCT and kV-CBCT are currently used to refine the patient’s position

under the treatment machine and control the evolution and the localization of the

target volume during the treatment. Both of these modalities provide volumetric

images in single revolution of the gantry using the megavoltage treatment source

for the MV-CBCT and kilovoltage source for the kV-CBCT.

The benefits of kV over MV imaging for the patient’s setup include not only lower
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dose exposure, but also high quality of kV-CBCT images which allows reduced

observer variability and consequently better reproducibility of the desired position

[28].

• Image guidance for treatment verification: Online volumetric

pre-treatment imaging, as kV-CBCT, serves as an ideal method for target

verification at the time of treatment due to its ability to describe anatomical

distribution with high contrast. Based on geometrical measures, it allows

estimating tumor regression throughout the treatment. Currently, PET scans

are also taken to estimate the degree of tumor response [21].

1.2.2.5 Adaptive radiation therapy

Although IGRT gives clinicians the possibility of better patient’s positioning during the

treatment by aligning the beam with the target before radiation, a simple repositioning

is insufficient to correct shape variations in target or nearby critical structures. The

more complex correction is usually performed by replanning: a process called ART,

which includes the modification of initial plan to adapt to changes in target volume

or OARs. As shown in Figure 1.6, the ART process goes through four complex and

time consuming steps: (1) initial planning, (2) image guidance for patient’s setup, (3)

repeated imaging and adaptive planning and (4) treatment delivery. In theory, these

steps can occur in clinical routine on three time scales:

• Offline adaptation. The plan is re-optimized between fractions in case of

Figure 1.6: Process of image-guided adaptive radiotherapy [29].
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clinically significant variations in the patient’s anatomy (weight loss, tumor

shrinkage,...)[30, 31].

• Online adaptation. In this case, the re-optimization is applied just before

irradiation. In-room imaging are often used to detect and correct systematic

and random errors [32, 33, 34].

• Real time adaptation. The plan is re-optimized during irradiation by adapting

the beam according to the target position (tracking) [35, 36] or by interrupting

the irradiation when the target moves outside the planned area (gating) [37].

To date, the implementation of online strategies in clinical practice is challenging

because patients must remain immobilized on the treatment couch while waiting for

ART correction. Moreover, these strategies could provide greater treatment precision

but at the cost of substantial increase in physician and stuff effort and treatment time.

Several researches have converged to the full automation of the ART workflow in order

to reduce the workload requirements for online ART. The main focus was attributed

to the image guidance and the replanning steps. Since IGRT is mainly based on

the comparison of the information provided by the daily acquired images, usually

kV-CBCT, and the initial pCT images, the notion of automatic image registration

process has been appeared. In addition, as the replanning process requires the need for

new pCT images acquisition which may pose a health concern to patients, the idea of

investigating the daily kV-CBCT images not only for guidance but also for treatment

planning have seen a special interest.

In the two following sections, the role of image registration and daily kV-CBCT

images as base for treatment planning in ART and its limitations are described in

details.
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1.3 Integration of image registration process

Notations

IF Fixed image

IM Moving image

IF Average intensity of IF

IM Average intensity of IM

xi Voxel number i

N Total number of voxels in an image

T Transform

µ Registration parameters

µ̂ Registration results

ζ Cost function

H(A) = −
∫
pA(a) log pA(a)da Entropy of a random variable

H(A,B) = −
∫
pAB(a, b) log pAB(a, b)dadb Joint entropy of two variables

pA(a), pB(b) Marginal discrete probabilities

Image registration plays a central role in various stages of image guidance in ART.

It is a process of establishing spatial correspondences across two images of the same

scene (in medical image registration: the same anatomical region) acquired at different

times by the same or different imaging modalities to obtain a complete information

[29]. The purpose is to determine a geometric transformation (translation, rotation or

deformation) that maps points from one image (moving image) to their homologous

points in another image (fixed image). In this way, images can be combined and

fused on a voxel-by-voxel basis and differences between anatomical structures can be

quantified for image guidance and follow up [21].

The general image registration process can be illustrated in Figure 1.7. In

this process, the registration is considered as an optimization problem which has

to be solved throughout the minimization of a cost function using an iterative way.

Commonly, this problem is formulated as follows:

µ̂ = arg min
µ
ζ (µ; IF , IM) (1.1)

From the Figure 1.7 and Equation 1.1 several components can be recognized:

Moving image: is the image which will be deformed to correspond to the fixed image;

Fixed image: is the image from which deformations will be computed to be applied
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Figure 1.7: Basic components of an image registration framework [38].

to the moving image;

Similarity measure: is, by definition, the metric that quantifies the degree to

which a pair of imaging studies are aligned (or mis-aligned). Using standard

optimization techniques the transformation parameters are manipulated until this

metric is minimized (or maximized). Most registration metrics in use presently can be

classified as either geometry-based or intensity-based. Geometry-based metrics make

use of features extracted from the image data such as anatomic or artificial landmarks

(points) and organ boundaries (contours or surfaces). However, the definition of

such features requires the use of accurate segmentation techniques. Intensity-based

(voxel-based) metrics use the numerical gray-scale information directly to measure

how well two images are registered. Several mathematical formulations are used to

measure this similarity; four of the most common are described below:

1. Mean Squared Difference (MSD): is a simple and easy-to-apply metric. It is

computed as the average squared intensity difference between the fixed and the

moving images. Its formula is given by:

MSD(IF , IM) =
1

N

N∑
i=1

(IF (xi)− IM(xi))
2 (1.2)

This metric is effective for registering two images have essentially identical

intensities (Mono-modal images)[39, 40].

2. Normalized Correlation Coefficient (NCC): is one of the common used

metrics. it determines a linear relation between the fixed and the moving images.

It can be formulated as follow:
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NCC = −
∑N

i=1(IF (xi)− IF )(IM(xi)− IM)√∑N
i=1(IF (xi)− IF )2

∑N
i=1(IM(xi)− IM)2

(1.3)

This metric is more complex, but offers greater flexibility, as it can be applied to

multi-modal images[41, 42].

3. Mutual Information (MI): as the name implies, this metric is based on the

information content of the fixed and the moving images and is computed directly

from the probability distribution of these images intensities. It is given by:

MI(IF , IM) = H(IF ) +H(IM)−H(IF , IM) (1.4)

This method is more complex than either MSD or NCC, but offers even more

flexibility and is often the metric of choice for multi-modal images[43, 44].

4. Normalized Mutual Information (NMI): is a normalized version of the MI

and it is given by:

NMI(IF , IM) = 1 +
MI(IF , IM)

H(IF , IM)
=
H(IF ) +H(IM)

H(IF , IM)
(1.5)

Transform: the fundamental task of image registration is to find the geometric

transformation, T, that maps the coordinates of a point in the moving image to the

coordinates of the corresponding point in the fixed image. In general, a number of

parameters (often referred to as degrees of freedom (DOFs)) is required to determine

the transformation [45]. This number depends on the form of T, which in turn depends

on the clinical site, clinical application and the modalities involved. According to its

degree of freedom, transformations are categorized into three types:

1. Rigid transform: a rigid registration (RR) allows to treat the image as a

rigid body, which can translate and rotate. It can be described by the following

formula:

Tµ(x) = R(x− c) + t+ c (1.6)

With R a rotation matrix, c the center of rotation and t the translation.

2. Affine transform: affine transformation can be seen as the extension of rigid

transformation. It is composed of rotations, translations, scaling, and shearing.

Its formula is given by:

Tµ(x) = A(x− c) + t+ c (1.7)
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Where the matrix A has no restrictions.

3. Deformable transform: a deformable image registration (DIR) is often used

in sites where rigid or affine transformations are not powerful enough to achieve

acceptable alignment of anatomical structures. One class of deformation model

is called B-spline, which is a curve that interpolates points in space based on

a set of control points. A set of parameters associated with each control point

defines the exact shape of this interpolation. The number and location of control

points determine the extent of deformation that a spline can express. The formula

describing this deformation is given by:

Tµ = x+
∑
xk∈Nx

pkβ
3(
x− xk
σ

) (1.8)

With xk the control points, β3(x) the cubic multidimensional B-spline control

points spacing and Nx the set of all control points within the compact support

of the B-spline at x.

Interpolator: during optimization an interpolator is used to evaluate intensity at

non-voxel positions. Different interpolation methods including nearest neighbor, linear

and N th Order B-Spline interpolators exist. The most used one is The N th Order

B-Spline Interpolator; for which the higher the order the better the quality.

Optimizer: an optimizer is the element that aims to find the optimal metric value

giving the most accurate alignment. Gradient descent (GD) is the most common one

and it is defined as follows:

µk+1 = µk − akg(µk) (1.9)

with g(µk) = ∂ζ/∂µ, the gradient at the position µk and ak =
a

(k + A)α
the decaying

function where: a > 0, A ≥ 1 and 0 ≤ α ≤ 1 are user defined constants.

There is also a more advanced version of the standard GD called the adaptive

stochastic gradient descent (ASGD); it allows an automatic calculation of the

parameters a, A and α and tends to be more robust.

Samplers: an image sampler defines the way to select a subset of voxels for the

metric calculation. It should be assumed that the loop covers all voxels in the fixed

image. The subset can be selected in different ways: random, on a grid,... etc.

Pyramid: a pyramid allows starting the registration from images with low complexity

(smoothed or down-sampled) to images with high complexity.
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Figure 1.8: Illustration of a linac-mounted kV-CBCT system.

1.4 Investigation of CBCT images

As sight previously, significant (non-rigid) changes in the patient’s anatomical

structures can be quantified only by treatment guidance based on the comparison

of the initial pCT and the daily acquired images. One of the most widely used imaging

technique for treatment guidance, being also the one under consideration in this thesis,

is CBCT. This section serves to describe this imaging modality in details with emphasis

on its imaging quality and its main limitations.

1.4.1 Acquisition system

A CBCT imaging system consists of a kilovoltage (kV) X-ray source and flat panel

detector mounted orthogonally to the linear accelerator gantry axis, on the opposite

side of the patient with respect to the imaging source (Figure 1.8) [46]. The rotational

axes are parallel to the treatment table and pass through the center of the target.

When the system rotates, planar projections are recorded from different angles. Then,

a 3D image of the patients anatomy is reconstructed from all projections [17].

CBCT has the particularity of using a cone-shaped beam, unlike the CT where the

beam is fan-shaped as shown in Figure 1.9. This cone-beam geometry makes it possible

to acquire tens of tomographic sections for a single rotation of the CBCT gantry

compared to the acquisition of individual consecutive sections with a conventional

CT.

17



CHAPTER 1. CLINICAL AND TECHNICAL NOTIONS

Figure 1.9: Schematic representation of the conventional, fan-beam geometry and the
cone-beam geometry [17].

1.4.2 CBCT image quality

Although image reconstruction principals of CBCT images is similar to that of pCT

images, the CBCT image quality is very different (Figure 1.10). The fact that the

patient is imaged using a cone-shaped beam that covers a large section (large field of

view(FOV)) increases the amount of detected X-ray scatter resulting in a multitude of

artefacts that reduce their quality compared to the pCT images. Here, a brief overview

of these different artefacts and their sources is presented.

Figure 1.10: pCT and CBCT for the same patient (axial, coronal and sagital views)
displayed using the same window level.

1.4.2.1 Cupping artefacts

Cupping, so called shading, artefacts are the most prominent in CBCT imaging.

They come out as an apparent decrease in density towards the center of homogeneous
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objects imaged on a CBCT system (Figure 1.11). These artefacts are due to the high

scatter conditions found in CBCT imaging, where the large 2D detector panel acquires

signal from scattered photons as well as primary photons. Furthermore, differential

attenuation of polyenergetic x-ray beams (known as beam hardening) adds to the

cupping artefact, although at smaller magnitude than the scattered photons [47].

Figure 1.11: CBCT image of a homogeneous phantom which displays the cupping
artefact commonly found in CBCT imaging. The central part of the phantom appears
to be less dense than the rest of the phantom, and this effect is a combined result of
scattered photons and beam hardening [47].

1.4.2.2 Streaking artefacts

Streaking artefacts, often termed ”missing values artefacts”, are another effect of high

scatter condition in CBCT imaging. They appears if the object under study contains

highly absorbing material, e.g. bone or prosthetic gold restorations. In this case, the

high density material causes an abrupt change in the scatter to primary ratio (SPR),

and the soft tissue behind bony anatomy may appear to have a lower density than in

other regions of the same image (Figure 1.12).

