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Abstract 

Multibiometric systems that fuse information from different sources are able to alleviate 

limitations of the unimodal biometric systems. In this thesis, we propose a 

multibiometric framework to identify people using their left and right wrist vein 

patterns. The framework uses a fast and robust preprocessing and feature extraction 

method. A generic score level fusion approach is proposed to integrate the scores from 

left and right wrist vein patterns using Dubois and Parad triangular norm (t-norm). 

Experiments on the publicly available PUT wrist vein dataset show that the proposed 

multibiometric framework outperforms the unimodal systems, their fusion using other 

t-norms techniques, and existing wrist vein recognition methods. Also, a new framework 

for score level fusion based on symmetric sums (s-sums) has been presented. These s-

sums are generated via triangular norms. The proposed framework has been tested on 

two publicly available benchmark databases. In particular, the authors used two 

partitions of NIST-BSSR1, i.e. NIST-multimodal database and NIST-fingerprint 

database. The experimental results show that the proposed method outperforms the 

existing approaches for the NIST-multimodal database and NIST-fingerprint database. 

Keywords—Biometrics, Authentication, Multibiometrics, Data fusion, Wrist vein, 

Triangular norms, Symmetric sums, Fuzzy logic. 

Résumé 

Les systèmes biométriques multimodaux qui fusionnent des informations provenant de 

différentes sources peuvent atténuer les limitations des systèmes biométriques uni-

modaux. Dans cette thèse, nous proposons un cadre multi-biométrique pour identifier 

les personnes à l'aide de leurs modèles de veines du poignet droit et gauche. La structure 

utilise une méthode d’extraction et de prétraitement rapide et robuste. Une approche 

générique de fusion au niveau des scores est proposée pour intégrer les scores des 



2019 

V 

modèles de veines du poignet droit et gauche en utilisant les normes de Dubois et Parad 

triangulaires (t-norm). Des expériences sur la base de données de veine de poignet PUT 

disponible au public montrent que le cadre multi-biométrique proposé surpasse les 

systèmes uni-modaux, leur fusion à l'aide d'autres techniques de normalisation et les 

méthodes de reconnaissance de veine de poignet existantes. Un nouveau cadre pour la 

fusion de niveaux de score basé sur des sommes symétriques (s-sum) a été présenté. Ces 

sommes sont générées via des normes triangulaires. Le cadre proposé a été testé 

sur deux bases de données de référence disponibles au public. Les auteurs ont 

notamment utilisé deux partitions de NIST-BSSR1, à savoir la base de données 

multimodale (NIST-multimodal) et la base de données d'empreintes digitales 

(NIST-fingerprint). Les résultats expérimentaux montrent que la méthode proposée 

surpasse les approches existantes pour la base de données multimodale (NIST-

multimodal)  et la base de données d'empreintes digitales (NIST-fingerprint). 

Mots-clés: Biométrie, Authentification, Multi-biométrie, Fusion de données, Veine du 

poignet, Normes triangulaires, Sommes symétriques, logique floue. 

ملخص
الجمع بین اثنین أو أكثر من طرائق البایومتري في التطبیقات یرفع من معدل التعرف على الأشخاص, لھذا قمنا 

باقتراح طریقة جدیدة تعتمد على الدمج بین الشرایین الدمویة المتواجدة في معصم الید الیمنى مع نظیرتھا في 

الید الیسرى لبناء نظام بیومتري متعدد المقاییس، لقد قمنا باختیار الشرایین المتواجدة في المعصم لأنھا توفر 

 جمیع الشروط المتطلبة لبناء نظام بیومتري قوى، في ھذه الأطروحة قمنا ببناء خوارزمیة جدیدة لتوضیح 
شكل

 الشرایین المتواجدة فى معصم الید، لأنھا عادة ما تكون مشوشة بسبب عدة عوامل خارجیة مثل الجھاز 
المستخدم

 لالتقاط صورة الشرایین، بعدھا قمنا بدمج )scores( الأنظمة أحادیة الواسطة )نظام یعتمد على شرایین 
نتائج

 المعصم الأیمن و  الأیسر( مع بعضھما لتكوین نظام متعدد الوسائط, قمنا بصھر النتائج باستخدام نھج جدید 
یسمى

 triangular( أجریت تجربة ھذه التقنیات على قاعدة بیانات اسمھا  (PUT)، من خلال النتائج بینا 

norm)

تفوق الطریقة المقترحة مقارنة مع الأنظمة الأحادیة من جھة، و على النتائج المتحصل علیھا باستخدام طرق 

منتھجة من طرف عدة باحثین آخرین من جھة أخرى. 
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فى سیاق اخر لقد قمنا بتبنى طریقة جدیدة لدمج نتائج الأنظمة البیومتریة الأحادیة باستخدام نظریة جدیدة تسمى 

و   NIST-Multimodal)  الجمع المتناظرولقد قمنا بتجربة ھذه الطریقة على قاعدتین بیانیتین

NIST-Fingerprint )   اظھرت النتائج المحصل علیھا تفوق النھج المقترح على جمیع طرق الدمج 

المقترحة من طرف عدة باحثین. 

الكلمات الدلالیة : شرایین المعصم الایمن و  الایسر,المجامیع المتناظرة, الانظمة البیومتریة متعددة الوسائط 

المنطق الغامض. 
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Chapter 1 : Introduction to Biometric systems 

 Introduction 

The need of robust user authentication is increasing day by day owing to 

exponential growth in digital information and communication technologies. Several 

efforts have been made to develop systems that can identify and authenticate genuine 

users. Conventional person identification methods are based on “what you have” (such 

as an ID card) or “what you know” (such as a password) paradigms. However, they can 

be easily lost, forgotten or stolen [1.1]. To mitigate some issues of traditional 

authentication techniques, recently biometrics, which is based on “who you are”, has 

been widely employed in diverse applications ranging from border crossing to mobile 

authentication [1.2], [1.3]. Biometrics is used to recognize users based on their 

physiological and behavior characteristics, such as face, palm-print, fingerprint, voice, 

vein, keystroke, gait, etc. Figure 1.1 shows physiological and behavioral characteristics 

which can be used in biometric systems for person authentication. 

 

Figure 1.1. Various physiological and behavioral biometric trait [1.4]. 
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  Comparison of Traditional Biometric Trait 

 Table 1.1 lists the essential physical and behavioral biometric modalities (traits) 

in use currently (exist in real world applications) with their famous advantages and 

limitations.  

 

     Table 1.1. Advantages and Limitations of different biometric modality [1.5].   

Biometric Modality Advantages Limitations and Considerations 

Iris   Considered the most accurate 
modality  

 High stability of characteristics over 
time 

 Works well with either verification or 
identification applications 

 Hand-free operation  
 Moderate data storage 

requirements for templates 

 Expensive implementation 
costs data  

 Requires more training and 
attentiveness than other 

 Can be obscured by 
eyelashes, eye lenses, and 
reflections from the cornea  

 

Facial recognition   Can operate without user interaction   
 Only current technology capable of 

identification over distance  
 Existing image databases 
 3D offers increased precision as 

images capture surface texture of 
the face on three axes 

 Can provide a record of potential 
imposters 

 Easy for humans to see the results 

 Facial traits vary over time  
 Uniqueness is not maintained 

ex. in case of twins 
 Not proper recognition if 

person has different 
expression like slight smiling 
can affect recognition  

 Highly dependent on lightning 

Hand geometry   Operates well in challenging 
environments; 

 Biometric is considered highly stable 
 Widely used; established  
 Very low storage requirements for its 

templates 

 Not accurate for moderate to 
large populations; human 
hands are not unique 

 Readers are bulky and can 
seem complicated 

 Perception of passing germs; 
unhygienic 

  Not intuitive; require training 

Retina recognition    Among the most accurate of 
biometrics 

 Moderate storage requirements for 
templates  

 Error rate is 1 out of 10,000,000 
(almost 0%) 

 Highly reliable 
 

 Considered intrusive; public 
has never warmed up to it 

 Not usable in populations 
with high incidence of eye 
disease (e.g., elderly) 

 Can have high cost; special 
hardware is required 
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Table 1.1. (Continued) 

Fingerprint/ palm print   Most widely used biometric system 
 Relatively inexpensive 
 Even twins have unique fingerprint 

patterns so highly secure 
 Small template size so matching is 

also fast 
 An effective biometric for large-scale 

systems 

 Cuts, scars can produce 
obstacle for recognition 

 Not privacy enhancing; high 
level of latency 

 Approximately 2% to 5% of a 
given population cannot be 
enrolled 

 dirty, dry, or damaged finger 
affect use 

Vein pattern recognition   
 

 Highly private; no properties of 
latency 

 Highly secure; not possible to lift or 
steal the vein pattern 

 Very accurate 
 Small to moderately sized readers 
 Near contactless, hygienic 
 Difficult to circumvent 
 No cultural stigmas to overcome 

 Newer biometric; not yet 
widely used 

Keystroke dynamics   Very easy to use and to implement 
 Except keyboard no additional 

hardware required 
 Cost effective 

 Dynamic changes in timing 
pattern 

 Injury 
 Changes in keyboard 

hardware 

Voice verification   Reliable 
 Inexpensive 
 Easy to use and no special 

instructions required 
 Readily available component parts 

(e.g.,microphone, etc.) 

 Affected by noisy 
environment 

 Very large database 
 Changes if person suffering 

from cold 
 Depend on emotional 

condition of individuals 
 

Gait recognition   Details can be captured from 
distance 

 Difficult to conceal 
 Can be extracted without knowing 

user 
 

 Time to time it persons 
walking style changes 

 Not necessarily unique  
 

Dynamic signature 
verification  

 Readily integrates into e-business 
applications 

 An accepted biometric in banking 
and financial applications 

 Low total error 
 Low storage required 

 Professional forgers may able 
to reproduce signatures  

 From time to time person's 
style of signature changes 

 Changes based on emotional 
and medical condition of 
person 

DNA recognition   It is highly unique feature 
 Performance is high 
 Its universality is very high 
 

 More informative so privacy 
issues 

 More storage required 
 Not automatic technique 
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Whereas Table 1.1 focuses on the characteristics of each biometric trait, Table 1.2 

compares the traditional physiological and behavioral biometric modalities against the 

original seven criteria for what makes a good biometric. Generally, the following 

evaluation criteria can help to define a good biometric modality for a given application: 

(1) uniqueness, (2) permanence, (3) universality, (4) collectability, (5) acceptability, (6) 

performance, and (7) resistance. 

1) Uniqueness: is the degree to which a biometric identifier distinguishes one 

person  from another. It should be noted  that most scientists believe that all 

persons are unique in terms of distinctive features such as their vein patterns, 

fingerprints, retinas, and irises. 

2) Permanence: refers to stability of the biometrics’ trait over time, aging 

significantly effects some biometric trait (e.g., facial recognition). Some 

biometric identifiers remain generally constant over one’s life (e.g., vein pattern 

recognition). 

3) Universality: a useful biometric trait is one that is found in all human beings. If 

every individual is qualified to provide a specific biometric identifier for 

recognition purposes, then that biometric trait would be considered truly 

universal. However, no biometric modality is totally universal. 

4) Collectability: the biometric modality  must be appropriate for capture and 

measurement, and should  be comfortable  for the individual to present to the 

biometric sensor 

5) Acceptability: indicates the degree of public acceptance and approval for a given 

biometric modality. Generally, nonintrusive biometric techniques tend to garner 

greater levels of user acceptance (e.g., Gait recognition). This is a significant 

factor because user acceptance is critical to the success of any biometric 

implementation. 

6) Performance: refers to accuracy, speed, and robustness of the system. Accuracy 

of biometric systems is usually defined by their false accept and false reject rates. 

Accuracy is influenced in the data collection process by environmental (e.g., 

lighting, shadows, background noise). 
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7) Resistance to circumvention: indicates the degree of resistance against spoofing 

attack. Spoofing is the process by which a fraudulent user can subvert or attack a 

biometric system by masquerading as registered user and thereby gaining 

illegitimate access and advantages. 

        Table 1.2. Comparison of Traditional Biometric Modalities (L: Low, M: Moderate, H: High) [1.5]. 
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Keystroke  L L L L H L 
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  Unimodal Biometric Systems  

A biometric system based on a single source of biometric information, e.g. single 

fingerprint or face, is known as a unimodal system. These unimodal systems contain 

problems like noise in sensed data, non-universality, lack of individuality of the chosen 

biometric trait, absence of an invariant representation for the biometric trait and 

susceptibility to circumvention [1.6]. 

1) Noisy Data 

Noise is usually present inside biometric data when sensors are not properly 

preserved. A typical example is the presence of dirt on the sensor of a fingerprint 

scanner, which cause a noisy fingerprint. Failure to output the right voice during 

enrollment is also a form of noisy data. Moreover, not being able to localize a 

camera properly can lead images of the face and iris that are not very clear [1.6]. 

2) Non-universality 

Universality is one of the fundamental needs for a biometric trait. A biometric 

system is said to be universal if all users are able to present a biometric trait for 

identification. Not all biometric traits are truly universal. For example, a blind 

person cannot present his/her iris or retina in front of the sensors or an unlettered 

individual cannot give signature for biometric authentication [1.1]. 

3) Lack of individuality 

This problem happens with all of the biometrics traits used in person 

authentication. If the feature sets of a specific biometric trait obtained from two 

different subjects are similar, then it is hard to make distinction between those 

two subjects. This is called lack of individuality problem in biometrics domain 

and as a result false recognition rate can be higher in this situation. For example, 

the facial appearance of a father and a son can be quite similar [1.2]. 

4) Intra-class variation 

This problem occurs when a biometric data sets acquired from a user for 

enrollment phase are not similar to the biometric data sets acquired from the same 

user during verification stage. This can happen due to the changes in the 
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environmental conditions and inherent changes in the biometric trait,  poor user 

interaction with the sensor [1.1],[1.2]. 

5) Susceptibility to circumvention

This problem occurs when an impostor provides a fake biometric sample to the

system. For example, circumventing a biometric system is possible by using

gummy fingers. Generally, Behavioral biometric modalities such as signature

and voice are more sensitive to this kind of attack than physiological biometric

modalities [1.6].

 Aims and Objectives 

Among the various biometric traits, vein patterns as a biometric characteristic is 

now gaining more momentum because it is able to provide several advantages compared 

to other traits [1.7],[1.8]. Beside fundamental properties such as stability, universality, 

uniqueness, vein biometric trait has several vital characteristics, e.g., (i) the vein images 

are obtained in a contact-less manner; thus users may find it less intrusive compared to 

iris or retina scanning systems [1.7], plus it may also lead to hygienic to the user who 

then is more likely to adopt it, (ii) due to being touch-less no latent prints are left 

unintentionally as opposed to finger marks left on the sensor in fingerprint recognition 

[1.9], (iii) vein patterns are stable and remain unchanged over time, which means vein 

patterns have strong immunity to ageing [1.10]. While, other biometric traits change 

over people age thereby making it hard to match the stored templates for that individual 

after a certain time [1.3],(iv) unlike most physical biometric traits (e.g., face), vein 

patterns differ between identical twins [1.11], [1.12], (v) vein recognition comparatively 

requires low cost equipment and a shorter time to verify individuals [1.13], [1.14], (vi) 

since vein pattern is beneath the skin and invisible to the human eye, thus it is difficult 

for impostors to steal, replicate or spoof [1.15], [1.16]. Spoofing is the process by which 

a fraudulent user can subvert or attack a biometric system by masquerading as registered 

user and thereby gaining illegitimate access and advantages [1.17].  

