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Abstract

In this thesis we considered some elastic, thermoelastic and viscoelastic systems with the presence of
different mechanisms of dissipation. The first part of the thesis is composed of two chapters. In chapter
1, we consider a Bresse-Timoshenko system with distributed delay term. Under suitable assumptions,
we prove the global well-posedness and exponential stability results by Faedo-Galerkin approximations
and some energy estimates. Chapter 2 is related to the one-dimensional linear thermoelastic system of
Timoshenko type of second sound with distributed delay term. We prove the exponential stability result
will be shown without the usual assumption on the wave speeds. The second part of the thesis is devoted
to the study of some viscoelastic systems with voids. In Chapter 3, we consider a system of nonlinear
viscoelastic wave equations with degenerate damping and strong source terms. We prove, with positive
initial energy, the global nonexistence of solution by concavity method. Similar results were shown in
Chapter 4 where we coupled nonlinear Klein-Gordon equations with degenerate damping and source
terms. We prove the global nonexistence of solution.

Keywords: Timoshenko system, Bresse-Timoshenko system, Exponential decay, Distributed delay
term, Source term, Positive initial energy, Concavity method, Energy method, Global nonexistence,
Degenerate damping thermoelasticity, Nonlinear viscoelastic wave equations.
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إلى الرسـالة قسمنـا وقد الزائدية، الجمل لبعض الحل انفجار و اضمحلال استقرار، ندرس الرسالة هذه في
فصلين. يحوي منهمـا قسم كل قسمين

الوجود بإثبات الأول الفصل في نقوم حيث زائديتين لجملتين الحل وحدانية و وجود الأول القسم في ندرس
وجود مع Bresse-Timoshenko بريس-تيموشينكو نوع من جملة لحل الأسي الاستقرار مع المحلي غير والوحدانية
الفصل في أما الطاقة، تقديرات و Faedo-Galerkin غالركين فايدو تقريبات باستخدام للتأخير يع التوز دالة
الثاني الصوت مع Timoshenko تيموشينكو نوع من البعد أحادية زائدية جملة لحل الأسي الاستقرار نثبت الثاني

الطاقة. يقة طر باستخدام ذلك و بتأخير
خطية غير جزئية تفاضلية معادلات جملة منهما كل زائديتين لجملتين الحل انفجار ندرس الثاني القسم في

الطاقة. يقة طر باستخدام ذلك و اللزوجة يمثل حد بإضافة
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Résumé

Dans cette thèse, nous avons considéré certains systèmes élastiques, thermoélastiques et viscoélastiques
avec la présence de différents mécanismes de dissipation. La première partie de la thèse est composée
de deux chapitres. Dans le chapitre 1, nous considérons un système de Bresse-Timoshenko avec un
retard distribué. Sous des hypothèses appropriées, nous prouvons le bien-posé global et la stabilité ex-
ponentielle des résultats par approximations de Faedo-Galerkin et quelques estimations énergétiques. Le
chapitre 2 est lié au système thermoélastique linéaire unidimensionnel de type Timoshenko du deuxième
son avec un terme de retard distribué. Nous prouvons que le résultat de stabilité exponentielle sera
montré sans l’hypothèse habituelle sur les vitesses des ondes. La deuxième partie de la thèse est con-
sacrée à l’étude de certains systèmes viscoélastiques à vides. Dans le chapitre 3, nous considérons un
système d’équations d’onde viscoélastiques non linéaires avec amortissement dégénéré et termes source.
Nous prouvons, avec une énergie initiale positive, la non-existence globale de solution par méthode de
concavité. Similaire les résultats ont été présentés au chapitre 4 où nous avons couplé des équations
non linéaires de Klein-Gordon avec d’amortissement dégénéré et termes sources. Nous prouvons la
non-existence globale de solution

Mots clés : Système de Timoshenko, Système de Bresse-Timoshenko, Décroissance exponentielle,
Terme de retard déstibué, Terme source, Eenergie initiale positive, Méthode de concavité, Méthode
d’énergie, Non-existence globale, Thermoélasticité d’amortissement d’énergie, Equations d’ondes visco-
élastiques non linéaires.
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Introduction

The aim of this thesis is to investigate the stability of some elastic, thermoelastic and viscoelastic evo-

lution problems, such as the Timoshenko systems, Bresse-Timoshenko systems and the system of vis-

coelastic wave equations.

The systems that we treated here are the following:

The Timoshenko systems
The Timoshenko system is usually considered as describing the transverse vibration of a beam and

ignoring damping effects of any nature. Precisely, we have the following model, which was developed

by Timoshenko in 1921(see in [126]), this is given by a system of two coupled hyperbolic equations of

the form  ρϕtt = (K(ϕx − ψ)x, in (0, L) × R+,

Iρψtt = (EIψx)x + K(ϕx − ψ), in (0, L) × R+,
(1)

where ϕ is the transverse displacement of the beam, and ψ is the rotation angle of the filament of the

beam. The coefficients ρ, Iρ, E, I and K are respectively the density (the mass per unit length), the polar

moment of inertia of a cross section, Young‘s modulus of elasticity, the moment of inertia of a cross

section and the shear modulus, respectively.

System (1), together with boundary conditions of the form

EIϕx |
x=L
x=0= 0,

K(ϕx − ϕ) |x=L
x=0= 0,

1
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is conservative, and thus the total energy is preserved, as time goes to infinity. Several authors intro-

duced different types of dissipative mechanisms to stabilize system (1), and several results concerning

uniform and asymptotic decay of energy have been established. Let us now mention some known results

related to the stabilization of the Timoshenko beam. There are a number of publications concerning the

stabilization of the Timoshenko system with different kinds of damping. Kim and Renardy considered

Timoshenko (1) in [61] with two boundary controls of the form Kϕ(L, t) − Kux(L, t) = αϕt(L, t), on R+,

EIψx(L, t) = −βψt(L, t), on R+,
(2)

they establish an exponential decay result for the natural energy of system (1). They also provided some

numerical estimates to the eigenvalues of the operator associated with the system (1). An analogous

result was also established by Feng et al. in [44], where a stabilization of vibrations in a Timoshenko

system was studied. Raposo et al. studied in [108] Timoshenko (1) with homogeneous Dirichlet bound-

ary conditions and two linear frictional dampings; i.e, they considered the following system
ρ1ϕtt − k1(ϕx − ψ)x + ϕt = 0, in (0, L) × R+

ρψtt − k2ψxx + k1(ϕx − ψ) + ψt = 0, in (0, L) × R+

ϕ(0, t) = ϕ(L, t) = ψ(0, t) = ψ(L, t) = 0, on R+,

(3)

they showed that the Timoshenko system (3) is exponentially stable. This result is similar to that one

by Taylor [125], but as they mentioned, the originality of their work lies in the method based on the

semigroup theory developed by Liu and Zheng [73].

Soufyane and Wehbe in [123] considered Timoshenko (1) with one internal distributed dissipation law;

i.e, they cosidered the following system:
ρψtt = (K(ψx − ϕ))x, in (0, L) × R+

Iρϕtt = (EIϕx)x + K(ψx − ϕ) − b(x)ϕt, in (0, L) × R+

ϕ(0, t) = ϕ(L, t) = ψ(0, t) = ψ(L, t) = 0, on R+,

(4)

where b is a positive and continuous function, which satisfies

b(x) ≥ b0 > 0, ∀ x ∈ [a0, a1] ⊂ [0, L].

They showed that the Timoshenko system (4) is exponentially stable if and only if the wave propagation

speeds are equal (i.e., K1
ρ

= EI
Iρ

), otherwise, only the asymptotic stability has been proved. This result

improves previous ones by Soufyane [122] and Shi and Feng [120] who proved an exponential decay of
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the solution of (1) together with two locally distributed feedbacks.

Rivera and Racke in [109] improved the previous results and showed an exponential decay of the solution

of the system (4) when the coefficient of the feedback admits an indefinite sign. Also, Rivera and Racke

[94] treated a nonlinear Timoshenkotype system of the form

ρ1ϕtt − σ1 (ϕx, ψ)x = 0

ρ2ψtt − χ (ψx)x + σ2 (ϕx, ψ) + dψt = 0
(5)

in a one-dimensional bounded domain. The dissipation is produced here through a frictional damping

which is only present in the equation for the rotation angle. The authors gave an alternative proof for a

necessary and sufficient condition for exponential stability in the linear case and then proved a polyno-

mial stability in general. Moreover, they investigated the global existence of small smooth solutions and

exponential stability in the nonlinear case.

Xu and Yung [132] studied a system of Timoshenko beams with pointwise feedback controls, looked

for the information about the eigenvalues and eigenfunctions of the system, and used this information to

examine the stability of the system.

A weaker type of dissipation was considered by Ammar-Khodja and al. [9]by introducing the memory

term
ˆ t

0
g(t − s)ψxx(s)ds in the rotation angle equation of (11). They used the multiplier techniques and

showed that the system is uniformly stable if and only if (9) holds and the kernel g decays uniformly.

Precisely, they proved that the rate of decay is exponential (polynomial) if g decays exponentially (poly-

nomially). 
ρ1ϕtt − K(ϕx + ψ)x = 0, in (0, L) × R+,

ρ2ψtt − bψxx +

ˆ t

0
g(t − s)ψxx(s)ds + K(ϕx + ψ) = 0, in (0, L) × R+,

(6)

with homogeneous boundary conditions. They proved that the system (6) is uniformly stable if and only

if the wave speeds are equal and g decays uniformly. Also, they proved an exponential decay if g de-

cays at an exponential rate and polynomially if g decays at a polynomial rate. They also required some

technical conditions on both g′ and g′′ to obtain their result, Ammar-Khodja and al. in [10] studied the

decay rate of the energy of the nonuniform Timoshenko beam with two boundary controls acting in the

rotation-angle equation. The feedback of memory type has also been studied by Santos [115]. He con-

sidered a Timoshenko system and showed that the presence of two feedbacks of memory type at a subset

of the boundary stabilizes the system uniformly. He also obtained the energy decay rate which is exactly

the decay rate of the relaxation functions. In fact, under the equal speed wave propagation condition,

they established exponential decay results up to an unknown finite dimensional space of initial data. In

addition, they showed that the equal speed wave propagation condition is necessary for the exponential

stability. However, in the case of non equal speeds, no decay rate has been discussed. The result in [10]

has been recently improved by Wehbe and al. in [15] where are established nonuniform stability and an
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optimal polynomial energy decay rate of the Timoshenko system with only one dissipation law on the

boundary.

Shi and Feng [120] investigated a nonuniform Timoshenko beam and showed that the vibration of the

beam decays exponentially under some locally distributed controls. To achieve their goal, the authors

used the frequency multiplier method.

For Timoshenko systems of classical thermoelasticity, Muñoz Rivera and Racke in [95] studied nonlin-

ear system of the form


ρ1ϕtt − σ(ϕx, ψ)x = 0, in (0, L) × R+

ρ2ψtt − b(ψxx)x + k(ϕx + ψ) + γθx = 0, in (0, L) × R+

ρ3θt − kθxx + γψxt = 0, in (0, L) × R+

(7)

where θ is the difference temperature, ϕ is the displacement and ψ is the rotation angle of filament of the

beam and σ, ρ1, ρ2, b,K and γ are constituve constants. They showed that, for the bouandary conditions

ϕ(x, t) = ψx(x, t) = θ(x, ) = 0, f or x = 0, L and t > 0, (8)

the energy of system (7) decays exponentially if and only if

ρ1

k
=
ρ2

b
, (9)

and that condition (9) suffices to stabilise system (7) exponentially for the bouandary conditions

ϕ(x, t) = ψ(x, t) = θx(x, ) = 0, f or x = 0, L and t > 0,

and non-exponential stability result for the case of different wave speeds of propagation. Muñoz Rivera

and Racke in [94] studied nonlinear Timoshenko system of the form ρ1ϕtt − σ1(ϕx, ψ)x = 0, in (0, L) × R+,

ρ2ψtt − χ(ψx)x + σ2(ϕx, ψ) + dψt = 0, in (0, L) × R+,
(10)

with homogeneous boundary conditions, they showed that the Timoshenko system (10) is exponentially

stable if and only if the wave propagation speeds are equal, otherwise, only the polynomial stability

holds.

In the above system, the heat flux is given by the Fourier’s law. As a result, we obtain a physical

discrepancy of infnite heat propagation speed. That is, any thermal disturbance at a single point has

an instantaneous efect everywhere in the medium. Experiments showed that heat conduction in some
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dielectric crystals at low temperatures is free of this paradox. Moreover, the disturbances being almost

entirely thermal, propagate at a finite speed. This phenomenon in dielectric crystals is called second

sound.

To overcome this physical paradox, many theories have been developed. One of which suggests that we

should replace the Fourier’s law

q + κθx = 0

by so called Cattaneo’s law

τqt + q + κθx = 0

Alabau- Boussouira [3] extended the results of [94] to the case of nonlinear feedback α(ψt), instead of

dψt, where α is a globally Lipchitz function satisfying some growth conditions at the origin. Indeed, she

considered the following system ρ1ϕtt − k(ϕx + ψ)x = 0, in (0, L) × R+,

ρ2ψtt − b(ψxx) + k(ϕx + ψ) + α(ψx) = 0, in (0, L) × R+,
(11)

with homogeneous boundary conditions. In fact, if the wave propagation speeds are equal she estab-

lished a general semi-explicit formula for the decay rate of the energy at infinity. Otherwise, she proved

polynomial decay in the case of different speed of propagation for both linear and nonlinear globally

Lipschitz feedbacks.

Concerning the Timoshenko system with delay, the investigation started by Houari and Laskri with the

paper [111] where the authors studied the following problem:
ρ1ϕtt (x, t) − K (ϕx + ψ)x (x, t) = 0,

ρ2ψtt (x, t) − αψxx (x, t) + K (ϕx + ψ) (x, t) + µ1ψt (x, t) + µ2ψt (x, t − τ) = 0.
(12)

Under the assumption µ1 ≥ µ2 on the weights of the two feedbacks, they proved the well-posedness of

the system. They also established for µ1 > µ2 an exponential decay result for the case of equal-speed

wave propagation.

Subsequently, the work in [111] has been extended to the case of time-varying delay of the form

ψt (x, t − τ (t)) by Kirane, Said-Houari and Anwar [62]. The case where the damping µ1ψt is re-

placed by history type
´ ∞

0 g(s)ψxx(x, t − s)ds (with either discrete delay µ2ψt (t − τ) or distributed one´ ∞
0 f (s)ψt ( t − s) ds) has been treated in [49] (in case (9) and the opposite one), where several general

decay estimates have been proved.
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The Bresse systems
The problem with the arc is also known as the Bressse system, the elastic structures of this type are

widely used for study in engineering, architecture, marine engineering, aeronautics and others. In par-

ticular, vibration on elastic structures is an important research topic in engineering and also in mathe-

matics. In the Mathematical Analysis area, is interesting to know the properties that relate to energy

behavior associated with the respective dynamic model. For feedback laws, by example, we can ask

what conditions about the dynamic model must be taken to obtain the decrease in energy from solutions

in time t. In this sense, the property of stabilization has been studied for dynamic problems in elastic

structures are translated according to partial differential equations.

Originally the Bresse system consists of three wave equations where the main variables describing the

longitudinal, vertical and shear angle displacements, which can be represented as (see [25]). The original

Bresse system is given by the following equations
ρ1ϕtt = Qx + lN + F1,

ρ2ψtt = Mx − Q + F2,

ρ1wtt = Nx − lQ + F3,

(13)

These strengths are the relationships deformation (stress-strain) for elastic behavior and such are given

by:
N = k0 (wx − lϕ)

Q = k (ϕx + lw + ψ)

M = bψx

(14)

We use N,Q and M to denote the axial force, the shear force and the bending moment. By w, ϕ and ψ we

are denoting the longitudinal, vertical and shear angle displacements. Here ρ1 = ρA = ρI, k0 = EA, k =

k′GA and l = R−1. To material properties, we use ρ for density, E for the modulus of elasticity, G for the

shear modulus, K for the shear factor, A for the cross-sectional area, I for the second moment of area of

the cross-section and R for the radius of curvature and we assume that all this quantities are positives.

Also by Fi we are denoting external forces.

Considering the coupling of equations (13) and (14), we obtain
ρ1ϕtt − κ (ϕx + lω + ψ)x − κ0l (ωx − lϕ) = F1

ρ2ψtt − bψxx + κ (ϕx + lω + ψ) = F2

ρ3ωtt − κ0 (ωx − lϕ)x + κl (ϕx + lω + ψ) = F3

(15)

System (15) is an undamped system and its associated energy remains constant when the time t evolves.

To stabilize system (15), many damping terms have been considered by several authors. (see [21], [17],

[23], [22],[50], [72], [116]). We start by recalling some results related to the stabilization of the elastic
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Bresse system. Wehbe and Youssef [131], considered the elastic Bresse system subject to two locally

internal dissipation laws. They proved that the system is exponentially stable if and only if the wave

propagation speeds are equal. Otherwise, only a polynomial stability holds. Alabau-Boussouira et al.

[21], considered the same system with one globally distributed dissipation law. The authors proved

that, in general, the system is not exponentially stable but there exists polynomial decay with rates that

depend on some particular relation between the coefficients. Using boundary conditions of Dirichlet-

Dirichlet-Dirichlet type, they proved that the energy of the system decays at a rate t−
1
3 and at the rate

t−
2
3 if k ≡ k0. These results are completed by Fatori and Montiero [38]. Using boundary conditions of

Dirichlet-Neumann- Neumann type, the authors showed that the energy of the elastic Bresse system de-

cays polynomially at the rate t−
1
2 and at the rate t−1if k ≡ k0. Noun and Wehbe [99] extended the results

of [21] and [38]. The authors considered the elastic Bresse system subject to one locally distributed

feedback with Dirichlet-Neumann- Neumann or Dirichlet-Dirichlet-Dirichlet boundary conditions type.

They proved By considering damping terms as infinite memories acting in the three equations.

For the thermoelastic Bresse system, subject of this paper, there exist two important results. The first

result is due to Liu and Rao [72], when they considered the Bresse system with two thermal dissipation

laws. The authors showed that the energy decays exponentially when the wave speed of the vertical

displacement coincides with the wave speed of longitudinal displacement or of the shear angle displace-

ment. Otherwise, they found polynomial decay rates depending on the boundary conditions. When the

system is subject to Dirichlet-Neumann-Neumann boundary conditions, they showed that the energy

decays at the rate t−
1
2 and for fully Dirichlet boundary conditions, they proved that the energy of the

system decays as t−
1
4 . This result has been recently improved by Fatori and Rivera [39] in the sense

that the authors considered only one globally dissipative mechanism given by one temperature, and they

established the rate of decay t−
1
3 for Dirichlet- Neumann- Neumann and Dirichlet-Dirichlet-Dirichlet

boundary conditions type. The main result of this paper is to extend the results from [39], by taking into

consideration the important case when the thermal dissipation law is locally distributed on the angle dis-

placement equation i.e the damping coefficient is not constant but it is a positive function in W2,∞(0, L)

and strictly positive in an open subinterval ]a, b[⊂]0, L[ (the cases a = 0 or b = L are not excluded) and

to improve the polynomial energy decay rate.

Klein-Gordon equation
The Klein-Gordon equation is distinguished among other nonlinear hyperbolic equations b its theoretical

and practical significance. The nonlinear Klein-Gordon equation appears in the study of some problems

of mathematical physics. For example, this equation arises in general relativity, nonlinear optics (e.g.,

in the study of instability phenomena such as self-focusing), plasma physics, uid mechanics, radiation

theory or in the theory of spin waves [119, 75, 77]. The Cauchy problem for nonlinear Klein-Gordon

equation

ϕtt − ∆ϕ + mϕ + ϕt = f (ϕ), t > 0, x ∈ Rn (16)
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ϕ(0, x) = ϕ0(x), ϕt(0, x) = ϕ1(x), x ∈ Rn (17)

has been studied by many authors (see e.g. [70, 138]). Existence and nonexistence of global solutions

are the main points of study for the problem (16), (17) in the case m = 0, f (ϕ) ∼ |ϕ|p (see e.g. [69]).

In [128, 57], the problem (16), (17) has been investigated in the case m = 0, f (ϕ) ∼ |ϕ|p, where

1 < p ≤ pc = 1 + 2
n , and the existence of sufficiently small initial data (ϕ0;ϕ1) was proved for which

the corresponding Cauchy problem has no global solution. In [7, 8] the Klein-Gordon equation has

been investigated in the case m = 0, f (ϕ) ∼ |ϕ|p when p > pc = 1 + 2
n , and the existence of a global

solution for the problem (16), (17) has been proved for suffciently small (ϕ0;ϕ1). In the case m > 0, i.e

for the Klein-Gordon equation with mass, the above efects do not occur. In this case, the main objects

of study are the corresponding potential well and stability or instability of standing wave. There is

a series of works devoted to that problem. The nonexistence of global solutions was studied in [67]

for nonlinear wave equations with negative energy and in [68] for a class of abstract equations that, in

particular, contains nonlinear wave equations. The nonexistence of global solutions of nonlinear wave

equations with positive initial energy was considered in [104]. It was shown in the study of nonlinear

wave equations in [65] that there exist initial data with fixed initial energy such that the corresponding

Cauchy problem does not have a global solution. This result was improved in [127]. A mixed problem

for systems of two semilinear wave equations with viscosity and with memory was studied in [74],

where the nonexistence of global solutions with positive initial energy was proved. The nonexistence

of global solutions of problem (16), (17) with negative initial energy was studied in [4] for m = 2

and in [71] for m = 2 and p1 = p2. The nonexistence of global solutions of a generalized fourth-order

Klein–Gordon equation with positive initial energy was analyzed in [64]. A fairly comprehensive picture

of the studies in this direction can be gained from the monograph [92]. Our main results in this thesis

can be summarized as follows:

Chapter 1. In this chapter, we consider a Bresse-Timoshenko type system with distributed delay term.

Under suitable assumptions, we establish the global well-posedness of the initial and boundary

value problem by using the Faedo-Galerkin approximations and some energy estimates. By using

the energy method, we show two exponential stability results for the system with delay in vertical

displacement and in angular rotation, respectively. This extends earlier results in the literature

[40] to the system with distributed delay. This work has been recently published in [30].

Chapter 2. In this chapter we studied a one-dimensional linear thermoelastic system of Timoshenko

type with distributed delay term. The heat conduction is given by Cattaneo’s law. Under an

appropriate assumption between the weight of the delay and the weight of the damping, we prove

the exponential stability result will be shown without the usual assumption on the wave speeds.

To achieve our goals, we make use of the energy method. This work has been recently published

in [133].
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Chapter 3. In this chapter we will substantiation that the positive intial-energy solution for coupled

nonlinear Klein-Gordon equations with degenerate damping and source terms. We prove, with

positive initial energy, the global nonexistence of solution by concavity method. This work has

been recently accepted in [134].

Chapter 4. In this chapter we will substantiation that the positive intial-energy solution for coupled

nonlinear Klein-Gordon equations with nonlinear damping terms. We prove, with positive initial

energy, the global nonexistence of solution by concavity method. This work has been recently

accepted in [102].
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Bresse-Timoshenko and Timoshenko systems
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Chapter 1

Global Well-Posedness and Exponential Stability results

of class of Bresse-Timoshenko type systems with Dis-

tributed delay term

1.1 Introduction

In this chapter, we deal with a nolinear Bresse-Timoshenko type system with distributed delay cases

(1.9) and (1.72), under appropriate assumptions and we study the exponential decay of two cases of

dissipative system based on the recent works by Almeida Júnior et al. in [5]-[8] and Feng in [40],

we are working to establish the global well-posedness of the initial and boundary value problem by

using the Faedo-Galerkin approximations and some energy estimates, we relied on the energy method

to demonstrated these results with the help of convex functions. In the next, let’s c positive constant.

