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DESIGN OF A LEARNING METHOD FOR
AUTOMATIC DATA EXTRACTION
Abstract

Optimization is a scientific discipline that is concerned with the extraction
of optimal solutions for a problem, among alternatives. Many challenging
applications in business, economics, and engineering can be formulated as op-
timization problems. However, they are often complex and difficult to solve
by an exact method within a reasonable amount of time.

In this thesis we propose a novel approach called population based iterated
greedy algorithm in order to efficiently explore and exploit the search space
of one of the NP-hard combinatorial optimization problems namely the min-
imum weigh vertex cover problem. It is a fundamental graph problem with
many important real-life applications such as, for example, in wireless com-
munication, circuit design and network flows.

An extensive experimental evaluation on a commonly used set of benchmark
instances shows that our algorithm outperforms current state-of-the-art meth-

ods not only in solution quality but also in computation time.

Keywords: stochastic algorithms, combinatorial optimization problem,

minimum weight vertex cover problem, greedy heuristic




CONCEPTION D’UNE METHODE AUTOMATIQUE
D’APPRENTISSAGE POUR LA FOUILLE DE DONNEES

Résumé

[’optimisation est une discipline scientifique qui s’intéresse a l'extraction
des solutions optimales pour un probléme donné, présentant plusieurs solu-
tions. De nombreuses applications stimulantes dans l'industrie, en finances
et en ingénierie peuvent étre formulées comme des problémes d’optimisation.
Cependant, ils sont souvent complexes et difficiles & résoudre avec exactitude
dans des temps de calcul acceptables.

Dans cette thése, nous proposons une nouvelle approche appelée algorithme
glouton itératif & base de population pour explorer et exploiter d’'une maniere
adéquate l’espace de recherche de 'un des problémes d’optimisation combi-
natoires de classe NP-difficile. Il s’agit du probléme de la couverture par les
sommets de poids minimum qui est un probléme fondamental dans la théorie
de graphe, couvrant de nombreuses applications dans les domaines de la com-
munication sans fils, de la conception des circuits et du controle du flux dans
les réseaux.

Une évaluation expérimentale approfondie sur les différents jeux de données
disponibles dans la littérature montre que ’algorithme développé, concurrence
aisément en terme de qualité des solutions et des temps de calcul associés, les

méthodes de pointe actuelles dans la plupart des cas.

Mots-clés: algorithmes stochastiques, optimisation combinatoire, probléme

de la couverture par les sommets de poids minimum, heuristique glouton.




CHAPTER 1

Introduction

Contents
1.1 Overview . . . . . i i i i i ittt e e e e e e e 1
1.2 Owur contributions . . ... .. ... ... ... .. 5
1.3 Thesis organization . ... ... ............. 8
1.4 Academic Publications Produced . . . ... ... ... 9

1.1 Overview

Optimization is a scientific discipline that is concerned with the detection of
optimal solutions for a problem, among available (finite or infinite number of)
alternatives. The optimality of solutions is based on one or several criteria that
are usually problem and user dependent [Parsopoulos 2010]. It may occur in
the minimization of time, cost, and risk or the maximization of profit, quality,
and efficiency [El-Ghazali 2009].

Optimization involves the study of optimality criteria for problems, the de-
termination of algorithmic methods of solution, the study of the structure of
such methods, and computer experimentation (implementation) with meth-
ods both under trial conditions and on real life problems. The process of
optimization may be represented schematically as in Figure 1.1. We begin
by understanding and analyzing the real problem in order to determine what

to optimize and identify the relevant and essential objects that are present
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in the problem for which to create a model. Then, we choose and design an
algorithm or solution technique to apply to it. After the developed algorithm
is implemented, the two phases of verification and validation are necessary
for reviewing the model design according to the objectives and specifications
previously defined in the analyze process. The verification ensures that the
computer implementation is actually carrying out the algorithm as it is sup-
posed to. Validation and sensitivity analyzis is the process of making sure
that the model or solution technique is appropriate for the real situation and
looks at the effect of the specific data on the results. It is here that the loop is
completed and we finally compare the results we are obtaining with the real
situation. Are the results appropriate? Do they make sense? Does the model
need to be modified, or another solution technique chosen? If so, then the

loop begins again [Chinneck 2012].

[ Real world problem ]

Validation,
analyzis
Sensitivity analyzis
Algorithm, Model,
Solution technique
Numerical methods Verification

Computer im-

plementation

Figure 1.1: The process of the optimization cycle.

An optimization problem begins with a set of independent variables or

parameters, and often includes conditions or restrictions that define the ac-
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ceptable values of the variables. Such restrictions are termed the constraints
of the problem. Another essential component is a measure of goodness called
the objective function, which depends in some way on the variables. The so-
lution of an optimization problem (not necessarily unique) is a set of allowed
values of the variables for which the objective function achieves an optimal
value (its maximum or minimum value)|Gill 1982]. Many challenging appli-
cations in business, economics, and engineering can be posed as optimization
problems. In fact, real-life problems solving are often complex and difficult
to solve to which optimization plays a key role in finding feasible solutions to

these problems. Some of the reasons why this is so include [Spall 2003]:

e Presence of noise in solution evaluation as the objective function is not
always either easily measurable or possible to write it in the explicit

form.

e Difficulties in distinguishing global from local optimal solutions (The

quality of solutions is not very attractive).

e Exponential growth of the search space with problem dimension (Exces-

sive computation time).

e Difficulties associated with constraints and the need for problem-specific

methods.

e The lack of stationarity in the solution as a result of the conditions of

the problem changing over time.

This thesis describes an investigation into the development of a stochastic
optimization approach to solve the minimum weight vertex cover problem
(MWVCP) which is a fundamental graph problem with many important real-
life applications such as, for example, in wireless communication, circuit design

and network flows. Given an undirected graph G = (V, E) with weights on
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its vertices, the goal of MWVCP is to find among all subsets S C V that
are vertex covers a subset S* for which the sum of the weights of the vertices
is minimal. A vertex cover of a graph is a subset of vertices such that each
edge has at least one endpoint in the subset. MWVCP is one of the classic
Karp’s 21 NP-complete problems [Karp 1972| for which no polynomial-time
algorithm is known to solve it at optimality. Due to its inherent complexity,
classical approaches are not practical since the time involved to compute an
optimal solution increases exponentially with the size of the problem mak-
ing an exhaustive search impossible due to the combinatorial nature of the
problem. As well as many other difficult optimization problems, one is forced
to compromise. Thus, instead of looking for algorithms that provide optimal
solutions in polynomial time, an efficient algorithm that can generate near-
optimal solutions is more desirable. In the last decades, a variety of methods
have been devised to deal with this problem and most of them are based on
heuristics for providing approximate solutions in reasonable computation time.
In fact, most of the developed algorithms are greedy heuristics. The first one
was introduced in [Chvatal 1979|. It starts with an empty partial solution and
adds one vertex at a time. More specifically, at each step it chooses the ver-
tex with the minimum ratio between vertex weight and current degree. Note
that the current degree is only determined by edges that are not yet covered.
Pitt [Pitt 1985] proposed a randomized 2-approximation algorithm which re-
peatedly selects one end-point (vertex) of an arbitrarily chosen edge with a
probability inversely proportional to its weight. From complexity theory it
is known that—unless P = NP—it is impossible to approximate the vertex
cover problem, which is a special case of MWVCP in which all vertices are of
unit weight, within any factor smaller than 10v/5 — 21 ~ 1.3606 [Dinur 2005].
Moreover, it might be hard to approximate it within an approximation ratio
of 2—e for all ¢ > 0 [Khot 2003]. In addition to heuristics, several metaheuris-

tics have been proposed for tackling MWVCP. Khuri and Béck [Khuri 1994]
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treated MWVCP as a constrained combinatorial optimization problem and
introduced a genetic algorithm that makes use of a graded penalty term in-
corporated into the fitness function to penalize infeasible solutions. Further-
more, a steady-state genetic algorithm hybridized with a greedy heuristic has
been reported in [Singh 2006]. The genetic algorithm generates vertex covers
which are then refined by the greedy heuristic. That is, the heuristic first
finds the set of those vertices in the vertex cover whose edges are fully cov-
ered by other vertices within the cover. Then it consecutively quasi-randomly
removes the vertex, having the maximum ratio of weight to degree, from this
set from the vertex cover until the set is empty. Recently, an ant colony
optimization approach (ACO) was proposed by Shyu et al. in [Shyu 2004].
According to their empirical results ACO outperforms others metaheuristics
such as tabu search and simulated annealing. This algorithm was further im-
proved in [Jovanovic 2011] by incorporating a pheromone correction strategy
in the hope to avoid stagnation of the search and the convergence to local
optima. An optimization approach based on the law of gravity has been de-
scribed in [Balachandar 2009]. The results of this approach were compared
to genetic algorithms and some greedy heuristics. More recently, Vofs and
Fink [Vok 2012] propose to solve MWVCP by means of a hybridization of
reactive tabu search and simulated annealing. However, these proposed ap-
proaches generally seem not to scale well. Moreover, they seem to be quite

time consuming for large size problem instances.

1.2 Owur contributions

This research has been motivated by an interest in developing a new variant
of the iterated greedy algorithm capable of tackling MWVCP in a more ef-
fective way than currently exists. The proposed approach called population-

based iterated greedy algorithm (PBIG) is able to provide state-of-the-art
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results in a short computational time. Several studies from the literature
have shown that constructive heuristics may be improved by a simple meta-
heuristic framework known as an iterated greedy algorithm (IG). Our ap-
proach belongs to this class of algorithms having recently received consider-
able attention regarding their potential for effectively solving a wide range of
difficult discrete/combinatorial optimization problems, including the founder
sequence reconstruction problem [Benedettini 2010], various scheduling prob-
lems [Ruiz 2007, Fanjul-Peyro 2010, Ribas 2011 and the maximum diversity
problem |Lozano 2011]. At each iteration, IG algorithms first partially destroy
the incumbent solution before a greedy heuristic is used to derive a complete
solution from the partially destroyed solution [Hoos 2004]. According to Hoos
and Stiitzle [Hoos 2004], two important advantages of starting the solution
construction from partial solutions are that (i) the solution construction pro-
cess is much faster and (ii) good parts of solutions may be exploited directly.

Our contributions can be summarized in the following points.

e A crucial issue in the design of an IG algorithm is the choice of the
constructive greedy heuristic, which has a great impact on its perfor-
mance. For the construction phase of PBIG, we develop an efficient ran-
domized greedy construction heuristic based on the heuristic described
in [Chvatal 1979, Clarkson 1983]. During the destruction phase, a fixed
number of randomly chosen vertices (generally referred to as solution
components) are removed from the incumbent solution. Hereby, the
size of destruction is determined as a fixed proportion of the incumbent

solution.

e We carry out extensive parameter tuning experiments for the proposed
algorithm to investigate the effects of parameter tuning of performance
using a cluster of PCs equipped with Intel Xeon X3350 processors with
2667 MHz and 8 Gigabytes of memory.
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e We assess the performance of our algorithm on all benchmark instances
that have been recently considered by many researchers, such as Shyu
et al. [Shyu 2004], Sing and Gupta [Singh 2006], Balachandar and Kan-
nan [Balachandar 2009], and more lately Jovanovic and Tuba [Jovanovic 2011].
In other words, PBIG was tested on 1125 graphs of different size, ranging

from a few dozen to about 1000 nodes.

e With the aim of increasing the efficiency of the proposed algorithm, we
extend it to be able to work with a population of solutions, rather than
being restricted to a single incumbent solution. That is, we investigated
how its performance is affected by the size of evaluated solutions for each
PBIG iteration. The experimental evaluation shows that this extension

contributes significantly to the quality of the obtained results.

the experimental results show that PBIG is able to outperform recent state-
of-the-art algorithms such as the ones proposed in [Shyu 2004, Singh 2006,
Balachandar 2009, Jovanovic 2011]. Another advantage of our approach is
the fact that it is able to derive good solutions for difficult problem instances
in a short computation time.

During the first phases of our research we have also implemented an ant
colony optimization (ACO) [Dorigo 2004, Dorigo 1996| approach for the motif
finding problem (See Section 3.6 ) as it is considered as one of the challenging
problems in molecular biology, which aim to identify the specific binding sites
of transcription factors in the promoter regions of genes. The motif finding
problem belongs also to the class of NP-complete problems, and therefore the
existence of a polynomial time algorithm to solve the problem optimally is
unlikely. We design a hybrid approach combining MAX-MZIN Ant System
[Stiitzle 2000], one of the best performing variants of ACO metaheuristic, and
a deterministic Gibbs sampling approach |[Lawrence 1993], plays the role of

a local heuristic optimization step, to give a near optimal solution to the
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motif finding problem in a reasonable amount of time. Unlike other motif
finding techniques, our approach called Motif Finding based on Ant Colony
Optimization (MFACQO) searches both in the space of starting positions as well
as in the space of motif patterns. So that, it has more chances to find potential
motif patterns. Although the method is also valid for protein sequences, we
apply it only to DNA sequences.

To judge the goodness of MFACO, a series of computational experiments
are performed on some datasets including the FEscherichia coli CRP protein
dataset. Its performance was compared with other recent proposed algorithms
for finding motifs such as Genetic Algorithms [Liu 2004, Che 2005, MEME
[LcBailey 1994], MotifSampler [Thijs 2001|, and BioProspector [Liu 2001].

1.3 Thesis organization

The outline of the thesis is as follows. Chapter 2 provides the theoretical
background of the thesis. It gives a brief review of both optimization problems
and of the techniques used for solving such problem. It begins with a definition
of optimization problems and introduces a possible classification of them. To
help clarify the inherent difficulty of optimization problems, the key terms and
notations in the context of problem complexity that pertain to our research are
then presented. The remaining part of the chapter is devoted to a discussion
of different types of problem solving techniques. It briefly discusses exact
methods, heuristics, and metaheuristics.

The aim of chapter 3 is twofold. The first is to present some of well-known
stochastic optimization techniques that are used for solving optimization prob-
lems especially those that deal with combinatorial optimization problems such
as ant colony optimization, genetic algorithm, iterated local search, and greedy
randomized adaptive search procedure. The second explains how ant colony

optimization can be applied successfully to the motif finding problem. We
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present the motif finding problem and explain in detail the main algorithmic
components of the proposed approach to deal with this problem. A discussion
of the experimental results is also provided.

Chapter 4 is devoted to the minimum weight vertex cover problem. First,
it recalls some basic definitions of graph theory. Then, the problem is formally
defined and illustrated by an example. After mentioning the complexity of
MWVCP, the related works from the literature are reported. A particular at-
tention is given to three approximation algorithms based on greedy heuristics.

Chapter 5 is the motivation of this research work. It describes in more
detail the framework of the proposed approach (PBIG). In order to help un-
derstanding the basic structure of PBIG a pseudo-code is given for its main
algorithmic components.

Chapter 6 reports the results of an extensive experimental performance
evaluation of PBIG on several well-known benchmark datasets. We first de-
scribe the set of benchmark instances that have been used to test our ap-
proach. Then, we report on the tuning process that has been employed for
finding well-working settings for the algorithm parameters. Finally, a compar-
ison of the performance of PBIG against the performance of recently published
algorithms is provided.

The last chapter concludes the thesis and highlights an outlook on the

future work.

1.4 Academic Publications Produced

The following academic papers have been produced as a result of this research.

e Salim Bouamama, Christian Blum and Abdellah Boukerram. A popula-
tion based iterated greedy algorithm for the minimum weight vertex cover

problem. Applied Soft Computing, vol. 12, no. 6, pages 1632-1639. Else-
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vier, 2012. http://www.sciencedirect.com/science/article/pii/

S1568494612000737. ISSN: 1568-4946, Impact Factor: 2.612.

e Salim Bouamama, Christian Blum and Abdellah Boukerram. A pop-
ulation based iterated greedy algorithm for the minimum weight vertex
cover problem. Accepted for oral presentation at the 215 International

Symposium on Mathematical Programming (ISMP), Berlin, 2012.

e Salim Bouamama, Abdellah Boukerram and Amer F. Al-Badarneh. Mo-
tif Finding Using Ant Colony Optimization. In Marco Dorigo et al., edi-
tors, Swarm Intelligence, volume 6234 of Lecture Notes in Computer Sci-
ence, pages 464-471. Springer Berlin Heidelberg, 2010. http://link.
springer.com/chapter/10.1007/978-3-642-15461-4_45. ISBN: 978-
3-642-15460-7.
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2.1 Definition of an optimization problem

In applied mathematics and theoretical computer science, most optimiza-

tion problems can be mathematically expressed as the following generic form
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[Yang 2010]:
mirglgierglize fm(z), (m=1,---,M), (2.1)
subject to ¢;(zx) =0, (7=0,---,J), (2.2)
Ur(z) <0, (k=0,---,K), (2.3)
where f,,,(x), ¢;(x) and ¢ () are functions of the design vector x = (xy,--- , x;, - - -

of which the components x; are called design or decision variables, and they
can be real continuous, discrete or a mixture of these two. The functions
fm(z), m = 1,--- M are called the objective functions, and in the case of
M = 1 there is only a single objective. The objective function is sometimes
called the cost function or energy function in literature. It is worth noting
that it is always possible to transform a minimization problem to maximiza-
tion problem by proper sign manipulation. The space spanned by the decision
variables is called the search space &, while the space formed by the objec-
tive function values is called the solution space. The equalities for ¢;(z) and

inequalities for ¢y (x) are called constraints.

