
   

PEOPLE'S DEMOCRATIC REPUBLIC OF ALGERIA 

MINISTRY OF HIGHER EDUCATION AND SCIENTIFIC RESEARCH  

FERHAT ABBAS SETIF-1 UNIVERSITY 

FACULTY OF TECHNOLOGY 

 

THESIS 

submitted to the Electronics Department  

To obtain a diploma of 

DOCTOR IN SCIENCES 

By  

 

REFOUFI Salim 

 

THEME 

Control of autonomous mobile robot by quantitative inference  

Defended the 23/12/2018 with the committee members: 

CHEMALI Hemimi Professor Univ. F. Abbas Setif 1 President 

BENMAHAMMED Khier Professor Univ. F. Abbas Setif 1 supervisor 

BERTIL Arres Professor Univ. F. Abbas Setif 1 examiner 

ABDESSEMED Foudil Professor Univ. Hadj Lakhdar Batna examiner 

BOUMEHRAZ Mohamed Professor Univ. M.Khieder  Biskra examiner 

TAIBI Mahmoud Professor Univ. Badji Mokhtar Annaba   examiner 
 

  

 



   

Thanks 

Praise to ALLAH the Almighty, the All Merciful and the Most Merciful, to have given us the 

patience, willingness and the necessary force to realize this project.  

 

 

I expressed my profound thanks to mythesis director Prof. K Benmahammed for the 

responsibility ensuring and for encouraging and supporting me in our project, I also express my 

sincere gratitude for the trust who testified to me throughout this work. 

I extend my sincere thanks to the jury members, Mr.CHEMALI Hemimi Professor at the 

University of  F. Abbas SETIF-1  for accepting preside this work, Mr. BERTIL Arres Professor at the 

University of  F. Abbas SETIF-1, Mr.ABDESSEMED Foudil Professor at the University of Hadj. 

Lakhdar Batna, Mr.BOUMEHRAZ Mohamed Professor at the University of M.Khieder  Biskra, 

Mr.TAIBI Mahmoud Professor at the University of BadjiMokhtar Annaba,for agreeing to judge this 

work. 

I wanted to thanks greatly 

• The staff of the electronics department. 

• My friends from the LSI laboratory for their friendships and support. 



                                                                                                                    SUMMARY 

iii 

Summary 

Summary 
 

GENERAL INTRODUCTION ................................................. 1 

1.1. State of the art .............................................................................................................................. 1 

1.2. Problem studied ........................................................................................................................... 2 

1.3. Theproposed approach ............................................................................................................... 3 

1.4. Thesis organization ..................................................................................................................... 3 

Chapter  01 .................................................................................... 3 

MODELING AND CONTROL OF ROBOTS....................................... 3 

1.1. Introduction................................................................................................................................... 3 

1.2. Manipulator robots ...................................................................................................................... 3 

1.2.1. Dynamic model..............................................................................................................................3 

1.2.1.1. Lagrange Formalism ...........................................................................................................3 

1.2.1.2. Model of the robot with two degrees of freedom (d.o.f) .............................................4 

1.3. Trajectory generation .................................................................................................................. 5 

1.4. Control techniques of manipulator robots .............................................................................. 5 

1.4.1. Classic control................................................................................................................................5 

1.4.2. Improving the tracking by the control ......................................................................................7 

1.4.2.1. Non-linear decoupling control..........................................................................................7 

1.4.3. Predictive dynamic control .........................................................................................................9 

1.4.4. Adaptive control ......................................................................................................................... 10 

1.4.4.1. Different adaptive controls ............................................................................................ 10 

1.4.4.2. Approaches for manipulator arm analysis.................................................................... 12 

1.5. Mobile robots ............................................................................................................................. 14 

1.5.1. Definition of a mobile robot .................................................................................................... 14 

1.5.2. Wheeled mobile robots ............................................................................................................. 14 

1.5.3. Classification of wheeled mobile robots ............................................................................... 15 

1.5.3.1. Classification according to the type of wheels ............................................................ 15 

1.5.4. Kinematic modeling .................................................................................................................. 15 



                                                                                                                    SUMMARY 

iv 

1.5.4.1. Wheel model ..................................................................................................................... 15 

1.5.4.2. Modeling hypothesis ........................................................................................................ 15 

1.5.4.3. Rolling without slip and non-holonomy ...................................................................... 16 

1.5.4.4. Kinematic model of unicycle wheel robots (differential) .......................................... 17 

1.5.5. Dynamic model of unicycle wheeled robots ........................................................................ 18 

1.6. Properties and Control of a mobile robot ............................................................................. 19 

1.6.1. Definitions,PropertiesandLinearization................................................................................. 19 

1.6.1.1. Frobenius Theorem [35] ................................................................................................. 22 

1.6.1.2. Feedback Linearization [37] ........................................................................................... 23 

1.6.1.3. Input-state Linearization [37] ......................................................................................... 25 

1.6.1.4. Input-Output Linearization [37] .................................................................................... 26 

1.6.1.5. Feedback Linearization (Internal dynamics) [37] ........................................................ 27 

1.6.1.6. Controllability about a Trajectory.................................................................................. 28 

1.6.1.7. Static Feedback Linearizability (Chained Forms) [38]................................................ 30 

1.6.2. Trajectory Tracking ................................................................................................................... 31 

1.6.2.1. Feedforward Control Generation.................................................................................. 31 

1.6.2.2. Linear Control Design ..................................................................................................... 31 

1.6.2.3. Nonlinear Control Design .............................................................................................. 32 

1.6.2.4. Dynamic Feedback Linearization .................................................................................. 33 

1.7. Conclusion .................................................................................................................................. 35 

Chapter  02 .................................................................................. 36 

THE GENETIC ALGORITHMS (GAS). ......................................... 36 

2.1. Introduction................................................................................................................................. 36 

2.2. Genetic algorithms .................................................................................................................... 36 

2.2.1. history ........................................................................................................................................... 36 

2.2.2. Definition of a GAs .................................................................................................................... 37 

2.2.3. Operating principle of GAs ...................................................................................................... 37 

2.3. Fitness Technique ...................................................................................................................... 39 

2.3.1. Direct transformation ................................................................................................................ 39 

2.3.2. Windowing .................................................................................................................................. 40 

2.3.3. Linear scale change.................................................................................................................... 40 

2.4. Operating mechanism of a GAs .............................................................................................. 41 

2.4.1. Initial population ........................................................................................................................ 41 



                                                                                                                    SUMMARY 

v 

2.4.2. Coding and decoding of parameters....................................................................................... 42 

2.4.2.1. Coding ................................................................................................................................ 42 

2.4.2.2. decoding ............................................................................................................................ 43 

2.4.3. Genetic operators........................................................................................................................ 43 

2.4.3.1. The selection ..................................................................................................................... 43 

2.4.3.2. Reproduction .................................................................................................................... 45 

2.5. Convergence ............................................................................................................................... 49 

2.6. Advantage of GAs ..................................................................................................................... 50 

2.7. Limitation of GAs ...................................................................................................................... 50 

2.8. Conclusion: ................................................................................................................................. 50 

Chapter  03 .................................................................................. 51 

FUZZY LOGIC, NEURAL NETWORKS, NEURO-FUZZY................ 51 

3.1. Introduction................................................................................................................................. 51 

3.2. Fuzzy logic principle ................................................................................................................ 51 

3.2.1. Fuzzy sets ..................................................................................................................................... 52 

3.2.1.1. Fuzzy subset ...................................................................................................................... 52 

3.2.2. Linguistic variable ..................................................................................................................... 54 

3.2.3. Fuzzy characterization .............................................................................................................. 54 

3.2.4. Proposals and fuzzy rule ........................................................................................................... 54 

3.2.4.1. Activation of a fuzzy rule................................................................................................ 55 

3.2.5. Classic architecture of a fuzzy controller (FLC) ................................................................. 55 

3.2.5.1. Fuzzification ..................................................................................................................... 55 

3.2.5.2. Inference: ........................................................................................................................... 56 

3.2.5.3. Defuzzification ................................................................................................................. 58 

3.3. Neural networks ......................................................................................................................... 59 

3.3.1. Definition of a biological neuron ............................................................................................ 59 

3.3.2. The artificial neuron: ................................................................................................................. 60 

3.3.3. Function of the neuron .............................................................................................................. 60 

3.3.4. Formal neuron ............................................................................................................................. 61 

3.3.4.1. Model of Mc Culloch and Pitts [47] .............................................................................. 61 

3.3.5. Some models of ANNs ............................................................................................................. 62 

3.3.5.1. Multilayer ANNs .............................................................................................................. 62 

3.3.5.2. ANN with radial basic functions ................................................................................... 66 



                                                                                                                    SUMMARY 

vi 

3.3.5.3. CMAC-type ANN [49] .................................................................................................... 68 

3.3.6. ANN training by Kalman Filter .............................................................................................. 69 

3.4. Fuzzy logic and neural networks ............................................................................................ 70 

3.4.1. Multi-layered neuro-fuzzy networks...................................................................................... 71 

3.4.1.1. Coding of fuzzy subsets .................................................................................................. 72 

3.4.1.2. Calculation of the degree of activation of the premises ............................................ 72 

3.4.1.3. Inference and defuzzification ......................................................................................... 73 

3.4.1.4. Examples of the multilayer network ............................................................................. 74 

3.5. Conclusion .................................................................................................................................. 78 

Chapter  04 .................................................................................. 79 

RESULTSAND DISCUSSIONS ..................................................... 79 

4.1. Introduction................................................................................................................................. 79 

4.2. The first application .................................................................................................................. 79 

4.2.1. Trajectory  generation ............................................................................................................... 80 

4.2.2. Application of the fuzzy control ............................................................................................. 80 

4.2.2.1. Fuzzy controller with three membership functions ................................................... 80 

4.2.2.2. Fuzzy controller with five membership functions ...................................................... 83 

4.2.2.3. Fuzzy controller with eleven membership functions ................................................. 84 

4.2.2.4. Comparative analysis ....................................................................................................... 85 

4.2.2.5. Justification ....................................................................................................................... 86 

4.2.3. Neuro-Fuzzy Regulator (2×2) ................................................................................................. 86 

4.2.4. Control Algorithm ...................................................................................................................... 87 

4.2.5. Training Algorithm .................................................................................................................... 87 

4.2.6. Neuro-fuzzy control optimized by GAs ................................................................................ 88 

4.2.7. Simulation results ....................................................................................................................... 89 

4.2.8. Practical results ........................................................................................................................... 95 

4.3. Second application .................................................................................................................... 97 

4.3.1. Kinematics modeling ................................................................................................................. 97 

4.3.2. The trajectory tracking control ................................................................................................ 98 

4.3.3. Linear Control Design ............................................................................................................... 99 

4.3.4. Nonlinear Control Design ...................................................................................................... 100 

4.3.5. Dynamic Feedback Linearization ......................................................................................... 100 

4.3.6. Dynamic Feedback Linearization with Neuro-fuzzy-Genetic controller..................... 101 



                                                                                                                    SUMMARY 

vii 

4.3.7. Simulation results ..................................................................................................................... 101 

4.3.8. Practical results ......................................................................................................................... 104 

4.4. Conclusion ................................................................................................................................ 107 

GENERAL CONCLUSION AND PERSPECTIVES ..........................108 

 



                                                                                                                    SUMMARY 

viii 

List of Figures 

 

Figure 1.1    Representation of the robot with two rotational axes.............................................................................4 

Figure 1.2    Generation of an interpolation polynomial. .............................................................................................5 

Figure 1.3    Classic diagram of a PID control. ..............................................................................................................6 

Figure 1.4    Diagram of a dynamic control by nonlinear decoupling. .......................................................................8 

Figure 1.5    Predictive dynamic control. ...................................................................................................................... 10 

Figure 1.6    Block diagram of the gain-scheduling control. ...................................................................................... 11 

Figure 1.7    Synoptic diagram of an adaptive reference model system. .................................................................. 11 

Figure 1.8    Block diagram of a self-adaptive regulator. ............................................................................................ 12 

Figure 1.9    Error model ................................................................................................................................................ 13 

Figure 1.10    Illustration of Lyapunov's method ........................................................................................................ 14 

Figure 1.11    Diagram of the different wheels types of the mobile platforms ...................................................... 15 

Figure 1.12    Description of a wheel ............................................................................................................................ 16 

Figure 1.13    UnicycleRobot  type ................................................................................................................................ 17 

Figure 1.14    Fluid control in a tank ............................................................................................................................. 24 

Figure 2.1    Flowchart of the GAs. ............................................................................................................................... 38 

Figure 2.2    Relationship between ability and cost. .................................................................................................... 40 

Figure 2.3    Fitness function, a) direct transformation,b) windowing, c) linear change of scale. ....................... 41 

Figure 2.4    The five levels of organization   Figure 2.5    Schematic illustration of the ..................................... 42 

Figure 2.6    Each gene (each parameter of the device) is encoded by a long integer (32 bits). .......................... 43 

Figure 2.7    Exemple application of casino wheelselection. ..................................................................................... 44 

Figure 2.8    Application of the « stochastic remainder without replacement selection » to theprevious 

example. ................................................................................................................................................................... 44 

Figure 2.9    One-point crossover. ................................................................................................................................. 46 

Figure 2.10    Two-point intersection. ........................................................................................................................... 46 

Figure 2.11    Uniform crossover. .................................................................................................................................. 47 

Figure 2.12    Mutation. ................................................................................................................................................... 49 

Figure 3.1    Example of sets definition on a universe of discourse in binary logic and fuzzy logic. ................. 51 

Figure 3.2    Support, kernel, and height of a trapezoidal function. ......................................................................... 52 

Figure 3.3    Form of membership functions............................................................................................................... 53 

Figure 3.4    Representation of a linguistic variable defined as    4321 ,,,,, AAAATUV V   ...................... 54 

Figure 3.5    Architecture of a fuzzy controller. .......................................................................................................... 55 

Figure 3.6    Continuous fuzzification with three membership functions. ............................................................. 56 

Figure 3.7    Calculation of the center of gravity in the case of simple membership functions. ......................... 58 



                                                                                                                    SUMMARY 

ix 

Figure 3.8    Defuzzification by the method of the maximum. ................................................................................ 59 

Figure 3.9    A neuron with its dendritic arborization ................................................................................................ 60 

Figure 3.10    Mapping biological neuron to artificial neuron. .................................................................................. 60 

Figure 3.11    Different types of threshold functions for the artificial neuron....................................................... 61 

Figure 3.12    General models of neurons. ................................................................................................................... 61 

Figure 3.13    A multilayer network with 2 input neurons, 4 hidden neurons ........................................................ 62 

Figure 3.14    Activation function of a hidden neuron with a single input. ............................................................ 66 

Figure 3.15    Discretization of a two-dimensional input space by a CMAC-type network. ................................ 68 

Figure 3.16    Local generalization property of a CMAC network. .......................................................................... 69 

Figure 3.17    Kalman filter phases ................................................................................................................................ 70 

Figure 3.18    An example of a neuro-fuzzy network architecture. .......................................................................... 71 

Figure 3.19    Minimum (x, y) and softmin (x, y) functions. ...................................................................................... 73 

Figure 3.20    Approximation of the function Maximum (0, x) (dashed) by a sigmoid (in a continuous line). 73 

Figure 3.21    Defuzzification by local average maxima. The fuzzy subset corresponding to the result of the 

rule is shown in gray............................................................................................................................................... 74 

Figure 3.22    Fuzzy rule system in the form of a NAN (Mamdani). ...................................................................... 75 

Figure 3.23    System of fuzzy rules in the form of an NAN (Sugeno). ................................................................. 77 

 Figure 4.1    The ROBAI Cyton arm. .......................................................................................................................... 79 

Figure 4.2    Membership functions, FLC of three membership functions. ........................................................... 81 

Figure 4.3     Response of the system.(Fuzzy- regulatorof 3 membership functions). .......................................... 81 

Figure 4.4    Response of the system.(Fuzzy- regulatorof 3 membership functions). A. letting load of 0.18 Kg, 

B. letting load of 0.36 Kg. ..................................................................................................................................... 82 

Figure 4.5    Response of the system.(Fuzzy- regulatorof 3 membership functions). Rupture drive. ................ 82 

Figure 4.6    Membership functions, FLC of 5 membership functions. .................................................................. 83 

Figure 4.7    Response of the system.(Fuzzy- regulatorof 5 membership functions). A. without load.B.with 

load............................................................................................................................................................................ 83 

Figure 4.8    Response of the system.(Fuzzy- regulatorof 5 membership functions). ........................................... 84 

Figure 4.9    Membership functions, FLC of 11membership functions. ................................................................. 84 

Figure 4.10    Response of the system.(Fuzzy- regulatorof 11 membership functions). A. without load.B.with 

load............................................................................................................................................................................ 85 

Figure 4.11    Response of the system.(Fuzzy- regulatorof 11 membership functions). ...................................... 85 

Figure 4.12    Regulator of the Sugeno (2×2) type in the form of ANN. ................................................................. 86 

Figure 4.13    Neuro-Fuzzy Subsets Form-Genetic Control algorithm (N-FSF-GC). .......................................... 88 

Figure 4.14    The trajectory of the two joints. ............................................................................................................ 92 

Figure 4.15    Response of the system for a tracking,without load.  A. Neuro-fuzzy regulator of the  

(2×2)Sugeno type, without optimization B. Neuro-fuzzy regulator optimized by genetic of  (2×2) 



                                                                                                                    SUMMARY 

x 

Sugenotype,  C. Neuro-fuzzy-genetic regulator of  (2×2) Sugenotype with three interpolation points, 

where the point in the middle optimized by GAs. ............................................................................................ 93 

Figure 4.16    The membership functions for the two regulators (e : error, ∆e : error  variation),  A. Before 

optimization, B. After optimization of the  sub-set fuzzy (normalization gains of fuzzification),  C. After 

three interpolation points, where the point in the middle optimized by GAs. ............................................. 93 