Firstly, after an explanation about the meaning of second spectrum based on existing literature, they

showed that the viscous damping acting on angle rotation of the original Timoshenko system in [126]

given by  ρ1ϕtt − β(ϕx + ψ)x = 0

ρ2ψtt − bψxx + β(ϕx + ψ) + µψt = 0
(1.1)

Regarding relationship between dissipative effects and second spectrum, Nesterenko in [96] suggested

that “dissipative processes are able of eliminating the damaging effect given by second spectrum. How-

ever, Nesterenko did not prove anything about his affirmation. According to our information, the first

contribution in that direction was obtained by Manevich and Kolakowski [76]. They analyzed the dy-

namic of a Timoshenko model where the damping mechanism is viscoelastic. More precisely, they

11
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considered the dissipative system given by ρ1ϕtt − β(ϕx + ψ)x − µ1(ϕx + ψ)tx = 0,

ρ2ψtt − bψxx + β(ϕx + ψ) − µ2ψttx + µ1(ϕx + ψ)t = 0,
(1.2)

where µi, i = 1, 2 are positive constants and they conclude, from dispersion analysis, that “internal

friction damping eliminates the second branch for sufficiently short wavelengths, and there remains

only the first branch.

Secondly, the papers due to Elishakoff and collaborators and their studies on truncated versions for

classical Timoshenko equations [1] (see also recent contributions of Elishakoff et al. [36]-[35])have an

important influence on our incursions in the paper of Almeida Junior and Ramos [5], where they showed

that the total energy for viscous damping acting on angle rotation of the simplified Timoshenko system

given by  ρ1ϕtt − β(ϕx + ψ)x = 0

−ρ2ϕttx − bψxx + β(ϕx + ψ) + µ1ψt = 0
(1.3)

is exponentially stable regardless of any values of coefficients o1, ρ2, b and β It is noteworthy that both

set of systems (1.1) and (1.3) without damping (µ = 0) have all main features considered by Timoshenko

in [126] from modelling point of view: curvature, vertical displacement, angle rotation, shear deforma-

tion and rotary inertia. We believe that the truncated version (1.3) is simpler than the classical ones for

dealing with the exponential stability because the hypothesis of equal wave propagation velocities is

not necessary anymore. The reason behind this is the absence of the second spectrum or non-physical

spectrum [1, 35] and its damage consequences for wave propagation speeds [5]. We can find the histor-

ical and mathematical observations in [1, 35]. The same results are achieved for a dissipative truncated

version where the viscous damping acts on vertical displacement ρ1ϕtt − β(ϕx + ψ)x + µ1ϕt = 0

−ρ2ϕttx − bψxx + β(ϕx + ψ) = 0
(1.4)

Then, for more consistency and in light of the absence of the second spectrum resulting from exponential

decay, Almeida Junior et al. [8] considered two cases of dissipative systems for Bresse-Timoshenko type

systems with constant delay cases. For the first one, the authors proved the exponential decay for the

system given by  ρ1ϕtt − β(ϕx + ψ)x + µ1ϕt + µ2ϕt(x, t − τ) = 0

−ρ2ϕttx − bψxx + β(ϕx + ψ) = 0
(1.5)

For the second one, the authors also proved the exponential decay result for the system given by ρ1ϕtt − β(ϕx + ψ)x = 0

−ρ2ϕttx − bψxx + β(ϕx + ψ) + µ1ψt + µ2ψt(x, t − τ) = 0
(1.6)
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Feng and al. [40] considered two cases of dissipative systems for Bresse-Timoshenko type systems with

time-varying delay cases. For the first one, the authors proved the exponential decay for the system

given by  ρ1ϕtt − β(ϕx + ψ)x + µ1ϕt + µ2ϕt(x, t − τ(t)) = 0

−ρ2ϕttx − bψxx + β(ϕx + ψ) = 0
(1.7)

For the second one, the authors also proved the exponential decay result for the system given by ρ1ϕtt − β(ϕx + ψ)x = 0

−ρ2ϕttx − bψxx + β(ϕx + ψ) + µ1ψt + |µ2|ψt(x, t − τ(t)) = 0
(1.8)

Guesmia and Soufyane [52] studied a vibrating system of Timoshenko-type with one or two discrete time

delays and one or two internal frictional dampings, and established exponential decay and polynomial

decay of corresponding system. Said-Houari and Soufyane [112] studied exponential stability of a

Timoshenko beam system together with two boundary controls and with delay terms. For Timoshenko

system of thermo-viscoelasticity with delay term, one can refer [13], [29] and [59]. On the other hand,

in [37], [53], [55], [98] and [140] the authors considered the case of a Timoshenko type systems with

distributed delay terms, and established some stability results.

1.2 Distributed delay and viscous damping in vertical displace-

ment

Here, we are concerned with the following system given by
ρ1ϕtt − β(ϕx + ψ)x + µ1ϕt +

ˆ τ2

τ1

|µ2(p)|ϕt (x, t − p) dp = 0

−ρ2ϕttx − bψxx + β(ϕx + ψ) = 0
(1.9)

where

(x, p, t) ∈ (0, 1) × (τ1, τ2) × (0,∞)

Additionally, we consider initial conditions given by ϕ (x, 0) = ϕ0 (x) , ϕt (x, 0) = ϕ1 (x) , ϕtt (x, 0) = ϕ2 (x)

ϕttt(x, 0) = ϕ3(x), ψ (x, 0) = ψ0 (x) , x ∈ (0, 1)
(1.10)

where ϕ0, ϕ1, ϕ2, ψ0, are given functions, and boundary conditions of Dirichlet-Dirichlet given by

ϕ (0, t) = ϕ (1, t) = ψ (0, t) = ψ(1, t) = 0, t > 0 (1.11)
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Wherever, ϕ is the transverse displacement of the beam, ψ is the angle of rotation, and ρ1, ρ2, b, β > 0

and the integral represents the distributed delay term with τ1, τ2 > 0 are a time delay, µ1 is positive

constant, µ2 is an L∞function.

(A1) µ2 : [τ1, τ2]→ R is a bounded function satisfying

ˆ τ2

τ1

|µ2(p)|dp ≤ µ1 (1.12)

In order to deal with the disributed delay feedback term, motivated by [98], let use introduce a new

dependent variable

y(x, τ, p, t) = ϕt(x, t − pτ), (1.13)

Using (1.13), we have  pyt(x, τ, p, t) = −yτ(x, τ, p, t)

y(x, 0, p, t) = ϕt(x, t).
(1.14)

Thus, the problem is equivalent to
ρ1ϕtt − β(ϕx + ψ)x + µ1ϕt +

ˆ τ2

τ1

|µ2(p)|y (x, 1, p, t) dp = 0

−ρ2ϕttx − bψxx + β(ϕx + ψ) = 0

pyt(x, τ, p, t) + yτ(x, τ, p, t) = 0

(1.15)

where

(x, τ, p, t) ∈ (0, 1) × (0, 1) × (τ1, τ2) × (0,∞).

Additionally, we consider initial conditions given by
ϕ (x, 0) = ϕ0 (x) , ϕt (x, 0) = ϕ1 (x) , ϕtt (x, 0) = ϕ2 (x)

ϕttt(x, 0) = ϕ3(x), ψ (x, 0) = ψ0 (x) , x ∈ (0, 1)

y (x, τ, p, 0) = f0(x,−pτ), yt (x, τ, p, 0) = f1 (x,−pτ) , in (0, 1) × (0, 1) × (0, τ2),

ytt (x, τ, p, 0) = f2 (x,−pτ) , in (0, 1) × (0, 1) × (0, τ2)

(1.16)

where ϕ0, ϕ1, ϕ2, ψ0, f0, f1, are given functions, and boundary conditions of Dirichlet-Dirichlet given by

ϕ (0, t) = ϕ (1, t) = ψ (0, t) = ψ(1, t) = 0, t > 0 (1.17)

Next we say that the global well-posedness of problem (1.15)-(1.17) given in the following theorem.

Theorem 1.1. Assume the assumption (1.12) holds. Then, we have the following:

(i) If the initial data (ϕ0, ϕ1, ϕ2, ϕ3, ψ0) is in (H2(0, 1) ∩ H1
0(0, 1)) × (H2(0, 1) ∩ H1

0(0, 1)) × H1(0, 1) ×

L2(0, 1) × (H2(0, 1) ∩ H1
0(0, 1)), f0, f1, f2 ∈ H1((0, 1) × (0, 1) × (τ1, τ2)), then problem (1.15)-1.17) has a
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stronger weak solution

ϕ ∈ L∞loc(R
+,H2(0, 1) ∩ H1

0(0, 1)), ψ ∈ L∞loc(R
+,H2(0, 1) ∩ H1

0(0, 1))

ϕt ∈ L∞loc(R
+,H2(0, 1) ∩ H1

0(0, 1)), ϕtt ∈ L∞loc(R
+,H1

0(0, 1)) .

(ii)If the initial data (ϕ0, ϕ1, ϕ2, ϕ3, ψ0) is in (H1
0(0, 1) × H1

0(0, 1) × L2(0, 1) × L2(0, 1) × H1
0(0, 1)),

f0, f1, f2 ∈ L2((0, 1) × (0, 1) × (τ1, τ2)), then problem (1.15)-(1.17) has a weak solution such that

ϕ ∈ C([0,T ],H1
0(0, 1)) ∩C1([0,T ], L2(0, 1)), ψ ∈ C([0,T ],H1

0(0, 1))

ϕt ∈ C([0,T ],H1
0(0, 1)), ϕtt ∈ C([0,T ], L2(0, 1)) .

(iii)In both cases, we have that the solution (ϕ, ϕt, ϕtt, ψ) depends continuously on the initial data in

H1
0(0, 1)×H1

0(0, 1)× L2(0, 1)×H1
0(0, 1). In particular, problem (1.15)-1.17) has a unique weak solution.

1.2.1 The Global Well-Posedness

In this subsection, we will prove the global existence and the uniqueness of the solution of problem

(1.9)-(1.17) by using the classical Faedo-Galerkin approximations along with some priori estimates. We

only prove the existence of solution in (i). For the existence of stronger solution in (ii), we can use the

same method as in (i) and one can refer to Andrade e al. [11] and Jorge Silva and Ma [121] and Feng

[42].

1.2.1.1 Approximate Problem

Let u j, θ j be the Galerkin basis, For m ≥ 1, let

Wm = span{u1, u2, ...., un}

Km = span{θ1, θ2, ...., θn}

We define for 1 ≤ j ≤ m the sequence φ j(x, τ, p) by

φ j(x, 0, p) = u j(x)

Then we can extend φ j(x, 0, p) by over L2((0, 1)× (0, 1)× (τ1, τ2)) and denote Vm = span{φ1, φ2, ...., φn}.

Given initial data ϕ0, ψ0 ∈ H1
0(0, 1), ϕ1, ϕ2 ∈ L2(0, 1), and f0, f1 ∈ L2((0, 1) × (0, 1) × (τ1, τ2)), we define
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the following approximations

ϕm =

n∑
j=1

g jm(t)u j(x)

ψm =

n∑
j=1

h jm(t)θ j(x)

ym =

n∑
j=1

f jm(t)φ j(x, τ, p) (1.18)

which satisfy the following approximate problem:

ρ1(ϕmtt, u j) + β((ϕmx + ψ j), u jx) + µ1(ϕmt, u j)

+(
ˆ τ2

τ1

|µ2(p)|ym (x, 1, p, t) dp, u j) = 0,

b(ψmx, θ jx) + ρ2(ϕmtt, θ jx) + β((ϕmx + ψ j), θm j) = 0

(pymt(x, τ, p, t), φ j) + (ymτ(x, τ, p, t), φ j) = 0

(pymtt(x, τ, p, t), φ j) + (ymτt(x, τ, p, t), φ j) = 0 (1.19)

with initial conditions

ϕm(0) = ϕm
0 , ϕmt(0) = ϕm

1 , ϕmtt(0) = ϕm
2

ϕmttt(0) = ϕm
3 , ψm(0) = ψm

0 , ψmt(0) = ψm
1 ,

ym(0) = ym
0 , ymt(0) = ym

1 , ymtt(0) = ym
2 (1.20)

which satisfies

ϕm
0 → ϕ0, strongly in H2(0, 1) ∩ H1

0(0, 1)

ϕm
1 → ϕ1, strongly in H1

0(0, 1)

ϕm
2 → ϕ2, strongly in H1

0(0, 1)

ϕm
3 → ϕ3, strongly in L2(0, 1)

ψm
0 → ψ0, strongly in H2(0, 1) ∩ H1

0(0, 1)

ψm
1 → ψ1, strongly in H1

0(0, 1)

ym
0 → y0, strongly in L2((0, 1) × (0, 1) × (τ1, τ2))

ym
1 → y1, strongly in L2((0, 1) × (0, 1) × (τ1, τ2)) (1.21)

ym
2 → y2, strongly in L2((0, 1) × (0, 1) × (τ1, τ2)) (1.22)
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By using standard ordinary differential equations theory, the problem (1.19)-(1.20) has a solution

(g jm, h jm, f jm) j=1,m defined on [0, tm). The following estimate will give the local solution being extended

to [0,T ], for any given T > 0.

1.2.1.2 A Priori Estimate I

Now multiplying The first four terms of the first approximate equation of (1.19) by g′jm, and Now mul-

tiplying The last three terms of the first approximate equation of (1.19) by h′jm, and using the fact that

−β

ˆ 1

0
ϕttψtxdx = ρ1

ˆ 1

0
ϕtttϕttdx + β

ˆ 1

0
ϕtxxϕttdx + µ1

ˆ 1

0
ϕ2

ttdx

+

ˆ 1

0
ϕtt

ˆ τ2

τ1

|µ2(p)|ϕtt (x, t − p) dpdx,

we get

d
dt

1
2

[
ρ1

ˆ 1

0
ϕ2

mtdx +
ρ1ρ2

β

ˆ 1

0
ϕ2

mttdx + ρ2

ˆ 1

0
ϕ2

mtxdx + β

ˆ 1

0
(ϕmx + ψm)2dx

+b
ˆ 1

0
ψ2

mxdx
]

+ µ1

ˆ 1

0
ϕ2

mtdx +

ˆ 1

0
ϕmt

ˆ τ2

τ1

|µ2(p)|ym (x, 1, p, t) dpdx

+µ1
ρ2

β

ˆ 1

0
ϕ2

mttdx +
ρ2

β

ˆ 1

0
ϕmtt

ˆ τ2

τ1

|µ2(p)|ytm (x, 1, p, t) dpdx. (1.23)

Multiplying the second approximate equation of (1.19) by |µ2(p)| f jm, and then integrating over (0, t) ×

(0, 1) × (0, 1) × (τ1, τ2), we obtain

1
2

ˆ t

0

ˆ 1

0

ˆ 1

0

ˆ τ2

τ1

p|µ2(p)|y2
m(x, τ, p, s)dpdτdxds

= −

ˆ t

0

ˆ 1

0

ˆ 1

0

ˆ τ2

τ1

|µ2(p)|ymymτ (x, τ, p, s) dpdτdxds

= −
1
2

ˆ t

0

ˆ 1

0

ˆ 1

0

ˆ τ2

τ1

|µ2(p)|
d
dτ

y2
m (x, τ, p, s) dpdτdxds

=
1
2

ˆ t

0

ˆ 1

0

ˆ τ2

τ1

|µ2(p)|(y2
m (x, 0, p, s) − y2

m(x, 1, p, s))dpdxds

=
1
2

(
ˆ τ2

τ1

|µ2(p)|dp)
ˆ t

0

ˆ 1

0
y2

m(x, 0, p, s)dxds

−
1
2

ˆ t

0

ˆ 1

0

ˆ τ2

τ1

|µ2(p)|y2
m (x, 1, p, s) dpdxds

(1.24)
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similarly, we have

1
2

ˆ t

0

ˆ 1

0

ˆ 1

0

ˆ τ2

τ1

p|µ2(p)|y2
mt(x, τ, p, s)dpdτdxds

= −

ˆ t

0

ˆ 1

0

ˆ 1

0

ˆ τ2

τ1

|µ2(p)|ymtymτt (x, τ, p, s) dpdτdxds

= −
1
2

ˆ t

0

ˆ 1

0

ˆ 1

0

ˆ τ2

τ1

|µ2(p)|
d
dτ

y2
mt (x, τ, p, s) dpdτdxds

=
1
2

ˆ t

0

ˆ 1

0

ˆ τ2

τ1

|µ2(p)|(y2
mt (x, 0, p, s) − y2

mt(x, 1, p, s))dpdxds

=
1
2

(
ˆ τ2

τ1

|µ2(p)|dp)
ˆ t

0

ˆ 1

0
y2

mt(x, 0, p, s)dxds (1.25)

−
1
2

ˆ t

0

ˆ 1

0

ˆ τ2

τ1

|µ2(p)|y2
mt (x, 1, p, s) dpdxds

Now integrating (1.23) and using (1.24) and (1.25), we obtain

Em(t) + (µ1 −
1
2

ˆ τ2

τ1

p|µ2(p)|dp)
ˆ t

0

ˆ 1

0
ϕ2

mt(s)dxds

+
ρ2

β
(µ1 −

1
2

ˆ τ2

τ1

p|µ2(p)|dp)
ˆ t

0

ˆ 1

0
ϕ2

mtt(s)dxds

+

ˆ t

0

ˆ 1

0
ϕmt(s)

ˆ τ2

τ1

|µ2(p)|ym (x, 1, p, s) dpdxds

+
ρ2

β

ˆ t

0

ˆ 1

0
ϕmtt(s)

ˆ τ2

τ1

|µ2(p)|ytm (x, 1, p, s) dpdxds

+

ˆ t

0

ˆ 1

0

ˆ τ2

τ1

p|µ2(p)|y2
m(x, 1, p, s)dpdτdxds

+
ρ2

β

ˆ t

0

ˆ 1

0

ˆ τ2

τ1

p|µ2(p)|y2
tm(x, 1, p, s)dpdτdxds

= Em(0) (1.26)

with

Em(t) =
1
2

[
ρ1

ˆ 1

0
ϕ2

mtdx +
ρ1ρ2

β

ˆ 1

0
ϕ2

mttdx + ρ2

ˆ 1

0
ϕ2

mtxdx

+β

ˆ 1

0
(ϕmx + ψm)2dx + b

ˆ 1

0
ψ2

mxdx
]

+

ˆ 1

0

ˆ 1

0

ˆ τ2

τ1

p|µ2(p)|y2
m(x, τ, p, t)dpdτdx

+
ρ2

β

ˆ 1

0

ˆ 1

0

ˆ τ2

τ1

p|µ2(p)|y2
tm(x, τ, p, t)dpdτdx (1.27)
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Then we have the following cases.

(i) Consider (µ1 >
´ τ2

τ1
p|µ2(p)|dp). Using Young’s inequality, we have

ˆ t

0

ˆ 1

0
ϕmt(s)

ˆ τ2

τ1

|µ2(p)|ym (x, 1, p, s) dpdxds

≥ −
1
2

(
ˆ τ2

τ1

p|µ2(p)|dp)
ˆ t

0

ˆ 1

0
ϕ2

mt(s)dxds

−
1
2

ˆ t

0

ˆ 1

0

ˆ τ2

τ1

|µ2(p)|y2
m (x, 1, p, s) dpdxds (1.28)

and
ˆ t

0

ˆ 1

0
ϕmtt(s)

ˆ τ2

τ1

|µ2(p)|ymt (x, 1, p, s) dpdxds

≥ −
1
2

(
ˆ τ2

τ1

p|µ2(p)|dp)
ˆ t

0

ˆ 1

0
ϕ2

mtt(s)dxds

−
1
2

ˆ t

0

ˆ 1

0

ˆ τ2

τ1

|µ2(p)|y2
mt (x, 1, p, s) dpdxds (1.29)

which, together with (1.26), yields

Em(t) + (µ1 −

ˆ τ2

τ1

p|µ2(p)|dp)
ˆ t

0

ˆ 1

0
ϕ2

mt(s)dxds

+
ρ2

β
(µ1 −

ˆ τ2

τ1

p|µ2(p)|dp)
ˆ t

0

ˆ 1

0
ϕ2

mtt(s)dxds

≤ Em(0) (1.30)

It follows from (1.12) that there exist a constants η0 = µ1 −
´ τ2

τ1
p|µ2(p)|dp such that

Em(t) + η0

ˆ t

0

ˆ 1

0
ϕ2

mt(s)dxds +
ρ2

β
η0

ˆ t

0

ˆ 1

0
ϕ2

mtt(s)dxds ≤ Em(0) (1.31)

(ii) Consider (µ1 =
´ τ2

τ1
p|µ2(p)|dp) and using (1.19), we know that

Em(t) ≤ Em(0) (1.32)

(iii)Then, in both cases, we infer that there exists a positive constant C independent on m such that

Em(t) ≤ C, t ≥ 0 (1.33)
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It follows from (1.12), and (1.33) that

ˆ 1

0
ϕ2

mtdx +

ˆ 1

0
ϕ2

mttdx + ρ2

ˆ 1

0
ϕ2

mtxdx +

ˆ 1

0
(ϕmx + ψm)2dx

+

ˆ 1

0
ψ2

mxdx +

ˆ 1

0

ˆ 1

0

ˆ τ2

τ1

p|µ2(p)|y2
m(x, τ, p, t)dpdτdx

+

ˆ 1

0

ˆ 1

0

ˆ τ2

τ1

p|µ2(p)|y2
mt(x, τ, p, t)dpdτdx ≤ C (1.34)

Thus we can obtain tm = T , for all T > 0.