Though hand palm vein is the obvious choice to be exploited in biometric systems, 

wrist vein provides much more detailed patterns (namely more distinctive features) than 

hand palm vein [1.7]. There exist several biometrics studies based on wrist vein [1.18], 
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[1.7], [1.19]. However, all prior works are unimodal systems, i.e., they only use single 

wrist vein, e.g., of right hand, to authenticate the user. But, it is well documented that 

unimodal biometric systems are unable to provide a high accuracy and security 

performances mainly due to noise in the sensed data, intra-class variations, inter-class 

similarities, and attacks [1.1]. Several above-mentioned problems can be solved or at 

least their impact reduced by fusing several biometric information sources, any such 

system is known as multibiometric systems [1.2]. Multibiometric systems offer many 

advantages over unimodal systems, such as significant improvement in the overall 

accuracy, mitigation of the effect of noisy input data, population coverage larger than 

the unimodal system [1.19], and greater resistance to spoofing such that they can be 

more robust than each corresponding unimodal system, even in the case when all 

biometric traits are spoofed [1.17]. Few works have been focused on palm vein based 

multibiometric system, e.g., [1.11], [1.20]. To the best of our knowledge, no wrist vein 

based multibiometric system, particularly integrating right and left wrist vein patterns, 

has been studied in the literature. 

In this thesis, we propose a method to increase the performance of a multimodal 

biometric security system which uses multiple biometric trait. The main contribution 

lies in the efficient consolidation of information obtained from different biometric traits. 

We propose a novel score level fusion method based on triangular norm (t-norm) and 

symmetric sum based fusion method for multibiometric information fusion. The detailed 

contributions of this thesis are summarized below: 

In this doctoral thesis, we develop a multimodal biometric system based on left 

and right wrist vein biometric traits to meet the recent extensive security requirements 

and demands for high performance. This system can alleviate most of the drawbacks 

associated with unimodal biometric systems mentioned above. 

In this doctoral thesis, we proposed a new algorithm for extracting wrist vein 

features using a fast and resilient preprocessing technique that does not require either 

user-cooperation or prior learning. 

In this doctoral thesis, we proposed a new score level fusion approach for a 

multimodal biometric system based on symmetric sum (s-sum). These s-sums do not 
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require any learning or training procedure, thus making our system simple, efficient and 

computationally less expensive. 

 Thesis Organization 

The thesis has been structured in the following way. Chapter 1 describes the 

general problem statement and the thesis contributions along with description of 

biometric systems. 

Multimodal biometric systems and their possible fusion strategies are described in 

chapter 2. This chapter also discusses the designing issues involved in multimodal 

system development process. 

Chapter 3 presents a review of previous investigations into multimodal biometrics. 

The proposed fusion method including symmetric sum and triangular norm are 

described in chapter 4.  

Chapter 5 shows the outcomes of the experiments performed on different database 

frameworks. The experimental overview and the databases are also discussed. 

        Chapter 6 summarizes the thesis and the contribution and presents some concluding 

remarks. Possible future directions of this research are also discussed at this chapter. 
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2.1. Introduction 

In this chapter we introduce the basics of multimodal biometric systems including 

common performance measures, and we outline some of the common multimodal 

biometric databases used in the practice. 

2.2. Functionality of Biometric Systems 

Any biometric systems can provide three modes of operation: (1) enrollment, (2) 

ongoing transactions (both verification and identification), and (3) updates 

(re‑enrollments). 

2.2.1. Enrollment 

Enrollment records a person to a biometric database for the first time, see Figure 

2.1. The user offers a sample (e.g., fingerprint, face, and iris) for the biometric 

system to transform to a reference template and to store it in the system database 

[2.1], [2.2].  

 

 

 

Figure 2.1. Biometric Enrollment Process [2.3]. 

 

 

2.2.2. Verification and Identification 

Verification systems seek to answer the question “Is this person who they say 

they are?” Under a verification system, an individual presents himself or herself  
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as a specific person. The system checks his or her biometric against a biometric 

profile that already exists in the database linked to that person’s file in order to  

find a match. Verification systems are generally described as a 1-to-1 matching 

system because the system tries to match the biometric presented by the 

individual against a specific biometric already on file. Because verification 

systems only need to compare the presented biometric to a biometric reference 

stored in the system, they can generate results more quickly and are more accurate 

than identification systems, even when the size of the database increases.  In 

simple terms it is 1-1 matching with the database [2.2]. See Figure2.2.

Identification systems are different from verification systems because an 

identification system seeks to identify an unknown person, or unknown 

biometric. The system tries to answer the questions “Who is this person?” or 

“Who generated this biometric?” and must check the biometric presented against 

all others already in the database. Identification systems are described as a 1-to-

n matching system, where n is the total number of biometrics in the database. 

Forensic databases, where a government tries to identify a latent print or DNA 

discarded at a crime scene, often operate as identification systems. In simple 

terms, it is 1-n Matching within the database [2.4]. See Figure 2.2. 

2.2.3. Re‑enrollments 

Nearly all biometric systems preserve stability (permanence) over time; however, 

changes can occur. The mean reasons for change include adaptation in sensor 

characteristics (e.g., new biometric reader models), variations in the biometric 

trait itself (e.g., scars, cuts, or disease). 
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Figure 2.2. Biometric Verification and Biometric Identification. 

2.3. Multimodal Biometric System  

2.3.1. Advantages of Multimodal Biometric Systems 

Some limitations of unimodal systems can be alleviated by multimodal biometric 

systems that consolidate evidence from multiple biometric sources [2.5, 2.6]. The 

advantages of multimodal biometric systems are; increased and reliable recognition 

performance, fewer enrolment problems and enhanced security. 
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1) Increased Recognition Performance

Since multimodal biometric systems rely on more than one biometric trait, as a

consequence each of those traits can provide further evidence about the

genuineness of any identity claim. For example, the faces of two persons of the

same family (or coincidentally of two different persons) can be similar, In this

situation, unimodal biometric system based only on face pattern analysis may

result in false recognition, If the same biometric system also contains fingerprint

matching, the system would results in increased recognition rate as it is

impossible that two different persons have same face and fingerprint [2.7].

2) Fewer Enrolment Problems

As we state before, unimodal biometric system suffer from the problem of non-

universality. Biometric system is said to be universal if all users are able to

present a biometric trait for identification, however, not all biometric traits are

universal. It has been revealed that about 2% of population are not able to offer

a good quality fingerprint, i.e. there are individuals with disabilities [2.8], and

thus reduce the failure to enroll rate significantly. A lot of multimodal biometric

systems can perform matching even in the absence of one of the biometric

samples. For example, in a fingerprint and iris based multimodal system, a person

cannot enroll his fingerprint information to the system due to the scars in his

fingerprint. In this case, the multimodal system can still perform authentication

using the iris characteristics of that person.

3) Enhanced Security

It is almost impossible to spoof multimodal biometric system, because the

impostor would have to be able to spoof more than one biometric trait

simultaneously [2.9].
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2.3.2. Fusion Scenarios 

A multibiometric system can be based on one or a combination of the following 

fusion scenarios [2.10] (see Figure 2.3): 

1) Multiple sensors: In these systems, many sensors are used for capturing different 

illustrations of the same biometric trait to extract different information. For 

example, a biometric system can use 2D, 3D images. 

2) Multiple algorithm: In these systems, a single biometric trait but multiple 

algorithm are used in order to create templates with different information. For 

example a system may use minutiae- and texture-based representations. 

3) Multiple instances: In these systems, a single biometric trait but multiple parts 

of human's body are used, for example, the use of multiple finger in fingerprint 

identification, the use of right and left eye in retina recognition system. 

4) Multiple samples: In these systems, the same biometric modality and instance 

is acquired with the same sensor multiple times. 

5) Multiple modalities: In these systems, many biometric modalities are combined, 

this also known as multimodal biometric. 

 

Figure 2.3. Different sources of information that can be exploited by a multibiometric system. Information from 

multiple se.nsors (infrared and visible spectra) or multiple algorithms (minutiae-based and texture-based) or 

multiple instances (left and right irises) or multiple samples (left, frontal and right facial profiles) or multiple 

modalities (face and fingerprint) can be fused [2.10]. 
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2.4.  Performance Metrics of Biometric Systems 

Several quality performance metrics measure the performance of any biometric 

authentication system (unimodal or multimodal). A judgment made by a biometric 

system is either a “genuine individual” type of decision or an “impostor” type of 

decision [2.11]. For each type of decision, there are two reasonable results, true or false. 

Therefore, there are only four possible outcomes: a genuine individual is accepted or a 

genuine match occurred, a genuine individual is rejected or a false rejection occurred, 

an impostor is rejected or a genuine rejection occurred and an impostor is accepted or a 

false match occurred [2.12]. 

2.4.1.  The Various Types of Operating Points 

Generally, the following operating points are the most used to measure the 

confidence related with different decisions made by a biometric system (unimodal or 

multimodal). 

1) FAR (False Acceptance Rate): Witch is defined as the probability of an impostor

being accepted as a genuine individual. The FAR is defined in equation (2.1)

Where FA is total number of forgeries accepted and Ni is total number of

forgeries submitted to the system test [2.13].

𝐹𝐴𝑅 =
𝐹𝐴

𝑁𝑖
(2.1) 

2) FRR: (False Rejection Rate): which is defined as the probability of a genuine

being rejected as an impostor individual.  The FRR is defined in equation (1.2),

where FR is total number of genuine rejected and Nc is total number of genuine

submitted to the system test [2.13].

𝐹𝑅𝑅 =
𝐹𝑅

𝑁𝑐
(2.2) 
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3) TER: (Total Error Rate): is the total error rate of a biometric system. This

measure is calculated by the following relation [2.13]:

𝑇𝐸𝑅 = 𝐹𝐴𝑅 + 𝐹𝑅𝑅 (2.3) 

4) HTER :( Half Total Error Rate): is the average error rate of a biometric system.

This measure is calculated by the following relation [2.13]:

𝐻𝑇𝐸𝑅 =
𝐹𝐴𝑅 + 𝐹𝑅𝑅

2
(2.4) 

5) EER: (Equal Error Rate): For a simple empirical measure, it is used to

summarize the performance of a biometric system that is defined at the point

where False Reject Rate (FRR) and False Accept Rate (FAR) are equal. System

with the lower EER, is the more accurate and precise [2.13].

6) GAR: (Genuine Accept Rate) is the likelihood that a genuine individual is

recognized as a match. The GAR is defined in equation (2.5) :

 𝐺𝐴𝑅(𝑇) = 1 − 𝐹𝑅𝑅(𝑇)  (2.5) 

2.4.2. The Performance Curves 

For applications, we need to set a threshold with which we make decisions 

(acceptance or rejection of the user). Figure 2.4 illustrates the genuine and impostor 

distributions. Regulating the threshold t changes both false acceptance rate (FAR) and 

false rejected rate (FRR). For applications that need a high level of security we should 

increase threshold t, also FRR increases. If the threshold t is decreased to make the 

system more tolerant, FAR increases (see Figure 2.5). The most commonly used plotting 
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curve is the Receiver Operating Characteristics (ROC) curve [2.14], which is used 

mostly for biometric verification. ROC curves plot FAR against the corresponding FRR 

for any threshold. In Figure 2.5, every ROC curve represents the performance of a given 

biometric system, from the same curve we can notice that ROC 3 provides the best 

performance. 

 Figure 2. 4. Error rate FAR, FRR for a given threshold over genuine and impostor score distribution. 

 Figure 2.5. Comparison of ROC’s. 



Chapter 2  Multimodal biometric systems 2019 

23 

2.5. Multimodal Biometric Database 

2.5.1. The Various Types of Multimodal databases 

This section provides an insight into various databases that are reported in the 

literature. 

1. BIOMET

This database includes five modalities: audio, face images, hand images,

fingerprint and signature of 91 subjects. The database was acquired in three different 

sessions (8 months between the first and the last one) [2.15]. 

2. MyIDEA

This database includes six modalities: face, audio, fingerprint, signature,

handwriting, hand geometry and two synchronized recordings were also performed: 

face-voice and writing-voice. The data was collected from 104 subjects [2.16]. 

3. BIOSEC

This database was acquired under BioSec integrated project. It includes four

modalities: fingerprint images from three different sensors, frontal face images from 

webcam, iris images from an iris sensor and voice utterances. This corpus comprises of 

200 subjects. The extended version of the BIOSEC database comprises 250 subjects 

with four sessions per subject [2.17].  

4. BiosecurID

This database was collected at six different sites in an office like uncontrolled

environment. It includes eight modalities: speech, iris, face, signature, handwriting, 

fingerprints, hand geometry and keystroking. The data was collected from 400 subjects 

[2.18].  

5. BANCA

The data was collected in three scenarios: controlled, degraded and adverse. This

work reported a well-defined protocol for testing and validation.208 subjects were 

involved in providing data for the database [2.19]. 
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6. XM2VTSDB

This database containing video data of 295 subjects is reported in [2.20]. This

simultaneously provides data of face and speech as videos were recorded. Data 

acquisition was done in four sessions. 

2.5.2. NIST BSSR l (Biometric Scores Set) 

NIST-BSSR 1 database (NIST 2004) developed by the National Institute of 

Standards and Technology [2.1]. The database includes similarity scores from two 

commercial face recognizers and one fingerprint system and is partitioned into three 

sets.  

1. NIST- Multimodal Database

It contains of fingerprint and face match scores of 517 subjects. It is important to

Note that face and fingerprint images of the subject are not offered. One fingerprint 

score was acquired by comparing a pair of impressions of the left index finger and 

another score was obtained by comparing impressions of the right index finger. Two 

different face matchers (referred toes 'C and 'G') were useful to calculate the similarity 

between two frontal face images. So, there are four match scores for each subject (one 

for each modality). 

2. NIST- Fingerprint Database

The content of NIST-fingerprint database is left-index fingerprint score and right-

index fingerprint score obtained from same individuals. This database consists of 

6,000users, and therefore there are 6,000 genuine scores and 6,000 x 5,999=35,994,000 

impostor scores that can be generated. 

3. NIST- Face Database

NIST-face database contains face scores of 3,000 users obtained by two different

systems labeled by matchers C and G. In this database, each user has 2 face images. 