Figure 4.17    Response of the system.( Neuro-fuzzy-genetic regulator of  (2×2) Sugenotype), after five 

interpolation point. A. without load.B.with load. .............................................................................................. 94 

Figure 4.18    The membership functions for the two regulators (e : error, ∆e : errorvariation) after five 

interpolation points, where the three  points inside the curve optimized by GAs. ..................................... 94 

Figure 4.19    Response of the system.( Neuro-fuzzy-genetic regulator of  (2×2) Sugenotype), after five 

interpolation points with  fall of load from 0.36 Kg to 0 Kg at 3.6 sec time.  A. one keeps the same 

membership functions of 0.36 Kg. B. one changes the membership functions from 0.36 Kg to 0 kg at 3.6 

sec time..................................................................................................................................................................... 95 

Figure 4.20 Same practical results as in figure 4.15. .................................................................................................... 96 

Figure 4.21    Same practical results as in figure 4.17. ................................................................................................ 96 

Figure 4.22    Same practical results as in figure 4.19. ................................................................................................ 97 

Figure 4.23    Kinematic representation of a mobile robot unicycle type. .............................................................. 98 

Figure 4.24    The trajectory tracking control of the mobile robot. ......................................................................... 99 

Figure 4.25    The Eight-shaped reference trajectory. .............................................................................................. 101 

Figure 4.26    Trajectory tracking. ................................................................................................................................ 101 

Figure 4.27    Trajectory tracking, LCD.Linear Control Design, NCD.Nonlinear Control Design. ................ 102 

Figure 4.28    Trajectory tracking, PD-DFL.Dynamic feedback linearization, NF-DFL.Neuro-fuzzy Dynamic 

feedback linearization before optimization. ..................................................................................................... 102 

Figure 4.29    Trajectory tracking, PD-DFL.Dynamic feedback linearization, NF-DFL.Neuro-fuzzy Dynamic 

feedback linearization after optimization. ........................................................................................................ 103 

Figure 4.30    Trajectory tracking with initial error, PD-DFL.Dynamic feedback linearization, NF-

DFL.Neuro-fuzzy Dynamic feedback linearization after optimization. ...................................................... 103 

Figure 4.31    Cartesien motion (x, y) (m)  with an initial error. .............................................................................. 104 

Figure 4.32    The mobile robot  PioneerP3-DX ...................................................................................................... 105 

 Figure 4.33    Same practical results asin figure 4.27. .............................................................................................. 105 

Figure 4.34    Similar practical results as in figure 4.29. ........................................................................................... 106 

Figure 4.35    Similar practical results as in figure 4.30. ........................................................................................... 106 

Figure 4.36    Similar practical results as in figure 4.31. ........................................................................................... 107 



                                                                                                                    SUMMARY 

xi 

List of tables 

 

Table 3.1    Inference matrix........................................................................................................................................... 57 

Table 4.1    Rules base ..................................................................................................................................................... 80 

Table 4.2    Basic rules, FLC (5 × 5). ............................................................................................................................ 83 

Table 4.3    Basic rules, FLC (11 × 11). ........................................................................................................................ 84 

Table 4.4    The tracking errors at the end of trajectory of the two joints. ............................................................. 86 

Table 4.5    Parameters of  ROBAI Cyton. .................................................................................................................. 91 

Table 4.6    Parameters of GAs. ..................................................................................................................................... 91 

Table 4.7    The tracking errors at the end of trajectory of the two joints. ............................................................. 91 

 

 

 

 

 

 

 

 

 



Lists of Acronyms and Symbols 

Acronymes 

d.o.f  

ANN 

Degree of freedom 

Artificial neural networks 

FNNs Fuzzy neural networks 

FLS Fuzzy Logic System 

GAs Genetic algorithms  

PID Proportional/integral/derivate  

MFs Membership functions 

E-L Euler-Lagrange 

D-H  Denavit-Hartenberg  

w.r.t With respect to 

s.t Such that 

LTI Linear time invariant 

LHP Left-half plane 

e.s Exponentially stable 

DFL Dynamic Feedback Linearization 
 

 

Symboles  

M(q) : 

H(𝑞, 𝑞̇): 

   G(q) : 

F(𝑞, 𝑞̇): 

m1:   

m2 :  

mp 

G1 :  

G2 :  

L1 :  

L2 :  

Lc1 :  
Lc2 :  
m   :  

I    :  

d   : 

r   :  

R:  

l, r:  

:  

q :  

𝑞̇ :  

𝑞̈  :  

τ  : 

Inertia matrix. 

Coriolis/centrifugal vector.   

Gravity vector. 

Friction torque 

Body mass 1.  

Body mass 2. 

Load mass. 

Center of body mass 1. 

Center of body mass 2.  

Body length 1.  

Body length 2. 

Center of mass position G1 compared to O1. 

Center of mass position G2 compared to O2.   

The mobile robot mass.  

The moment of inertia of the robot about its center of mass.  

The distance between the center of mass and the center of the wheel axle.  

The wheel radius. 

Half distance between the two wheels. 

The motor torques on the wheels. 

The constraint force. 

Vector joint positions. 

Vector joint velocities.  

Vector joint accelerations. 

The generalized joint torque vector. 
 

 

 

 

https://en.wiktionary.org/wiki/with_respect_to#English


                                                                               GENERAL INTRODUCTION 

1 
 

GENERAL INTRODUCTION 

1.1.  State of the art 

Faced with the delicate problems of modeling and control of the complex systems such as the 

robots, the tools used are becoming increasingly cheaper and more powerful. The PID has 

proven its effectiveness in many problems of the industrial regulation. However, if the precision 

is required, it becomes inapplicable because of its linearity. In the recent decades, many research 

works have shown that the nonlinearities generate specific phenomena and these had to be taken 

into account to study the system in a satisfactory manner. Indeed, either these phenomena are 

undesirable, and then the knowledge of their mechanisms is essential to avoid them, or it is 

inevitable and intrinsic to the system itself, then it must be understood and modeled, or it must 

beintroducedfor the purpose of well-defined applications. Therefore, one needs the introduction 

of other algorithms to develop new powerful controllers [1,2]. An approach having experienced 

significant developments these last years is the fuzzy controller relating to the systems 

containing knowledge: “IF (conditions) THEN (Action)" [3]. In spite of the significant number 

of applications developed by the fuzzy control, it always lacks tools that make it possible to 

analyze these controllers [4,5]. To avoid the problem of the expertise, the researchers tried to 

replace the expert by several methods such as the neural networks and the genetic algorithms. 

Neural networks are based on the mechanisms of operations of the human brain, in the form 

of layers [6,7,8]. The genetic algorithms are also very much used for the optimization of fuzzy 

regulators. They are based on the theory of evaluation of the most adapted elements of a 

generation towards the other, so that the best adapted ones would last in time, while the other 

should disappear. The proposed adaptive neuro-fuzzy optimized by GAscontrol scheme has some 

advantages over classical fuzzy control and neural networks control schemes [9,10]. For 

example, in a classical fuzzy controller design, some controller parameters must be tuned by trial 

and error. Such parameters include scalars (or gains) for its inputs and outputs data, the number 

of membership functions, the width of a single membership function, and the number of control 

rules [11,12,13,14,15,16,17,18,19,20,21]. On the contrary, the adaptive neuro-fuzzy controller 

based on the dynamic model estimation would allow the parameters to be tuned automatically 

[22]. In addition, the performance of the neuro-fuzzy controller optimized by GAs is also 

considered to be excellent. 

The neuro-fuzzy-genetic controller does not require knowledge of the robot parameter values. 

It needs, neither system dynamic model nor control experts for the robot control problem. 

The application of neuro-fuzzy to the manipulator robot has motivated considerable research 

in this area in recent years. In [23], an adaptive control using multiple incremental fuzzy neural 

networks (FNNs) was presented. The controller is combined by a feedback controller and several 

FNNs to learn inverse dynamics of the manipulator robot for different tasks. The several FNNs 

are obtained dynamically using an incremental hyper-plane-based fuzzy clustering algorithm to 

compensate the unknown disturbances of the system. In [24], a decentralized intelligent control 

method for a robust control of underwater manipulator was developed. The controller is based on 
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a neuro-fuzzy approach where the feedback gains are adapted using fuzzy logic, whereas a 

neural network is used to add to the controller a feed-forward compensation input. The neural 

network is trained using the back-propagation approach to estimate the system dynamics from 

the input-output data. Therefore, the proposed method does not depend on modeling and 

dynamics estimation system. The same authors in [25] proposed an intelligent controller used a 

neuro-fuzzy approach for precise control, robust and energy efficient. The decentralized 

controller is a PD type, with fuzzy setting feedback gains modified using modified fuzzy 

membership functions. The magnitude of the gains and thus, the energy expenditure is reduced 

by the neural network based on the identification of the system dynamics and hydrodynamic 

disturbances. In [26], a comparative study of several hybrid  neuro-fuzzy adaptive control 

systems to control the six degrees of freedom (Puma 560) robot arm, with uncertainties were 

presented. The proposed controller combines ANFIS based controllers, with some well 

established traditional controllers (computed torque control, feed forward inverse dynamics, and 

critical damping inverse dynamics control).  

In [11], both orthogonalization and passivity properties are taken into account to design a 

neuro-fuzzy system (NFS) like a PID controller to ensure tracking by exploring a new energy re-

shaping of the closed loop system through a self-optimization of the dissipation rate gain (DRG) 

without any knowledge of the robot dynamics. In [12], Fuzzy Logic System (FLS)  was 

presented to generate the rules using neuro-fuzzy methods. In [27], a single hidden layer in a 

fuzzy recurrent wavelet neural network (SLFRWNN) was developed and used for the function 

approximation and the identification of dynamic systems. And in [28], a supervised training 

algorithm based on sliding mode theory that implements fuzzy reasoning on a spiking neural 

networks, for the trajectory control problem of a robotic manipulator was developed and tested. 

In [29], a new neuro-fuzzy classifier which draws its inspirations from the concepts of the 

linguistic hedges was used. 

1.2.  Problem studied 

For a manipulator robot which carried loads, control planning becomes a problem even more 

difficult to solve than in the case where the robot contains parameters poorly modeled. The robot 

is subjected to new constraints generated by its contact interaction with the environment, and can 

not be neglected in a drive generation process. In this work we used a neuro-fuzzy-genetic 

controller to drive the robots. The neural networks are proposed for the automatic extraction of 

the fuzzy rules, using a Kalman filter as a training means. To optimize the location of the fuzzy 

subsets, the GAs are used, and since there are several forms of the fuzzy subsets such as 

triangular, Gaussian…, the choice of the appropriate form becomes a problem. Thus the 

variation of the load carried by the robot causes the dynamics of the manipulator to lose the 

tracking. 

For the mobile robot from a control viewpoint, the peculiar nature of nonholonomic 

kinematics makes that feedback control at a given trajectory cannot be achieved via smooth 

time-invariant control. This indicates that the problem is really nonlinear, linear control is 

ineffective, even locally, and innovative design techniques are needed.  
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1.3.  Theproposed approach 

The work presented in this thesis is describes the displacementscontrol of a robot carrying a 

load. To well learn dynamics of the manipulator robot, which represent an extension of the idea 

given by [25] and [29] where they used a triangular membership functions (MFs), with linguistic 

hedges to modify the shape of the MFs. In this work, we used a neuro-fuzzy-genetic controller. 

The neural networks are proposed for the automatic extraction of the fuzzy rules, using a Kalman 

filter as a training means. To optimize the location of the fuzzy subsets, we used the GAs, and 

since there are several forms of fuzzy subsets such as triangular, Gaussian, etc…, and as a 

contribution, we used an interpolation function  with three points, and then with five points, for 

each fuzzy subset, and we optimized the curves by the GAs, to find the most suitable shape of a 

fuzzy subset, which is going to be adapted according to the load.  The same idea applied for the 

control of a mobile robot using dynamic feedback linearization as linear control and we replace   

the PD compensator by a Neuro-fuzzy-Genetic controller.  

1.4.  Thesis organization 

This thesis proposes a hybrid type controller that combines a fuzzy regulator adapted by 

neural networks, and optimized by genetic algorithms. 

It is organized as follows: 

The first chapter is devoted to a geometric, kinematic and dynamic modeling of a robot arm, 

and a mobile robot of differential speed, as well as the generation of trajectories, and their 

control techniques. 

The second chapter treats the general description of the genetic algorithms functioning. 

The third chapter presents the theoretical basis of fuzzy logic, generalities on neural networks, 

and a combination of the two to obtain a neuro-fuzzy controller. 

In the fourth chapter,  we presente the different fuzzy control methods, Neuro-fuzzy, Neuro-

fuzzy optimized by genetic algorithms, for the control of a manipulator arm and a mobile robot. 
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Chapter  01 

MODELING AND CONTROL OF ROBOTS 

1.1.  Introduction 

For several decades, robots have been used in the industry, the majority of which are 

manipulator type and are used to perform repetitive tasks in a production cycle. Self-guided 

vehicles (also called mobile robots) are also used in the manufacturing industry. 

However, research in the field of robotics is still very active and a very large part of this 

activity is directed towards the development of new applications for robots [11,23,24,25,26]. 

Work focuses on service robots, i.e, robots (manipulators or mobiles) working in automatic or 

semi-automatic mode, and which are not used in a context of industrial production. These robots 

perform tasks that are useful to people, to accomplish certain duties. For exemple, the robot can 

replace a person working in hazardous conditions, such as nuclear plant inspection robots, robots 

specializing in the detection and manipulation of explosives (anti-personnel mines), planetary 

exploration robots and submersible self-guided vehicles or those operating in underground mines 

are examples of these service robots. 

1.2.  Manipulator robots 

1.2.1. Dynamic model 

A mechanical system can be represented as a dynamic model to facilitate its study through the 

differential equations, which exist between the state variables of the mechanism, their derivatives 

and the external forces acting on each body. The most general form is [30]: 

 

                                                       )(),()( qGqqqCqqM                                                 (1.1) 

The dynamic model (1.1) expresses the driving torque (or force) of the actuators of the 

various manipulator robot arms as a function of the positions q, speeds 𝑞̇, and accelerations 𝑞̈, 

articular forces and friction forces F to exert on the end effector. It expresses the balance 

between drive and braking torque due to the inertia, centrifugal and Coriolis forces as well as 

gravitational forces. This model is also called inverse dynamic model. 

                                                                 ),,,( Fqqqg                                                          (1.2) 

Where τ n : Vectors of motor torques whose dimension is equal to the number of degrees 

of freedom of the manipulator robot. 

1.2.1.1. Lagrange Formalism  

The dynamic model (1.2) can be obtained by several methods, the most used is that of 

Lagrange which describes the dynamic behavior of a system in terms of work and energy.   
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The dynamic model is obtained by the following of Euler-Lagrange (E-L) equations [30]: 

                                                                i
i q

L

q

L

dt

d




















                                                     (1.3) 

 

With L denotes the Lagrange function given by the equation 

 

                                                          ).(),(),( qUqqKqqL                                                     (1.4) 

Where 𝐾(𝑞, 𝑞)̇  is the kinetic energy and 𝑈(𝑞) the potential energy. 

 

1.2.1.2. Model of the robot with two degrees of freedom (d.o.f) 

We will model a robot with two degrees of freedom that is to say two rotational joints (Figure 

1.1), moving in the vertical plane. 

 

 

Figure 1.1    Representation of the robot with two rotational axes. 

a. Robot dynamic model with two degrees of freedom 

According to the preceding paragraphs, the matrices and the gravities terms vector of the 

manipulator arm dynamic model are expressed as follows: 

Inertia matrix: 
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Centrifugal and Coriolis forces Matrix 
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Gravitational efforts vector. 
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1.3.  Trajectory generation 

Robot dynamics require imposing achievable trajectories, so continuity in position, speed and 

acceleration gives the robot the ability to continue the trajectory with achievable controls. 

The decomposition of the task into several intermediate points requires continuity of the first 

and second order. 

The imposition of a constant final position for example, requires the use of a third degree 

polynomial allowing continuity in position and speed. 

This task results through the passage from one equilibrium state to another, these two states 

will define the boundary conditions of the interpolation polynomial. 
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                                                           Figure 1.2    Generation of an interpolation polynomial. 

From the boundary conditions (equation (1.8)), the different coefficients of the polynomial 

p(t) are calculated. 

1.4.  Control techniques of manipulator robots  

1.4.1. Classic control 

The classical control is the set of PID type linear laws with constant gains. Therefore, to 

develop a PID control, it is necessary to consider each joint of the robot as an independent 

mechanism and can be linearized in an operation zone. The drive therefore takes a local 

character.  

The figure shows the diagram of a classic PID control. 

 

 

t0 tf 
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Figure 1.3    Classic diagram of a PID control. 

The classical control holds the monopoly in the industrial field but it presents certain 

disadvantages and certain advantages. 

Advantages are: 

- Implantation efficiency. 

- Low cost (implementation, computation time). 

The disadvantages are: 

- This drive, based on a linear model of the manipulator robot, is not acceptable for large 

displacements performed at high speeds and requiring good tracking. 

- The integral term is indispensable to eliminate the position static error due to the forces of 

gravity. However, for a ramp type input, the static error remains. 

The dynamics of the manipulator varying with its configuration, it will not be possible to 

maintain the performance of the system for all accessible configurations if the coefficients of the 

corrector are constant. 

Drive Laws:  

If the gravitational forces are compensated mechanically or otherwise, the control law chosen 

is of the PD type: 

)()( qqKqqK dDdP    

In the case where the gravitational forces are not compensated, a PID control is necessary and 

the corresponding law is of the form: 

                                         

t

dIdDdP dtqqKqqKqqK

0

)()()(                                  (1.9) 

Where qd  is the desired position, qthe real position, dq desired velocity and q  the actual 

velocity and KP, KD, KI are the (n×n) diagonal matrices containing the gains KPi,  KDi,  KIi. 
 