1.2.1.3 A Priori Estimate II

Differentiating the first equation of (1.19) and multiplying by ϕmtt, and then integrating the result over

(0, 1), we have

ρ1

2
d
dt

ˆ 1

0
ϕ2

mttdx + β

ˆ 1

0
(ϕmx + ψm)tϕmttxdx + µ1

ˆ 1

0
ϕ2

mttdx

+

ˆ 1

0
ϕmtt

ˆ τ1

τ0

|µ2(p)|ymt(x, 1, p, t)dpdx = 0. (1.35)

Differentiating the second equation of (1.19), multiplying by ψmtt, noting

ψmttx =
1
β

(
ρ1ϕmtttt − βϕmttxx + µ1ϕmttt +

ˆ τ1

τ0

|µ2(p)|ymtt(x, 1, p, t)dp
)
,

and then integrating the result over (0, 1), we get

ρ1ρ2

2β
d
dt

ˆ 1

0
ϕ2

mtttdx +
ρ2

2
d
dt

ˆ 1

0
ϕ2

mttxdx +
ρ2µ1

β

ˆ 1

0
ϕ2

mttdx

+
b
2

d
dt

ˆ 1

0
ψ2

mxtdx +
ρ2

β

ˆ 1

0
ϕmttt

ˆ τ2

τ1

|µ2(p)|ymtt(x, 1, p, t)dp

+β

ˆ 1

0
(ϕmxt + ψmt)ψmttdx = 0. (1.36)
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The same arguments as in (1.24)-(1.25), and combining (1.35) and (1.36), we get

Gm(t) + (µ1 −
1
2

ˆ τ2

τ1

p|µ2(p)|dp)
ˆ t

0

ˆ 1

0
ϕ2

mtt(s)dxds

+
ρ2

β
(µ1 −

1
2

ˆ τ2

τ1

p|µ2(p)|dp)
ˆ t

0

ˆ 1

0
ϕ2

mttt(s)dxds

+

ˆ t

0

ˆ 1

0
ϕmt(s)

ˆ τ2

τ1

|µ2(p)|ym (x, 1, p, s) dpdxds

+
ρ2

β

ˆ t

0

ˆ 1

0
ϕmttt(s)

ˆ τ2

τ1

|µ2(p)|ymtt (x, 1, p, s) dpdxds

+

ˆ t

0

ˆ 1

0

ˆ τ2

τ1

p|µ2(p)|y2
mt(x, 1, p, s)dpdτdxds

+
ρ2

β

ˆ t

0

ˆ 1

0

ˆ τ2

τ1

p|µ2(p)|y2
mtt(x, 1, p, s)dpdτdxds

= Gm(0)

where

Gm(t) =
1
2

[
ρ1

ˆ 1

0
ϕ2

mttdx +
ρ1ρ2

β

ˆ 1

0
ϕ2

mtttdx + ρ2

ˆ 1

0
ϕ2

mttxdx

+β

ˆ 1

0
(ϕmxt + ψmt)2dx + b

ˆ 1

0
ψ2

mxtdx
]

+
1
2

ˆ 1

0

ˆ 1

0

ˆ τ2

τ1

p|µ2(p)|y2
mt(x, τ, p, t)dpdτdx

+
ρ2

2β

ˆ 1

0

ˆ 1

0

ˆ τ2

τ1

p|µ2(p)|y2
mtt(x, τ, p, t)dpdτdx

Similarly to A Priori Estimate I, we can get there exists a positive constant C independent on m such

that

Gm(t) ≤ C, t ≥ 0. (1.37)
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1.2.1.4 A Priori Estimate III

Let u j = −ϕmtxx and θ j = −ψmtxx in (1.19). We integrate the result over (0, 1) to get for any t ≥ 0.

d
dt

1
2

[
ρ1

ˆ 1

0
ϕ2

mttdx +
ρ1ρ2

β

ˆ 1

0
ϕ2

mtttdx + ρ2

ˆ 1

0
ϕ2

mttxdx

+β

ˆ 1

0
(ϕmxt + ψmt)2dx + b

ˆ 1

0
ψ2

mxtdx
]

+ µ1

ˆ 1

0
ϕmtxdx

+

ˆ 1

0
ϕmtx

ˆ τ2

τ1

|µ2(p)|y2
mt(x, τ, p, t)dpdx + µ1

ρ2

2β

ˆ 1

0
ϕmttdx

+
ρ2

β

ˆ 1

0
ϕmttx

ˆ τ2

τ1

|µ2(p)|y2
mtt(x, τ, p, t)dpdx

By using the same arguments as in (1.24) and (1.35), we can get from (1.38) that

F (t) + (µ1 −

ˆ τ2

τ1

p|µ2(p)dp)
ˆ t

0

ˆ 1

0
ϕmtx(s)dxds

+
ρ2

β
(µ1 −

ˆ τ2

τ1

p|µ2(p)dp)
ˆ t

0

ˆ 1

0
ϕmttx(s)dxds ≤ F (0), (1.38)

where

1
2

[
ρ1

ˆ 1

0
ϕ2

mtxdx +
ρ1ρ2

β

ˆ 1

0
ϕ2

mttxdx + ρ2

ˆ 1

0
ϕ2

mtxxdx

+β

ˆ 1

0
(ϕmxx + ψmx)2dx + b

ˆ 1

0
ψ2

mxxdx
]

+

ˆ 1

0

ˆ 1

0

ˆ τ2

τ1

p|µ2(p)|y2
mt(x, τ, p, t)dpdτdx

+
ρ2

β

ˆ 1

0

ˆ 1

0

ˆ τ2

τ1

p|µ2(p)|y2
mtt(x, τ, p, t)dpdτdx

Therefore, we obtain that there exists a positive constant C independent on m such that

Fm(t) ≤ C, t ≥ 0.
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1.2.1.5 Passage to Limit

From (1.34) and (1.37), we conclude that for any m ∈ N,

ϕm is bounded in L∞(R+,H2 ∩ H1
0)

ϕmt is bounded in L∞(R+,H2 ∩ H1
0)

ϕmtt is bounded in L∞(R+,H1
0)

ψm is bounded in L∞(R+,H2 ∩ H1
0)

ψmt is bounded in L∞(R+, L2)

ym is bounded in L∞(R+, L2((0, 1) × (0, 1) × (τ1, τ2))

ymt is bounded in L∞(R+, L2((0, 1) × (0, 1) × (τ1, τ2)) (1.39)

Thus we get

ϕm weakly star in L2(R+,H2 ∩ H1
0)

ϕmt weakly star in L2(R+,H2 ∩ H1
0)

ϕmtt weakly star in L2(R+,H1)

ψm weakly star in L2(R+,H2 ∩ H1
0)

ψmt weakly star in L2(R+, L2)

ym weakly star in L2(R+, L2((0, 1) × (0, 1) × (τ1, τ2))

ymt weakly star in L2(R+, L2((0, 1) × (0, 1) × (τ1, τ2)) (1.40)

By (1.40), we can also deduce that ϕm, ψm is bounded in L2(R+,H2 ∩ H1
0) and ϕmt, ϕmtt is bounded in

L2(R+, L2). Then from Aubin-Lions theorem [70], we infer that for and, T > 0,

ϕm strongly in L∞(0,T,H1
0(0, 1))

ϕmt strongly in L∞(0,T,H1
0(0, 1))

ψm strongly in L∞(0,T,H1
0(0, 1)) (1.41)

We also obtain by Lemma 1.4 in Kim [129] that

ϕm strongly in C(0,T,H1
0(0, 1))

ϕmt strongly in C(0,T,H1
0(0, 1))

ψm strongly in C(0,T,H1
0(0, 1)) (1.42)
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Then we can pass to limit the approximate problem (1.19)-(1.20) in order to get a weak solution of

problem (1.15)-(1.17).

1.2.1.6 Continuous Dependence and Uniqueness

Firstly we prove the continuous dependence and uniqueness for stronger solutions of problem (1.15)-

(1.17).

Let (ϕ, ϕt, ϕtt, ψ,Υ,Υt), and (Γ,Γt,Γtt,Ξ,Π,Πt) be two global solutions of problem (1.15)-(1.17) with

respect to initial data (ϕ0, ϕ1, ϕ2, ψ0,Θ0,Θ1), and (Γ0,Γ1,Γ0,Ξ0,Φ0,Φ1) respectively. Let

Λ(t) = ϕ − Γ

Σ(t) = ψ − Ξ

χ(t) = Π − Φ (1.43)

Then (Λ,Σ, χ) verifies (1.15)-(1.17), and we have

ρ1Λtt − β(Λx + Σ)x + µ1Λt +

ˆ τ2

τ1

|µ2(p)|Λt (x, t − p) dp

−ρ2Λttx − bΣxx + β(Λx + Σ) = 0

pχt(x, τ, p, t) + χτ(x, τ, p, t) = 0 (1.44)

Multiplying (1.44)1 by Λt, (1.44)2 by Σt and integrating the result over (0,1), and using the fact that

β

ˆ 1

0
ΛttΣtxdx = ρ1

ˆ 1

0
ΛtttΛttdx + β

ˆ 1

0
ΛtxxΛttdx + µ1

ˆ 1

0
Λ2

ttdx

+

ˆ 1

0
Λtt

ˆ τ2

τ1

|µ2(p)|Λtt (x, t − p) dpdx

we get

d
dt

1
2

[
ρ1

ˆ 1

0
Λ2

t dx +
ρ1ρ2

β

ˆ 1

0
Λ2

ttdx + ρ2

ˆ 1

0
Λ2

txdx + β

ˆ 1

0
(Λx + Σ)2dx

+b
ˆ 1

0
Σ2

xdx
]

+ µ1

ˆ 1

0
Λ2

t dx +

ˆ 1

0
Λmt

ˆ τ2

τ1

|µ2(p)|χ (x, 1, p, t) dpdx

+µ1
ρ2

β

ˆ 1

0
Λ2

ttdx +
ρ2

β

ˆ 1

0
Λtt

ˆ τ2

τ1

|µ2(p)|χt (x, 1, p, t) dpdx (1.45)
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Using Young’s inequality, we get

d
dt
E(t) ≤ c(

ˆ 1

0
Λ2

t dx +

ˆ 1

0
Λ2

ttdx)

≤ c(
ˆ 1

0
Λ2

t dx +

ˆ 1

0
Λ2

ttdx +

ˆ 1

0
Λ2

txdx +

ˆ 1

0
Σ2

xdx +

ˆ 1

0
(Λx + Σ)2dx

+

ˆ 1

0

ˆ 1

0

ˆ τ2

τ1

p|µ2(p)|χ2 (x, 1, p, t) dpdτdx)

where

E(t) =
1
2

[
ρ1

ˆ 1

0
Λ2

t dx +
ρ1ρ2

β

ˆ 1

0
Λ2

ttdx + ρ2

ˆ 1

0
Λ2

txdx + β

ˆ 1

0
(Λx + Σ)2dx

+b
ˆ 1

0
Σ2

xdx
]

+

ˆ 1

0

ˆ 1

0

ˆ τ2

τ1

p|µ2(p)|χ2 (x, 1, p, t) dpdτdx (1.46)

by integrating (1.45), we get

E(t) ≤ E(0) + C1

ˆ t

0
(‖Λt‖

2 + ‖Λtt‖
2 + ‖Λtx‖

2 + ‖Σx‖
2 + ‖(Λx + Σ)‖2

+

ˆ 1

0

ˆ τ2

τ1

p|µ2(p)|‖χ (x, 1, p, t) ‖2dpdτ) (1.47)

on the other hand, we have

E(t) ≥ c0(‖Λt‖
2 + ‖Λtt‖

2 + ‖Λtx‖
2 + ‖Σx‖

2 + ‖(Λx + Σ)‖2

+

ˆ 1

0

ˆ τ2

τ1

p|µ2(p)|‖χ (x, 1, p, t) ‖2dpdτ) (1.48)

Applying Gronwall’s inequality to (1.47), we get

(‖Λt‖
2 + ‖Λtt‖

2 + ‖Λtx‖
2 + ‖Σx‖

2 + ‖(Λx + Σ)‖2

+

ˆ 1

0

ˆ τ2

τ1

p|µ2(p)|‖ (x, 1, p, t) ‖2χdpdτ) ≤ eC2tE(0) (1.49)

This shows that solution of problem (1.15)-(1.17) depends continuously on the initial data. This ends

the proof of Theorem.

1.2.1.7 Weak solution

If (ϕ0, ϕ1, ϕ2, ϕ3, ψ0) lies in (H1
0(0, 1) × L2(0, 1) × L2(0, 1) × L2(0, 1) × H1

0(0, 1)), we can use density

arguments to get problems (1.15)-(1.17) admit a global weak solution. This ends the proof of theorem.
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1.2.2 Exponential stability

In this subsection, we will prove an exponential stability estimate for problem (1.15)− (1.17), under the

assumption (1.12), and by using a multiplier technique.

Define the energy of solution as

E (t) =
1
2

ˆ 1

0

[
ρ1ϕ

2
t + bψ2

x + β(ϕx + ψ)2 +
ρ1ρ2

β
ϕ2

tt + ρ2ϕ
2
tx

]
dx

+
1
2

ˆ 1

0

ˆ 1

0

ˆ τ2

τ1

p|µ2(p)|y2 (x, τ, p, t) dpdτdx

(1.50)

Then we have the following lemma.

Lemma 1.2. The energy E(t) satisfies

E′ (t) ≤ −

(
µ1 −

ˆ τ2

τ1

|µ2(p)|dp
)ˆ 1

0
ϕ2

t dx −
(
µ1 −

ˆ τ2

τ1

|µ2(p)|dp
)ˆ 1

0
ϕ2

ttdx

≤ −η0

ˆ 1

0
ϕ2

t dx − η0
ρ2

β

ˆ 1

0
ϕ2

ttdx ≤ 0 (1.51)

where η0 = µ1 −

ˆ τ2

τ1

|µ2(p)|dp ≥ 0.

Proof. Multiplying the first equation of (1.15) by ϕt, the second equation of (1.15) by ψt, using integra-

tion by parts, and (1.17), we get



ρ1

2
d
dt

ˆ 1

0
ϕ2

t dx + β

ˆ 1

0
(ϕx + ψ)ϕtxdx + µ1

ˆ 1

0
ϕ2

t dx

+

ˆ 1

0
ϕt

ˆ τ2

τ1

|µ2(p)|ϕt (x, t − p) dpdx = 0

ρ2

ˆ 1

0
ϕttψtxdx +

b
2

d
dt

ˆ 1

0
ψ2

xdx + β

ˆ 1

0
(ϕx + ψ)ψtdx = 0

(1.52)
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Now, substituting: ψtx =
ρ1
β
ϕttt − ϕxxt +

µ1
β
ϕtt + 1

β

ˆ τ2

τ1

|µ2(p)|ϕtt (x, t − p) dp, obtained from (1.15)1, into

first integral of (1.52)2, we get

1
2

d
dt

ˆ 1

0

[
ρ1ϕ

2
t + bψ2

x + β(ϕx + ψ)2 +
ρ1ρ2

β
ϕ2

tt + ρ2ϕ
2
tx

]
dx

+µ1

ˆ 1

0
ϕ2

t dx +

ˆ 1

0
ϕt

ˆ τ2

τ1

|µ2(p)|y (x, 1, p, t) dpdx

+µ1
ρ2

β

ˆ 1

0
ϕ2

ttdx +
ρ2

β

ˆ 1

0
ϕtt

ˆ τ2

τ1

|µ2(p)|yt (x, 1, p, t) dpdx = 0 (1.53)

Secondly, multiplying (1.15)3 by y|µ2(p)|, Then integrate the result, we get

d
dt

1
2

ˆ 1

0

ˆ 1

0

ˆ τ2

τ1

p|µ2(p)|y2(x, τ, p, t)dpdτdx

= −

ˆ 1

0

ˆ 1

0

ˆ τ2

τ1

|µ2(p)|yyτ (x, τ, p, t) dpdτdx

= −
1
2

ˆ 1

0

ˆ 1

0

ˆ τ2

τ1

|µ2(p)|
d
dτ

y2 (x, τ, p, t) dpdτdx

=
1
2

ˆ 1

0

ˆ τ2

τ1

|µ2(p)|(y2 (x, 0, p, t) − y2(x, 1, p, t))dpdx

=
1
2

(
ˆ τ2

τ1

|µ2(p)|dp)
ˆ 1

0
ϕ2

t dx

−
1
2

ˆ 1

0

ˆ τ2

τ1

|µ2(p)|y2 (x, 1, p, t) dpdx (1.54)

and, using (1.14), we have  pytt(x, τ, p, t) = −ytτ(x, τ, p, t)

yt(x, 0, p, t) = ϕtt(x, t)
(1.55)
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Multiplying (1.55) by yt|µ2(p)|, Then integrate the result, we get

d
dt

1
2

ˆ 1

0

ˆ 1

0

ˆ τ2

τ1

p|µ2(p)|y2
t (x, τ, p, t)dpdτdx

= −

ˆ 1

0

ˆ 1

0

ˆ τ2

τ1

|µ2(p)|ytytτ (x, τ, p, t) dpdτdx

= −
1
2

ˆ 1

0

ˆ 1

0

ˆ τ2

τ1

|µ2(p)|
d
dτ

y2
t (x, τ, p, t) dpdτdx

=
1
2

ˆ 1

0

ˆ τ2

τ1

|µ2(p)|(y2
t (x, 0, p, t) − y2

t (x, 1, p, t))dpdx

=
1
2

(
ˆ τ2

τ1

|µ2(p)|dp)
ˆ 1

0
ϕ2

ttdx

−
1
2

ˆ 1

0

ˆ τ2

τ1

|µ2(p)|y2
t (x, 1, p, t) dpdx. (1.56)

From (1.50), (1.53), (1.54), and (1.56) we get (1.51).

E′(t) ≤ −(µ1 −

ˆ τ2

τ1

|µ2(p)|dp)
ˆ 1

0
ϕ2

t dx −
ρ2

β
(µ1 −

ˆ τ2

τ1

|µ2(p)|dp)
ˆ 1

0
ϕ2

ttdx, (1.57)

then, by (A1), ∃η0 > 0 so that

E′(t) ≤ −η0

ˆ 1

0
ϕ2

t dx −
ρ2

β
η0

ˆ 1

0
ϕ2

ttdx (1.58)

then we obtain E is decreasing. �

Lemma 1.3. The functional

F1 (t) := −
µ1

2

ˆ 1

0
ϕ2

t dx − β
ˆ 1

0
ϕtxϕxdx (1.59)

satisfies

F′1 (t) ≤ −β

ˆ 1

0
ϕ2

txdx + ε1

ˆ 1

0
ψ2

xdx + c(1 +
1
ε1

)
ˆ 1

0
ϕ2

ttdx

+c
ˆ 1

0

ˆ τ2

τ1

|µ2(p)|y2(x, 1, p, t)dpdx (1.60)
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Proof. Direct computation using integration by parts, we get

F′1 (t) = ρ1

ˆ 1

0
ϕ2

ttdx − β
ˆ 1

0
ψxϕttdx − β

ˆ 1

0
ϕ2

txdx

+

ˆ 1

0
ϕtt

ˆ τ2

τ1

|µ2(p)|y(x, 1, p, t)dpdx (1.61)

estimate (1.60) easily follows by using Young’s and Poincare’s inequalities. �

Lemma 1.4. The functional

F2 (t) := ρ1

ˆ 1

0
ϕϕtdx +

µ1

2

ˆ 1

0
ϕ2dx +

µ1ρ2

2β

ˆ 1

0
ϕ2

t dx + ρ2

ˆ 1

0
ϕtxϕxdx

satisfies,

F2(t) ≤ −
ρ1ρ2

2β

ˆ 1

0
ϕ2

ttdx −
β

2

ˆ 1

0
(ϕx + ψ)2dx − b

ˆ 1

0
ψ2

xdx

+ρ2

ˆ 1

0
ϕ2

txdx + ρ1

ˆ 1

0
ϕ2

t dx

+c
ˆ 1

0

ˆ τ2

τ1

|µ2(p)|y2(x, 1, p, t)dpdx. (1.62)

Proof. Differentiating F2, using integrating by parts and (1.17), we get

F′2 (t) = ρ1

ˆ 1

0
ϕ2

t dx − β
ˆ 1

0
(ϕx + ψ)2dx − b

ˆ 1

0
ψ2

xdx

−
ρ1ρ2

2β

ˆ 1

0
ϕ2

ttdx +

ˆ 1

0
ϕ

ˆ τ2

τ1

|µ2(p)|y(x, 1, p, t)dpdx

+ρ2

ˆ 1

0
ϕ2

txdx +
ρ2

β

ˆ 1

0
ϕtt

ˆ τ2

τ1

|µ2(p)|y(x, 1, p, t)dpdx. (1.63)

Using Young’s, Cauchy-Schwarz and Poincaré’s inequalities, we obtain (1.62) �

At this point, let us introduce the functional used by:

Lemma 1.5. The functional

F3 (t) :=
ˆ 1

0

ˆ 1

0

ˆ τ2

τ1

pe−pτ|µ2(p)|y2 (x, τ, p, t) dpdτdx

+

ˆ 1

0

ˆ 1

0

ˆ τ2

τ1

pe−pτ|µ2(p)|y2
t (x, τ, p, t) dpdτdx.
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satisfies,

F′3 (t) ≤ −η1

ˆ 1

0

ˆ 1

0

ˆ τ2

τ1

p|µ2(p)|y2 (x, τ, p, t) dpdτdx + µ1

ˆ 1

0
ϕ2

t dx

−η1

ˆ 1

0

ˆ τ2

τ1

|µ2(p)|y2 (x, 1, p, t) dpdx

−η1

ˆ 1

0

ˆ 1

0

ˆ τ2

τ1

p|µ2(p)|y2
t (x, τ, p, t) dpdτdx + µ1

ˆ 1

0
ϕ2

ttdx

−η1

ˆ 1

0

ˆ τ2

τ1

|µ2(p)|y2
t (x, 1, p, t) dpdx (1.64)

where η1 > 0.

Proof. By differentiating F3, and use the equation (1.15)3, we get

F′3 (t) = −2
ˆ 1

0

ˆ 1

0

ˆ τ2

τ1

e−pτ|µ2(p)|yyτ (x, τ, p, t) dpdτdx

−2
ˆ 1

0

ˆ 1

0

ˆ τ2

τ1

e−pτ|µ2(p)|ytytτ (x, τ, p, t) dpdτdx

= −

ˆ 1

0

ˆ 1

0

ˆ τ2

τ1

pe−pτ|µ2(p)|y2 (x, τ, p, t) dpdτdx

−

ˆ 1

0

ˆ τ2

τ1

|µ2(p)|[e−py2 (x, 1, p, t) − y2 (x, 0, p, t)]dpdx

−

ˆ 1

0

ˆ 1

0

ˆ τ2

τ1

pe−pτ|µ2(p)|y2
t (x, τ, p, t) dpdτdx

−

ˆ 1

0

ˆ τ2

τ1

|µ2(p)|[e−py2
t (x, 1, p, t) − y2

t (x, 0, p, t)]dpdx

Using the equality y(x, 0, p, t) = ϕt(x, t), yt(x, 0, p, t) = ϕtt(x, t) and e−p ≤ e−pτ ≤ 1, for any 0 < τ < 1,

we get

F′3 (t) = −

ˆ 1

0

ˆ 1

0

ˆ τ2

τ1

pe−pρ|µ2(p)|y2 (x, ρ, p, t) dpdρdx

−

ˆ 1

0

ˆ τ2

τ1

e−p|µ2(p)|y2 (x, 1, p, t) dpdx +

ˆ τ2

τ1

|µ2(p)|dp
ˆ 1

0
ϕ2

t dx

−

ˆ 1

0

ˆ 1

0

ˆ τ2

τ1

pe−pτ|µ2(p)|y2
t (x, τ, p, t) dpdτdx

−

ˆ 1

0

ˆ τ2

τ1

e−p|µ2(p)|y2
t (x, 1, p, t) dpdx +

ˆ τ2

τ1

|µ2(p)|dp
ˆ 1

0
ϕ2

ttdx
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�

As −e−p is a increasing function, we have −e−p ≤ −e−τ2 , for any p ∈ [τ1, τ2].

Then, setting η1 = e−τ2 and using (A1), we obtain (1.64).

Theorem 1.6. Assume (A1), there exist positive constants λ1 and λ2 such that the energy functional

(1.50) satisfies

E(t) ≤ λ2e−λ1t,∀t ≥ 0 (1.65)

Proof. We define a Lyapunov functional

L (t) := NE (t) + N1F1(t) + N2F2(t) + N3F3(t). (1.66)

where N,N1,N2,N3 > 0. By differentiating (1.66) and using (1.51), (1.60), (1.62), and (1.64) we have

L′ (t) ≤ −
[
Nη0 − ρ2N2 − µ1N3

]ˆ 1

0
ϕ2

t dx

−

[
η0
ρ2

β
N +

ρ1ρ2

β
N2 − cN1(1 +

1
ε1

) − µ1N3

] ˆ 1

0
ϕ2

ttdx

− [bN2 − ε1N1]
ˆ 1

0
ψ2

xdx

−
β

2

ˆ 1

0
(ϕx + ψ)2dx −

[
βN1 − cN2

] ˆ 1

0
ϕ2

txdx

−
[
N3η1 − cN1 − cN2

] ˆ 1

0

ˆ τ2

τ1

|µ2(p)|y2 (x, 1, p, t) dpdx

−N3η1

ˆ 1

0

ˆ 1

0

ˆ τ2

τ1

p|µ2(p)|y2 (x, τ, p, t) dpdτdx

−N3η1

ˆ 1

0

ˆ τ2

τ1

|µ2(p)|y2
t (x, 1, p, t) dpdx

−N3η1

ˆ 1

0

ˆ 1

0

ˆ τ2

τ1

p|µ2(p)|y2
t (x, τ, p, t) dpdτdx.