The organization used a certain algorithm to compare the images and generate the 

scores. In order to generate a genuine face score, they compare the images of a same 

person (because there are 2 images per person). Likewise, in order to generate an 
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impostor face score, they compare an image of a person with an image of another person. 

Since there are 2999 persons who are different with a certain person, then they have 

generated 2999 impostor scores for every person. Thus, in total they have generated 

3000 genuine scores and 3,000 x 2,999 = 8,997,000 impostor scores. 

2.6.  Conclusion  

In this chapter, we discussed the types and architecture of a biometric system, we 

have discussed advantages of multimodal systems compared to single biometric 

systems, as well as the two main factors involved in multimodal biometric system 

development and finally we discussed the evaluation of a biometric system. In the next 

chapter, we present a state of the art on approaches to build multimodal biometric 

systems and the recognition of wrist vein. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 2  Multimodal biometric systems 2019 

26 

2.7. References 

[2.1] Jain, A.K., Ross, A., Prabhakar, S.: ‘An Introduction to Biometric 

Recognition’IEEE Trans. Circuits Syst. Video Technol., 2004, 14, (1), pp. 4–20. 

[2.2] Jain, A., Nandakumar, K., Ross, A.: ‘Score normalization in multimodal 

biometric systems’Pattern Recognition, 2005, 38, (12), pp. 2270–2285. 

[2.3]  Garvey, F., Sankaranarayanan, S.: ‘Intelligent Agent based Flight Search 
and Booking System’International Journal of Advanced Research in Artificial 

         Intelligence, 2012, 1, (4).

[2.4] Jain, A.K., Flynn, P., Ross, A.A. (Eds.): ‘Handbook of biometrics’ (Springer, 

2008). 

[2.5]  Bharathi, S., Sudhakar, R., Balas, V.E.: ‘Biometric recognition using fuzzy 

score level fusion’IJAIP, 2014, 6, (2), p. 81. 

[2.6] Liang, Y., Ding, X., Liu, C., Xue, J.-H.: ‘Combining multiple biometric traits 

with an order-preserving score fusion algorithm’Neurocomputing, 2016, 

171, pp. 252–261.  

[2.7] Biggio, B., Akhtar, Z., Fumera, G., Marcialis, G.L., Roli, F.: ‘Security evaluation 

of biometric authentication systems under real spoofing attacks’IET 

Biometrics, 2012, 1, (1), p. 11.  

[2.8] Ross, A.A., Nandakumar, K., Jain, A.K.: ‘Handbook of multibiometrics’ 

(Springer, 2006). 

[2.9 ] Akhtar, Z., Rizwan, M., Kale, S.: ‘Multimodal Biometric Fusion: Performance 

under Spoof Attacks’Journal of Intelligent Systems, 2011, 20, (4), pp. 353-

372.  

[2.10] Singh, M., Singh, R., Ross, A.: ‘A comprehensive overview of biometric 

fusion’Information Fusion, 2019, 52, pp. 187–205. 

[2.11] Singh, R., Vatsa, M., Ross, A., Noore, A.: ‘Biometric classifier update using 

online learning: A case study in near infrared face verification’Image and 

Vision Computing, 2010, 28, (7), pp. 1098–1105.  



 

 

Chapter 2                                                                                   Multimodal biometric systems 2019 

27 

 

[2.12] Singh, R., Vatsa, M., Noore, A.: ‘Integrated multilevel image fusion and 

match score fusion of visible and infrared face images for robust face 

recognition’Pattern Recognition, 2008, 41, (3), pp. 880–893.  

[2.13] Yılmaz, M.B., Yanıkoğlu, B.: ‘Score level fusion of classifiers in off-line 

signature verification’Information Fusion, 2016, 32, pp. 109–119.  

 [2.14] Damer, N., Opel, A., Nouak, A.: ‘Performance Anchored Score 

Normalization for Multi-biometric Fusion’, in Bebis, G., Boyle, R., Parvin, B., 

et al. (Eds.): ‘Advances in Visual Computing’ (Springer Berlin Heidelberg, 

2013), pp. 68–75. 

[2.15]    Garcia-Salicetti, S., Beumier, C., Chollet, G., et al.: ‘BIOMET: A Multimodal 

Person Authentication Database Including Face, Voice, Fingerprint, Hand 

and Signature Modalities’, in Kittler, J., Nixon, M.S. (Eds.): ‘Audio- and 

Video-Based Biometric Person Authentication’ (Springer Berlin Heidelberg, 

2003), pp. 845–853. 

[2.16] Faundez-Zanuy, M., Fierrez-Aguilar, J., Ortega-Garcia, J., Gonzalez-

Rodriguez, J.: ‘Multimodal biometric databases: an overview’IEEE Aerosp. 

Electron. Syst. Mag., 2006, 21, (8), pp. 29–37.  

[2.17] Fierrez, J., Ortega-Garcia, J., Torre Toledano, D., Gonzalez-Rodriguez, J.: 

‘Biosec baseline corpus: A multimodal biometric database’Pattern 

Recognition, 2007, 40, (4), pp. 1389–1392.  

[2.18] Fierrez, J., Galbally, J., Ortega-Garcia, J., et al.: ‘BiosecurID: a multimodal 

biometric database’Pattern Anal Applic, 2010, 13, (2), pp. 235–246.  

[2.19] Bailly-Bailliére, E., Bengio, S., Bimbot, F., et al.: ‘The BANCA Database and 

Evaluation Protocol’, in Kittler, J., Nixon, M.S. (Eds.): ‘Audio- and Video-

Based Biometric Person Authentication’ (Springer Berlin Heidelberg, 

2003), pp. 625–638. 

[2.20] Poh, N., Bengio, S.: ‘Database, protocols and tools for evaluating score-    

level fusion algorithms in biometric authentication’Pattern Recognition, 

2006, 39, (2), pp. 223–233.  

 

 

 



 

 

Chapter 2                                                                                   Multimodal biometric systems 2019 

28 

 

 

 

 

 

 

 

 



 

 

Chapter 3                                                                                                           Literature Review 2019 

28 

 

 

Chapter 3: Literature Review 

3.1. Introduction ......................................................................................... 29 

3.2. Levels of Fusion in Multimodal Biometric Systems ............................... 29 

3.2.1. Sensor Level Fusion ........................................................................ 30 

3.2.2. Feature Level Fusion ...................................................................... 32 

3.2.3. Decision Level Fusion ..................................................................... 34 

3.2.4. Score Level Fusion.......................................................................... 35 

3.3. Methods of Fusion ............................................................................... 38 

3.3.1. Sum Rule ........................................................................................ 38 

3.3.2. Product Rule .................................................................................. 38 

3.3.3. Max Rule ........................................................................................ 39 

3.3.4. Min Rule ........................................................................................ 39 

3.4. Classification-Based Fusion Method ..................................................... 39 

3.5. Research on Vein Recognition .............................................................. 42 

3.6. Feature extraction for wrist vein .......................................................... 44 

3.6.1. Local Phase Quantization (LPQ) ..................................................... 44 

3.6.2. Local Binary pattern (LBP) .............................................................. 44 

3.6.3. Binarized Statistical Image Features (BSIF) ..................................... 45 

3.7. Conclusion ........................................................................................... 46 

3.8. References ........................................................................................... 47 

 

  



 

 

Chapter 3                                                                                                           Literature Review 2019 

29 

3.1. Introduction 

 As we discussed in the previous chapter, biometric system based on single 

biometric trait (unimodal system) suffers from limitation such as lack of uniqueness, 

non-universality and noisy data. Multimodal biometric system based on the information 

extracted from multiple biometric traits. Generally, multimodal biometric can overcome 

the limitations possessed by single biometric trait and give better classification accuracy.  

 Information fusion is the key to the success of multimodal biometric system, In 

the case of biometric system, fusion of information can be done at four different levels: 

sensor level, feature level, matching score level and decision level. 

This chapter discusses some of the previous research done on different biometric 

and multimodal biometric systems as well as research on information fusion approaches 

for combining multimodal information with the main focus is given to score level fusion. 

Further, some of the previous research on vein modality has also been discussed in this 

chapter. 

3.2.  Levels of Fusion in Multimodal Biometric Systems 

Multimodal biometric systems can be defined as one that combines the outcome 

acquired from more than one biometric feature for the aim of identification. When we 

use the information (data) from the output of any modules discussed i.e. sensor, feature, 

matching and decision-making module. The different levels of fusion are therefore 

sensor, feature, matching score and decision level fusion (see Figure 3.1). 
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Figure 3.1. The different Levels of fusion. 

 

3.2.1. Sensor Level Fusion 

Figure 3.2 illustrates fusion at the sensor level, this level of fusion means bringing 

together different sensors’ raw data. Raw data refers to any data that hasn't subjected 

thorough processing, e.g. from the fingerprint sensor, video camera, etc. From every 

single sensor raw information is extracted and combined at the very first level of fusion 

(sensor) to build raw fused information [3.1, 3.2]. Sensor level fusion could occur if the 

various traits are sorts of the same biometric trait acquired from multiple sensors or 

multiple values of the same biometric acquired from a single sensor. An example is the 

presentation of images containing various fingerprints to become a full fingerprint 

image. Other examples include facial images taken from various cameras put together 

to become a 3D model of a face [3.3, 3.4]. Usually, Sensor level fusion has been 

classified into three categories, namely: [i] Single sensor-multiple instances where 

different instances acquired from a single sensor are fused to build the information in a 

reliable and illustrative mode. [ii] Intra-class multiple sensors: where multiple instances 
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obtained from various sensors are fused to detail the information location of a similar 

sensor or variability of different sensors and [iii] Inter-class multiple sensors, few studies 

have been undertaken of this sensor fusion mode. Table 3.1 represents a summary of the 

three categories. 

 

     Table 3.1. Sensor level fusion summary.   

Research Works Category of Sensor Level Fusion Biometric Traits 

Ratha et al. [3.5] Single sensor-multiple instances Fingerprint 

Jain  et al. [3.6] 
 

Single sensor-multiple instances 
 

Fingerprint 

Yang et al. [3.7] 
 

Single sensor-multiple instances Face 

Xiaoming et al. [3.8] Single sensor-multiple instances Face 
 

Ross et al. [3.9] 
 

Single sensor-multiple instances Fingerprint 

Singh et al. [3.10] 
 

Single sensor-multiple instances Face 

Ghouti et al. [3.11] 
 

Single sensor-multiple instances Iris 

Jaisakthi et al. [3.12] 
 

Single sensor-multiple instances Face 

Godil et al.  [3.13] 
 

Intra-class multiple sensors Face 

Xiaoguang et al.  [3.14] 
 

Intra-class multiple sensors Face 

BenAbdelkader et al. [3.15] 
 

Intra-class multiple sensors Depth and texture cues of Face 

Bebis et al.  [3.16] 
 

Intra-class multiple sensors Thermal and visible face 

Kong  et al. [3.17] 
 

Intra-class multiple sensors Visible and thermal IR face 

Singh et al.  [3.18] 
 

Intra-class multiple sensors Visible and infrared face image 

Raghavendra et al.  [3.19] 
 

Intra-class multiple sensors Visible and infrared face 

Froba et al.  [3.20] 
 

Inter-class multiple sensors Voice, Lip motion and still image 

Chang et al.  [3.21] 
 

Inter-class multiple sensors Ear and Face 

Jing et al. [3.22] 
 

Inter-class multiple sensors Face and Palmprint 

Noore et al. [3.23] 
 

Inter-class multiple sensors Fingerprint, face ,iris and signature 
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Figure 3.2. Sensor Level Fusion. 

3.2.2. Feature Level Fusion 

Figure 3.3 illustrates fusion at the feature level, feature level fusion consolidates 

information from multiple biometric feature sets of the same individual. When the 

feature vectors are from the same kind (e.g., multiple fingerprint impressions of a user’s 

finger), the feature vector can be calculated as a weighted average of the individual 

feature vectors. When the feature vectors are not compatible (e.g., feature vectors 

acquired using different feature extraction techniques, or feature vectors of different 

biometric modalities like face and iris), these feature vectors can be concatenated to 

form a single feature vector. Because a lot of information regarding the identity of a 

person is available at this level, so feature level fusion is expected to perform better than 

match score level or decision level fusion methods [3.24]. Integration at the feature level 

should provide better recognition results than other levels of integration. However, 

integration at the feature level is difficult to achieve in practice because of the following 

reasons: (i) the relationship between the feature spaces of different biometric systems 

may not be known. In the case where the relationship is known in advance, care needs 

to be taken to discard those features that are highly correlated. This requires the 

application of feature selection algorithms prior to classification. (ii) Concatenating two 

feature vectors may result in a feature vector with very large dimensionality leading to 

the ‘curse of dimensionality’ problem [3.25]. Although, this is a general problem in most 
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pattern recognition applications, it is more severe in biometric applications because of 

the time, effort and cost involved in collecting large amounts of biometric data. (iii) 

Most commercial biometric systems do not provide access to the feature vectors which 

they use in their products. Hence, very few researchers have studied integration at the 

feature level and most of them generally prefer score fusion schemes. Table 3.2 showing 

related works done using the features level fusion method. 

    Table 3.2. Feature Level Fusion Research Work. 

Research Work   Method of Fusion Biometric Modalities  

Ahmad et al. [3.24]   Discrete cosine Transform(DCT) Face and Palmprint 
 

Sharifi et al.  [3.25]  
 

Feature fusion (BSA) Face and iris 
 

Azom et al. [3.26]  
 

Hybridized fusion Strategy Iris and face 
 

Yao et al. [3.27]  
 

Custom Defined Rule Face and Palmprint 
  

Tong et al. [3.28]  
 

Bayesian Inference Face and Fingerprint  
 

Arif et al. [3.29]  
 

Dempster-Shafer Theory Hand written signature and Hand 
geometry  

Jing et al. [3.30]  
 

pixel level fusion Face and Palmprint  
 

Gawande et al. [3.31]  Support Vector Machine Iris and Fingerprint  
 

 

  

Figure 3.3. Feature Level Fusion.  
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3.2.3.  Decision Level Fusion 

On decision level, the joining of different information from multiple biometric 

modalities happens when the individual system makes an individualistic decision about 

the identity of the user of a claimed identity. Here, each biometric type is pre-classified 

individually and the final classification is based on the fusion of the outputs of the 

various modalities (see Figure 3.4). Furthermore, a decision is given for each biometric 

type at a later stage which reduces the reason for improving the system accuracy through 

the fusion process [3.32, 3.33]. This fusion level makes use of the final output of the 

individual modalities with methods such as ‘AND’ or ‘OR’ making it the simplest form 

of fusion. The dempster-dhafer theory of evidence, behavior knowledge space and 

bayesian decision fusion are other methods used at this level of fusion. Table 3.3 

showing related works done using the decision level fusion method. 

   Table 3.3. Decision Level Fusion Research Work. 