Implementing the PID control requires knowledge of the gains KPi,  KDi,  KIi  of each joint.  

For this, one must linearize the model in assuming that the dynamic equations of the joints are 

decoupled by neglecting the interferences between the joints, and neglecting the centrifugal and 

Coriolis forces as well as the gravity forces and friction. 

The corresponding equation of each articulation takes the form: 

 

Kp 

Ki∫ 

Kd 

robot 

qd 
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                                                                        iii qJ                                                             (1.10) 

Where  Ji  represents the fixed part (or maximum in other cases) of the element mij of the 

inertia matrix M (q). 

The model is even more realistic as the reduction ratio is important, the velocities are low and 

the gains in position and velocity are high.  

Equating the equation (1.10) with the system equation (1.9) we obtain: 

ii

t

dIidDidPi qJdtqqKqqKqqK   
0

)()()(  

The closed-loop transfer function between qi and qdi is as follows: 

                                                   

IiPiDii

IiPiDi

di

i

KsKsKsJ

KsKsK

q

q






23

2

                                        (1.11) 

In robotics, the most common practice is to choose the gains so as to obtain as dominant poles 

a real double negative pole, in order to obtain afast response without oscillations, the other pole 

is chosen real negative but far from the other two. 

The characteristic equation of the transfer function (1.11) is written in the form: 

 

IiPiDiii KsKsKSJsE  23)(  

If one puts                        ,
i

Pi
Pi

J

K
K  ,

i

Di
Di

J

K
K 

i

Ii
Ii

J

K
K   

                                                So IiPiDii KsKsKSsE  23)(                                        (1.12) 

The chosen poles are therefore as follows: 

                                      2)12(  KKPi ,   )2( KKDi  , 2KK Ii                              (1.13) 

Whence )()()( 2  KsssEi      avec      K>0    and   >0 

 

We notice that the gains Kp, KD,  KI  are functions of Ji supposed constant, but in reality Ji 

varies according to the situation of the whole robot, so the damping is really critical only for the 

value of Ji chosen .  

1.4.2. Improving the tracking by the control  

In most cases, the only measuring means present on a robot are the proprioceptive sensors 

measuring the quantities related to the joints. The control of an industrial robot is therefore 

performed using only this information. In addition, the control of a robot being in most cases a 

joint control. 

The search for precision and speed imposes a dynamic control, that is, the actuators must be 

controlled by the torque. We will review the main techniques currently developed. 

1.4.2.1. Non-linear decoupling control 

The possibilities of the application of dynamic control come after the great development of 
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information and methods of identification. The nonlinear decoupling method is proposed by 

Freund [31]. 

This last control consists in transforming by state feedback the control problem of a linear 

system, which then makes it possible to apply the classical techniques of the theory of the linear 

control. 

The diagram of this control is shown in Figure 1.4 

 

 

 

 

 

 

 

 

 

 

Figure 1.4    Diagram of a dynamic control by nonlinear decoupling. 

 

If the model equation is as follows: 

)(),()( qqqHqqM f    

The equation of the control law will be given by: 

                                                       )(),()( qqqHuqM f





                                             (1.14) 

    Where                      

t

dIdPdDd dtqqKqqKqqKqu

0

)()()(                            (1.15) 

And M


, H


,  et f


the estimated  values of M, H, et f  respectively, M the  inertia matrix, 

H  the matrix of Coriolis, centrifugal and gravity terms and f  the friction torque. 

In the case where the dynamic model is exact, equation (1.15) gives us the equation of error  

e =(qd -q).  

                                                   0)(

0

 
t

IPD dxxeKeKeKe                                            (1.16) 

The error equation is decoupled and linear. 

The right choice of constants Kp, KD and  KI makes the error asymptotically close to zero. 

From equation (1.16) we deduce the transfer function between the desired position and the 

actual measured position: 
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The transfer function (1.17) is unitary, so the trajectory of the robot must exactly follow the 
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modeling error trajectory. 

The computation of the dynamic control depends on the task to be performed 

    - If the load is known, the identification is done offline. 

    - If the load is not known online identification is needed.  

The control vector u is obtained by the anticipation of the desired acceleration and a 

decentralized PD corrector is added to reduce residual errors related to the modeling errors. 

 

                                                              eKeKqu pdd                                                      (1.18) 

By using the fact that qu    in the perfect case, the behavior of the error is then characterized 

by the following equation: 

                                                               0 eKeKe pd                                                       (1.19) 

In this case, the error behaves like a second-order system. The proper pulsation and the 

damping are then regulated by the gain of the correctors: 
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K                                            (1.20) 

The presence of an integral gain is theoretically useless since the control system behaves like 

a double integrator. However, in practice, integral gain is used to reduce the modeling errors 

effects, since the calculated torque control giving by the non-linear decoupling control also tends 

to be weak compared to the modeling errors like the uncertainties of the inertial parameters and 

of the unknown loads or of the friction, in this case a PID corrector is necessary specially when 

the modeling errors are important.  

The equation of the error will be given by the following relation:  

  ff qqHqqMqqHuqM   ),(),()( 








 

     And 

 ff

t

ipd qqHqqHqMMMdxxekekeke 








  
 ),(),()()( 1

0

 

     Where                                prt

t

ipd Mdxxekekeke 1

0

)(  


                                       (1.21) 

prt  is the perturbation torque. 

One deduces that the modeling error constitutes an excitation for the equation of the error 'e'. 

To remedy this problem is to increase the gains dp kk , and ik .  

1.4.3. Predictive dynamic control 

This is the case of the dynamic control with non-linear decoupling, where during the 

computation, the prediction consists of replacingthe values of the measured velocity and the 

positions ( qq , ), by their desired corresponding values (qd, dq ) when calculating the 

compensation terms M


, H


, f


. From the Figure 1.5. 
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Figure 1.5    Predictive dynamic control. 

The equation of the control law is given by: 

                                                      )(),()( qqqHuqM f





                                              (1.22) 

     Where                     

t

dIdPdDd dtqqKqqKqqKqu

0

)()()(                            (1.23) 

And the equation of error is of the form 

                                                   0)(

0

 
t

IPD dxxeKeKeKe                                            (1.24) 

The error equation is linear and decoupled. 

The advantage of this control resides in the possibility of computing off-line compensation 

terms M


, H


, f


  and store them, This greatly reduces online computing time. 

Predictive control is an offline control technique so it is only useful when the trajectory to be 

followed is repeated often. 

1.4.4. Adaptive control 

The adaptive control automatically adjusts the regulator parameters in real time to achieve a 

certain level of performance when the dynamic behavior of the process is unknown, poorly 

known, and / or variable in time. 

The closed-loop control of a system by an adaptive control is generally formed by two loops, 

a normal internal loop containing the regulator and the process, an external loop which adjusts 

the parameters of the regulators in order to minimize the chosen criterion. 

1.4.4.1. Different adaptive controls 

Although there are several types of adaptive controls, we present the most used ones: 

a. Gain-scheduling  

It is possible sometimes to find auxiliary variables that have a great correlation with the 

change of the dynamic parameters. It is therefore possible to reduce the effects of the parameters 

adjusting the regulator based on these auxiliary variables. 
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Gain-scheduling regulation problem is the determination of the auxiliary parameters, which 

requires knowledge of the physics of the system to be controlled. 

 

 

 

 

 

 

Figure 1.6    Block diagram of the gain-scheduling control. 

 

b. Adaptive Control by Reference Model (MRAS) 

The first MRAS was proposed by Whitaker in 1958 to solve the problem of servomechanisms. 

The original scheme proposed by Whitaker is shown in Figure 1.7. 

The desired performances are formulated by the reference model which gives the desired 

response to the control signal. 

The entire control system has a first ordinary loop containing the reference model and the 

regulator parameter adjustment mechanism. 

The two new ideas brought by the MRAS are: the performances are fixed by the choice of a 

reference model and the adjustment of the parameters of the regulator is based on the error 

e =ym-y. Among the approaches used as adjustment mechanisms, we note: 

- The rules MIT (gradient). 

- The function of Lyapunov. 

- The hyperstability of Popov.  

 

 

 

 

 

 

 

 

 

Figure 1.7    Synoptic diagram of an adaptive reference model system. 

c. Self-adaptive regulator: 

In this case of adaptive systems, it is assumed that the regulator parameters are adjusted all the 

time and follow the process changes. However, it is difficult to analyze the convergence and 

stability of such systems. 

The self-adaptive regulator is based on the idea of separating between the unknown parameter 

estimator and the adjustment procedure. 

Figure 1.8 shows that unknown parameters are estimated online using recursive estimation 

methods. 

The estimated parameters are assumed to take the actual values and the uncertainties of the 

Controller  Process

us 

Gain-scheduling 

Uc 
U Y 

Controller Process 

Adaptation 

mechanism  

Uc U Y 

Reference 

model 

Ym 



CHAPTER 01                                                                                           MODELING AND CONTROL OF ROBOTS. 

12 
 

estimate are not considered. 

Among the methods for estimating parameters are: 

     - Stochastic approximations. 

     - The least squares. 

     - Least squares extended and generalized. 

     - The instrumental variable. 

     - The maximum of Likelihood. 

The methods of adjusting the parameters used are: 

    - The minimum variance. 

    - Thepoles placement. 

    - Model tracking. 

  

 

 

 

 

 

 

 

Figure 1.8    Block diagram of a self-adaptive regulator. 

1.4.4.2. Approaches for manipulator arm analysis 

The construction of an adaptive reference model system consists of the: 

1. Choice of a reference model that definesthe desired performance. 

2. Choicee of the control law. 

3. Determination of the adaptation law. 

If the choice of the reference model and the control law is related to the desired performances, 

the adaptation law must ensure the stability of the system and the tendency of the error towards 

zero. 

Among the approaches used for the determination of the adaptation law are the gradient 

approach, the Lyapunov function and the Popov hyperstability. 

 

a. Gradient approach 

    The gradient method is first used by Whitaker in his original work. The development of this 

approach towards the MRAS returns to using the rules of MIT. 

 

b. MIT Rule 

Let the error be between ym and y (e=ym-y)  and θ be the vector of the parameters to be 

adjusted. A criterion to be minimized is proposed as:  
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Therefore, for J to be small it is reasonable to change the parameters in the negative direction 

of the J gradient i.e : 

                                                                    

  J

dt
d                                                            (1.26) 


  e

dt
d e..  

If it is assumed that the parameters θ change more slowly than the other variables of the 

system, then one can compute 

e  in this case assuming constant θ. 


e  represents the sensitivity 

of the system and   determines the speed of parameters adaptation. 

The diagram in Figure 1.9 represents the error model: 

 

 

 

 

 

Figure 1.9    Error model 

 

The choice of the criterion is arbitrary, if one poses: 

                                                                         eJ                                                                  (1.27) 

                                                               )(esignee




                                                      (1.28) 

 

The rule of MIT is powerful if  is chosen small, but its value may depend on the amplitude 

of the signal and the gain of the process. As a result, it is not possible to give  a limit that 

ensures the overall stability of the system. The system may be stable for certain values and not 

for others. 

A way to overcome the previous problem is to use the modified MIT rules given by the 

formula. 
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                                                    (1.29) 

Another way to limit the speed of convergence is to introduce the saturation function: 
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sat                                             (1.30) 

Sometimes the choice of wide values for y causes instability. 

For all these reasons, the choice of an approach that is based on stability seems better. 

c. Lyapunov function 

The extensive research conducted to find a stability analysis method, which ensures the 

tendency of the error to zero could give the Lyapunov function. 

The method proposed by Lyapunov is valid for nonlinear systems and whose idea is illustrated in 

Figure 1.10. 

 
Π 

θ 

 

e 
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The statement of the method is as follows: the equilibrium is stable if one finds a real function 

of the state space, its curve envelopes the state of equilibrium and the derivative of the state 

variable points to the inside the curve. 

 

 

 

 

 

 

 

 

 

Figure 1.10    Illustration of Lyapunov's method 

To formally state the results, we consider the following differential equation: 

                                                         ),( txfx   ,         f(0,t)=0                                                (1.31) 

Wherexis a state vector of ndimension. 

assumed the function      RRV n 1: Satisfying the following conditions: 

-  V(0, t) = 0 for all Rt . 

- V is differentiable atxandt.  

- V is positive definite.   

The sufficient condition for uniform asymptotic stability for the (1.31) system is: 

                                          
t

V
VgradtxFtxV T




 )(),(),( ( 0 for x ≠ 0)                                (1.32) 

So V  must be defined negative: 

Condition (1.32) will therefore fix the adaptation law thus ensuring the stability and tendency 

of the error towards zero. 

1.5.  Mobile robots 

1.5.1. Definition of a mobile robot  

A mobile robot is a mechanical, electronic and computer system acting physically on its 

environment in order to achieve a goal that has been assigned to it. This machine is versatile and 

able to adapt to certain variations of its operating conditions. It has perception, decision and 

action functions. Thus, the robot should be able to perform various tasks, in several ways, and 

perform its task correctly, even if it encounters new unexpected situations. 

Currently, the most sophisticated mobile robots are primarily oriented towards applications in 

variable or uncertain environments, often with obstacles, requiring adaptability to the task.  

1.5.2. Wheeled mobile robots 

Wheel mobility is the most used mechanical structure. This type of robot provides a 

displacement with a fast movement but requires relatively flat ground. We distinguish several 

x=0 

=0 

V(x)=cst 

X1 

X2 
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classes of wheeled robots, mainly by the position and the number of wheels used. We will 

mention here the four main classes of wheeled robots [32]. 

1.5.3. Classification of wheeled mobile robots  

1.5.3.1. Classification according to the type of wheels 

In the field of mobile robotics, we find four types of wheels as shown in the Figure 1.11[33]: 

-  Fixed wheels whose axis of rotation passes through the center of the wheels. 

-  Orientable center wheels, whose axis of orientation passes through the center of the 

wheels. 

-  Foolish wheels whose orientation axis does not pass through the center of the wheel. 

-  Swedish wheels for which the zero component of the sliding speed at the point of contact is 

not in the plane of the wheel. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.11    Diagram of the different wheels types of the mobile platforms 

1.5.4. Kinematic modeling 

1.5.4.1. Wheel model 

Kinematic modeling is the study of the motion of a mechanical system regardless of the forces 

that influence its motion. At this stage, we are interested only in velocity vectors. 

1.5.4.2. Modeling hypothesis 

The problem of the control of mobile robots being too vast to be presented exhaustively, in 

this part a number of simplifying hypotheses: 

- The robots are considered rigid and evolving on a plane, 

 

 

 

 
 

 

 

 

Rotation axis 

Rotation axis 

 

(b) Diagram of foolish wheels. 

Rotation axis 

Orientation axis 

 

 

 

 

 

  

(a) Diagram of fixed and center wheels. 

 

 

 
 

 

 

(c) Diagram of the Swedish wheel. 
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- The robots are equipped with conventional wheels: the point of contact between the wheel 

and the ground is reduced to a point and the wheel is subjected to rolling constraint without 

sliding. 

1.5.4.3. Rolling without slip and non-holonomy 

Many mechanical systems are subject to position and/or velocity constraints, i.e., several 

relationships between the positions and/or velocities of different points of the system must be 

satisfied throughout the motion. These constraints are said to be holonomic if it is possible to 

integrate them and they lead to algebraic relations linking the configuration parameters. These 

relationships can be eliminated by appropriate change of variables and the system is said to be 

holonomic. In other words, the robot ability to move from a position to any direction is called 

holonomic.  In the case of non-integrable constraints, the elimination is no longer possible and 

the system is said to be non-holonomic. 

In the case of wheeled robots, these kinematic constraints result from the assumption of 

rolling without sliding. Consider a vertical wheel that rolls without sliding on a flat ground, the 

rolling without sliding translates to the zero velocity of point I of the wheel in contact with the 

ground [34]. 

 

Figure 1.12    Description of a wheel 

 

With the notation in Figure 1.12, we obtain: 

)))(cossin(()/( 0 krjikjyixRIv







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

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0)sin()cos(  jryirx





   

Where r is the radius of the wheel and (x, y) is the coordinate of the point 1o  in the fixed 

reference ),,,(0 kjioR


 . We deduce two constraints: 

                                                                



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
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







ry

rx
                                                       (1.33) 

The model (1.33) can be transformed to make appear the components of the velocities in the 

planes of the wheel and perpendicular to the wheel, the following kinematic constraints are then 

obtained: 


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It is interesting to note that by introducing rv   the rolling speed of the wheel and w  

its speed of rotation around the axis k


, we form the following model:  

 

                                         uqSq )( 















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
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














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



w

v
y

x

1

0

0

0

sin

cos










,    









w

v
u                                (1.34) 

1.5.4.4. Kinematic model of unicycle wheel robots (differential) 

The kinematic model (1.34) of the wheel subjected to rolling without sliding constraints have 

certain characteristics. One of the characteristics of these non-holonomic systems is that the 

linearized system is not controllable whereas the real system is. 

We consider the mobile robot type unicycle schematically in Figure 1.13, this robot is 

equipped with two independently controlled fixed-wheel drive and foolish wheels ensuring its 

stability [34]. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.13    UnicycleRobot  type 

 

Let the abscissa and the ordinate (x, y) of the middle of the axis of the two driving wheels,   

the orientation of the robot, r the radius of the wheels and 2R the distance between the two drive 

wheels. By taking again the equation (1.33) and one can easily show that the constraints of 

rolling without sliding of each of the driving wheels are written: 

– For the left wheel 

                                                         0coscos 1    rRx                                              (1.35) 

                                                         0sinsin 1    rRy                                               (1.36) 

– For the right wheel  

                                                        0coscos 2    rRx                                               (1.37) 

                                                        0sinsin 2    rRy                                               (1.38) 

These four constraints are not independent since the difference of the left-hand side of 

equalities (1.35) and (1.37) is proportional to that associated with (1.36) and (1.38). For example, 

the last constraint can be omitted. In addition, the constraint is completely integrable. Indeed, we 

have: 

 

 

 

x 

y 

 

o 
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So, do one gets: 

)(2 12    rR  

 

Which implies: 

constant)(2 12   rR  

 

Consequently, there remain only two independent constraints, (1.35) and (1.36), that are written 

as: 

                                                                   















w

vy

vx
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                                                           (1.39) 

Where 

– The linear speed of the robot is 

                                                                   )( 212
   rv                                                        (1.40) 

– The angular velocity of the robot is 

                                                                )( 122
  

R
rw                                                       (1.41) 

The fact that this system is the same as the model (1.34) obtained for a single wheel 

(unicycle), which justifies the qualifier term unicycle often used in the literature. 