2.2 Classification of optimization problems

There are many possible ways of classifying optimization problems since it is
not well established and there is some confusion in literature. Classification

can be carried out with respect to (see Figure 2.1) [Yang 2010]:

e The number of objectives: in the case of M = 1 we have a single
objective optimization problem and the other case, M > 1, corresponds
to the multiobjective optimization problem. The latter is also referred to
as multicriteria or even multi-attributes optimization in literature and

most real-life problems are of this form of optimization.

e The existence of constraints: any optimization problem may be
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classified as constrained or unconstrained, depending on whether or not
constraints exist in the problem. An unconstrained optimization problem
implies that there is no constraint at all J = K = 0. When J + K > 0

it becomes a constraint optimization problem.

e The function form: The objective functions can be either linear or
nonlinear. If the constraints ¢; and ), are all linear, in consequence a
linearly constrained problem is obtained. On the other hand when all
the functions of the design vector are nonlinear, the problem is called a

nonlinear optimization problem.

e The landscape of the objective functions: for a single objective
function, the shape or the landscape may vary significantly in the non-
linear case. If there is only a single valley or peak with a unique global
optimum, then the optimization problem is said to be unimodal. In this
case, the local optimum is the only optimum, which is also its global
optimum. However, most objective functions have more than one mode,

and such multimodal functions are much more difficult to solve.

e The type of the value of the design variables: if the values of
all design variables are discrete or can be reduced to discrete, then the
optimization is called discrete optimization as opposed to continuous
optimization where all the design variables are continuous or taking
real values in some interval. Discrete optimization can be divided into
two categories: integer programming problem where all variables are
restricted to take integer values and combinatorial optimization problem.
Combinatorial optimization involves the search for an optimal object in
a finite collection of objects which has typically a concise representation

such as a graph [Schrijver 2003].

e The uncertainty in values: So far, we only consider the case when
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Figure 2.1: Classification of optimization problems

the values in both design variables and objective/constraints are exact,
and there is no uncertainty or noise in their values. All the optimization
problems are deterministic in the sense that for any given set of de-
sign variables, the values of both objective functions and the constraint
functions are determined exactly. Thus, if there are any uncertainty
and noise in the design variables and the objective functions and/or
constraints, then the optimization becomes a stochastic optimization

problem, or a robust optimization problem with noise.
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2.3 Computational complexity

The difficulty of an optimization problem is generally measured mathemati-
cally in the form of complexity theory of which the central question is what
makes some problems computationally hard and others easy. Thus, com-
plexity theory is part of the theory of computation dealing with minimal
resources required during computation to solve a given problem. The amount
of computational resources is determined by its time and space complexity

[Rothlauf 2011, Edelkamp 2012].

o Time complexity describes how many iterations or a number of search
steps are necessary to solve a problem or produce its result. Problems

are more difficult if more time is necessary.

e Space complexity describes the amount of space (usually memory on a

computer) that is necessary to solve a problem.

The main objective of complexity theory is to deal with the following tasks

[Avazbeigi 2009]:
e Define clearly what solving a problem efficiently means.

e Categorize problems into those that can be solved efficiently and those

that cannot.
e Estimate the amount of time (or memory) needed to solve problems.

It is clear that the efficiency of an algorithm refers to its usage of computer
resources and the usual measure is the algorithm’s running time which clearly
depends on the size and nature of the input. However, there are some resolu-
tion techniques whose behavior can vary even for a fixed input as in random-
ized algorithms or among inputs of the same size. A randomized algorithm is

one that makes some random (or pseudorandom) choices.
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In the next section, we recall some basic concepts from complexity theory
which are used throughout the thesis and may be useful to understand the

complexity of problem solving methods.

2.3.1 Definitions and basic concepts

Definition 1.1 [Korte 2012, Levitin 2012| An algorithm is a sequence of un-
ambiguous instructions for solving a problem, i.e., for obtaining a required
output for any legitimate input in a finite amount of time. Each instruction
can be composed of elementary steps (basic operations), such that for each
valid input the computation of the algorithm is a uniquely defined finite series
of elementary steps which produces a certain output.
However, one is not usually satisfied with a finite computation but rather want
a good upper bound on the number of elementary steps performed, depending
on the input size.
Definition 1.2. (The Big-O Notation) [Cormen 2009| Let f,¢g: D — R*
be two functions of variable n. We say that f is O(g) if f(n) is bounded above
by some constant multiple of g(n) for all large n, that is, if there exist positive
constants ¢ and ng such that 0 < f(n) < cg(n) for all n > ny.
Note that for all values n at and to the right of ng, the value of the function
f(n) is on or below cg(n) as illustrated in Figure 2.2. Thus, the Big-O nota-
tion is used to describe concisely the running time of an algorithm by finding
only the worst-case running time, that is, the longest running time for any
input of size n, because the exact running time of an algorithm is often a
complex expression and it is usually estimated.

Let us take an example, consider a function defined as f(n) = 2n*+5n+3.
It is easy to show that f(n) = O(n?). We have f(n) = 2n? + 5n + 3, so that,
f(n) < 2n? +5n% + 3n? = 10n? for all n > 1. Hence, there exists ¢ = 10 and

no = 1 such that f(n) < cn? for all ny > 1.
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Figure 2.2: Graphic example of the O notation.

Definition 1.3. (The time complexity of an algorithm) Let A be an
algorithm which accepts inputs from a set X, and let f : N — R*. If there
exist constants ¢, ng > 0 such that A terminates its computation after at most
(worst-case running time) cf(n), for all n > ng, elementary steps for each
input z € X and n denotes the size of x, then we can say that A runs in O(f)
time or the running time (or the time complexity) of A4 is O(f).
Definition 1.4. (Polynomial time) An algorithm is said to run in polyno-
mial time if there is a fixed positive integer k such that its time complexity
is O(n*), where n is the input size. Note that running times like O(nlogn)
are also polynomial time, since nlogn = O(n?). Algorithms running in linear
(O(n)), logarithmic (O(logn)) and constant time (O(1)) are the faster algo-
rithms of those running in polynomial time. A computational problem is said
to be solved efficiently if it is solvable in polynomial time. The problems that
can be solved in polynomial time are also scalled tractable problems or easy
problems. Otherwise, the problems that cannot be solved in polynomial time
are called intractable problems.

Definition 1.5. (Exponential time) An algorithm is said to run in expo-

nential time if there is a fixed positive integer k& such that its time complexity
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is O(k™), where n is the input size. As the size of the problem increases lin-
early, the time to solve the problem increases exponentially.

Definition 1.6. (An instance of a problem) [Cormen 2009] An instance /
of a problem P consists generally of the input (satisfying whatever constraints
that are imposed in the problem statement) needed to compute a solution to
the problem. This means that I is obtained by specifying particular values
for all parameters of P.

Definition 1.7. (Performance guarantee) [Korte 2012] Let P be an op-
timization problem with non-negative weights and k > 1. A k-factor approx-

imation algorithm for P is a polynomial-time algorithm A for P such that

% OPT(I) < A(I) < k OPT(1) (2:4)

for all instances I of P. We also say that A has performance ratio (or per-
formance guarantee) k. The first inequality applies to maximization prob-
lems while the second one to minimization problems. Note that for instances
I with OPT(/)= 0 we require an exact solution. The 1-factor approximation

algorithms are precisely the exact polynomial-time algorithms.

2.3.2 Complexity classes

The subject of computational complexity theory deals with the classification
of problems according to their level of difficulty. As stated previously, the
computational complexity of a problem is usually measured in terms of the
minimal computational resources required for its solution. This depends gen-
erally on the time of the best found algorithm that can solve this problem.
Therefore, a complexity class is a set of problems of related complexity. As
depicted in Figure 2.3, four important classes of problems are usually iden-
tified in this context: P, NP, N'P-hard, and NP-complete classes. For a
general background on the complexity classes presented here, see [Karp 1972,

Avazbeigi 2009, Garey 1979]. Recall that a decision problem is a problem that
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has only two possible answers: yes or no. For example, the problem of decid-
ing whether a graph has a Hamilton cycle. A Hamilton cycle of a graph is a
simple cycle that passes through each vertex of the graph.

2.3.2.1 Class P

It is the set of all decision problems that can be solved by polynomial-time
algorithms. Note that P stands for polynomial time. For all problems in P,
an algorithm exists that can solve any instance of the problem in time that is

O(n*).

2.3.2.2 Class NP

This complexity class describes the set of decision problems of which a yes
solution can be guessed and verified in polynomial time. Note that NP stands
for non-deterministic polynomial time. An equivalent definition of NP is that
the set of all decision problems that can be solved by polynomial-time non-
deterministic algorithms. Non-deterministic means that no particular rule is
followed to make the guess. Besides, P is a subset of NP, P C NP. One
of the important open questions in complexity theory is whether class P is
equal or not equal class N'P. Nevertheless, this has never been proven and it

is widely believed that P # N'P.

2.3.2.3 Class N'P-complete

Assume that P # NP, a subset of NP\ P comprising the hardest problems in
NP are called N'P-complete problems. Formally, A problem is N'P-complete
if it is in NP and each N'P problem can be reduced to it in polynomial time.
This class has a significant properly that if any A/P-complete problem can
be solved in polynomial time, then every problem in AP has a polynomial-

time solution, that is, P = N'P. Despite years of study, no polynomial-time
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algorithm has ever been found for any N'P-complete problem [Cormen 2009).

2.3.2.4 Class NP-hard

The class of N'P-hard problems contains problems which are not in NP but
any NP problem can be transformed to them in polynomial time. The name
of this class means that such problem is at least as hard as any problem in
NP. It is a more general class of problems that comprises, for example, the
search and optimization variants of the NP-complete problems. However,
The fact that an optimization problem is NP-hard does not imply that all
instances are difficult to solve. Whereas in practice there are at least three

ways of dealing with these problems [Hoos 2004]:

e Find an application relevant subclass of the problem that can be solved
efficiently. Optimization problems which are N'P-hard may still be pos-
sible to have important special cases that are solvable in polynomial

time.

o If we are faced with a case where a polynomial solution does not ex-
ist, one possibility is to accept suboptimal solutions in polynomial time
with a certain performance guarantee using efficient approximation al-
gorithms. Formally, the degree of suboptimality of a solution quality
is expressed in the form of the approximation ratio as described in the

previous section.

e Another possibility when the notion of approximation cannot be applied

at all, is to focus on stochastic rather than deterministic algorithms.

We should note that these three possible ways summarize the types of
optimization methods that can be used to cope with this class of problems.

They are explained briefly in the following sections.
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NP-Complete

Figure 2.3: The relationships among complexity classes of problem (Assuming

P #NP).
2.4 Local Versus Global Optima

Solutions found by optimization algorithms are classified by the quality of
the solution. The main types of solutions are referred to as local optima or
global optima . In the following discussion, it will be assumed, without loss
of generality, that by optimization we mean minimization. Let us consider
the problem of optimizing (minimizing) a function (objective function) f(x)
subject to x € F C S where F is the set of feasible solutions. The point
(solution) z* € F is a global optimum (global minimum) of f if f(a*) < f(x)
for all z € F. Therefore, the global minimum is the best of a set of candidate
solutions. We should note that an optimization problem may have more than
one global optimum. In addition to the global minimum, the function f may
also admit local minimum (minima). A point z}, € F is a local minimum
of f if there exists an e-neighbourhood set N' C S, around z}, such that

f(xy) < f(x) for each x € FNN, for some ¢ > 0 (i.e., N = {z: ||z}, — 2| <
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e}). It is obviously that F NN represents the set of feasible points in the
neighborhood of z},. Figure 2.4 |[Bazaraa 2000] illustrates instances of local

and global optimum.
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Figure 2.4: Local Versus Global Optima

2.5 Optimization methods

In this thesis we concentrate on combinatorial optimization problems which
is by far the most popular type of optimization that has attracted the interest
of many researchers in the recent years. Combinatorial optimization prob-
lems are conceptually easy to model but most of them are quite difficult to
solve in practice. The main difficulty in solving combinatorial optimization
problems arises from the fact that the number of feasible solutions from which
the best solutions needs to be selected grows exponentially with the size of

the problem instances. Let us consider the classical combinatorial optimiza-

ey ™ e e e o — —
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tion problem known as the traveling salesman problem that involves finding
the shortest path tour visiting each of N cities exactly once and returning to
the starting city. An instance of the problem with N cities contains w
solutions. Hence, enumerating all of these solutions is of complexity of the
order of O(N™). One possibility to deal with this problem is to perform an
exhaustive search which enumerates the entire set of feasible solutions and
evaluates the cost of each solution, after which the best solution is retained.
For example, if N = 10 there are 1.81 x 10° possible solutions. Enumerating
all of them and choosing the best one is feasible in a short computation time.
However, if N = 100 there are about 4.66 x 10'® solutions. In this case,
enumerating all the possible solutions seem to require a large computation
time. Consequently, exhaustive search is only practical for problems with a
relatively small number of cities.

Combinatorial optimization problems can be solved by using two different
types of approaches that are briefly presented in the remaining part of this
section (see Fig. 2.5 |[El-Ghazali 2009]) . The first approach is by using ex-
act algorithms. The second approach is applied to more complex or larger
problems, leads to near-optimal solutions and is characterized by the use of
approximate algorithms. Approximate algorithms can be further divided to
heuristic and meta-heuristic methods.

Usually, if for an approximate algorithm it can be proved that it returns
solutions that are worse than the optimal solution by at most some fixed
value or factor, such an algorithm is also called an approzimation algorithm

[Dorigo 2004].

2.5.1 Exact methods

Exact methods (also named as complete algorithms) are guaranteed to find an

optimal solution in bounded time for every finite size instance of a combina-
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Figure 2.5: Classical optimization methods

torial optimization problem and asses its optimality. However, for the typical
combinatorial optimization problems which are usually difficult to optimize,
no algorithms exist to solve these problems in polynomial time. Furthermore,
the computation time for these methods in most cases increases exponentially
with respect to the problem size, leading to impractical computation time for
real large-scale problems. Therefore, exact methods are usually suitable for
computations on small instances. Examples of some well-known exact meth-
ods include the family of Branch and X (Branch and Bound algorithm, Branch
and Cut algorithm and Branch and Price algorithm), Dynamic Programming,
Linear Programming and as well as many specialized algorithms that have

been developed for particular combinatorial optimization problems.

2.5.2 Approximate methods

An unfortunate reality is that, real-life combinatorial optimization problems
are typically of big size and the number of solutions can grow exponentially
with the size of the problem, so scanning all solutions one by one and selecting

the best one is not is not practical due to the computational expense of per-
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forming an exhaustive search. In other words, they cannot be solved exactly
within a reasonable amount of computational resources. Therefore, using ap-
proximate approaches is the main alternative to solve this class of problems
[El-Ghazali 2009]. According to Talbi [El-Ghazali 2009, approximate algo-

rithms can be classified in two families: specific heuristics and metaheuristics.

2.5.2.1 Heuristics

The word heuristic has its origin in the old Greek verb heuriskein, which
means to find. A heuristic is a technique which seeks good (i.e. near-optimal)
solutions at a reasonable computational cost without being able to guarantee
either feasibility or optimality, or even in many cases to state how close to
optimality a particular feasible solution is [Reeves 1993|.

Heuristic is also defined by Yang [Yang 2010] as a solution strategy by trial-
and-error to produce acceptable solutions to a complex problem in a rea-
sonably practical time. The complexity of the problem of interest makes it
impossible to search every possible solution or combination, the aim is to find
good, feasible solutions in an acceptable timescale. There is no guarantee
that the best solutions can be found, and we even do not know whether an
algorithm will work and why if it does work.

The idea is that an efficient but practical algorithm that will work most of the
time and be able to produce good quality solutions. Among the found quality
solutions, it is expected that some of them are nearly optimal, though there

is no guarantee for such optimality.

On the other hand, Heuristics are often problem-specific, so that a method
which works for one problem cannot be used to solve a different one. The
usual classification of heuristic methods is either constructive or local search

methods [Blum 2003, Dorigo 2004] .
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e Constructive algorithms generate solutions from scratch by iteratively
adding solution components to an initially empty solution until the
solution is complete. Constructive heuristics are generally the fastest
approximate algorithms although some special implementations may in-
duce a high computational load. Their advantage in computational time
requirements is counterbalanced by generally inferior quality solutions

when compared to local search techniques.

e Local search algorithms start from an initial solution (most of the times
generated by a constructive heuristic or randomly) and iteratively try
to replace part or the whole current solution with a better one in an
appropriately defined set of neighboring solutions by local changes. The
definition of a neighborhood is important for optimization problems as
it determines which solutions are similar to each other. A neighborhood
is a mapping NV (x) : X — 2%, where X is the search space containing
all possible solutions to the problem. 2% stands for the set of all possible
subsets of X and N is a mapping that assigns to each element xr € X a
set of elements y € X. Thqt is, a neighborhood definition can be viewed
as a mapping that assigns to each solution x € X a set of solutions y

that are neighbors of x [Rothlauf 2011].

2.5.2.2 Metaheuristics

A disadvantage of single-run algorithms like constructive methods or iterative
improvement is that they either generate only a very limited number of dif-
ferent solutions, which is the case for greedy construction heuristics, or they
stop at poor quality local optima, which is the case for iterative improvement
methods. Unfortunately, the obvious extension of local search, that is, to
restart the algorithm several times from new starting solutions, does not pro-

duce significant improvements in practice. Several general approaches, which
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are nowadays often called metaheuristics, have been proposed which try to
bypass these problems [Dorigo 2004]. The term metaheuristic was first intro-
duced by Glover [Glover 1986]. It is composed of two Greek words, Heuristic
and the suffix meta which means beyond, in an upper level. Before this term
was widely adopted, metaheuristics were often called modern heuristics.
Although there is no commonly accepted definition of the term metaheuris-
tic, the following definition seems to be most appropriate: a metaheuristic is
an iterative master process that guides and modifies the operations of sub-
ordinate heuristics to efficiently produce high quality solutions by combining
intelligently different concepts for exploring and exploiting the search space.
The subordinate heuristics may be high (or low) level procedures, or a simple
local search, or just a construction method [Osman 1996, Glover 1997].
Unlike exact optimization algorithms, metaheuristics do not guarantee the
optimality of the obtained solutions. Instead of approximation algorithms,
metaheuristics do not define how close are the obtained solutions from the
optimal ones.

Based on the above definition, the main properties characterizing the notion

of metaheuristic can be summarized in the following points [Blum 2003].
e Metaheuristics are strategies that guide the search process.

e The goal is to efficiently explore the search space in order to find (near-)

optimal solutions.

e Techniques which constitute metaheuristic algorithms range from simple

local search procedures to complex learning processes.
e Metaheuristic algorithms are approximate and usually non-deterministic.

e They may incorporate mechanisms to avoid getting trapped in confined

areas of the search space.
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The basic concepts of metaheuristics permit an abstract level descrip-

tion.

Metaheuristics are not problem-specific.

Metaheuristics may make use of domain-specific knowledge in the form

of heuristics that are controlled by the upper level strategy.

Todays more advanced metaheuristics use search experience (embodied

in some form of memory) to guide the search.

Metaheuristics have received increasing attention in recent years in the solu-
tion of combinatorial optimization problems, since they are able to yield high
quality solutions with reasonable computational effort. The family of meta-
heuristics includes, but is not limited to, Ant Colony Optimization (ACO),
Genetic Algorithms (GA), Iterated Local Search (ILS), Simulated Annealing
(SA), Tabu Search (TS), Particle Swarm Optimization (PSO), Bee Colony
algorithm (BCA), Artificial Immune Systems (AIS), Bacterial Foraging Algo-
rithm (BFA), Greedy Randomized Adaptive Search Procedure (GRASP) and
their hybrids.