1.4.2.3 Radar artefacts

Radar artefacts are pronounced, if the CBCT scanning isocenter located near the

surface of the human body (Figure 1.13). These artefacts are due to non-instantaneous

readout of the 2D flat panel imager used in CBCT imaging for IGRT showing

themselves as a bright circular lines extending from the patient surface inside the

patients body. Similar effects can be observed around bony anatomy in other CBCT

acquisitions.

1.4.2.4 Aliasing artefacts

Aliasing artefacts in CBCT imaging are mainly related to two factors: the size of the

detector elements, i.e. the pixel size, and the cone-beam geometry. First, in order

19



CHAPTER 1. CLINICAL AND TECHNICAL NOTIONS

Figure 1.12: CBCT image of a homogeneous phantom with dense implements. Typical
thin lines tangent to the sharp edges appear in the direction of the beam [48].

Figure 1.13: Example of CBCT image displaying the radar artefact as a bright circular
line extending from the patient surface inside the patients body. Similar effects can be
observed around bony anatomy in other CBCT acquisitions [47].

to completely reconstruct a continuous signal, the sampling frequency (represented by

the number of pixels per area) must be higher than twice the highest frequency in the

signal. Thus, violating this condition may raise the problem of undersampling [49].

Second, owing to the divergent shape of the cone beam, the voxels close to the source

will be traversed by more rays than those close to the detector (Figure 1.14). Hence,

these artefacts manifests as line patterns commonly diverging towards the periphery

of the reconstructed volume (Figure 1.15).

1.4.2.5 Ring artefacts

Ring artefacts are more pronounced when homogeneous media are imaged. Owing to

the circular trajectory and the discrete sampling process, these artefacts appear as

concentric rings centered around the location of the rotation axis (Figure 1.16). In a
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Figure 1.14: One source of undersampling resulting in aliasing errors in CBCT is the
cone divergence itself. Obviously, the slice A of the volume nearest to the source collects
many more rays per voxel (as measured on the detector pixels, p) than slice B, which
is closest to the detector. The number of rays per voxel linearly decreases with the
distance of the slice from the source [50].

Figure 1.15: Typical aliasing patterns in CBCT data sets. The lines (arrows)
diverge from the centre towards the periphery and are most probably caused by the
undersampling owing to the cone beam geometry.

broader sense, ring artefacts could also be allocated to the group of aliasing artefacts.

1.4.2.6 Motion artefacts

CBCT scanners are mounted on the linac gantry that does not rotate more than one

revolution per minute. A result of the slow CBCT acquisition following from the

gantry rotation speed is that CBCT images are prone to motion artefacts, e.g. patient’s

breathing, cardiac motion or intestinal gas. The general problem is quite easy to explain

for patient motion artefacts (Figure 1.17). If an object moves during the scanning

process, the reconstruction does not account for that move since no information on the

movement is integrated in the reconstruction process. Hence, the lines along which the
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Figure 1.16: Example of CBCT image of a homogeneous phantom displaying ring
artefacts (arrow) centred around the location of the axis of rotation. As with many
other artefacts, they are most clearly visible in axial slices, i.e. in beam direction[50].

Figure 1.17: Example of a typical double contours (arrows) induced by patient
movement during the acquisition process of the projection images.

backprojection takes place do not correspond to the lines along which the attenuation

had been recorded, simply because the object has moved during the acquisition.

1.4.3 Towards ART based on CBCT images

The fact that CBCT images suffer from high amount of artefacts did not limit its use for

image guidance alone, but it opened a new research axes looking for the investigation

of CBCT images as a basis for treatment adaptation, particularly, as an alternative to

the acquisition of new pCT in case of anatomical changes [51, 52].

The key limitation in such application is the lack of hounsfield unit (HU) accuracy
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caused by all of the above mentioned artefacts. Therefore, many studies proposed

different techniques to overcome this limitation and ensure suitable HU distribution

for an accurate dose calculation. These techniques include: the integration of physical

instruments as anti-scatter grids to reduce the impact of scatter on the CBCT

reconstruction quality [10, 53], scatter measurement based on the imaging system

modeling (simulation) [11, 54], calibration of CBCT images using phantoms [12, 55, 56]

and finally the use of image processing techniques that allow correcting the HU

distribution in the CBCT images based on that provided by the pCT images [5, 6, 57].

Most of research converges to the use of image processing techniques due to

their efficiency and rapidity compared to the integration of hardware or the use of

simulation. These techniques are classified and reviewed in detail in the next chapter

with discussion of their main advantages and limitations.

1.5 Conclusion

This chapter presented the technical and clinical notions widely used in the RT domain.

The main goal was to provide a basic knowledge to understand the rational behind the

choice of the problematic in this thesis. It focused on the description of the evolution of

RT from its simplest forms to its more complicated ones which are the ART techniques.

Actually, the growing use of in-room imaging, especially CBCT systems, with the

integration of image registration tools has highlighted the idea of implementing online

ART techniques in the clinical routine. Reaching this goal was associated with the

appearance of increasing number of published works proposing the investigation of

CBCT images as a base for treatment planning instead of acquiring new pCT images.

For deep understanding, the next chapter presents these works and reviews the existing

techniques that aims to generate appropriate CBCT images for dose calculation in the

context of online ART.
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Chapter 2

Literature review

2.1 Introduction

Cone-beam CT imaging is now fully integrated in radiation therapy; it can be

considered as a powerful tool for improving tumor targeting and dose delivery to

normal tissues. However, these images suffer from a reduced contrast due to the

increased amount of scatter which limits the use of CBCT images directly for dose

calculation [4]. For that reason, several authors proposed promising techniques to

enhance the quality of CBCT images. This chapter provides a state of art of CBCT

image correction techniques. The main goal is to review briefly the different correction

methods available in literature and compare the results of their application for the

treatment of several patients by ART.

2.2 Classification of CBCT correction approaches

So far, four types of CBCT correction approaches have been evaluated in literature:

physics-based, calibration-based, pCT-based and deep learning-based approaches.

Each type is detailed in this section.

2.2.1 Physics-based approaches

2.2.1.1 Use of physical instruments

This technique is the most obvious and it can be defined as the use of anti-scatter grids

or beam blockers to prevent the influence of scattered irradiation on the CBCT image

quality.

In 2007, Léterneau et al [58] assessed the impact of post-patient anti-scatter grid

in combination with a non linear scatter correction on the CBCT number accuracy.

24



CHAPTER 2. LITERATURE REVIEW

Testing of the complete process was performed on phantoms with assessment of

dosimetric accuracy based on 2D γ-analysis. The results showed that the cupping

artefact was reduced from 30% to 4.5%. Also, the CBCT number accuracy was

improved in water of about ±20 HU and in bone and lung to within ±130 HU.

γ-analysis showed that 97 to 99% of the pixels of radiochromic films agreed with

the calculated dose within 5% of dose difference or 2 mm of distance to agreement.

However, this technique is limited by the fact that the use of anti-scatter grid can

reject some of the scatter but serves also to attenuate the primary beam, which can

result in an increase in image noise for the same dose to the patient.

In 2009, Zhu et al [59] proposed the use of another instrument which is the beam

blocker usually placed between the source and the imaging object. This instrument

has a strip pattern, such that partial volume can still be accurately reconstructed and

the whole-field scatter distribution can be estimated from the detected signals in the

shadow regions using interpolation or extrapolation. Hence, the estimated scatter may

be separated from the CBCT information acquired in an open field without beam

blocker. The evaluation results showed that the errors in HU were reduced from about

350 HU to bellow 50 HU when applying this method on Catphan600 phantom, while

when using an anthropomorphic phantom, the error was reduced from 15.7% to 5.4%.

Despite these findings, the need for two scans to measure scatter and acquire image

data with and without beam-blocks is a limiting factor due to the additional dose to

the patient.

In 2010, Jin et al [60] proposed the same method as [59] but they acquired

the imaging data simultaneously from the grid interspace regions during scatter

measurement. They reported that the proposed technique reduced the streak artifact

index from 58% to 1% in comparison with the conventional CBCT. It also improved

CT number linearity from 0.880 to 0.998 and the contrast-to-noise ratio (CNR) from

4.29 to 6.42. Even though, this technique remains limited by the grid parameters as

the septa width that affect the image quality.

2.2.1.2 Simulation of the imaging system

This technique consists of the scatter modulation using simulation methods.

In 2006, Jarry et al [61] used Monte Carlo (MC) simulation to predict scatter

distribution in CBCT images. The study was performed on a cylindrical water phantom

and an anthropomorphic head phantom and for evaluation purposes contrast and profile

measurements were obtained for the scatter corrected and non-corrected images. An

improvement of 3% for contrast between solid water and a liver insert and 11% between

solid water and a Teflon insert were obtained and a significant reduction in cupping
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and streaking artifacts was observed. However, simulation time was about 430 hours

which is a significant amount of time.

In 2008, Mainegra-Hing et al [62] developed a new MC simulation code for CBCT

scatter computation. They proposed the use of a variance set that allowed increasing

the simulation efficiency by a factor of 4000. They also proposed a denoising process for

the computed scatter distribution that reduced the simulation time by another factor

of 10. Such that the calculations described in [61] would be 39 seconds instead of the

430 hours reported. However, since results reported in their work can be considered

only preliminary, extensive benchmarking of the algorithm with real CBCT images,

and a better model of the X-ray source and detector array is still needed.

In 2014, Thing et al [63] studied two simulation geometries with two different x-ray

sources and variant user input parameters to take into account the impact of the source

geometry not addressed in [62]. They reported that optimizing the input parameters

to the specific simulation geometry can improve scatter calculation efficiencies by more

than 4 orders of magnitude. However, this study was based on lengthy simulation and

it is important to realize a few easy ways of reducing the required calculation time.

In 2015, Xu et al [54] proposed a new method for scatter estimation. In contrast

to the previously cited works, they measured the scatter from the pCT images instead

of scatter-contaminated CBCT images. Then, scatter signals were removed from the

CBCT projections and corrected CBCT images was reconstructed. This method was

evaluated in numerical simulation, phantom and real patient cases. In the simulation

cases, the mean HU errors was reduced from 44 to 3 HU and from 78 to 9 HU in the

full-fan and the half-fan cases, respectively. In both the phantom and the patient cases,

image artifacts caused by scatter, such as ring artifacts around the bowtie area, were

reduced. The limitation of this method is that scatter correction results in increased

noise level in the reconstructed images and denoising algorithms are still needed.

In the same year, Bootsma et al [64] novel scatter correction method that uses

a sparse number of MC simulations run concurrently with a fitting algorithm. They

reported that the fitting function decreases the statistical noise in the MC scatter

distribution. Also, The cupping was measured to be reduced by 32%−88% in the

simulated head and pelvis phantoms. However, there are still some image artifacts

remaining in the corrected images, some of which are related to the under sampling of

the projection space and image lag.

In 2016, Thing et al [65] proposed another artefact correction method to tackle the

problems related to the image lag, detector scatter, body scatter and beam hardening.

In contrast to the previous studies where each factor was studied extensively using

different phantoms, they investigated the potential increased image quality when all
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artefacts sources are considered together. The study was performed on five lung cancer

patients and the obtained results showed that the root mean squared difference between

the reconstructed CBCT and the reference CT images was reduced by 31%. Even

though, this method did not address the time consuming and difficult contouring on

the noisy CBCT images.

In 2017, Thing et al [66] investigated the artefact corrected CBCT images resulted

from [65] for dose calculation. They performed the study on 21 lung cancer patients

with re-simulation CT images acquired during radiotherapy. For evaluation, dose

comparisons were made using γ-analysis. They reported that dose distributions

calculated on the artefact corrected CBCT images had a median 2%/2 mm gamma

pass rate of 99.4% when compared to the reference rCT. Doses calculated on the

clinical CBCT images had a median 2%/2 mm gamma pass rate of 93.1%. However,

as sight previously the required time to perform the correction for each patient is not

taken into consideration.

2.2.2 Calibration-based approaches

This technique can be defined as the establishment of HU-ED tables for CBCT system

referring to the calibration tables of CT scans using different phantoms. The mean

CT values in the phantom CBCT datasets are described by the density values of the

pCT which are determined based on the relationship between CT values and physical

density as specified by the phantom manufactures.