Research Work  Method of Fusion Biometric Modalities  

Yazdanpanah et al. [3.32] 

 
Linear Weighted Fusion Face, Ear and Gait  

 
Yu et al. [3.33]  

 
Majority Voting Rule Palmprint Fingerprint and 

finger geometry 

Poh et al. [3.34]  

 
Bayesian Inference Fingerprint and face image  

 
Singh et al. [3.35]  

 
Dempster-Shafer Theory Fingerprint  

  
Kumar et al. [3.36]  

 
Neural Network Palmprint and Hand Geometry  

 
Vora et al. [3.37]  

 
Support Vector Machine Fingerprint and Palmprint 
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Figure 3.4. Decision Level Fusion. 

3.2.4. Score Level Fusion 

In multimodal systems, information fusion can be carried out at the sensor, feature 

extraction, matching score, or decision level [3.37]. Owing to ease in accessing and 

combining of scores (see figure 3.5), fusion at the matching score level is the most 

commonly adopted approach in the literature [3.38].There exist ample of studies to 

empirically show the efficacy of multimodal biometric systems. More specifically. The 

authors in [3.39] have proposed score level fusion schemes using triangular norms (t-

norms) and fuzzy logic, respectively. The multimodal fusion methods published in the 

literature can be classified into three categories: transformation-based, classifier based 

and density-based fusion [3.38–3.64]. 

In transformation-based fusion methods, the matching scores need preliminary to 

be in the same domain, thus require to be normalized before fusion. In classifier-based 

fusion, the scores obtained from multiple matchers are concatenated to form a feature 

vector. Then a suitable classifier is used to attain the final label whether the use is 

genuine or impostor (e.g. support vector machine (SVM)-based score level fusion in 

[3.37]). In density-based fusion, the densities of genuine and impostor matching scores 

are clearly and unambiguously estimated. Then the final output is achieved by 

employing the likelihood ratio test. In [3.40], it was observed that modelling the genuine 
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and impostor similarity score distribution as a finite Gaussian mixture model gives high 

performance compared with a kernel density estimator onXM2VTS and WVU 

databases. Table 3.4 showing related works done using score level fusion method. 

 The transformation-based fusion rules can be broadly divided into two classes as 

fixed and trained [3.41]. The methods in the former category do not require any specific 

training procedure. While, techniques in the latter class require learning or training 

processes, e.g. trained rules such as weighted sum, where the model parameters are 

estimated from the training data subset to be latter used in the testing phase. The fixed 

fusion approaches, such as max, min, and sum rules, have been observed to be 

performing weak since they do not account much for the distribution distance of 

different biometric modal matching scores. The trained fusion approaches, such as 

weighted sum, weighted product rules, require large training or evaluation subsets 

because the model's parameters (e.g. weights) are data-dependent. Also, classifier-based 

score fusion algorithms suffer from an unbalanced training set, cost of misclassification, 

and choice of the classifier. Likewise, though density-based methods could provide 

optimal performance, the density function of scores need to be estimated accurately, 

which is a difficult task because these score densities are usually unknown and need a 

large database. The natural solution to overcoming the above-mentioned limitations of 

classifier- and density-based fusion methods is to devise novel and computationally 

inexpensive techniques based on the score level fusion method.  

 

Figure 3.5. Score Level Fusion. 
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Table 3.4. Score Level Fusion Research Work. 

Research Work   Method of Fusion Biometric Modalities  

Moeen et al. [3.38]  entropy function left index, left middle, right index, 
and right middle 

Hanmandlu et al.  [3.39]  
 

triangular norms Palmprint, hand veins, hand 
geometry  

Nandakumar et al. [3.40] 
 

Likelihood ratio- based score fusion Face, fingerprint, iris,speech 

Sim et al. [3.41]  
 

Weighted sum rule Face and iris  

Eskandar et al. [3.42]  
 

Weighted sum rule Face and iris 
 

Benaliouche et al. [3.43]  Weighted sum rule Iris and Fingerprint 

Peng et al. [3.44]  
 

Weighted sum rule and triangular norms finger vein, fingerprint, shape, 
knuckle print 

Mezai et al. [3.45]  Weighted sum rule and triangular norms Face and voice 

Farmanbar et al. [3.46] Sum Rule Face and palmprint 

Nigam et al. [3.47] Phase only correlation(POC) Palmprint, finger-knuckle-print 

Fakhar et al. [3.48] fuzzy combination rule Face and iris 

Assaad et al. [3.49] Weighted sum rule Voice and face 

Azom et al. [3.50] Weighted sum rule Face and iris 

Kumar et al. [3.51] Weighted sum rule Palmprint and iris 

Liang et al. [3.52] O P T ( order preserving tree) Fingerprint and face 

Sharifi et al. [3.53] Weighted sum rule Face and iris 

George et al. [3.54] Gaussian Radial Basis Function Network Eye movement 

Matin et al. [3.55] Weighted score Face and iris 

Ghulam et al. [3.56]   Sum, Product rule Fingerprint and palmprint 

Liau et al. [3.57] Svm based feature selection Face and iris 

Meraoumia et al. [3.58] Weighted score Palmprint, finger-knuekle- print 

Hossain et al. [3.59] Sum Rule Face and gait 

Mezai et al. [3.60] Dempster-Shafer based Face and voice 

Meraoumia et al. [3.61] Weighted score Palmprint, finger-knucklc- print 

Raghavendra et al. [3.62] Weighted score Face and palmprint 

Anzar et al. [3.63]  Sum Rule Fingerprint and voice 

Wang et al. [3.64] SVM based fusion Face and iris 
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3.3. Methods of Fusion 

This section provides an overview of the different fusion methods used in 

multimodal biometric systems. Fusion methods can be divided into three categories 

namely: rule-based method, classification-based method and estimation-based method. 

Many theoretical framework has been developed for merging the evidence 

collected from various classifiers using methods such as sum, product, max and min 

rules. These methods are also called unsupervised methods of fusion as there is no 

training process because learning rules are most suitable for physical applications that 

work for pre-decided target marks. Based on this theory, the posterior probabilities 

obtained from matching scores of real or fake identities can be fused using sum, product, 

max and min rules. Hence, if 𝑥ᵢ⃗⃗    is the feature vector of the input pattern X, the output 

will be the posterior probability i.e.𝑃[(𝑊𝑗| 𝑥ᵢ⃗⃗⃗⃗ )], where 𝑊𝑗 is the class given to the 

feature vector 𝑥ᵢ⃗⃗   [3.63]. 

3.3.1. Sum Rule 

This is seen as one of the most effective rules as it eliminates the issue of noise 

that could lead to difficulty during classification. In the sum rule, to obtain the final 

score, transformed scores of every class (R classifiers) are added together to obtain the 

final score. For example, one can assume the input pattern is delegated to class α such 

that 

α = arg maxj ∑ 𝑃[(𝑊𝑗|𝑥ᵢ⃗⃗  )]
𝑅

𝑖=1

                                                                                                         (𝟑. 𝟏)  

3.3.2. Product Rule 

This rule yields fewer results compared to the sum rule, as it is based on the 

statistical independence of the feature vectors. Hence, the input class (we have R 

classifiers) delegated to class α such that 

α = arg maxj ∏ 𝑃[(𝑊𝑗|𝑥ᵢ⃗⃗  )]
𝑅

𝑖=1

                                                                                                     (𝟑. 𝟐)      
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3.3.3. Max Rule 

The max rule approximates the average of the posterior probability by the 

maximum value of the input pattern, thus, the input pattern designated to class 𝑎 is given 

by 

α = argmaxj 𝑃[(𝑊𝑗|𝑥ᵢ⃗⃗  )]                                                                                                 (𝟑. 𝟑) 

3.3.4. Min Rule 

In the min rule, a minimum posterior probability is collected from of all classes. Thus, 

the input pattern designated to class 𝑎 is such that 

α = argmaxj min 𝑃[(𝑊𝑗|𝑥ᵢ⃗⃗  )]                                                                                                           (𝟑. 𝟒) 

Other strategies of the Rule Based fusion methods are linear weighted fusion, 

Majority voting Rule and Custom defined Rule. Linear weighted fusion is a method that 

combines the information derived from various biometric modalities in a linear form 

using normalized weights. Based on literature, weight normalization can be done using 

various techniques such as decimal scaling, z score methods, tanh estimators and min-

max [3.63]. Majority voting rule is a method that combines information where all the 

weights are equal. In this method, at the final decision is where most of the classifier 

reaches a similar decision [3.33].  

3.4. Classification-Based Fusion Method  

Several classifiers have been used to consolidate the matching scores and arrive at 

a decision. Liang et al. [3.52] use order preserving tree decision for combining the scores 

of face and fingerprint modalities. Wang et al [3.64] use a support vector machine 

classifier to combine the scores of face and iris experts. They show that the performance 

of such a classifier deteriorates under noisy input conditions. To overcome this problem, 

they implement structurally noise-resistant classifiers like a piece-wise linear classifier 

and a modified Bayesian classifier. Verlinde and Chollet [3.65] combine the scores from 

two face recognition experts and one speaker recognition expert using three classifiers: 

k-NN classifier using vector quantization, decision-tree based classifier and classifier 
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based on a logistic regression model. Chatzis et al. [3.66] use fuzzy k-means and fuzzy 

vector quantization, along with a median radial basis function neural network classifier 

for the fusion of scores obtained from biometric systems based on visual (facial) and 

acoustic features.  

1. Fisher Linear Discriminant (FLD) 

FLD is a simple linear projection of the input vector 𝑥 on a uni‐dimensional 

space so that a linear boundary between classes can be satisfactorily obtained. The 

Equation for the linear boundary is given as [3.67] 

ℎ(𝑥) = 𝑤𝑇𝑥 + 𝑏                                                                                                                             (3.5) 

 

where, 𝑤 is a transformation vector obtained on the development data using a Fisher 

criterion (described in the next section), 𝑇 is the transpose operation, and 𝑏 is a threshold 

determined on the development data to give the minimum error of classification in 

respective classes. The rule for class allocation of any data vector is given by 

 𝑥 ∈ {
𝑐1
𝑐2

 𝑖𝑓  𝑤𝑇𝑥 + 𝑏 {
>
<

 0                                                                                                          (3.6) 

 

Where, 𝑐1, 𝑐2 are the client and impostor classes respectively. 

2. Fisher Linear Discriminant for the Data from Two Classes 

Given a set of 𝑁1 points for class 𝑐1 and 𝑁2 points for class 𝑐2, with the 

statistics [𝜇𝑖, 𝑆𝑖], where 𝑆𝑖 and 𝜇𝑖 are the scatter (covariance) matrix and mean for the 

particular class 𝑖 obtained on the development data, the scatter matrix is given as [3.68]. 

𝑆𝑖 = ∑ (𝑘∈𝐶𝑖
𝑥𝑘 − 𝜇𝑖)(𝑥𝑘 − 𝜇𝑖)

𝑇                                                                                                 (3.7)  

Where, 𝑇 indicates the transpose operation. 

The overall within class scatter matrix 𝑆𝑊 is given by 

  𝑆𝑊 = ∑ 𝑆𝑖
2
𝑖=1                                                                                                                                  (3.8)                                                                                                                                         

The transformation vector 𝑤 is obtained using the equation 
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𝑤 = 𝑆𝑊
−1(𝜇2 − 𝜇1)                                                                                                                         (3.9) 

 

3. Quadratic Discriminant Analysis (QDA) 

This technique is similar to FLD but is based on forming a boundary between 

two classes using a quadratic equation given as [3.67] 

ℎ(𝑥) = 𝑥𝑇 A 𝑥 +𝐵𝑇𝑥 + 𝑐                                                                                                                    (3.10) 

For training data 1 and 2 from two different classes, which are distributed as 

𝑀[𝜇𝑖 , 𝑆𝑖], 𝑖 ∈ 1 and 2, the transformation parameters A and 𝐵 can be obtained on the 

development data as: 

𝐴 = −
1

2
(𝑆1

−1 − 𝑆2
−1)                                                                                                                                (3.11) 

𝐵 = 𝑆1
−1𝜇1 − 𝑆2

−1𝜇2                                                                                                          (3.12) 

Where, c is a constant that depends on the mean vectors and covariance matrices and is 

computed as follows 

𝑐 = 𝜇1
𝑇𝑆1

−1𝜇1 − 𝜇2
𝑇𝑆2

−1𝜇2 +  ln 
|𝑆1|

|𝑆2|
                                                                                         (3.13) 

 

4.  K-Nearest-Neighbor (KNN) 

Is a simple classifier that requests no explicit training phase. The single 

information needed is reference data points for both classes (clients, impostors). An 

unidentified (test) data point 𝑥 is then assign the same class label as the label of the 

majority of its 𝑘 nearest (reference) neighbors. To locate these 𝑘 nearest neighbors the 

Euclidean distance between the test point and every reference points is calculated, the 

acquired distances are grouped in ascending order and the reference points 

corresponding to the smallest Euclidean distances are taken. This exhaustive distance 

calculation step during the test phase leads rapidly to important computing times, which 

is the major drawback of this otherwise very simple algorithm [3.65]. 

Let 𝑘1, 𝑘2 respectively be the number of client and impostor neighbors the decision 

rule is then given by: 
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𝑘1 − 𝑘2  >𝐶𝑙𝑖𝑒𝑛𝑡
<  𝐼𝑚𝑝𝑜𝑠𝑡𝑜𝑟

 0                                                                                               (3.14) 

 

 

3.5. Research on Vein Recognition 

Though wrist vein is a promising biometric characteristics, there exist very few works 

on wrist vein recognition system [3.68], [3.69]. The authors of [3.69] demonstrated that 

the wrist vein pattern can be utilized for biometric user authentication. A dataset of wrist 

vein in infrared band of 30 individuals was collected in [3.68], where also a prototype 

for vein image capturing based on quality measurement was proposed. The first work 

that reported performance of wrist vein algorithms on a large database is [3.70]. The 

study used PUT vein images with binarization and correlation for enhancement and 

recognition, respectively. In [3.71], different segmentation techniques were analyzed 

such that DFT (Discrete Fourier Transformation) was employed for enhancement and 

correlation for classification. While, a technique based on Gaussian filter was used for 

enhancement and feature extraction in [3.72]. Uriarte-Antonio et al. [3.73] and Hartung 

et al. [3.74], [3.75] proposed minutia feature and spectral minutia, chain code fusion-

based wrist vein recognition systems, respectively. A method to extract vein minutiae 

and transforming them into a fixed-length vector that represents translation, rotation and 

scale invariant features was proposed in [3.76]. Uriarte-Antonio et al. [3.77] explored 

possibility of performing wrist vein biometric recognition using crossing number of 

minutiae. Pflug et al. [3.78] presented vein pattern feature encoding based on spatial and 

orientation properties of veins and obtained 0.67% of EER. The works in [3.79], [3.80], 

[3.81] and [3.82]  extracted wrist vein features with minutia cylinder-codes, local binary 

patterns, FFT with PCA and scale invariant feature transform, while utilizing 

correlation, SVM, RBF, MLP, and Euclidean distance to compute matching scores, 

respectively. A summary with relevant features of the most representative works in wrist 

vein biometrics is presented in Table 3.5.  
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Table 3.5. Previous works on wrist vein based biometric authentication. EER: Equal Error Rate, Acc: Accuracy, 

SVM: Support Vector Machine, MLP: Multi-Layer Perceptron, RBF: Radial Basis Function, SRC: Sparse 

Representation Classifier. 