2.6 Classification of metaheuristics

In this section we briefly summarize the most common ways of classifying

metaheuristics [El-Ghazali 2009]

e Nature inspired versus non-nature inspired: perhaps the most
intuitive way to classify metaheuristics may be based on the origin of the
algorithm which can be classified as nature-inspired versus or not nature-
inspired. GA, AIS, and BFA are examples of metaheuristics inspired
from biology. ACO, BCA, and PSO are inspired from the collaborative
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behavior of social animals (swarm intelligence). SA is inspired from the

physical annealing process.

e Deterministic versus stochastic A deterministic metaheuristic solves
an optimization problem by making deterministic decisions (for exam-
ple TS). In stochastic metaheuristics, some random rules are applied
during the search (for example GA, ACO, and PSO). In deterministic
algorithms, using the same initial solution will lead to the same final
solution, whereas in stochastic metaheuristics, different final solutions
may be obtained from the same initial solution. This characteristic must
be taken into account in the performance evaluation of metaheuristic al-

gorithms.

¢ Population-based search versus single-solution based search An-
other possibility of classification is based on the number of candidate so-
lutions maintained by the metaheuristic simultaneously. Single-solution
based algorithms (for example SA and ILS) manipulate and transform
a single solution during the search while in population-based algorithms
(for example GA, ACO, and PSO) a whole population of solutions is
evolved. These two families have complementary characteristics: single-
solution based metaheuristics are exploitation oriented. They have the
power to intensify the search in local regions. Population-based meta-
heuristics are exploration oriented since they allow a better diversifica-

tion in the whole search space.

e Iterative versus greedy In iterative algorithms, we start with a com-
plete solution ( or population of solutions) and transform it at each
iteration using some search operators. Greedy algorithms start from an
empty solution, and at each step a decision variable of the problem is as-

signed until a complete solution is obtained. Most of the metaheuristics
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are iterative algorithms.
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The aim of this chapter is to provide a quick description of the main
stochastic optimization techniques that are related to this work, such as iter-
ated local search, GRASP, genetic algorithm and ant colony optimization. At
the end of the chapter, we explain how ant colony optimization can be applied

successfully to to provide the motif finding problem with promising solutions.

3.1 Search techniques

Search techniques have been widely used to solve many optimization problems
of both theoretical and practical importance. It is one of the most universal
problem solving methods for such problems in which one cannot determine
a priori the sequence of steps leading to a solution [Gen 2000]. There are
important issues in the discussion of search strategies: exploring the search
space and exploiting the best solution [Booker 1987]. Therefore, search can

be performed with either blind strategies or heuristic strategies.

3.1.1 Blind search strategies

Blind strategies are used in cases where little or no information is available
about the problem to be solved. Random search is an example of a strategy
which explores the search space while ignoring the exploitation of the promis-
ing regions of the search space. It has also a better ability to escape from a

local optimum.

3.1.2 Heuristic search strategies

Heuristic strategies are used when certain information about the problem is

provided. Hill-climbing is an example of a heuristic strategy which exploits
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the best solution for possible improvement at the expense of ignoring the ex-
ploration of the search space. It uses additional information to guide search
move along with the best search directions. Furthermore, it is capable of
climbing upward toward a local search optimum. In the design of such meta-
heuristic approaches, attention should be paid to two contradictory criteria:
exploration of the search space (diversification) and exploitation of the best
solutions found (intensification)|El-Ghazali 2009]. It is obvious that combin-
ing elements of direct and random search can lead to a significant balance

between exploration and exploitation of the search space.

3.2 Iterated local search

Iterated local search (ILS) [Lourenco 2003] belongs to the class of stochastic
local search algorithms [Hoos 2004] that extend classical local search methods
by adding diversification capabilities to allow them to escape from local op-
tima on their way towards the global optimum.

The basic idea of ILS is to perform a biased, randomized walk in the space of
locally optimal solutions instead of sampling the space of all possible candi-
date solutions. This walk is built by iteratively applying first a perturbation
to a locally optimal solution, then applying a local search algorithm, and fi-
nally using an acceptance criterion which determines to which locally optimal
solution the next perturbation is applied.

A crucial component of ILS is the strength of the perturbation which deter-
mines the amount of changes made on the current solution. If it is too strong,
ILS may behave like a random restart resulting in a very low probability of
finding better solutions. On the other hand, if the perturbation is not strong
enough, the local search procedure will rapidly go back to a previous local
optimum. Despite the simplicity of ILS, it is on the basis of several state of-

the-art algorithms for real-world problems [Hoos 2004].
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The principle of the ILS is pictorially illustrated in Figure 3.1. To design an
ILS algorithm, four components have to be defined [Paquete 2002]:

e A procedure that generates an initial solution sg.

e A perturbation mechanism that modifies the current solution (local op-
timum) s leading to some intermediate solution s? which is the starting
solution of the next local search in order to escape from local optima and
to explore new regions of the search space. There are different strategies
that can be used to handle the perturbation strength during the search
[El-Ghazali 2009]:

— Static perturbation: the perturbation length is fixed a priori (in-
dependent of the instance size) before the search and is no longer
modified during the search. For more difficult problems, it has been
shown that fixed-strength perturbations may lead to poor perfor-

mance.

— Dynamic perturbation: the perturbation length is determined dy-
namically during the search without taking into account the search

history.

— Adaptive perturbation: the perturbation length is determined dy-
namically during the search according to some information about

the search history.

e A local search procedure that returns an improved solution s’. A ba-
sic local search algorithm works in an iterative fashion by successively
replacing the current solution by a better solution in the neighborhood
of the current solution. It terminates when no better solution is found
in the neighborhood. The pseudo-code of a basic local search algorithm

given in Algorithm 1.
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e An acceptance criterion procedure that decides to which solution the

next perturbation is applied.

A general pseudocode for ILS algorithm is outlined in Algorithm 3.1.

/ Perturbation
- ‘.
- 1

A
Qbjective

L.
>

Search space

Figure 3.1: The principle of ILS. Starting with a local minimum s, a pertur-
bation is performed, leading to a solution sP. After applying a local search

procedure (LS), we may find a new local minimum s that is better than s.

Algorithm 1 Local Search
1: Input: s

2: while s is not locally optimal do

3:  Find s§ € N(s) such that s < f(s) // Suppose that we have a
minimization problem and f is the objective function.

4 s+ s

5: output: s
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Algorithm 2 Iterated Local Search
1: 5o < Generate Initial Solution() // initial solution

2: s < Local Search(sy)

3: while termination conditions not met do
4:  sP < Perturbation(s, history)

5. & < Local Search(s?)

6: s < Acceptance_ Criterion(s, ', history)

=

output: {s // best solution found in the search process }

3.3 Greedy Randomized Adaptive Search Pro-
cedure

GRASP [Feo 1995] (Greedy Randomized Adaptive Search Procedure) is an
iterative approach that combines the power of greedy heuristics, randomiza-
tion and local search procedures. In general, each iteration consists of two
phases: a (greedy adaptive randomized) construction phase and a local search
improvement phase.

The construction phase is itself an iterative greedy and adaptive process since
the greedy function takes into account previous decisions in the construction
when considering the next choice. Besides, there is a probabilistic component
in GRASP that is applied to the selection of elements during the construction
phase. A solution is usually represented as a set of elements. The construc-
tion phase builds an initial solution by considering one element at a time. It
starts from an empty set and iteratively adds elements to it until a feasible
complete solution is generated. Each element is added using a greedy function
that optimize the objective function. At each stage of the construction, ele-
ments that have not yet been selected are ordered and a list called restricted
candidate list (RCL), recording the highest quality elements with respect to

an adaptive greedy function, is formed. Then, the probabilistic component is
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determined by randomly choosing from RCL the next element to be added
which not necessarily corresponds to the best one in the list. We should note
that repeated applications of the construction procedure yields different con-
structed feasible solutions.

The solutions generated by the construction phase are not guaranteed to be
locally optimal considering neighborhood concepts. The local search phase
attempts to improve each constructed solution by means of a local search al-
gorithm that iteratively replaces the current solution with a better one.

The GRASP procedure stops when a specified termination condition is reached,
for example, after completing a certain number of iterations and the best so-
lution found overall the different iterations is returned as output. Algorithm 3
depicts the pseudo-code for a GRASP procedure. As the performance of most
stochastic optimization algorithms depends mainly on the balance balance
between diversification and intensification, The o threshold is used to control
the amount of greediness of the construction mechanism. In [Wang 2010], a
value-based scheme! is applied to form a RCL based on the value of .. For
better understanding, let us consider an objective function f(z): X — R to
maximize, and X its solution space. So, we look for a solution z* € X with

f(x*) > f(z) for all z € X. In this case, a RCL can be defined as
RCL = {ZE € X|f(il‘) 2 f(x)mzn + a(f($)max - f(m)mzn)} (31)

where a € [0, 1], f(2)mar = max{f(x)|x € X}, f(¥)min = min{f(z)|z € X}.
Obviously, a = 0 corresponds to a pure greedy construction while a = 1 is

equivalent to a random construction.

! There is another mechanism that can be used to generate a RCL (named cardinality-

based RCL) where the k best rated solution elements are selected to be in the list
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Algorithm 3 GRASP
1: Input: «

2: s < Construct Random Solution()

3: while termination conditions not met do

e

sP <— Greedy Randomized Construction(«)
5. s < LocalSearch(s?)

6: s < Acceptance Criterion(s?, s)

>

output: {s // best solution found in the search process }

3.4 Genetic algorithm

Genetic algorithm (GA) [Goldberg 1989, Gen 2000] is a class of general pur-
pose stochastic search method inspired by the mechanisms of natural selection
and natural genetics representing them in three principal genetic operators :
selection, crossover and mutation. GAs combine exploitation (selection) of
the best solutions from past searches with the exploration (crossover and mu-
tation) of new regions of the solution space. Each potential candidate solution
in the search space of the problem is represented by an individual or (chro-
mosome) whose quality is measured according to a fitness function.

A general structure of a GA is depicted in Algorithm 4. It begins with creating
the initial population where each individual can be generated either randomly
or using some heuristic methods. Then, GA maintains a population of in-
dividuals P(t) that evolves over generations. At each generation ¢ of GA, a
new population P(t + 1) is generated from the old population P(t) through
selection and reproduction (crossover and mutation).

Selection is the process of selecting individuals for reproduction on the
basis of their relative fitness (quality measure). An individual with high fit-
ness value has a higher probability of survival and being selected, and so the
greater the amount of its genetic material that will be passed on to future

generations. There are several methods for performing selection (For more
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details see |Goldberg 1989]).  Roulette wheel selection is the most common
and easy-to-implement selection mechanism. It is a proportional selection
strategy in which slots of a virtual roulette wheel are sized according to the
fitness of each individual in the population. Spinning the roulette wheel and
noting the position of the pointer select an individual. The probability of
selecting an individual is therefore proportional to its fitness. It is clear that
individuals with the largest fitness (and slot sizes) have more of a chance to
be chosen.
Roulette wheel selection has several disadvantages |Freitas 2002|. Firstly, it
assumes that all individuals have either positive or zero fitness values and that
the fitness function must be maximized, rather than minimized. Otherwise, it
has to be modified to respect these assumptions. Secondly, it necessitates the
computation of a global statistic (the total sum of fitness values of all indi-
viduals in the population), which requires an additional computational effort.
Thirdly, if one individual has a fitness value much better than the others, it
will tend to be selected much more often than the others. If this individual
is a local optimum there will be a premature convergence for that suboptimal
solution rather than a global optimum. This drawback, called premature con-
vergence in the terminology of GAs, occurs if the population of a GA reaches
such a suboptimal state that the genetic operators are no longer able to pro-
duce offspring that are able to outperform their parents. This happens if the
genetic information stored in the individuals of a population does not contain
that genetic information which would be necessary to further improve the so-
lution quality [Affenzeller 2005]. Fourthly, if most individuals have about the
same fitness value (which often occurs in later generations, when the EA is
converging), those individuals will have about the same probability of being
selected, so that the selection will be almost random.

For the reproduction, some of the selected individuals undergo stochastic

transformations by means of the two genetic operators, crossover and muta-
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tion, to form a new population of individuals called offspring C(t), which are
then evaluated. The crossover operator creates new individuals by combining
parts (exchanging information) from two individuals called parent individuals.
The mutation operator creates new individuals by making changes in a single
individual. It is used to introduce diversity in the population, which is very
useful to spread the search to an unexplored region of the search space. A
new population P(t + 1) is formed by selecting the more fit individuals from
the parent population P(¢) and the offspring population C(t). After several
generations, the algorithm converges to the best individual, which hopefully

represents an optimal or suboptimal solution to the problem [Gen 2000].

Algorithm 4 Genetic Algorithm
1: t+0

[\]

. initialize P(t)

®

evaluate P(t)

4: while termination conditions not met do

5. Recombine P(t) to yield C(t) via crossover and mutation // Reproduc-
tion

6: evaluate C(t)

7. select P(t+ 1) from P(t) and P(t) // Selection

8 t<t+1

3.5 Ant colony Optimization

3.5.1 Swarm intelligence

Swarm intelligence is a modern artificial intelligence discipline that is con-
cerned with the design of intelligent multi-agent systems by taking inspiration
from the collective behavior of social insects such as ants, termites, bees, and

wasps, as well as other animal societies such as flocks of birds or schools of
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fish. They are expected to exhibit the features that may have made social

insects so successful in the biosphere [Bonabeau 2001]:

o Flexibility, which means that the group can quickly adapt to a changing

environment.

e Robustness, so that even when one or more individuals fail, the group

can still perform its tasks.

e Self-organization, which means that the group needs relatively little su-

pervision or top-down control.

Optimization and swarm robotics are nowadays two of the domains where
swarm intelligence principles have been applied very successfully. A third
and very popular application domain concerns routing and load-balancing in

telecommunication networks [Blum 2008].

3.5.2 The Basic Principle of Ant Colony Optimization

Ant Colony Optimization (ACO)[Dorigo 1992, Dorigo 1996, Dorigo 2004] is
one of the first swarm-intelligence techniques, which was introduced by Marco
Dorigo and colleagues in the early 90s, proposed for providing approximate
solutions to hard combinatorial optimization problems. ACOQO is inspired by the
foraging behavior of real ant colonies, specifically the indirect communication,
via pheromone trails, between the ants regarding a shortest path between their
nest and a food source in the environment. When searching for food, ants
initially explore the area surrounding their nest in a random manner. While
moving, ants deposit a certain amount of chemical substance called pheromone
on the ground, thus forming a pheromone trail. Ants can smell the pheromone
and they tend to choose, probabilistically, paths marked by strong pheromone
concentrations. As soon as an ant finds a food source, it evaluates the quantity

and the quality of the food and carries some of it back to the nest. During the
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return trip, the quantity of pheromone that an ant leaves on the ground may
depend on the quantity and quality of the food. The pheromone trails will
guide other ants to the food source [Dorigo 2004, Blum 2008]. That is, the
higher the pheromone concentration found on a particular path, the more the
number of ants that go through the path, then the more the pheromone left
by ants. Furthermore, the pheromones have the property of evaporation over
time, so if a path is not being followed by ants, the pheromones evaporate
and the path loses its attraction to ants and disappears over time. In analogy
to the biological example, ACO is on indirect communication within a colony
of simple agents, called (artificial) ants, mediated by (artificial) pheromone
trails which serve as a distributed, numerical memory that the ants use to
probabilistically construct candidates solutions to the problem being solved.
The pheromone trails are adapted during the search process and represent the
collective search experience of the ants [Dorigo 2003].

A general framework of the ACO metaheuristic is outlined in Algorithm 5.
After initializing parameters and pheromone trails, the main loop consists of
three main phases: at each iteration, a number of solutions are constructed by
the ants. These solutions are then improved through a local search (this step is
optional), and finally the pheromone is updated [Dorigo 2006|. In the context
of ACO, solutions and partial solutions are assembled as sequences of solution

components taken from a finite set of solution components C' = {¢y,--- ,¢,, }

(where n. = |C|).

Algorithm 5 Ant Colony Optimization
1: Set parameters, initialize pheromone trails

2: while termination conditions not met do
3:  Construct _Ants_Solution

4:  Update Pheromone

a

Apply Local Serach // Optional
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3.5.3 Solution construction

Each ant of the colony concurrent constructs solutions to the problem instance
under consideration. An ant is implemented as a stochastic construction pro-
cedure that probabilistically build a candidate solution s in an incremental
way starting with an empty partial solution s? = ) and iteratively adding a
feasible solution component ¢;, from the set N(s?) C C, without backtracking
to the current partial solution s” until a complete solution is obtained. At
each construction step, the choice of a solution component is performed using

a stochastic rule , which is biased by two factors:

e Heuristic information (greedy heuristic) on the problem instance being
solved, if available, which can guide the ants towards the most promising
solutions. That is, a desirability value 7., (heuristic information) is

assigned at each construction step to each solution component c¢;.

e Pheromone trails which change dynamically at run-time to reflect the
ants acquired search experience. That is, a pheromone value 7., is as-
sociated with each solution component ¢;. It is initially set to some

constant value at the beginning of the ACO algorithm.

A stochastic component in ACO allows the ants to build a wide variety of
different solutions and hence explore a much larger number of solutions than
greedy heuristics. In most ACO algorithms , The rule for the stochastic
choice of the next solution component, also called the transition probabilities,
is defined as follows:

[re)” [1e.)”

> re]” [ney]

cj EN(sP)

P(c|s?) = 5. Ve € N(s) (3.2)
where N(s?) is the set of feasible components. The value of parameters o and
B, a > 0and 8 > 0, control the relative importance of pheromone versus the

heuristic information.
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3.5.4 local improvement

Once the solutions have been constructed, and before updating the pheromone,
it is common to improve the solutions obtained by the ants through a local
search. This phase, which is highly problem-specific, is optional although it
is usually included in state-of-the-art ACO algorithms.

3.5.5 Pheromone update

The aim of the pheromone update is to increase the pheromone values as-
sociated with good or promising solutions, and to decrease those that are

associated with bad ones. It consists of two parts:

e Decrease uniformly all the pheromone values through pheromone evap-
oration. Pheromone evaporation is the process by means of which the
pheromone deposited by previous ants decreases over time. From a
practical point of view, pheromone evaporation is needed to avoid a too
rapid convergence of the algorithm towards a suboptimal region. It im-
plements a useful form of forgetting, favoring the exploration of new

areas of the search space.

e Increase the pheromone values associated with solution components that
are part of one or more good solutions from either the current or earlier

iterations.

A large number of different ACO algorithms have been proposed. They gen-
erally differ from each other in the pheromone update rule that is applied.
The first one proposed in the literature, called Ant System |[Dorigo 1996], in

which the pheromone update rule that was used is defined as

T, =(1=p) e +p- > Fls) (33)

{Sesite'r |Ci€S}
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The parameter p € (0, 1] is called evaporation rate. Sy, is the set of solutions
constructed in the current iteration. We assume that we are dealing with a
minimization problem. F': S — R is a function, commonly called the quality
function, such that f(s) < f(s') = F(s) > F(s'),Vs #¢ € S.