1.5.5. Dynamic model of unicycle wheeled robots  

By ignoring the mass of the wheels, the equations of motion can be derived using Euler-

Lagrange method as 

                                                 )()(),()( qCqEqqqCqqM T                                        (1.42) 
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Where m is the robot mass, I  the moment of inertia of the robot about its center of mass, 
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d the distance between the center of mass and the center of the wheel axle, r the wheel radius R 

half distance between the two wheels, l, r the motor torques on the wheels and  the constraint 

force. 

By differentiating (1.34), one gets uSuSq   . Then by substituting q into (1.42), pre-

multiplying by ST, and using the property 0TT CS , one can have 

 

                                     ESMSSuSCSMSMSSu TTTT 11 )()()(                              (1.43) 

1.6.  Properties and Control of a mobile robot  

1.6.1. Definitions,PropertiesandLinearization 

Definition 1.1 : Lie Derivative [35] 
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Definition 1.2 : Lie Bracket [35] 

Let the vectors fields nnDgf :, then the Lie Bracket of f and g is found to be 
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Definition 1.3 : Diffeomorphism [35] 

Let nnDf : , is said to bea diffeomorphism on D (local diffeomorphism)if: 

1-  f is continuously differentiable on D 

2-  f-1 (inverse) existand continuously differentiable, such that 

Dxxxff  ,))((1
 

The function f is said to be a global diffeomorphism if in addition 

1 - 

 

2 - 


)(xfim x  

Lemma  

Let nnDf :  

•Be continuously differentiable on D, and 

• If the Jacobian matrix fDf   is nonsingular at a point Dx 0 . 

Then f is a diffeomorphism in subset D . 

Definition 1.4 : Distribution (Differential Geometry) [35] 

A finite set of vectors  pxxxS ,......, 21  in n  is said to be linearly dependent if there exist 

a corresponding set of real numbers  i , not all zero, such that 

0.......2211  pp

i

ii xxxx   

On the other hand, if 0i iix  implies that 0i  for each i, then the set  ix  is said 

to be linearly independent. 

Given a set of vectors  pxxxS ,......, 21  in n , a linear combination of those vector 

defines a new vector nx  , that is, given real numbers p ......,, 21 . 

,nD 
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n
ppxxxx   .......2211  

The set of all linear combinations of vectors in S generates a subspace M of n  known as  

the span of S and denoted by  pxxxspanSspan ,......,)( 21 i.e. 

    ipp
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The concept of distribution is somewhat related to this concept. 

Now consider a differentiable function nnDf : .As we well know, this function 

can be interpreted as a vector field that assigns the n-dimensional vector f (x) to each point Dx

.Now consider "p" vector fields pfff ,......, 21 on nD  . At any fixed point Dx the functions fi 

generate vectors n
p xfxfxf )(),......(),( 21 and thus  

 )(),......(),()( 21 xfxfxfspanx p  

Definition 1.5 : Nonsingular Distribution [35] 

A distribution  defined on nD   is said to be nonsingular if there exists an integer d such 

that 

 

If this condition is not satisfied, then   is said to be of variable dimension. 

Definition 1.6 : InvolutiveDistribution [35] 

A distribution   is said to be involutive if:    21,2,1, ggigi  

It then follows that  pixfspanx i ,.....,1),()(  is involutive if and only if 

     jiallandxxfxfxfxfxfrankxfxfxfrank jipp ,)(),(),(.......),(),()(.......),(),( 2121   

 

Example 

Let   )(),()(, 21
3 xfxfspanxD  ,      with





































1

0

)(,0

1

)( 12
2
1

1 xxf

x

xf then 

 



























0

1

0

)()(, 2
1

1
2

21 xf
x

f
xf

x

f
ff and   2, 21 ffrank  

   jixxfxfffrank ji ,,3)(),(,, 21  )(x is not involutive 

 

Definition 1.7 :Complete Integrability [35] 

A linearly independent set of vector fields pfff ,......, 21 on nD  is said to be completely 

integrable if for each Dx 0 there exists a neighborhood N of xo and n-p real-valued smooth 

functions )(.......),(),( 21 xhxhxh pn  satisfying the partial differentiable equation. 

  .)(dim Dxdx 
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And the gradients ih  are linearly independent. 

1.6.1.1. Frobenius Theorem [35] 

A set of linearly independent vector fields  pixfi ,.....,1),(  be a set of linearly independent 

vector fields, is completely integrable if and only if it is involutive.  
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Which can be rewrite as 
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To determine whether the set of partial differential equations is solvable or, equivalently, 

whether [fl, f2] is completely integrable, we consider the distribution   defined as follows: 

 )(),()( 21 xfxfspanx   

It can be checked that  has dimension 2 everywhere on the set D defined by 

 0: 2
2

2
1

3  xxxD . Computing the Lie bracket [fl, f2], we obtain 
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And thus                 
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It follows that the distribution is involutiveif Dx  
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Which has rank 2 for all 3x .And thus it is completely integrable on D, by the Frobenius 

Theorem. 

Definition 1.8: linearization about an equilibrium point (u0, x0, y0) [36] 
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Linearization about an equilibrium point (u0, x0, y0) 
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1.6.1.2. Feedback Linearization [37] 

The main idea is to transform algebraically a nonlinear system dynamics into a (totally or 

partially) linear dynamic, so that linear control techniques can be applied. 

In its simplest form, feedback linearization cancels the nonlinearities in a nonlinear system, so 

closed-loop dynamics is linear. 

 

Example 1: Consider the control of the level h of fluid  in a tank  to a specified level h0.  

The control input is the flow u into the tank, and the initial level is h0.  

Consider the dynamics model of the tank 

ghauthhA 2)()( 
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Figure 1.14    Fluid control in a tank 

 

Where A(h) is the cross section of the tank and a is the cross section of the outlet pipe. 

Choose  vhwherevhAghau  )(2 and  choose the equivalent input 

dhthhwherehvv  )(
~~

:  is error level, α a positive constant. The resulting closed-loop 

dynamics:   tashhh 0
~

0
~

  

The actual input flow: hhAghau
~

)(2   

The first term provides an output flow  gha 2  and the second term controls the fluid level 

according to the desired linear dynamics 

If hd is time-varying  hthv d
~

)(   ,  tash 0
~

. The idea of feedback linearization, 

i.e., of canceling the nonlinearities and imposing a desired linear dynamics, can be simply 

applied to a class of nonlinear systems described by the so-called companionform, or 

controllability canonical form. 

A system is said to be in companion form if its dynamics is represented by:  

uxbxftxn )()()(   

Where u is the scalar control input, x is the scalar output of interest,  )1(.......,,,  nxxxx  , is 

the state vector, and f(x) and b(x) are nonlinear functions of the states. This form is unique in the 

fact that, although derivatives of  x appear in this equation, no derivative of the input u is present. 

Note that, in state-space latter representation, can be written 
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For systems which can be expressed in the controllability canonical form, using the control 

input 0b , the control input:  fv
b

u 
1

 

The control law:                 )1(
110


 n

n xkxkxkv   

 

h 

u 

Output 

flow 
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Ki is chosen such thatthe roots of 0
1

1 ksks n
n

n  
   are strictly in left-half plane 

(LHP). Thus : 00
1

1  
 kxkx n

n
n   is Exponentially stable (e.s). 

For tracking desired output xd, the control law is: 

)1(
110

)( 
 n

n
n

d
ekekekxv   

Exponentially convergent tracking, 0 dxxe  

This method is extendable when the scalar x was replaced by a vector and the scalar b by an 

invertible square matrix. 

When u is replaced by an invertible function g(u),   )
1

(1 fv
b

gu  

 
Example 2: A two-link robot [37]:  

Objective: the joint positions q1 and q2 follow the desired position qd1(t) and qd2(t). 

Using the Lagrangian equations in classical dynamics, one can easily show that the dynamic 

equations of the robot is: 
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Control law for tracking, (computed torque): 
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Where  dd qqqqqqv  ~,~~2 2   is the position tracking error, λ a positive constant. 

0~~2~ 2  qqqd   , where q~ converge to zero exponentially. 

1.6.1.3. Input-state Linearization [37] 

When the nonlinear dynamics is not in a controllability canonical form, one uses algebraic 

transformations. 

Consider the SISO system 

uxGxfx )()(   

The technique of input-state linearization solves this problem in two steps 

1. Finds a state transformation )(xTz  and an input transformation u=u(x, v) so that the 

nonlinear system dynamics is transformed into an equivalent linear time-invariant dynamics, in 

the familiar form BvAzz   

2. One uses standard linear techniques (such as pole placement) to design v 

 )()( xuxWv

BvAzz




 

Let us illustrate the approach on a simple second-order example. Consider the system 

)2cos(cos

sin2

1122

1211

xuxxx

xaxxx








 

Even though linear control design can stabilize the system in a small region around the 

equilibrium point (0, 0), it is not obvious at all what controller can stabilize it in a larger region. 

 A specific difficulty is the nonlinearity in the first equation, which cannot be directly 



CHAPTER 01                                                                                           MODELING AND CONTROL OF ROBOTS. 

26 
 

canceled by the control input u. 

However, if we consider the new set of state variables 

122

11

sin xaxz

xz




 

Then, the new state equations are 

a

zauzzzz
z

zzz

)2cos(sincoscos

2

11112
2

211










 

Note that the new state equations also have an equilibrium point at (0, 0). Now we see that the 

nonlinearities can be canceled by the control law of the form 

)cossincos(
)2cos(

1
1211

1

zzzzav
za

u   

Wherev is an equivalent input to be designed (equivalent in the sense that determining v 

amounts to determining u and vice versa), leading to a linear input-state relation 

vz

zzz





2

211 2




 

Since the new dynamics is linear and controllable, it is well known that the linear state 

feedback control law 

2211 zkzkv   

When both z1 and z2 converge to zero, so the original state x converges to zero. 

1.6.1.4. Input-Output Linearization [37] 

Consider the system 

)(

),(

xhy

uxfx




 

The objective is the tracking of a desired trajectory yd(t), while keeping the whole state 

bounded,  yd(t) and its time derivatives up to a sufficiently high order are known and bounded. 

The difficulty is that the output y is only indirectly related to the input u, it is not easy to see 

how the input u can be designed to control the tracking behavior of the output y. 

Input-output linearization approach:  

1. Generating a linear input-output relation  

2. Formulating a controller based on linear control 

Example 

1

2
13

3
5
12

3221 )1(sin

xy

uxx
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xxxx


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

 

To generate a direct relationship between the output y and the input u, differentiate the output 

3221 )1(sin xxxxy    
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Since y is still not directly related to the input u, let us differentiate again. We now obtain: 

),()1( 2 xfuxy  where 

2
12233

5
1 )1()cos)(()( xxxxxxxf   

Control input law 

)(
1

1

2

fv
x

u 


  

Choose ,21 ekekyv d    where dyye  the tracking error and, k1 and k2 are constants 

positive.The closed-loop system:        012  ekeke   

The control law is defined everywhere except at singularity points such that x2= −1. 

To implement the control law, the complete state measurement is necessary, because the 

computations of both the derivative y and the input transformation require the value of x.  

If the output of a system should be differentiated r times to generate an explicit relation 

between y and u, the system is said to have relative degree r. 

For any controllable system of order n, by taking at most n differentiations, the control input 

will appear to any output, i.e., r ≤ n. 

If the control input never appears after more than n differentiations, the system would not be 

controllable. 

1.6.1.5. Feedback Linearization (Internal dynamics) [37] 

     A part of the system dynamics (described by one state component) has been rendered 

"unobservable" in the input-output linearization. This part of the dynamics will be called the 

internal dynamics, because it cannot be seen from the external input output relationship ( y ). For 

the above example, the internal state can be chosen to be x3 (because x3, y, and y constitute a 

new set of states), and the internal dynamics is represented by the equation 

))((
1

1
21

2

2
13 fekekty

x
xx d 


   

The desired performance of the control based on the reduced order model depends on the 

stability of the internal dynamics. 

Example: Consider the system 
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Assume that the control objective is to make y track yd(t). Differentiation of y simply leads to 

the first state equation. Thus, choosing the control lawyields exponential convergence of e to 

zero 0ee  

The same control input is also applied to the second dynamic equation, leading to the internal 

dynamics:                                           eyxx d   3
22  

Since e and dy  are bounded ))(( Detyd  , x2 is ultimately bounded. 

- I/O linearization can also be applied to stabilization (yd(t) ≡ 0): 
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        - For previous example the objective will be y and y driven to zero and stable internal 

dynamics guarantee stability of the whole system. 

        - No restriction to choose physically meaningful h(x) in y = h(x). 

        - Different choices of output function lead to different internal dynamics which some  

of them may be unstable.  

- When the relative degree of a system is the same as its order: 

        -There is no internal dynamics. 

        - The problem will be input-state linearization. 

1.6.1.6. Controllability about a Trajectory 

The nonlinear model (1.34) possesses, from the point of control view, two fundamental 

properties [34].   

Property 1.1: The linearized of this system around a point of equilibrium is not controllable. 

Proof 

The linear approximation of the system (1.34) around a state of equilibrium (q(x0, y0, θ0)=0, 

u=0), is given by: 
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The rank of the controllability matrix being smaller than the size of the system state (1.34), 

the criterion of Kalman's controllability is not verified and the linearized is therefore not 

controllable. 

Property 1.2: The nonlinear system (1.34) is controllable. 

Proof 

The system (1.34) can be written in the form: 

                                                              wqgvqgq )()( 21                                                    (1.44) 

With   Tyxq ,, ,  Tqg 0,sin,cos)(1  and  Tqg 1,0,0)(2   . The following result then 

gives a sufficient condition for the system (1.44) to be controllable. 

Theorem 1.3 : Consider the system 

                                                                 



m

j

jj uqgq

1

)(                                                       (1.45) 

Where ),........,1(, mjuq j
n  are the control variables and ),........,1)(( mjkg j  are 

differentiable vector fields on n . 

Either the accessibility algebra noted  Lie(g1, . . . , gm) defined as the smallest subalgebra of 

analytic vector fields defined on n  which contains the vector fields generated by {g1, . . . , gm}: 



CHAPTER 01                                                                                           MODELING AND CONTROL OF ROBOTS. 

29 
 

         ...0,...1,,......,,,....,,,),.......,( 11211 kkjgghhhhhggLie mjkkm  

Where   jq

h
iq

h
ji hhhh ij








, . For nq  , accessibility distribution cA  is the distribution 

generated by ),.......,( 1 mggLie : 

 ),.......,(),()( 1 mc ggLiehxhvectqA   

The system (1.45) is controllable if: 

n
c qnqA  ,))(dim(  

Property 1.2 is an immediate corollary of this theorem. Indeed, it is enough to check that in 

every point q, the vectors g1(q), g2(q), and [g1, g2](q) form a basis of 3 .
 

For the system (1.34), we have n=3, vector fields 
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For a desired Cartesian motion for the unicycle, it can be practical to generate a corresponding 

state trajectory qd (t) = (xd (t), yd(t), θd (t)). To be feasible, the latter must satisfy the non-

holonomic constraint the movement of the vehicle or, equivalently, be compatible with (1.44). 

Setting the status tracking error as dqqq ~ , and the input variations as dvvv ~ , and 

dwww ~ , the tangent linearization of system (1.44) about the reference trajectory is [38] 
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Since the linearized system is time-varying, a necessary and sufficient controllability 

condition is that the controllability Gramian is nonsingular. However, a simpler analysis can be 

conducted by defining the state tracking error through a rotation matrix as 
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                                            (1.47) 

Using (1.46), we obtain 
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When vd  and wd are constant, the above linear system becomes time-invariant and 

controllable, since matrix 
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Have rank 3 provided that either vd or ωd are nonzero. Therefore, we conclude 

that the kinematic system (1.34) can be locally stabilized by linear feedback about trajectories 

which consist of linear or circular paths, executed with constant velocity. 

1.6.1.7. Static Feedback Linearizability (Chained Forms) [38] 

The existence of canonical forms for kinematic models of non-holonomic robots allows a 

general and systematic development of control strategies in open and closed loop. The most 

useful canonical structure is the chained form, which in the case of two-input systems is 
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The nonholonomic kinematic model (1.34) cannot be transformed into a linear controllable 

system using static (i.e., time-invariant) state feedback. In fact, the controllability condition 

(Property 1.2) means that the distribution generated by vector fields g1 and g2 is not involutive, 

thus violating the necessary condition for full state feedback linearizability [39]. 

However, system equations can be transformed via feedback into simple integrators (input–

output linearization and decoupling). The choice of the linearizing outputs is not unique. 

An interesting example is the following. For the kinematic model (1.34), the globally defined 

coordinate transformation 
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The static state feedback 
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Lead to the so-called chained form 
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                                                           (1.50) 

With z1 and z2 as linearizing outputs. Note that (z2, z3) is the position of the unicycle in a 

rotating left-handed frame having the z2 axis aligned with the vehicle orientation. We note also 

that the transformation in chained form is not unique. 
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1.6.2. Trajectory Tracking 

1.6.2.1. Feedforward Control Generation 

Assume that the point (x, y) of the unicycle must follow the Cartesian trajectory (xd(t), yd(t)), 

with t ∈[0, T] (possibly, T → ∞). From the kinematic model (1.34) one has [38]. 