Study             Features Classification
  

Dataset            Users Performance         Year         

Akhloufi et 
al. [3.69] 

Morphological filtering Distance Private --- Acc= 80.10%         2008 

Pascual et al. 
[3.68] 

Maximum variation of 
energy per pixel 

2D correlation Private 30         ---                    2010 

Kabacinski 
et al. [3.70] 

Discrete Fourier 
Transformation 

2D correlation PUT 95 EER= 3.51%           2010 

Kabacinski 
et al. [3.71] 

Frequency high-pass 
filtration and local minima 
analysis 

2D correlation PUT 50 EER= 2.19%           2011 

Kabacinski 
et al. [3.72] 

Gauss filtering Minutiae 
comparison 

PUT 50 EER= 3.8%           2011 

Uriarte- 
Antonio et 
al. [3.73] 

Relative location and 
orientation of the minutiae 

Minutiae 
comparison 

UC3M 29 EER= 2.27%           2011 

Uriarte-
Antonio et 
al. [3.77] 

Crossing number based 
minutiae extraction and 
classification 

correlation UC3M 29 EER= 15.75 %       2011 

Hartung et 
al. [3.74] 

Location-based spectral 
minutiae 

Points  
parallelism 

UC3M 29 EER= 6.13%           2011 

Hartung et 
al. [3.75] 

Chain codes using spacial 
and orientation properties of 
vein patterns 

correlation UC3M 29 EER= 1.38%           2012     

Hartung et 
al. [3.76] 

Spectral minutiae 
Local error 
distance  

UC3M 29 EER= 4.48%           2012 

Pflug et al. 
[3.78] 

Chain code using spatial and 
orientation properties of 
vein patterns 

correlation UC3M 29 EER= 0.67%           2012 

Hartung et 
al. [3.79] 

Minutia Cylinder-Codes 
(MCC) 

    SVM UC3M 29 EER= 0.31%           2013 

Das et al. 
[3.80] 

Local binary patterns SVM, MLP PUT 50 EER= 0.79%           2014 

Kurban et al. 
[3.81] 

FFT-based low-pass filtering 
with Principal component 
analysis (PCA) 

     RBF Private 34 Acc= 94.11%         2016 

Raghavendra 
et al. [3.83] 

9 local and global feature 
representations 

Correlation, 
     SRC 

Private 50 EER= 1.63%           2016 

Fernandez 
et al. [3.82] 

Scale invariant feature 
transform 

Euclidean 
distance 

Private 30 EER= 0.15%           2017 
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3.6. Feature extraction for wrist vein 

For feature extraction, there exist various methods but for simplicity and low 

computational cost, four local textural descriptors namely: LPQ, LBP, BSIF, and LTP 

are employed. 

3.6.1. Local Phase Quantization (LPQ)  

This descriptor is based on quantizing the Fourier transform phase in local 

neighborhoods by computing a short-term Fourier transform (STFT) over a rectangular 

𝑀2 neighbourhood 𝑁𝑥   at each position x of the image f(x) as follows [3.84]: 

𝐹𝑢,𝑥 = 𝑤𝑢
𝑇𝑓𝑥                                                                                                            (3.15)  

 

Where  𝑤𝑢 denote the basis vector of the 2-D DFT at frequency u, and 𝑓𝑥 is a vector 

containing all M2 image pixels from𝑁𝑥. 

3.6.2. Local Binary pattern (LBP) 

It is an efficient textural descriptor that labels every pixel of an image based on 

thresholding the neighborhood of each pixel with the center pixel value. Then obtained 

binary number is converted to a decimal value [3.85]. The histogram of the labels from 

non-overlapping blocks is used to form the texture descriptor. The LBP code of a pixel 

Ic is defined by: 

 LBPP,R = ∑ 𝑠(𝐼𝑝 − 𝐼𝑐)2
𝑝𝑝−1

𝑝=0                                                                                                              (3.16) 

𝑠(𝑥) = {1        if 𝑥 ≥ 0
0   otherwise

                                                                                                                          (3.17) 

Where, 𝐼𝑐 and 𝐼𝑝 refer the center pixel and neighboring pixels, respectively. The use of 

uniform rotation invariant 𝐿𝐵𝑃𝑃,𝑅  reduces the length of feature vector.  
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3.6.3. Binarized Statistical Image Features (BSIF) 

BSIF is a recent descriptor which is based on a set of filters of the same size [3.86]. 

The filter response si by applying  a filter 𝜑𝑖
𝑙×𝑙on a given image X of size 𝑚 × 𝑛 pixels 

is given by:  

 

𝑠𝑖 = ∑𝜑𝑖
𝑙×𝑙

𝑚,𝑛

𝑋(𝑚, 𝑛)                                                                                                                                     (𝟑. 𝟏𝟖) 

  

The binarized feature bi is defined as: 

 

𝑏𝑖 = {
1            𝑖𝑓 𝑠𝑖 > 0 
0           otherwise

                                                                                                                  (3.19) 

 

1. Local Ternary Patterns (LTP):  

In this descriptor, the LBP code is extended into 3-valued codes [3.86], which is a 

ternary code at each pixel. The indicator s’(Ip) is given by:  

 

𝑠′(𝐼𝑝 , 𝐼𝑐 , 𝑡) = {

1            𝐼𝑝 ≥ 𝐼𝑐 + 𝑡

0             |𝐼𝑝 − 𝐼𝑐| < 𝑡

−1           𝐼𝑝 ≤ 𝐼𝑐 − 𝑡

                                                                                               (3.20) 

 

Here 𝐼𝑝 , 𝐼𝑐 and t are neighborhood pixels, enter pixel and a user-specified threshold 

value, respectively. 

Figure 3.6 shows normalized vein images of wrist and the corresponding LBP, LTP, 

LPQ and BSIF. 
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a)                                               b)                                               c)                                        d)  

Figure 3.6.   Normalized wrist vein images, LBP, LTP , LPQ , from left to right respectively . 

 

 

3.7. Conclusion  

In this chapter, we have presented a brief description of research conducted on different 

fusion schemes for multimodal biometric information consolidation, also we have 

presented the main rules used for fusion. As individual biometric identifiers, we have 

used wrist vein. Therefore, previous research conducted. Features extraction from wrist 

vein biometric are also discussed in this chapter. 
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4.1. Introduction 

The most important part in a multimodal biometric system improvement is 

information fusion. We debated the pros and cons of diverse multimodal biometric 

fusion methods in chapter three; and in this doctoral research, we choose to employ 

score level fusion based on triangular norms and symmetric sum methods in our 

multimodal biometric system development process. The following two sections describe 

a detailed explanation of the proposed fusion approach. 

 4.2. Information Fusion Using Fuzzy logic 

The power of fuzzy sets for information fusion, particularly in diverse combination 

fusion methods fall into the following categories: 

• The possibility of representing very heterogeneous information.  

• The flexibility of the combination operators, which makes it possible to fuse 

elements of information that are different in nature, in very different situations. 

• The various possible semantics. 

The next two sub-sections describe the basic concepts of fuzzy logic and the fuzzy fusion 

mechanism for the new multimodal biometric system.  

4.2.1. Fuzzy Logic 

Fuzzy logic refers to the generalization of the classical set theory, and to all of the 

theories and technologies that employ fuzzy sets, which are classes with un-sharp 

boundaries [4.1]. The idea of fuzzy sets was introduced in 1965 by Professor Lotfi A. 

Zadeh from the Department of Electrical Engineering and Computer Science at the 

University of California, Berkeley [4.2]. The core technique of fuzzy logic is based on 

following three basic concepts: 

1. Fuzzy sets 

A fuzzy set [4.3] is a set in which the members of the set can have partial 

membership, meaning they can have a membership value of any number between 0 and 

1 unlike the ‘crisp' set where the members can have only two membership value, i.e. 0 

and 1. 
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2. Linguistic variable 

A linguistic variable is a novel concept in fuzzy logic where a variable can have 

values in linguistic terms of words or sentences rather than numbers, which allows 

reasoning be done at the fuzzy level rather than that of crisp numeric variables [4.4]. 

3. Possibility Distribution 

During an assignment of a fuzzy set to a linguistic variable, the fuzzy sets put 

constrains on the value of the variable. This process is called possibility distribution 

[4.5]. 

 

4.2.2. Fuzzy rules 

Fuzzy rule is the most widely used technique developed using fuzzy sets and has 

been applied to many disciplines. Some of the applications of fuzzy rules include control 

(robotics, automation, tracking, and consumer electronics), information systems 

(information retrieval), pattern recognition (image processing, machine vision), decision 

support (sensor fusion). 

4.2.2.1. Preliminaries of the triangular norms (t-norm) 

In this section, we introduce our proposed score-level fusion method based on 

triangular norm. Triangular norms (t-norms) are the general families of binary functions 

that satisfy the requirements of the conjunction and disjunction operators [4.6]. T-norms 

are considered as most suitable general candidates for generalized intersection 

operations of fuzzy sets in the mathematical fuzzy community [4.7]. T-norms are the 

functions that map the unit square into the unit interval: 

T (𝑥, 𝑦): [0, 1] × [0, 1] → [0, 1]                                                                                  (4.1) 
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A t-norm is a function that satisfies the following conditions: 

1. Commutativity : 𝑡(𝑥, 𝑦) = 𝑡(𝑦, 𝑥). 

2. Associativity: 𝑡(𝑡(𝑥, 𝑦), 𝑧)  = 𝑡(𝑥, 𝑡(𝑦, 𝑧)).   

3. Monotonicity: if (𝑥 ≤ a) and (𝑦 ≤ b) then 𝑡(𝑥, 𝑦) ≤ 𝑡 (a, b). 

4. Boundary Conditions: 𝑡 (0, 0) = 0 and 𝑡 (𝑥, 1) = 𝑥 

Additionally, we have: 𝑡(𝑂, 1) = 𝑡(0,0) = 𝑡(1,0) = 0, 𝑡(1,1) = 1 and 0 is a zero 

element (∀𝑥 ∈ [0,1], 𝑡(𝑥, 0) = 0) . 

       Continuity is often added to this list of properties. 

The operators  min (𝑥, 𝑦), 𝑥𝑦,  max (𝑂, 𝑥 + 𝑦 − 1) are examples of 𝑡‐norms, which 

are by far the most commonly used. 

       𝑇‐norms generalize to fuzzy sets the concept of intersection as well as the logical 

“and”. 

The following result is easy to prove. For any 𝑡-norm, we have: 

∀(𝑥, 𝑦) ∈ [0,1]2, 𝑡(𝑥, 𝑦) ≤  min (𝑥, 𝑦)                                         (4.2) 

This shows that the "min " is the highest 𝑡‐norm and that any 𝑡‐norm has a 

conjunctive behavior. 

        On the other hand, any 𝑡‐norm is always higher than 𝑡0, which is the smallest t‐ 

norm, defined by: 

∀(𝑥, 𝑦) ∈ [0,1]2, 𝑡0(𝑥, 𝑦) = {
𝑥 𝑖𝑓 𝑦 = 1
𝑦 𝑖𝑓 𝑥 = 1
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                          (4.3) 

 

Some of the t-norms which we have implemented for our work are: 
 

1. Einstein product: (
𝑥 𝑦

(2−(x+y−xy))
) 

2. Hamacher: (
𝑥𝑦

(𝑥 +𝑦 −xy)
) 

3. Yager (𝑝 > 𝑂): max (1 − ((1 − 𝑥 )𝑝 + (1 − y)𝑝)1/𝑝, 0) 

4. Schweizer and sklar (𝑝 > 𝑂): ( max (𝑥
𝑝

+ 𝑦
𝑝

− 1,0))1/𝑝  
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5. Frank (𝑝 > 𝑂): log𝑝(1 +
(𝑝𝑥−1)(𝑝𝑦 −1)

𝑝−1
) 

  Based on a t-norm and a complementation c, another operator t, referred to as 

the t-conorm, can be defined by duality: 

 

                       ∀(𝑥, 𝑦) ∈ [0,1]2, 𝑡(𝑥, 𝑦) = 𝑐[𝑡(𝑐(𝑥), 𝑐(𝑦))].                                          (4.4) 

 

Therefore, a t-conorm is a function 𝑡 : [0,1] × [0,1] → [0,1] such that: 

1. Commutativity : 𝑡(𝑥, 𝑦) = 𝑡(𝑦, 𝑥). 

2. Associativity: 𝑡(𝑡(𝑥, 𝑦), 𝑧)  = 𝑡(𝑥, 𝑡(𝑦, 𝑧)).   

3. Monotonicity: if (𝑥 ≤ a) and (𝑦 ≤ b) then 𝑡(𝑥, 𝑦) ≤ 𝑡 (a, b). 

4. Boundary Conditions: 𝑡 (0, 0) = 0 and 𝑡 (𝑥, 1) = 𝑥. 

The most common examples of t-conorms are:  max (𝑥, 𝑦),   min (1, 𝑥 + 𝑦). 

For any t‐conorm, we have:  

 

                   ∀(𝑥, 𝑦) ∈ [0,1]2, 𝑡(𝑥, 𝑦) ≥  max (𝑥, 𝑦).                                                 (4.5) 

 

This shows that the  max ” is the smallest t‐conorm and that any t‐conorm has a 

disjunctive behavior. On the other hand, any t-conorm is smaller than T0, which is the 

highest t-conorm, defined by: 

 

                     ∀(𝑥, 𝑦) ∈ [0,1]2, 𝑇0(𝑥, 𝑦) = {
𝑥 𝑖𝑓 𝑦 = 0
𝑦 𝑖𝑓 𝑥 = 0
1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                    (4.6) 

 

If t is a t‐norm, then S(x,y)=1-t(1-x,1-y) is a t‐conorm, and vice versa. We obtain a 

dual pair (t,S) of a t‐norm and a t‐conorm.  

Table 4.1 shows a few typical examples of t-conorms. They are obtained by using 

various t-norms. 
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Table 4.1. Typical examples of t-conorms [4.13]. 