Another successful ACO variant is MAX-MZN Ant System (MMAS).
MMAS [Stiitzle 2000] is an improved ant system, which is characterized by

the following three main points:

e Pheromone trails are updated after each iteration, only the best ant is
allowed to deposit its pheromones. The best ant can be chosen as either
the best ant of the current iteration or the global best ant (the best-so-
far ant). The results described in the literature bias the choice towards

the first one.

e Pheromone trails values are restricted to a lower and an upper bound
[Tinins Tmaz) I order to avoid stagnation behavior suffered by other ant
systems. This stagnation behavior is a consequence of reinforcing some
solution components by laying more pheromone on them unlike the oth-
ers that are rarely used. This behavior leads to a repeated selection
of the same solution while other regions of the search space are not

explored.

e Pheromone trails are initialized to the maximum trail value 7,4, to
encourage exploring a large area of the search space at the beginning of

the algorithm.

3.6 Motif finding using ant colony optimization

Finding the location of the common motif, shared by a set of DNA sequences,

in each sequence has become a fundamental problem in Bioinformatics with
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important applications in locating regulatory sites and drug target identifica-
tion [Pevzner 2000]. The motif finding problem has been formally considered
as a difficult pattern recognition problem. Most developed motif finding algo-
rithms use either approximate or heuristic techniques to obtain near optimal
solutions at relatively low computational cost. Some of them carry out the
search in the space of possible starting positions, whereas others search in the
space of all possible motifs based on a given model. Recent researches cover-
ing most of the relevant techniques and approaches for motif finding, as well
as several of the benchmark algorithms included in this work can be found in
[Das 2007, Tompa 2005]. Moreover, bio-inspired algorithms and other meta-
heuristics have been also proposed. Examples of these algorithms include
genetic algorithms [Liu 2004, Che 2005, Kaya 2009], genetic programming
[Seehuus 2005], and simulated annealing [Keith 2002]. Although these meth-
ods have been shown to generate acceptable results in terms of the quality of
the solutions found, the motif finding problem is still unsolved. In [Liao 2003],
an ant colony optimization algorithm was developed to find a set of better ini-
tial positions for the Gibbs sampler (GS) [Lawrence 1993] in order to improve
its efficiency in term of time computing and score. However, it does not in-
corporate any form of heuristic information. Moreover, a specific ant colony
system was used for predicting the MHC class II binders [Karpenko 2005].
In this study, we present a new motif finding approach based on ant colony
optimization (ACO) called MFACO that combines MAX-MZN Ant System
[Stiitzle 2000], one of the best performing variants of ACO metaheuristic, with
a modified form of the original GS playing the role of a local heuristic opti-
mization step since most ACO algorithms developed in literature incorporate
a particular local optimizer to improve the produced solutions. Unlike some
other motif finding techniques, MFACO searches both in the space of starting
positions as well as in the space of motif patterns. Due to this feature, it

has more chances to find potential motif patterns. Although our approach is
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also valid for protein sequences, we apply it only to DNA sequences. The rest
of the section is organized as follows. First, we formally introduce the motif
finding problem. Second, our proposed approach for tackling the problem is
presented. Finally, we discuss the conducted experiments and we give some

concluding remarks.

3.6.1 The Motif Finding Problem

A formal description of this problem can be viewed as follows. Given a set
of DNA sequences S = {5, S5s,..., Sy} of common length W?2. Find the
promising motif pattern X = zyzy...x;...x7; of length [, z; € {A,T,C, G} and
the starting locations of its occurrences on all sequences in S. The selection
of a particular motif pattern is based on a defined score function that measure
the similarity between the motif pattern and its occurrences. There are several
methods for scoring a motif pattern. Our proposed approach uses consensus
score [Jones 2004] and information content [Che 2005, Stormo 1989] as score
functions. To illustrate how to compute these score functions, consider a
candidate motif pattern that can be generated by choosing a random position
from each sequence. Then, the patterns starting at these positions are aligned
to form an N x [ alignment matrix. Therefore, the candidate motif pattern
can be represented by a count-based profile C' where C(r, j) is the count of
nucleotide r on the column j of the alignment matrix and its corresponding
consensus score (C'Sc) is defined as:
!
CSc = Z( max (C(r,j)) (3.4)

- re{A,T,C,G}
Jj=1

2 Just for the purpose of simplicity the set of sequences tested in our algorithm are with

the same length.
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The information content (/C') score function can be easily computed as fol-

lows:

! .
‘ Q7,7
0= Y Qi) -os 402 (3.5)
—1 B()(T')
i=1 re{AT,C,G}
Where each element Q(r,j) indicates the frequency of the nucleotide 7 to be

in position j of the motif pattern and By(r) denotes its background frequency,

i.e. the observed frequency of nucleotide r overall all sequences in the dataset.

3.6.2 Basic Motif Representations

Motif finding algorithms perform their search either in the space of possible
starting positions of all motif occurrences in the sample sequences or in the
space of motif patterns described by a given model. Example of the latter
approach includes the pattern driven approach (i.e., exhaustively enumer-
ating all possible patterns) and the sample driven approach (i.e., selecting
some patterns from the sample sequences to be used as seeds for local search)
[Price 2003|. Besides, two standard models are generally used to represent a
motif of length either by 4 x [ profile matrix or by a pattern of [ consensus

sequernce.

3.6.2.1 Profile Model

The common profile model to describe a motif of length [ uses a position
probability matrix, 4 x [ profile matrix (), as given in Eq. 3.6, where each
entry Q)(r,j) gives the probability that an occurrence of the motif contains

nucleotide 7 in its 7% position.

dal qaz2 - qay
qr1 4qr2 - 41|

Q= (3.6)
qca1 4c2 --- 4oy

qG1 42 --- 4Gy
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S position=32
CCTGATAGACGCCTATGCCTCTTCCACGTAC/GAATGTCTGC|T GT GCGAATCTATGARC
85 position=1

[CTCCGCCTETATAGTACTGGTGTACATT TGATACGTACGTACACCGGCAACCTGARAC
83 position=25

ACCAGAAGTGCAAACGTACGTGCACACTATCTGEGCTCTGGCCT CTGCCAAT TGATGT
8y position=10
TAAGACGARRAATTCTCTGCTTCTATGTAAGTCATAGCT GTAACTATTACCTGCCACCC
Ss: position=41
TATTACATCTTACGTACGTATACTGT TATACARCGATCTGICEGCTGGGGA|TGCGTTTT
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Figure 3.2: An example illustrating the two models of motif representation.
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Thus, the profile matrix, or simply profile, illustrates the variability of
nucleotide composition at each position from a particular choice of candi-
date motif [Jones 2004|. A profile, in its simplest form, can be viewed as
the frequency of nucleotides in each position of a particular alignment. Fig-
ure 3.6.2.1 gives an example that illustrates how to represent a particu-
lar motif using a frequency-based profile. Consider a sample of sequences
S = {51, 52,53, 54, S5} with an unknown implanted motif of length (I =10).
A candidate motif can be generated by selecting one random position in each
of these sequences. Let GAATGTCTGC, CTCCGCCTGT, CACTATCTGG, AATTCTCTGC
and TCGCTGGGGA be the patterns starting at these positions respectively. To
compute its associated profile matrix () , firstly, patterns are aligned to form
an alignment matrix. Then, a 4 x [ count-based profile C' is constructed. Each
element C/(r, 7) is defined as the number of times (letter counting) nucleotide
r € {A,T,C,G} , appears in column j of the alignment matrix. Finally, the
frequency-based profile @) is the result of dividing each element of C' by the

number of sequences ( N=5) in the current sample.

3.6.2.2 consensus Model

In this model, consensus sequence summarizes the profile matrix by a pattern
of [ consensus sequence representing the most frequent nucleotide (the consen-
sus nucleotide) in each motif position, that is, the nucleotide with the largest
entry in the profile matrix (see Figure 3.6.2.1 for a given example). However,
a profile is a more flexible representation than consensus sequence because
the latter says nothing about how strongly the consensus nucleotide in each
motif position is conserved or about the distribution of any non-consensus

nucleotides.
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3.6.3 The Basic Gibbs Sampling Algorithm

Gibbs sampling is a Markov Chain Monte Carlo algorithm, randomized algo-
rithm that has seen wide application in the statistical community. It was first
applied in Bioinformatics as a tool for finding motif in 1993 [Lawrence 1993].
Since that, Gibbs sampling has become a well-known method for finding mo-
tifs in DNA sequences. Gibbs sampling operates as follows:

Input: Given a set of N DNA sequences S = {57, 52, --,Sy} and an un-
known implanted motif of fixed length [. Assume that there is exactly one
motif instance located within each sequence.

Output: A set s = {51, S, S3, ..., Sy } represents the starting positions of the
chosen patterns in each of the IV sequences such that the similarity between
them is maximized (the similarity is measured using a particular score func-
tion explained later in this section). Thus, the obtained motif is simply the
consensus sequence of these patterns.

Data structure: In addition to the set of starting positions, the algorithm

maintains two data structures:

o A pattern description in the form of a profile model @ , i.e., a 4 x [ profile
matrix (4 x [ profile matrix in the case of protein sequences) represented

in term of nucleotide frequencies.

o A probabilistic description of the background frequencies B = [babrbcbg|
(|B| = 20 when Gibbs sampling is applied to protein sequences). The
background model is computed from the input sequences. Each element
b, , r € {A T G,C}, denotes the frequency of nucleotide r in dataset
excluding the sites described by the motif pattern. By the way, most
improvements of the Gibbs sampling algorithm are due to the use of ad-

vanced background models (see [Thijs 2001, Liu 2001| for more details).

Basic steps:
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(1)

(2)

(3)

(4)

Choose a random starting position s, within each input sequence Sy ,
where S, € S, 1 < k< N and 1 < s, <np—1+1 (ng is the length of
Sk ). Let X = {Xy, -+, Xy, -+, Xy} where X} represents the pattern of

length [ starting at position s; within sequence S.

Randomly select one sequence S,,;, whose pattern is X,,; and its as-

sociated starting position is S,u, to be excluded (out) from S. Let

S =8 —{Sou} and X* =X — {X,ui} .

Create a profile ) from X*. The profile matrix is computed as follows

C(r,j) + uy

Qlrj) = H (37)

where C(r, j) is the count of nucleotide r in position j after the alignment
of motif patterns in X*. wu, is a pseudocount whose value is proportional
to the frequency of nucleotide 7 in all the dataset, while their sum U is

computed by

U= > u,~VN (3.8)

re{A,T,C,G}
Analogously, each element b, of the background frequencies B is given

is given by Eq. 3.9.
Cr + Uy

by =
Yoo+ U

(3.9)

where ¢, represents the count of nucleotide r taken over all non pattern

positions from S*.

For each position siemp in Sout, 1 < Stemp < Nout — L+ 1 (Noue is length of
Seut), calculate the probability P, (using Eq. 3.10) that the pattern
Xiemp 0f length [ starting at position sien,, is generated by profile () and
background probabilities B.

P<Xtemp/Q>

—P<Xtemp/B> (3.10)

Ptemp -
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(5)

(6)

(7)

If Xiemp = 2129 - - - 27 then P(Xiem,/Q) and P(Xyenp/B) are calculated
by Eq. 3.11 and Eq. 3.12 respectively.

PXiml@) = [T, Qs ) (3.11)
P(Xen|B) = T _ Blx)) (3.12)

Choose the new starting position Stemy, in Sy randomly, with probability

proportional to P, . Therefore, s, is replaced by siem,.

From the updated set of starting positions s = {s, sq, S3, ..., Sy }, the
score function F'| that Gibbs sampling algorithm maximizes, is calcu-

lated as follows.

F=%" C(r,j)-log2Q<£’j> (3.13)

j=1 re{A,T,C,G}

where C(r, j) and Q(r, j) are calculated as in Step (3) except that they
are calculated from the complete alignment, i.e., including the excluded

sequernce.

If stopping condition is verified (The algorithm may stop either after
a certain number of iterations or when it reaches a state that keeps
generating the same near optimal discovered motif pattern) then display
the current set of starting positions s = {si, S, S3,..., Sy} and their

corresponding motif pattern and stop the algorithm, else go to Step (1).

3.6.4 The Proposed Approach (MFACO)

Our developed approach, called Motif Finding based on Ant Colony Opti-

mization (MFACO), has the same general framework of an ACO algorithm as

shown in Algorithm 5. For more discussion of the basic steps involved in the

design of an ACO see Section 3.5. In next subsections, we detail each of the

MFACO components.
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3.6.4.1 Initialization

The initialization step of any ACO algorithm includes three fundamental

tasks:

e Choosing an appropriate graph representation for the problem to be

solved.
e Defining the problem specific heuristic information.

e Representing the pheromone trail model including the manner to set the

initial pheromone trails.

Choosing the appropriate graph representation for the problem to be solved is
of central importance to graph-based ACO metaheuristic. In our case, we use
a weighted directed graph G(V, E) with V' being the set of nodes and F being
the set of edges. If the motif’s length is [ then there are 4 x [ nodes arranged
in a grid of four rows and [ columns. Each node in position (z,7), simply
denoted by node(i, j), is associated with nucleotide ¢ to be in the j* position
of the motif. In addition, an edge e;(u,v) always exists between two nodes
node(u, j) and node(v,j + 1) where u,v € {A,7,C;G} and (1 < j <1-1)
as shown in Fig. 3.3. In MFACO, two types of pheromone trails are modeled.
First, a pheromone trail 7', i € {A, T, C, G}, is associated with each node(i, 1).
The value 7} encodes the desirability of nucleotide i being in the first motif’s
position. Second, a pheromone trail 77, u,v € {A, T, C, G}, is associated with
each edge e;(u,v). The value 77 corresponds to the desirability of nucleotides

u and v being at motif’s position j and j + 1 respectively. Initially, the

pheromone values are all set to a constant value.

3.6.4.2 Solution Construction

MFACO consists of a number of iterations of solution construction. Each

ant incrementally builds its solution by traversing the graph to complete a
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(A, 1) (A1) (A, F1) (A D

Figure 3.3: Problem graph-based representation

tour representing one candidate motif pattern. The probability P! (t) of an
ant selects node(i, 1) as the first solution component, at iteration t, can be

expressed as:

1 [Til(t)]a [77?]6
P. — 3.14
S (814

ue{AT,C,G}
where 7! is the heuristic information of node(i, 1) representing the frequency
of nucleotide 4 in the dataset, that is, n) = By(i). Besides, an ant located at
node(u, j) chooses to go to node(v, j + 1) with a probability defined as:

i (1 [pn 17

(e (0] [1]”
re{A,T,G,C}

where 77 ; is the heuristic information of edge e;(u,v) which is computed
based on the higher-order background model introduced in [Thijs 2001]. Us-
ing a background model of order n means that, in addition to pheromone
information, the ant’s decision to add a solution component (nucleotide) ¢ in
position j of the pattern motif depends on the n previous visited nucleotides
during the solution construction. Doing so, the n'* background model B,
is based on counting the frequency of all nucleotide subsequences of length

(n 4+ 1) in the dataset. Let xyz5...x;_1x; be the partial motif pattern con-
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structed by an ant and being at node(u,v), i.e. x; = w. If j > n then
My; = P(Tj41 = 0|2jny1 ...z 125), otherwise 0}, = By(v). After each ant
builds its solution and before the pheromone update, the generated solution
is improved by applying the GS technique that plays the role of a local heuris-
tic optimization step. It differs from the original model in the following two
aspects: (i) the sequence to be excluded from the DNA sample is chosen in
a round robin manner but not randomly; (ii) the new starting position with
the highest score is selected instead to be randomly chosen with probability
proportional to its calculated score. By these two modifications, the stochas-
tic behavior of GS is greatly reduced and it is to the ACO that the task is

shifted and preserved.

3.6.4.3 Pheromone Update

The values of pheromone trail 7}, at each iteration ¢, are updated according
to:

(E41) = (L= p) - 7M ) + Arth (3.16)

where p (0 < p < 1) is the pheromone evaporation rate and ATil’beSt is the

amount of pheromone trail deposited on node(i, 1) given by

ATil,best _ Qbest@', 1) . CSCb€St/<N . l) (317)

best is the consensus

where N is the number of sequences in the dataset and C'S¢
score of the best solution found either in the current iteration or so far by the
algorithm which is the case of MFACO. The pheromone trail 77, on each edge

e;(u,v) is updated according to the following updating rule:
b+ 1) = (L= ) 7 (8) + A (3.18)

where

AT = Q" (u, 7) - Q" (v, j +1) - OS™™ /(N - 1) (3.19)
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Similar to MAX-MZN Ant System [Stiitzle 2000], MFACO also limits the
pheromone values into an interval |Tuin, Tmax] With Tnax = CSc?5t/((1—p)-N-1)

and 7, = 0.

3.6.5 Computational Experiments

MFACO was implemented in Matlab® version 6.5. It stops either when it
reaches a predetermined maximum number of iterations or when stagnation
state |[Dorigo 1996] occurs, that is, all ants keep generating the same motif
pattern. Our experimental results were obtained on a PC with Pentium®IV
(2.4 GHz) and 256 MB of memory. The performance of the proposed algo-
rithm is tested on the following biological samples. Firstly, a collection of
three datasets, that have been used as benchmark data in [Liu 2004] with
6, 9, 18 sequences respectively. Each sequence has an equal length of 3001
nucleotides. Secondly, we have also used the sample of experimentally con-
firmed E. coli CRP binding sites [Stormo 1989|. This dataset consists of 18
sequences. Each sequence has a length of 105 nucleotides and contains at least
one CRP-binding site. The conserved motif was located in 23 binding sites
using the DNA Footprinting method (FP), with a motif length of 22.