                                                  1,0),(2  kkxyATAN                                          (1.51) 

Therefore, the nominal feedforward controls are 

                                                          )()()( 22 tytxtv ddd                                                  (1.52) 

                                                   
)()(

)()()()(
)(

22 tytx

tytxtxty
tw

dd

dddd
d








                                           (1.53) 

The derivative of (1.51) with respect to time in order to calculate wd. The chosen sign for vd(t) 

will determine the forward or backward motion of the vehicle. We note that, in order to be 

exactly reproducible using vd(t) and wd(t), the desired Cartesian motion (xd(t), yd(t)) should be 

twice differentiable in [0, T]. 

1.6.2.2. Linear Control Design 

Consider again the linearization procedure of the unicycle around the trajectory. Define the 

state tracking error e as [38] 
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Using the following nonlinear transformation of velocity inputs 
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The error dynamics becomes 
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Linearizing (1.56) around the reference trajectory, we obtain the same linear time-varying 

equations (1.48), now with state e and input (u1, u2). Define the linear feedback law. 
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A desired closed-loop polynomial 
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We having constant eigenvalues (one negative real at −2ζa and a complex pair with natural 

angular frequency a >0 and damping coefficient ζ∈(0, 1)) can be obtained by choosing the gains 

in (1.57) as 

)(
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tv

twa
kakk

d

d
   

However, k2 will go to infinity (i.e., an infinite control effort would be required for the same 

transient performance) as vd → 0. Therefore, a convenient gain scheduling is achieved by letting 

)()()( 22 tbvtwtaa dd   so that 
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In terms of the original control inputs, this design leads to the non linear time-varying 

controller 
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1.6.2.3. Nonlinear Control Design 

We present now a nonlinear design for trajectory tracking. Consider again (1.56). Define [38] 
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Constant 02 k , k1(·, ·) and k3(·, ·) continuous gain functions. 

Theorem 5.1. Assuming that vd and ωd are bounded with bounded derivatives, and that  

vd(t)      0 or wd(t)       0 when t → ∞, the control law (1.60) globally asymptotically stabilises the 

origin       e = 0. 

Proof:    It is based on the use of the Lyapunov function 
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Whose time derivative along closed-loop system solutions has not been increasing since 
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Therefore, )(te  is bounded, )(tV  is uniformly continuous, and V (t) tends to some limit 

value. Using Barbalat lemma, )(tV  tends to zero. From this and by analyzing the equations of the 

system, we can show that )3,2,1()( 222  iewv idd tends to zero so that, from the persistency of 

the (state) trajectory, the result follows. 

Merging (1.54), (1.55), and (1.60), the resulting control law is 
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Taking advantage of the previous linear analysis, we can choose the gain functions k1 and k3 

and the constant gain 2k  as 

bktbvtwtwtvktwtvk dddddd  2
22
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Withb >0 and ζ∈(0, 1). 

1.6.2.4. Dynamic Feedback Linearization 

The dynamic feedback linearization problem consists in finding, if possible, a dynamic state 

feedback compensator of the form [38] 
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With ν dimensional state ξ and m dimensional external input u, such that the closed-loop 

system (1.34), (1.62) is equivalent, under a state transformation  z= T(q, ξ), to a linear 

controllable system. 

Only necessary or sufficient  conditions exist for the solution of the dynamic feedback 

linearization problem. Constructive algorithms, which are essentially based on input-output 

decoupling. 

The starting point is the definition of an appropriate m-dimensional system output η = h (q), at 

which a desired behavior can be assigned (in our case, follow a desired trajectory). One then 

proceeds by successively differentiating the output until the input appears in a non-singular way. 

At some phase, adding integrators to a subset of the input channels may be necessary to avoid 

subsequent differentiation of the original inputs. This dynamic extension algorithm builds the 

state   of dynamics compensator (1.62). The algorithm ends after a finite number of 

differentiations each time the system is invertible with respect to the chosen output. If the sum of 

the output differentiation orders is equal to the n + v of the extended dimension state space, a 

complete input-state-output linearization is also obtained. The closed-loop system is then 

equivalent to a set of decoupled input-output chains of integrators from ui to ηi (i = 1, ...,m). 

We illustrate this exact linearization procedure for the unicycle model (1.44). 

Define the linearization output vector as η = (x, y). Differentiation w.r.t. time then returns 
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Showing that only v affects  , while the angular velocity w can not be recovered, from this 

first-order differential information. In order to proceed, we must to add an integrator (whose 

state is noted  ) on the linear velocity input.  
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Being the new input a the linear acceleration of the unicycle. Differentiating further 
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And the matrix multiplying the modified input (a, w) is nonsingular provided, that 0 . 

Under this assumption, one can define 
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In order to obtain 

                                                             u
u

u




















2

1

2

1









                                                     (1.63) 

The resulting dynamic compensator is 
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Since the dynamic compensator is one-dimensional, we have n+ν= 3+1 = 4, equal to the total 

number of output differentiations in (1.63). Therefore, in the new coordinates 
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The extended system is fully linearized in a controllable form and described by the two chains 

of second-order input-output integrators given by (1.63), rewritten as 
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Note that the dynamic feedback linearization controller (1.64)  has a potential singularity at 

  = v = 0, that is, when the unicycle is not rolling. The appearance of such singularity in the 

dynamic extension process has proved to be structural for non-holonomic systems. This 

difficulty must be taken into account when designing linear model laws on the equivalent linear 

model. 

Assume the robot must follow a smooth output trajectory (xd(t), yd(t)) which is persistent, that 

is, such that the nominal control input 2/122 )( ddd yxv    along the trajectory does never go to 

zero. On the equivalent linear and decoupled system (1.66), it is straightforward to design a 
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globally exponentially stabilizing feedback for the desired trajectory (with linear Cartesian 

transients) as 
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With PD gains chosen as kpi>0, kdi>0, for i = 1, 2. 

We must not that the state of the dynamic compensator must be correctly initialized to the 

value )0( = vd (0). This ensures an exact tracking of the trajectory for an initial state of the 

corresponding robot. In this case, the control law ((1.64), (1.67) is reduced to the pure 

feedforward action. 

1.7.  Conclusion 

In this chapter, we have given an overview of manipulators and mobile robots, which for the 

coming years will be an extremely attractive field of work, as much in its speculative research 

component, an ideal paradigm for robotics. third generation, only by that of applications that 

concern a very wide spectrum ranging from the machine for flexible workshop to the exploration 

vehicle for mission on Mars. These twolines create a synergy that induces rapid domain 

development in both core research laboratories and application centers. 
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Chapter  02 

THE GENETIC ALGORITHMS (GAS). 

2.1.  Introduction 

Among the problems encountered by the researcher and the engineer, the problems of 

optimization which occupy in our time a place of choice, and many researches, both practical 

and theoretical, are devoted to him. If we put aside the problems of discrete or multicriterion 

optimization, then the theory of optimization can be broken down into two main branches: local 

optimization and global optimization. If we can consider that the first is almost "fully known", 

the second is still partially known and research is at its peak, as confirmed by recent literature. 

The main task of global optimization is the search for the solution that will minimize a given 

cost criterion, called the "global optimum". Global optimization therefore aims to seek not only a 

local minimum, but especially the smallest of these local minima. 

There are two main approaches to global optimization. One is called deterministic whose 

search algorithms always use the same path to arrive at the solution, where we can "determine" 

in advance the steps of the research. The other is random [40]: for given initial conditions, the 

algorithm will not follow the same path to go to the solution found, and may even propose 

different solutions. It is towards this second branch, called the random global search, that our 

work will focus, and more particularly towards a specific type of random search algorithm, the 

GAs. 

2.2.  Genetic algorithms 

2.2.1. history 

Genetics, the study of heredity, is a discipline in biology. Indeed, while the notion of the 

inherited passage of biological information between generations dates back to the 17th century, 

the identification of DNA as a support for heredity dates back only to 1944, and its structure was 

only clarified in 1953. Advances in genetic engineering will allow a considerable development 

of knowledge about genes, their functioning and their regulation. The techniques quickly reach a 

high level of performance allowing today the study of the human genome. 

Modern genetics can be traced back to Mendel's work in the 1860s, which first established the 

laws of heredity (Mendel, 1866). Mendel understands that a hereditary character can exist in 

different versions - aisles - some dominant, others recessive. It states the laws of transmission of 

certain hereditary traits. The responsible cellular element is the gene. Genes are transmitted 

between generations and function independently. 

In 1900, three botanists, De Vries, Correns and Tschermak, "rediscover" the laws of Mendel's 

hybridization. In less than a decade, a new science is based on this foundation, Bateson calls it 

"genetic." In the mid-1910s, it was Morgan's work on Drosophila that led to the development of 

the chromosomal theory of heredity. The genes are then located on the chromosomes, and the 

work of Sturtevant, can order the genes along the chromosomes, constituting the first genetic 
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maps. 

The material support of heredity (deoxyribonucleic acid), or DNA, was identified as such in 

1944. The DNA double helix structure is elucidated by Watson and Crick in 1953. The golden 

years of biology are the 1950s. They culminated with the discovery by Jacob and Monod in the 

early 1960s, (Jacob and Monod, 1961), of the regulatory model of protein production in bacteria 

and viruses: messenger RNA, transcript of DNA into messenger RNA, translation of the 

messenger RNA into polypeptide sequences. 

2.2.2. Definition of a GAs 

Genetic algorithms are an abstraction of the theory of evolution. The basic idea is simple: if 

evolution has optimized biological processes, the use of the paradigm of evolution to find 

optimal solutions in the context of computer processing has a meaning. 

The use of the theory of evolution as a computer model to find an optimal solution can be 

justified by the fact that the theory of evolution makes it possible to look for the solution among 

a very large number of possibilities within a reasonable time (the evolution process takes place in 

parallel). Thus, genetic algorithms are systems that rely on Darwin's principles of selection and 

on gene combination methods introduced by Mendel to address optimization problems. 

 As mentioned earlier, genetic algorithms focus on simulating the process of natural selection 

in a hostile environment related to the problem to be solved. 

We will talk about an individual in a population and often the individual will be considered 

asa single chromosome. Chromosomes themselves are made up of genes that contain the 

hereditary characteristics of the individual. We will also find the fundamental principles of 

natural evolution, namely the principles of selection, crossing, mutation,... 

In the context of optimization, each individual represents a point in the state space with which 

the value of the criterion to be optimized is associated. A random population of individuals is 

then generated for which the GAs focuses on selecting the best individuals while ensuring an 

efficient exploration of the state space. GAs differs from conventional optimization and search 

algorithms essentially in four fundamental points [41]: 

1. They use a coding of the elements of the search space and not the elements themselves. 

2. They search a solution from a population of points and not from a single point. 

3. They impose no regularity on the studied function (continuity, differentiability, convexity 

...). This is one of the great assets of GAs. 

4. They are not deterministic, they use probabilistic transition rules. 

2.2.3. Operating principle of GAs 

GAs work on strings of fixed size. A population of individuals is initially defined, each of 

them has a particular character string (coding its chromosome) generally defined randomly. 

Individuals will be evaluated according to an objective function, so those selected, will 

reproduce and submit to mutations. It is an iterative process that usually ends when the 

population no longer evolves between two periods. 

An abstract description of the basic GAs can be done according to the following steps [4]: 

1. Initialize randomly a chromosome population (individuals). 

2. Evaluate each chromosome in the population. Each chromosome is associated with a 

function cost or fitness function determining its rank in the population. This function is the final 
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arbiter deciding the life or death of each individual. 

3. Create new chromosomes, applying the operators of selection and reproduction. 

4. Evaluate the new chromosomes (descend) and insert them into the population to build a 

new generation. 

 This process is repeated until satisfying the criteria for stopping GAs which is generally 

specified by a maximum number of generations. 

The following flowchart gives a general description of the standard GAs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1    Flowchart of the GAs. 

GAs are original systems, inspired by the presumed functioning of the living. The method 

used is very different from conventional optimization algorithms. There are four main points: 

• GAs use a coding of parameters and not parameters themselves. 

• GAs use only the values of the function being studied (instead of its derivative or other 

auxiliary knowledge).  
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• GAs work on a population of points instead of a single point. 

• GAs use stochastic operators and not deterministic rules.  

It is important to understand that the operation of such an algorithm does not guarantee 

success. We are in the presence of a stochastic system and the probability exists that a genetic 

pool is too far from the solution, or, for example, that a too rapid convergence blocks the process 

of evolution. These algorithms are nonetheless extremely efficient, their use is developing in 

fields as diverse as the stock market forecasting, the scheduling of production systems or the 

programming of assembly robots in the automotive industry. 

GAs are characterized by:  

1- A special method for coding solutions (chromosomes). 

2- A fitness function that determines the rank of a chromosome. 

3- A set of operations to manipulate the chromosomes of a generation to produce a new 

generation. 

4- A method of initialization of chromosomes. 

2.3.  Fitness Technique 

GAs requires having a cost function or an evaluation function that is minimized indirectly, its 

value is elaborate to an aptitude value that must be maximized. 

However, each chromosome in a population may represent a different idea about solving the 

problem, thus satisfying the evaluation function. The decision of coding the chromosomes 

representing the possible solutions of a particular problem leads to the requirement of a suitable 

choice of the evaluation function. An evaluation function must be able to interpret the continuous 

data in the chromosomes and decide if the resulting solution is optimal. The evaluation function 

of a GA takes a chromosome and returns an aptitude value associated with it. The cost function 

g(.) is calculated and this value must be transformed into an aptitude value to be suitable for a 

GAs. 

Because of its analogy with the theory of natural evolution, GAs is naturally formulated in 

terms of maximization. Given a real function f with one or more variables, the optimization 

problem on the search space E is written as: 

                                                                  )(max xfEx                                                          (2.1) 

Moreover, the function to be optimized by a GAs must have positive values over the entire 

domain E. Otherwise, it is necessary to add to the values of f a positive constant Fmin in 

accordance with the equivalence of (2.1). 

                                                               min)(max FxfEx                                                     (2.2) 

In many situations, the objective is expressed as the minimization of a performance functiong. 

                                                                   )(min xgEx                                                           (2.3) 

 

The transition from the minimization problem to the maximization problem is obtained by the 

transformation of the function g. 

2.3.1. Direct transformation 

This technique transforms the function g(-) to be minimized into an aptitude value fi which 
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must be maximized by the GAs. The most used is: 

                                                                   )(max xhEx                                                          (2.4) 
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The choice of the function h is not unique because any composition of the function g by any 

function decreasing and rising on the domain E will lead to a problem of maximization 

equivalent to the equation (2.3). In particular, we find in the literature the transformation 

function h given by. 
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2.3.2. Windowing 

A minimum or no fitness value is assigned to the wrong chromosome. Then each element of 

population is credited with an increasing aptitude, proportional to the quality with which the cost 

of the bad case exceeds its cost [4] as shown in the following figure: 

 

 

 

  

 

 

 

 

 

 

Figure 2.2    Relationship between ability and cost. 

Withm and b are constants, calculated according to fb, fw, gbest, gworst in each generation. fb and 

fw, are the upper and lower limits respectively, of the windowing and they are set by the user. 

gbest and gworst are the cost values associated with the best and the wrong chromosomes, 

respectively. 
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2.3.3. Linear scale change 

First, a brutefitness is calculated using a direct transformation, then a linear function 

transforms the brutefitnessso that the average cost of the population is transformed into average 

fitness and zero fitness or a minimal amount is given to the chromosome with the maximal cost. 

Direct transformation is the simplest and direct method of transforming cost values into 

 

 

 

gbest gworst g 



CHAPTER 02                                                                                                       THE GENETIC ALGORITHMES. 

41 
 

fitness values, but as soon as research develops, the population becomes more uniform and the 

difference in fitness between good and bad chromosomes becomes small. Since this difference 

governs the survival and decadence of chromosomes, the performance of the algorithm 

decreases. Windowing and linear scale change produce two alternatives to overcome this 

difficulty. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3    Fitness function, a) direct transformation,b) windowing, c) linear change of scale. 

2.4.  Operating mechanism of a GAs 

2.4.1. Initial population 

The choice of the initial population of individuals strongly conditions the speed and efficiency 

of the algorithm. By individuals, we do not necessarily speak of "physical" individuals, but of 

objects used to work on the algorithm. For example, if we want to find the global minimum of a 

function, an individual will be a number. If the position of the optimum in the state space is 

totally unknown, it is natural to randomly generate individuals by making uniform draws in each 

of the domains associated with the state space components, ensuring that the individuals 

produced respect the constraints. It is a generation of this type that we will use in our program, 

because we do not know initially what type of animal will be able to survive in the middle 

entered by the user. If, on the other hand, a priori information on the problem is available, it  

obviously seems natural to generate the individuals in a particular sub-domain in order to 

accelerate convergence. 
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2.4.2. Coding and decoding of parameters 

2.4.2.1. Coding 

In nature, the gene structures are coded in base 4, whose "digits" are the four nitrogenous 

bases: adenine (A), thymine (T), cytosine (C) and guanine (G). In the context of genetic 

algorithms, this type of coding is very difficult to use and is therefore not retained. Historically 

the coding used by genetic algorithms was represented as bit strings containing all the 

information needed to describe a point in the state space. This type of coding is useful for 

creating simple crossover and mutation operators (by bit inversion, for example). 

The first step is to define and properly code the problem. At each optimization variable xi (at 

each parameter of the device), one matches a gene. One calls chromosome a set of genes. Each 

device is represented by an individual with a genotype consisting of one or more chromosomes. 

One calls population a set of N individuals that to make it evolve. 

In binary coding, each gene is a long integer (32 bits) for example. A chromosome is a table 

of genes (Figure 2.5 and Figure 2.6). An individual is an array of chromosomes. The population 

is an array of individuals. Note that one could also use other forms of coding (real, Gray coding 

...). 