T-norm                                                   T-conorm                                                      Name of rule 

min (𝑥 + 𝑦, 1)                                        min (𝑥, 𝑦)                                                       Zadah 

 𝑥. 𝑦                                                         𝑥 + 𝑦 − 𝑥. 𝑦                                                   Product 

 max (𝑥 + 𝑦 − 1,0)                               min (𝑥 + 𝑦, 1)                                                Lukasiewicz 

 𝑇0(𝑥, 𝑦) = {
𝑥 𝑖𝑓 𝑦 = 1
𝑦 𝑖𝑓 𝑥 = 1
 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                       𝑇0(𝑥, 𝑦) = {
𝑥 𝑖𝑓 𝑦 = 0
𝑦 𝑖𝑓 𝑥 = 0
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                 Weber  

 

 

4.2.2.2. Preliminaries of symmetric sums 

Here, we introduce the proposed score-level fusion method based on Symmetric 

sums (S-sums). Though, recently the use of triangular norms in the score level fusion is 

prevalent in the literature [4.8, 4.9, 4.10], but use of S-sums in the score level fusion 

does not exist in the literature. Symmetric sums were introduced by Silvert in 1979 

[4.11, 4.12, 4.13], and they are a kind of binary functions that are used as a rule of 

combination for fuzzy sets. S-sums are characterized by an auto-duality property, which 

means the invariance of the result of the operation by inverting the scale of values to 

combine. More precisely, s-sum is a function 𝑆: [0,1] × [0 ,1] → [0,1] such that: 

1. 𝑆(0,0)  = 0; 

2. 𝑆(1,1) = 1; 

3. 𝑆 is commutative; 

4. 𝑆 is increasing with respect to the two variables; 

5. 𝑆 is continuous; 

6. 𝑆 is self-dual: ∀(𝑥, 𝑦) ∊ [𝑥, 𝑦]2, 𝑆(𝑥, 𝑦) = 1 − 𝑠(1 − 𝑥, 1 − 𝑦);            

 The general form of symmetric sums is given by: 
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𝑆(𝑥, 𝑦) =
𝑔(𝑥,𝑦)

𝑔(𝑥,𝑦)+𝑔(1−𝑥,1−𝑦)
                                                                                           (4.7) 

 

Where 𝑔 is a continuous, positive, increasing function of [0,1] × [0 ,1] into [0,1], 

such that 𝑔(0,0)  = 0. Typically, a continuous t-norm or t-conorm can be chosen as 𝑔. 

 Table 4.2 shows a few typical examples of symmetric sums. They are obtained by 

using various t-norms and t-conorms as generating function g. 

 

Table 4.2: Examples of symmetric sums (s-sum), defined based on t-norms and t-conorms [4.14]. 

 

g(x, y) S(x, y) Property 

𝑥𝑦 𝑥𝑦

1 − 𝑥 − 𝑦 + 2𝑥𝑦
 associative 

𝑥 + 𝑦 − 𝑥𝑦 𝑥 + 𝑦 − 𝑥𝑦

1 + 𝑥 + 𝑦 − 2𝑥𝑦
 

non-associative 

min (𝑥, 𝑦) min(𝑥, 𝑦)

1 − |𝑥 − 𝑦|
 

mean 

max (𝑥, 𝑦) 𝑚𝑎𝑥 (𝑥, 𝑦)

1 + |𝑥 − 𝑦|
 

mean 

 

 

4.3. Score Fusion Using Fuzzy logic Rule 

 

Figure 4.1 shows the block diagram of the proposed approach, here we extend the 

fusion rules such as product and sum rules to general class of fuzzy aggregation 

operators (t-norms and s-sums) to enhance the score level fusion.  

The proposed score level fusion module, which is a fuzzy rule-based system.  The 

score level fusion is viewed as the combination problem. Here, the scores are combined 

using the t-norm and s-sums. Since the concept of these norms is applicable mainly in 

the fuzzy logic, so scores from all the modalities must be first converted to the common 

fuzzy domain [0,1] to guarantee a meaningful combination of the scores.  
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Figure 4.1. A schematic diagram the block diagram of the proposed approach. 

 

4.3.1. Various normalization schemes 

Let 𝑋 denote the set of raw matching scores from a specific matcher (unimodal 

system), and let 𝑥 ∈ 𝑋. The normalized score of 𝑥 is then denoted by 𝑥′. 

4.3.1.1. Min-Max normalization 

This normalization maps the raw matching scores to interval [0, 1] and retains the 

original distribution of matching scores except for a scaling factor [4.15]. Given that 

max(X) and min(X) are the maximum and minimum values of the raw matching scores, 

respectively, the normalized score is calculated as 

  𝑥′ =  
𝑥 − min(𝑋)

max(𝑥) − min (𝑥)
                                                                                                                      (𝟒. 𝟖)  

 

Suppose that a matcher has a set of matching scores as listed below: 

Genuine 15 17 17 19 19 22 25 

Impostor 5 5 7 9 14 15 17 
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After equation (4.8) is applied to the matching scores in the list, matcher will get 

this result: 

Genuine 0.5 0.6 0.6 0.7 0.7 0.88 1 

Impostor 0 0 0.1 0.2 0.45 0.5 0.6 

4.3.1.2. Z-score normalization 

Z-score normalization method calculates normalized scores using arithmetic mean

and standard deviation of the given data [4.16]. The normalized scores will have a 

distribution with mean of 0 and standard deviation of 1. Let mean (X) denote the 

arithmetic mean of X and std (X) denote the standard deviation of X, then the formula 

for z-score normalization is 

 𝑥′ =  
𝑥 − mean(𝑋)

std(𝑋)
 (𝟒. 𝟗) 

4.3.1.3. Tanh-estimators normalization 

Introduced by Hampel et al. [4.17] are robust and highly effective [4.18]. The 

normalization is given by 

𝑥′ =  
1

2
{𝑡𝑎𝑛ℎ (0.01 (

𝑥 − µ

𝜎
)) + 1}  (𝟒. 𝟏𝟎) 

Where 𝑥′ is the normalized score,  µ and  𝜎  are the mean and standard deviation

estimates, respectively, of the genuine score distribution as given by Hampel estimators. 
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4.3.2. Score-level fusion method based on t-norm and s-sum 

T-norms can be regarded as a generalization of the two-valued logical conjunction 

such that the norms monotonicity property makes sure that the truth of conjunction 

degree does not decrease if the truth values of conjuncts increase. Usually, considering 

correlation among the information sources in fusion avoids under or over estimates 

[4.9], since multi-valued t-norms are a generalization of the Boolean intersection 

operation, thus they are better suited to handle the correlation [4.10]. Contrary to the 

AND operation that only gives the minimum, t-norms attain the infimum of information 

(e.g., matching scores) leading thereby to yielding a better representation of the product 

of the information. Due to the t-norms associative and commutative properties, the order 

of fusion of three or more biometric sources/modalities is immaterial. Moreover, t-

norms do not require the assumption of evidential independence of the information 

sources being fused. In this work, the t-norms were selected for score level fusion 

because generally they produce performance better than the classification techniques 

such as SVM, MLP, and logistic regression [4.11].  

Let S1, S2 represented the scores derived from each unimodal biometric systems. 

Let S represented the result fusion of the two scores S1, S2 using t-norms, we take Yager 

t-norm to build the fusion score rule, so we will have: 

𝑆 =  max (1 − ((1 − 𝑆1)𝑝 + (1 − 𝑆2)𝑝)
1

𝑝, 0)         (𝑝 > 𝑂)                                           (4.8) 

The real number ‘p’ spans the space of t-norms.   

The fused score is compared with a threshold, 𝑡 which assigns the user. 

 

{ 
the user is imposter if S <  𝑡
the user is genuine if S >  𝑡

 

 

Combination of scores emanating from different modalities plays a central role in 

the score-level fusion. The challenge involved here is how to deal with the uncertainty 

and imperfection from the scores of different modalities. In this sense, we analyze the t-



 

 

Chapter 4 Score level fusion based on triangular norms and symmetric sum    

methods 2019 

67 

norms of Einstein product, Frank with p = 0.4, Hamacher, Yager with p = 0.5, and 

Schweizer–Sklar  with p = −0.1,  Weber Sugeno with p = 0.8. As shown in figures (4.2 

to 4.7), respectively.  

Except for Yager t-norm, the Einstein product, Frank, Hamacher, and Schweizer–

Sklar t-norms maximize the fusion of genuine scores while they fail to further minimize 

the imposter scores simultaneously. 

Let S = (x, y) denote the fusion of two normalized matching scores using s-sums. 

Let s′
1, s′

2, … . s′n denote the normalized matching scores of n modalities, the two scores 

s′
1 , s′

2 are first combined to yield  S = (s′1 , s′2)  which is in turn combined further with 

s′
3 to yield  S = (S(s′1 , s′2), s′3) until all normalized scores are combined. If the fused 

score S  is below a given acceptance threshold T, the user is classified as an impostor, 

otherwise it is classified as a genuine user. 

 

 

Figure 4.2. T-norms of Einstein product. 
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  Figure 4.4. T-norms of Hamacher. 

 

  

 

 

  Figure 4.3. T-norms of Frank with p = 0.4. 
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  Figure 4.5. T-norms of Yager with p = 0.5. 

 

 

 

 

Figure 4.6. T-norms of Schweizer-Sklar  with p = −0.1. 
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Figure 4.7. T-norms of Weber Sugeno with p = 0.8. 

 

 

 

4.4. Conclusion 

In this chapter, we present the methodology for the score fusion method and the 

fuzzy fusion method for the proposed multimodal biometric system. For score level 

fusion we define and discuss advantages and disadvantages of triangular norm and 

symmetric sum method. The chapter has given a brief description about the most 

effective and widely used score normalization techniques. These are min- max, z-score, 

and tanh-estimators normalization techniques. Then we discuss advantages of this 

method and show how this method could be applied. The next chapter discusses the 

results of applying the fusion methods. 
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5.1. Introduction 

Multimodal biometric systems that fuse information from different sources are 

able to alleviate limitations of the unimodal biometric systems. In this chapter, we 

propose a multimodal biometric framework to identify people using their left and right 

wrist vein patterns. The framework uses a fast and robust preprocessing and feature 

extraction method. A generic score level fusion approach is proposed to integrate the 

scores from left and right wrist vein patterns using the proposed method. Moreover, a 

new framework for score level fusion based on symmetric sums (s-sums) has been 

presented. These s-sums are generated via triangular norms. The proposed framework 

has been tested on two publicly available benchmark databases. In particular, we used 

two partitions of NIST-BSSR1, i.e. NIST-multimodal database and NIST-fingerprint 

database. 

5.2. The proposed wrist vein multibiometric system 

Figure 5.1 shows the schematic diagram of the proposed multibiometric person 

recognition algorithm based on left and right wrist vein patterns. The information 

coming from the two biometric sources/traits can be integrated at the sensor, feature, 

match score, and decision level. Fusion at match score level is generally preferred due 

to the ease in accessing and combining matching scores, and has been adopted in this 

work as well. 

In a verification setting, each user presents his left and right wrist to the sensor, 

and claims his identity. First, left and right wrist vein images are processed using the 

proposed algorithm (explained in section 5.2.1 in detail). Then, the system separately 

matches the two images with respective templates of the claimed identity provided at 

enrollment phase in the database, and produces a left and a right wrist vein matching 

scores SLeft _wrist_ Vein and SRight _Wrist _Vein, respectively. These scores are combined using 

a new t-norm based fusion [5.1] (explained in section 5.2.3 in detail). 
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Figure 5.1. Proposed framework for wrist vein multibiometric system. 

 5.2.1. Pre-Processing captured wrist vein image 

In particular, the captured left and right wrist vein images are separately processed 

to extract respective salient features. The steps followed for processing the wrist vein 

images are as follows: each captured image I Input of size 768 x 1024 is normalized to 

250 x 250 and converted to gray scale. After binarization and vein (wrist) centering, the 
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median filter is used for noise reduction [5.2], which is independently followed by 

Global thresholding [5.3] and Contrast limited adaptive histogram equalization 

(CLAHE). The result obtained using CLAHE is further processed by local thresholding, 

i.e., by applying sequentially the average filter within window size of 31 x 31, and an

arithmetic and morphological operations to remove more noise. Finally, the two binary 

images (one based on local and the other on global thresholding) are multiplied. Figure 

5.2 shows an example of a processed image. While, the procedure is summarized in 

Algorithm 1. It is worth mentioning that our algorithm is highly capable of extracting 

and enhancing the vein shape patterns even from low quality images. After pre-

processing stage, we used the maximum value of the 2D correlation function as a 

measure of similarity between two patterns [5.4]. 

Algorithm 1  Pre-Processing captured wrist vein image 

Input: A wrist vein image 𝐼𝐼𝑛𝑝𝑢𝑡 .

Output: A binary image 𝐼𝑂𝑢𝑡𝑝𝑢𝑡, 1 for vein 0 otherwise.

1: Normalize 𝐼𝐼𝑛𝑝𝑢𝑡 and convert it to gray scale.

2: Centring the vein (wrist). 

3: Apply median filter to remove noise, let 𝐼 indicate the filtered image. 

4: Apply CLAHE on 𝐼 for contrast enhancement, let 𝐼𝐸𝑛ℎ indicate the enhanced image.

5: Apply global thresholding to obtain binarized image 𝐼𝐺𝑙𝑜𝑏𝑎1.

6: Apply average filter on 𝐼𝐸𝑛ℎ with threshold computed locally in 31 × 31 patch in order to 

obtain 𝐼𝐴𝑣𝑟 . 

7: Subtract element‐wise 𝐼𝐸𝑛ℎ from 𝐼𝐴𝑣𝑟 to obtain 𝐼𝑆𝑢𝑏.

8: Procure 𝐼𝐿𝑜𝑐𝑎1 by binarizing 𝐼𝑆𝑢𝑏 using a threshold, here 0 (black).

9: Compute the complement of the image 𝐼𝐿𝑜𝑐𝑎1 for 𝐼.  

10: Remove noise from 𝐼 using erosion followed by dilation operation. 

11: Multiply element‐wise 𝐼 and 𝐼𝐺𝑙𝑜𝑏𝑎1 for 𝐼𝑂𝑢𝑡𝑝𝑢𝑡. 
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Figure 5.2. Results of preprocessing. 
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5.2.2. Measure of similarity 

As mentioned above, we used the maximum value of 2D correlation function as a 

measure of similarity between two patterns (extracted wrist vein).  In discrete form, 

normalized correlation can be defined in the following fashion.

 Let 𝑝1[𝑖, 𝑗] and 𝑝2[𝑖, 𝑗] be two image arrays of size 𝑛 × 𝑚. In our case the two

images are the result of the pre-processing step. 