The results generated by MFACO were compared with those obtained us-
ing some recent algorithms previously described for finding potential motifs.
The algorithms include MotifSampler (MS) [Thijs 2001], BioProspector (BP)
[Liu 2001], MEME [LcBailey 1994], and Genetic Algorithms (GAs). We are
mainly interested in GA-based approaches, such as FMGA [Liu 2004] and
MDGA [Che 2005], since our approach is also a population based approach
that uses stochastic choices to guide its search. FMGA searches in the space of
motif patterns and uses consensus score as a similarity measure, while MDGA
was implemented using information content score function and searches in the

space of starting positions.
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First collection of datasets. For comparison reasons we use the same way
of presenting the results as in [Liu 2004] and the effectiveness of such approach
is measured with respect to the consensus score. The computational results
for MEME, MS, and BP are obtained by sending the three datasets to each
approach’s website to return the three best-found motifs. The motif length
is set to l = 7 and [ = 13. After some preliminary experiments, we found
that it is suitable to initialize MFACO using the following parameter settings:
max = H0, m =6, m =8 a=2 =1, p=0.15 and all pheromone trail
values are initially set to one. Table 3.1 through Table 3.6 list the best motif
patterns discovered by the investigated approaches in each dataset. In each
table, the first column gives the names of the approaches including ours. The
second and third columns indicate the consensus sequence and the consensus
score(C'Sc) of the found motif respectively. The column s = 0, s = 1, and
s = 2 denotes the total number of sequences in the dataset that completely
match the corresponding motif (i.e., exact matching without any mismatch),
at most one mismatch, and at most two mismatches respectively. Table 3.1
shows that all approaches were able to report one completely matched motif
(CSc = 42) of length | = 7. MS, MEME, and FMGA return only two com-
pletely matched motifs from the three top ranked patterns. The three best
motif patterns found by BP represent the same completed matched motifs.
Otherwise, MFACO achieves better results than the other approaches since
it can find 18 completely matched motifs from the beginning. The use of a
hash matrix by MFACO facilitates the task of finding motifs that match all
sequences especially when 7 is set to 6. From the rest of the tables we can see
also that the motif patterns with the highest accuracy are generally found by
MFACO while the others fail to discover them. We should also mention that
MFACO can find different potential motif patterns having the same consensus

score as well as those with multiple occurrences in a single sequence. Besides,
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it is clear that the serial implementation of our approach takes more time but
not at the cost of an exhaustive search which has to scan the set of all 4’ pat-
terns for a motif of length /. During our experiments, at most three runs for
MFACO seems to be sufficient to predict better motifs in most cases within
an acceptable computational time. The average running time was about 15
seconds, 60 seconds, 30 seconds, 75 seconds, 95 seconds, and 200 seconds for
the following tests (Dataset 1, [ = 7), (Dataset 1, [ = 13), (Dataset 2, | = 7),
(Dataset 2, [ = 13), (Dataset 3, | = 7), and (Dataset 3, [ = 13) respectively.

E. Coli CRP Binding Sites. This dataset was used to test the perfor-
mance of MFACO compared to MDGA [Che 2005|. In doing so, we adjusted
MFACO to work with the information content score rather than the consensus
score, which is calculated according to Eq. (3.5). Each zero element of the
frequency-based profile Q(r, 7) is set to (0.25/23) and By(r) = 0.25 for each
nucleotide  following the same setting done in [Stormo 1989]. Table 3.7 sum-
marizes the starting positions of motifs discovered in the CRP dataset using
FP, GS, BP, and MDGA respectively. A single sequence may contain two
occurrences of the same motif. Additional column ER follows each method
shows the deviation of the predicted starting positions from the exact start-
ing positions. From the presented results shown in Table 3.7, it is clear that
all the three approaches (GS, BP, and MDGA) failed to predict the exact
starting positions identified by Footprinting. However, Table 3.8 illustrates
that MFACO is capable of finding the exact binding sites (i.e., BS3) and new
binding sites(BS) BS1, BS2, and BS4 representing the same referenced motif.
Table 3.9 lists the consensus sequence of motifs discovered by each approach
and its corresponding relative entropy score. In [Stormo 1989, it was stated
that the most highly conserved nucleotides in the CRP binding sites consti-
tute a consensus sequence of nnnTGTGAnnnnnnTCACA. Positions for which no

consensus nucleotide was found (with frequency less than 50) are reported as
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n. The obtained results inTable 3.8 show that the four sets of binding sites
found by MFACO maintain this constraint. Consequently, MFACO achieves

the higher prediction accuracy

3.6.6 Concluding remarks

As conclusions, this study was to investigate and adapt ACO for identify-
ing potential motifs in gene promoter regions. The proposed approach uses
a modified version of the Gibbs sampler playing the role of local optimizer.
Experimental results have shown that MFACO is able to generate better po-
tential motif patterns in term of prediction accuracy than other methods such
as GAs, MEME, MS, and BP within a reasonable computation time. More-
over, the proposed algorithm differs from other motif finding techniques by
searching both in the space of starting positions and in the space of motif
patterns. This combination significantly provides more chance to explore the
search space. MFACO commonly maintains its diversity until a near optimal
solution will be found and can be easily adapted to work with different score
functions such as consensus score and information content.

During our experiments, based on the CRP dataset, a central issue in
finding the correct binding sites (BS) is selecting the appropriate parameters
of the relative entropy score function that reveals the relationship between the
highest score and the correct BS. In other words, a candidate BS with highest
relative entropy calculated according to specific settings may not necessarily
correspond to the correct BS (for example the settings used by [Che 2005]).
In fact, the score function should be carefully chosen before implementing any

motif finding algorithm.
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Table 3.1: Dataset 1,1 =7
Method Consensus CSe¢ s=1 s=0

MFACO AAAAAAA 42 6/6  6/6
AGGAGGA 42 6/6  6/6
AAAAAAG 42 6/6  6/6
TAAAAAT 42 6/6  6/6

MS  GCGGGCG 42 6/6  6/6
CGCCGCC 42 6/6  6/6
GGGGCGG 41 6/6  5/6

BP  GCCGCCG 42  6/6  6/6

MEME AAAAAAA 42 6/6  6/6
TAAAAAT 42 6/6  6/6
AAATAAA 41  6/6  5/6

FMGA AAAAAAA 42 6/6  6/6
AGGAGGA 42 6/6  6/6

Table 3.2: Dataset 1, [ = 13

Method Consensus CSe s=2 s=1

MFACO AAAAAAAAAAAGA 76  6/6  6/6
AAAAAAAAAAAAG 75 6/6  5/6
AAAAAAAAAAAGT 75  6/6 6/6
AAAAAGAAAAAGA 75  6/6 5/6

MS CGCCGCCGCCGCC 72 6/6 4/6
CCGCCGCCGCCGC 71 6/6  3/6
CGGCGGGCGGGGG 70  6/6 4/6

BP GCCGCCGCCGCCG 72 6/6  4/6

MEME AAAAAAAAAAAGA 76  6/6  6/6
GAGGCTGAGGCAG 71 5/6 4/6
AAAAAAAAAAAGA 76 6/6  6/6

FMGA  AAAAAAAAAAAAA 73 6/6 4/6
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Table 3.3: Dataset 2, [ = 7

Method Consensus CSc s=1 s=0
MFACO CCCTCCT 63 9/9 9/9
CCCTCAG 62 9/9 8/9
GGGTTGG 62 9/9 8/9
GAGCAGG 62 9/9 8/9

MS CCCGGGC 61 9/9 7/9
CCGCGCC 60 9/9 6/9
CGGGCGC 59 9/9 5/9

BP GAGACGG 59 9/9 5/9
AGTAACT 58 9/9 4/9

MEME  AAAAAAA 60 9/9 6/9
AGGAAGA 59 9/9 5/9
TTTTTTT 58  9/9  4/9

FMGA CCCTCCT 63 9/9 9/9
GGGCTGG 62 9/9 8/9

Table 3.4: Dataset 2, [ = 13

Method Consensus CSc  s=2 s=1
MFACO GCCGGCGGGCGCC 102 8/9 4/9
GCGGGCGGGCGCC 101 9/9 2/9
GCCGGCGGGCGGC 100 7/9  3/9
GCCGGAGGGCGCC 100 8/9 2/9

MS GGCCCCCGGGCGG 101 7/9  3/9
CCCCGCCCCCGGC 100 8/9 2/9
GGGGGCGCCGGGG 99 7/9  4/9

BP GGCCCCCGGGCGG 101 7/9  3/9
GGCCCGCGGGCGG 100 6/9 4/9
CGGCCCGGCGCGG 97 5/9 2/9

MEME GAAAGAGAAAGGG 99 6/9 4/9
GGGGAGGTGGAGT 96 5/9 1/9
TTTATTTTATTTT 95 5/9 2/9

FMGA  GCGGGGCGCGGGG 101 6/9 4/9
GGCCGGGCGCGGG 100 6/9 5/9
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Table 3.5: Dataset 3,1 =7

Method Consensus CSe s=1 s=0
MFACO GGGGCGG 123 18/18 15/18
CCCAGCT 123 18/18 15/18
CCAGCTG 123 18/18 15/18
CTGAGGC 123 18/18 15/18

MS GGCGGGG 123  18/18 15/18
GCGGGGC 121 18/18 13/18
GCGCGGG 119 18/18 11/18

BP CGCAGGC 115 18/18 7/18
CTGTGAT 115 18/18 7/18
CTTGAAC 114 18/18 6/18

MEME GTCTCTA 116  17/18  9/18
GGCTCAA 114 18/18 6/18
TTATCAG 105 13/18  2/18

FMGA GGTGAGG 122 18/18 14/18
AAAAAAA 119 18/18 11/18

Table 3.6: Dataset 3, [ = 13

Method Consensus CSc 5=2 s=1
MFACO GGGAGGCTGAGGC 205 16/18 6/18
CGGGAGGCGGAGG 204 15/18 7/18
GGAGGCTGAGGCA 202 12/18 7/18
CGGGAGGCGGGGG 201 15/18 7/18

MS CGGGGGGCGGAGG 196 12/18 4/18
GGGCCGGGCGCGG 195  13/18 3/18
GGGCCGGGCGGGG 195  11/18 4/18

BP GAAACTCCGTCTC 186 6/18 5/18
GCGAAACCCCGTC 186 7/18  4/18
GCGAAACTCCGTC 185 6/18 5/18

MEME  AAAAAAAAAAAAA 194 11/18 4/18
FMGA  GGGAGGCGGAGGC 201 13/18 9/18
AAAAAACAAAAAA 196  11/18 7/18
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Table 3.7: Performance results achieved by GS, BP, and MDGA in the CRP

dataset [Che 2005].

Seq.
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Table 3.8: Performance results achieved by MFACO in the CRP dataset.

Seq.

FP BS1 ER BS2
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Table 3.9: The consensus sequences of motifs discovered by MFACO, foot-

printing, Gibbs Sampler, BioProspector, and MDGA respectively. (based on
the results from Table 3.7 and Table 3.8).

Algorithm Consensus sequence Relative entropy
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Many real-world problems of practical importance can be formulated in
terms of graphs. In the following sections, we start with some definitions that

pertain to simple graphs in the context of our work and used throughout this
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thesis. Then, we describe the minimum weight vertex cover problem. A com-
prehensive overview on graph theory can be found in [Gross 2003, Bondy 2008,
Diestel 2010]

4.1 Preliminaries on graphs

4.1.1 Graphs

A graph G is a pair G = (V, F) of two sets such that £ C V' x V; thus, the
elements of E are 2-element subsets of V. An element of V' is called a vertex
(also known as point or node) of the graph G and an element (u,v) € F is
called an edge (also known as line).

If the pairs (u,v) € E are ordered pairs, then G is called a directed graph
(also known as digraph), otherwise G is called undirected then (u,v) and
(v,u) denote the same edge.

Each edge has a set of one or two vertices associated to it, which are called
endpoints. An edge is said to join its endpoints. The endpoints of an edge
are said to be incident with the edge, and vice versa. Two vertices which are
incident with a common edge are adjacent. Two distinct adjacent vertices are
neighbours.

The set of neighbors of a vertex v in a graph G is denoted by N(v) such that
N(v) = {u|(v,u) € EV(u,v) € E} . An edge with identical endpoints is called
a loop, and an edge with distinct endpoints a link. Two or more links with the
same pair of endpoints are said to be parallel edges. A simple graph is a graph
that has no loops or parallel edges. An undirected graph with each pair of its
vertices is adjacent is called complete. A graph with relatively few possible
edges missing is called dense, that is, |E| is close to |V[%. On the other hand,
a graph with few edges relative to the number of its vertices is called sparse,

that is, a graph for which |E| is much less than |V|>. Throughout this thesis,
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we denote by n = |V| the number of vertices and by m = |E| the number of

edges in G.

4.1.2 The degree of a vertex

Let G = (V,E) be a (non-empty) graph. The degree (also known as va-
lency|Diestel 2010]) of a vertex v in G, denoted by d(v), is the number of
edges of G incident with v. In particular, if G is a simple graph, d(v) is the
number of neighbors of v in G. A vertex of degree zero is called an isolated
vertex. Summing all the degrees of vertices in a graph counts the total number

of edges twice.

4.1.3 Graph representations

Given a graph G(V, E) whose vertices are numbered 1, 2, ..., n (remember that
n = |V]) in some arbitrary manner. The two common computational way to
represent G are as a collection of adjacency lists or as an adjacency matrix
[Cormen 2009, Levitin 2012]. An example of a graph defined by its adjacency

matrix and their adjacency lists is given in Figure 4.1.

4.1.3.1 Adjacency list representation

The adjacency list representation represents the edges of a graph. It consists
of one list(set) Adj, for each vertex v in V . Adj, contains all the vertices
adjacent to v in G (Alternatively, it may contain pointers to these vertices).
Further, Adjacency list representation provides a compact way to represent

sparse graphs.
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a v 12345678910 v Adj,
o e e 10000000100 1 {8}
2001000000 0 2 {3}

(6) () (3) 3010000001 0 3| {29
410000110100 4 {5,6,8}

@ e o 510001001110 5 | {4,7,8,9}
6000100000 1 6 | {4,10}

71000010000 0 7 {5}

81100110000 0 8 {1,4,5}

9001010000 0 9 {3,5}

10/ 000001000 0 10 {6}

(a) An undirected graph (b) Adjacency matrix representation (c¢) Adjacency list representation

Figure 4.1: Graph representations

4.1.3.2 Adjacency matrix representation

The adjacency matrix representation consists of an n x n matrix A = {a;; |
i=1,...,n;7=1,...,n} given by

0y = 1 if (¢,5) € E, (4.1)

0 otherwise.

The element in the i row and the j* column is equal to 1 if there is an
edge from the i'® vertex to the j* vertex, and equal to 0 if there is no such
edge. The principal advantage of the adjacency matrix representation is that
it provides a fast way to determine whether an edge connecting two given
vertices. Besides, It seems appropriate to use this form of representation
when the graph is dense. Note that the adjacency matrix of an undirected

graph is always symmetric.
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4.2 Minimum Weight Vertex Cover Problem

4.2.1 Problem statement

A problem instances (G,w) of the MWVC problem is a tuple that consists
of a simple undirected graph G(V, E), where V is the set of vertex and F is
the set of edges, and a function w : V' — RT that associates a positive weight

value w(v) to each vertex v € V. The MWVC problem can be formally de-

minimize w(5) = ) w(v)
veS

fined as follows: subject to V (v;,v;) € E: (v; € S) or (v; € 5),

SCV.
In the above definition, a candidate solution to the problem, denoted by .5, is

a subset of V. A candidate solution S is a valid solution, a so-called vertex
cover, if each edge in G has at least one endpoint in S. The objective function
value w(9) of a candidate solution S is defined as the sum of the weights of
the vertices in S. The objective of the MWVC problem is to find a valid
candidate solution that minimizes the objective function. We assume that G
is represented by means of its adjacency matrix. Therefore, the degree of a

vertex v € V' can be easily calculated as follows:

n

d(v) = Zlaij = Zaji (4.2)

j=1
Another way to view the MWVCP is as an integer linear programming (ILP)
problem. ILP is a mathematical formulation of the problem with a system of
linear constraints that can contain both equalities and inequalities, and also a
linear objective function that is to be maximized or minimized [Lau 2011]. In
our case, we are interested in feasible vectors with all components belonging
to the set {0, 1}. Therefore, an integer variable z, is associated to each vertex
v € V. The values of z, are restricted to be either 0 or 1 to indicate if v is

part of the solution or not. MWVCP can therefore be expressed as follows:
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minimize > w(v) -z,
veV

subject to =z, +x, > 1VY(u,v) € E,
z, € {0,1} Vo eV.

The inequality above ensures that the obtained solution contains at least one

endpoint of each edge, that is, it represents a valid vertex cover.

4.2.2 Example

In this section we give an illustrative example of MWVCP. As mentioned
earlier, a problem instance (G,w) of MWVCP is composed of an undirected
graph G(V, E) and a weight function w as shown in Figure 4.2. In this case,
the number of vertices is equal to the number of edges, that is, |V| = |E| =
10. The number in each circle denotes the vertex index and its associated
weight is given in the right of the figure. For example, the weight of vertex
v = b5 is w(l) = 25. The optimal solution is an unordered vertex subset

S*={1,3,4,5,6},5* C V, with a total weight of 280.
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Figure 4.2: An illustrative example of MWVCP
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4.3 MWVCP complexity

The MMWYVCP is known NP-hard [Karp 1972],so that, there is no polynomial
algorithm can achieve the minimum vertex cover unless P = NP. Thus, most
studies focus on the approximation algorithms for this problem. Dinner and
Safra [Dinur 2005] showed that it is NP-hard to approximate the vertex Cover
problem, which is a special case of MWVCP in which all vertices are of unit
weight, within any constant factor smaller than 10v/5—21. Moreover, it might
be hard to approximate it within an approximation ratio of 2 —¢ for all e > 0

[Khot 2003].

4.4 Approximation algorithms for MWVCP

Greedy algorithms are often used as approximation algorithms to solve op-
timization problems with a guaranteed performance. With this aim, several
greedy algorithms have been suggested in the literature to deal with MWVCP
with performance ratio < 2. In the following, we provide a brief introduction
on three of them. A common input to these algorithms is a simple undirected
graph G = (V, E) and a weight function w : V" — R*. A vertex cover C C V

is returned as output.

4.4.1 Bar-Yehuda and Even’s algorithm

Bar-Yehuda and Even’s algorithm [Bar-Yehuda 1981] selects an edge (u,v) €
E, suppose that w(u) < w(v), adds u to C' and decreases w(v) by w(u). Then,
all edges that are incident to u are removed from E. The previous steps are
repeated until all edges are removed from E. This approximation algorithm

has complexity O(|V| + | E|
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4.4.2 Pitt’s randomized algorithm

Pitt’s randomized algorithm [Pitt 1985] starts by placing all vertices of zero
weight in C' and arbitrary ordering the edges that remain uncovered uncovered
the edges of E arbitrary and including all vertices of zero weight in-degree in C'.
Then, it repeatedly chooses an uncovered edge (u,v) and generates a random
number a € [0, w(u) + w(v)], let assume that w(u) < w(v), if o < w(u) then
u is added to C, otherwise v is added to C. One can easily see that this is

w(u

equivalent to placing v in C' with a probability WJ)(U) The algorithm only
stops when all edges are treated. Pitt’s algorithm has complexity O(|V'|+|E|)

since each edge is processed once, and an expectation value of ratio < 2.