In 2008, Richter et al [52] investigated the feasibility of dose calculation in CBCT

images using this correction method. Four different correction strategies to match CT

values and ED in CBCT images were analyzed: standard CT HU-ED table without

adjustment for CBCT; phantom based HU-D tables; patient group based HU-ED tables

(pelvis, thorax, head); and patient specific HU-ED tables. Their results showed a mean

difference of 564±377 HU between CT values determined from the pCT and CBCT

images. For dose calculation in real patient CBCT images, the largest differences

between CT and CBCT were observed for the standard CT HU-D table: differences

were 8.0±5.7%, 10.9±6.8% and 14.5±10.4% respectively for pelvis, thorax and head

patients. The use of patient and group based HU-D tables resulted in small dose

differences between planning CT and CBCT: 0.9±0.9%, 1.8±1.6%, 1.5±2.5% for pelvis,

thorax and head patients, respectively. The application of the phantom based HU-ED

table was acceptable for the head patients but larger deviations were determined for the

pelvis and thorax patient populations. However, this technique showed a dependency

to the acquisition parameters and different HU-ED tables were required for each region

to overcome this limitation.
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In 2009, Hatton et al [67] assessed the impact of HU-ED calibration phantom

insert composition and phantom volume on dose calculation accuracy for CBCT. They

reported that the HU-ED calibration curves for the commercial phantoms diverge at

densities greater than that of water, depending on the elemental composition of the

phantom insert. The effect of adding scatter material longitudinally, increasing the

phantom length, was found to be up to 260 HU numbers for the high-density insert.

The change in the HU value, by increasing the diameter of the phantom, was found

to be up to 1200 HU for the high-density insert. These differences can lead to dose

differences for 6 MV and 18 MV X-rays under bone inhomogeneities of up to 20% in

extreme cases. These results confirmed the dependency of the dose accuracy to the

calibration phantom choice.

In 2014, Srinivasan et al [68] evaluated treatment plans based on CBCT calibrated

using different phantoms. Dose calculations were performed on four different sized

phantoms and to extend the study to a typical clinical situation, two prostate cases

were included. The isodose distributions computed based on pCT and CBCT using the

Catphan calibration curve agreed to within ±1% compared to that based on CBCT

using the density phantom calibration curve. However, for phantoms of larger diameter,

there was a pronounced discrepancy in the 50% and 60% isodose lines, with the dose

difference being about ±3%. For phantoms whose thickness is less than the cone beam

scan length (16 cm) and for phantoms whose diameter is less than that of the calibration

phantom, the variation in HU values is high. The effect of a change in radial diameter

has a larger impact on dose calculations which confirms the results of the previous

works [67].

In 2016, De smet et al [69] were interested to the application of this approach

on lung cancer patients. Dose calculation was based on three different HU-ED tables

determined from: a patient-specific, a general thorax-CBCT, and the standard CT

HU table. They reported that the average differences between CT and CBCT dose

calculations were 2%−3% for most dose metrics when the standard CT HU table

was used. A better agreement was observed when a thorax-CBCT HU table was

used, with differences of 1%−2%. However, the creation of a HU-ED tables is more

time-consuming and the gain in dose calculation accuracy should be weighed against

the additional time investment.

In 2018, MacFarlane et al [56] proposed an automated patient-specific calibration

method. In contrast to the previously cited works where the CBCT images were

calibrated region by region, their method was based on the generation of correlation

plots between pCT and CBCT voxel values, for each image slice. Then, a linear

calibration curve specific to each slice was obtained by least-squares fitting and applied
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to the CBCT slice’s voxel values. For 15 head and neck patients, the average dose

difference was ≤ 1.1% and the average gamma pass rate with 3%/3mm was about

95%. However, the calibration of higher and lower densities separately is still needed

to improve the performances of this method.

2.2.3 pCT-based approaches

2.2.3.1 HU mapping

HU mapping can be defined as the replacement of HU values in CBCT images by

their equivalent points in CT images after the application of rigid or deformable image

registration [6].

In 2007, Zijtveld et al [5] validated the use of this technique in combination with

rigid registration for 5 head and neck cancer patients treated by IMRT. They compared

dose distributions between CT images and CBCT images with adjusted HUs. The

metrics of comparison were the dose difference plots and 3D γ-analysis. The results

showed dose differences less than 1% in the majority of points and 96% of the points

of 3D γ-analysis resulted in less than 1.

In the same year, Yang et al [51] evaluated the accuracy of the mapping for dose

calculation. They employed four datasets including three prostate cancer patients

and one lung cancer patient. For each case a set of modified CBCT (m-CBCT) was

generated by mapping the electronic density (or HUs) distribution from the CT to the

CBCT using B-spline DR. For the lung cases, the results showed a difference between

CBCT and m-CBCT based calculations of about 5%, due to the motion artifacts, while

for the prostate cases, the difference was less than 2%. Therefore, they concluded

that CBCT images can be used directly for dose calculation in the absence of motion

artifacts. However, the pCT cannot be replaced by CBCT images, due to their poor

quality which affects the delineation of volumes of interest.

2.2.3.2 Histogram matching

The image processing by HM is a method that allows the adjustment of HU values

between CBCT and pCT images using cumulative histograms. The same cumulative

values are determined as:

CBCT (H1) = pCT (H2) (2.1)

where CBCT (H1) represents the HU for CBCT and pCT (H2) represents the HU for

pCT [70].

Figure 2.1 shows a conceptual shart of the histogram matching algorithm.
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Figure 2.1: Conceptual chart of histogram-matching algorithm [70].

In 2014, Onozato et al [6] studied the feasibility of this modification for the dose

calculation based on CBCT images. The HM was applied on a set of 10 prostate cancer

patients datasets after a DR between CBCT and pCT images. They found that the

average dose differences were less than 1%.

In 2015, Amit et al [7] developed and validated a methodology for using corrected

CBCT images in an automated treatment planning for breast cancer. They used HM

to correct the intensities in CBCT images. To evaluate the accuracy of the modification

they compared the m-CBCT and the pCT by the average mutual information and the

average sum of absolute differences. Thus, after the dose calculation, they compared the

dose distribution using γ- index analysis. They observed an average mutual information

of 1.0 ± 0.1 and an average sum of absolute differences of 185 ± 38, which indicate a

good agreement between m-CBCT and pCT. In addition, the dosimetric comparison

showed that 99.4% of the points resulted in γ less than 1.

2.2.3.3 Multilevel threshold

The MLT is a method that classifies all CBCT pixels with similar HUs into 3 or 4

different segments based on pCT [6].

In 2009, Boggula et al [71] evaluated an online adaptation plan based on CBCT

images. They used as datasets, one inhomogeneous phantom and three prostate cancer

patients. For each set, homogeneous structures in the CBCT images were segmented,

then, reasonable averaged HU derived from pCT were assigned to each segment. Dose

distribution accuracy was compared between CBCT with/without modification and
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pCT using γ-analysis. They reported that dose deviations of 51% were observed when

uncorrected CBCT were used, while after modification, 97% of the dose deviations

were less than 3% (γ-index: 3%/3mm).

In 2012, Fotina et al [72] performed dose calculation on CBCT images of 30

patients, including patients with prostate, lung and head and neck cancer. The method

of MLT was called density override technique. They considered that the patient is

assumed to be comprised mostly of water, except bones or low density/air regions.

These regions were extracted using an automatic segmentation algorithm based on

gray values threshold. The evaluation was made by comparing dose distributions in the

CT and m-CBCT using DVHs and γ-index analysis. The results showed a dosimetric

difference less than 2%.

In 2014, Onozato et al [6] performed the same modification as Fotina et al [72] but

they excluded water and used fat and muscle instead. In addition, they used DR to

minimize the effect of organ deformation and different HUs values between pCT and

CBCT. For 10 prostate cancer patients, the results showed that the combination of

MLT with DR gives an average dose differences less than 1%.

In 2015, Dunlop et el [73] assessed for pelvic, lung and head neck treatment sites

the accuracy of density override approaches. They applied this method in different

ways: by assigning water density to the entire CBCT images, assigning of either water

or bone density, assigning of either water or lung density and binning CBCT voxels

into six density levels automatically. They reported that for H&N and pelvic cases

the average dose-volume differences were within 1% and about 1.3% for lung cases,

when using the three first assignment methods. The automatic assignment showed

differences of about 0.6%, 1.2% and 1.4% for the three cites, respectively.

In 2016, Almatani et al [57] developed an automated MLT algorithm to reduce the

operator time associated with the manual MLT. They aimed to increase the accuracy

and the rapidity of CBCT-based dose calculation. As in the previous studies, they

used as metrics of comparison, dose difference between pCT and m-CBCT and γ-

index analysis. The results showed that 97.7% of points resulted in γ less than 1 (γ-

index: 3%/3mm) when automated MLT where used. Furthermore, dose differences

shown by MLT algorithm were about -0.46%, while those shown by the automated

MLT were -1.3%.

In 2019, Giacometti et al [74] assessed the efficiency of this modification on CBCT

images of 15 patients, including patients with head and neck, lung and prostate

cancer. An automatic contouring tools were used to delineate 7 tissues (air, lung,

adipose, muscle, soft and dense bone and metal). Then, the HU override values for

these structures were determined from corresponding volumes on the patient’s pCT.
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The median pass rate ranges when using γ- index of 2%/0.1mm were 99.6−99.9%,

94.6−96.0% and 94.8−96.0% for prostate, head and neck and lung, respectively.

2.2.4 Deep learning-based approaches

Deep learning (DL) is, by definition, a class of machine learning algorithms that uses

multiple layers to progressively extract higher level features from the raw input [75, 76].

For example, in image processing, lower layers may identify edges, while higher layers

may identify the concepts relevant to a human such as digits or letters or faces.

In RT, DL was already applied to lesion detection [77] and image segmentation

[78]; however, there are few studies that investigate this approach for image quality

improvement.

In 2018, Kida et al [9] proposed for the first time a deep convolutional neural

network (DCNN) for improving CBCT images. The main objective was to learn a

direct mapping from the original CBCT to their corresponding pCT images. They

reported that the root mean squared differences (RMSD) of the mean pixel values

for corrected CBCT images was about 11 and 14 HU in fat and muscle, respectively.

However, misalignments between paired images can lead to errors like edge blurring,

deformation, and the disappearance of some anatomical structures in the improved

CBCT images. In addition, the accuracy of such application is related to the training

data size; therefore, handling a large data may decrease its processing speed.

In 2019, Kida et al [79] proposed the use of a conditional generative adversarial

network (GAN), which is an approach to learning translation mapping with conditional

setting to capture structural information. Such that, to synthesize planCT-like from

CBCT, unpaired and unaligned CBCT and pCT training datasets were used. They

reported that the differences in the maximum and minimum average HUs of muscle and

fat ROIs on resulted CBCT images (44 and 83 HU) were much smaller than those of

the original CBCT (268 and 218 HU), which indicates that the artifacts were effectively

suppressed by the proposed method.

2.3 Discussion

In the Table 2.1, the different works for the correction of CBCT images are grouped

following the classification presented previously. The number of patients used in each

work and the chosen location are also indicated with some statistical results as reported

by the authors of the papers.

Synthesizing these works shows that over the past few years there have been a

significant increase in both interest as well as performance of generating from the

32



CHAPTER 2. LITERATURE REVIEW

Table 2.1: Summary of the different approaches used for the correction of CBCT
images.