By setting ε1 = bN2
2N1

, we fixed N2 and we choose N1 large enough so that

α1 = βN1 − cN2 > 0,

After that, we can choose N3 large enough such that

α2 = η1N3 − cN1 − cN2 > 0,
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thus, we arrive at

L′ (t) ≤ −
[
Nη0 − c

] ˆ 1

0
ϕ2

t dx −
[
η0
ρ2

β
N + α3 − c

]ˆ 1

0
ϕ2

ttdx − α4

ˆ 1

0
ψ2

xdx

−α5

ˆ 1

0
(ϕx + ψ)2dx − α1

ˆ 1

0
ϕ2

txdx

−α2

ˆ 1

0

ˆ τ2

τ1

|µ2(p)|y2 (x, 1, p, t) dpdx

−α6

ˆ 1

0

ˆ 1

0

ˆ τ2

τ1

p|µ2(p)|y2 (x, τ, p, t) dpdτdx

−α6

ˆ 1

0

ˆ τ2

τ1

|µ2(p)|y2
t (x, 1, p, t) dpdx

−α6

ˆ 1

0

ˆ 1

0

ˆ τ2

τ1

p|µ2(p)|y2
t (x, τ, p, t) dpdτdx. (1.67)

where α3 =
ρ1ρ2
2β N2, α4 = b

2 N2, α5 =
β

2 N2, α6 = N3η1.

On the other hand, if we let

H (t) = N1F1(t) + N2F2(t) + N3F3(t)

then

|H (t)| ≤
µ1

2
N1

ˆ 1

0
ϕ2

t dx + βN1

ˆ 1

0
|ϕtxϕx|dx + ρ1N2

ˆ 1

0
|ϕϕt|dx

+
µ1

2
N2

ˆ 1

0
ϕ2dx +

µ1ρ2

2β
N2

ˆ 1

0
ϕ2

t dx + ρ2N2

ˆ 1

0
|ϕtxϕx|dx

+N3

ˆ 1

0

ˆ 1

0

ˆ τ2

τ1

pe−pτ|µ2(p)|y2 (x, τ, p, t) dpdτdx.

+N3

ˆ 1

0

ˆ 1

0

ˆ τ2

τ1

pe−pτ|µ2(p)|y2
t (x, τ, p, t) dpdτdx.

By using the inequalities of Young, Cauchy-Schwarz, and Poincaré, we get

|H (t)| ≤ c
ˆ 1

0

(
ϕ2

t + ϕ2
tx + ψ2

x + ϕ2
tt + (ϕx + ψ)2

)
dx

+c
ˆ 1

0

ˆ 1

0

ˆ τ2

τ1

p|µ2(p)|y2 (x, τ, p, t) dpdτ

+c
ˆ 1

0

ˆ 1

0

ˆ τ2

τ1

p|µ2(p)|y2
t (x, τ, p, t) dpdτ

≤ cE (t) .

Consequently,

|H (t)| = |L (t) − NE (t)| ≤ cE (t)
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which yield

(N − c)E (t) ≤ L (t) ≤ (N + c)E (t) (1.68)

Now, we choose N large enough so that

η0
ρ2

β
N + α3 − c > 0,Nη0 − c > 0,N − c > 0,

we get

c1E(t) ≤ L (t) ≤ c2E(t),∀t ≥ 0 (1.69)

and used (1.50), estimates (1.67), (1.68), respectively, we get

L′ (t) ≤ −h1E (t) ,∀t ≥ t0 (1.70)

for some h1, c1, c2 > 0.

A combination (1.70) with (1.69), gives

L′ (t) ≤ −λ1L (t) , (1.71)

where λ1 = h1
c2

. Finally, a simple integration of (1.71)we obtain (1.65). This completes the proof. �

1.3 Distributed delay and viscous damping in angular rotation

In this Section, we are concerned with the following system
ρ1ϕtt − β(ϕx + ψ)x = 0

−ρ2ϕttx − bψxx + β(ϕx + ψ) + µ1ψt +

ˆ τ2

τ1

|µ2(p)|ψt (x, t − p) dp = 0
(1.72)

where

(x, p, t) ∈ (0, 1) × (τ1, τ2) × (0,∞)

with the initial conditions
ϕ (x, 0) = ϕ0 (x) , ϕt (x, 0) = ϕ1 (x) , ϕtt(x, 0) = ϕ2(x)

ψ (x, 0) = ψ0 (x) , x ∈ (0, 1)

ψt(x,−t) = f0(x, t), x ∈ (0, 1) , t ∈ (0, τ2)

(1.73)
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where ϕ0, ϕ1, ϕ2, ψ0, f0, are given functions.

and the Dirichlet conditions

ϕx (0, t) = ϕx (1, t) = ψ (0, t) = ψ(1, t) = 0, t > 0 (1.74)

As in [98], let use introduce a new dependent variable

y(x, τ, p, t) = ψt(x, t − pτ), (1.75)

Then, by (1.75), we obtain  pyt(x, τ, p, t) = −yτ(x, τ, p, t)

y(x, 0, p, t) = ψt(x, t)
(1.76)

consequently, the problem is equivalent to
ρ1ϕtt − β(ϕx + ψ)x = 0

−ρ2ϕttx − bψxx + β(ϕx + ψ) + µ1ψt +

ˆ τ2

τ1

|µ2(p)|y (x, 1, p, t) dp = 0

pyt(x, τ, p, t) + yτ(x, τ, p, t) = 0

(1.77)

where

(x, τ, p, t) ∈ (0, 1) × (0, 1) × (τ1, τ2) × (0,∞).

with the initial conditions
ϕ (x, 0) = ϕ0 (x) , ϕt (x, 0) = ϕ1 (x) , ϕtt(x, 0) = ϕ2(x)

ϕttt(x, 0) = ϕ3(x), ψ (x, 0) = ψ0 (x) , x ∈ (0, 1)

y(x, τ, p, 0)) = f0(x,−τp), yt(x, τ, p, 0)) = f1(x,−τp) in (0, 1) × (0, 1) × (0, τ2),

ytt(x, τ, p, 0)) = f2(x,−τp) in (0, 1) × (0, 1) × (0, τ2),

(1.78)

and the Dirichlet conditions

ϕx (0, t) = ϕx (1, t) = ψ (0, t) = ψ(1, t) = 0, t > 0 (1.79)

Similarly to Theorem 2.1, we can get the global well-posedness of problem (1.77)-1.79) given in the

following theorem.

Theorem 1.7. Assume the assumption (1.12) holds. Then, we have the following:

(i) If the initial data (ϕ0, ϕ1, ϕ2, ϕ3, ψ0) is in (H2(0, 1) ∩ H1
∗ (0, 1)) × (H2(0, 1) ∩ H1

∗ (0, 1)) × H1
∗ (0, 1) ×

L2
∗(0, 1) × (H2(0, 1) ∩ H1

0(0, 1)), f0, f1, f2 ∈ H1((0, 1) × (0, 1) × (τ1, τ2)), then problem (1.77)-1.79) has a
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unique stronger weak solution satisfuing

ϕ ∈ L∞loc(R
+,H2(0, 1) ∩ H1

∗ (0, 1)), ψ ∈ L∞loc(R
+,H2(0, 1) ∩ H1

∗ (0, 1))

ϕt ∈ L∞loc(R
+,H2(0, 1) ∩ H1

∗ (0, 1)), ϕtt ∈ L∞loc(R
+,H1

0(0, 1)) .

(ii)If the initial data (ϕ0, ϕ1, ϕ2, ϕ3, ψ0) is in (H1
∗ (0, 1) × H1

∗ (0, 1) × L2
∗(0, 1) × L2

∗(0, 1) × H1
0(0, 1)),

f0, f1, f2 ∈ L2((0, 1) × (0, 1) × (τ1, τ2)), then problems (1.77)-(1.79) have a unique weak solution such

that for any T > 0,

ϕ ∈ C([0,T ],H1
∗ (0, 1)) ∩C1([0,T ], L2

∗(0, 1)), ψ ∈ C([0,T ],H1
0(0, 1))

ϕt ∈ C([0,T ],H1
∗ (0, 1)), ϕtt ∈ C([0,T ], L2

∗(0, 1)) .

where

H1
∗ (0, 1) = ϕ ∈ H1(0, 1) : ϕx = ϕx1 = 0,

and

L2
∗(0, 1) = ϕ ∈ L2(0, 1) : ϕx = ϕx1 = 0.

1.3.1 Exponential stability

In this subsection, we will prove an exponential stability estimate for problem (1.77)− (1.79), under the

assumption (1.12), and by using a multiplier technique.

To work, we use a several Lemmas.

Lemma 1.8. Define the energy of solution as

E (t) =
1
2

ˆ 1

0

[
ρ1ϕ

2
t + bψ2

x + β(ϕx + ψ)2 +
ρ1ρ2

β
ϕ2

tt + ρ2ϕ
2
tx

]
dx

+
1
2

ˆ 1

0

ˆ 1

0

ˆ τ2

τ1

p|µ2(p)|y2 (x, τ, p, t) dpdτdx (1.80)

satisfies

E′ (t) ≤ −

(
µ1 −

ˆ τ2

τ1

|µ2(p)|dp
)ˆ 1

0
ψ2

t dx

≤ −η0

ˆ 1

0
ψ2

t dx ≤ 0 (1.81)
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where η0 = µ1 −
´ τ2

τ1
|µ2(p)|dp ≥ 0.

Proof. Multiplying the first equation of (1.77) by ϕt, the second equation of (1.77) by ψt, using integra-

tion by parts, and (1.79), we get



ρ1

2
d
dt

ˆ 1

0
ϕ2

t dx + β

ˆ 1

0
(ϕx + ψ)ϕtxdx = 0

+ρ2

ˆ 1

0
ϕttψtxdx +

b
2

d
dt

ˆ 1

0
ψ2

xdx + β

ˆ 1

0
(ϕx + ψ)ψtdx + µ1

ˆ 1

0
ψ2

t dx

+

ˆ 1

0
ψt

ˆ τ2

τ1

|µ2(p)|ψt (x, t − p) dpdx = 0

(1.82)

Now, substituting: ψtx =
ρ1
β
ϕttt − ϕxxt, obtained from (1.77)1, into first integral of (1.82)2 we get

1
2

d
dt

ˆ 1

0

[
ρ1ϕ

2
t + bψ2

x + β(ϕx + ψ)2 +
ρ1ρ2

β
ϕ2

tt + ρ2ϕ
2
tx

]
dx

+µ1

ˆ 1

0
ψ2

t dx +

ˆ 1

0
ψt

ˆ τ2

τ1

|µ2(p)|y (x, 1, p, t) dpdx = 0 (1.83)

Secondly, multiplying (1.77)3 by |µ2(p)|, Then integrate the result, we get

d
dt

1
2

ˆ 1

0

ˆ 1

0

ˆ τ2

τ1

p|µ2(p)|y2(x, τ, p, t)dpdτdx

= −

ˆ 1

0

ˆ 1

0

ˆ τ2

τ1

|µ2(p)|yyτ (x, τ, p, t) dpdτdx

= −
1
2

ˆ 1

0

ˆ 1

0

ˆ τ2

τ1

|µ2(p)|
d
dτ

y2 (x, τ, p, t) dpdτdx

=
1
2

ˆ 1

0

ˆ τ2

τ1

|µ2(p)|(y2 (x, 0, p, t) − y2(x, 1, p, t))dpdx

=
1
2

(
ˆ τ2

τ1

|µ2(p)|dp)
ˆ 1

0
ψ2

t dx

−
1
2

ˆ 1

0

ˆ τ2

τ1

|µ2(p)|y2 (x, 1, p, t) dpdx (1.84)

From (1.80), (1.83), and (1.84), we get (1.81).

E′(t) ≤ −(µ1 −

ˆ τ2

τ1

|µ2(p)|dp)
ˆ 1

0
ψ2

t dx (1.85)
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then, by (A1), there exists a η0 > 0 so that

E′(t) ≤ −η0

ˆ 1

0
ψ2

t dx ≤ 0 (1.86)

then we obtain E is decreasing. �

Lemma 1.9. The functional

F1 (t) := −ρ1

ˆ 1

0
ϕtϕdx (1.87)

satisfies

F′1 (t) ≤ −ρ1

ˆ 1

0
ϕ2

t dx + ε1

ˆ 1

0
ψ2

xdx + c(1 +
1
ε1

)
ˆ 1

0
(ϕx + ψ)2dx (1.88)

Proof. Direct computation using integration by parts, we get

F′1 (t) = −ρ1

ˆ 1

0
ϕ2

t dx + β

ˆ 1

0
(ϕx + ψ)ϕxdx

= −ρ1

ˆ 1

0
ϕ2

t dx + β

ˆ 1

0
(ϕx + ψ)2dx − β

ˆ 1

0
(ϕx + ψ)ψdx (1.89)

estimate (1.88) easily follows by using Young’s and Poincare’s inequalities. �

Lemma 1.10. The functional

F2 (t) := −ρ2

ˆ 1

0
ϕtxψdx +

µ1

2

ˆ 1

0
ψ2dx + ρ1

ˆ 1

0
ϕtϕdx

satisfies,

F2(t) ≤ −
b
2

ˆ 1

0
ψ2

xdx − β
ˆ 1

0
(ϕx + ψ)2dx + ε2

ˆ 1

0
ϕ2

txdx

+ρ1

ˆ 1

0
ϕ2

t dx +
c
ε2

ˆ 1

0
ψ2

t dx

+c
ˆ 1

0

ˆ τ2

τ1

|µ2(p)|y2(x, 1, p, t)dpdx. (1.90)
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Proof. Differentiating F2, using integrating by parts and (1.79), we get

F′2 (t) = −ρ2

ˆ 1

0
ϕttxψdx − ρ2

ˆ 1

0
ϕtxψtdx + µ1

ˆ 1

0
ψdx − b

ˆ 1

0
ψψtdx

+ρ1

ˆ 1

0
ϕ2

t dx + ρ1

ˆ 1

0
ϕϕttdx

= −b
ˆ 1

0
ψ2

xdx − β
ˆ 1

0
(ϕx + ψ)ψdx −

ˆ 1

0
ψ

ˆ τ2

τ1

|µ2(p)|y(x, 1, p, t)dpdx

−ρ2

ˆ 1

0
ϕtxψxdx + β

ˆ 1

0
(ϕx + ψ)xψdx. (1.91)

Using Young’s, Cauchy-Schwarz and Poincaré’s inequalities, we arrive to (1.90) �

Lemma 1.11. The functional

F3 (t) := β

ˆ 1

0
ϕtxϕxdx (1.92)

satisfies

F′3 (t) ≤ −
ρ1

2

ˆ 1

0
ϕ2

ttdx + c
ˆ 1

0
ψ2

xdx + β

ˆ 1

0
ϕ2

txdx (1.93)

Proof. Direct computation using integration by parts, we obtain

F′3 (t) = β

ˆ 1

0
ϕttxϕxdx + β

ˆ 1

0
ϕ2

txdx

= −ρ1

ˆ 1

0
ϕ2

ttdx + β

ˆ 1

0
ϕttψxdx + β

ˆ 1

0
ϕ2

txdx. (1.94)

Then (1.93) follows by using Young’s inequality. �

Lemma 1.12. The functional

F4 (t) := −ρ2

ˆ 1

0
ϕtx(ϕx + ψ)dx +

bρ1

β

ˆ 1

0
ϕtψxdx.

satisfies,

F4(t) ≤ −
ρ2

2

ˆ 1

0
ϕ2

txdx −
β

2

ˆ 1

0
(ϕx + ψ)2dx + c

ˆ 1

0
ψ2

t dx

+c
ˆ 1

0

ˆ τ2

τ1

|µ2(p)|y2(x, 1, p, t)dpdx. (1.95)
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Proof. Differentiating F4, using integrating by parts and (1.79), we get

F′4 (t) = −ρ2

ˆ 1

0
ϕttx(ϕx + ψ)dx − ρ2

ˆ 1

0
ϕ2

txdx − ρ2

ˆ 1

0
ϕtxψtdx

+
bρ1

β

ˆ 1

0
ϕttψxdx +

bρ1

β

ˆ 1

0
ϕtψtxdx

= −β

ˆ 1

0
(ϕx + ψ)2dx − µ1

ˆ 1

0
(ϕx + ψ)ψtdx

−

ˆ 1

0
(ϕx + ψ)

ˆ τ2

τ1

|µ2(p)|y(x, 1, p, t)dpdx

−ρ2

ˆ 1

0
ϕ2

txdx − (ρ2 +
bρ1

β
)
ˆ 1

0
ϕtxψtdx. (1.96)

Using Young’s, Cauchy-Schwarz and Poincaré’s inequalities, we obtain (1.95) �

At this point, let us introduce the functional used by:

Lemma 1.13. The functional

F5 (t) :=
ˆ 1

0

ˆ 1

0

ˆ τ2

τ1

pe−pτ|µ2(p)|y2 (x, τ, p, t) dpdτdx.

satisfies,

F′5 (t) ≤ −η1

ˆ 1

0

ˆ 1

0

ˆ τ2

τ1

p|µ2(p)|y2 (x, τ, p, t) dpdτdx + µ1

ˆ 1

0
ψ2

t dx

−η1

ˆ 1

0

ˆ τ2

τ1

|µ2(p)|y2 (x, 1, p, t) dpdx. (1.97)

where η1 > 0.

Proof. By differentiating F5, and use the (1.77), we obtain

F′5 (t) = −2
ˆ 1

0

ˆ 1

0

ˆ τ2

τ1

e−pτ|µ2(p)|yyτ (x, τ, p, t) dpdτdx

= −

ˆ 1

0

ˆ 1

0

ˆ τ2

τ1

pe−pρ|µ2(p)|y2 (x, ρ, p, t) dpdρdx

−

ˆ 1

0

ˆ τ2

τ1

|µ2(p)|[e−py2 (x, 1, p, t) − y2 (x, 0, p, t)]dpdx
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Using the equality y(x, 0, p, t) = ψt(x, t), and e−p ≤ e−pτ ≤ 1, for any 0 < τ < 1, we arrive at

F′5 (t) = −

ˆ 1

0

ˆ 1

0

ˆ τ2

τ1

pe−pρ|µ2(p)|y2 (x, ρ, p, t) dpdρdx

−

ˆ 1

0

ˆ τ2

τ1

e−p|µ2(p)|y2 (x, 1, p, t) dpdx +

ˆ τ2

τ1

|µ2(p)|dp
ˆ 1

0
ψ2

t dx

�

where −e−p is a increasing function, we have −e−p ≤ −e−τ2 , for any p ∈ [τ1, τ2].

Now, choosing η1 = e−τ2 and using (A1), we arrive at (1.97).

Theorem 1.14. Under the assumption (A1), there exist positive constants k1 and k2 such that the energy

functional (1.80) satisfies

E(t) ≤ k2e−k1t,∀t ≥ 0 (1.98)

Proof. We define a Lyapunov functional

L (t) := NE (t) + N1F1(t) + N2F2(t) + F3(t) + N4F4(t) + N5F5(t). (1.99)

where N,N1,N2,N4,N5 > 0. By differentiating (1.99) and using (1.81), (1.88), (1.90), (1.93), (1.95) and

(1.97) we have

L′ (t) ≤ −
[
ρ1N1 − cN2

]ˆ 1

0
ϕ2

t dx − ρ1

ˆ 1

0
ϕ2

ttdx

−

[
b
2

N2 − ε1N1 − c
]ˆ 1

0
ψ2

xdx

−

[
η0N −

c
ε2

N2 − cN4 − µ1N5

] ˆ 1

0
ψ2

t dx

−

[
β

2
N4 + βN2 − cN(1 +

1
ε1

)
] ˆ 1

0
(ϕx + ψ)2dx

−

[
ρ2

2
N4 − β − ε2N2

] ˆ 1

0
ϕ2

txdx

−
[
N5η1 − cN2 − cN4

] ˆ 1

0

ˆ τ2

τ1

|µ2(p)|y2 (x, 1, p, t) dpdx

−N5η1

ˆ 1

0

ˆ 1

0

ˆ τ2

τ1

p|µ2(p)|y2 (x, τ, p, t) dpdτdx.

By setting

ε1 =
bN2

4N1
, ε2 =

ρ2N4

4N2
.
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At this point taking N2 large enough so that

α1 =
b
4

N2 − c > 0,

After that, taking N1 large enough such that

α2 = ρ1N1 − cN2 > 0,

Next, choosing N4 large enough such that

α3 =
ρ2

4
N4 − β > 0

α4 =
β

2
N4 + βN2 − cN1(1 +

N1

N2
) > 0

Finally, taking N5 large enough such that

α5 = η1N5 − cN2 − cN4 > 0,

thus, we arrive at

L′ (t) ≤ −α2

ˆ 1

0
ϕ2

t dx − ρ1

ˆ 1

0
ϕ2

ttdx − α1

ˆ 1

0
ψ2

xdx

−α3

ˆ 1

0
(ϕx + ψ)2dx − (η0N − c)

ˆ 1

0
ψ2

t dx − α4

ˆ 1

0
ϕ2

txdx

−α5

ˆ 1

0

ˆ τ2

τ1

|µ2(p)|y2 (x, 1, p, t) dpdx

−α6

ˆ 1

0

ˆ 1

0

ˆ τ2

τ1

p|µ2(p)|y2 (x, τ, p, t) dpdτdx. (1.100)

where α6 = N5η1.

On the other hand, if we let

H (t) = N1F1(t) + N2F2(t) + F3(t) + N4F4(t) + N5F5(t)
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then

|H (t)| ≤ N1ρ1

ˆ 1

0
ϕtϕdx + ρ2N2

ˆ 1

0
|ϕtxψ|dx + ρ1N2

ˆ 1

0
|ϕϕt|dx

+
µ1

2
N2

ˆ 1

0
ψ2dx + β

ˆ 1

0
|ϕtxϕx|dx

+ρ2N4

ˆ 1

0
|ϕtx(ϕx + ψ)|dx +

bρ1

β
N4

ˆ 1

0
|ϕtψx|dx

+N5

ˆ 1

0

ˆ 1

0

ˆ τ2

τ1

pe−pτ|µ2(p)|y2 (x, τ, p, t) dpdτdx.

By using the inequalities of Young, Cauchy-Schwarz, and Poincaré, we obtain

|H (t)| ≤ c
ˆ 1

0

(
ϕ2

t + ϕ2
tx + ψ2

x + ϕ2
tt + (ϕx + ψ)2

)
dx

+c
ˆ 1

0

ˆ 1

0

ˆ τ2

τ1

p|µ2(p)|y2 (x, τ, p, t) dpdτ

≤ cE (t) .

Consequently,

|H (t)| = |L (t) − NE (t)| ≤ cE (t)

which yield

(N − c)E (t) ≤ L (t) ≤ (N + c)E (t) (1.101)

Now, we choose N large enough so that

Nη0 − c > 0,N − c > 0,

we get

c3E(t) ≤ L (t) ≤ c4E(t),∀t ≥ 0 (1.102)

and used (1.80), estimates (1.100), (1.101), respectively, we get

L′ (t) ≤ −h1E (t) ,∀t ≥ t0 (1.103)

for some h1, c3, c4 > 0.

A combination (1.103) with (1.102), gives

L′ (t) ≤ −k1L (t) , (1.104)

where k1 = h1
c4

. Finally, a simple integration of (1.104)we obtain (1.98). This completes the proof. �



Chapter 2

A stability result for Thermoelastic Timoshenko system of

second sound with distributed delay term

2.1 Introduction

In this chapter, we study the following thermoelastic Timoshenko system of second sound with dis-

tirubted delay term,

ρ1ϕtt (x, t) − K (ϕx + ψ)x (x, t) + µ1ϕt (x, t) +
´ τ2

τ1
µ2 (s)ϕt (x, t − s) ds = 0,

ρ2ψtt (x, t) − bψxx (x, t) + K (ϕx + ψ) (x, t) + γθx (x, t) = 0,

ρ3θt (x, t) + κqx (x, t) + γψtx (x, t) = 0,

τ0qt (x, t) + δq (x, t) + κθx (x, t) = 0,

(2.1)

where t ∈ (0,∞) denotes the time variable and x ∈ (0, 1) is the space variable, the functions ϕ and ψ are

respectively, the transverse displacement of the solid elastic material and the rotation angle, the function

θ is the temperature difference, q = q(t, x) ∈ R is the heat flux, and ρ1, ρ2, ρ3, γ, τ0, δ, κ, µ1, and K are

positive constants, µ2 : [τ1, τ2]→ R is a bounded function satisfying

ˆ τ2

τ1

|µ2 (s)| ds < µ1, (2.2)

where τ1 and τ2 two real numbers satisfying 0 ≤ τ1 ≤ τ2. We propose the following initial and boundary

conditions:  ϕ(x, 0) = ϕ0 (x) , ϕt(x, 0) = ϕ1 (x) , ψ(x, 0) = ψ0 (x) , ψt(x, 0) = ψ1 (x) ,

θ (x, 0) = θ0 (x) , q (x, 0) = q0 (x) , ϕt(x,−t) = f0 (x, t) in (0, 1) × (0, τ2) ,
(2.3)

43
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ϕ(0, t) = ϕ(1, t) = ψ(0, t) = ψ(1, t) = q(0, t) = q(1, t) = 0, ∀t ≥ 0. (2.4)

Where x ∈ (0, 1) and f0 is the history function.