𝜇1 = (
1

𝑛𝑚
) 𝛴𝑖=1

𝑛 𝛴𝑗=1
𝑚 𝑝1[𝑖, 𝑗]  (5.1) 

𝜎1 = [(1/𝑛𝑚)𝛴𝑖=1
𝑛 𝛴𝑗=1

𝑚 (𝑝1[𝑖, 𝑗] − 𝜇1)2]
1

2  (5.2) 

Where 𝜇1, 𝜎1  are the mean and standard deviation for the intensities of  𝑝1. Also, let 𝜇2

and 𝜎2 be similarly defined with reference to 𝑝2. Then the normalized correlation

between 𝑝1 and 𝑝2 can be defined as:

𝑐𝑚𝑛 =
∑ ∑ (𝑝1[𝑖,𝑗]−𝜇1)𝑚

𝑗=1 (𝑝2[𝑖,𝑗]−𝜇2) 𝑛
𝑖=1

𝑛𝑚𝜎1𝜎2
 (5.3)

We use the maximum value of 𝑐𝑚𝑛  to measure the similarity (score) between two

patterns (wrists). 

5.2.3. Score level fusion using t-norm 

 In this section, we introduce our proposed score-level fusion method based on 

triangular norm. Let 𝑥, 𝑦 denote the matching scores derived from left and a right wrist 

vein, respectively. Let  t(𝑥, 𝑦) denote the fusion of two normalized matching scores 

using t-norm. As we see in the previous chapter, triangular norms (t-norms) are the 

general families of binary functions that satisfy the requirements of the conjunction and 

disjunction operators [5.1]. T-norms are considered as the most suitable general 

candidates for generalized intersection operations of fuzzy sets in the mathematical 

fuzzy community [5.5]. T-norms are the functions that map the unit square into the unit 

interval: 
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𝑡(𝑥, 𝑦) ∶ [0,1] × [0,1] → [0,1]       (5.4)    

As we see before t-norm is a function that satisfies the following conditions: 

1. Commutativity : 𝑡(𝑥, 𝑦) = 𝑡(𝑦, 𝑥).

2. Associativity: 𝑡(𝑡(𝑥, 𝑦), 𝑧)  = 𝑡(𝑥, 𝑡(𝑦, 𝑧)).

3. Monotonicity: if (𝑥 ≤ a) and (𝑦 ≤ b) then 𝑡(𝑥, 𝑦) ≤ 𝑡 (a, b).

4. Boundary Conditions: 𝑡 (0, 0) = 0 and 𝑡 (𝑥, 1) = 𝑥.

Combination of scores emanating from different modalities plays a central role in

the score-level fusion. The challenge involved here is how to deal with the uncertainty 

and imperfection from the scores of different modalities. In this sense, we analyze the t-

norms of Einstein product, Frank (Fk) with p = 0.4, Hamacher (Hm), Yager (Yg) with 

p = 0.5, and Schweizer–Sklar (SS) with p = −0.1 (in chapter 4, section 4.3.2). Except for 

Yager t-norm, the Einstein product, Frank, Hamacher, and Schweizer–Sklar t-norms 

maximize the fusion of genuine scores while they fail to further minimize the imposter 

scores simultaneously. Our aim is to find a novel t-norm that can both maximize the 

fusion of genuine scores and farther minimize the imposter scores. Thus, the fusion 

function F need to make: 

𝐹(𝑥, 𝑦) >  max (𝐸𝑝(𝑥, 𝑦), 𝐹𝑘(𝑥, 𝑦), 𝐻𝑚(𝑥, 𝑦) ,𝑌𝑔(𝑥, 𝑦), 𝑆𝑆(𝑥, 𝑦)), ∀𝑥, 𝑦 > 𝑡  (5.5) 

𝐹(𝑥, 𝑦) <  min (𝐸𝑝(𝑥, 𝑦), 𝐹𝑘 < (𝑥, 𝑦), 𝐻𝑚(𝑥, 𝑦) ,𝑌𝑔(𝑥, 𝑦), 𝑆𝑆(𝑥, 𝑦)), ∀𝑥, 𝑦 < 𝑡  (5.6) 

The parameter 𝑡 ∈ [𝑡ℎ + ∇ , th − ∇] is a threshold value, where 𝑡ℎ = (th1+ th2)/ 2, th1 

and th2 are the threshold of unimodal biometric matching scores x, y for fusion, and  ∇ 

is a bias acquiring from the experiments.  

Dubois and Parade t-norm comes to our rescue by way of satisfying our 

requirement of equation (5.5) and (5.6). The family of Dubois and Parade t-norm was 

introduced in the early 1978s [5.1]. It is defined as 



Chapitre 5 Experimental Results 2019 

80 

𝑇(𝑥, 𝑦) = 
𝑥 𝑦 

max(𝑥,𝑦,𝑝)
 where  𝑝 ∈ [0.1]  (5.7) 

Dubois and Parade t-norm satisfies our requirement of equation (5.5) and (5.6), as 

shown in Figure 5.3. The better performance of multimodal biometric recognition can 

be obtained by this t-norm.  

Figure 5.3. Graph of Dubois and Parade t-norm. 

 5.3. Experiments 

Here, we provide an experimental evaluation of our proposed wrist vein multibiometrics 

for person authentication. 
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5.3.1. Dataset and Experimental Protocol 

We used a publicly available dataset, called PUT vein pattern database [5.4], which 

is composed of 2400 images acquired from both hands of 50 users. The dataset contains 

images captured both for palm vein and wrist vein; we have only used images for wrist 

vein. For each subject, 12 samples are available. We used randomly selected 50% of the 

samples per user as training set, whereas the remaining 50% samples of the users were 

used to build the testing set, thus obtaining disjoint samples in training and testing sets. 

Experiments were performed in recognition mode and performance of the system is 

reported in Receiver Operating Characteristic (ROC) curves, EER (Equal Error Rate) 

and Decidability index (d'). 

5.3.2. Experimental Results 

The results of both unimodal and multibiometric wrist vein person recognition 

systems using proposed method are presented in Table 5.1 in terms of EER (%) [5.6] 

and corresponding ROCs are shown in Figure 5.4. In Table 5.1, it is easy to see that 

proposed multibiometric fusion method based on Dubois-Parade t-norm attains better 

performance than corresponding left and right wrist vein unimodal systems. For 

instance, using only left wrist vein features attained 4% EER, while fusion of left and 

right wrist vein features resulted into 0% EER. Similarly, we can observe in Figure 4 

that at 1% FAR operating point, the GARs (Genuine Acceptance Rates) of left wrist 

vein, right wrist vein and their fusion using Dubois-Parade t-norm attained values up to 

96%, 96%, and 100%, respectively. 

Table 5.1 also reports the results of existing wrist vein recognition methods 

utilizing LBP [5.7] and LPQ and HOG [5.8] features. In addition, results using two 

largely adopted local image feature descriptions, i.e., LTP [5.9] and BSIF [5.10], are 

presented. Together with feature level fusion (here, feature concatenation), the most 

widely used sum rule as well as proposed combination technique based matching score 

level fusions were adopted to attain multibiometric results using existing methods. The 

results clearly show that the proposed method outperforms the existing methods. For 

example, the multibiometric (multi-instance) systems utilizing the method in [5.7] with 

sum fusion rule and the proposed approach yield 8.03 % and 0% EER, respectively. 
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Moreover, we can also notice that when the matching scores obtained by existing 

methods are fused using proposed combination technique, the accuracy is better than 

using sum rule, which further demonstrate the efficacy of the proposed fusion scheme. 

Similarly, feature level fusion of existing methods out performs the sum score fusion 

rule but underperforms when scores (from existing techniques) are integrated via 

proposed fusion method. 

 Figure 5.4.   Comparison of ROC's curves of individual modality with Score Level Fusion. 
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Table 5.1. EER of both unimodal and multibiometrics systems. * Feature level fusion (here, feature

concatenation). 
&

 Matching score level fusion using sum rule.   # Matching score level fusion using

proposed fusion technique. 

Approach Left wrist 

vein 

Right wrist 

 vein 
Fusion of  left and right 

wrist veins 

*Local Binary Patterns (LBP) [5.7]  8.40 %  8.23 %  5.76 % 

*Local Phase Quantization (LPQ) [5.8]  8.16 %  7.88 %  4.32 % 

*Histogram of Gradients (HOG) [5.8]  5.14 %  4.61 %  3.41 % 

*Local Ternary Patterns (LTP) [5.9]  7.43 %  7.29 %  4.19 % 

*Binarized Statistical Image Features (BSIF) [5.10]  7.37 %  7.11 %    3.83 % 

&
Local Binary Patterns (LBP) [5.7]  8.40 %  8.23 %  8.08 % 

&
 Local Phase Quantization (LPQ) [5.8]  8.16 %  7.88 %  7.56 % 

&
Histogram of Gradients (HOG) [5.8]  5.14 %  4.61 %  4.96 % 

&
 Local Ternary Patterns (LTP) [5.9]  7.43 %  7.29 %  7.03 % 

&
Binarized Statistical Image Features (BSIF) [5.10]  7.37 %  7.11 %     6.68 % 

# Local Binary Patterns (LBP) [5.7]  8.40 %  8.23 %  4.74 % 

# Local Phase Quantization (LPQ) [5.8]  8.16 %  7.88 %  3.91 % 

#  Histogram of Gradients (HOG) [5.8]  5.14 %  4.61 %  0.28 % 

#Local Ternary Patterns (LTP) [5.9]  7.43 %  7.29 %  3.05 % 

# Binarized Statistical Image Features (BSIF) [5.10]  7.37 %  7.11 %     2.65 % 

Proposed Fusion with Debois-Parade t-norm  4.00 %  3.20%  0.00 % 



Chapitre 5 Experimental Results 2019 

84 

(c) 

Figure 5.5. Score distribution: (a) Left wrist vein; (b) Right wrist vein; (c) Score level fusion result. 
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Figure 5.5 shows the probability density functions of unimodal and multibiometric 

systems. For unimodal systems, there is an overlap between the distributions of genuine 

and imposter scores. For better recognition, this overlap should be as minimum as 

possible [5.11], [5.12]. Thus, if we see Figure 5.5 where both unimodal systems are 

fused via Dubois-Parade t-norm leads to almost no overlap between genuine and 

imposter score distributions thus ensuring better recognition. 

The performance of a biometric system can also be evaluated using decidability 

index (d') [5.13]. It gives extent of overlap between two distributions and defined as: 

𝑑′ =
|µ1−µ2|

√σ1
2−α2

2

2

 (𝟓. 𝟖) 

      Where μ1 and μ1 represent the mean of the genuine and imposter distributions, 

respectively, and 𝜎1, 𝜎2  represent the variances of the genuine and imposter

distributions. A greater d' value means that the two distribution are more separable. 

Table 5.2 gives d' values of the unimodal biometric modalities and multimodal fusion 

by various t-norms methods. We can notice that Dubois Parade t-norm has a higher d' 

value compared to the other t-norms, for Yager and Scheweizer-Sklar2 t-norm the value 

of d' is very small, that means the value of p is not suitable. 

Table 5.2. A comparison of different fusion methodologies in terms of d'. 

System d' 

Unimodal 

Right wrist vein 3.9471 

Left wrist vein 3.595 

 Score-level multibiometric fusion 

Einstein product f-norm [5.5] 3.7231 

Hamacher f-norm [5.5] 4.3010 

Yager t-norm with p = 0.5 [5.5] 0.1414 

Scheweizer-Sklarl t-norm with p = —0.1 [5.5] 4.1460 

Scheweizer-Sklar2 t-norm p = 3 [5.5] 0.1416 

Proposed Debois-Parade t-norm p = 0.5 5.1926 
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 5.4. Proposed score-level fusion method 

In this section, we first discussed preliminaries of symmetric sum(s-sum), then 

present the proposed multibiometric fusion scheme. 

5.4.1. Preliminaries of symmetric sums 

Here, we introduce the proposed score-level fusion method based on symmetric 

sums (s-sums). Though, recently the use of triangular norms in the score level fusion is 

prevalent in the literature [5.14], but use of s-sums in the score level fusion does not 

exist in the literature. Symmetric sums were introduced by Silvert in 1979 [5.15], and 

they are a kind of binary functions that are used as a rule of combination for fuzzy sets. 

s-sums are characterized by an auto-duality property, which means the invariance of the

result of the operation by inverting the scale of values to combine. More precisely, s-

sum is a function 𝑆: [0,1] × [0 ,1] → [0,1] such that: 

1. 𝑆(0,0)  = 0;

2. 𝑆(1,1) = 1;

3. 𝑆 is commutative;

4. 𝑆 is increasing with respect to the two variables;

5. 𝑆 is continuous;

6. 𝑆 is self-dual: ∀(𝑥, 𝑦) ∊ [𝑥, 𝑦]2, 𝑆(𝑥, 𝑦) = 1 − 𝑠(1 − 𝑥, 1 − 𝑦);

 The general form of symmetric sums is given by: 

𝑆(𝑥, 𝑦) =  
𝑔(𝑥, 𝑦)

𝑔(𝑥, 𝑦) + 𝑔(1 − 𝑥, 1 − 𝑦)
 (𝟓. 𝟗) 

Where 𝑔 is a continuous, positive, increasing function of [0,1] × [0 ,1] into [0,1], 

such that 𝑔(0,0)  = 0. Typically, a continuous t-norm or t-conorm can be chosen as 𝑔. 

 Table 5.3 shows a few typical examples of symmetric sums. They are obtained by 

using various t-norms and t-conorms as generating function g. 
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Table 5.3.  Examples of symmetric sums (s-sum), defined based on t-norms and t-conorms [5.16]. 

g(x, y) S(x, y) Property 

𝑥𝑦 
𝑥𝑦

1 − 𝑥 − 𝑦 + 2𝑥𝑦
Associative 

𝑥 + 𝑦 − 𝑥𝑦 
𝑥 + 𝑦 − 𝑥𝑦

1 + 𝑥 + 𝑦 − 2𝑥𝑦
non-associative 

min (𝑥, 𝑦) 
min(𝑥, 𝑦)

1 − |𝑥 − 𝑦| Mean 

max (𝑥, 𝑦) 
𝑚𝑎𝑥 (𝑥, 𝑦)

1 + |𝑥 − 𝑦|
Mean 

5.4.2. Score-level fusion method based on symmetric sums 

Figure 5.6 illustrates the architecture of multimodal biometric system. To verify 

the claimed identity of a user, the user has to provide their biometric modalities to the 

corresponding sensors. 

Figure 5.6.  A schematic diagram of the score level fusion using S-sum. 

 The second step, the system individually compares the traits with their respective 

templates stored in database during the enrollment phase to produce the match score 

vector 𝑆 = [𝑆1, 𝑆2, … . . , 𝑆𝑁], where 𝑆𝑖 is the scores provided by ith modality
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(corresponding to the ith sensors). As we mentioned before (chapter 4, section 4.3.1), 

the different matching scores should be first normalized into the domain [0, 1] before 

fixed Transformation-based fusion approaches can take place. Thus, min–max, and 

tanh-estimators normalization methods are used in this work as below:  

 𝑆′ =  
𝑆 − min(𝑆)

max(𝑆) − min (𝑆)
 (𝟓. 𝟏𝟎) 

Equation (5.10) represents max-min normalization method [5.17], where 𝑆′ is the

normalized score and 𝑆 denote the matching scores from a specific matcher. 