4.4.3 Clarkson’s Greedy algorithm

Clarkson’s algorithm [Clarkson 1983] has complexity O(|V| log(|V|) + |E])

and an approximation ratio < 2. It repeatedly chooses a vertex v with a

we(v)

de(v)
C. Moreover, all resulting isolated vertices are also removed from V. Note

minimum value of over all v € V| then, delete v from V and puts it
that the current degree d.(-) is only determined by edges whose both end-
points are not covered. The algorithm continues until all vertices in V' are
deleted. The resulting set C' is output as a vertex cover. Algorithm 6 shows a
pseudo-code for this algorithm. It is often the case in applications that actual
performance of approximation algorithms is required rather than theoretical
time complexity. For this reason, Taoka and Watanabe [Taoka 2012| have im-
plemented the three approximation algorithms (Clarkson’s algorithm, Pitt’s
algorithm and Bar-Yehuda and Even’s algorithm) for computing approximate
solutions to MWVCP for general graphs. Their performance was compared
based on computing results for total 243000 input data consisting of graphs
with 100 < [V| <3000, 1 < w(v) < 10000. It was observed that Clarkson’s
algorithm showed the highest capability in producing better solutions in short
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computing time.

Algorithm 6 Clarkson’s Greedy algorithm

1: input: A problem instance (G, w).
2: C' <)
32V {veV|d(v) #0}

4: for each v € V do

.Q‘

2

10:

11:

12:

13:

we(v) < w(v)

while V # () do

U + argmin {Z’CT(S)) lveV}

we (D)
SR

for each u € N(v) (the neighbors of ) do

We(u) = we(u) — e
C <+ CuU{v}
V « V\{v}
Vi {veV|d.(v)#0}

14: output: C'
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In this chapter, we first describe the greedy paradigm and explain its main
components. Then, we briefly present a general outline of an iterated greedy
algorithm and how it can be adapted to work with a population of solution
candidates in parallel. Finally, the details of the novel proposed approach for
MWYVCP are given.

5.1 Greedy paradigm

The greedy paradigm is one of the fundamental techniques in the design of

efficient algorithms, which has yielded exact and approximation algorithms
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for numerous optimization problems. A greedy algorithm is a constructive
one in the sense that, it builds a solution step by step starting from an empty
solution. At each construction step, an item from a finite set of solution
components is added to the current partial solution. The item to be added
is chosen at each step according to some greedy function, which lends the
name to the algorithm. In other words, Each step consists of the following

components [Neapolitan 2011]:

e A selection procedure chooses the next item to add to the set. The
selection is performed according to a greedy criterion that satisfies some

locally optimal consideration at the time.

o A feasibility check determines if the new set is feasible by checking
whether it is possible to complete this set in such a way as to give a

solution to the instance.

o A solution check determines whether the new set constitutes a solu-

tion to the instance,

A typical characteristic of the greedy algorithms is that, once a choice is
made on which item to add, this decision is never reconsidered again, that
is, without any look-ahead or back- tracking. The main advantages of greedy
algorithms are that they are usually simple (easy to understand what they do
and how they perform), easy to implement and low time complexity (fast in
execution). In contrast, the disadvantage is that the quality of the solutions
provided by greedy algorithms is often far from being optimal. Algorithm 7
shows a pseudo-code for a general greedy approach to optimization. Greedy
algorithms are typically applied to optimization problems and can be used in

at least three ways [Davis 2004]:

e They provide exact algorithms for a variety of problems. Examples

of such algorithm include Kruskal’s algorithm [Kruskal 1956] for Mini-
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Algorithm 7 Pseudo-code for a greedy algorithm
1: input: C' is the set of candidate items

2: S« () // We construct the solution in the set S
3: while C # () and not solution(S) do

4:  x < select(C)

5 C+ C\{x}

6: if feasible(S U {z}) then
7 S« Su{x}

8: if solution(S) then

9: return S
10: else

11: return there are no solutions

mum Spanning Tree and Dijkstra’s algorithm |[Dijkstra 1959] for Short-
est Path.

e They are frequently the best approximation algorithms for hard opti-

mization problems.

e Due to their simplicity, they are frequently used as heuristics for hard op-
timization problems even when their approximation ratios are unknown
or known to be poor in the worst-case. In cases where the greedy algo-
rithm does not systematically provide the optimal solution, it is called

a greedy heuristic.

In this study, we develop a greedy algorithm as a constructive heuristic search
combined with a stochastic improvement technique applied to MWVCP in
order to improve the quality of obtaining solutions. This algorithm in turn is
used as a construction procedure for the developed population based iterated

greedy algorithm.
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5.2 Iterated greedy search

Several examples from the literature (see for example [Benedettini 2010, Ruiz 2007,
Fanjul-Peyro 2010, Ribas 2011, Lozano 2011|) have shown that constructive
heuristics may be enhanced by a simple metaheuristic framework known as an
iterated greedy algorithm (IG). An IG algorithm starts with a complete solu-
tion. While some termination conditions are not met, it iteratively alternates
between two main phases: destruction and construction. During the partial
destruction phase some solution components are removed from the incum-
bent solution. The construction procedure then applies a greedy constructive
heuristic to reconstruct a complete candidate solution. Once a candidate so-
lution has been completed, an acceptance criterion decides whether the newly
constructed solution will replace the incumbent solution. IG is closely related
to Iterated Local Search (ILS) (see Section 3.2): instead of iterating over a
local search as done in ILS | IG iterates in an analogous way over construction
heuristics. The IG is closely related to iterated local search (ILS). The main
difference between the two is that ILS applies local search to perturbations of
the current incumbent solution to extend the search space and to escape from
deep local optima, whereas in IG the perturbation of the current solution is
stronger because it is done by means of the destruction and reconstruction of
the solution with a greedy constructive heuristic. Therefore, the IG is better
suited than ILS to escape from strong local optima [Ribas 2011]. A general
pseudo-code for IG is provided in Algorithm 8. The extension to population-
based IG is quite simple. Instead of working on a single incumbent solution,
population-based IG maintains at all times a population P of n solutions. The
usual IG steps, that is, destruction and reconstruction are, at each iteration,
applied to each solution s € P. Adding all solutions generated in this way
to P’ results in an augmented population P’ of n solutions. The population

for the next generation is then obtained by removing the worst n solutions
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Algorithm 8 Iterated greedy algorithm
1: s < Generate Initial Solution() // initial solution

2: while termination condition not satisfied do

3:  sP < Destruction(s)

e

s’ «— Construction(s?)

5. s < Acceptance Criterion(s, s)

2

output: {sp.s // best solution found in the search process }

from both P and P’ (P U P’). The pseudo-code of this procedure is shown in
Algorithm 9.

Algorithm 9 Population-based iterated greedy algorithm
1: P < Generate_Initial _Population(n) // initial solution

2: while termination condition not satisfied do

32 P«

4:  forall se P do

5: sP < Destruction(s)

6: s’ <= Construction(s?)

7 P« P U{s}

8: P < Acceptance Criterion(P, P’) // Best n solutions from P U P’

9: output: {sps // best solution found in P}

5.3 Design of a PBIG algorithm for MWVCP

In the following we outline the PBIG (A population-based iterated greedy
algorithm) algorithm that we developed for MWVCP. PBIG is a population-
based iterated greedy algorithm where a population of solutions, starting from
an initial population, is iteratively improved by means of alternating between
destruction and reconstruction until termination conditions are met.

Constructive methods are characterized by the fact that they work on partial
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solutions. Each constructive method is based on a mechanism for extending
partial solutions. Generally, a partial solution S may be extended by adding
a solution component from a finite set N(.S) of solution components that are
allowed to be added. In the case of MWVCP, N(S) C V' \ S represents the
set of vertices that have at least one incident edge which is still uncovered,
that is, an edge of which both endpoints are not in S.

Given a (partial) solution S, we henceforth refer to dg(v;) = [{(vi,v;) € E |
v; & S} as the current degree of a vertex v € V'\ S with respect to S. By
this definition N(S) can technically be defined in the following way:

N(S) :={v e V\S |ds(v) #0} (5.1)

Note that when S is a complete solution N'(S) = (). On the other hand, at
the start of the algorithm, when S is empty, it holds that N (S) = Ny where
No ={v € V | d(v) # 0}, i.e. the isolated vertices are excluded.

A high level description of our algorithm is given in Algorithm 10. Apart from
a problem instance (G,w), PBIG requires three input parameters to control

its flow:
(i) The population size pop size € Z™.

(ii) The degree of destruction p € [0,1] C R, which is a parameter that is

used to determine the size of the destruction.

(iii) The determinism rate o € [0,1] C R. The latter parameter is used to

control the degree of stochasticity of the solution construction procedure.

The algorithm works as follows. First, the pop size solutions of the ini-
tial population are generated by function GeneratelnitialPopulation(pop size).
Afterwards, each algorithm iteration consists of the following steps. First,
an empty population PP called offspring population is created. Then, each

solution Sy, € P (k = 1,...,pop_size) is partially destroyed using procedure
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Algorithm 10 PBIG for the MWVC problem
1: input: A problem instance (G,w), and paremters pop size € Zt, o €

0,1] CR, pe0,1] CR.

2: P < GeneratelnitialPopulation(pop_size) // see Algorithm 11
3: while termination condition not satisfied do

4 PP

5. for each candidate solution S; € P do

6: S < DestroyPartially (S, p)

7 S, < GreedyMWVC(SY, a) // see Algorithm 12

8: PP« PPU{S,}

9: P <« Accept(P, P?)

10: output: argmin {w(Sy) | Sk € P,k =1,...,pop_size}

DestroyPartially(Sk, p), resulting in a partial solution S;. On the basis of S, a
complete solution S, is then constructed using procedure GreedyMWVC(SY, «).
Each newly obtained complete solution is stored in PP. Note that the two
phases of destruction and construction are applied to each solution indepen-
dently of each other.

When the iteration is completed, procedure Accept(P, PP) selects the best
pop_size solutions from P U PP for the population of the next iteration. This
mechanism biases the search process towards the best solutions found during
the search, and keeps the population size fixed to pop size solutions at all
times. Finally, the algorithm terminates when either a given limit on the
maximum CPU time is reached or a maximum number of iterations has been
performed, and the best found solution is returned. The three procedures Gen-
eratelnitialPopulation(pop_size) (see Algorithm 11), GreedyMWVC(-, a) (see
Algorithm 12) and DestroyPartially(Sy, p) that form the core of PBIG are de-

scribed in more detail in the following.
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5.3.1 Population initialization

The procedure GeneratelnitialPopulation(pop size) generates pop size solu-
tions for the initial population. For the construction of a solution it applies
procedure GreedyMWVC(-, ) to the empty partial solution Sy = ). Since this
procedure typically includes an element of stochasticity (depending on param-
eter ), the generated solutions are generally different from each other. The

pseudo-code for generating the initial population is shown in Algorithm 11.

Algorithm 11 Procedure GeneratelnitialPopulation(pop size)
1: input: pop size

2: P <0

3: SQ(—@

4: for k=1,....,pop size do

5. Sk < GreedyMWVC(Sy, a) // see Algorithm 12
P <+ P U{Sk}

output: P = {51, 5. ... Spop_size )

@

=

5.3.2 Construction phase

The construction phase is assured by the procedure GreedyMWVC(S, a). It
takes a partial solution S (which might be empty) as input. At each construc-
tion step, the current partial solution S is extended by adding one solution
component from A(S) until a complete solution—that is, a vertex cover—is
constructed. The choice of the next solution component to be added to S at
each step is done in the following way.

First, each solution component v € N(S) is rated according to a greedy func-

tion cost(-) defined as

cost(v) := w(v)/ds(v)”? (5.2)
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When /3 = 1 this greedy function is the same as the one used in [Chvatal 1979.
However, experimental tests have shown that better results may sometimes
be obtained with S = 2. Therefore, for each application of the procedure a
value for /3 is randomly adopted from {1, 2}.

Let vt and v5es? (vhest =£ vbest) be the two vertices from A (S) with lowest
cost values. Moreover, let cost(v8!) < cost(ves!). The determinism rate o
is used to decide which one of the two solution components is chosen and
added to S. This is done by firstly generating a random value oy uniformly
distributed over [0, 1]. If oy < o then v*! is chosen, otherwise v3** is chosen.
The adding of vertices to S stops when N(S) = 0.

At this point solution S may contain vertices whose neighbors—that is, adja-

cent vertices—belong to S as well. Given a solution S this set may be formally

defined as follows:

St:={vesS|Alv)C S} (5.3)

Where A(v) is the set of vertices that are adjacent to vertex v in graph G.
Note that vertices from S* do not contribute to the covering and may safely be
removed from S. This is done iteratively. While S* is not empty, one vertex
from S* is chosen as follows. First, each vertex v € S* is rated according to
a greedy function rcost(-), which is obtained by inverting the greedy function
cost(+) from the construction process as explained above (See Eq. 5.4). More
specifically,

reost(v) = dg(v)? Jw(v). (5.4)

Hereby, parameter § adopts the value that was chosen for the construction
phase. This iterative process stops once S" is empty. The pseudo-code of the

complete function in Algorithm 12.
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5.3.3 Destruction phase

The destruction procedure— DestroyPartially (S, p)—starts with a complete so-
lution S. Then, |p x |S|] randomly chosen vertices—where 0 < p < 1—are
removed from S in an iterative way. Hereby, at each step exactly one ran-
domly chosen vertex is removed. Parameter p is henceforth called the degree

of destruction.

5.3.4 Complexity Considerations

The run time complexity of the proposed method is dominated by procedure
GreedyMWVC(S, o) as shown in Algorithm 12. In fact, the complexity of this
algorithmic component is the same as the one of the classical greedy heuristic
from [Chvatal 1979] for set covering and vertex covering. In other words, the
complexity is polynomial in the number of vertices and edges of the input
graph. The exact run time complexity depends on the data structures that
are used to keep and modify the input graph during the execution of the
algorithm. Finally, the run time complexity of one iteration of the proposed

PBIG algorithms is pop size times the run time complexity of procedure

GreedyMWVC(S, cv).
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Algorithm 12 Procedure GreedyMWVC(S, o)

1: input: a partial solution S, and parameter «

2: Choose randomly a value for 5 from {1, 2}

3: N(S) « {veV\S|ds(v) #0}

4: while NV (S) # 0 do

5. 08t < argmin {cost(v) | v € N(9)}

6: 05!« argmin {cost(v) | v € N(S9)\{vbe'}}

7. g < random number uniformly distributed over |0,1]
8: if ap < o then vbest «— ¢best

9:  else vPest «— plest

10: S <« SU{vbest}

11: N(S) < {v e V\S | ds(v) # 0}

12: S« {veS|Alw) CS}

13: while S* # () do

14: 0% < argmax {cost(v) | v € S*}

15 08t < argmax {cost(v) | v € S*\{vbes'}}

16: g < random number uniformly distributed over |0,1]
17:  if ap < a then bt < pbest

18:  else vt «— phest

19: S+« S\ {vbest}
200 SY«{veS|A(w) CS}

21: output: a complete solution S
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The proposed algorithm was implemented in ANSI C++ using GCC 4.4
for compiling the software, and experimentally evaluated on a cluster of PCs
equipped with Intel Xeon X3350 processors with 2667 MHz and 8 Giga-
bytes of memory. In the following, we first describe the set of benchmark
instances that have been used to test our approach. Then, we report on the
tuning process that has been employed for finding well-working settings for

the three algorithm parameters. Finally, a comparison of the performance
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of PBIG against the performance of recently published algorithms such as
ACO [Shyu 2004], HSSGA [Singh 2006], RGES [Balachandar 2009| and ACO-
SEED [Jovanovic 2011], is provided.

6.1 Problem Instances

The algorithm was tested on a set of benchmark instances originally proposed
in [Shyu 2004]. Each instance consists of an undirected, vertex-weighted graph
with n vertices and m edges. These instances are grouped—with respect to

their number of vertices n—into three different classes:

1. Class SPI: the class of small problem instances (SPI) contains 400
instances. The number of nodes (n) of instances from this class takes

values from {10, 15, 20, 25}.

2. Class MPI: the class of moderate-size problem instances (MPI) consists

of 710 instances where n takes values from {50, 100, 150, 200, 250, 300}.

3. Class LPI: the class of large problem instances (LPI) consists of 15
instances with n from {500, 800, 1000}.

In each class—and for each n—a whole range of instances exists including rather
sparse graphs as well as rather dense graphs.

The instances of the first two classes share the following characteristics:

e 10 problem instances were randomly generated per combination of n and
m and results are generally presented as an average over the objective

function values obtained for the 10 instances.

e The weight w(v) of each vertex v € V' is randomly drawn from a uniform
distribution, either from the interval [20, 120] (referred to as Type I) or
from the interval [1,d(v)?] (referred to as Type II), where d(v) is the

degree of vertex v.
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In contrast, class LPI only consists of one problem instance per combination of
n and m and the average quality over 10 different runs of the same algorithm
are generally reported as quality measure. The vertex weights are generated

similarly as in the case of the Type I instances.

6.2 Algorithm Tuning

As outlined in Chapter 5, our approach has three parameters for which ap-
propriate values must be determined. This concerns (1) the population size
(pop_size), (2) the degree of destruction (p € (0, 1]), and (3) the determinism

rate (a € (0,1]). The following values were considered for tuning:
e pop_size € {1,10, 20,50, 100};
o pe{0.1,0.2,0.3,0.4,0.5);
o a € {0.5,0.6,0.7,0.8,0.9, 1.0}, and

All 150 possible combinations of parameter values were considered, that is,
a full factorial design approach was applied. For the tuning experiments we
selected 406 problem instances for the training set. More precisely, from
each instance class we chose for each value of n the instances belonging to
the smallest and the largest m-value. Then we applied PBIG with each of
the 150 parameter value combinations exactly once to each problem instance
from the training set. The computation time limit for each run was set to
a maximum number of solution evaluations sol,,.,. As in previous works
(see, for example, [Jovanovic 2011]) sol,,q, was set to 20000. For example, in
case pop size = 50 the maximum number of iterations for PBIG, denoted
by itae, was set to 400. For analyzing the tuning experiments, the rank-
based procedure as described in [Benedettini 2010] has been utilized. For

each of the 406 problem instances the 150 different parameter settings were
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ordered based on the solution values they produced for the corresponding
instance. In other words, the combination that found the best solution for
a certain instance obtained rank 1, and so on. In the case of ties, the same
rank was given. Based on these ranks, an average rank for each parameter
combination was computed. The combination with the best average rank
for the Type I instances of classes SPI and MPI was (pop size = 100,p =
0.4, = 0.5), whereas the combination with the best average rank concerning
the Type II instances of classes SPI and MPI was (pop size = 100,p =
0.5, = 0.8). Finally, the combination with the best average rank concerning
the instances of class LPI was (pop size = 100,p = 0.3, « = 0.5). Therefore,
these parameter settings were adopted (for the corresponding instance classes)
for all further experiments. In general, the tuning results allowed us to draw
the following conclusions: As expected, PBIG performs consistently better
when adopting a population of solutions rather than a single solution. In fact,
in all cases the best-performing parameter combination used a population size
of 100. Second, the degree of destruction should rather drop with growing
instance sizes, that is, rather small instances seem to require a higher degree
of destruction than larger problem instances. Finally, instances of Type II
generally require a stronger degree of determinism during the construction of

solutions.