Our main interest in this work is to study the existence and prove the exponential stability of the solu-

tion to problem (2.1)-(2.4). Before going on, let us first review some related results which seem to us

interesting.

Questions related to stability/instability of wave equations with delay have attracted considerable atten-

tion in recent years and many authors have shown that delays can destabilize a system that is asymptot-

ically stable in the absence of delays (see [33] for more details).

As it has been proved by Datko [32, Example 3.5], systems of the form
wtt − wxx − awxxt = 0, x ∈ (0, 1), t > 0,

w (0, t) = 0, wx (1, t) = −kwt (1, t − τ) , t > 0,

where a, k and τ are positive constants become unstable for any arbitrarily small values of τ and any

values of a and k.

D. Ouchenane in [101] considered the following Timoshenko system with a delay term in the internal

feedback



ρ1ϕtt (x, t) − K (ϕx + ψ)x (x, t) + µ1ϕt (x, t) + µ2ϕt (x, t − s) ds = 0,

ρ2ψtt (x, t) − bψxx (x, t) + K (ϕx + ψ) (x, t) + γθx (x, t) = 0,

ρ3θt (x, t) + κqx (x, t) + γψtx (x, t) = 0,

τ0qt (x, t) + δq (x, t) + κθx (x, t) = 0,

(2.5)

he proved the well-posedness of the system, he also established for µ1 > µ2 an exponential decay result.

Nicaise and Pignotti [97] considered the following problem

utt(x, t) − ∆u(x, t) + +µ1ut(x, t) + µ2ut(x, t − τ) = 0, x ∈ Ω, t > 0,

u(x, t) = 0, x ∈ ∂Ω, t ≥ 0,

u(x,−t) = u0(x, t), ut(x, 0) = u1(x), x ∈ Ω, t ≥ 0

ut(x, t − τ) = f0(x, t − τ), x ∈ Ω, t ∈ (0, τ).

(2.6)
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Using an observability inequality obtained with a Carleman estimate, they proved that, under the as-

sumption

µ2 < µ1, (2.7)

the energy is exponentially stable. On the contrary, if (2.7) does not hold, they found a sequence of

delays for which the corresponding solution of (2.6) is unstable. The same results were shown if both

the damping and the delay act in the boundary of the domain.

The Timoshenko system goes back to Timoshenko [126] in 1921 who proposed a coupled hyperbolic

system which is similar to (12) (with µ1 = µ2 = 0), describing the transverse vibration of a beam, but

without the presence of any damping. For a physical derivation of Timoshenko systems, we refer the

reader to [46].

In the absence of the delay in system (12), that is for µ2 = 0, the question of the stability of the

Timoshenko-type systems has received a lot of attention in the last years, and quite a number of re-

sults concerning uniform and asymptotic decay of energy have been established.

An important issue of research is to look for a minimum dissipation by which solutions of the Timo-

shenko system decay uniformly to zero as time goes to infinity. In this regard, several types of dissipative

mechanisms have been introduced, such as: frictional damping, viscoelastic damping and thermal dissi-

pation. We recall here only some results related to the thermal dissipation in the Timoshenko systems.

The interested reader is referred to [3, 83, 82, 94, 109, 123] for the Timoshenko systems with frictional

damping and to [9, 51, 86, 110] for Timoshenko systems with viscoelastic damping.

To the best of our knowledge, the paper [95] is the first paper in which the authors dealt with the

Timoshenko system with thermal dissipation. More precisely, they treated the problem
ρ1ϕtt − σ(ϕx, ψ)x = 0, in (0, L) × (0,+∞),

ρ2ψtt − bψxx + k (ϕx + ψ) + γθx = 0, in (0, L) × (0,+∞),

ρ3θt − kθxx + γψtx = 0, in (0, L) × (0,+∞),

(2.8)

where ϕ, ψ and θ are functions of (x, t) which model the transverse displacement of the beam, the rota-

tion angle of the filament, and the difference temperature respectively. Under appropriate conditions on

σ, ρi, b, k, γ, they proved several exponential decay results for the linearized system and a non exponen-

tial stability result for the case of different wave speeds.

Modeling heat conduction with the so-called Fourier law (as in (2.8)), which assumes the flux q to be

proportional to the gradient of the temperature θ at the same time t,

q + κ∇θ = 0, (κ > 0),
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leads to the phenomenon of infinite heat propagation speed. To overcome this physical paradox in the

Fourier, a number of modifications of the basic assumption on the relation between the heat flux and

the temperature have been made. The common feature of these theories is that all lead to hyperbolic

differential equation and the speed of propagation becomes finite. See [28] for more details. Among

them Cattaneo’s law,

τqt + q + κ∇θ = 0,

leading to the system with second sound, ([124], [105], [84]) and a suggestion by Green and Naghdi

[48, 47], for thermoelastic systems introducing what is called thermoelasticity of type III, where the

constitutive equations for the heat flux is characterized by

q + κ∗px + κ̃∇θ = 0, (κ̃ > κ∗ > 0, pt = θ).

Messaoudi and al. [89] studied the following problem

ρ1ϕtt − σ(ϕx, ψ)x + µϕt = 0,

ρ2ψtt − bψxx + k(ϕx + ψ) + βθx = 0,

ρ3θt + γqx + δψtx = 0,

τ0qt + q + κθx = 0,

(2.9)

where (x, t) ∈ (0, L) × (0,∞), ϕ = ϕ(t, x) is the displacement vector, ψ = ψ(t, x) is the rotation angle of

the filament, θ = θ(t, x) is the temperature difference, q = q(t, x) is the heat flux vector, ρ1, ρ2, ρ3, b, k,

γ, δ, κ, µ, τ0 are positive constants. The nonlinear function σ is assumed to be sufficiently smooth and

satisfy

σϕx(0, 0) = σψ(0, 0) = k

and

σϕxϕx(0, 0) = σϕxψ(0, 0) = σψψ = 0.

Several exponential decay results for both linear and nonlinear cases have been established.

2.2 Preliminaries

The proposed is discussed in this section, we present some materials needed in the proof of our result.

We also state, without proof, a local existence result for problem (2.1). The proof can be established by

using Faedo-Galerkin method. As in [97] (see also [111]). Let us introduce the following new dependent



Chapter 2: A stability result for Timoshenko system with distributed delay term 47

variable

z (x, ρ, τ, t) = ϕt (x, t − τρ) , in (0, 1) × (0, 1) × (τ1, τ2) × (0,∞) .

Then, we get the following equation τzt (x, ρ, τ, t) + zρ (x, ρ, τ, t) = 0,

z (x, 0, τ, t) = ϕt (x, t) .

Hence, we can rewrite the problem (2.1) as

ρ1ϕtt (x, t) − K (ϕx + ψ)x (x, t) + µ1z(x, 0, τ, t) +
´ τ2

τ1
µ2 (s) z(x, 1, s, t)ds = 0,

ρ2ψtt − bψxx + K (ϕx + ψ) + γθx = 0,

ρ3θt + κqx + γψtx = 0,

τ0qt + δq + κθx = 0,

τzt (x, ρ, τ, t) + zρ (x, ρ, τ, t) = 0,

(2.10)

where x ∈ (0, 1) , ρ ∈ (0, 1) , and t > 0. The above system subjected to the following initial conditions

ϕ(x, 0) = ϕ0 (x) , ϕt(x, 0) = ϕ1 (x) ,

ψ(x, 0) = ψ0 (x) , ψt(x, 0) = ψ1 (x) ,

θ (x, 0) = θ0 (x) , q (x, 0) = q0 (x) ,


x ∈ (0, 1)

z (x, ρ, τ, 0) = f0 (x, ρ, τ) , in (0, 1) × (0, 1) × (0, τ2) .

(2.11)

In addition to the above initial conditions, we consider the following boundary conditions

ϕ(0, t) = ϕ(1, t) = ψ(0, t) = ψ(1, t) = q(0, t) = q(1, t) = 0, ∀t ≥ 0. (2.12)

Our existence and uniqueness result reads as follows. We now consider the energy space

H :=
[
H1

0 (0, 1) × L2 (0, 1)
]2
×

[
L2 (0, 1)

]2
× L2 ((0, 1) × (0, 1) × (τ1, τ2)) . (2.13)

Theorem 2.1. Let U0 = (ϕ0, ϕ1, ψ0, ψ1, θ0, q0, f0) ∈ H, be given, such that (2.2) satisfied, then there

exists a unique global (weak) solution of problem (2.10)-(2.12) satisfying

U = (ϕ, u, ψ, v, θ, q, z) ∈ C ([0,+∞) ,H)

Proof. To prove this theorem, we can either the Faedo-Galerkin method, like the method used in the

first chapter of this thesis or a method of semigroup like the method gollowed in the paper of Djamel
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Ouchenane [101].

2.3 Exponential stability

In this section, we show that, under the assumption (2.2), the solution of problem (2.10)-(2.12) decays

exponentially, independently of the wave speed assumption1. To achieve our goal we use the energy

method to produce a suitable Lyapunov functional which leads to an exponential decay result.

In order to use the Poincaré’s inequality for θ, we introduce, as in [105],

θ(x, t) = θ(x, t) −
ˆ 1

0
θ0(x)dx.

Then by the third equation in (2.1) we easily verify that

ˆ 1

0
θ (x, t) dx = 0,

for all t ≥ 0. In this case the Poincaré’s inequality is applicable for θ. On the other hand (ϕ, ψ, θ, q, z)

satisfies the same system (2.10) and the boundary conditions (2.12). We define the functional energy of

the solution of problem (2.10)-(2.12) as

E (t) = E (t, z, ϕ, ψ, θ, q)

=
1
2

ˆ 1

0

(
ρ1ϕ

2
t + ρ2ψ

2
t

)
dx +

1
2

ˆ 1

0

{
K (ϕx + ψ)2 + bψ2

x + ρ3θ
2
}

dx

+
1
2

ˆ 1

0
τ0q2dx +

1
2

ˆ 1

0

ˆ 1

0

ˆ τ2

τ1

s |µ2 (s)| z2 (x, ρ, s, t) dsdρdx. (2.14)

We multiply the first equation in (2.10) by ϕt, the second equation by ψt, the third equation in (2.10) by

θ, and the fourth equation in (2.10) by q, we integrate by parts, using Young’s inéquality we get

dE (t)
dt

≤ −δ

ˆ 1

0
q2dx −C

ˆ 1

0
ϕ2

t (x, t) dx, (2.15)

such that C > 0, the last inequality implies that the energy E is a non-increasing function with respect

to t.

At this point we establish sevral lemmas needed for the proof of our main result.

1The wave speed assumption is significant only from the mathematical point of view since in practice the velocities of
waves propagations may be different, see [72]. So, it is very interesting to obtain some stability results for the Timoshenko
systems without the wave speed condition.
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First, let us consider the functional I1 given by

I1 (t) := ρ1

ˆ 1

0
ϕt

(
−ϕ +

ˆ x

0
ψ (y) dy

)
dx. (2.16)

Then we have the following estimate.

Lemma 2.2. Let (ϕ, ψ, θ, q, z) be the solution of (2.10)-(2.12). Then we have for any ε1 > 0,

dI1 (t)
dt

≤ −
K
2

ˆ 1

0
(ϕx + ψ)2 dx + ε1

ˆ 1

0
ψ2

t dx + c
(
1 +

1
ε1

)ˆ 1

0
ϕ2

t dx

+
µ1

K

ˆ 1

0

ˆ τ2

τ1

|µ2 (s)| z2 (x, 1, s, t) dsdx, (2.17)

where c = 1/π2 is the Poincaré constant.

Proof. Taking the derivative of (2.16), integrating by parts, we obtain

dI1 (t)
dt

= ρ1

ˆ 1

0
ϕt

(ˆ x

0
ψt (y) dy

)
dx

−

ˆ 1

0

(
ϕ +

ˆ x

0
ψ (y) dy

) ˆ τ2

τ1

µ2 (s) z (x, 1, s, t) dsdx

−K
ˆ 1

0
(ϕx + ψ)2 dx + ρ1

ˆ 1

0
ϕ2

t dx − µ1

ˆ 1

0
ϕt

(
ϕ +

ˆ x

0
ψ (y) dy

)
dx.

Using Young’s, Poincaré’s, and Cauchy-Schwarz inequalities and the fact that

−µ1

ˆ 1

0
ϕt

(
ϕ +

ˆ x

0
ψ (y) dy

)
dx ≤

K
4

ˆ 1

0
(ϕx + ψ)2 dx + c

ˆ 1

0
ϕ2

t dx,

then lead to estimate (2.17).

Now, let w be the solution of

− wxx = ψx, w (0) = w (1) = 0, (2.18)

then we get

w (x, t) = −

ˆ x

0
ψ (y, t) dy + x

(ˆ 1

0
ψ (y, t) dy

)
.

We have the following inequalities.

Lemma 2.3. The solution of (2.18) satisfies

ˆ 1

0
w2

xdx ≤
ˆ 1

0
ψ2dx
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and ˆ 1

0
w2

t dx ≤
ˆ 1

0
ψ2

t dx.

Let w be the solution of (2.18). We introduce the following functional

I2 (t) :=
ˆ 1

0

(
ρ2ψtψ + ρ1ϕtw −

γτ0

κ
ψq

)
dx. (2.19)

Then we have the following estimate.

Lemma 2.4. Let (ϕ, ψ, θ, q, z) be the solution of (2.10)-(2.12). Then we have for any ε2 > 0,

dI2 (t)
dt

≤

(
−b +

cµ1ε2

2
+
δγε2c

2κ

)ˆ 1

0
ψ2

xdx +

(
µ1

2ε2
+
ρ1

2ε2

)ˆ 1

0
ϕ2

t dx

+

(
ρ2 +

γτ0ε2

2κ
+
ρ1ε2

2

)ˆ 1

0
ψ2

t dx +

(
γτ0

2κε2
+

δγ

2κε2

)ˆ 1

0
q2dx

+
1

2ε2

ˆ 1

0

ˆ τ2

τ1

|µ2 (s)| z2 (x, 1, s, t) dsdx, (2.20)

Proof. Taking the derivative of (2.16), we conclude

dI2 (t)
dt

= −b
ˆ 1

0
ψ2

xdx + K
ˆ 1

0
ϕψxdx − K

ˆ 1

0
ψ2dx + ρ2

ˆ 1

0
ψ2

t dx

−K
ˆ 1

0
ϕxwxdx − K

ˆ 1

0
ψwxdx − µ1

ˆ 1

0
ϕtwdx + ρ1

ˆ 1

0
ϕtwtdx

−
γτ0

κ

ˆ 1

0
ψtqdx +

δγ

κ

ˆ 1

0
ψqdx −

ˆ 1

0
w
ˆ τ2

τ1

µ2 (s) z (x, 1, s, t) dsdx.

We apply Young’s inequality and Poincaré’s inequality, we find (2.20).

Now, following [111], we define the functional

I3 (t) :=
ˆ 1

0

ˆ 1

0

ˆ τ2

τ1

se−sρ |µ2 (s)| z2 (x, 1, s, t) dsdρdx. (2.21)

Then the following result holds.

Lemma 2.5. Let (ϕ, ψ, θ, q, z) be the solution of (2.10)-(2.12), then for C1 > 0, we have

dI3 (t)
dt

≤ −C1

ˆ 1

0

ˆ 1

0

ˆ τ2

τ1

se−sρ |µ2 (s)| z2 (x, 1, s, t) dsdρdx

−C1

ˆ 1

0

ˆ τ2

τ1

|µ2 (s)| z2 (x, 1, s, t) dsdx + µ1

ˆ 1

0
ϕ2

t dx, (2.22)



Chapter 2: A stability result for Timoshenko system with distributed delay term 51

where C1 is a positive constant.

Proof. Differentiating (2.21), and using z (x, 0, s, t) = ϕt, e−s ≤ e−sρ, we get for all ρ ∈ [0, 1]

dI3 (t)
dt

≤

ˆ 1

0

ˆ τ2

τ1

e−s |µ2 (s)| z2 (x, 1, s, t) dsdx +

ˆ τ2

τ1

|µ2 (s)| ds
ˆ 1

0
ϕ2

t dx

−

ˆ 1

0

ˆ 1

0

ˆ τ2

τ1

se−s |µ2 (s)| z2 (x, 1, s, t) dsdρdx.

Since s → −e−s is an increasing function, we have −e−s ≤ −e−τ2 for all s ∈ [τ1, τ2] . Finally, setting,

C1 = −e−τ2 and recalling (2.2), we obtain (2.22)

In order to obtain a negative term of
´ 1

0 ψ
2
t dx, we introduce, the following functional (see [89])

I4(t) := ρ2ρ3

ˆ 1

0

(ˆ x

0
θ(t, y)dy

)
ψt (t, x) dx. (2.23)

Then we have the following estimate.

Lemma 2.6. Let (ϕ, ψ, θ, q, z) be the solution of (2.10)-(2.12). Then for any ε4, ε
′
4 > 0, we have

d
dt

I4(t) ≤
(
−γρ2 +

ε4ρ2κ

2

)ˆ 1

0
ψ2

t dx +

(
ε′4ρ3

2
(b + κc)

)ˆ 1

0
ψ2

xdx

+
ε′4κρ3c

2

ˆ 1

0
ϕ2

xdx +

(
γρ3 +

ρ3

2ε′4
(b + 2κ)

)ˆ 1

0
θ2dx

+
ρ2κ

2ε4

ˆ 1

0
q2dx. (2.24)

Proof Differentiating (2.23) and using the third equation in (2.10), we have

d
dt

I4(t) =

ˆ 1

0

(ˆ x

0
ρ3θtdy

)
ρ2ψtdx +

ˆ 1

0

(ˆ x

0
ρ3θdy

)
ρ2ψttdx

= −

ˆ 1

0

(ˆ x

0
(κqx + γψtx) dy

)
ρ2ψtdx

+

ˆ 1

0

(ˆ x

0
ρ3θdy

)
(bψxx − κ (ϕx + ψ) − γθx) dx,

= −γρ2

ˆ 1

0
ψ2

t dx − ρ2κ

ˆ 1

0
qψtdx − bρ3

ˆ 1

0
θψxdx

+κρ3

ˆ 1

0
θϕdx − κρ3

ˆ 1

0

(ˆ x

0
θdy

)
ψdx + γρ3

ˆ 1

0
θ2dx,

by using Young’s inequality and Poincaré’s inequality, we obtain (2.24).
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Differentiating (2.23) and using the third equation in (2.10)

d
dt

I4(t) =

ˆ 1

0

(ˆ x

0
ρ3θtdy

)
ρ3ψtdx +

ˆ 1

0

(ˆ x

0
ρ3θdy

)
ρ2ψttdx,

= −

ˆ 1

0

(ˆ x

0
(κqx + γψtx) dy

)
ρ2ψtdx

+

ˆ 1

0

(ˆ x

0
ρ3θdy

)
(bψxx − K (ϕx + ψ) − γθx) dx,

= −γρ2

ˆ 1

0
ψ2

t dx − ρ2K
ˆ 1

0
qψtdx − bρ3

ˆ x

0
θψxdx

+κρ3

ˆ 1

0
θϕdx − κρ3

ˆ 1

0

(ˆ x

0
θdy

)
ψdx + γρ3

ˆ 1

0
θ2dx,

by using Young’s inequality, we obtain (2.24)

Now, in order to obtain a negative term of
´ 1

0 θ
2dx we introduce the following functional

I5(t) := −τ0ρ3

ˆ L

0
q(t, x)

(ˆ x

0
θ(t, y)dy

)
dx. (2.25)

Then we have the following estimate.

Lemma 2.7. Let (ϕ, ψ, θ, q, z) be the solution of (2.10)-(2.12). Then for any ε5, ε
′
5 > 0, we have

dI5 (t)
dt

≤

(
−ρ3κ +

ε5ρ3δc
2

)ˆ 1

0
θ2dx +

ε′5τ0γ

2

ˆ 1

0
ψ2

t dx

+

(
τ0κ +

ρ3δ

2ε5
+
τ0γ

2ε′5

) ˆ 1

0
q2dx. (2.26)

The above Lemma was proved in [89, Inequality (33)].

We define for N, N1, N2 the Lyapunov functional L

L (t) := NE (t) + N1I1 (t) + I2 (t) + I3 (t) + I4 (t) + N2I5 (t) . (2.27)

Moreover, we have the following:

Lemma 2.8. For N large enough, we have

L (t) ∼ E (t) , ∀t ≥ 0. (2.28)
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Proof. We consider the functional

H (t) = N1I1 (t) + I2 (t) + I3 (t) + I4 (t) + N2I5 (t) ,

we have

H (t) ≤ N1

ˆ 1

0

∣∣∣∣∣∣ρ1ϕt

(
ϕ +

ˆ x

0
ψ (y) dy

)∣∣∣∣∣∣ dx

+

ˆ 1

0

∣∣∣∣∣(ρ2ψtψ + ρ1ϕtw −
γτ0

κ
ψq

)∣∣∣∣∣ dx

+

ˆ 1

0

ˆ 1

0

ˆ τ2

τ1

s
∣∣∣e−sρµ2 (s)

∣∣∣ z2 (x, 1, s, t) dsdρdx

+

ˆ 1

0

∣∣∣∣∣∣
(ˆ x

0
ρ2ρ3θ(t, y)dy

)
ψt (t, x)

∣∣∣∣∣∣ dx

+N2

ˆ L

0

∣∣∣∣∣∣τ0ρ3q(t, x)
(ˆ x

0
θ(t, y)dy

)∣∣∣∣∣∣ dx. (2.29)

By the same techniques used in the proof of Lemma (2.2)-(2.7), and exploiting Young’s; Poincaré’s,

Cauchy-Schwarz inequalities, (2.14) and the fact that e−sρ ≤ 1 for all ρ ∈ [0, 1] , we obtain

|L (t)| ≤ c
ˆ 1

0

[
ϕ2

t + ψ2
t + ψ2

x + (ϕx + ψ)2 + θ2 + q2
]

dx

+c
ˆ 1

0

ˆ 1

0

ˆ τ2

τ1

se−sρ |µ2 (s)| z2 (x, 1, s, t) dsdρdx

≤ cE (t) .

Thus, |L (t) − NE (t)| ≤ cE (t) , which yields

(N − c) E (t) ≤ L (t) ≤ (N + c) E (t) .

Choosing N large enough, then there exist two positive constants β1 and β2 such that

β1E (t) ≤ L (t) ≤ β2E (t) . (2.30)

This completes the proof.

Theorem 2.9. Assume that (2.2). Then there exist two positive constants C and γ independent of t such

that for any solution of problem (2.10)-(2.12), we have

E (t) ≤ Ce−γt, ∀t ≥ 0. (2.31)
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To derive the exponential decay of the solution, it is enough to construct a functional L (t) , equivalent to

the energy E (t) , and satisfying
dL (t)

dt
≤ −ΛL (t) , ∀t ≥ 0,

for some constant Λ > 0.