The result is a structure with five levels of organization (Figure 2.4), resulting in the complex 

behavior of GAs: 

 

 

Figure 2.4    The five levels of organization   Figure 2.5    Schematic illustration of the 

    of a genetic algorithm.                                        coding of the optimization variables xi. 

 

Recall that in this study the n variables are assumed to be real. We consider a finite search 

space: 

 nixxx iii ;1maxmin   

In order to code our real variables in binary, we discretize the search space. Thus a 32-bit 

coding involves a discretization of the intervals in gmax = 232-1 = 4 294 967 295 discrete values. 

Note that if this discretization is finer than that of the physical model used, the function is 

comparable to a staircase function, if we consider it on a sufficiently small scale.   
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Figure 2.6    Each gene (each parameter of the device) is encoded by a long integer (32 bits). 

2.4.2.2. decoding 

The transformation of a binary string into a real number x can then be executed in two steps:                 

1. Conversion (base 2 to base 10):       



S

i

ix
1

1' 2                                                             (2.8) 

2. Search for the corresponding real number: 
12

minmax'
max






S

xx
xxx                      (2.9) 

Or what amounts to the same directly in one step by: 

                                            






S

i S

i ld
xx

1

1

max
12

2
, minmax xxld                                  (2.10) 

2.4.3. Genetic operators 

The genetic algorithm realizes the optimization by the manipulation of a population of 

chromosomes with each generation, the GAs creates a set of new chromosomes with various 

operations called genetic operators: 

• The selection. 

• The crossover. 

• The mutation. 

2.4.3.1. The selection 

 Unlike other optimization techniques, GAs does not need to know the derivative of the 

objective function, which makes their field of application more extensive. 

Selection, as the name implies, allows the best individuals in a population to be identified 

statistically and to partially eliminate the bad ones. Nevertheless, as in Nature, we should not 

confuse selection and elitism: it is not because an individual is good that he will necessarily 

survive (the hazards of life) and so it is not because it is bad that it must disappear (luck also 

helps to survive). Indeed, very often, a "well adapted" species can descend from an individual 

decreed "bad". There are different principles of selection, including the most classic ones. 

 

a. Methods of selection 

A) The proportional selection "Wheel selection" 

The proportional selection "wheel selection" (or selection by wheel casino): it consists in 

associating with each individual a segment whose length is proportional to his fitness. These 

  b31    b30     b29        …….             b2     b1      b0 

Most significant bit Least significant bit 

Long Integer (32 bits)             
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segments are then concatenated on a graduated axis that is normalized between 0 and 1. One then 

draws a random number of uniform distribution between 0 and 1, then one looks at what is the 

selected segment, and one reproduces the corresponding individual. With this technique, the 

good individuals will be more often selected than the bad ones, and the same individual will be 

able to be selected several times with this method. Nevertheless, on small populations, it is 

difficult to obtain exactly the mathematical expectation of selection because of the small number 

of draws (the ideal case of application of this method is obviously that where the population is 

large.). So one will has a selection bias more or less strong depending on the size of the 

population. 

 

relative fitness fitness Individual 

0.1 15 1 

0.2 30 2 

0.3 45 3 

0.15 22.5 4 

0.05 7.5 5 

0.2 30 6 

Figure 2.7    Exemple application of casino wheelselection. 

B) Selection with stochastic remainder  

The "stochastic remainder without replacement selection": in this case one canavoid this kind 

of problem, because a part of the population is selected in a purely deterministic way. One 

associates with each individual the ratio fi of his fitness on the average of the fitness then one 

takes his whole part E(fi) which indicates the number of times to reproduce the individual i. This 

ensures an exact number of representatives for the next generation, eliminating bias. However, 

weak individuals (lower fitness than average fitness) are invariably eliminated with this method, 

which is bad because these occupy positions in the state space that associated with others can 

bring us closer to the under-domain containing the optimum. One therefore associates with the 

deterministic selection a random selection principle based on a " wheel selection" executed on all 

the individuals affected by new finesses fi-E(fi). 

ii rEr 
 irE  ri fitness Individual 

0.6 0 0.6 15 1 

0.2 1 1.2 30 2 

0.8 1 1.8 45 3 

0.9 0 0.9 22.5 4 

0.3 0 0.3 7.5 5 

0.2 1 1.2 30 6 

Figure 2.8    Application of the « stochastic remainder without replacement selection » to 

theprevious example. 
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C)  Selection of individuals of the new generation 

 This step involves selecting individuals from a population that will be kept for the next 

generation. Therefore, following the generation of the new individuals (child), one will 

determine which individuals of the current population will be replaced by them. For this there 

are 2 alternative methods mainly used: stationary replacement and elitist replacement. 

C.1)  Stationary selection 

 For each generation, a small number of individuals (children) are generated, usually less than 

or equal to the number of individuals in the population, to form the new population. In this case, 

the children automatically replace the parents regardless of their respective performance. The 

choice of parents who will be replaced is done randomly or by replacing the less successful 

individuals in the population. 

 This type of replacement generates a population with a large variation and to be favored the 

genetic drift which manifests all the more as the population is small. Moreover, in many cases, 

since even a child with poor performance necessarily replaces a parent, the best solution is not 

reached, but only approaches it. We can also say that in the stationary replacement the 

performance function is not necessarily monotonous increasing. 

C.2)  Elitist selection 

In the elitist strategy, one keeps at least the individual with the best performances from one 

generation to the next. In general, it can be assumed that a new individual (child) takes place in 

the population if he fulfills the criterion of being more efficient than the least efficient of the 

individuals of the preceding population. So the children of a generation will not necessarily 

replace their parents as in the stationary replacement. The performance function of the best 

individual will therefore be monotonous increasing from generation to generation [42]. 

This type of strategy improves the performance of evolutionary algorithms in some cases. But 

also has a disadvantage because it increases the rate of premature convergence. 

2.4.3.2. Reproduction 

 The reproduction of the latter ensures the chance for the best solution to follow generations 

by applying the following genetic operators 

• Crossover. 

• Mutation. 

a. Crossover 

A) Crossover operation 

The crossing operator uses 2 individuals (parents) to create 1 or 2 children. There are 

currently no specific rules for this operation. This step simply consists in determining the child's 

genetic structure according to that of the parents. 
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During this operation, 2 genetically close individuals will generate children close to them. 

Otherwise, if 2 individuals are very distant genetically, the children will be too far away. 

A crossover can lead to low performance children, which means they will not be designated to 

generate other individuals. In this case, it is said to be a lethal crossover. One method to avoid 

this is to form pairs of individuals on the basis of their genetic components (scheme). 

Specifically, individuals who have a close search space. 

Crossover is a random operation, there are methods like uniform crossingor crossing at 1-

point or two-point. 

 

A.1) One-point crossover 

 In the 1-Point cross, a cut in the genotype of the individual is randomly determined. Then one 

applies this cut on both parents to create the children. The principle is simple, a child inherits the 

genotype formed from the genes of the first parent to the cutoff point and genes of the second 

parent from this cutoff point to the last gene. The second child is complementary to the first 

(inversion of first and second parent numbering) [42]. 

  

                                      1 0 0 0 0 1 0 1  1 1 0               

                                      0 0 1 1 0 0 0 0  0 0 1                                                                                            

                                     1 0 0  0 0 1 0 1  0 0 1              

                                      0 0 1 1 0 0 0 0  1 1 0               

 

Figure 2.9    One-point crossover. 

A.2) Two-point crossover 

This technique is similar to the previous one, but in this case two positions are selected and 

the sub-chains between these two positions are exchanged. This method has the same properties 

already described. But it can combine some scheme that the one-point version can not [42]. 

 

                                      1 0 0 0 0 1 0 1  1 1 0                

                                      0 0 1 1 0 0 0 0  0 0 1               

 

                                      0 0 1 0 0 1 0 1  0 0 1              

                                      1 0 0 1 0 0 0 0  1 1 0                 

Figure 2.10    Two-point intersection. 

 

A.3) Uniform crossover 

The uniform crossing uses what is called a crossover mask. The latter calculates randomly 

using a uniform distribution. A mask is used for a single pair. 

A gene at 1 in the mask indicates that the child inherits from the first parent, otherwise he 

inherits from the second parent. The second child is complementary to the first [42]. 
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                                              1 1 0 1 0 1 0 0 0 1 0 

                                              1 0 0 1 1 1 0 1 1 0 0 

                                              0 0 1 0 0 1 1 0 1 0 1 

 

                                              1 0 1 1 0 1 1 0 1 0 1 

                                              0 0 0 0 1 1 0 1 1 0 0 

Figure 2.11    Uniform crossover. 

 

A.4) Arithmetic Crossover  

This technique is introduced by Michalewicz. If this operator is applied on both parents 1C

and 2C , two children (off springs) ),...,,...,,( 21

k

L

k

i

kkk hhhhH   , .2,1k  are generated, such as  

 

                                         211 )1( iiiii cch   and 122 )1( iiiii cch                                 (2.11) 

If i  is a randomly generated value belonging to the interval [0, 1], so one speaks of a non-

uniform arithmetic crossing, and if i  is a constant chosen by the user, one speaks of uniform 

arithmetic crossing. In addition if 21i  this is known as a guaranteed average crossover. 

This technique guarantees that ],[, 21

iiii bahh  , for dominions of bounded variation since 

]1,0[i  and ],[, 21
iiii baCC   

 

A.5) Crossover BLX-α (Blend crossover) 

Developed by (Eshelman and Scahffer, 1993) [43]. A child is generated 

),...,,...,,( 21 Li hhhhH   such as ih  is a random value chosen in the interval ],[ maxmin  IcIc 

where 

                              ),min(),,max( 21

min

21

max iiii cccccc   and minmax ccI                  (2.12) 

The parameter α is generally taken equal to 0.5 to have a balanced relationship between 

exploration and exploitation (convergence). 

One note that the domain of gene values of the generated chromosome no longer belongs to 

the domain [ai, bi] of the parents. As one goes along, this area will expand or shrink. The 

explanation is as follows: 

Knowing that ],[min ii bac   and ],[max ii bac   then ],[ ii baI  . 

On the other hand, the interval whose values obtained from the product .I  is defined 

according to the value of α. To remain in the search domain [ai, bi], then certain conditions must 

be respected to determine a α parameter with good properties. However, for α = 0, we have the 

special case of the BLX-0.0 crossover or the flat crossover. For which the problem of the 

bounded exploration domain does not arise. 

In summary, this type of crossover ( 0 ) expands the field of research, hence a very 

Parent 1 

Parent 2 

Child 1 

Child 2 

Crossovermask 
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extensive exploration, this makes it difficult to converge towards possible solutions. 

 

A.6) Linear crossover 

The linear crossing generates three progeny, whose genes k

ih  k = 1, 2, 3; are calculated by 

      )(21 211

iii cch    2

2

11

2

32

iii cch    2

2

31

2

13

iii cch         (2.13) 

When selecting, the new generation will be made up of the two best of these children. 

Onenotices that the exploration domain is bounded. 

 

A.7) Discret crossover 

The values of the higenes of the children generated H are equal to the values of the genes 1

ic  

of the parent 1C  or to the values of the genes 2

ic  of the parent C2.  

The choice of parent is made in a random way with a uniform distribution. The exploration 

interval is bounded. 

 

A.8) Heuristic crossover 

This technique was developed by (Wright, 1990) [44], it is unique in that: (1) uses the values 

of the objective function )( iCo  to determine the search direction, (2) it produces a single 

descendant, and (3) it may not produce a descendant at all. The operator generates a single child 

(offspring) as 

                                                               1211 )( iiii cccrh                                                       (2.14) 

Where r is a random number between 0 and 1, and 1C is the most suitable parent, i.e, 

)()( 21 CoCo  for a maximization problem and )()( 21 CoCo  for a minimization problem. 

It is clear that this operator can generate genes outside the search domain. In this case another 

random number r is generated and another descendant is created. And if after w trials the 

constraint is not satisfied (search domain overflowed), the process is broken and does not 

produce a descendant. 

Finally, it seems that this operator contributes to the accuracy of the solution found; his major 

responsibilities are (1) to improve local research, and (2) to carry out research in the most 

promising direction. 

 

A.9) Extended crossover 

The hi gene of the H chromosome generated by this operator is defined as follows 

                                                              )( 1211

iiii ccch                                                      (2.15) 

Such as  is randomly chosen having a uniform distribution of the interval ]1,[ dd  ]. In this 

type of crossing, d is taken equal to 0. In the opposite case this type of cross is called 

intermediate crossing. The typical value for d in this case is 0.25. 

One notes that the gene values of the chromosomes generated no longer belong to the interval 

[ai, bi]. This makes the field of exploration quite large (same remark as for the crossover BLX-

α). 

Crossing is the key to GAs power. It is directly related to the ability of a population of 
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individuals to explore their research space and to combine the best results. It allows the GAs to 

concentrate its research in the most promising parts of the solution space, by combining chains 

containing partial solutions. However this operator is controlled by an important parameter 

which is the probability of crossing cp . This probability varies between 0.6 and 1. It indicates 

whether the crossing between two individuals is with pairing (gene exchange) or without pairing. 

For example for two individuals (parents) 1C  and 2C  chosen for a cross if 6.0cp . Then a 

random number r is generated in the interval [0, 1], if cpr  one has a crossing with pairing, 

otherwise one will has a crossing without matching and the parents are thus copied in the new 

generation. 

 

b. Mutation operator 

One defines a mutation as the inversion of a bit in a chromosome (Figure 2.12). This is like 

randomly changing the value of a device parameter. Mutations play the role of noise and prevent 

the evolution from freezing. They make it possible to ensure a global as well as a local search, 

according to the weight and the number of mutated bits. Moreover, they mathematically 

guarantee that the global optimum can be achieved. 

Unlike crossover, the mutation rate is generally low and ranges between 0.5% and 1% of the 

total population. This low rate makes it possible to avoid a random dispersion of the population 

and involves only a few modifications on a limited number of individuals. Mutation is becoming 

more and more important in GAs, while only a few years ago its role was still considered as an 

accessory.  

                                               1 0 1 1 0 1 1 0 1 0 1 

                                               1 0 1 1 0 1 0 0 1 0 1 

Figure 2.12    Mutation. 

To avoid altering the performance of the GAs, Goldberg advises to take a mutation frequency 

every 1000 bits. Some researchers recommend taking the following value.  

                                                                       
L

Pm

1
                                                               (2.16) 

Where L is the length of the chromosome. Other studies have led to an empirical formula that 

expresses the optimal mutation rate in terms of chromosome length L and population size N. 

                                                                    
LN

Pm

1
                                                           (2.17) 

2.5.  Convergence 

If the GAs has been correctly implemented, the population evolves step by step over 

successive generations and one finds that the average score of the population evolves globally 

towards the optimum of the function to be maximized. Convergence is the progression towards 

this optimality. A gene will be said to have converged if 95% of the population has this 

characteristic. The population converged when all the genes converged. 

Child 

Mutated child 
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2.6.  Advantage of GAs 

Unlike operational research, the GAs requires no knowledge of how to solve the problem. It is 

only necessary to be able to evaluate the quality of the solution. Also, in the case of the search 

for the optimum of the analytic function, one does not need any differentiability or continuity.  

2.7.  Limitation of GAs 

As mentioned earlier, GAs are effective tools for a very large class of problems. In addition, 

they make it possible to deal with problems in which the function to be optimized does not have 

any property of continuity or differentiability, but GAs have certain limitations [42]: 

1. They are less efficient than a specific deterministic algorithm (where one exists) dedicated 

to a given problem. 

2. The many parameters that control them are delicate to regulate (probabilities of crossing 

and mutation in particular), as well as chromosome coding that can radically change the speed of 

convergence. 

3. In order to guarantee the robustness of evolutionary algorithms, the calculation of a very 

large number of fitness (sometimes of the order of several hundreds of thousands) is generally 

necessary before obtaining a good solution. This large number of calculations can be problematic 

when the cost of computing (system or temporal resources) of the fitness is important, when 

working in large scale on functions of high complexity for example. 

4. They may have difficulty handling many complex constraints because the penalty 

technique integrated in the cost function uses a posteriori constraints in a passive way. 

2.8.  Conclusion: 

Genetic algorithms can be used as a combinatorial research method, including properties 

based on parallelism and exploration, interesting search heuristics based on principles of self-

organization. 

Genetic algorithms may be an interesting alternative when traditional optimization methods 

(climber method, analytical methods such as least-squares) fail to provide reliable results 

efficiently. 

However, as one has often pointed out in this chapter, most of the common implementations 

of GAs require an environment (process or process model) that is tolerant enough to allow the 

algorithm the "right to error " 

This implies that the environment must permit the testing and evaluation of poor condidate 

solutions. 

The genetic algorithm used alone is a search mechanism that is often "too blind" so it can be 

made more effective when combined with traditional, usually more local, search methods 

(conventional regulator, fuzzy regulator or neural control system). 
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Chapter  03 

FUZZY LOGIC, NEURAL NETWORKS, NEURO-FUZZY. 

3.1.  Introduction 

The knowledge of the universe in which one evolves is generally imperfect, in the measure 

where they can suffer from uncertaintiesand/or inaccuracies.One can see that man naturally 

integrates these imperfections in everyday life, especially in terms of reasoning and decision. 

The idea of Zadeh, in 1965, through the new concept of gradual set membership of an element 

to a set, was to define a multivalued logic allowing to model these imperfections i.e.,  to take into 

account the intermediate states between the whole and the nothing. 

Regarding the control of any process, fuzzy logic allows an innovative approach compared to 

the conventional control system.  In the latter, one in general tries to model the process through a 

certain number of differential equations. This modeling is made difficult as the complexity of the 

processes to be controlled increases. In a radically opposite way, a controller will not describe 

the process but the way to control it, as would a human expert through rules that naturally 

integrate imprecision and uncertainty. In this approach, one will therefore speak of fuzzy expert 

systems based on production rules of the form "if premise then conclusion". These systems are 

extensions of classical expert systems in the measured that they incorporate imperfect 

knowledge.A number of applications using fuzzy logic have emerged these last years. The most 

publicized are certainly the achievements of researchers, since the 80s, were interested in 

particular control / process control. These applications are based on the work of Mamdani, who 

was certainly the first to see the potential of fuzzy subset theory in this field. 