6.3 Results and discussions: PBIG versus ACO
and ACO-+SEE

The aim of this section is to compare the performance of PBIG with the
best available Ant Colony Optimization algorithms from the literature. More
precisely, for the comparison we chose the ACO algorithm from [Shyu 2004]
and the improved ACO approach (labelled ACO+SEE) from [Jovanovic 2011].
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ACO and ACO-+SEE were applied to all problem instances described in Sec-
tion 6.1. ACO+SEE can currently be regarded as a state-of-the-art method.
In order to be comparable to ACO and ACO+SEE, which were applied for
1tmae = 2000 iterations with 10 solution constructions per iteration, we equally
used a computation time limit of sol,,,., = 20000 solution evaluations for each
run of PBIG. Moreover, just like ACO and ACO+SEE, PBIG was applied ex-
actly once to each problem instance from classes SPI and MPI, and 10 times

to each problem instance from class LPI.

6.3.1 Results Concerning Class SPI

Tables 6.1 and 6.2 present the numerical results obtained by ACO, ACO+SEE
and PBIG for the instances of class SPI. Hereby, Table 6.1 contains the results
for the instances of Type I, whereas Table 6.2 contains the results concern-
ing the Type II instances. Remember that class SPI contains 10 different
problem instances for each combination of n and m. The values shown in
the tables represent the average results obtained for 10 instances. In general,
the structure of Tables 6.1 and 6.2 is as follows. The first two columns indi-
cate the number of vertices (n) and the number of edges (m). Column OPT
refers to the optimal solution values (averaged over 10 instances) as originally
provided in [Shyu 2004|. The following two columns provide the average so-
lution quality and the average computation time (in seconds) of ACO. This
is the information as given in [Shyu 2004]. The next two columns provide
the average solution quality and the average number of solution evaluations
of ACO+SEE. Note that the only information provided in [Jovanovic 2011] is
the average solution quality of ACO+SEE. We derived the average number
of solution evaluations from additional information provided to us by the au-
thors of [Jovanovic 2011]. The results of PBIG are provided in three columns.

The first one contains the average solution quality, the second one shows the
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Table 6.1: Performance of PBIG, ACO and ACO+SEED on instances of class
SPI (Type I).

n m  OPT ACO ACO+SEE PBIG Stat.
Avg Time (s) Avg Evals Avg Time (s) Evals Sign.
10 10 284.0 284.0 0.000 284.0 10 284.0 0.000 4.1 S)
20 398.7 398.7 0.008 398.7 18 398.7 0.000 17.5 O
30 4313 431.3 0.003 431.3 12 431.3 0.000 2.7 O
40 508.5 508.5 0.003 508.5 12 508.5 0.000 1.4 S/
15 20 4419 441.9 0.005 441.9 147 441.9 0.000 1.3 O
40 570.4 574.2 0.011 570.4 230 570.4 0.000 2.5 O
60  726.2 729.0 0.008 726.2 45 726.2 0.000 2.8 ©
80  807.5 814.6 0.010 807.5 25 807.5 0.000 3.2 o
100 880.0 880.0 0.008 880.0 14 880.0 0.000 3.1 O
20 20 473.0 473.0 0.005 473.0 30 473.0 0.000 3.3 ©
40  659.3 661.4 0.016 660.3 435 659.3 0.000 22.9 o
60 861.8 861.8 0.014 861.8 189 861.8 0.000 7.7 ©
80 898.8* 905.4 0.016 899.9 13 898.0 0.000 17.1 S)
100 1026.2  1026.8 0.016 1026.2 538 1026.2 0.000 2.8 ©
120 1038.2  1041.5 0.017 1038.2 1011 1038.2 0.000 5.2 S/
25 40 756.6 756.6 0.019 756.6 103 756.6 0.000 2.1 O
80 1008.1  1009.6 0.022 1008.1 638 1008.1 0.000 12.9 ©
100 1106.9 11074 0.025 1109.1 1155 1106.9 0.000 12.0 S/
150 1264.0 1264.0 0.031 1264.0 50 1264.0 0.000 21.0 O
200 13734 1377.7 0.030 1373.4 84 1373.4 0.000 2.7 S)
AVG e 0.013 776.0  238.0 775.7 0.000 7.42

* We believe that 898.8 is a mistake from [Shyu 2004]. The 10 solutions of PBIG resulting in a value

of 898.0) were thoroughly checked and are given in Appendix A.

average computation time (in seconds), and the third one provides the aver-

age number of solution evaluations. In the case of PBIG we provide both the

average computation time and the average number of solution evaluations in

order to be able to compare to both ACO and ACO+SEE. Finally, the last
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table column gives information about the outcome of a statistical test. More
specifically, for each combination of n and m we applied the Mann-Whitney
test [Corder 2009] to the results of PBIG and ACO+SEE, which is a current
state-of-the-art algorithm. Symbol & indicates that there is no statistical dif-
ference between the results of the two algorithms. On the other side, symbol
¢ indicates that the results of PBIG are better than those of ACO+SEE in
a statistically significant way (using a standard significance level of 0.05). As
a final remark, note that in each table row the result of the best algorithm
in the comparison is given in bold font. The last table row provides an av-
erage over the whole table. Concerning the interpretation of the results we
can observe that PBIG always generates the optimal result. This can be con-
firmed by comparing the values in column OPT with the average solution
qualities obtained by PBIG. In contrast, ACO+SEE is only able to generate
the optimal results in 32 out of 40 cases, and ACO is only able to provide
the optimal result in 16 out of 40 cases. However, as can be seen in the last
column of Tables 6.1 and 6.2, there is no statistical difference between the
results of ACO+SEE and PBIG. For what concerns computation time, we
can observe that PBIG is very fast. In fact, computation times are smaller
than 0.001 seconds in nearly all cases. ACO, on the contrary, has average
computation times of 0.013 seconds (see the last row of Table 6.1) and 0.015
seconds (see the last row of Table 6.2). In order to be able to compare these
computation times we must note that ACO has been executed on a computer
with an AMD processor of 1700 MHz and 256 MB of RAM. Therefore, we can
assume that the machines that we used for executing PBIG are about twice as
fast as the one used for executing ACO. When comparing the average number
of solution evaluations of ACO+SEE and PBIG, we can observe that PBIG
needs between 30 times (Table 6.1) and 40 times (Table 6.2) less solution eval-
uations than ACO+SEE. In summary, the small problem instances of class

SPI do not pose any challenge to PBIG.
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6.3.2 Results Concerning Class MPI

The results for the problem instances of class MPI are presented in Tables 6.3
and 6.4, in the same way as described in the previous section for the case of
instance class SPI. The additional column RGES in Table 6.4 presents the
results of the RGES algorithm [Balachandar 2009] which was only applied to
the Type II instances of class MPI. Note also that optimal solutions are not
known for the instances of this class, due to their increased size. Therefore,
column OPT is missing. Again we can observe that PBIG is superior to
the competitor algorithms. In all 70 cases PBIG obtains the best result of
the comparison. Altogether, ACO, RGES, and ACO-+SEE are only able to
match the results of PBIG in two cases. Concerning statistical significance,
it can be observed that for rather small problem instances of this class, the
improvement of PBIG over ACO+SEE is still not statistically significant. On
the other side, for all larger problem instances, the improvement of PBIG
over ACO+SEE is statistically significant. Altogether, statistical significance
could be determined in 49 out of 70 cases. For what concerns a comparison
of computation time, we can observe that PBIG needs about twice as much
computation time than ACO. This is taking into consideration the fact that
the machines used to execute PBIG are about twice as fast as the machine
used to run ACO. However, given that the stopping criterion for ACO and
PBIG has been the same, this only means that ACO gets stuck earlier during
the search process, while PBIG is able to make a better use of the allotted
computation time. Finally, comparing the number of solution evaluations
needed by ACO+SEE and PBIG, it can be observed that PBIG obtains a
better solution quality than ACO-+SEE using, on average, about 3-4 times

fewer solution evaluation.
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6.3.3 Results Concerning Class LPI

Table 6.5 presents a comparison of PBIG with ACO+SEE for what concerns
the instances of class LPI. Remember that the instances of this class are the
largest ones of the whole benchmark set. In this case we only compare to
ACO-+SEE, which is the best available algorithm for these instances. In con-
trast to instance classes SPI and MPI, class LPI only contains one single
instance per combination of n and m. Therefore, the results are given as aver-
ages over 10 runs per instance. For each of the two algorithms, columns Best,
Avg and Evals provide, respectively, the value of the best solution found, the
average solution quality over 10 runs and the average number of solution eval-
uations needed for reaching the best solutions in 10 runs. In addition, in the
case of PBIG we provide the average computation time in column Time (s).
For each combination we compare between the best performance (columns
Best) and the average performance (columns Avg) of PBIG and ACO+SEE.
The better among the two is always indicated in bold font. Concerning the
comparison, we can observe that PBIG outperforms ACO-+SEE both for what
concerns the best solutions found and the average solution quality obtained.
The only exception is case (n = 500, m = 5000) where ACO+SEE finds a
better solution than PBIG. It is interesting to note that in 13 out of 15 cases
the average solution quality obtained by PBIG is better than the value of the
best solution found by ACO+SEE. Moreover, the last table column indicates
that in all cases PBIG improves over ACO+SEE in a statistical significant
way. Concerning the number of solution evaluations, PBIG and ACO+SEE

make use of, on average, a comparable number of solution evaluations.

6.3.4 Convergence speed of PBIG

A convergence analysis presented in [Jovanovic 2011] for cases (n = 500, m =

2000) (see row 3 of Table 6.5), (n = 800, m = 10000) (see row 10 of Table 6.5)
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and (n = 1000, n = 1000) (see row 11, Table 6.5) (see Figure 6.1 ) has shown
that ACO-+SEE converges after 200-500 iterations, which corresponds to 2000-
5000 solution evaluations. The rest of the computation time is not utilized by
ACO+SEE. From the latter figure we can see that in spite of the superiority of
ACO-+SEED over ACO, both are more susceptible to converge to local optima
especially for large problem instances. Figure 6.2 through Figure 6.4 show such
a convergence analysis also for PBIG. Each graphic shows the evolution of the
value of the best solution found by each of the 10 applications of PBIG over
time. First, we can observe that—in all three cases—after very few iterations
PBIG is able to find better solutions than the best ones found by ACO+SEE.
Moreover, PBIG does not stagnate. Good solutions can also be found towards

the end of a run.

6.4 Results and discussions: PBIG versus HSSGA

The aim of this section is to compare the performance of PBIG with a hybrid
heuristic based steady-state genetic algorithm (HSSGA) developed by In Singh
and Gupta [Singh 2006] for MWVCP. The genetic algorithm generates vertex
covers which are then tuned by a heuristic. The heuristic first select the set
of those vertices in the vertex cover whose edges are fully covered by other
vertices within the cover and then it consecutively deletes such vertices from
the vertex cover until the set is empty. It was tested on all problem instances
described in Section 6.1. In the same manner as for PBIG, HSSGA were
applied for it,,,, = 2000 iterations (generations) with a population size of
100 individuals and was applied exactly once to each problem instance from
classes SPI and MPI, and 10 times for each problem instance from class LPI.
HSSGA was executed on a 2.4GHz Pentium 4 processor-based system with
512 MB RAM.
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6.4.1 Results Concerning Class SPI

Tables 6.6 and 6.7 compare the performance of PBIG with HSSGA on problem
instances of class SPI. The data for HSSGA are taken from [Singh 2006]. In
these tables, the average solution quality and the average computation time (in
seconds) are provided for each approach. We can observe that both approaches
are able to find the optimal solutions to all instances of class SPI and that
in a negligible computation time. In fact, they achieve equal performance for

this test case.

6.4.2 Results Concerning Class MPI

Tables 6.8 and 6.9 compare the performance of PBIG with HSSGA on problem
instances of class MPI. We should note that PBIG performs significantly bet-
ter than HSSGA, especially when the size of the problem instance increases.
PBIG outperforms HSSGA in 10 out 30 cases and in 13 out 14 cases for
problem instances of Type I and Type II respectively. There were also no
significant differences in running time if we take in consideration the number

of evaluated solutions needed to converge to a good quality solution.

6.4.3 Results Concerning Class LPI

Table 6.10 shows a comparison of PBIG with HSSGA for what concerns the
instances of class LPI. PBIG outperforms ACO+SEE in term of the average
solution quality obtained. It can be seen that PBIG outperforms HSSGA
in 11 out 14 cases and with equal performance in one case (for n = 500,
m = 800). When comparing the average computation time of ACO+SEE and
PBIG (see see row 16, Table 6.10 ), we can observe that PBIG needs more
time to find its best solution than HSSGA. It does not mean that the latter
is faster. This may be an explanation for the performance improvement of

PBIG as the quality of the solution usually keeps improving until the last
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iterations. On the other hand, HSSGA may get trapped in local optima and
converge rapidly after a certain number of iterations. Moreover, an interesting
observation from the experimental results is that the relative difference in the
solution quality between PBIG and the other algorithms increases with an
increase of the problem instance. That is, PBIG achieve better performance
as compared to ACO, ACO+SEED and HSSGA especially when the size of

the problem is large.
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Table 6.3: Performance of PBIG, ACO and ACO+SEED on instances of class

MPI (Type I).

n m ACO ACO+SEE PBIG Stat.
Avg Time (s) Avg Evals Avg Time (s) Evals Sign.
50 50  1282.1 0.063 1280.9 414 1280.0 0.016 1152.0 >
100 1741.1 0.083 1740.7 2258 1735.3 0.007  205.9 S
250 22874 0.097 2280.6 325 2272.3 0.006 66.4 S
500  2679.0 0.102 2669.3 331 2661.9 0.003 29.9 S
750 2959.0 0.125 2957.3 329 2951.0 0.027 61.1 S]
1000  3211.2 0.117 3199.8 2291 3193.7 0.019 24.4 S]
100 100 2552.9 0.273 2544.0 3722 2537.6 0.019  502.8 S
250  3626.4 0.367 3614.9 1049 3602.7 0.057  428.5 S
500  4692.1 0.433 4636.4 1577 4600.6 0.182  703.0 ]
750  5076.4 0.502 5082.8 1454 5045.5 0.088 2534 S
1000  5534.1 0.456 5522.7 1808 5509.4 0.084  156.3 S
2000  6095.7 0.589 6068.3 448 6051.9 0.501  307.0 S
150 150  3684.9 0.691 3676.8 3834 3667.3 0.088 1000.5 S
250  4769.7 0.891 4754.9 2714 4720.3 0.116  713.6 S
500 6224.0 1.194 6228.7 5862 6165.7 0.294 869.4 5]
750  7014.7 1.042 6996.3 1705 6963.7 0.522 13484 o
1000 7441.8 1.206 7383.6 2090 7368.8 0.536  930.7 S
2000  8631.2 1.103 8597.2 1441 8562.0 0.824  400.3 S
3000 8950.2 0.966 8940.2 584 8899.8 1.300  346.4 ]
200 250  5588.7 1.674 5572.4 5335 5551.9 0.157  812.2 S]
500  7259.2 2.160 7233.7 3930 7192.4 0.547 13744 S
750  8349.8 2.602 8300.3 3651 8274.5 0.664  995.6 ]
1000 9262.2 2.221 9208.4 3178 9150.6 1.019 1084.6 5]
2000 10916.5 2.437 10891.1 2770 10831.0 2.726  1629.2 5]
3000 11689.1 2.497 11680.4 1937 11600.2 2.866  690.6 S
250 250  6197.8 2.273 6169.2 8418 6148.7 0.392  1956.0 ]
500  8538.8 4.016 8495.9 8871 8440.7 1.334 41147 o
750 9869.4 4.047 9815.5 8428 9752.8 2.447 44235 S
1000  10866.6 3.755 10791.0 6190 10753.7 2.371  2138.9 5]
2000 12917.7 3.942 12827.0 6229 12757.6 3.471  1229.8 ]
3000 13882.5 4.276 13830.6 5023 13723.5 3.233  896.9 5]
5000 14801.8 3.842 14735.9 1507 14676.7 22.508 3004.5 5]
300 300  7342.7 4.322 7326.6 7370 7296.0 0.711  2557.3 S
500 95174 5.178 9491.9 7273 9403.1 1.596 4051.3 ]
750 11166.9 6.055 11156.5 8729 11038.1 3.349  3816.9 5]
1000 12241.7 6.231 12163.7 9922 12108.9 3.095 2325.1 5]
2000 14894.9 6.488 14834.6 4976 14749.9 10.982  3366.3 5]
3000 16054.1 6.299 15910.5 3284 15848.2 11.636  2821.3 ]
5000 17545.4 6.558 17479.8 3584 17350.6 17.283  1450.5 5]
AVG 7881.0 2.338 7848.5 3713.9 7806.1 2.489 1390.8
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Table 6.4: Performance of PBIG, ACO and ACO+SEED on instances of class
MPI (Type II).