Proof of Theorem 2.9

To prove Theorem 2.9, Combining (2.15), (2.17), (2.20), (2.22), (2.24) and (2.26), we get

d
dt

L (t) ≤
{(
−b +

cµ1ε2

2
+
δγε2c

2κ

)
+

(
ε′4ρ3

2
(b + κc)

)}ˆ 1

0
ψ2

xdx

+

{
−N1

K
2

+
ε′4κρ3c

2

}ˆ 1

0
(ϕx + ψ)2 dx

+

{
1

2ε2
+
µ1

K
− N2C1

}ˆ 1

0

ˆ τ2

τ1

|µ2 (s)| z2 (x, 1, s, t) dx

+

{
−CN +

(
µ1

2ε2
+
ρ1

2ε2

)
+ N2µ1 + N1c

(
1 +

1
ε1

)}ˆ 1

0
ϕ2

t dx

+

{(
ρ2 +

γτ0ε2

2κ
+
ρ1ε2

2

)
+

1
2τ

+ ε1 +

(
−γρ2 +

ε4ρ2κ

2

)
+
ε′5τ0γ

2

}ˆ 1

0
ψ2

t dx

+

{
−Nδ +

(
γτ0

2κε2
+

δγ

2κε2

)
+
ρ2κ

2ε4
+

(
τ0κ +

ρ3δ

2ε5
+
τ0γ

2ε′5

)}ˆ 1

0
q2dx

+

{(
γρ3 +

ρ3

2ε′4
(b + 2κ)

)
+

(
−ρ3κ +

ε5ρ3δc
2

)}ˆ 1

0
θ2dx. (2.32)

At this point, we have to choose our constants very carefully. First, choosing ε1, ε2, ε4 and ε5 small

enough, such that

ε2

(cµ1

2
+
δγc
2κ

)
≤

b
2
, ε1

(K
2

+
µ2c
2

)
≤

K
2
, ε4 ≤

γ

κ
, ε5 ≤

κ

δc
.

After that, we can choose N1, N2 large enough such that

max
(
−N1

K
2

+
ε′4κρ3c

2
,

1
2ε2

+
µ1

K
− N2C1

)
< 0.

We take ε′4 small enough such that

ε′4 ≤ min
{

b
4ρ3 (b + κc)

,
K

2κρ3c

}
.
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After that, we fix ε′5 small enough such that

ε′5 ≤
γρ2

4τ0γ
.

Finally, once all the above constants are fixed, we choose N large enough such that


CN
2
≥

(
µ1

2ε2
+
ρ1

2ε2

)
+ N2µ1 + N1c

(
1 +

1
ε1

)
,

Nδ
2
≥

(
γτ0

2κε2
+

δγ

2κε2

)
+
ρ2κ

2ε4
+

(
τ0κ +

ρ3δ

2ε5
+
τ0γ

2ε′5

)
.

Consequently, there exists a positive constant η1, such that (2.32) becomes

d
dt

L (t) ≤ −η1

ˆ 1

0

(
ψ2

t + ψ2
x + ϕ2

t + (ϕx + ψ)2 + θ2 + q2
)

dx

−η1

ˆ 1

0

ˆ 1

0
z2 (x, ρ, t) dρdx, (2.33)

which implies by (2.14), that there exists also Λ > 0, such that

d
dt

L (t) ≤ −ΛE (t) , ∀t ≥ 0. (2.34)

A simple integration of (2.34) leads to.

L (t) ≤ L (0) e−Λt, ∀t ≥ 0. (2.35)

Again, the us (2.30) and (2.35) yeilds the desired result (2.31). This completes the proof of theorem 2.9.
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Damped wave equations of Klein-Gordon
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Chapter 3

Global nonexistence of solutions to system of Klein-Gordon

equations with degenerate damping and strong source

terms in viscoelasticity

3.1 Introduction

In this chapter, we consider a system of viscoelastic wave equations with degenerate damping and strong

nonlinear source terms
utt − ∆u + m1u2 +

ˆ t

0
g (t − s) ∆u (x, s) ds +

(
a |u|k + b |v|l

)
|ut|

m−1ut = f1(u, v),

vtt − ∆v + m2v2 +

ˆ t

0
h (t − s) ∆v (x, s) ds +

(
c |v|θ + d |u|%

)
|vt|

r−1vt = f2(u, v),

(3.1)

where m, r > 0, k, l, θ, % ≥ 1 and the functions f1 (u, v) , f2 (u, v) are defined by

f1(u, v) = a1|u + v|2(ρ+1)(u + v) + b1|u|ρu|v|(ρ+2)

f2(u, v) = a1|u + v|2(ρ+1)(u + v) + b1|u|(ρ+2)|v|ρv, a1, b1 > 0,
(3.2)

where ρ > −1. In (3.1), u = u (x, t) , v = v (x, t) , where x ∈ Ω is a bounded domain of RN (N ≥ 1) with a

smooth boundary ∂Ω and t > 0, a, b, c, d,m1,m2 > 0.

To above system (3.1), we add the initial conditions given by

(u(0), v(0)) = (u0, v0), (ut(0), vt(0)) = (u1, v1), x ∈ Ω (3.3)

57
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and boundary conditions given by

u(x) = v(x) = 0, x ∈ ∂Ω. (3.4)

This kind of problems arise in viscoe-lasticity. Dafermos was the first who study this type in [31], where

the general decay was treated. In the last decades, problems related to system (3.1) had a lot of attention

and many results appeared on the existence and long time behavior of solutions. See in this directions

([24, 16, 18, 19, 20, 26, 27, 56, 79, 88, 103, 100, 107, 136, 135]) and references therein.

In the absence of viscoelastic term, some special cases of the single wave equations with nonlinear

damping and nonlinear source terms in the form

utt − ∆u + a|ut|
m−1ut = b|u|p−1u. (3.5)

With nonlinear damping and source terms, it arises in the quantum-field and used to describe the

movement of charged electromagnetic fields. Equation (3.5) equipped with initial and bounded con-

ditions of Dirichlet type has been extensively studied and many results regarding existence, blow up

and asymptotic behavior of solutions have been obtained. Many authors have studied the single wave

equations in the presence of various mechanisms of dissipation, damping and non-linear sources. See

([12, 80, 93, 45, 58, 68, 119, 130, 137]) and references therein.

In [87], authors considered the nonlinear viscoelastic system
utt − ∆u +

ˆ t

0
g(t − s)∆u(x, s)ds + |ut|

m−1 ut = f1 (u, v) ,

vtt − ∆v +

ˆ t

0
h(t − s)∆v(x, s)ds + |vt|

r−1 vt = f2 (u, v) ,
(3.6)

where
f1(u, v) = a|u + v|2(ρ+1)(u + v) + b|u|ρu|v|(ρ+2)

f2(u, v) = a|u + v|2(ρ+1)(u + v) + b|u|(ρ+2)|v|ρv,
(3.7)

The global nonexistence theorem for some solutions with positive energy was proved using a method

applied in [114].

In [113], the authors studied the nonlinear viscoelastic system in (3.6), where they obtained the decay of

solutions for system. Under some restrictions on the nonlinearities of damping and source terms, they

proved that, for some class of relaxation functions and some restrictions on the initial data, the rate of

decay of relaxation functions affects the rate of decay of solution for system.

In this paper, we consider system (3.1)-(3.4) and proved a global nonexistence result of solutions. We

extended to result in [87] and [136] to more general cases.
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3.2 Preliminaries

In this section, we present some notations and Lemmas.

We assume that the relaxation functions g, h ∈ C1(R+,R+) satisfying
1 −
ˆ ∞

0
g(s)ds = l′ > 0, g(t) ≥ 0, g′(t) ≤ 0,

1 −
ˆ ∞

0
h(s)ds = k′ > 0, h(t) ≥ 0, h′(t) ≤ 0,

t ≥ 0. (3.8)

We introduce the ”modified” energy functional E associated to our system

2E (t) = ‖ut‖
2
2 + ‖vt‖

2
2 + 2

(
m2

1‖u‖
2
2 + m2

2‖v‖
2
2

)
+ J (u, v) − 2

ˆ
Ω

F (u, v) dx, (3.9)

where F(u, v) is defined for all (u, v) ∈ R2,

F (u, v) =
1

2 (ρ + 2)
[
u f1 (u, v) + v f2 (u, v)

]
,

=
1

2 (ρ + 2)

[
|u + v|2(ρ+2) + 2 |uv|ρ+2

]
≥ 0,

where
∂F
∂u

= f1 (u, v) ,
∂F
∂v

= f2 (u, v) ,

and

J (u, v) =

(
1 −
ˆ t

0
g (s) ds

)
‖∇u‖22 +

(
1 −
ˆ t

0
h (s) ds

)
‖∇v‖22

+ (g ◦ ∇u) + (h ◦ ∇v) . (3.10)

Noting by 
(g ◦ u) (t) =

ˆ t

0
g (t − τ) ‖u (t) − u (τ)‖22 dτ,

(h ◦ v) (t) =

ˆ t

0
h (t − τ) ‖v (t) − v (τ)‖22 dτ.

(3.11)

We suppose that ρ satisfies  −1 < ρ, if N = 1, 2,

−1 < ρ ≤ 4−N
N−2 if N ≥ 3.

(3.12)

Lemma 3.1. [114] There exist two positive constants c0 and c1 with the end goal that

c0

2 (ρ + 2)

(
|u|2(ρ+2) + |v|2(ρ+2)

)
≤ F (u, v) ≤

c1

2 (ρ + 2)

(
|u|2(ρ+2) + |v|2(ρ+2)

)
.
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Lemma 3.2. Assume that (3.12) holds. There exists η > 0, such that for any (u, v) ∈ H1
0(Ω)×H1

0(Ω), the

inequality

2(ρ + 2)
ˆ

Ω

F (u, v) dx ≤ η
(
‖∇u‖22 + ‖∇v‖22

)ρ+2
(3.13)

holds.

Lemma 3.3. Let ν > 0, be a real positive number and let L (t) be a solution of the ordinary differential

inequality
dL (t)

dt
≥ ξL1+ν (t) (3.14)

defined in [0,∞).

If L (0) > 0, then the solution does not exist for t ≥ L (0)−ν ξ−νν−1.

Proof. By simple integration of (3.14), we have

L−ν (0) − L−ν (t) ≥ ξνt.

Then, we obtain the following estimate

Lν (t) ≥ [L−ν (0) − ξνt]−1. (3.15)

Then, the RHS of (3.15) is unbounded for

ξνt = L−ν (0) .

�

The proof is completed.
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3.3 Blow up result

Lemma 3.4. Assume that (3.12) holds. Let (u, v) be the solution of the system (3.1)−(3.4) then the

energy functional is a non-increasing function, that is, for all t ≥ 0,

E′ (t) = −

ˆ
Ω

(
|u (t)|k + |v (t)|l

)
|ut (t)|m+1 dx

−

ˆ
Ω

(
|v (t)|θ + |u (t)|%

)
|vt (t)|r+1 dx

+
1
2

(
g′ ◦ ∇u

)
+

1
2

(
h′ ◦ ∇v

)
−

1
2

g (s) ‖∇u‖22 −
1
2

h (s) ‖∇v‖22 .

(3.16)

Lemma 3.5. Suppose that (3.12) holds. Let (u, v) be the solution of the system (3.1)-(3.4), then the

energy functional is a non-increasing function, that is, for all t > 0,

dE (t)
dt

= −

ˆ
Ω

(
|u (t)|k + |v (t)|l

)
|ut (t)|m+1 dx

−

ˆ
Ω

(
|v (t)|θ + |u (t)|ϑ

)
|vt (t)|r+1 dx. (3.17)

The proof of Lemma 3.4 can be done by using a classical calculations.

Our main result reads as follows

Theorem 3.6. Suppose that (3.12) holds. Assume further that

ρ > max
(
k + m − 3

2
,

l + m − 3
2

,
θ + r − 3

2
,
% + r − 3

2

)
, (3.18)

and that there exists p such that 2 < p < 2 (ρ + 2) , for which

max
(ˆ ∞

0
g (s) ds,

ˆ ∞
0

h (s) ds
)
<

(p/2) − 1
(p/2) − 1 + 1/ (2p)

, (3.19)

holds. Then any solution of problem (3.1)−(3.4), with initial data satisfying

‖∇u0‖
2
2 + ‖∇v0‖

2
2 + m2

1 ‖u0‖
2
2 + m2

2 ‖v0‖
2
2 > α

2
1, and E (0) < E2 (3.20)

blows up in finite time, where the constants α1 and E2 are defined in (3.21).
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We take a = b = c = d = 1, a1 = b1 = 1 for convenience. We introduce the following constants

B = η
1

2(ρ+2) , α1 = B−
ρ+2
ρ+1 ,

E1 =

(
1
2
−

1
2 (ρ + 2)

)
α2

1, E2 =

(
1
p
−

1
2 (ρ + 2)

)
α2

1, (3.21)

where η is the optimal constant in (3.13).

Lemma 3.7. [114] Suppose that (3.12), (3.18) and (3.19) hold. Let (u, v) be a solutions of (3.1)−(3.4).

Assume further that E (0) < E2 and

‖∇u0‖
2
2 + ‖∇v0‖

2
2 + m2

1 ‖u0‖
2
2 + m2

2 ‖v0‖
2
2 > α

2
1. (3.22)

Then, there exists a constant α2 > α1 such that

J(t) > α2
2, (3.23)

and

2(ρ + 2)
ˆ

Ω

F (u, v) dx ≥ (Bα2)2(ρ+2) ,∀t ≥ 0. (3.24)

Proof of Theorem 3.6. The proof is similar to one given in [88] with the necessary modification imposed

by the nature of our problem. We assume that the solutions exists for all t and we get a contradiction.

We set

H (t) = E2 − E (t) . (3.25)

By using the definition of H(t), we obtain

H′(t) = −E′(t)

=

ˆ
Ω

(
|u (t)|k + |v (t)|l

)
|ut (t)|m+1 dx

+

ˆ
Ω

(
|v (t)|θ + |u (t)|%

)
|vt (t)|r+1 dx

−
1
2

(
g
′

◦ ∇u
)
−

1
2

(
h
′

◦ ∇v
)

+
1
2

g (s) ‖∇u‖22 +
1
2

h (s) ‖∇v‖22

≥ 0,∀t ≥ 0. (3.26)

Therefore,

H(0) = E2 − E(0) > 0. (3.27)
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Then,

0 < H (0) ≤ H (t)

= E2 −
1
2

(
‖ut‖

2
2 + ‖vt‖

2
2 + m2

1 ‖u‖
2
2 + m2

2 ‖v‖
2
2

)
−

J (t)
2

+
1

2 (ρ + 2)

[
‖u + v‖2(ρ+2)

2(ρ+2) + 2‖uv‖ρ+2
ρ+2

]
. (3.28)

Note that from (3.8) and (3.23), we get

E2 −
1
2

(
‖ut‖

2
2 + ‖vt‖

2
2

)
−

J (t)
2

< E2 −
1
2
α2

2

< E2 −
1
2
α2

1

< E1 −
1
2
α2

1

= −
1

2 (ρ + 2)
α2

1 < 0,∀t ≥ 0. (3.29)

Thus, by using (3.29) and Lemma 3.1, we get

0 < H (0) ≤ H (t) ≤
1

2 (ρ + 2)

[
‖u + v‖2(ρ+2)

2(ρ+2) + 2‖uv‖ρ+2
ρ+2

]
≤

c1

2 (ρ + 2)

(
‖u‖2(ρ+2)

2(ρ+2) + ‖v‖2(ρ+2)
2(ρ+2)

)
,∀t ≥ 0. (3.30)

We define the function M as

M(t) =
1
2

ˆ
Ω

(
u2 + v2

)
(x, t) dx, (3.31)

and let

L (t) = H1−σ (t) + εM′(t), (3.32)

for ε small to be chosen later and

0 < σ ≤ min
{

1
2
,

2ρ + 3 − (k + m)
2 (m + 1) (ρ + 2)

,
2ρ + 3 − (l + m)
2 (m + 1) (ρ + 2)

,

2ρ + 3 − (% + r)
2 (r + 1) (ρ + 2)

,
2ρ + 3 − (θ + r)
2 (r + 1) (ρ + 2)

,
2ρ + 2

4 (ρ + 2)

}
. (3.33)
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By differentiation of (3.32) with respect to time and using (3.1), we get

L′ (t) = (1 − σ) H−σ (t) H
′

(t) + ε
(
‖ut‖

2
2 + ‖vt‖

2
2

)
− ε

(
‖∇u‖22 + ‖∇v‖22

)
− ε

ˆ
Ω

u
(
|u (t)|k + |v (t)|l

)
|ut|

m−1 utdx

− ε

ˆ
Ω

v
(
|v (t)|θ + |u (t)|%

)
|vt|

r−1 vtdx

+ ε

ˆ
Ω

(u f1 (u, v) + v f2 (u, v)) dx

+ ε

ˆ
Ω

∇u (t)
ˆ t

0
g (t − s)∇u (τ) dxds

+ε

ˆ
Ω

∇v (t)
ˆ t

0
h (t − s)∇v (τ) dxds. (3.34)

Then,

L′ (t) = (1 − σ) H−σ (t) H
′

(t) + ε
(
‖ut‖

2
2 + ‖vt‖

2
2 + m2

1 ‖u‖
2
2 + m2

2 ‖v‖
2
2

)
− ε

(
‖∇u‖22 + ‖∇v‖22

)
− ε

ˆ
Ω

u
(
|u (t)|k + |v (t)|l

)
|ut|

m−1 utdx

− ε

ˆ
Ω

v
(
|v (t)|θ + |u (t)|%

)
|vt|

r−1 vtdx

+ ε
(
‖u + v‖2(ρ+2)

2(ρ+2) + 2‖uv‖ρ+2
ρ+2

)
+ ε

(ˆ t

0
g (s) ds

)
‖∇u‖22 +

(ˆ t

0
h (s) ds

)
‖∇v‖22

+ ε

ˆ t

0
g (t − s)

ˆ
Ω

∇u (t) . [∇u (τ) − ∇u (t)] dxds

+ε

ˆ t

0
h (t − s)

ˆ
Ω

∇v (t) . [∇v (τ) − ∇v (t)] dxds. (3.35)

By using Cauchy-Schwartz and Young’s inequalities, we obtain the following estimate

ˆ t

0
g (t − s)

ˆ
Ω

∇u (t) . [∇u (τ) − ∇u (t)] dxds

≤

ˆ t

0
g (t − s) ‖∇u‖2 ‖∇u (τ) − ∇u (t)‖2 dτ

≤ λ (g ◦ ∇u) +
1

4λ

(ˆ t

0
g (s) ds

)
‖∇u‖22, λ > 0 (3.36)
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and
ˆ t

0
h (t − s)

ˆ
Ω

∇v (t) . [∇v (τ) − ∇v (t)] dxds

≤ λ (h ◦ ∇v) +
1

4λ

(ˆ t

0
h (s) ds

)
‖∇v‖22, λ > 0. (3.37)

Adding pE(t) and using the definition of H(t), E2 leads to

L′ (t) ≥ (1 − σ) H−σ (t) H
′

(t)

+ ε
(
1 +

p
2

) (
‖ut‖

2
2 + ‖vt‖

2
2 + m2

1 ‖u‖
2
2 + m2

2 ‖v‖
2
2

)
+ ε

( p
2
− λ

) [
(g ◦ ∇u) + (h ◦ ∇v)

]
+ pεH (t) − pεE2

− ε

ˆ
Ω

u
(
|u (t)|k + |v (t)|l

)
|ut|

m−1 utdx

− ε

ˆ
Ω

v
(
|v (t)|θ + |u (t)|%

)
|vt|

r−1 vtdx

+ ε

(
1 −

p
2 (ρ + 2)

) (
‖u + v‖2(ρ+2)

2(ρ+2) + 2‖uv‖ρ+2
ρ+2

)
+ ε

[( p
2
− 1

)
−

(
p
2
− 1 +

1
4λ

)ˆ ∞
0

g (s) ds
]
‖∇u‖22

+ ε

[( p
2
− 1

)
−

(
p
2
− 1 +

1
4λ

)ˆ ∞
0

h (s) ds
]
‖∇v‖22, (3.38)

for some λ such that

a1 =
p
2
− λ > 0,

and

a2 =

[( p
2
− 1

)
−

(
p
2
− 1 +

1
4λ

)
max

(ˆ ∞
0

g (s) ds,
ˆ ∞

0
h (s) ds

)]
> 0.

Then, (3.38) can be estimated as follows

L′ (t) ≥ (1 − σ) H−σ (t) H
′

(t) + ε
(
1 +

p
2

) (
‖ut‖

2
2 + ‖vt‖

2
2

)
+ εa1

[
(g ◦ ∇u) + (h ◦ ∇v)

]
+ pεH (t) − pεE2

− ε

ˆ
Ω

u
(
|u (t)|k + |v (t)|l

)
|ut|

m−1 utdx

− ε

ˆ
Ω

v
(
|v (t)|θ + |u (t)|%

)
|vt|

r−1 vtdx

+ ε

(
1 −

p
2 (ρ + 2)

) (
‖u + v‖2(ρ+2)

2(ρ+2) + 2‖uv‖ρ+2
ρ+2

)
+ εa2

(
‖∇u‖22 + ‖∇v‖22

)
. (3.39)
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By taking c3 = 1 −
p

ρ + 2
− 2E2 (Bα2)−2(ρ+2) > 0, since α2 > B−

2(ρ+2)
ρ+1 . Consequently, (3.39) takes the

form

L′ (t) ≥ (1 − σ) H−σ (t) H
′

(t)

+ ε
(
1 +

p
2

) (
‖ut‖

2
2 + ‖vt‖

2
2 + m2

1 ‖u‖
2
2 + m2

2 ‖v‖
2
2

)
+ εa1

[
(g ◦ ∇u) + (h ◦ ∇v)

]
+ εa2

(
‖∇u‖22 + ‖∇v‖22

)
+ pεH (t)

+ εc3

(
‖u + v‖2(ρ+2)

2(ρ+2) + 2‖uv‖ρ+2
ρ+2

)
− ε

ˆ
Ω

u
(
|u (t)|k + |v (t)|l

)
|ut|

m−1 utdx

− ε

ˆ
Ω

v
(
|v (t)|θ + |u (t)|%

)
|vt|

r−1 vtdx. (3.40)

By using Young’s inequality, we have

XY ≤
δαXα

α
+
δ−βYβ

β
, (3.41)

where X,Y ≥ 0, δ > 0 and α, β > 0 such that 1/α + 1/β = 1, we obtain

∣∣∣u |ut|
m−1 ut

∣∣∣ ≤ δm+1
1

m + 1
|u|m+1 +

m
m + 1

δ−(m+1)/m
1 |ut|

m+1 ,∀δ1 ≥ 0 (3.42)

and
ˆ

Ω

(
|u (t)|k + |v (t)|l

) ∣∣∣u |ut|
m−1 ut

∣∣∣ dx

≤
δm+1

1

m + 1

ˆ
Ω

(
|u (t)|k + |v (t)|l

)
|u|m+1 dx

+
m

m + 1
δ−(m+1)/m

1

ˆ
Ω

(
|u (t)|k + |v (t)|l

)
|ut|

m+1 dx. (3.43)

Similarly, for any δ2 > 0,

∣∣∣v |vt|
r−1 vt

∣∣∣ ≤ δr+1
2

r + 1
|v|r+1 +

r
r + 1

δ−(r+1)/r
2 |vt|

r+1 , (3.44)
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which gives

ˆ
Ω

(
|v (t)|θ + |u (t)|%

) ∣∣∣v |vt|
r−1 vt

∣∣∣ dx

≤
δr+1

2

r + 1

ˆ
Ω

(
|v (t)|θ + |u (t)|%

)
|v|r+1 dx

+
r

r + 1
δ−(r+1)/r

2

ˆ
Ω

(
|v (t)|θ + |u (t)|%

)
|vt|

r+1 dx. (3.45)

Then, we obtain

L′ (t) ≥ (1 − σ) H−σ (t) H
′

(t)

+ ε
(
1 +

p
2

) (
‖ut‖

2
2 + ‖vt‖

2
2 + m2

1 ‖u‖
2
2 + m2

2 ‖v‖
2
2

)
+ εa1

[
(g ◦ ∇u) + (h ◦ ∇v)

]
+ εa2

(
‖∇u‖22 + ‖∇v‖22

)
+ pεH (t)

+ εc3

(
‖u + v‖2(ρ+2)

2(ρ+2) + 2‖uv‖ρ+2
ρ+2

)
− ε

δm+1
1

m + 1

ˆ
Ω

(
|u (t)|k + |v (t)|l

)
|u|m+1 dx

− ε
m

m + 1
δ
−

(m+1)
m

1

ˆ
Ω

(
|u (t)|k + |v (t)|l

)
|ut|

m+1 dx

− ε
δr+1

2

r + 1

ˆ
Ω

(
|v (t)|θ + |u (t)|%

)
|v|r+1 dx

− ε
r

r + 1
δ
−

(r+1)
r

2

ˆ
Ω

(
|v (t)|θ + |u (t)|%

)
|vt|

r+1 dx. (3.46)

Choosing δ1 and δ2 such that

δ
−

(m+1)
m

1 = M1H (t)−σ , δ−
(r+1)

r
2 = M2H (t)−σ , (3.47)
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for M1 and M2 large constants to be fixed later. Thus, by using (3.47), we obtain

L′ (t) ≥ ((1 − σ) − Mε) H−σ (t) H
′

(t)

+ ε
(
1 +

p
2

) (
‖ut‖

2
2 + ‖vt‖

2
2 + m2

1 ‖u‖
2
2 + m2

2 ‖v‖
2
2

)
+ εa1

[
(g ◦ ∇u) + (h ◦ ∇v)

]
+ εa2

(
‖∇u‖22 + ‖∇v‖22

)
+ pεH (t)

+ εc3

(
‖u + v‖2(ρ+2)

2(ρ+2) + 2‖uv‖ρ+2
ρ+2

)
− εM−m

1 Hσm (t)
ˆ

Ω

(
|u (t)|k + |v (t)|l

)
|u|m+1 dx

− ε
m

m + 1
δ
−

(m+1)
m

1

ˆ
Ω

(
|u (t)|k + |v (t)|l

)
|ut|

m+1 dx

− εM−r
2 Hσr (t)

ˆ
Ω

(
|v (t)|θ + |u (t)|%

)
|v|r+1 dx

− ε
r

r + 1
δ
−

(r+1)
r

2

ˆ
Ω

(
|v (t)|θ + |u (t)|%

)
|vt|

r+1 dx, (3.48)

where M = m/ (m + 1) M1 + r/ (r + 1) M2. Therefore, we have
ˆ

Ω

(
|u (t)|k + |v (t)|l

)
|u|m+1 dx = ‖u‖k+m+1

k+m+1 +

ˆ
Ω

|v|l |u|m+1 dx, (3.49)

and ˆ
Ω

(
|v (t)|θ + |u (t)|%

)
|v|r+1 dx = ‖v‖θ+r+1

θ+r+1 +

ˆ
Ω

|u|% |v|r+1 dx. (3.50)

Also by using Young’s inequality, we obtain

ˆ
Ω

|v|l |u|m+1
≤

l
l + m + 1

δ(l+m+1)/l
1 ‖v‖l+m+1

l+m+1

+
m + 1

l + m + 1
δ−(l+m+1)/(m+1)

1 ‖u‖l+m+1
l+m+1 ,ˆ

Ω

|u|% |v|r+1
≤

%

% + r + 1
δ

(%+r+1)/%
2 ‖u‖%+r+1

%+r+1

+ +
r + 1

% + r + 1
δ
−(%+r+1)/(r+1)
2 ‖v‖%+r+1

%+r+1 .