Approaches Work Location Number of patients Reported results

Use of physical

[58] Head and body phantoms /
Average HU difference in water: ±20 HU
Average HU difference in bone and lung: ±130 HU
2D γ pass rate range: 97-99% (5%/2mm)

[59] Anthropomorphic chest phantom /
Average HU difference: ≤50 HU

instruments Error reduction of 10.3%

[60] Anthropomorphic pelvic phantom /
Streak artifact reduction of 57%
CT number linearity: 0.998
CNR=6.42

Scatter

[61]
Water phantom

/
Water-liver contrast improvement of 3%

and Water-teflon contrast improvement of 11%
Anthropomorphic head phantom Simulation time: 430 h

[62]
Water cylinder

/ Simulation time: 39 sWater cube with 5 bone rods
Water sphere with different inserts

[63] Chest phantoms / Scatter calculation improvement of 80%
modulation

[54]
Anthropomorphic pelvic phantom / Mean Error reduction from 44 to 3 HU for H&N

H&N 1 Mean Error reduction from 78 to 9 HU for prostate
Prostate 1

[64]
Anthropomorphic pelvic phantom

/
Cupping artefact reduction of 32-88%

Anthropomorphic H&N phantom CNR improvement of 10-50%
[65] Lung 5 RMSD reduction of 31%
[66] Lung 21 γ pass rate: 99.4% (2%/2mm)

Calibration

[52]
Pelvis 11 Mean dose difference= 0.9±0.9%

Thorax 11 Mean dose difference= 1.8±1.6%
Head 11 Mean dose difference= 1.5±2.5%

[67]
Semi- anthropomorphic

/ Effect of phantom diameter under bone >20%
pelvic phantom

[68] Prostate 2
Mean dose difference= ±3%
γ pass rate: 98% (2%/2.5mm)

[69] Thorax
10 (Elekta Linac) Mean dose difference ≤10%
6 (Varian Linac) Mean dose difference ≤3%

[56] H&N 15
Mean dose difference ≤1.1%
γ pass rate: 95% (3%/3mm)

HU
[5] H&N 5

Mean dose difference ≤1%
γ pass rate: 96% (2%/2mm)

mapping
[51]

Prostate 3 Mean dose difference ≤2%
Lung 1 Mean dose difference '5%

HM

[6] Prostate 10 Mean dose difference ≤1%

[7] Breast 38
MI=1.0±0.1
Sum of squared differences= 108±38 HU
γ pass rate: 99.4% (3%/3mm)
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Approaches Work Location Number of patients Reported results

MLT

[71] Prostate 3 γ pass rate: 97% (3%/3mm)

[72]
Prostate 10

Mean dose difference ≤2%H&N 10
Lung 10

[6] Prostate 10 Mean dose difference ≤1%

[73]
Pelvis 4 Mean dose difference ≤1%
H&N 4 Mean dose difference ≤1%
Lung 3 Mean dose difference '1.3%

[57] Prostate 1
Mean dose difference=−1.3%
γ pass rate: 97.7% (3%/3mm)

[74]
Prostate 5 γ pass rate: 99.6−99.9% (2%/0.1mm)

H&N 5 γ pass rate: 94.6−96.0% (2%/0.1mm)
Lung 5 γ pass rate: 94.8−96.0% (2%/0.1mm)

DL

[9] Prostate 20
RMSD(fat)=11 HU
RMSD(muscle)=14 HU

[79] Prostate 20

Difference in maximum and
minimum average HU
Muscle=44 HU
Fat=83 HU

CBCT images an appropriate base for dose calculation. It has been noticeable that

most of research focused primarily on the pelvis and secondly on the H&N, whereas poor

work concentrated on the lung or other body parts. For these body regions, promising

results have been obtained that demonstrate the feasibility of all proposed approaches

for clinical use. However, each approach presents some drawbacks and limitations

that should be taken into consideration and could extend the field of research in

ART based only on CBCT images. The efficiency of approaches that are based on

the use of physical instruments is limited by the fact that the anti-scatter grids or

beam blockers attenuate the scatter and the primary photons as well, and the imaging

dose therefore needs to be increased to maintain the image quality which may pose a

health concern to patients. In addition, improving the performance of beam blockers

requires a professionally fabricated grids with optimized parameters, and therefore

additional workload requirements appear. The use of these methods decreased with

the appearance of approaches based on the scatter modeling and elimination from

the CBCT images. Such approaches showed a good agreement between the generated

CBCT images and the pCT images; however, as reported by [65] the operator time

should be always taken into account because an exact simulation of the imaging system

with all its components as well as the scatter measurements for each patient are a time

consuming processes, which is not acceptable when aiming to use CBCT images for

daily online pre-treatment adaptation.

For the third class which is based on the calibration of CBCT using different
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phantoms, although all reported results showed a good agreement between the

generated CBCT and the pCT images, the accuracy of these approaches is strongly

dependent to the phantom choice and the acquisition parameters. Therefore, the

validation of the used phantoms is always needed. Moreover, the improvement of its

accuracy requires the establishment of HU-ED tables for each studied region of body,

and this can only be performed at the cost of substantial increase in correction time.

In order to avoid all types of integrating hardwares and maintain the workload

minimum as possible, another approaches using the pCT images as a prior information

for the correction of CBCT images have been appeared. The different modifications

included in this class showed high performances in generating corrected CBCT images

with decreases HU error even for body regions where the anatomical deformations are

significant. However, as these methods relies on DR between the pCT and CBCT

images, a stronger validation of registration algorithms is needed to ensure an accurate

correction.

Finally, for fast CBCT artefact correction, the use of DL branch in RT has been

proposed in the last two years [80, 81, 82]. Excellent results have been obtained when

applying these methods on different anatomical sites. However, its implementation

needs the availability of a large data and a sophisticated hardware architecture in

order to ensure a fast learning process.

For our study, since the IGRT based on CBCT images was newly integrated in

clinical practice at the Centre de Lutte Contre le Cancer (CLCC, Setif, Algeria), the

number of patients available was limited. Therefore, the DL approaches were not

adopted. In addition, as the pCT-based approaches can be easily automated and show

high performances in generating CBCT images in good agreement with pCT images, we

proposed in this thesis to palliate the limitations of the different approaches included

in this class and combine their strengths rather than using time consuming processes

as simulation or the integration of hardware for calibration.

2.4 Conclusion

This chapter aimed to present an overview on the generation of corrected CBCT for

dose calculation in the context of ART. We presented a classification of the different

approaches available in literature and discussed their strengths and weaknesses.

According to the comparison of the reported results, one of the main conclusions

that one may draw is the remarkable success of the pCT-based approaches for the

correction of CBCT images. Despite its dependency to the CBCT image quality and

the DR algorithms accuracy, these approaches have shown decreased HU errors even

35



CHAPTER 2. LITERATURE REVIEW

for body regions where the anatomical modifications are more pronounced. In the light

of this conclusion, we propose four contributions for the correction of CBCT images.

The first one is an evaluation of different DR algorithms. The second contributions is

an assessment of the impact of the chosen algorithms on the CBCT correction by HM.

The third contribution is based on a hybrid approach that combines HM with MLT

and the last one is a generalization of this later by the use of inter-patient DR process.

More details about these contributions are presented in the following chapters.
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Chapter 3

The impact of DR accuracy on

CBCT enhancement

3.1 Introduction

Recently, the integration of medical image processing field in the ART workflow has

offered a chance to generate from the CBCT images an appropriate basis for dose

calculation. It is well accepted in literature that the future of using pCT-based

approaches for the correction of CBCT images depends on the use of accurate DR

algorithms. Thus, the choice of algorithm components with the right parameters is

essential for an accurate correction approach.

In this chapter, we present a preliminary work consisting of the evaluation of

different DR algorithms in terms of their accuracy and computation time. Then, we

present the proposed correction approach and based on the results of the performed

tests, we assess the impact of the chosen algorithms on its performance.

3.2 Data description

In this thesis, all studies was performed on data sets of 10 patients with prostate

cancer containing pCT and CBCT images obtained by Simense scanner and on-board

imager (OBI, Varian Medical Systems) mounted on the gantry of clinical iX21 linear

accelerator, respectively. The settings of pCT and CBCT acquisition according to

pre-defined protocols are recapitulated in Table 3.1. The slices number differed from

a patient to another; it ranged from 123 to 159 slices in the pCT images and from 50

to 64 slices in the CBCT images giving sufficient information about the anatomical

distribution and the motion artifact variations. For all these data CBCT images were

acquired for the first day of treatment to minimize the error of patients setup under the
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treatment machine. Since this technique is newly integrated in the clinical practice,

the number of patients used in this study is limited.

Table 3.1: Acquisition settings of pCT and CBCT images.

Protocol Tube
current
(mA)

Exposure
time (ms)

Tube
voltage
(kVp)

Axial
image size

(pixels)

Voxel size
(mm3)

CBCT 360 500 100 512x512 0.8496x0.8496x3.0

pCT 80 8632 125 512x512 0.8789x0.8789x2.5

3.3 Evaluation of CT to CBCT deformable

registration algorithms

Since the choice of algorithm components is highly dependent to the imaging modality

and the anatomical region to be registered, a preliminary work aiming to evaluate

the accuracy of CT to CBCT deformable registration is presented in this section. Six

algorithms with different similarity measures and optimizers were tested in terms of

their accuracy and computation time on a small set of data in order to find a set of

promising parameters to use in further studies.

3.3.1 Data preprocessing

Initially, collected CBCT and pCT contained not only the information describing the

patients body but also the couches of the CT scanner and the linear accelerator. For

that reason, all images were pre-processed using the FIJI software [83] to select the

region including the patient volume and remove the couches. Furthermore, to eliminate

all unnecessary content, a fixed threshold was applied to assign all pixels outside the

body surface (below 700 HU for pCT and bellow -600 HU for CBCT) to standard CT

value for air (-1000 HU) using the 3D Slicer software [84]. Results of registration for

the images with and without couches were compared.

3.3.2 Image registration

Before starting the DR, the pCT images (referred to as the moving images) for each

patient were rigidly registered to the CBCT images (fixed images), using the 3D rigid

transformation described in chapter 1, in order to ensure a good alignment between

images and improve the speed of DR. Then, a DR process was applied on the obtained
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pCT images to minimize the effect of difference in organs deformation between the

pCT and the CBCT images. A multi-resolution B-spline transformation with different

similarity measures, namely NCC, MI and NMI, and two optimizers (GD and ASGD)

were used.

The six algorithms resulting from the combination of the previously mentioned

elements were implemented in Elastix [38] which is an open source software based

on the insight segmentation and registration toolkit (ITK) that gives the possibility

to choose several registration components to create the algorithms that suits to our

needs. The different components and parameters used for this study are recapitulated

in Table 3.2.
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3.3.3 Evaluation

The accuracy of registration was evaluated by two different methods. The first one

consisted of using VV image viewer [85] to perform a visual assessment. This software

allows comparing the deformed moving images (planning CT in our study) to the

fixed images (CBCT) by superimposing them using complementary colors. The second

method consisted of a quantitative evaluation; it was mainly based on the measures

of similarity between the deformed moving images and the fixed images using Elastix.

For this comparison we used as metrics, the MSD and the NCC described in chapter 1.

3.3.4 Computation time

The consumed time to perform the registration is an important criterion to accept

or refuse the algorithm for clinical practice, therefore, the computation time for each

algorithm were measured. For this study, all the calculations were done on Intelr

CoreTM i5-3230M CPU (2.60 GHz, 4 GB RAM).

3.3.5 Results and discussion

3.3.5.1 Qualitative evaluation

Figure 3.1.a and b show respectively the CBCT and pCT slices used for this study.

Generally, the number of slices acquired for these two types of tomography is not the

same. Therefore, the superimposition of all slices can lead to a miss-alignment between

the CBCT and pCT images as shown in Figure 3.1.c. To deal with this problem a RR

was applied resulting in a good global alignment (Figure 3.1.d), whereas in specific

regions as the bony regions a poor registration can be observed.

Figure 3.2 presents the results of superimposition of the CBCT images (fixed

images) and the deformed CT images by applying different DR algorithms. As shown

in Figure 3.2.a, b and c, the use of the GD with MI, NCC and NMI results in good

alignment between anatomical structures but with some differences in body contours

due to the fact that the algorithms based on GD depends on the increased amount

of scatter present in CBCT images. On the other hand, the Figure 3.2.d, e and f, in

which a combination of ASGD with MI, NCC and NMI were used, show an excellent

alignment between anatomical structures and also body contours which demonstrates

the independency of those algorithms on the quality of CBCT images.
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Figure 3.1: A slice of CBCT images (a), planning CT images (b) and the results of their
superimposition before alignment (c) and after alignment (d) with rigid registration.

Figure 3.2: Results of superimposition of CBCT and deformed pCT images after using
six DR algorithms based on (a) GD and MI (b) GD and NCC (c) GD and NMI (d)
ASGD and MI (e) ASGD and NCC (f) ASGD and NMI.
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3.3.5.2 Quantitative evaluation

Figure 3.3 illustrates the results of comparison of CBCT and deformed CT images with

and without couches using the MSD for which the lower the metric value, the better

the registration. For the two patients, we observe acceptable values of MSD ranging

from 0.115 to 0.128 mm for the algorithms based on GD, while we achieve a better

registration accuracy for the algorithms based on ASGD optimizer with lower MSD

values ranging from 0.055 to 0.067 mm. Furthermore, the pre-processing of CBCT

and pCT images by removing the couches before applying the DR decreased the MSD

values from about 0.12 mm to lower values of about 0.06 mm. Besides, regarding the

combination of GD or ASGD with MI, NCC or NMI, the results show that in the most

of cases the use of ASGD with NCC can improve the quality of registration giving

decreased values of MSD compared to the other algorithms.

Figure 3.3: Comparison of MSD values between CBCT and deformed pCT images with
and without couches for two patients using the different algorithms.