3.2.  Fuzzy logic principle  

A temperature of 10 oC, for a human, is generally considered cold, a temperature of 40 oC is 

qualified as hot. If each of these values belongs to a well defined category (set), what about 

intermediate values? An intuitive answer is to say that they belong to one or two of the preceding 

categories with different levels (normalized i.e., defined on [0,1]). This avoids rigid transitions 

between different categories, as is the case in binary logic (Figure 3.1). It seems in effect 

surprising to consider that a temperature of 40oC is hot, while a temperature of 39.9oC is not.  

This example illustrates the fact that a classical binary logic is, in some cases, too restrictive. 

It is necessary to use a multivalued logic that will be seen as an extension of the previous one. 

 

 

 

 

 

 

Figure 3.1    Example of sets definition on a universe of discourse in binary logic and fuzzy 

logic. 
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hot cold 
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3.2.1. Fuzzy sets 

In a classical set, an element belongs to a set if its binary membership function is 1. 

In a fuzzy set, the membership function takes its values in [0, 1]. Thus, an element belongs 

more or less to the ''concept ''that represents the whole. A fuzzy set is thus defined by the set of 

values of the membership function on the definition domain (discrete or continuous). 

Ex: The concept of '' Cold '' can be defined by the discrete fuzzy set.  

A = {1/10, 0.8 / 15, 0.6 / 20, 0.4 / 30, 0.1 / 38, 0/40, 0/50}. 

Ex: The concept ''hot'' can be defined as the set 

 xxfxC c  )(/  

3.2.1.1. Fuzzy subset 

One has just seen what is meant by subset or, from a formal point of view. A fuzzy subset A 

on a universe of discourse U, is represented as in Figure 4.2through its characteristic function A

. It can also be described by a number of characteristics such as: 

a. Support 

The support is defined as the set of values of the domain X for which the membership 

function is not null. 

                                                        0)(/  xfXxASupp A                                                          (3.1) 

b. Height 

The height of a fuzzy set A is the max value of the membership function on domain X. 

                                                            )()( xfMaxAh AXx                                                    (3.2) 

c. Kernel 

The kernel of a fuzzy set A is the set of values for which the membership function is equal to 

1. 

                                                       1)(/)(  xfXxAKern A                                               (3.3) 

d. Cardinal 

The cardinal of a fuzzy set A is the sum of the membership functions. 

                                                        




Xx

A xJACardA )()(                                                  (3.4) 

Given a membership function )(xA  of trapezoidal shape, one can define its height, its 

support and its kernel as follows: 

 

 

 

 

 

 

 

Figure 3.2    Support, kernel, and height of a trapezoidal function. 
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Heig(A) 
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e. Equality 

Two fuzzy sets A and B are equal if their equivalence functions are equal for all values of 

domain X. 

                                                      )()(: xfxfXx BA                                                 (3.5) 

f. Inclusion 

A fuzzy set A is included in a fuzzy set B if all its membership function values are smaller 

than those of B over the entire X domain. 

                                                       )()(: xfxfXx BA                                                 (3.6) 

g. Intersection 

The intersection C of 2 fuzzy sets A and B is defined as the fuzzy set whose membership 

function is the min of the membership functions of sets A and B. 

                                              )(),()(: xfxfMinxfXx BAc                                       (3.7) 

h. Union 

The union C of 2 fuzzy sets A and B is defined as the fuzzy set whose membership function is 

the max of the membership functions of sets A and B. 

                                              )(),()(: xfxfMaxxfXx BAc                                       (3.8) 

i. Complement 

The complement AC of a fuzzy set A is defined as: 

                                                    )(1)(: xfxfXx A
c
A                                               (3.9) 

A subset makes it possible to represent different notions, in particular the specificity and the 

precision. These different notions appear in Figure 3.3. 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

Figure 3.3    Form of membership functions. 
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3.2.2. Linguistic variable 

A linguistic variable is defined by a triplet ),,( VTUV where V  represents a classical variable 

(age, temperature, ...) defined on the universe of discourseU. VT is the set of possible  

instantiations of the variable V : it is about  fuzzy subsets identified by their label Ai : one writes 

thus  321 ,.......,, AAATV   [45]. 

Graphically, a linguistic variable can be represented as in  

Figure 3.4. 

 

 

 

 

 

Figure 3.4    Representation of a linguistic variable defined as    4321 ,,,,, AAAATUV V   

3.2.3. Fuzzy characterization 

A fuzzy characterization of a linguistic variable (V, U, TV) is a label Ai of subset or 

membership to TV. Thereafter, this name will qualify indifferently a fuzzy subset or his label. 

3.2.4. Proposals and fuzzy rule  

An elementary fuzzy proposition is defined from a linguistic variable (V, U, TV) by the 

qualification "V is A", with Amembership to TV. For example, "Paul's size is AVERAGE" is an 

elementary proposition defined from the linguistic variable (Paul's size, {sizes}, {..., 

AVERAGE, ...}) [45]. 

The truth value of an elementary proposition "V is A" is equal to A(v) where v is the exact 

numerical value of V. 

A general fuzzy proposition is defined from elementary propositions and binary (and, or, 

implied) or unary (no) logical operators. There are several methods for calculating the truth value 

of such propositions. One gives here only the most commonly used.  

- conjunction : (V1 is A1) and (V2 is A2) 

Min( )1(1 vA , )2(2 vA )                       (Zadehlogic ) 

Max( )1(1 vA + )2(2 vA  1, 0)         (Lukasiewicz logic) 

)1(1 vA . )2(2 vA (probabiliste logic) 

 

- disjunction : (V1 is A1) or (V2 is A2) 

Max( )1(1 vA , )2(2 vA )                               (Zadeh logic) 

Min( )1(1 vA  + )2(2 vA , 1)                         (Lukasiewicz logic) 

)1(1 vA  + )2(2 vA  )1(1 vA  . )2(2 vA   (probabiliste logic) 

 

- implication : (V1 is A1) implies (V2 is A2) 

Min(1  )1(1 vA  + )2(2 vA , 1)                (Lukasiewicz logic) 

𝜇𝐴𝑖  

A1 A2 A3 A4 

U 
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Min( )1(1 vA , )2(2 vA )                               (Mamdani logic) 

)1(1 vA . )2(2 vA                                         (Larsen logic) 

- complementation : not (V is A) 

1  )(vA  

In the above, v, v1 and v2 correspond to numerical instantiations actual variables V, V1 and V2. 

A fuzzy rule is a general fuzzy proposition using an implication between two fuzzy 

propositions. For example: 

 (V1 is A1) and  (V2 is A2) implies (V3 is A3) 

Or in a more linguistic form: 

If (V1 is A1) et (V2 is A2) then (V3 is A3) Is a fuzzy rule. The part (V1 is A1) and (V2 is A2) is 

called premise of the rule and (V3 is A3) is the conclusion. 

3.2.4.1. Activation of a fuzzy rule 

A rule can only be activated (i.e. intervene in the inference process) when the truth value of 

the fuzzy proposal constituting its premise is not zero. 

3.2.5. Classic architecture of a fuzzy controller (FLC)  

The classical architecture of a controller (FLC), proposed by Mamdani, is illustrated in Figure 

3.5[45]. 

 

 

 

 

 

 

 

 

 

 

Figure 3.5    Architecture of a fuzzy controller. 

As one can see in Figure 3.5, a controller or is composed of three parts: 

3.2.5.1. Fuzzification 

The objective of fuzzification is to transform the input deterministic variables into fuzzy 

variables, that is to say into linguistic variables, by defining membership functions for these 

different input variables. 

Membership functions can have different forms, but the trapezoidal, triangular or 

mathematical derived forms are the most commonly used. 

The physical input quantities X are reduced to normalized quantities x in a range of variation, 

often called the universe of discourse, which may be either discrete or continuous. Very often, 

this universe of discourse is limited, by applying a limitation on the numerical value of  |x|≤1, to 

overcome the problem of large variations of X. Normalization gains characterize scale factors 

Fuzzification 

Defuzzification 

Inference 
knowledge

base 

 
Robot 

sensors 

effectors 
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between x and X. 

In the case of a continuous universe of discourse, the number of linguistic values (very 

negative, negative, zero, positive, very positive ...) represented by membership functions for a 

variable x1 can vary (for example three, five or seven). An example of continuous fuzzification is 

shown (Figure 3.4) for a single variable of x, with trapezoidal membership functions, the 

corresponding linguistic values are characterized by symbols such as N for negative, Z for zero, 

and P for positive. So x1=0.2. 

After fuzzification becomes the fuzzy subset x1 = (0, 0.8, 0.2).  

  

 

 

 

 

 

  

 

 

Figure 3.6    Continuous fuzzification with three membership functions. 

 

In general, the membership functions take their value in the interval [0, 1]. 

The next section discusses the second step of establishing the rules from these fuzzy variables 

and evaluating them. 

3.2.5.2. Inference: 

The adjustment strategy depends essentially on the inferences adopted. They link the 

measured quantities, which are the input variables (transformed into linguistic variables using 

fuzzification). To the output variable.The latter is also expressed as a linguistic variable. In the 

case of fuzzy logic adjustment. These are inferences with several rules. 

 

a. Fuzzy rules - rules inference matrix 

The fuzzy rules represent the heart of the controller, and allow to express in linguistic form 

the input variables of the controller to the control variables of the system. 

One type of rule may be for example: 

If x1 is "positive" and x2 is "zero" then u is "negative" 

Wherex1 and x2 represent two input variables of the controller such as: the deviation and its 

variation and u the control. Experience in developing these rules plays an important role. 

However, the literature gives us some methods that can be used to collect these rules, which 

can be classified into two types of studies. 

In the case of a conventional system, where the inputs and outputs of the regulator are well 

defined, it is useless to go through a knowledge extraction step. But in general, the number of 

rules is small, from four to twenty. 

In the case of a complex system, these methods are based on the know-how of the human 

              -1             0   0.2      1                    x1  

 

N                  Z                   P  

 1 

0.8 

 

0.2 
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operator, who himself describes control strategies. 

A graphical representation of all the rules, called the inference matrix or rule matrix, 

commonly used in the literature, makes it possible to synthesize the heart of the fuzzy regulator. 

Table 3.1 shows an example of an inference matrix for the two input linguistic variables x1 

and x2 and the fuzzy output variable u used in the previous paragraph. The VP and VNsymbols 

represent Very Negative and Very Positive respectively. 

 

x2 u 

N                   Z                        P   

VP                 P                         Z     

 P                  Z                          N     

 Z                  N                        VN  

N        

Z 

P 

 

x1 

Table 3.1    Inference matrix. 

Box (3, 2) of the Table (3.1) represents the rule: 

If x1 is "positive" and x2 is "zero" then u is "negative" 

When all the boxes in the inference matrix are filled (as in the example in Table 3.1), they are 

complete inference rules, otherwise incomplete inference rules. However, this graphical 

representation becomes more complex if there are more than three input linguistic variables. 

 

b. Linguistic description of the adjustment inferences 

For the presentation of the different possibilities express the inferences, a two-input system 

(linguistic variables after fuzzification) is chosen. 

According to the general indications in the previous paragraph,  inferences can be written 

explicitly using a number of rules [46]. 

If (x1 is big negative AND x2 is about zero) 

 So (xR equal big positive), OR 

If (x1 is bignegative AND x2 is average positive) 

So (xRequal mean positive), OR 

. 

. 

. 

If (xN-1 is big positive AND xN is big positive) 

     So (xR equal big positive), OR 

In this case, the inference is composed of twenty five rules. Each fuzzy variable x1 and x2 is 

subdivided into five sets. 

 

c. Symbolic description of the inferences of settings 

The linguistic description of the adjustment inferences is generally quite heavy.A certain 

simplification is achieved by the symbolic description. 

If (x1 is BN AND x2 is AZ).Then (xR = BP), OR. 

If (x1 is BN AND x2 is AP).Then (xR = MP), OR. 
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. 

. 

. 

If (xN-1is BP AND xN is BP). 

 Then (xR = BP), OR. 

  

d. Numerical processing of inferences 

The purpose of the fuzzy reasoning is to determine, according to the input linguistic variables 

x, resulting from the fuzzification of the real input variables X and the fuzzy control rules, a 

fuzzy set of possible values for the output linguistic variable u. 

  An inference rule is activated when the membership factor related to the condition of this 

rule is not zero. 

-For fuzzy logic adjustment. One of the following methods is generally used. 

• MAX-MIN inference method. 

• MAX-PROD inference method. 

• SUM-PROD inference method. 

3.2.5.3. Defuzzification 

As one has seen, inference methods provide a function for the resulting membership variable 

uRes (xR), so this is fuzzy information. Since the controller requires a precise control signal u at its 

input, it is necessary to providea transformation of this fuzzy information into a specific 

information, this transformation is called defuzzification. 

a. Defuzzication by center of gravity 

The most commonly used defuzzification method is the determination of the center of gravity 

of the resulting membership function uRes(xR) [46]. 
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Figure 3.7    Calculation of the center of gravity in the case of simple membership functions. 
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b. Method of maximum 

It consists in taking the abscissa corresponding to the maximum value of the resulting 

membership function as the output value of the controller. In the case where there are several 

corresponding abscissas, one then takes their averages. 

 

Figure 3.8    Defuzzification by the method of the maximum. 

The recent theoretical progress and the growing number of industrial applications (more than 

1,500 industrial applications identified in 1994) of fuzzy control seem to give a respectable place 

to this approach. 

Indeed, fuzzy control applications now exist in a wide variety of fields, such as robotics, 

machine tools, vehicles, railways, domestic applications (air conditioning, shower, cameras, 

household appliances). . . 

It seems that the realization of a fuzzy controller is particularly recommended when the 

process is poorly known or difficult to describe, due to its complexity. In this case, the ease of 

implementation depends of course on the application, the difficulty residing in obtaining the 

expertise related to the application. 

There are still some difficult points, particularly with regard to the problem of choosing the 

techniques specific to fuzzy controllers to be used for a given type of process.This problem is 

compensated by the ease of implementation of fuzzy controllers and their ability to implement 

human expertise in the form of rules. 

That is why researchers, trying to combine fuzzy logic with other methods to improve fuzzy 

control, among these methods one has neural networks. 

3.3.  Neural networks 

The principle of artificial neural networks was born in the 1940s from an analogy with the 

human nervous system. The term today refers to a very large number of models, many of which 

have not morebig thing to be seen with the functioning of biological neurons, and must therefore 

be taken as a metaphor. These different models have in common the use of automata, called 

neurons or units, each capable of performing very simple processing and exchanging information 

between them. 

ANNs are generally associated with a "learning" algorithm that allows the processing carried 

out to be modified more or less automatically in order to perform a given task.One will only 

discuss ANNs here with the vision that an engineer might have, forgetting aspects related to 

cognitive science or neurobiology. 
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3.3.1. Definition of a biological neuron  

The brain is made up of about 1012 neurons (1000 billion), with 1000 to 10000 synapses 

(connections) per neuron. The neuron is a cell composed of a cell body and a nucleus. The 

cellular body branches to form what are called dendrites.  These are sometimes so numerous that 

one speak then of dendritic hair or dendritic arborization. It is through dendrites that information 

is sent from the outside to the soma, the body of the neuron. 

The information processed by the neuron then travels along the (unique) axon to be 

transmitted to the other neurons. Transmission between two neurons is not direct. In fact, there is 

an intercellular space of a few tens of Angstroms (10-9 m) between the axon of the afferent 

neuron and the dendrites  of the efferent neuron. The junction between two neurons is called the 

synapse Figure 3.9. 

 

Figure 3.9    A neuron with its dendritic arborization 

a) Structure of the neuron,     b) Action potential of a neuron. 

3.3.2. The artificial neuron:  

Figure 3.10 shows the structure of an artificial neuron. Each artificial neuron is an elementary 

processor. It receives a variable number of inputs from upstream neurons. Each of these inputs is 

associated with a weight w representing the strength of the connection. 

Each elementary processor has a unique output, which then branches to feed a variable 

number of downstream neurons. Each connection is associated with a weight. 

 

Figure 3.10    Mapping biological neuron to artificial neuron. 
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3.3.3. Function of the neuron 

There are two phases. The first is usually the calculation of the weighted sum of inputs (a) 

according to the following expression: 

                                                                      )( iiewa                                                        (3.11) 

From this value, a threshold function calculates the value of the state of the neuron. There are 

many possible forms for the threshold function. The most common are shown in Figure 3.11 

Offering an infinity of possible values include in the interval [0, +1] (or [-1, +1]). 

 

  

 

 

 

 

 

 

Figure 3.11    Different types of threshold functions for the artificial neuron. 

                a) Threshold function,      b) Linear by pieces,      c) Sigmoid. 

3.3.4. Formal neuron 

3.3.4.1. Model of Mc Culloch and Pitts [47] 

The formal neuron is a model with approximately all the characteristics of the biological 

neuron. His first modeling was in 1943 by MAC Culloch and Pitts. 

It makes a weighted sum of the potential actions that reach him. Then activate it according to 

the value found. 

If this value exceeds a certain threshold, the neuron is activated and transmits a signal, 

otherwise it does not transmit it, it is said that the neuron has an activity or nothing. One can 

represent a formal neuron by the following figure: 

 

 

 

 

 

 

 

 

 

 

  

 

Figure 3.12    General models of neurons. 
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- The somator is realizes the weighted sum of the inputs of the neuron and is governed by the 

equation 

                                                 
 


N

j

M

k

iKikjiji WtUbtYatV
1 1

)()()(                                       (3.12) 

Where  I  is the index of the neuron in question, Vi (t) the output of the weighting summator of 

neuron i at time (t), Yj (t)(j = 1 ... ..N) the outputs of the N neurons connected to the neuron I 

(where a neuron can have a return on itself), aij the  synaptic weight connecting neuron j to 

neuron I, Uk(t), k = 1 ... ..M  the network inputs, bik the synaptic weight connecting input K to 

neuron I and Wi the weight terms bias (its input is 1), this term is added for reasons of 

convergence. 