Therefore,

Hσm (t)
ˆ

Ω

(
|u (t)|k + |v (t)|l

)
|u|m+1 dx

= Hσm (t) ‖u‖k+m+1
k+m+1 +

l
l + m + 1

δ(l+m+1)/l
1 Hσm (t) ‖v‖l+m+1

l+m+1

+
m + 1

l + m + 1
δ−(l+m+1)/(m+1)

1 Hσm (t) ‖u‖l+m+1
l+m+1 , (3.51)
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and

Hσr (t)
ˆ

Ω

(
|v (t)|θ + |u (t)|%

)
|v|r+1 dx

= Hσr (t) ‖v‖θ+r+1
θ+r+1 +

%

% + r + 1
δ

%+r+1
%

2 Hσr (t) ‖u‖%+r+1
%+r+1

+
r + 1

% + r + 1
δ
−

(%+r+1)
r+1

2 Hσr (t) ‖v‖%+r+1
%+r+1 . (3.52)

Since (3.18) holds, we get by using (3.33)
Hσm (t) ‖u‖k+m+1

k+m+1 ≤ c5

(
‖u‖2σm(ρ+2)+k+m+1

2(ρ+2) + ‖v‖2σm(ρ+2)
2(ρ+2) ‖u‖k+m+1

k+m+1

)
,

Hσr (t) ‖v‖θ+r+1
θ+r+1 ≤ c6

(
‖v‖2σr(ρ+2)+θ+r+1

2(ρ+2) + ‖u‖2σr(ρ+2)
2(ρ+2) ‖v‖

θ+r+1
θ+r+1

)
.

(3.53)

This implies
l

l+m+1δ
l+m+1

l
1 Hσm (t) ‖v‖l+m+1

l+m+1

≤ c7
l

l+m+1δ
l+m+1

l
1

(
‖v‖2σm(ρ+2)+l+m+1

2(ρ+2) + ‖u‖2σm(ρ+2)
2(ρ+2) ‖v‖l+m+1

l+m+1

)
,

(3.54)

and
%

%+r+1δ
%+r+1
%

2 Hσr (t) ‖u‖%+r+1
%+r+1

≤ c8
%

%+r+1δ
%+r+1
%

2

(
‖u‖2σr(ρ+2)+%+r+1

2(ρ+2) + ‖v‖2σr(ρ+2)
2(ρ+2) ‖u‖

%+r+1
%+r+1

)
. (3.55)

Using (3.33) and the algebraic inequality

zν ≤ (z + 1) ≤
(
1 +

1
a

)
(z + a) ,∀z ≥ 0, 0 < ν ≤ 1, a > 0, (3.56)

we get, for all t ≥ 0,
‖u‖2σm(ρ+2)+k+m+1

2(ρ+2) ≤ d
(
‖u‖2(ρ+2)

2(ρ+2) + H (0)
)
≤ d

(
‖u‖2(ρ+2)

2(ρ+2) + H (t)
)
,

‖v‖2σr(ρ+2)+θ+r+1
2(ρ+2) ≤ d

(
‖v‖2(ρ+2)

2(ρ+2) + H (t)
)
,∀t ≥ 0,

(3.57)

where d = 1 + 1/H (0) . Similarly
‖v‖2σm(ρ+2)+l(m+1)

2(ρ+2) ≤ d
(
‖v‖2(ρ+2)

2(ρ+2) + H (0)
)
≤ d

(
‖v‖2(ρ+2)

2(ρ+2) + H (t)
)
,

‖u‖2σr(ρ+2)+%(r+1)
2(ρ+2) ≤ d

(
‖u‖2(ρ+2)

2(ρ+2) + H (t)
)
,∀t ≥ 0.

(3.58)

Also, since

(X + Y)s
≤ C (Xs + Y s) , X,Y ≥ 0, s > 0, (3.59)
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by using (3.33) and (3.56) we have

‖v‖2σm(ρ+2)
2(ρ+2) ‖u‖k+m+1

k+m+1 ≤ c9

(
‖v‖2(ρ+2)

2(ρ+2) + ‖u‖2(ρ+2)
k+m+1

)
(3.60)

≤ c10

(
‖v‖2(ρ+2)

2(ρ+2) + ‖u‖2(ρ+2)
2(ρ+2)

)
,

similarly

‖u‖2σr(ρ+2)
2(ρ+2) ‖v‖

θ+r+1
θ+r+1 ≤ c11

(
‖u‖2(ρ+2)

2(ρ+2) + ‖v‖2(ρ+2)
2(ρ+2)

)
, (3.61)

‖u‖2σm(ρ+2)
2(ρ+2) ‖v‖l+m+1

l+m+1 ≤ c12

(
‖u‖2(ρ+2)

2(ρ+2) + ‖v‖2(ρ+2)
2(ρ+2)

)
(3.62)

and

‖v‖2σr(ρ+2)
2(ρ+2) ‖u‖

%+r+1
%+r+1 ≤ c13

(
‖v‖2(ρ+2)

2(ρ+2) + ‖u‖2(ρ+2)
2(ρ+2)

)
. (3.63)

Taking into account (3.51)-(3.63), then ( 3.48) written as

L
′

(t) ≥ ((1 − σ) − Mε) H−σ (t) H
′

(t)

+ 2ε
(
‖ut‖

2
2 + ‖vt‖

2
2 + m2

1 ‖u‖
2
2 + m2

2 ‖v‖
2
2

)
+ ε

[
2 −CM−m

1

(
1 +

l
l + m + 1

δ
l+m+1

l
1 +

m + 1
l + m + 1

δ
−

(l+m+1)
m+1

1

)
− CM−r

2

(
1 +

%

% + r + 1
δ
%+r+1
%

2 +
r + 1

% + r + 1
δ
−

(%+r+1)
r+1

2

)]
H (t)

+ ε

[
c4 −CM−m

1

(
1 +

l
l + m + 1

δ
l+m+1

l
1 +

m + 1
l + m + 1

δ
−

(l+m+1)
m+1

1

)
− CM−r

2

(
1 +

%

% + r + 1
δ
%+r+1
%

2 +
r + 1

% + r + 1
δ
−

(%+r+1)
r+1

2

)]
×

(
‖u‖2(ρ+2)

2(ρ+2) + ‖v‖2(ρ+2)
2(ρ+2)

)
. (3.64)

At this point and for large values of M1 and M2, we can find positive constants Λ1 and Λ2 such that

(3.64) becomes

L
′

(t) ≥ ((1 − σ) − Mε) H−σ (t) H
′

(t)

+ 2ε
(
‖ut‖

2
2 + ‖vt‖

2
2 + m2

1 ‖u‖
2
2 + m2

2 ‖v‖
2
2

)
+ εΛ1

(
‖u (t)‖2(ρ+2)

2(ρ+2) + ‖v (t)‖2(ρ+2)
2(ρ+2)

)
+ εΛ2H (t) . (3.65)

Once M1 and M2 are fixed (hence Λ1 and Λ2), we choose ε small enough so that ((1 − σ) − Mε) ≥ 0

and

L (0) = H1−σ (0) + ε

ˆ
Ω

[u0.u1 + v0.v1] dx > 0. (3.66)
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Therefore, there exists Γ > 0 such that (3.65) can be written as

L
′

(t) ≥ εΓ
(
H (t) + ‖ut‖

2
2 + ‖vt‖

2
2 + ‖u‖2(ρ+2)

2(ρ+2) + ‖v‖2(ρ+2)
2(ρ+2)

)
. (3.67)

Then, we have L (t) ≥ L (0) > 0, for all t ≥ 0. Next, by using Holder’s and Young’s inequalities, we have

the estimate (ˆ
Ω

u.ut (x, t) dx +

ˆ
Ω

v.vt (x, t) dx
) 1

1−σ

≤ C
(
‖u‖

τ
1−σ
2(ρ+2) + ‖ut‖

s
1−σ
2 + ‖v‖

τ
1−σ
2(ρ+2) + ‖vt‖

s
1−σ
2

)
, (3.68)

for 1/τ + 1/s = 1. We takes s = 2 (1 − σ) , to get
τ

1 − σ
=

2
1 − 2σ

. From (3.25) and (3.56), we have

‖u‖
2

1−2σ
2(ρ+2) ≤ d

(
‖u‖2(ρ+2)

2(ρ+2) + H (t)
)
, (3.69)

and

‖v‖
2

1−2σ
2(ρ+2) ≤ d

(
‖v‖2(ρ+2)

2(ρ+2) + H (t)
)
,∀t ≥ 0. (3.70)

Consequently, (3.68) can be written as

(ˆ
Ω

uut (x, t) dx +

ˆ
Ω

vvt (x, t) dx
) 1

1−σ

≤ c14

(
‖u‖2(ρ+2)

2(ρ+2) + ‖v‖2(ρ+2)
2(ρ+2) + ‖ut‖

2
2 + ‖vt‖

2
2

)
+ c14

(
m2

1 ‖u‖
2
2 + m2

2 ‖v‖
2
2 + H (t)

)
,∀t ≥ 0.

Also, we have

L
1

1−σ (t) =

(
H1−σ (t) + ε

ˆ
Ω

(u.ut + v.vt) (x, t) dx
) 1

(1−σ)

≤ c15

H (t) +

∣∣∣∣∣ˆ
Ω

(u.ut (x, t) + v.vt (x, t)) dx
∣∣∣∣∣ 1

(1−σ)


≤ c16

[
H (t) + ‖u‖2(ρ+2)

2(ρ+2) + ‖v‖2(ρ+2)
2(ρ+2) + ‖ut‖

2
2

]
+ c16

[
‖vt‖

2
2 + m2

1 ‖u‖
2
2 + m2

2 ‖v‖
2
2

]
,∀t ≥ 0, (3.71)

from (3.71) and (3.67), we get

L
′

(t) ≥ a0L
1

1−σ (t) ,∀t ≥ 0. (3.72)

Finally, a simple integration of (3.72) gives the desired result. �



Chapter 4

Global nonexistence of solution for coupled nonlinear Klein-

Gordon with degenerate damping and source terms

4.1 Introduction

In this chapter, we consider the following system:
utt − ∆ut − div

(
|∇u|α−2

∇u
)
− div

(
|∇ut|

β1−2
∇ut

)
+ a1 |ut|

m−2 ut + m1u2 = f1 (u, v) ,

vtt − ∆vt − div
(
|∇v|α−2

∇v
)
− div

(
|∇vt|

β2−2
∇vt

)
+ a2 |vt|

r−2 vt + m2v2 = f2 (u, v) ,
(4.1)

where u = u (t, x) , v = v (t, x) , x ∈ Ω, a bounded domain of RN (N ≥ 1) with a smooth boundary ∂Ω,

t > 0 and a1, a2, b1, b2, m1, m2 > 0 and β1, β2, m, r ≥ 2, α > 2, and the two functions f1 (u, v) and

f2 (u, v) given by
f1(u, v) = b1|u + v|2(ρ+1)(u + v) + b2|u|ρu|v|(ρ+2)

f2(u, v) = b1|u + v|2(ρ+1)(u + v) + b2|u|(ρ+2)|v|ρv,
(4.2)

The System (4.1) is supplemented by the following initial and boundary conditions (u(0), v(0)) = (u0, v0), (ut(0), vt(0)) = (u1, v1), x ∈ Ω

u(x) = v(x) = 0 x ∈ ∂Ω,
(4.3)

Originally the interaction between the source term and the damping term in the wave equation is given

by :

utt − ∆u + a |ut|
m−2 ut = b |u|p−2 u, in Ω × (0,T ) , (4.4)

72



Chapter 4: System of Klein-Gordon equations with degenerate damping and source terms 73

where Ω is a bounded domain of RN , N ≥ 1 with a smooth boundary ∂Ω, has an exciting history.

It has been shown that the existence and the asymptotic behavior of solutions depend on a crucial way

on the parameters m, p and on the nature of the initial data. More precisely, it is well known that in the

absence of the source term |u|p−2 u then a uniform estimate of the form

‖ut (t)‖2 + ‖∇u (t)‖2 ≤ C, (4.5)

holds for any initial data (u0, u1) = (u(0), ut(0)) in the energy space H1
0 (Ω)×L2 (Ω) ,where C is a positive

constant independent of t. The estimate (4.5) shows that any local solution u of problem (4.4) can be

continued in time as long as (4.5) is verified. This result has been proved by several authors. See for

example [54, 63]. On the other hand in the absence of the damping term |ut|
m−2 ut, the solution of (4.4)

ceases to exist and there exists a finite value T ∗ such that

lim
t→T ∗
‖u (t)‖p = +∞, (4.6)

the reader is refereed to Ball [14] and Kalantarov & Ladyzhenskaya [60] for more details.

When both terms are present in equation (4.4), the situation is more delicate. This case has been consid-

ered by Levine in [66, 67], where he investigated problem (4.4) in the linear damping case (m = 2) and

showed that any local solution u of (4.4) cannot be continued in (0,∞)×Ω whenever the initial data are

large enough (negative initial energy). The main tool used in [66] and [67] is the ”concavity method”.

This method has been a widely applicable tool to prove the blow up of solutions in finite time of some

evolution equations. The basic idea of this method is to construct a positive functional θ (t) depending

on certain norms of the solution and show that for some γ > 0, the function θ−γ (t) is a positive concave

function of t. Thus there exists T ∗ such that lim
t→T ∗

θ−γ (t) = 0. Since then, the concavity method became a

powerful and simple tool to prove blow up in finite time for other related problems. Unfortunately, this

method is limited to the case of a linear damping. Georgiev and Todorova [45] extended Levine’s result

to the nonlinear damping case (m > 2). In their work, the authors considered the problem (4.4) and

introduced a method different from the one known as the concavity method. They showed that solutions

with negative energy continue to exist globally ’in time’ if the damping term dominates the source term

(i.e.m ≥ p) and blow up in finite time in the other case (i.e.p > m) if the initial energy is sufficiently

negative. Their method is based on the construction of an auxiliary function L which is a perturbation

of the total energy of the system and satisfies the differential inequality

dL (t)
dt
≥ ξL1+ν (t) (4.7)

In [0,∞) ,where ν > 0. Inequality (4.7) leads to a blow up of the solutions in finite tim t ≥ L (0)−ν ξ−1ν−1,

provided that L (0) > 0. However the blow up result in [45] was not optimal in terms of the initial data



Chapter 4: System of Klein-Gordon equations with degenerate damping and source terms 74

causing the finite time blow up of solutions. Thus several improvement have been made to the result

in [45] (see for example [68, 78, 130]. In particular, Vitillaro in [130] combined the arguments in [45]

and [68] to extend the result in [45] to situations where the damping is nonlinear and the solution has

positive initial energy.

In [139], Yang.Z, studied the problem

utt − ∆ut − div
(
|∇u|α−2

∇u
)
− div

(
|∇ut|

β−2
∇ut

)
+ a |ut|

m−2 ut = b|u|p−2u, (4.8)

in (0,T ) ×Ω with initial conditions and boundary condition of Dirichlet type. He showed that solutions

blow up in finite time T ∗ under the condition p > max {α,m} , α > β, and the initial energy is sufficiently

negative (see condition (ii) in [139, Theorem 2.1]). In fact this condition made it clear that there exists

a certain relation between the blow-up time and |Ω|[139, Remark 2].

Messaoudi and Said-Houari [81] improved the result in [139] and showed that the blow up of solutions

of problem (4.8) takes place for negative initial data only regardless of the size of Ω.

The absence of the terms m1u2 and m2v2 , equations (4.1) take the form :
utt − ∆ut − div

(
|∇u|α−2

∇u
)
− div

(
|∇ut|

β1−2
∇ut

)
+ a1 |ut|

m−2 ut = f1 (u, v) ,

vtt − ∆vt − div
(
|∇v|α−2

∇v
)
− div

(
|∇vt|

β2−2
∇vt

)
+ a2 |vt|

r−2 vt = f2 (u, v) ,

In [106] Rahmoune. A and Ouchenane. D proved the global nonexistence result, Under an appropriate

assumptions on the initial data and under some restrictions on the parameter ; β1;β2; m; r and on the

nonlinear functions f1 and f2.

4.2 Preliminaries

In this section, we introduce some notations and some technical lemmas to be used throughout this

paper. By ‖.‖q, we denote the usual Lq(Ω)-norm. The constants C, c, c1, c2, . . . , used throughout this

paper are positive generic constants, which may be different in various occurrences. We define

F (u, v) =
1

2 (ρ + 2)

[
b1 |u + v|2(ρ+2) + 2b2 |uv|ρ+2

]
.

Then , it is clear that, from (4.2),we have

u f1 (u, v) + v f2 (u, v) = 2 (ρ + 2) F (u, v) . (4.9)
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The following lemma was introduced and proved in [87]

Lemma 4.1. There exist two positive constants c0 and c1 such that

c0

2 (ρ + 2)

(
|u|2(ρ+2) + |v|2(ρ+2)

)
≤ F (u, v) ≤

c1

2 (ρ + 2)

(
|u|2(ρ+2) + |v|2(ρ+2)

)
. (4.10)

And the energy functional

E (t) =
1
2

(
‖ut‖

2
2 + ‖vt‖

2
2

)
+

1
α

(
‖∇u‖αα + ‖∇v‖αα

)
+ m2

1 ‖u‖
2
2 + m2

2 ‖v‖
2
2 −

ˆ
Ω

F (u, v) dx. (4.11)

Let us know define a constant rα as follows :

rα =
Nα

N − α
, i f N > α, rα > α i f N = α, and rα = ∞ i f N < α. (4.12)

The inequality below is a key element in proving the global existence of solution. A similar version of

this lemma was first introduced in [114]

Lemma 4.2. Suppose that α > 2, and 2 < 2(ρ+ 2) < rα. Then there exists η > 0 such that the inequality

‖u + v‖2(ρ+2)
2(ρ+2) + 2‖uv‖ρ+2

ρ+2 ≤ η
(
‖∇u‖αα + ‖∇v‖αα

) 2(ρ+2)
α (4.13)

holds.

Proof. It is clear that by using the Minkowski inequality, we get

‖u + v‖22(ρ+2) ≤ 2(‖u‖22(ρ+2) + ‖v‖22(ρ+2)),

the embedding W1,α
0 ↪→ L2(ρ+2) (Ω) , gives

‖u‖22(ρ+2) ≤ C‖∇u‖2α ≤ C(‖∇u‖αα)
2
α ≤ C(‖∇u‖αα + ‖∇v‖αα)

2
α ,

and similary , we have

‖v‖22(ρ+2) ≤ C‖∇u‖αα + ‖∇v‖αα)
2
α

Thus, we deduce from the above estimates that

‖u + v‖22(ρ+2) ≤ C(‖∇u‖αα + ‖∇v‖αα)
2
α (4.14)

also, Hölder’s and Young’s inequalities give us

‖uv‖(ρ+2) ≤ ‖u‖2(ρ+2)‖v‖2(ρ+2) ≤ C(‖∇u‖22(ρ+2) + ‖∇v‖22(ρ+2)) ≤ C(‖∇u‖αα + ‖∇v‖αα)
2
α . (4.15)
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Collecting the estimates (4.14) and (4.15), then (4.13) holds. This completes the proof of lemma (4.2)

�

In the following lemma, we show that the total energy of our system is a nonincreasing function of t.

Lemma 4.3. Let (u, v) be the solution of system (4.1)-(4.3), then the energy functional is a non-increasing

function for all t ≥ 0

dE (t)
dt

= −‖∇ut‖
2
2 − ‖∇vt‖

2
2 − ‖∇ut‖

β1
β1
− ‖∇vt‖

β2
β2

−a1‖ut‖
m
m − a2‖vt‖

r
r − m2

1 ‖u‖
2
2 − m2

2 ‖v‖
2
2 . (4.16)

Proof. We multiply the first equation in (4.1) by ut and second equation by vt and integrate over Ω, using

integration by parts, we obtain (4.16). �

4.3 Global nonexistence result

In this section, we prove that, under some restrictions on the initial data and under som restrictions on

the parameter α,β1,β2,m, r then the lifespan of solution of problem (4.1)- (4.3) is finite

Theorem 4.4. Suppose that β1, β2, m, r ≥ 2, α > 2, ρ > −1 such that β1, β2 < α, and max {m, r} <

2(ρ + 2) < rα, where rα is the Sobolev critical exponent of W1,α
0 (Ω) . defined in (4.12).Assume further

that

E (0) < E1,
(
‖∇u0‖

α
α + ‖∇v0‖

α
α

) 1
α + m2

1 ‖u0‖
2
2 + m2

2 ‖v0‖
2
2 > ζ1

Then, any weak solution of (4.1)-(4.3) cannot exist for all time .Here the constants E1 and ζ1 are defined

in (4.4).

In ordre to prove our result and for the sake of simplicity , we take b1 = b2 = 1 and introduce the

following :

B = η
1

2(ρ+2) , ζ1 = B
−2(ρ+2)

2(ρ+2)−α , E1 =

(
1
α
−

1
2 (ρ + 2)

)
ζα1 , (4.17)

where η is the optimal constant in (4.13).