In the same way, Figure 3.4 presents the results of comparison of CBCT and

deformed pCT images with and without couches using the NCC for which the optimum

is reached for metric value of -1. The measured values of NCC are presented in absolute

values as visible in Figure 3.4. For the two patients, the results show a good correlation

between CBCT and deformed pCT with NCC values close to 1. In addition, the DR

based on images without couches yielded more accurate results of about 0.99 which

confirm the advantages of the pre-processing of pCT and CBCT images. In addition,

the performances of ASGD with NCC was confirmed. Thus, we can say that applying

this algorithm on pre-processed pCT and CBCT images allows gaining in terms of

accuracy.

Results of measuring the required time to complete the registration process are

summarized in Table 3.3. When comparing the obtained results for each algorithm a
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Figure 3.4: Comparison of the NCC values between CBCT and deformed CT images
with and without couches for the two patients using the different algorithms.

large variability can be observed. We found that the DR with ASGD was two times

longer than using the GD optimizer. Also, the use of both GD and ASGD with NMI

and NCC was in the most of cases a time consuming process while the combination

of GD with MI ran in a shorter time. Moreover, the computation time was markedly

reduced when using pre-processed images.

In this thesis, since the used algorithms were not studied under sophisticated

hardware allowing the optimization of the execution time we will focus more on the

DR accuracy and keep the optimization task for further studies. Therefore, referring to

all the obtained results, the use of ASGD-NCC with modified pCT and CBCT images

seems to be the most appropriate to gain in terms of accuracy.

Table 3.3: Comparison of the computation time of the different algorithms using images
with and without couches.

Algorithm
Patient 1 Patient 2

With
couches

without
couches

with
couches

without
couches

GD-MI 16 min 3.5 s 10 min 7.5 s 9 min 59.2 s 10 min 39.6 s

GD-NCC 16 min 11 s 11 min 43.7 s 10 min 6.3 s 10 min 15.2 s

GD-NMI 32 min 55.8 s 18 min 49.9 s 19 min 21.5 s 19 min 8 s

ASGD-MI 29 min 50.6 s 17 min 45.9 s 31 min 57.4 s 19 min 59.7 s

ASGD-NCC 29 min 58.8 s 16 min 8.6 s 28 min 46.3 s 18 min 10.3 s

ASGD-NMI 50 min 42.1 s 33 min 31.1 s 44 min 18.2 s 27 min 16.1 s
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3.4 Impact of DR on CBCT enhancement

Among the previously tested algorithms those based on ASGD optimizers showed

better alignment of anatomical structures in the pCT and CBCT images. However, to

confirm the dependency between the DR algorithm and the correction accuracy and

validate the choice of the appropriate similarity measure, a comparative study showing

the impact of each similarity measure is required. Therefore, we present in this section

the results of applying our proposed approach with different DR algorithms.

3.4.1 Corrected CBCT generation

In order to assess the impact of DR on the quality of CBCT enhancement, three

intensity-based algorithms with different similarity metrics were used. The workflow

of corrected CBCT generation is described in Figure 3.5.

After DR, the 3D slicer software was used to match the histograms of the CBCT

images against the corresponding deformed pCT (step3 in Figure 3.5). As described

in the previous chapter, this processing method aims to adjust the HU values between

pCT and CBCT images using their cumulative histograms. Each pixel value in the

CBCT images is replaced by the HU having the same cumulative value in the pCT

images.

Figure 3.5: Workflow of corrected CBCT generation.
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3.4.2 Data analysis

To evaluate the quality of corrected CBCT, deformed pCT images were considered as

a reference for each patient. A visual assessment was performed by the calculation of

absolute difference between pCT and CBCT images before and after HM to assess the

discrepancies between them.

Furthermore, to evaluate quantitatively the agreement between corrected CBCT

and pCT, three methods were used. The first one consists of the average HU

error estimation over the entire volume, called also the root mean squared difference

(RMSD), [65] given by:

RMSD =
√
mean([HUpCT (x, y, z)−HUCBCT (x, y, z)]2) (3.1)

The second method is the mean absolute error (MAE) plots creation which allows

comparing the different tissue classes. It is based on the calculation of the MAE

between pCT and corrected CBCT in equidistant bins across the HU scale. For this

comparison a size of 20 HU was taken for each bin and the formula describing the MAE

is given by:

MAE =
1

N

N∑
i=0

|HUpCTi −HUCBCTi | (3.2)

Where N is the number of pixels having intensities in [HU-10, HU+10] in the pCT

images [86].

The third one is the image quality evaluation in terms of spatial uniformity. For

this method, the mean pixel value among five regions of interest (ROIs) having 10 by

10 pixels and positioned in regions of the same soft tissue area was measured [9]. Then,

the RMSD between the mean pixel values in the pCT and the CBCT images before

and after correction were calculated.

3.4.3 Results

3.4.3.1 Visual assessment

Figure 3.6 shows the absolute difference between deformed pCT and CBCT images

for one patient before and after HM using three DR algorithms (DR-NCC, DR-MI

and DR-NMI). Obtained results for a RR algorithm are also included to confirm the

effect of morphologic deformation between pCT and CBCT on the correction quality.

The effect of applying HM is clearly visualized; it reduced the amount of artefacts in

CBCT and yielded corrected images in good agreement with deformed pCT. However,

high differences in bony regions and soft tissue-air interfaces are present due to the
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Figure 3.6: Absolute difference between deformed pCT and CBCT in the first row and
corrected CBCT in the second row using one RR and three DR algorithms. Blue colors
represent low discrepancies while red colors represent the highest ones.

misalignment between CBCT and pCT.

3.4.3.2 Volumes comparison

Results of volumes comparison for each patient in terms of HU average error between

deformed pCT and CBCT before and after correction are shown in Table 3.4. The

mean and the standard deviation are also presented. The largest magnitude of RMSD

is observed for processed CBCT images when using RR process where the mean HU

error value was about 221.68±57.97 HU. For the DR process, a significant decrease was

obtained with error values ranging from 64.15±9.50 to 68.20±10.12HU which confirms

the performance of DR algorithms. Whereas, after the correction of CBCT images

reduced values of HU of about 55.95± 10.43 HU, 56.58± 10.51 HU and 58.60± 10.35

HU were obtained for DR-NCC, DR-NMI and DR-MI, respectively, indicating that the

HM after using DR-NCC yielded corrected CBCT images in good agreement with pCT

images compared to unprocessed CBCT images.

3.4.3.3 Tissue class’s comparison

Since volumes comparison may not give information about the presence of large errors

and their location, the MAE plots for each algorithm over the HU scale are illustrated

in Figure 3.7. Similarly to [6], HU scale for pCT images was divided according to the

tissue type on different classes. All the values lower than −400 HU was considered as

air. The HU values between −400 and 250 HU were associated to soft tissues, while

those between 250 and 600 HU presented the soft bone. The remaining values (higher
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Table 3.4: HU average error values between deformed pCT and CBCT before and after
HM for each patient with the mean and the standard deviation.

RMSD (HU)

Patient’s RR-MI DR-NCC DR-MI DR-NMI

number Before
HM

After
HM

Before
HM

After
HM

Before
HM

After
HM

Before
HM

After
HM

1 138.50 141.33 71.03 64.70 75.94 68.07 73.53 65.67

2 140.00 143.01 57.89 49.10 60.77 51.76 59.90 49.87

3 260.62 288.10 73.58 65.17 76.33 66.71 75.09 64.84

4 257.67 274.16 65.76 55.10 71.23 57.05 68.51 54.03

5 239.04 267.54 67.48 55.73 73.34 59.89 71.44 58.02

6 258.85 269.82 82.09 77.88 87.37 80.24 86.24 79.04

7 171.96 195.80 57.74 47.26 60.12 48.18 58.90 46.26

8 193.20 194.09 54.89 45.74 58.68 47.75 57.23 46.03

9 153.75 173.61 51.82 45.90 56.13 51.47 54.33 49.09

10 251.15 269.41 59.29 52.92 62.16 54.96 60.62 53.01

Mean 206.47 221.68 64.15 55.95 68.20 58.60 66.57 56.58

SD 52.21 57.97 9.50 10.43 10.12 10.35 10.06 10.51

than 600 HU) were considered as bone.

Figure 3.7.a compares MAE results using RR algorithm before HM with those

obtained after HM. It shows obviously that the use of HM with RR increases the

uncertainties in CBCT images, due to the misalignment between pCT and CBCT

images. However, in (Figure 3.7.b, c and d) the MAE becomes lower and the

combination of DR with HM contributes significantly to reduce the errors after

correction, especially for pixels with CT number higher than 200 HU. For the values

below 200 HU a mismatch is observed and the MAE values after correction are higher

than before. This is due to the low number of pixels in corrected CBCT containing

the same HU values as pCT in the interfaces soft tissue-air, which is in agreement with

the visual assessment where high errors were noticeable in those regions owing to the

improper registration.

The DR performance comparison is depicted in Figure 3.8. Plotting together

the MAE values before and after correction against each other (Figure 3.8.a and b

respectively) shows that the use of DR based on NCC metric was better than MI
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Figure 3.7: MAE values of CBCT images before and after correction using a) RR-MI,
b) DR-NCC, c) DR-MI and d) DR-NMI.

Figure 3.8: MAE values of CBCT images for each algorithm before HM (a) and after
HM (b).

and NMI especially in soft tissue-air interfaces. Moreover, using the NCC metric in

combination with HM produced more accurate CBCT images.

Concerning the uniformity of resulted CBCT images, the RMSD of the mean pixel
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values of ROIs between CBCT, corrected CBCT and pCT images are summarized in

Table 3.5. The obtained results showed that the use of HM reduced the RMSD in fat

and muscle (soft tissues) from about 57 and 25 HU to 8 HU, respectively, indicating

that the CBCT image quality was brought closer to the pCT image quality through

this correction technique.

Table 3.5: Comparison of the mean pixel values in fat and muscle between the pCT,
CBCT and corrected CBCT images with the three different DR algorithms.

Mean pixel value (HU)

Patient’s Fat

number pCT CBCT CBCTDR-NCC CBCTDR-MI CBCTDR-NMI

1 -108.16 -144.37 -90.73 -92.50 -92.06

2 -87.68 -163.92 -84.98 -88.25 -85.77

3 -104.83 -139.75 -90.03 -91.48 -91.16

4 -103.80 -151.60 -104.64 -105.23 -105.19

5 -103.43 -170.34 -102.28 -103.16 -102.89

6 -109.43 -130.55 -98.50 -99.30 -99.09

7 -97.70 -148.56 -97.08 -98.47 -97.97

8 -108.62 -213.92 -108.76 -108.53 -108.04

9 -110.23 -160.35 -105.87 -106.76 -106.82

10 -99.50 -123.33 -100.24 -101.55 -101.40

RMSD 56.83 8.19 7.38 7.57

Muscle

1 49.45 -1.37 31.76 30.62 30.68

2 51.61 25.39 42.09 41.12 41.68

3 47.59 59.00 53.25 54.53 53.25

4 42.17 45.81 50.65 51.61 50.93

5 48.87 11.70 47.66 47.66 47.65

6 49.68 40.03 50.09 50.78 50.25

7 49.73 28.39 45.44 46.12 46.01

8 46.46 13.39 36.65 39.04 39.34

9 48.85 56.30 52.18 51.95 51.86

10 49.44 51.98 45.97 47.25 46.40

RMSD 25.49 7.72 8.28 8.02
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3.4.4 Discussion

In this work, the impact of choosing different registration algorithms on the quality

of CBCT correction by HM was studied. One RR algorithm based on MI similarity

metric and three DR algorithms including NCC, MI and NMI similarity metrics were

validated.

Several studies investigated the accuracy of dose calculation based on corrected

CBCT using HM with DR based on MI [6, 7] but our strategy differs from those studies

because it aims to initially choose the appropriate DR algorithm, and then generate

corrected CBCT images.

All the results confirmed that the performance of DR of each algorithm is strongly

dependent on the region in which the transformation was applied. It was shown that

all DR algorithms provided a good alignment between anatomical structures in pCT

and CBCT compared to RR registration but their reduced ability to align some regions

as soft tissue-air and soft tissue-bone interfaces was clearly visualised. In addition, the

sensitivity of HM process to the quality of registration has been proved. It has been

found that the better the alignment the more significant is the HM contribution to

correct the HU distribution in CBCT images. For that reason, the best compromise

for this correction method seems to be the use of DR with NCC similarity metric for

which the MAE values after correction were found to be the lowest as indicated in

Figure 3.8. Also, this choice can be justified by Table 3.4 where reduced HU errors in

corrected CBCT were obtained for the DR-NCC algorithm.