n m ACO RGES ACO+SEE PBIG Stat.
Avg Time (s) Avg Avg Evals Avg Time (s) Evals Sign.
50 50 83.9 0.072 83.9 83.9 1299 83.7 0.002 109.7 [S]
100 276.2 0.097 276.2 274.4 2716 271.2 0.003 81.3 S]
250 1886.8 0.111 1886.4 1870.3 2528 1853.4 0.010 81.1 S)
500 7915.9 0.120 7914.5 7876.7 914 7825.1 0.009 45.1 53]
750 20134.1 0.111 20134.1 20087.6 505 20079.0 0.010 23.0 S]
100 50 67.4 0.184 67.4 67.2 266 67.2 0.002 66.0 S]
100 169.1 0.334 169.1 167.8 2244 166.6 0.017 199.6 S)
250 901.7 0.514 890.4 895.3 6630 886.5 0.065  377.8 52}
500 3726.7 0.481 3725.3 3707.0 3806 3693.6 0.101 213.3 D
750 8754.5 0.444 8745.5 8742.3 3000 8680.2 0.129 235.4 (S5}
150 50 65.8 0.292 65.8 65.9 190 65.8 0.001 28.1 S)
100 144.7 0.583 144.7 144.1 1491 144.0 0.026 231.3 S]
250 625.7 1.387 624.4 624.8 6546 616.0 0.187  601.4 D
500 2375.0 1.908 2365.2 2358.6 5925 2331.5 0.572  850.6 (3}
750 5799.2 1.295 5798.6 5707.0 4928 5698.7 0.550 518.0 53]
200 50 59.6 0.463 59.6 59.6 48 59.6 0.001 26.6 S]
100 134.7 0.981 132.6 134.6 3634 134.5 0.021 188.9 S]
250 488.7 2.413 488.4 487.9 7303 483.1 0.280 1054.5 S5
500 1843.6 3.423 1843.6 1818.7 10850 1804.3 1.286 1524.8 52
750 4112.8 3.600 4112.8 4077.0 8833 4043.6 0.768 766.0 (€3}
250 250 423.2 3.311 423.2 421.2 8553 419.0 0.476 11274 [S3)
500 1457.4 5.781 1457.4 1454.3 12500 1435.7 4.219 4113.3 7]
750 3315.9 5.983 3315.9 3289.4 7865 3261.0 2.935 1693.0 b
1000 6058.2 6.297 6058.2 6040.0 11586 5989.4 7.978 3223.0 (3}
2000  26149.1 4.859 26149.1 25932.1 5145 25658.5 11.809 1967.0 (3}
5000 171917.2 4.856 171917.2 171500.7 3402 170269.1 37.770  1624.1 [S3)
300 250 403.9 5.372 403.9 402.7 7713 399.5 0.353 1109.1 53]
500 1239.1 9.155 1239.1 1237.3 11971 1216.4 5.439 4510.6 (S5}
750 2678.2 10.994 2678.2 2674.1 9491 2639.4 6.545 4135.8 [S3)
1000 4895.5 9.045 4895.5 4867.9 11492 4796.3 15.204 4941.9 53]
2000 21295.2 7.242 21295.2 21107.7 11399 20891.6 10.911 2084.1 b
5000 143243.5 6.553 143243.5 142292.6 3388 141265.3 27.674 1080.4 D
AVG 13832.6 3.071 13831.4 13764.7  5567.5 13663.4 4.230 1213.5
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Figure 6.1: Convergence speed of ACO and ACO+SEED for the test case of

three problem instances of class LPI [Jovanovic 2011].
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Table 6.6: Performance of PBIG and HSSGA on instances of class SPI

(Type I).
n m  OPT HSSGA PBIG
Avg Time (s) Avg Time (s)
10 10 284.0 284.0 0.000 284.0 0.000
20 398.7  398.7 0.000 398.7 0.000
30  431.3 4313 0.000 431.3 0.000
40 508.5  508.5 0.000 208.5 0.000
15 20 4419 4419 0.000 441.9 0.000
40 5704 5704 0.000 570.4 0.000
60 726.2 726.2 0.000 726.2 0.000
80  807.5  807.5 0.000 807.5 0.000
100 880.0  880.0 0.000 880.0 0.000
20 20 473.0 473.0 0.000 473.0 0.000
40 659.3  659.3 0.000 659.3 0.000
60 861.8 861.8 0.000 861.8 0.000
80  898.8  898.0 0.001 898.0 0.000
100 1026.2 1026.2 0.001 1026.2 0.000
120 1038.2 1038.2 0.000 1038.2 0.000
25 40  756.6  756.6 0.000 756.6 0.000
80 1008.1 1008.1 0.000 1008.1 0.000
100 1106.9 1106.9 0.000 1106.9 0.000
150 1264.0 1264.0 0.000 1264.0 0.000
200 1373.4 13734 0.000 1373.4 0.000
AVG 775.7 0.0001 75,7 0
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Table 6.7: Performance of PBIG and HSSGA on instances of class SPI

(Type II).
n m  OPT HSSGA PBIG
Avg Time (s) Avg Time (s)
10 10 18.8 18.8 0.000 18.8 0.000
20 ol.1 o1.1 0.000 o1.1 0.000
30 1279 1279 0.000 127.9 0.000
40 268.3  268.3 0.000 268.3 0.000
15 20 34.7 34.7 0.000 34.7 0.000
40 170.5  170.5 0.000 170.5 0.000
60 360.5 360.5 0.000 360.5 0.000
80 6979  697.9 0.000 697.9 0.000
100 1130.4 1130.4 0.000 1130.4 0.001
20 20 32.9 32.9 0.001 32.9 0.000
40  111.6 111.6 0.000 111.6 0.000
60 2541 254.1 0.000 254.1 0.000
80 4522 4522 0.000 452.2 0.000
100 7752  T775.2 0.000 775.2 0.000
120 1123.1 1123.1 0.000 1123.1 0.001
25 40 98.7 98.7 0.000 98.7 0.000
80  372.7 3727 0.000 372.7 0.000
100 595.0  595.0 0.000 995.0 0.000
150 1289.9 1289.9 0.000 1289.9 0.000
25 200 2709.5 2709.5 0.000 2709.5 0.000

AVG 933.8 0.00005 933.8 0.0001
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Table 6.8: Performance of PBIG and HSSGA on instances of class MPI

(Type ).

n m HSSGA PBIG
Avg Time (s) Avg Time (s)
50 50 1280.0 0.002 1280.0 0.016
100 1735.3 0.003 1735.3 0.007
250 2272.3 0.003 2272.3 0.006
500 2661.9 0.002 2661.9 0.003
750 2951.0 0.003 2951.0 0.027
1000 3194.4 0.000 3193.7 0.019
100 100 2534.2 0.025 2537.6 0.019
250 3602.7 0.040 3602.7 0.057
500 4600.6 0.136 4600.6 0.182
750 5045.5 0.029 5045.5 0.088
1000 5508.2 0.026 5509.4 0.084
2000 6051.9 0.036 6051.9 0.501
150 150 3666.9 0.082 3667.3 0.088
250 4721.1 0.145 4720.3 0.116
500 6172.7 0.398 6165.7 0.294
750 6965.0 0.219 6963.7 0.522
1000 7370.4 0.223 7368.3 0.536
2000 8549.4 0.298 8562.0 0.824
3000 8899.8 0.105 8899.3 1.300
200 250 5551.9 0.316 5551.3 0.157
500 7202.3 0.247 7192.4 0.547
750 8273.3 0.304 8274.5 0.664
1000 9153.4 0.248 9150.6 1.019
2000 10836.0 0.969 10831.0 2.726
3000 11602.4 0.374 11600.2 2.866
250 250 6151.6 0.440 6148.7 0.392
500 8442.9 2.602 8440.7 1.334
750 9772.9 1.957 9752.8 2.447
1000 10760.1 1.019 10753.7 2.371
2000 12755.5 1.426 12757.6 3.471
3000 13738.0 0.559 13723.5 3.233
5000 14671.3 0.793 14676.7 22.508
300 300 7295.8 2.143 7296.0 0.711
500 9416.8 1.415 9403.1 1.596
750 11041.0 4.003 11038.1 3.349
1000 12116.3 2.055 12108.9 3.095
2000 14744.8 3.873 14749.9 10.982
3000 15846.3 1.175 15848.2 11.636
300 5000 17366.3 1.423 17350.6 17.283
AVG 7808.3 0.747 7806.1 2.489
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Table 6.9: Performance of PBIG and HSSGA on instances of class MPI

(Type II).

n m HSSGA PBIG
Avg Time (s) Avg Time (s)
50 50 83.7 0.002 83.7 0.002
100 271.2 0.003 271.2 0.003
250 1853.4 0.001 1853.4 0.010
500 7825.1 0.002 7825.1 0.009
750  20079.0 0.000 20079.0 0.010
100 50 67.2 0.013 67.2 0.002
100 166.6 0.019 166.6 0.017
250 886.5 0.059 886.5 0.065
500 3693.6 0.022 3693.6 0.101
750 8680.2 0.022 8680.2 0.129
150 50 65.8 0.025 65.8 0.001
100 144.1 0.049 144.0 0.026
250 616.0 0.073 616.0 0.187
500 2331.5 0.379 2331.5 0.572
750 5702.3 0.117 5698.7 0.550
200 50 59.6 0.042 59.6 0.001
100 134.5 0.085 134.5 0.021
250 483.1 0.336 483.1 0.280
500 1804.3 0.273 1804.3 1.286
750 4046.5 0.545 4043.6 0.768
250 250 419.1 0.657 419.0 0.476
500 1436.8 0.384 1435.7 4.219
750 3265.2 0.373 3261.0 2.935
1000 5993.3 0.457 5989.4 7.978
2000  25701.2 0.579 25658.5 11.809
5000 170306.3 0.856 170269.1 37.770
300 250 399.6 0.481 399.5 0.353
500 1216.9 1.559 1216.4 5.439
750 2644.5 1.111 2639.4 6.545
1000 4808.7 2.264 4796.3 15.204
2000  20936.1 0.788 20891.6 10.911
5000 141278.3 1.646 141265.3 27.674
AVG 13668.8 0.413 13663.4 4.230
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Table 6.10: Performance of PBIG and HSSGA on instances of class LPI.

n m HSSGA PBIG
Avg Time (s) Avg Time (s)
500 500  12621.2 14.256 12620.0 1.601
1000 16470.4 10.331 16470.1 10.240
2000  20882.6 7.223 20870.8 9.283
5000 27393.4 10.266 27428.2 34.707
10000 29627.2 8.593 29666.8 36.405
800 500 15025.0 60.296 15025.0 2.535

1000 22774.5 96.205 22763.0 11.589
2000  31433.8 91.797 31422.6 58.008
5000  38742.9 58.266 38718.7 113.842
10000  44478.3 34.753 44397.8 96.467

1000 1000 24730.2 138.868 24763.1 14.435
5000  45347.2 62.514 45295.4 178.311

10000  51736.0 102.958 51540.9 325.956

15000  58203.9 63.946 58145.2 363.179

20000  59948.0 37.700 59847.9 647.563

AVG 33294.3 53.195 33265.0 126.941
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7.1 Conclusions

This thesis describes an investigation into the development of stochastic opti-
mization technique to the minimum weight vertex cover problem (MWVCP).
MWYVCP is a fundamental NP-complete problem in graph theory. One of
the noticeable problems usually encountered by most of the previous works
on MWVCP is that their performance decrease significantly relative to the
problem size. They seem to not scale well particularly for large problem in-
stances. This work has been motivated by an interest in developing a new
optimization approach that tackles this problem in a more effective way than
currently exists.

On the other hand, several recent studies from the literature have shown that
constructive heuristics may be enhanced by a simple and effective metaheuris-
tic framework known as an iterated greedy algorithm (IG). IG is a stochas-
tic local search algorithm recently developed for combinatorial optimization
problems, which has exhibited state-of-the-art performances for a considerable

number of problems. It generates a sequence of solutions by iterating over
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greedy constructive heuristics using destruction and reconstruction phases.
During the destruction phase, some solution components are removed from a
previously constructed complete candidate solution. The reconstruction phase
is then driven to build the resulting partial solution in order to obtain again
a complete solution. An acceptance criterion is used to decide whether the
newly constructed solution should replace the current one. Moreover, scal-
ability for high-dimensional problems has become an essential an essential
requirement for modern optimization techniques.

Additionally, Algorithms based on a population of potential solutions, rather
than a single solution at a time, can in effect search many local optima and,
thereby, increase the likelihood of finding the global optima. Therefore, they
are also less susceptible to converge to local optima.

Taking the previous considerations into account, we have proposed a population-
based iterated greedy (PBIG) approach to tackle the MWVCP and capable
of reaching high-quality solutions especially for large size problem instances.
The proposed algorithm maintains a population of solutions and applies, at
each iteration, the basic steps of an iterated greedy algorithm to each member
of the population. The best solutions among the current population and the
newly generated solutions are accepted for the population of the subsequent
iteration.

The destructive procedure simply consists in randomly removing a certain
fraction of the vertices from the incumbent solution. For the construction
phase, we develop a new randomized greedy construction heuristic based on
the heuristic described in [Chvatal 1979, Clarkson 1983]. Randomized greedy
heuristic have an important advantage over deterministic greedy one in that
it has the potential for generating multiple local optimal solutions.

Tuning experiments have confirmed that two important points. First, work-
ing with a population of solutions rather than being restricted to a single

solution can greatly avoid the rapid convergence to local optima and increase



7.2. Future Works 113

diversity. The version of PBIG using a population size of 100 performs better
than versions of PBIG using less solutions per iteration. Second, the degree
of destruction should rather drop with growing instance sizes, that is, small
instances seem to require a higher degree of destruction than larger problem
instances.

Our computational results based on 1125 benchmark instances of different
sizes reveal that PBIG performs slightly better than the currently available
algorithms from the literature, especially when the instance size grows, such
as ACO [Shyu 2004|, HSSGA [Singh 2006], RGES [Balachandar 2009| and
ACO+SEED [Jovanovic 2011] and that not only in solution quality but also
in computation time (respectively, number of solution evaluations). Further-
more, PBIG is able to solve all small problem instances to optimality, in

negligible computation time.

7.2 Future Works

In the future, several issues could be further investigated to improve the per-

formance of PBIG:

e Search for some greedy problem-specific heuristics, which can be ex-

ploited in a more advanced construction phase.

e Extend our approach by using several greedy heuristics at the same time,

rather than being restricted to a single one.

e As both GRASP (see Section 3.3) and PBIG apply a greedy randomized
construction procedure to generate feasible solution. However, GRASP
makes use of local search for refining the generated solutions to local
optima. So, The performance of PBIG might be improved by incorpo-
rating a suitable local search strategy. Following this idea, simulated

annealing (SA) can be employed as a local search as done in a recent
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work by Vof and Fink [Vofs 2012] where the latter approach is hybridized
with a reactive tabu search (TS) to incorporate key features of both SI

and TS to solve the same problem.

We believe that PBIG may be also successfully extended to other NP-
complete problems as well especially those that are similar to the MWVCP
such as the Minimum Weight Dominating Set Problem [Potluri 2013] and the
Minimum Weighted Set Cover Problem [Korte 2012].

Minimum Weighted Dominating Set. Given an undirected graph G =
(V, E), a dominating set is a subset V* C V' such that each v € V' is either a
member of V* or there is a vertex u € V* for which (u,v) € E. Given a weight
function w : V' — R*, the minimum weighted dominating set is a dominating
set V* such that » _ . w(v) is is minimized.

Minimum Weighted Set Cover. Let U be a set of elements and S be a
collection of non-empty subsets of U. Given a weight function w : § — R™*,
the minimum weighted set cover is a subset S* C S such that ) _c. w(5)
is is minimized and Jg g. w(S) = U, that is, S* covers Y. MWVCP is
equivalent to the special case of this problem, where each set contains exactly

two elements.



APPENDIX A
Best solutions of case

(n =20, m = 80)

Here we report the best solutions found by PBIG for the 10 instances of case
(n = 20,m = 80) from Table 6.1. Note that the 20 vertices are numbered
from 1 to 20.

Instance no. 1
S ={6,9,15,5,3,8,7,17,13,18,16, 11,12, 20}
w(S) = 899

Instance no. 2
S =1{9,8,15,13,6,2,14,5,3,12,10, 7,18, 1, 20, 16}
w(S) =947

Instance no. 3
S ={14,10,4,16,19,8,7,18,17,5,20,12,11, 2}
w(S) = 866

Instance no. 4

S ={3,15,14,4,17,5,7,11,1, 19, 10, 20, 9, 2}

w(S) = 768
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Instance no. 5

S =1{16,17,1,20,6,15,2,3,7,18,9,11, 14, 4}

w(S) =976
Instance no. 6

S ={20,13,7,1,14,15,16,2,9,12,10, 11, 5, 3}

w(S) =905
Instance no. 7

S ={7,11,4,18,9,8,3,14,20, 12,1, 16, 10, 19}

w(S) =944
Instance no. 8

S = {18,15,13,16,9, 14, 19,8,5,4,2,6, 10, 17, 3}

w(S) = 899
Instance no. 9

S ={15,9,4,18,3,11,20,5,1, 14, 10,6, 2, 13}

w(S) =970
Instance no. 10

S =1{18,15,3,13,1,9,4,6,12,10, 5,7, 20,2}

w(S) = 806

Average solution quality: 898.0
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DESIGN OF A LEARNING METHOD FOR AUTOMATIC DATA
EXTRACTION

Abstract

Optimization is a scientific discipline that is concerned with the extraction of optimal
solutions for a problem, among alternatives. Many challenging applications in
business, economics, and engineering can be formulated as optimization problems.
However, they are often complex and difficult to solve by an exact method within a
reasonable amount of time.

In this thesis we propose a novel approach called population based iterated greedy
algorithm in order to efficiently explore and exploit the search space of one of the NP-
hard combinatorial optimization problems namely the minimum weigh vertex cover
problem. It is afundamental graph problem with many important real-life applications
such as, for example, in wireless communication, circuit design and network flows.
An extensive experimental evauation on a commonly used set of benchmark
instances shows that our algorithm outperforms current state-of-the-art methods not
only in solution quality but also in computation time.

Keywords: stochastic algorithms, combinatorial optimization problem, minimum
weight vertex cover problem, greedy heuristic

CONCEPTION D°UNE METHODE AUTOMATIQUE D*APPRENTISSAGE
POUR A FOUIWLE DE DONNEES

Résumé

L’optimisation est une discipline scientifique qui sintéresse a I’extraction des
solutions optimales pour un probleme donné, présentant plusieurs solutions. De
nombreuses applications stimulantes dans I’industrie, en finances et en ingénierie
peuvent étre formulées comme des problémes d’optimisation. Cependant, ils sont
souvent complexes et difficiles & résoudre avec exactitude dans des temps de calcul
acceptables.

Dans cette thése, nous proposons une nouvelle approche appelée algorithme
glouton itératif a base de population pour explorer et exploiter d’une maniére
adéquate I’espace de recherche de I’'un des problemes d’optimisation combinatoires de
classe NP-difficile. Il s’agit du probleme de la couverture par les sommets de poids
minimum qui est un probleme fondamental dans la théorie de graphe, couvrant de
nombreuses applications dans les domaines de la communication sans fils, de la
conception des circuits et du contréle du flux dans les réseaux.

Une évaluation expérimentale approfondie sur les différents jeux de donnees
disponibles dans la littérature montre que I’algorithme développé, concurrence
aisément en terme de qualité des solutions et des temps de calcul associés, les
méthodes de pointe actuelles dans la plupart des cas.

Mots-clés: algorithmes stochastiques, optimisation combinatoire, probleme de la
couverture par les sommets de poids minimum, heuristique glouton.