𝑥′ =  
1

2
{𝑡𝑎𝑛ℎ (0.01 (

𝑥 − µ

𝜎
)) + 1}  (𝟓. 𝟏𝟏) 

Equation (5.11) represents tanh-estimators normalization method [5.18], where 𝑥′

is the normalized score, µ and 𝜎 are the mean and standard deviation estimates, 

respectively, of the genuine score distribution as given by Hampel estimators. After that, 

the normalized scores are combining using s-sum. In this work, we used t-norm 

functions to build s-sums because they can be represented by a general class of simple 

fusion rules, such as, min, max, product, and sum. Table 5.4 shows some of the t-norms, 

which we have used to generate s-sums. 

Let S = (x, y) denote the fusion of two normalized matching scores using s-sums. 

Let s′
1, s′

2, s′
3 denote the normalized matching scores of three modalities, the two

scores s′
1 , s′

2 are first combined to yield  S = (s′1 , s′2)  which is in turn combined

further with s′
3 to yield  S = (S(s′1 , s′2), s′3) until all normalized scores are combined.

If the fused score S  is below a given acceptance threshold T, the user is classified as an 

impostor, otherwise it is classified as a genuine user. 
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Table 5.4. Examples of t-norms used to generate symmetric sums (s-sum). 

T-norm  Formulation 

Probabilistic  𝑥𝑦 

Hamacher 
𝑥 𝑦

𝑥 + 𝑦 − 𝑥𝑦

Yager (p>0)  𝑚𝑎𝑥 (1 − ((1 − 𝑥)p + (1 − y)p)
1

p, 0) 

Schweizer & Sklar (p>0)  (𝑚𝑎𝑥( 𝑥𝑝 + 𝑦𝑝 − 1, 0))
1

𝑝

5.4.3. Experimental results and analysis 

In this section, we provide an experimental evaluation of the proposed fusion 

method on two publicly available datasets. 

5.4.3.1. Databases 

Our proposed score level fusion approach have been tested on two different partitions of 

the NIST-BSSR1 database. The two partitions are NIST-Multimodal database, NIST-

Fingerprint database [5.19].  

A. NIST-Multimodal database

     NIST-Multimodal database contains four set of scores: two fingerprint scores from 

the left and right index fingers and two face matching scores using the same face images 

but generated by two different matchers labeled as matcher C and matcher G. The 

number of subjects in this database is 517, we have 517 genuine scores and 266,772 

(517*516) impostor scores from each set of scores. 

B. NIST- Fingerprint database

     NIST- Fingerprint database contains two set of scores obtained from the left and 

right index fingers of the same users, the number of the users here is 6000, we have 6000 

genuine scores and 35,994.000 (6000*599) impostor scores from each modality. 
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5.4.3.2. Performance of s-sum based fusion on NIST-Multimodal database 

The matching scores of the face matcher C, face matcher G, left fingerprint and 

right fingerprint are normalized by tanh-estimators normalization method as in (5.11).  

Except for s-sum generated by Probabilistic t-norm, the s-sums generated by Hamacher, 

Yager, and Schweizer & Sklar t-norms are not associative, so, for non-associative s-

sums the order of combination is as follow: let 𝑥1, 𝑥2, 𝑥3, 𝑥4  denote the normalized

matching scores of  face matcher C, face matcher G, left fingerprint and right fingerprint, 

respectively, the two scores 𝑥1, 𝑥2 are first combined to yield S= (𝑥1, 𝑥2) which is in

turn combined further with 𝑥3 to yield  S= ( S(𝑥1, 𝑥2), 𝑥3) until all normalized scores are

combined. 

The performance of the proposed system is evaluated using the ROC curve which 

is a plot of GAR vs FAR where GAR = 1- FRR is the genuine acceptance rate. FAR is 

the rate at which imposters are accepted as genuine and FRR is the rate at which genuine 

users are rejected as imposters, and GAR is the rate at which the correct person is 

accepted as a genuine user. 

 Figure (5.7) shows ROC's of individual modalities and of fused modalities by using 

s-sum generated by Schweizer & Sklar t-norm on NIST multimodal database. At FAR

= 0.01 %, GAR's (1-FRR) [5.20] of face matcher C, face matcher G, left fingerprint, 

right fingerprint are 74.3%, 0.68%, 77.2%  and 85.3% respectively. While, with s-sum 

generated by Schweizer & Sklar t-norm, GAR of 99.8% is obtained at 0.01% FAR 

operating point. As can be seen from table 5.5, other s-sums generated by Probabilistic, 

Yager, Hamacher t-norms are also used for score level fusion on NIST multimodal. 

Also, the performances attained by score level fusion using Likelihood ratio and SVM 

proposed in [5.21] (both requiring learning and training) have been reported. Besides, 

Entropy-with-frank and with Harmacher t-norms have reported as well. From table 5.5, 

it is easy to see that s-sums generated by Yager, Schweizer & Sklar outperforms the 

existing score level fusion in literature. Moreover, it can be observed that the s-sum 

using min and max rules outperforms the generating approaches (using min and max 

rules) thus making them superior. 
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Table 5.5. A comparison of fusion using different approaches on NIST multimodal database. 

Score-level fusion method for  FAR = 0.01  %  GAR (%) 

S-sum using Probabilistic t-norm  97 

S-sum uing Hamacher   t-norm  95 

S-sum using Yager t-norm  with p= 1.2 99.8 

S-sum using Schweizer & Sklar t-norm with p = 0.9 99.8 

S-sum using Max rule 93.3 

S-sum using Min rule 93.2 

Max rule [5.5] 91.7 

Min rule [5.5] 78 

SVM [ 5.21] 98.8 

Likelihood ratio [5.21] 99.1 

Entropy-with-frank t-norm p=0.01[5.22] 96.62 

Entropy-with- hamacher t-norm p=0.01 [5.22] 96.7 

 Figure 5.7. Comparison of ROC's curves of individual modality with score level fusion. 
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 5.4.4.3. Performance of s-sum based fusion on NIST- Fingerprint database 

For this dataset, the matching scores of left and right index fingers are normalized 

by min–max method as in equation (5.10). We used here the commutative property to 

fuse the two matching scores, so, the order of combination is not necessary.  

     Figure 5.8 depicts ROC's of individual modalities as well as of fused modalities 

using s-sum generated by max rule on NIST fingerprint database. At FAR = 0.01%, 

GAR's (1-FRR) of left index finger, right index finger are 75.5%, 83.5% respectively. 

But, with s-sum generated by max rule, GAR of 90.75% is obtained with the same FAR 

operating point. 

 We can observe in table 5.6, different s-sums generated by Probabilistic, Yager, 

Hamacher t-norms are also used for score level fusion on NIST fingerprint. The results 

obtained using score level fusion via Likelihood ratio and SVM learning-based methods 

of [5.21] are also presented for comparison. In the Table 5.6, we can notice that s-sums 

generated by Max rule and Yager t-norm give comparative performances. As in the 

previous section about multimodal system, we can state based on table 5.6 that s-sum 

using min, max rules outperforms the generating approaches (min, max rules). In 

addition, s-sum using max rule outperforms Entropy-with-frank and with harmacher t-

norms. 

 Figure 5.8. Comparison of ROC's curves of individual modality with score level fusion. 
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Table 5.6. A comparison of fusion using different approaches on NIST fingerprint database. 

Score-level fusion method for  FAR = 0.01  %  GAR (%) 

S-sum using Probabilistic t-norm  89 

S-sum uing Hamacher   t-norm  75.5 

S-sum using Yager t-norm  with p= 10.3 90 

S-sum using Schweizer & Sklar t-norm with p = 0.9 89 

S-sum using Max rule 90.75 

S-sum using Min rule 82.5 

Max rule [5.5] 90.3 

Min rule  [5.5] 79.6 

SVM  [5.21] 91.4 

Likelihood ratio  [5.21] 91.4 

Entropy-with-frank p=0.01 [5.22] 87.77 

Entropy-with- hamacher p=0.01 [5.22] 85.42 

 5.4.4.4. Classifier fusion using s-sum rules 

     In this section, three classifier fusion methods are tested. These classifiers are, 

linear discriminant Analysis (LDA), quadratic discriminant analysis (QDA), and k-

nearest neighbor (KNN) [5.23]. The two databases used in this paper have a massive 

number of scores in that it mainly contains impostor scores, for example, NIST 

fingerprint consists of 6000 genuine scores and 35994000 impostor scores (per 

matcher). The excessive number of impostor scores may cause a biased or over-trained 

modal [5.23]. To mitigate this problem, we select randomly two impostor scores per 

matcher per user for training as in [5.23]. The complete number of genuine scores plus 
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reduced impostor scores are called “trimmed database.” [5.23]. For each multimodal 

database, half of the genuine and half of the impostor scores were randomly selected to 

form  the training set, and the other half (genuine, impostor) were used to form the test 

set [5.21], this partitioning of  the scores was repeated 20 times, the mean of GAR values 

is considered as for performance evaluation of the system.   

     From table 5.7, it is clear that the two classifiers fusion (QDA and KNN) yield 

improvements compared to the corresponding fixed fusion rule (symmetric sum using 

Yager t-norm) on NIST trimmed multimodal database, whereas LDA fusion approach 

reduces the performance of the fixed fusion rule using the same database. 

     From table 5.8, the QDA classifier gives better performance compared to fixed 

fusion rule as well as other classifiers fusion (LDA and KNN) for NIST trimmed 

fingerprint database.  

Table 5.7. Classifier fusion using (s-sum using Yager t-norm with) on NIST-multimodal database. 

Classifier S-sum using Yager t-norm with p = 1.2 LDA QDA KNN 

GAR at 0.01 % FAR  99.8 % 99.6% 100% 100% 

Table 5.8. Classifier fusion using (s-sum using Max rule) on NIST-fingerprint database. 

Classifier S-sum using Max rule LDA QDA KNN 

GAR at 0.01 % FAR  90.75% 91.76% 92.8% 89.7% 

5.5. Conclusion 

This chapter presents a novel algorithm for recognizing individuals based on their 

left and right wrist vein patterns. The algorithm extracts wrist vein features using a fast 

and resilient preprocessing technique that does not require either user-cooperation or 

prior learning. The left and right wrist vein patterns are fused at score level using 

Dubois-Parade t-norm. The experimental analysis on a publicly available PUT wrist 
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vein dataset shows that proposed multibiometric system outperforms the unimodal 

systems, their fusion based on other t-norms and existing wrist vein recognition 

schemes.  

Also, we have proposed a new score level fusion approach for a multimodal 

biometric system based on s-sums. These s-sums do not require any learning or training 

procedure, thus making our system simple, efficient and computationally less expensive. 

The experimental results are performed on two different partitions of the NIST-BSSR1 

(NIST-multimodal and NIST-fingerprint). All in all, the presented experimental results 

demonstrate that our approach outperforms the generating approaches (i.e. min, max 

rules).  
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 General conclusion 

Multimodal biometric systems, which combine information from multiple 

biometric sources, have shown to improve the identity recognition performance by 

overcoming the weaknesses and some inherent limitations of unimodal systems, For 

example, the problem of non-universality is addressed since multiple biometric 

modalities are able to provide sufficient information about the users. Also, multimodal 

biometric systems make it difficult for an intruder to simultaneously spoof the multiple 

biometric traits of a registered user. In multimodal systems, information fusion can be 

carried out at the sensor, feature extraction, matching score, or decision level. Owing to 

ease in accessing and combining of scores, fusion at the matching score level is the most 

commonly adopted approach in the literature.  

To this aim, in this thesis, a new framework for score level fusion based on 

symmetric sums (s-sums) has been presented. To the best of our knowledge, no wrist 

vein based multi biometric system, particularly integrating right and left wrist vein 

patterns, has been studied in the literature. In this thesis, we propose a multibiometric 

user authentication framework that utilizes right and left wrist vein. Specifically, a 

recognition algorithm for wrist vein biometrics is presented, where the new score level 

fusion approach have been used to combine the scores originating from right and left 

wrist vein patterns is utilized. 

The thesis starts by introducing biometric and its importance in the current world. 

Biometric systems and challenges for these systems are also presented in chapter 1. 

Multimodal biometric system has been thoroughly discussed to build the foundation for 

the rest of the thesis. Pros and cons of multimodal biometric systems along with various 

development issues have been discussed in chapter 2.  

In chapter 3, previous related works in the areas of vein recognition and on 

different fusion approaches are reviewed. Due to the challenges with unimodal 

biometric systems and to meet the demanding security requirements, several approaches 

have been proposed and developed in literatures for multimodal biometric 
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authentication system with different biometric traits and with different fusion 

mechanisms.  

Among the available fusion methods, pre-matching fusion approaches, such as 

sensor level fusion and feature level fusion methods have not been used extensively due 

to limited access to the information. Match score level fusion methods are very popular 

with developers and also has been extensively investigated by biometric researchers as 

some of the earlier methods. Decision level fusion approaches are too abstract and used 

primarily in the commercial biometric system where only the final outcomes are 

available for processing. Thus in this doctoral research, we have used score level fusion 

which is common approach. The development procedures for the proposed multimodal 

system have been illustrated in the chapter 4.  

Outcomes and experimentations have been presented and discussed in chapter 5. 

Firstly, A generic score level fusion approach is proposed to integrate the scores from 

left and right wrist vein patterns using Dubois and Parade triangular norm (t-norm). 

Experiments on the publicly available PUT wrist vein dataset show that the proposed 

multibiometric framework outperforms the unimodal systems, their fusion using other 

t-norms techniques, and existing wrist vein recognition methods. Furthermore, a new

framework for score level fusion based on symmetric sums (S-sums) has been presented. 

These s-sums are generated via triangular norms. The proposed framework has been 

tested on two publicly available benchmark databases. In particular, the authors used 

two partitions of NIST-BSSR1, i.e. NIST-multimodal database and NIST-fingerprint 

database. The experimental results show that the proposed method outperforms the 

existing approaches for the NIST-multimodal database and NIST fingerprint database. 

 Author’s contributions 

The major contributions of this research work can be summarized as follow: 
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 A novel algorithm for recognizing individuals based on their left and right wrist

vein patterns. The algorithm extracts wrist vein features using a fast and

resilient preprocessing technique that does not require either user-cooperation

or prior learning.

 A novel score level fusion approach is proposed to integrate the scores from

left and right wrist vein patterns using Dubois and Parade triangular norm (t-

norm).

 A new framework for score level fusion based on symmetric sums (S-sums)

has been presented. These s-sums are generated via triangular norms.

 Future works 

In the future, we aim to study cross-dataset and cross-sensor dorsal hand vein 

based biometric recognition systems.  

Also, we will evaluate our method (symmetric sum-based biometric score fusion) 

at a large-scale including its robustness against spoofing attacks. 
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