Despite the influence of DR accuracy on the HM process, the use of DR-NCC

before HM yielded acceptable HU errors values compared to other studies investigating

pCT-based approaches and direct approaches without recourse to pCT [9, 87]. In [9],

Kida et al. applied a deep convolutional neural network (DCNN) method to improve

the quality of CBCT images acquired for 20 prostate cancer patients. They reported

that the RMSD of the mean pixel values for corrected CBCT images was about 11

and 14 HU in fat and muscle, respectively, while in our study the same evaluation

showed that the RMSD was about 8 HU. This suggests that our proposed workflow

had successfully improved the spatial uniformity in the CBCT images. Besides,

Poludniowski et al. [87] studied for 12 patients (6 brain, 3 prostate and 3 bladder cancer

patients) four correction methods based on scatter calibration and scatter measurement

using CBCT images acquired by other linear accelerator (Elekta Linac). They reported

that for prostate cancer the average HU error for each method, called also Root Mean

Squared Difference, were about 95.5, 91.5, 73.1 and 67.7 HU. Whereas, in our study

the HM considered as pCT-based approach resulted in average HU error of about

55.95 ± 10.43 HU when using DR-NCC indicating that although our CBCT images
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differs from theirs; our results are better than their findings.

To improve the correctness of the proposed workflow, the minimization of its

limitations as the existence of non-comparable regions in the pCT and CBCT images,

e.g. regions of gas in the rectum, is a priority. Thus, further investigations taking into

account the correction of these regions before performing DR and HM are required. In

addition, dosimetric evaluation is needed to validate the efficiency of using corrected

CBCT for dose calculation in the context of adaptive radiation therapy. Also, we are

looking forward to applying this workflow on large number of patients and translate it

to other body regions.

3.5 Conclusion

In this chapter, we presented the results of evaluating different CT to CBCT DR

algorithms. Then, we studied their impact on the correction of CBCT images using

HM. It has been found that the quality of correction is strongly dependent on the

accuracy of DR process and revealed that performing HM after DR with the NCC

similarity metric contributed significantly to reduce the uncertainties in CBCT images.

Although the proposed workflow showed acceptable performance, seeking for more

accurate results is still a research topic. Therefore, we present in the next chapter

our second contribution for the enhancement of CBCT images which consists of the

optimization of the proposed workflow by hybridizing it with another pCT-based

approach.
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Chapter 4

Optimization of the proposed

method by the development of a

hybrid approach

4.1 Introduction

Recent studies have proved the usefulness of pCT-based approaches for the correction

of HU distribution in CBCT images. Among the proposed approaches there were those

based on multilevel threshold (MLT). Since these strategies are mainly based on the

segmentation of different tissue types in the target images and the higher the image

contrast, the more accurate the correction is, the application of such strategies on

CBCT images warrants the need to improve their contrast.

Inspired from the previous chapter findings, wherein the application of HM on

CBCT images offered the possibility to distinguish the different tissue types in the

CBCT images, we present in this chapter an extension to our previous works [88, 89]

where we propose a new hybrid approach that applies first the HM, then, the MLT

processes.

4.2 Methods

4.2.1 Data description

The data used in this chapter is the same data used throughout this thesis. It was

described in chapter 3.
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4.2.2 Description of the proposed approach

In order to correct the HU distribution and generate an appropriate base for dose

calculation, two different pCT-based approaches were consecutively applied as shown

in Figure 4.1. The first approach was the HM, evaluated in [89], which allowed changing

the gray-level histogram of the CBCT images to resemble the pCT image histogram

offering the possibility to distinguish the different tissue types present in the CBCT

images.

The previously proposed workflow [89] can be summarized in the following steps

(Figure 4.1, phase1):

• Images preprocessing by eliminating all unnecessary content in the pCT and

CBCT images using a thresholding method to assign to the voxels outside the

patients body the standard value for air (-1000 HU).

• Application of a DR process to ensure an accurate alignment between anatomical

structures in the pCT and CBCT images. For this study a B-spline transform

with the NCC metric implemented in Elastix was used.

• Modification of the HU values in the CBCT images by matching their histograms

to those of deformed pCT (CBCTHM). The HU values in the CBCT images

were replaced by the HU values in the deformed pCT images having the same

cumulative value.

Subsequently, MLT was applied to improve the correctness of the HU distribution

obtained with HM (Figure 4.1, phase 2). The voxel values in the CBCTHM images were

grouped into five segments representing air, fat, muscle, soft bone and bone according

to the HU ranges extracted from their histograms. Then, the HU values corresponding

to the peak of each tissue in the pCT images were assigned to each segment. The HU

range and the peak value for each tissue type are listed in Table 4.1.

Finally, the resulting CBCT images (CBCTHM-MLT) were smoothed using a mean

box filter with voxel size of 1x1x1 mm3 to decrease high intensity variations that may

occur inside the segments.
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Table 4.1: HU range and peak value of different tissue types present in pCT and CBCT
images after HM. The ranges of soft bone and bone were divided into two sub-ranges,
each replaced by a peak value, to take into account low and high HU values that
represent each tissue.

Tissu type HU range (HU) Peak value (HU)

Air Below -400 -1000

Fat From -400 to -30 -114

Muscle From -30 to 250 46

Soft bone
From 250 to 500
From 500 to 600

450
600

Bone
From 600 to 900

above 900
800
1400

4.2.3 Evaluation

To assess the accuracy of the proposed approach the absolute difference between the

pCT and the CBCT images before and after correction was calculated and visualized

using the VV image viewer [85]. The HU values along four line profiles with different

directions extracted from the pCT and the CBCTHM-MLT images were also compared.

Figure 4.2 shows the positions where the comparisons were performed. The correlation

coefficient (CC) between deformed pCT and CBCT images before and after HM+MLT

was calculated and compared according to:

CC =

∑
m

∑
n(HUpCTmn −HUpCT )(HUCBCTmn −HUCBCT )√

[
∑

m

∑
n(HUpCTmn −HUpCT )2][

∑
m

∑
n(HUCBCTmn −HUCBCT )2]

(4.1)

Figure 4.2: A pCT slice with four lines describing the directions of the extracted
profiles.
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Where HUpCT and HUCBCT are the mean HU values of the deformed pCT and CBCT

images, respectively, and N is the total number of voxels.

Furthermore, the agreement between the pCT and the CBCTHM-MLT images was

estimated by calculating the RMSD over the entire volume and finally, to localize

errors over the HU scale, we computed the MAE histogram between the pCT and the

CBCTHM-MLT images for different tissue classes.

4.3 Results

4.3.1 Visual assessment

Figure 4.3 shows the absolute difference between the HU values of the deformed pCT

and CBCT images before correction (Figure 4.3.a), after correction using only HM

(Figure 4.3.b) and after using HM followed by MLT (Figure 4.3.c). From these images,

it is noticeable that the high discrepancies observed for uncorrected CBCT images

were significantly reduced when applying our proposed approach compared to using

only HM. However, some high differences in the soft tissue-air and soft tissue-bone

interfaces can be observed. In addition, the observed high discrepancies in the center

where the rectum is located are caused by differences in rectum fillings during the

acquisition of CT and CBCT images.

Figure 4.3: Absolute difference between the HU values of the deformed pCT and CBCT
images (a) before correction, (b) after using only HM and (c) after using HM+MLT
correction.

4.3.2 Profiles comparison

The profile extracted in correspondence of the four lines drawn in Figure 4.2 are

illustrated in Figure 4.4. It shows that before correction (Figure 4.4.a-d) the profiles

of the CBCT images are more irregular compared to those of the CBCTHM-MLT

(Figure 4.4.e-h). There are also high differences between the HU values of the pCT
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Figure 4.4: HU comparison between deformed pCT and CBCT images (a-d) before
any correction and (e-h) after HM+MLT correction along the four lines describing the
directions of the extracted profiles shown in Figure 4.2.
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and CBCT images especially near the soft tissue-air interfaces. After applying the

HM+MLT correction, the HU values in the CBCTHM-MLT achieved approximately

the same values as in the pCT images indicating that the use of this combination

contributed significantly to improve the quality of CBCT images.

4.3.3 Correlation

To further evaluate the accuracy of the proposed approach, Figure 4.5 compares the

correlation between the deformed pCT, CBCT, CBCTHM and CBCTHM-MLT images.

For all patients, the obtained results show that corrected CBCT images are in good

agreement with the deformed pCT with correlation values ranging from 0.9893 to 0.9962

compared to the CBCTHM and CBCT images for which the correlation values range

from 0.9878 to 0.9955 and from 0.9871 to 0.9945, respectively.

Figure 4.5: Correlation values between deformed pCT, uncorrected CBCT, CBCTHM

and CBCTHM-MLT for each patient.

4.3.4 Volumes Comparison

Table 4.2 shows the RMSD between deformed pCT, uncorrected CBCT, CBCTHM

and CBCTHM-MLT. It can be seen that the differences after correction are lower than

before, especially, after using the proposed approach which reduced the HU errors over

the entire volume from 64.15±9.50 to 51.20±6.76 HU while for the previous approach

based only on the HM the errors were reduced to 55.95± 10.43 HU.
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Table 4.2: RMSD between the HU values of the deformed pCT, CBCT, CBCTHM and
CBCTHM-MLT images for each patient with the mean and the standard deviation.

Patient’s
number

CBCT CBCTHM CBCTHM-MLT

1 71.03 64.70 56.32

2 57.89 49.10 42.39

3 73.58 65.17 57.80

4 65.76 55.10 50.96

5 67.48 55.73 51.58

6 82.09 77.88 72.93

7 57.74 47.26 43.90

8 54.89 45.74 42.52

9 51.82 45.90 44.10

10 59.29 52.92 49.50

Mean 64.15 55.95 51.20

SD 9.50 10.43 6.76

4.3.5 Tissue classes comparison

MAE between deformed pCT, CBCT, CBCTHM and CBCTHM-MLT for different tissue

classes were calculated to have information about the localization of the higher errors

and plotted in Figure 4.6. These plots indicate that performing MLT process after HM

reduces the HU errors in the CBCT images. In addition, it improves the performance of

HM to correct HU values in the soft tissue-air interfaces. The remaining errors observed

in the soft tissue-air and soft tissue-bone interfaces are due to the misalignment between

the deformed pCT and corrected CBCT images which is consistent with the visual

assessment (Figure 4.3) and the profiles comparison (Figure 4.4).

4.4 Discussion

In this study the accuracy of a hybrid method combining two pCT-based approaches

to correct HU distribution in CBCT images was evaluated. In contrast to other works

where these two approaches were applied singularly for correcting CBCT images for

dose calculation [6, 55, 57, 71, 72, 73, 74], our proposed method consisted of applying

first a HM process, followed by MLT on CBCT images.

In comparison with our previously proposed workflow based only on HM [89], this

combination allowed increasing the efficiency of the HM process to produce corrected

CBCT images in a good agreement with the pCT images. The results presented in
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Figure 4.6: MAE between deformed pCT, uncorrected CBCT, CBCTHM and
CBCTHM-MLT.

Table 4.2 show a significant reduction in the HU error of about 13% when using only

HM, whereas, the combination with MLT yielded a better enhancement of about 20%.

Although a 7% error reduction over the entire volume seems insignificant, when focusing

on bony regions with HU values higher than 1000 HU (Figure 4.6), the improvement

was about 50%. Moreover, the application of MLT after HM improved the performance

of the latter by reducing high discrepancies present in the soft tissue-air interfaces. The

HU error reduction in these regions is particularly important considering that two main

organs at risk in prostate cancer radiotherapy are femoral heads and rectum, across

which the beams often pass. After the correction, a slight increase in the MAE values

was observed in the soft tissue-bone interfaces. This may have been caused by the

use of the mean box filter which resulted in the appearance of new HU values in the

corrected CBCT images that do not exist in the pCT images.

In order to prevent the influence of HU uncertainty on the dose calculation, many

studies proposed the use of deformed pCT instead of correcting the CBCT images

[90, 91]. However, the robustness of such approaches is strongly dependent on the

image registration quality and requires accurate DR algorithms to correctly propagate

the contours between the pCT and the CBCT images. Marchant et al [8] reported that

for prostate cancer the organs deformation errors related to the bladder filling and the

gas bowels in the rectum may have a significant impact on the dose calculation than on

the correction accuracy. For that reason, the deformed pCT images were used indirectly

to correct the HU values and preserve the anatomical structures in the daily CBCT
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images, which is the feature that distinguished this study from others. On the other

hand, there are some limitations that should be taken into consideration. First, the

limited FOV of CBCT systems remains an obstacle for ART based only on corrected

CBCT images, especially for head and neck regions where the volumes of interest

cannot be entirely covered by the used FOV. Second, since deformed pCT images may

not constitute the best ground truth for comparison, due to its sensitivity to the image

registration quality, a robust validation of the approach could be accomplished if the

patients had undergone a daily fan beam CT images [51]. Furthermore, to provide a

stronger validation for the proposed method we are looking forward to study the impact

of HU error reduction on the dose calculation. Finally, for the use of MLT, five different

tissue types were chosen in this study, while in [92] it was shown that the higher the

number of classes the more accurate is the correction. Considering that increasing the

number of classes may consequently increase the computation time, the automation

of the proposed method and its testing under more efficient hardware architecture are

currently being investigated for an online replanning process.