The following lemma allows us to prove a blow up result for a large class of initial data. This lemma is

similar to the one in [114] and has its origin in [130]
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Lemma 4.5. Let (u, v) be a solution of (4.1)-(4.3). Assume that α > 2, ρ > −1. Assume further that

E (0) < E1 and

(
‖∇u0‖

α
α + ‖∇v0‖

α
α

) 1
α + m2

1 ‖u0‖
2
2 + m2

2 ‖v0‖
2
2 > ζ1. (4.18)

Then there exists a constant ζ2 > ζ1 such that

(
‖∇u‖αα + ‖∇v‖αα

) 1
α + m2

1 ‖u‖
2
2 + m2

2 ‖v‖
2
2 > ζ2, (4.19)

and [
‖u + v‖2(ρ+2)

2(ρ+2) + 2‖uv‖ρ+2
ρ+2

] 1
2(ρ+2) ≥ Bζ2, ∀t ≥ 0. (4.20)

Proof. We first note that, by (4.11) and the definition of B, we have

E (t) ≥
1
α

(
‖∇u‖αα + ‖∇v‖αα

)
+ m2

1 ‖u‖
2
2 + m2

2 ‖v‖
2
2 −

1
2 (ρ + 2)

[
|u + v|2(ρ+2) + 2 |uv|ρ+2

]
≥

1
α

(
‖∇u‖αα + ‖∇v‖αα

)
+ m2

1 ‖u‖
2
2 + m2

2 ‖v‖
2
2 −

η

2 (ρ + 2)
(
‖∇u‖αα + ‖∇v‖αα

) 2(ρ+2)
α

≥
1
α
ζα −

η

2 (ρ + 2)
ζ2(ρ+2), (4.21)

where ζ =
[
‖∇u‖αα + ‖∇v‖αα + m2

1 ‖u‖
α
α + m2

2 ‖v‖
α
α

] 1
α
. It is not hard to verify that g is increasing for 0 < ζ <

ζ1, decreasing for ζ > ζ1, g (ζ)→ −∞ as ζ → +∞, and

g (ζ1) =
1
α
ζα1 −

B2(ρ+2)

2 (ρ + 2)
ζ

2(ρ+2)
1 = E1,

where ζ1 is given in (4.17). Therefore, since E (0) < E1, there exists ζ2 > ζ1 such that g (ζ2) = E (0) .

If we set ζ0 =
[
‖∇u (0) ‖αα + ‖∇v (0) ‖αα

] 1
α + m2

1 ‖u (0)‖22 + m2
2 ‖v (0)‖22 , then by (4.21) we have g (ζ0) ≤

E (0) = g (ζ2) , which implies that ζ0 ≥ ζ2.

Now, establish (4.19), we suppose by contradiction that

(
‖∇u0‖

α
α + ‖∇v0‖

α
α

) 1
α + m2

1 ‖u0‖
2
2 + m2

2 ‖v0‖
2
2 < ζ2,

for some t0 > 0; by the continuity of ‖∇u (.)‖αα + ‖∇v (.) ‖αα + m2
1 ‖u (.)‖22 + m2

2 ‖v (.)‖22 we can choose t0 such

that (
‖∇u (t0) ‖αα + ‖∇v (t0) ‖αα

) 1
α + m2

1 ‖u (t0)‖22 + m2
2 ‖v (t0)‖22 > ζ1.
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Again, the use of (4.21) leads to

E (t0) ≥ g
(
‖∇u (t0) ‖αα + ‖∇v (t0) ‖αα

)
+ m2

1 ‖u (t0)‖22 + m2
2 ‖v (t0)‖22 > g (ζ2) = E (0) .

This is impossible since E (t) ≤ E (0) , for all t ∈ [0,T ) . Hence, (4.19) is established.

To prove (4.20), we make use of (4.11) to get

1
α

(
‖∇u0‖

α
α + ‖∇v0‖

α
α

)
+ m2

1 ‖u0‖
2
2 + m2

2 ‖v0‖
2
2 ≤ E (0) +

1
2 (ρ + 2)

[
‖u + v‖2(ρ+2)

2(ρ+2) + 2‖uv‖ρ+2
ρ+2

]
.

Consequently, (4.19) yields

1
2 (ρ + 2)

[
‖u + v‖2(ρ+2)

2(ρ+2) + 2‖uv‖ρ+2
ρ+2

]
≥

1
α

(
‖∇u‖αα + ‖∇v‖αα

)
− E (0)

≥
1
α
ζα2 − E (0)

≥
1
α
ζα2 − g (ζ2) (4.22)

=
B2(ρ+2)

2 (ρ + 2)
ζ

2(ρ+2)
2 .

Therefore, (4.22) and (4.17) yield the desired result. �

Proof. Proof of Theorem 4.4

We suppose that the solution exists for all time and set

H (t) = E1 − E (t) . (4.23)

By using (4.11) and (4.23) we get

H
′ (t) = ‖∇ut‖

2
2 + ‖∇vt‖

2
2 + ‖∇ut‖

β1
β1

+ ‖∇vt‖
β2
β2

+ a1‖ut‖
m
m + a2‖vt‖

r
r + m2

1 ‖u‖
2
2 + m2

2 ‖v‖
2
2 .

From (4.16) , It is clear that for all t ≥ 0, H
′ (t) > 0. Therefore , we have

0 < H (0) ≤ H (t)

= E1 −
1
2

(
‖ut‖

2
2 + ‖vt‖

2
2 + m2

1 ‖u‖
2
2 + m2

2 ‖v‖
2
2

)
−

1
α

(
‖∇u‖αα + ‖∇v‖αα

)
+

1
2 (ρ + 2)

[
‖u + v‖2(ρ+2)

2(ρ+2) + 2‖uv‖ρ+2
ρ+2

]
. (4.24)

From (4.11) and (4.19), we obtain, for all t ≥ 0,
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E1 −
1
2

(
‖ut‖

2
2 + ‖vt‖

2
2 + m2

1 ‖u‖
2
2 + m2

2 ‖v‖
2
2

)
−

1
α

(
‖∇u‖αα + ‖∇v‖αα

)
< E1 −

1
α
ζα1 = −

1
2 (ρ + 2)

ζα1 < 0.

Hence,

0 < H (0) ≤ H (t) ≤
1

2 (ρ + 2)

[
‖u + v‖2(ρ+2)

2(ρ+2) + 2‖uv‖ρ+2
ρ+2

]
, ∀t ≥ 0.

Then by (4.10), we have

0 < H (0) ≤ H (t) ≤
c1

2 (ρ + 2)

[
‖u‖2(ρ+2)

2(ρ+2) + ‖v‖2(ρ+2)
2(ρ+2)

]
, ∀t ≥ 0. (4.25)

We then define

L (t) = H1−σ (t) + ε

ˆ
Ω

(uut + vvt))dx, (4.26)

for ε small to be chosen later and

0 < σ ≤ min
{

1
2
,

α − m
2 (ρ + 2) (m − 1)

,
α − r

2 (ρ + 2) (r − 1)
,

(α − 2)
2 (ρ + 2)

,
α − β1

2 (ρ + 2) (β1 − 1)
,

α − β2

2 (ρ + 2) (β2 − 1)

}
(4.27)

Our goal is to show that L (t) satisfies the differential inequality (4.7). Indeed, taking the derivative of

(4.26), using (4.1)and adding subtracting εkH(t), we obtain

L
′

(t) = (1 − σ) H−σ (t) H
′

(t) + εkH (t) + ε

(
1 +

k
2

) (
‖ut‖

2
2 + ‖vt‖

2
2 + m2

1 ‖u‖
2
2 + m2

2 ‖v‖
2
2

)
+ε (1 − k)

ˆ
Ω

F (u, v) − εkE1 (4.28)

−ε

ˆ
Ω

∇u∇utdx − ε
ˆ

Ω

∇v∇vtdx

+ε

(
k
α
− 1

)
(‖∇u‖αα + ‖∇v‖αα)

−ε

ˆ
Ω

|∇ut|
β1−2
∇ut∇udx − ε

ˆ
Ω

|∇vt|
β2−2
∇vt∇vdx

−εa1

ˆ
Ω

|ut|
m−2 utudx − εa2

ˆ
Ω

|vt|
r−2 vtvdx.

We then exploit Young’s inequality to get for µi, λi, δi > 0 i = 1, 2

ˆ
Ω

∇u∇utdx ≤
1

4µ1
‖∇u‖22 + µ1 ‖∇ut‖

2
2



Chapter 4: System of Klein-Gordon equations with degenerate damping and source terms 80

ˆ
Ω

∇v∇vtdx ≤
1

4µ2
‖∇v‖22 + µ2 ‖∇vt‖

2
2 (4.29)

and

ˆ
Ω

|∇ut|
β1−1
∇udx ≤

λ
β1
1

β1
‖∇u‖β1

β1
+
β1 − 1
β1

λ
−β1/(β1−1)
1 ‖∇ut‖

β1
β1

ˆ
Ω

|∇vt|
β2−1
∇vdx ≤

λ
β2
2

β2
‖∇v‖β2

β2
+
β2 − 1
β2

λ
−β2/(β2−1)
2 ‖∇vt‖

β1
β1

(4.30)

and also

ˆ
Ω

|ut|
m−2 utudx ≤

δm
1

m
‖u‖mm +

m − 1
m

δ−m/(m−1)
1 ‖ut‖

m
m

ˆ
Ω

|vt|
r−2 vtvdx ≤

δr
2

r
‖v‖rr +

r − 1
r

δ−r/(r−1)
2 ‖vt‖

r
r (4.31)

A substitution of (4.29)-(4.31)) in (4.28) and using (4.10) yields

L
′

(t) ≥ (1 − σ) H−σ (t) H
′

(t) + εkH (t) + ε

(
1 +

k
2

) (
‖ut‖

2
2 + ‖vt‖

2
2 + m2

1 ‖u‖
2
2 + m2

2 ‖v‖
2
2

)
+ε

(
c0

2 (ρ + 2)
−

kc1

2 (ρ + 2)

) (
‖u‖2(ρ+2)

2(ρ+2) + ‖v‖2(ρ+2)
2(ρ+2)

)
− εkE1

−
ε

4µ1
‖∇u‖22 − µ1ε ‖∇ut‖

2
2 −

ε

4µ2
‖∇v‖22 − εµ2 ‖∇vt‖

2
2

+ε

(
k
α
− 1

) (
‖∇u‖αα + ‖∇v‖αα

)
− ε

λ
β1
1

β1
‖∇u‖β1

β1
− ε

β1 − 1
β1

λ
−β1/(β1−1)
1 ‖∇ut‖

β1
β1

−ε
λ
β2
2

β2
‖∇v‖β2

β2
− ε

β2 − 1
β2

λ
−β2/(β2−1)
2 ‖∇vt‖

β1
β1
− a1ε

δm
1

m
‖u‖mm

−a1ε
m − 1

m
δ−m/(m−1)

1 ‖ut‖
m
m − a2ε

δr
2

r
‖v‖rr − a2ε

r − 1
r

δ−r/(r−1)
2 ‖vt‖

m
m . (4.32)
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Let us choose δ1, δ2, µ1, µ2, λ1, and λ2 such that

δ−m/(m−1)
1 = M1H−σ (t)

δ−r/(r−1)
2 = M2H−σ (t)

µ1 = M3H−σ (t)

µ2 = M4H−σ (t)

λ
−β1/(β1−1)
1 = M5H−σ (t)

λ
−β2/(β2−1)
2 = M6H−σ (t)

(4.33)

for M1, M2, M3, M4, M5 and M6 large constants to be fixed later. Thus, by using (4.33),and for

M = M3 + M4 + (β1 − 1)M5/β1 + (β2 − 1)M6/β2 + (m − 1)M1/m + (r − 1)M2/r

then, inequality (4.32) takes the form

L
′

(t) ≥ ((1 − σ) − εM) H−σ (t) H
′

(t) + εkH (t) (4.34)

+ε

(
1 +

k
2

) (
‖ut‖

2
2 + ‖vt‖

2
2 + m2

1 ‖u‖
2
2 + m2

2 ‖v‖
2
2

)
+ε

(
c0

2 (ρ + 2)
−

kc1

2 (ρ + 2)

) (
‖u‖2(ρ+2)

2(ρ+2) + ‖v‖2(ρ+2)
2(ρ+2)

)
− εkE1

+ε

(
k
α
− 1

) (
‖∇u‖αα + ‖∇v‖αα

)
−

ε

4M3
Hσ (t) ‖∇u‖22 −

ε

4M4
Hσ (t) ‖∇v‖22

−
a1ε

m
M−(m−1)

1 Hσ(m−1) (t) ‖u‖mm −
a2ε

r
M−(r−1)

2 Hσ(r−1) (t) ‖v‖rr

−ε
M−(β1−1)

5

β1
Hσ(β1−1) (t) ‖∇u‖β1

β1
− ε

M−(β2−1)
6

β2
Hσ(β2−1) (t) ‖∇u‖β2

β2
,

We then use the two embedding L2(ρ+2) (Ω) ↪→ Lm (Ω) , W1,α
0 ↪→ L2(ρ+2) (Ω) and (4.25) to get

Hσ(m−1) (t) ‖u‖mm ≤ c2

(
‖u‖2σ(m−1)(ρ+2)+m

2(ρ+2) + ‖v‖2σ(m−1)(ρ+2)
2(ρ+2) ‖u‖m2(ρ+2)

)
≤ c2

(
‖∇u‖2σ(m−1)(ρ+2)+m

α + ‖∇v‖2σ(m−1)(ρ+2)
α ‖∇u‖mα

)
. (4.35)

Similarly, the embedding L2(ρ+2) (Ω) ↪→ Lr (Ω) , W1,α
0 ↪→ L2(ρ+2) (Ω) and (4.25) give
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Hσ(r−1) (t) ‖v‖rr ≤ c3

(
‖v‖2σ(r−1)(ρ+2)+r

2(ρ+2) + ‖u‖2σ(r−1)(ρ+2)
2(ρ+2) ‖v‖r2(ρ+2)

)
≤ c3

(
‖∇v‖2σ(r−1)(ρ+2)+r

α + ‖∇u‖2σ(r−1)(ρ+2)
α ‖∇v‖rα

)
. (4.36)

Furthermore, the two embedding W1,α
0 ↪→ L2(ρ+2) (Ω) , Lα(Ω) ↪→ L2(Ω), yields

Hσ (t) ‖∇u‖22 ≤ c4

(
‖u‖2σ(ρ+2)

2(ρ+2) ‖∇u‖22 + ‖v‖2σ(ρ+2)
2(ρ+2) ‖∇u‖22

)
≤ c4

(
‖∇u‖2σ(ρ+2)+2

α + ‖∇v‖2σ(ρ+2)
α ‖∇u‖2α

)
(4.37)

and

Hσ (t) ‖∇v‖22 ≤ c5

(
‖∇u‖2σ(ρ+2)

α ‖∇v‖2α + ‖∇v‖2σ(ρ+2)
α ‖∇v‖2α

)
(4.38)

= c5

(
‖∇u‖2σ(ρ+2)

α ‖∇v‖2α + ‖∇v‖2σ(ρ+2)+2
α

)
.

Since max(β1, β2) < α then we have

Hσ(β1−1) (t) ‖∇u‖β1
β1
≤ c6

(
‖∇u‖2σ(β1−1)(ρ+2)

α ‖∇u‖β1
α + ‖∇v‖2σ(β1−1)(ρ+2)

α ‖∇u‖β1
α

)
= c6

(
‖∇u‖2σ(β1−1)(ρ+2)+β1

α + ‖∇v‖2σ(β1−1)(ρ+2)
α ‖∇u‖β1

α

)
. (4.39)

and

Hσ(β2−1) (t) ‖∇v‖β2
β2
≤ c7

(
‖∇u‖2σ(β2−1)(ρ+2)

α ‖∇v‖β2
α + ‖∇v‖2σ(β2−1)(ρ+2)

α ‖∇v‖β2
α

)
= c7

(
‖∇u‖2σ(β2−1)(ρ+2)

α ‖∇v‖β2
α + ‖∇v‖2σ(β2−1)(ρ+2)+β2

α

)
. (4.40)

for some positive constants c2, c3, c4, c5, c6 and c7. By using (4.27) and the algebraic inequality

zν ≤ (z + 1) ≤
(
1 + 1

a

)
(z + a) , ∀z ≥ 0, 0 < ν ≤ 1, a ≥ 0, (4.41)
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we have, for all t ≥ 0,

‖∇u‖2σ(m−1)(ρ+2)+m
α ≤ d

(
‖∇u‖αα + H (0)

)
≤ d

(
‖∇u‖αα + H (t)

)
,

‖∇v‖2σ(r−1)(ρ+2)+r
α ≤ d

(
‖∇v‖αα + H (t)

)
,

‖∇u‖2σ(ρ+2)+2
α ≤ d

(
‖∇u‖αα + H (t)

)
,

‖∇v‖2σ(ρ+2)+2
α ≤ d

(
‖∇v‖αα + H (t)

)
,

‖∇u‖2σ(β1−1)(ρ+2)+β1
α ≤ d

(
‖∇u‖αα + H (t)

)
,

‖∇v‖2σ(β2−1)(ρ+2)+β2
α ≤ d

(
‖∇v‖αα + H (t)

)
,

(4.42)

where d = 1 + 1/H (0) . Also keeping in mind the fact that max(m, r) < α , using Yong’s inequality, the

inequality (4.41) togrther withe (4.27), we conclude



‖∇v‖2σ(m−1)(ρ+2)
α ‖∇u‖mα ≤ C

(
‖∇v‖αα + ‖∇u‖αα

)
,

‖∇u‖2σ(r−1)(ρ+2)
α ‖∇v‖rα ≤ C

(
‖∇u‖αα + ‖∇v‖αα

)
,

‖∇v‖2σ(ρ+2)
α ‖∇u‖2α ≤ C

(
‖∇v‖αα + ‖∇u‖αα

)
,

‖∇u‖2σ(ρ+2)
α ‖∇v‖2α ≤ C

(
‖∇u‖αα + ‖∇v‖αα

)
,

‖∇v‖2σ(β1−1)(ρ+2)
α ‖∇u‖β1

α ≤ C
(
‖∇v‖αα + ‖∇u‖αα

)
,

‖∇u‖2σ(β2−1)(ρ+2)
α ‖∇v‖β2

α ≤ C
(
‖∇u‖αα + ‖∇v‖αα

)
,

(4.43)

where C is a generic positive constant. Taking into account (4.35)- (4.43) , then, (4.34) takes the form
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L
′

(t) ≥ ((1 − σ) − εM) H−σ (t) H
′

(t) + ε

(
1 +

k
2

) (
‖ut‖

2
2 + ‖vt‖

2
2 + m2

1 ‖u‖
2
2 + m2

2 ‖v‖
2
2

)
+ε

([
k/α − 1 − kE1ζ

−a
2

]
−CM−(m−1)

1 −CM−(r−1)
2 (4.44)

−
C
4

M−1
3 −

C
4

M−1
4 −CM−(β1−1)

5 −CM−(β2−1)
6 − 1

) (
‖∇u‖αα + ‖∇v‖αα

)
+ε

(
k −CM−(m−1)

1 −CM−(r−1)
2 −

C
4

M−1
3 −

C
4

M−1
4

−CM−(β1−1)
5 −CM−(β2−1)

6

)
H (t)

+ε

(
c0

2 (ρ + 2)
−

kc1

2 (ρ + 2)

) (
‖u‖2(ρ+2)

2(ρ+2) + ‖v‖2(ρ+2)
2(ρ+2)

)
,

for some constant k. Using k = c0/c1, we arrive at

L
′

(t) ≥ ((1 − σ) − εM) H−σ (t) H
′

(t) + ε

(
1 +

c0

2c1

) (
‖ut‖

2
2 + ‖vt‖

2
2 + m2

1 ‖u‖
2
2 + m2

2 ‖v‖
2
2

)
+ε

(
c −CM−(m−1)

1 −CM−(r−1)
2 −

C
4

M−1
3 −

C
4

M−1
4 (4.45)

−CM−(β1−1)
5 −CM−(β2−1)

6 − 1
) (
‖∇u‖αα + ‖∇v‖αα

)
+ε

(
c0/c1 −CM−(m−1)

1 −CM−(r−1)
2 −

C
4

M−1
3 −

C
4

M−1
4

−CM−(β1−1)
5 −CM−(β2−1)

6

)
H (t) ,

where c = k/α − 1 − kE1ζ
−2
2 = c0/ (c1α) − 1 − (c0/c1) E1ζ

−2
2 > 0 since ζ2 > ζ1.

At this point, and for large values of M1, M2, M3, M4, M5 and M6, we can find positive constants Λ1 and

Λ2 such that (4.45) becomes

L
′

(t) ≥ ((1 − σ) − Mε) H−σ (t) H
′

(t) + ε

(
1 +

c0

2c1

) (
‖ut‖

2
2 + ‖vt‖

2
2 + m2

1 ‖u‖
2
2 + m2

2 ‖v‖
2
2

)
+εΛ1

(
‖∇u‖αα + ‖∇v‖αα

)
+ εΛ2H (t) . (4.46)

Once M1, M2, M3, M4, M5 and M6 are fixed (hence, Λ1 and Λ2), we pick ε small enough so that

((1 − σ) − Mε) ≥ 0 and

L (0) = H1−σ (0) +

ˆ
Ω

[u0.ut + v0.vt] dx > 0.

From these and (4.46) becomes

L
′

(t) ≥ εΓ
(
H (t) + ‖ut‖

2
2 + ‖vt‖

2
2 + m2

1 ‖u‖
2
2 + m2

2 ‖v‖
2
2 + ‖∇u‖αα + ‖∇v‖αα

)
. (4.47)
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Thus, we have L (t) ≥ L (0) > 0, for all t ≥ 0. Next, by Holder’s and Young’s inequalities, we estimate

(ˆ
Ω

u.ut (x, t) dx +

ˆ
Ω

v.vt (x, t) dx
) 1

1−σ

≤ C
(
‖u‖

τ
1−σ
2(ρ+2) + ‖ut‖

s
1−σ
2 + ‖v‖

τ
1−σ
2(ρ+2) + ‖vt‖

s
1−σ
2

)
≤ C

(
‖∇u‖

τ
1−σ
α + ‖ut‖

s
1−σ
2 + ‖∇v‖

τ
1−σ
α + ‖vt‖

s
1−σ
2

)
(4.48)

for
1
τ

+
1
s

= 1. We take s = 2 (1 − σ) , to get
τ

1 − σ
=

2
1 − 2σ

. By using (4.27) and (4.41) we get

‖∇u‖

2
(1 − 2σ)
α ≤ d

(
‖∇u‖αα + H (t)

)
,

and

‖∇v‖

2
(1 − 2σ)
α ≤ d

(
‖∇v‖αα + H (t)

)
, ∀t ≥ 0.

Therefore, (4.48) becomes

(ˆ
Ω

u.ut (x, t) dx +

ˆ
Ω

v.vt (x, t) dx
) 1

1−σ

≤ C
(
‖∇u‖αα + ‖∇v‖αα + ‖ut‖

2
2 + ‖vt‖

2
2 + m2

1 ‖u‖
2
2 + m2

2 ‖v‖
2
2 + H (t)

)
, ∀t ≥ 0. (4.49)

Also, since

L
1

1−σ (t) =

(
H1−σ (t) + ε

ˆ
Ω

(u.ut + v.vt) (x, t) dx
) 1

(1−σ)

≤ C

H (t) +

∣∣∣∣∣ˆ
Ω

(u.ut (x, t) + v.vt (x, t)) dx
∣∣∣∣∣ 1
(1−σ)

 (4.50)

≤ C
[
H (t) + ‖∇u‖αα + ‖∇v‖αα + ‖ut‖

2
2 + ‖vt‖

2
2 + m2

1 ‖u‖
2
2 + m2

2 ‖v‖
2
2

]
, ∀t ≥ 0,

combining withe (4.50) and (4.47), we arrive at

L
′

(t) ≥ a0L
1

1−σ (t) , ∀t ≥ 0. (4.51)

Finally, a simple integration of (4.51) gives the desired result.This completes the proof of Theorem

(4.4) �
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