4.5 Conclusion

In this chapter, a hybrid approach combining two pCT-based approaches (HM followed

by MLT) for the correction of CBCT images was evaluated using different statistical

metrics. The obtained results showed that the use of HM+MLT correction improved

the HU distribution in the CBCT images and generated corrected images in good

agreement with the pCT. Thus, its implementation in clinical practice could be useful

for CBCT-based dose calculation at online ART. However, moving toward online ART

based only on CBCT images is not straightforward because all corrections studied in

this thesis required the acquisition of pCT and CBCT images for each patient and the

application of intra-patient image registration. To tackle this problem, we propose in

the next chapter the generalization of our proposed approach by the investigation of

pCT images already available in the archive for the correction of CBCT images instead

of using the pCT images corresponding to the same patient.
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Chapter 5

Generalization of the proposed

method using an inter-patient

image registration

5.1 Introduction

Recently, the idea of implementing full automated online treatment techniques has

seen a special interest. Indeed, converging toward such applications in clinical

routine warrants the need to reduce the workload requirements for online strategies,

particularly, patient displacement between the imaging room (scanner) and the

treatment room (linac). To reach this goal a new concept consisting of ART based only

on CBCT images has appeared. This concept would delete the CT imaging completely

from treatment workflow and keep just the CBCT images.

In this context, we propose in this chapter a new strategy allowing the correction of

CBCT images without recourse to the acquisition of pCT images for each patient;

instead of that, the use of the pCT images already available in the archive of our

hospitals.

5.2 Methods

5.2.1 Description of the proposed approach

Until now, all proposed correction approaches were performed on pCT and CBCT

images corresponding to the same patient after applying in this case what is called an

intra-patient image registration. Unlike these approaches, the new correction strategy

aims to adjust the HU distribution in the CBCT images acquired for one patient using
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the HU values obtained from pCT images that was acquired for another patients after

applying an inter-patient image registration. The proposed workflow is depicted in

Figure 5.1 and it is based on two main steps that could be described as follows:

In the first step, one series of CBCT images was picked out from the 7 patients

dataset for the correction. These images were referred to as the fixed image. Then,

as described in chapter 4, to ensure a good alignment between the pCT and the

CBCT images, the pCT images acquired for the 6 remaining patients, referred to

as the moved images, were rigidly registered to the CBCT images using a 3D rigid

transformation with MI as similarity metric. After that, to minimize the difference in

organs deformation between the pCT and the CBCT images a multi-resolution B-spline

transformation with NCC similarity metric was applied. Finally, the hybrid approach

combining the HM with MLT proposed previously [93] was performed.

Figure 5.1: Generation of corrected CBCT images pipeline. Example of correcting the
CBCT images of the first patient from the pCT images obtained for the remaining
patients.

5.2.2 Evaluation

For comparison purposes, the correction accuracy evaluation was based on the same

visual and statistic metrics presented in chapter 4. So that, to evaluate the quality of

generated CBCT images the absolute differences between the pCT and the CBCT
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images before and after correction as well as the extracted profiles according the

same lines described previously were visualized and compared. Then, to quantify

the agreement between the pCT and the corrected CBCT images the RMSD and the

correlation values were calculated and compared.

5.3 Results

5.3.1 Visual assessment

Figure 5.2 and Figure A.1 (refer to appendix A) show the absolute difference

between deformed pCT and CBCT images for the first and the 6 remaining patients,

respectively. For each patient, the comparison between unprocessed and corrected

CBCT images with HM+MLT process using the deformed pCT of the other 6

patients is presented. It is well noticeable that applying HM+MLT correction on

the CBCT after using an inter-patient DR has reduced the amount of artefacts in

the CBCT and yielded corrected images in good agreement with deformed pCT

images compared to the unprocessed CBCT images. In addition, when comparing

the results of applying inter-patient DR (e.g., CBCTHM-MLT 1-2, CBCTHM-MLT 1-3,

CBCTHM-MLT 1-4, CBCTHM-MLT 1-5, CBCTHM-MLT 1-6 and CBCTHM-MLT 1-7) with those

obtained from the intra-patient DR (from deformed pCT of the same patient), referred

to as CBCTHM-MLT 1-1; we observe that the resulted CBCT images are close in terms

of quality. However, high differences in bony regions and soft tissue-air interfaces can

be observed.

Figure 5.2: Absolute difference between deformed pCT and CBCT for five patients
before correction and after correction using pCT images obtained for 6 other patients.
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5.3.2 Profiles comparison

Figures 5.3-6 illustrate the extracted profiles at the four lines described in Figure 4.2

for one representative patient. It can be seen that before correction the profiles of the

CBCT images are not very close to those of deformed pCT. However, after correction

the profiles of corrected CBCT achieve the same values as in the pCT images, especially,

the picks representing the bony regions. Moreover, the sensitivity of the correction

quality to non-comparable regions as regions of gas in the pCT and CBCT images can

be marked. For example, in the Figure 5.3 where the line 1 went through a gas region,

the correction of HU distribution was not clearly observed in contradiction to the

remaining lines (Figures 5.4-6) for which no gas regions were present. In addition, The

comparison of the obtained profiles when using inter-patient DR with those obtained

after applying an intra-patient DR shows that both approaches present insignificant

differences.
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Figure 5.3: Comparison of Hounsfield Units between deformed pCT and CBCT images
of the first patient before correction and after correction from the pCT of different
patients along the first line.
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Figure 5.4: Comparison of Hounsfield Units between deformed pCT and CBCT images
of the first patient before correction and after correction from the pCT of different
patients along the second line.
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Figure 5.5: Comparison of Hounsfield Units between deformed pCT and CBCT images
of the first patient before correction and after correction from the pCT of different
patients along the third line.
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Figure 5.6: Comparison of Hounsfield Units between deformed pCT and CBCT images
of the first patient before correction and after correction from the pCT of different
patients along the forth line.
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5.3.3 Volumes Comparison

Results of volumes comparison for each patient in terms of HU average error between

deformed pCT and CBCT before and after correction are shown in Table 5.1. The

mean and the standard deviation are also presented. The largest magnitude of Verr

is observed for unprocessed CBCT images. When using HM+MLT correction after

inter-patient DR the mean HU error value of all the patients was significantly reduced.

For example, errors for the first patient were reduced from 71.03 HU to 55.92 ± 0.89

HU. Furthermore, some exceptional cases were observed for which the errors became

higher ; e.g., the correction of the CBCT4 and CBCT6 from the deformed pCT2 passed

from 82.09 HU to 88.35 HU and from 54.89 HU to 61.54 HU, respectively. This is due

to high differences in the anatomical distribution between these patients and that can

not be deformed correctly by the used algorithm. Finally, when comparing the results

of correction based on the deformed pCT of the same patient and those of the other

patients no significant differences can be observed.

Table 5.1: HU average error values between deformed pCT and CBCT images before
and after correction for each patient. In bold, the mean and the standard deviation.
Values in red represent the HU error when correcting CBCT images from the pCT
corresponding to the same patient with the percentage of change.

Before
correction

After correction

pCT 1 pCT 2 pCT 3 pCT 4 pCT 5 pCT 6 pCT 7 Mean SD

CBCT 1 71.03
53.82
(-24%)

57.02 55.73 54.98 56.01 57.41 54.37
55.92
(-21%)

0.89

CBCT 2 65.76 48.39
48.25
(-26%)

47.89 52.71 50.88 50.91 48.75
49.92
(-24%)

1.57

CBCT 3 67.48 54.08 56.03
53.82
(-20%)

54.04 54.28 55.19 54.24
54.64
(-19%)

0.64

CBCT 4 82.09 82.21 88.35 82.77
75.90
(+7%)

77.95 81.65 79.18
82.01
(0.09%)

2.42

CBCT 5 57.74 45.65 57.23 47.56 43.01
42.44
(-26%)

44.23 46.79
47.41
(-17%)

3.32

CBCT 6 54.89 48.04 61.54 49.97 45.69 43.82
42.55
(-22%)

48.25
49.55
(-9%)

4.13

CBCT 7 59.29 48.23 57.21 51.76 47.88 48.22 57.68
58.81
(-0.8%)

51.33
(-13%)

3.22

5.3.4 Correlation

Figure 5.7 represents the results of correlation between CBCT and deformed CT images

before and after correction for all the patients. For this metric the optimum is reached
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Figure 5.7: Correlation values between deformed pCT, uncorrected CBCT and CBCT
after correction for each patient.
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for the value 1. We observe that before correction the values of correlation are lower;

while after correction the correlation became better with values close to 1 indicating

that the resulted CBCT images are in good agreement with the pCT. However, in some

cases this agreement was not reached due to the mis-alignment between the different

structures present in the CBCT and pCT images ; we cite for example : the correction

of the CBCT4, CBCT5, CBCT6 and CBCT7 with pCT2. Moreover, the comparison

with the results of using intra-patient DR showed that the use of inter-patient DR

yielded approximately the same values, confirming that this last can be used instead

of intra-patient DR.

5.4 Discussion

In this chapter, an extension of our previously proposed approach was presented. It

aimed to study the performances of applying the hybrid correction approach after using

an inter-patient image registration. The uniqueness of this work compared to other

studies [6, 89] lies on the investigation of pCT images that are already available in the

archive instead of acquiring new ones.

All the obtained results confirmed that the use of inter-patient DR work well as

intra-patient DR. The used statistical analysis showed that the percentages of change

obtained from these two strategies are approximately the same (e.g., for the first

patient, the use of intra-patient DR showed a reduction in the HU error of about

24% while the inter-patient DR yielded a reduction of about 21%). These findings

indicate that our proposed strategy can effectively generate corrected CBCT images

from the pCT images of different patients in the same way as the use of pCT images

corresponding to the same patient. However, as shown in Table 5.1 and Figure 5.7,

there were some exceptional cases (e.g., all the corrections performed from the data of

the second patient) where the correct HU distribution was not successfully reached due

to the high differences in anatomical distribution between the chosen patients which

proves the dependency of this strategy to the choice of the pCT images from which

the correction will be performed. To deal with this limitation, the construction of

a library containing pCT images for several patients with the same properties (age,

shape, diagnosis,etc.) is needed. This implies the inclusion of expert radio-oncologists

allowing the classification of the different cases present in the archive. Moreover, to

avoid the dependency to the patient choice, performing the correction from the pCT

representing the mean of all pCT images in the library is another idea that should be

adopted in further studies.

73



CHAPTER 5. GENERALIZATION OF THE PROPOSED METHOD

5.5 Conclusion

In this study we have demonstrated and validated a strategy that can investigate a

library containing pCT images for the correction of CBCT images using the concept of

inter-patient DR. We consider that the implementation of our method will contribute to

the reduction of the workload requirements for online ART, particularly, the repeated

acquisition of pCT images. However, further studies investigating the feasibility of this

strategy in terms of dose calculation should be conducted to strengthen its validation.

74



Conclusions and Perspectives

In modern radiotherapy techniques, the use of medical imaging has dramatically

increased; this increase has been made possible thanks to the integration of in-room

imaging systems which allowed controlling the evolution and the localization of treated

volumes before, during and after the treatment. One of the most widely used in-room

imaging for image guidance is the CBCT. Its sufficient contrast and fast acquisition as

well as its availability in the treatment room make of it a subject of several studies that

aims to investigate these images not only for guidance but also for dose calculation in

the context of ART. The one common goal for these studies is to propose promising

strategies to overcome all limitation related to the high amount of scatter that reduces

the quality of CBCT images and causes a lack of HU accuracy compared to the CT

images.

In this thesis, we performed a review of these studies and classified them into

four classes in order to analyze their strengths and limitations to eventually propose

three main approaches for the correction of CBCT images using pCT data. The first

proposed approach is inspired from the fact that the CBCT and the pCT images have

not the same gray-level histograms. Therefore, we applied the HM process to resemble

their histograms and offer the possibility to distinguish the different tissue types in the

CBCT images. It has been found that this process contributed significantly to reduce

the HU errors in the CBCT images. Furthermore, to improve the correctness of the

HU distribution obtained with HM, we proposed as a second approach the application

of MLT. The combination of these two pCT-based approaches (HM followed by MLT)

has allowed increasing the efficiency of the HM process to produce corrected CBCT

images in good agreement with the pCT images. Finally, in the third approach we

proposed the generalization of the previously proposed approaches to contribute in the

minimization of the ART workload requirements. The adoption of inter-patient DR

instead of intra-patient DR for the correction of CBCT images yielded approximately

the same results and could be a promising way towards the creation of pCT library for

the correction rather than repeating the acquisition of this later.

Despite the success of the proposed methods in the generation of corrected CBCT
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images, there are still many limitations that prevent its use for ART based only on

CBCT images. Among them we cite: the limited FOV of the CBCT systems that

remains an obstacle in the case of regions where the volumes of interest cannot be

entirely covered. Also, the presence of non-comparable regions in the CBCT and the

pCT images, e.g. regions of gas in the rectum, is a key limitation that may influence

the DR accuracy. Besides, the required computation time to complete the correction

process remains a main limiting factor. Finally, a dosimetric evaluation is still needed

to reinforce the validation of the proposed approaches. Therefore, to overcome these

limitations, further studies taking into consideration the following points should be

performed:

• Development of a fusion process allowing the combination of two longitudinal

consecutive acquisitions, in order to reconstitute the whole volume and provide

a large FOV;

• Automation of the proposed method and its testing under more efficient hardware

architecture;

• Evaluation of the HU error reduction effect on the dose calculation in order to

provide a stronger validation;

• Application of the proposed approaches on a large number of patients and its

translation to other body regions.

Contributions

1. The first contribution is an evaluation of different CT to CBCT deformable

registration algorithms. It helped to define the appropriate parameters allowing

the better alignment between anatomical structures in the CT and CBCT images.

2. The second contribution is an assessment of the choice of DR algorithm on

the accuracy of CBCT correction by HM . It demonstrated that the better the

registration the more accurate the correction is.

3. The third contribution is hybrid approach combining the HM with MLT

approaches. This contribution helped to improve the performances of HM to

correct the HU distribution in CBCT images.

4. The fourth contribution is a generalization of the proposed hybrid approach.

It demonstrated the usefulness of inter-patient DR for the correction of CBCT

images of new patients.
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Lütgendorf-Caucig, and Dietmar Georg. Feasibility of cbct-based dose calculation:

comparative analysis of hu adjustment techniques. Radiotherapy and Oncology,

104(2):249–256, 2012.

[73] Alex Dunlop, Dualta McQuaid, Simeon Nill, Julia Murray, Gavin Poludniowski,

Vibeke N Hansen, Shreerang Bhide, Christopher Nutting, Kevin Harrington, Kate

Newbold, et al. Comparison of ct number calibration techniques for cbct-based

dose calculation. Strahlentherapie und Onkologie, 191(12):970–978, 2015.

[74] Valentina Giacometti, Raymond B King, Christina E Agnew, Denise M Irvine,

Suneil Jain, Alan R Hounsell, and Conor K McGarry. An evaluation of techniques

for dose calculation on cone beam computed tomography. The British journal of

radiology, 92(1096):20180383, 2019.

[75] Philippe Meyer, Vincent Noblet, Christophe Mazzara, and Alex Lallement. Survey

on deep learning for radiotherapy. Computers in biology and medicine, 98:126–146,

2018.

[76] Luca Boldrini, Jean-Emmanuel Bibault, Carlotta Masciocchi, Yanting Shen, and

Martin-Immanuel Bittner. Deep learning: a review for the radiation oncologist.

Frontiers in Oncology, 9:977, 2019.

[77] Mark Cicero, Alexander Bilbily, Errol Colak, Tim Dowdell, Bruce Gray, Kuhan

Perampaladas, and Joseph Barfett. Training and validating a deep convolutional

neural network for computer-aided detection and classification of abnormalities on

frontal chest radiographs. Investigative radiology, 52(5):281–287, 2017.

84



BIBLIOGRAPHY

[78] Kenny H Cha, Lubomir Hadjiiski, Ravi K Samala, Heang-Ping Chan, Elaine M

Caoili, and Richard H Cohan. Urinary bladder segmentation in ct urography

using deep-learning convolutional neural network and level sets. Medical physics,

43(4):1882–1896, 2016.

[79] S Kida, S Kaji, K Nawa, T Imae, T Nakamoto, S Ozaki, T Ohta, Y Nozawa, and

K Nakagawa. Cone-beam ct to planning ct synthesis using generative adversarial

networks. arXiv preprint arXiv:1901.05773, 2019.

[80] David C Hansen, Guillaume Landry, Florian Kamp, Minglun Li, Claus Belka,

Katia Parodi, and Christopher Kurz. Scatternet: A convolutional neural network

for cone-beam ct intensity correction. Medical physics, 45(11):4916–4926, 2018.

[81] Christopher Kurz, Matteo Maspero, Mark HF Savenije, Guillaume Landry, Florian

Kamp, Marco Pinto, Minglun Li, Katia Parodi, Claus Belka, and Cornelis AT

Van den Berg. Cbct correction using a cycle-consistent generative adversarial

network and unpaired training to enable photon and proton dose calculation.

Physics in Medicine & Biology, 64(22):225004, 2019.

[82] Matteo Maspero, Mark HF Savenije, Tristan CF van Heijst, Joost JC Verhoeff,

Alexis NTJ Kotte, Anette C Houweling, and Cornelis AT van den Berg. Cbct-to-ct

synthesis with a single neural network for head-and-neck, lung and breast cancer

adaptive radiotherapy. arXiv preprint arXiv:1912.11136, 2019.

[83] Johannes Schindelin, Ignacio Arganda-Carreras, Erwin Frise, Verena Kaynig,

Mark Longair, Tobias Pietzsch, Stephan Preibisch, Curtis Rueden, Stephan

Saalfeld, Benjamin Schmid, et al. Fiji: an open-source platform for

biological-image analysis. Nature methods, 9(7):676, 2012.

[84] Andriy Fedorov, Reinhard Beichel, Jayashree Kalpathy-Cramer, Julien Finet,

Jean-Christophe Fillion-Robin, Sonia Pujol, Christian Bauer, Dominique

Jennings, Fiona Fennessy, Milan Sonka, et al. 3d slicer as an image computing

platform for the quantitative imaging network. Magnetic resonance imaging,

30(9):1323–1341, 2012.

[85] Pierre Seroul and David Sarrut. Vv: a viewer for the evaluation of

4d image registration. In MIDAS Journal (Medical Image Computing

and Computer-Assisted Intervention MICCAI2008, Workshop-Systems and

Architectures for Computer Assisted Interventions), pages 1–8. Springer, New

York, 2008.

85



BIBLIOGRAPHY

[86] C Boydev, B Demol, D Pasquier, H Saint-Jalmes, G Delpon, and N Reynaert.

Zero echo time mri-only treatment planning for radiation therapy of brain tumors

after resection. Physica Medica, 42:332–338, 2017.

[87] Gavin G Poludniowski, Philip M Evans, and Steve Webb. Cone beam computed

tomography number errors and consequences for radiotherapy planning: an

investigation of correction methods. International Journal of Radiation Oncology*

Biology* Physics, 84(1):e109–e114, 2012.

[88] Halima Saadia Kidar, Hacene Azizi, and Boukellouz Wafa. Evaluation of ct to cbct

deformable registration algorithms for adaptive radiation therapy. Proceeding of

Engineering and Technology, 33:40–44, 2017.

[89] Halima Saadia Kidar and Hacene Azizi. Assessing the impact of choosing different

deformable registration algorithms on cone-beam ct enhancement by histogram

matching. Radiation Oncology, 13(1):217, 2018.

[90] AJ Cole, C Veiga, U Johnson, D DSouza, NK Lalli, and JR McClelland. Toward

adaptive radiotherapy for lung patients: feasibility study on deforming planning

ct to cbct to assess the impact of anatomical changes on dosimetry. Physics in

Medicine & Biology, 63(15):155014, 2018.

[91] Xin Li, Yuyu Zhang, Yinghua Shi, Shuyu Wu, Yang Xiao, Xuejun Gu, Xin

Zhen, and Linghong Zhou. Comprehensive evaluation of ten deformable image

registration algorithms for contour propagation between ct and cone-beam ct

images in adaptive head & neck radiotherapy. PloS one, 12(4):e0175906, 2017.

[92] Turki Almatani, Richard P Hugtenburg, Ryan Lewis, Susan Barley, and

Mark Edwards. Simplified material assignment for cone beam computed

tomography-based dose calculations of prostate radiotherapy with hip prostheses.

Journal of Radiotherapy in Practice, 15(2):170–180, 2016.

[93] Halima Saadia Kidar and Hacene Azizi. Enhancement of hounsfield unit

distribution in cone-beam ct images for adaptive radiation therapy: Evaluation of

a hybrid correction approach. Physica Medica, 69:269–274, 2020.

86



Appendices

87



Appendix A

Supplemental figures

88



APPENDIX A

Figure A.1: Absolute difference between deformed pCT and CBCT for six patients
before correction and after correction using pCT images obtained for 6 other patients.

89



 ملخص

 

فقط  م يكنلأجهزة العلاج بالأشعة في  (CBCT) المخروطيشعاع ال ذوفي الآونة الأخيرة، دمج التصوير المقطعي       

 لعلاجتشريح المريض طوال فترة ا غيراتمع ت العلاجتخطيط تكييف جعل المريض ولكن  يةدقة وضع أداة قوية لتحسين

المكتسبة  CBCTالصور  مطابقة، بعد ART(. خلال التخطيط ARTالتكيفي ) المعروف باسم العلاج الإشعاعي ،ممكنا

 ،الداخليةالأعضاء و أ المريض بنيةعلى مستوى ات رعلى معلومات حول تغي والحصول (pCT) ةصور المقطعييوميًا وال

 نأ على الرغم من .معتبرةرات تغيال ما إذا كانت العلاج في حال تخطيط لإعادةالمقطعي  التصوير تكرارهناك حاجة ل

اللازمة ( HU) وحدات هاونسفيلدل دقيق توزيعجسم الإنسان مع  حولالمعلومات أحدث  وفري المقطعية الصور تكرار

إن الهدف ، فمرضى بسبب الجرعة الإضافية. لذلكلل ةيصحأضرارا شكل ياكتسابها المتكرر قد إلا أن ، اتلحساب الجرع

 الهدفالصور المقطعية. تكرار  بدلا من اتلحساب الجرع اليومية CBCTالصور  استثمار من هذه الأطروحة هو

جودة من  قللت تيلا الأشعة المتناثرةللتغلب على القيود المتعلقة بالكمية العالية من  واعدة الرئيسي هو اقتراح استراتيجية

 .pCTمقارنة مع  CBCTالصور 

أول طريقة . CBCTفي الصور  HUقيم وحدات  تصحيح توزيعتسمح با ثلاثة طرق متكاملة ترحن، اقتحقيقا لهذه الغاية

. ةيالرماد نفس الرسوم البيانية  لتوزيع المستويات  تمتلكلا pCTوصور  CBCTمستوحاة من حقيقة أن  كانت مقترحة

 لفة جة المختاع الأنسر إمكانية التمييز بين أنويوتوف لمشابهة بياناتهما( HM) ةالبياني ، طبقنا عملية مطابقة الرسوملذلك

( لتحسين صحة توزيع MLT) المستويات ةمتعدد عتبة ، اقترحنا تطبيقيةثان . كطريقةCBCTالصور  فيالمتواجدة 

HU عليها من المتحصل HM. للمساهمة في تقليل  مسبقًا ةالمقترح الطرق ، اقترحنا تعميمةالثالث أخيرًا، في الطريقة و

 مرضى من أجلعدة  بين تشويهيال لتطابقمفهوم ا إدراجكرة الرئيسية هي الف بالتخطيط التكيفي. متطلبات عبء العمل

جديدة لكل  pCTبدلا من الحصول على صور  CBCT المتاحة في الأرشيف لتصحيح الصور  pCTالصور  استغلال

 مريض.

 CBCTفي صور  HUتوزيع  من المقترحة يمكن أن تحسن ليل البصري والإحصائي أن الطرقأظهرت نتائج التح

 pCT.في اتفاق جيد مع  حةوتولد صورًا مصح

 :الكلمات المفتاحية

 .الإشعاعي التكيفيمطابقة الرسوم البيانية، عتبة متعددة المستويات، العلاج  ، تطابق تشويهي،CBCT تصحيح
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