3.3.5. Some models of ANNs 

One presents in this section several models of important networks for the following of our 

work. One limits this presentation to non-recurring networks [48]. 

3.3.5.1. Multilayer ANNs 

It is an extension of the previous one, with one or more layers hidden between the input and 

the output. Each neuron in a layer is connected to all the neurons of the previous layer and the 

next layer (except for the input and output layers) and there are no connections between the cells 

of the same layer. The activation functions used in this type of network are mainly threshold or 

sigmoid functions. It can solve non-linearly separable problems and more complicated logical 

problems, including the famous problem of XOR. He also follows a supervised learning 

according to the error correction rule. 

 

 

 
 

Figure 3.13    A multilayer network with 2 input neurons, 4 hidden neurons 

and an output neuron. 

 

a. Supervised learning of multilayered ANNs 

The classical method for supervised learning consists in giving a set of examples, i.e a finite 

set of vector pairs ),( ii yx . In such a pair, x1 refers to the network input  and  y1 the desired 

output for this input. The function calculated by the network is then written in a parametric form: 

),( wxf designates the output of the network when the vector x is presented as its input and it 

Direction of error propagation  

Direction of information 

propagation   

Input 
Output 
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uses the synaptic weights contained in the vector w . One finally givesFor himself a distance on 

the output vector space, i.e a means to measure the error committed at a point by the network. 

One then tries to find the value of w which minimizes the sum of the total error committed by 

the network, that is to say the sum of the distances between the outputs obtained and the desired 

outputs, i.e the sum of the )),,(( ii ywxfd . This error is a function of w  and one can therefore 

use the classical techniques of function optimization to find its minimum. 

 

A.1) Back propagation in the case of a PMC 

The sigmoid function of parameter k> 0 is defined by:  
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This function is an approximation indefinitely differentiable of the Heaviside threshold 

function, the better that k is large. One will take k = 1 in the following: 
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One can notice that the derivative of the function  σ is simple to calculate:  
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It is essential that this calculation is simple because the derivative of this function will be used 

in the weight update rule by the gradient back-propagation algorithm. For this reason, one 

sometimes uses the function )(xth  which is an approximation of the Heaviside function whose 

derivative is equal to )(1 2 xth . One can now define the networks considered in the following: 

Definition 

An elementary cell with n real inputs ),.....,( 1 nxxx 


 is defined by the actual synaptic weights 

),.....,( 1 nwww 


 and the output o is calculated by the following formula: 

                                         
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A.2) Introduction of the algorithm 

The principle of the algorithm is, as in the case of the linear perceptron, to minimize an error 

function. It is then necessary to calculate the contribution to this error of each of the synaptic 

weights. It is this step that is difficult. Indeed, each of the weights influences the corresponding 

neuron, but the modification for this neuron will influence all the neurons of the following 

layers. This problem is sometimes referred to as the “Credit Assignment Problem”. 

Either a PMC defined by an architecture  with n inputs and p outputs, or 


w  the vector of the 

synaptic weights associated with all the links of the network. The error of the PMC on anlearning 
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sample S of examples (


sx ,


sc ) is defined by:   
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Where
s

Ko   is the k-th component of the output vector 


so  computed by the PMC on the input 


sx . The error therefore measures the difference between the expected and calculated outputs 

over the complete sample. One assumesS fixed, the problem is to determine a vector


w  which 

minimizes 


)(wE . However, in the same way as for the perceptron with the Widrow-Hoff rule, 

rather than trying to minimize the overall error on the entire sample, one tries to minimize the 

error on each individual example presentation. The error for an example is: 

                                                     






p

K

KK
cx

ocwE

1

2

),(
)(

2

1
)(                                           (3.18) 

One denotes E the function ),(  cxE , E is a function of synaptic weights, to apply the 

gradient method, one must evaluate the partial derivatives of this function E with respect to 

synaptic weights. The following calculations are easy. The only complication comes from the 

complexity of the notations and indices used, acomplication due to the structure of the PMC. 

• Each cell is defined by an index. 

• The network has p output cells. 

• Ifi is the index of an output cell, ci is the expected output for this cell on the input 


x . 

• ijw  is the synaptic weight associated with the link between cell j to cell i, which implies that 

they are on two successive layers by definition of the architecture. 

• ijx  is the input associated with the link between cell j to cell i. 

• )(ipred  is the set of cells whose output is an input of cell i, this implies that the cell is not 

an input cell and that all elements of )(ipred  belong to the previous layer of that to which cell i 

belongs, 

• iy the total input of cell i, either 




)(ipredj

ijiji xwy , 

• io  is the output of cell i, either )( ii yo  ,  

• )(iSucc is the set of cells that take as input the output of cell i, this implies that the cell is not 

an output cell and that all elements of Succ(i) belong to the next layer of the one to which cell i 

belongs.  

One now has to evaluate ijwwE 


/)(  which one will note 

ijwE  / . First of all, ijw  can only influence the output of the network through the calculation 
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of the quantity iy , which authorizes to write that: 
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So one needs only to compute  iyE  / , for that one will distinguish two cases: the case where 

cell i is an output cell and the case where it is an internal cell. 

Cell i is an output cell: 

In this case, the quantity iy  can only influence the output of the network by calculation of io . 

So one has: 
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One will now calculate each of the two partial derivatives appearing in equation (3.20). For 

the first of these two derivatives one has: 
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Only the term corresponding to k=ihas a non-zero derivative, which finally gives us: 
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For the second of the two derivatives of equation (3.20), using the definition of the calculation 

of the output of an elementary cell and the formula for calculating the derivative of the sigmoid 

function given in(3.21), one has : 
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By substituting the results obtained by equations (3.22) and (3.23) in equation (3.14), one 

obtains: 

                                                         )1()( iiii

i

oooc
y

E





                                                 (3.24) 

Cell i is an internal cell 

In this case, the quantity iy  will influence the network by all the calculations of the cells of 

the set )(iSucc . One then has: 
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By studying these two cases, one obtained two equations (3.24) and (3.25), which allow us to 

compute the partial derivatives iyE  / for any cell i. The calculation should be done for the 
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output cells and then the cells of the before latest layer to the cells of the first layer. This is why 

one talks about "back propagation". Thanks to the equation (3.19). One can calculate all the 

partial derivatives ijwwE 


/)( . Finally, to deduce the modification to be made on the synaptic 

weights, one just has to remember that the gradient method tells us that: 

                                                                
ij

ij
w

wE
w






)(


                                                       (3.26) 

All the elements are therefore in place to allow us to define the algorithm of back-propagation 

of the gradient. 

 

A.3) The learning step 

Back propagation is a gradient descent technique that must converge to the solution, provided 

that the error surface is continuous. Usually, the step is changed over time (intuitively, it is to 

reproduce a phenomenon found in psychology on learning subjects, where when the subjects are 

''new'' they tend to absorb the information with very little of critical thinking, while more 

experienced subjects are more reluctant to acquire new concepts challenging their '' culture ''), by 

taking values near to 1 at the beginning of the learning, and by making this coefficient tend 

towards 0. 

3.3.5.2. ANN with radial basic functions 

These are the networks that are also calls RBF ("Radial Basic Functions"). The architecture is 

the same as for the PMC showever, the basic functions used here are Gaussian functions. 

As in the previous model, one finds an organization with an input layer, a hidden layer and an 

output layer. The main difference is that each hidden neuron only reacts to a small part of the 

input space (its area of influence). 

For a network with n inputs and m hidden units, the activation of hidden neurons is given by a 

Gaussian type function (the input and activation functions are confused): 
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Wherei denotes the index of the neuron, k traverses the set of inputs denoted ke , and ikc ,  and 

2

,ik are parameters called respectively centers and variances of the Gaussians. 

Figure 3.14shows the shape of this activation function for a neuron with a single input. 

 

Figure 3.14    Activation function of a hidden neuron with a single input. 
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Each of these neurons is therefore activated significantly, only for input values relatively 

close to Gaussian centers. 

Connections from input neurons are not weighted. The activation of an output neuron of index 

i is given by: 
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aw
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(3.28)

 

Wherej goes through all the indices of hidden neurons. Neurons of this type therefore realize a 

weighted sum of the activation values of the hidden neurons. 

The term  

m

j ja
1

called normalization factor is not mandatory. One speaks of a standardized 

network when it is used. 

 

a. Learning 

Learning takes place in these networks by modifying the weights of connections between 

hidden and output neurons, and the centers and variances of the Gaussians. As before, a gradient 

descent is performed in order to minimize the quadratic error, the expression of which is given 

by equation (3.17). The modifications of the different parameters are given by the following 

rules [48]. 
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It is also possible, as in the case of equation(3.29), to introduce a term proportional to the last 

modification of these parameters. 

By posing  
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 (normalization factor) one gets:  
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Wherei is the index of an output neuron and j is the index of a hidden neuron. 
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Where j is the index of a hidden neuron. 
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Where i goes through the indices of the neurons to which the neuron j sends connections 

(output neurons). 
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It is frequent to use only learning on the weights ijw  of the connections between the hidden 

layer and the output layer. One can note that the network output is linear with respect to these 

parameters, which reduces the risk of blocking in a local minimum of the error function during 

learning. In this case, the variances and centers of Gaussians are in this case chosen in such a 

way as to uniformly cover the desired input domain. 

 

3.3.5.3. CMAC-type ANN [49] 

The CMAC type networks (for Cerebellar Model Articulation Control), introduced by J. S. 

Albus. 

a. Structure 

The functioning of this model is very simple and relatively far from that of the other models 

[48]. 

It is based on several different discretizations of the input space in the form of grids slightly 

offset from each other (see Figure 3.15). 

 

Figure 3.15    Discretization of a two-dimensional input space by a CMAC-type network. 

 

Each of these "divisions" defines a set of cells (also called receptor fields) to which the input 

neurons of the network are associated (each cell is associated with a neuron). 

Each of these neurons has a binary activation degree (i.e. 0 or 1) and is activated when the 

input value presented to the network is is located in the corresponding cell. 

The network is also composed of a set of output neurons that receive weighted connections 

from each input unit, and average the values transmitted by those connections. 

The learning is simply done in this network, by modifying the weights of the connections by a 

quantity proportional to the output error. 
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b. Properties 

The organization of the discretizations is such that the sets of cells activated by two adjacent 

input values have a large number of common elements. The network outputscorresponding to 

these two inputs are therefore also quite close since a part of the weights intervener in their 

calculation is the same in both cases. 

On the other hand, the neurons activated by two very dissimilar inputs are all different, and 

the two corresponding output values can therefore be very far apart. 

This characteristic is obtained thanks to the successive shift of the grids (see Figure 3.16). 

This topology gives the network a property of local generalization identical to that of RBF 

networks type. The modification of the weight associated with a connection originating from a 

given neuron only affects the output calculated by the network for the input values that activate 

thisneuron. 

 

Figure 3.16    Local generalization property of a CMAC network. 

 

The calculations of the values corresponding to the inputs E1 and E2 both of which are 

involved the weights associated with the cells b1 and c1 but different by the use of the weights 

associated with the cells a1 and a5. On the other hand, the inputs E1 and E3 do not activate any 

common cells. 

One can note that the ANNs formalism is not at all essential for this type of network whose 

operation can be seen as the application of a simple interpolation mechanism between different 

memory tables. 

3.3.6. ANN training by Kalman Filter 

One ends this part by Kalman filter, which is the set of mathematical equations, is considered 

as one of the important discoveries in the control theory principles. E. Kalman’s article [50] was 

published in the year 1960. Its most immediate applications were in control of complex dynamic 

systems, such as manufacturing processes, aircrafts, ships or spaceships (it was part of the 

Apollo onboard guidance system). It was and still is frequently used not only in automation, but 

also in the graphical and economical applications, etc. 



 

CHAPTER 03                                                                    FUZZY LOGIC, NEURAL NETWORKS, NEURO-FUZZY. 

70 
 

However, the Extended Kalman Filter started to appear in the neural network training 

applications only relatively recently, which was caused by the progress of computer systems 

development. 

Kalman filter has two prinsipal phases predict and update.  In the prediction phase, the  old 

state will be modified according to the physical laws  (the dynamic or "state transition" model). 

Next, in the update phase, a measurement of the state is taken. Along with this measurement 

comes some amount of uncertainty, and its covariance relative to that of the prediction from the 

previous phase determines how much the new measurement will affect the updated prediction.  

 

 

 

 

 

Initial estimates for 1ˆ kx and Pk-1 

 

Figure 3.17    Kalman filter phases 

Where 
kx̂  is the a priori state estimate, kx̂ is the posteriori state estimate, zk  the measurement 

state, Pk  the error covariance estimation, Kk  the  Kalman gain, RQ,  the process and 

measurement noise covariance, A then×n matrix relating the state K at the previous time step K-

1, B  the optional control input matrix, and H  the measurement equation. 

When the model is nonlinear, which is the case of neural networks, one has to extend Kalman 

filter using linearization procedure. The resulting filter is then called extended Kalman filter 

(EKF). A neural network is a nonlinear dynamic system that can by described by the following 

equations: 

kkkkkkkk rvuxhyandqxx   ),,( 111  

The process equation expresses the state of neural network as a stationary process corrupted 

with the process noise qk, where the state of the network x consists of network weights. 

Measurement equation expresses the desired output of the network as a nonlinear function of 

the input vector uk, of the weight vector xk and for recurrent networks also of the activations of 

recurrent neurons from previous step vk-1. 

3.4.  Fuzzy logic and neural networks  

Neural networks can deal with imprecise data, and fuzzy logic provides higher-level cognitive 

features such as approximate reasoning. Since 1988, various associations of these two methods 

Measurement Update (‘‘correct’’) 

(1) compute the Kalman gain 

1)(   RHHPHPK T
k

T
kk  

(2) Update estimate with measurementzk 

)ˆ(ˆˆ   kkkkk xHzKxx
 

(3) Update the error covariance 

 kkk PHKIP )(  

Time Update (‘‘Predict’’) 

(1) Project the state ahead 

11ˆˆ 
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(2) Project the error covariance ahead 
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
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https://en.wikipedia.org/wiki/Newton%27s_laws_of_motion
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were developed and are generally used to solve problems of classification, random processes as 

well as for the identification and control of complex systems. 

Systems based on neural networks and fuzzy logic make good function approximations from 

sample data. 

But they provide one more thing compared to the statistical approach: they do not need a 

priori knowledge about the internal functioning of the system. Fuzzy and neural systems do not 

need a mathematical model. They are pure estimators. 

Neural and fuzzy systems are digital estimators and dynamic systems. Neural theory drowns 

in the mathematical semantics of dynamic systems, adaptive control and statistics. Fuzzy theory 

overlaps with these semantics and in addition with probabilities, mathematical logic and 

measurement theory. 

In general, neural and fuzzy systems are used to improve the performance of real systems 

[51]. 

3.4.1. Multi-layered neuro-fuzzy networks 

The combined use of neural networks and fuzzy logic makes it possible to take advantage of 

both methods. The learning abilities of the first, the readability and flexibility of the second [52] 

make their joint use  suitable for our purpose. 

The use of a multi-layer network for which each layer corresponds to the realization of a step 

of a fuzzy inference system. A classical architecture can be described as follows (see Figure 

3.18): 

The input layer receives the values of the input variables. 

The units of the first hidden layers calculate by their activation function the degree of truth of 

the different fuzzy subsets (fuzzification). 

- The next layer corresponds to the calculation of the degree of truth of the premises of the 

different rules. 

The last layer or layers of the network perform the defuzzification phase and provide the 

output values. 

 

Figure 3.18    An example of a neuro-fuzzy network architecture. 

 

Output 

Premises 

activation  

Sub-sets 

activation  

Inputs 
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Several achievements of these different steps are possible. It is important to note that the use 

of a gradient descent learning algorithm (e.g gradient back-propagation) requires the use of 

derivable activation functions for all network units. 

3.4.1.1. Coding of fuzzy subsets 

The first layer of an architecture of this type has as many neurons as there are fuzzy subsets in 

the inference system represented. Each unit calculates the degree of truth of a particular subset 

by its threshold function. The only restriction on the choice of this function concerns its 

derivability. One generally finds it in the literature, the use of Gaussian functions similar to those 

of RBF networks [75]. This is particularly the case in the ANFIS architecture of J-S. R. Jang [53] 

or in the work of  P-Y. Glorennec [54]. 

In order to keep the formalism of the ANNs, the modifiable parameters (i.e., Gaussian centre 

and slope) are coded by the weights of connections coming from a neuron whose output remains 

fixed at 1. 

Some authors also choose to use multiple units spread over two layers. The membership 

function is in this case coded by the minimum or the difference of two sigmoids. It always has 

the shape of a Gaussian but has the advantage of being able to use two different average slopes 

to the left or right of the center. 

3.4.1.2. Calculation of the degree of activation of the premises 

The neurons of the hidden second layer each represent the premise of a rule. They receive as 

input the degree of truth of the different fuzzy subsets composing this premise and are in charge 

of calculating its own degree of truth. The activation functions used for these neurons depend on 

the operators present in the rules (conjunction or disjunction) and the logic used: 

- Zadeh logic: the minimum and maximum operators are not differentiable. However, they 

can be approached by derivable functions, called Softmin and Softmax: 
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In these two equations,   K  is a constant that must be chosen as large as possible. Figure 3.19 

compares the minimum (x, y) and softmin (x, y) functions for K = 10, 

- Lukasiewicz logic: the conjunction operator can be obtained using the approximation of the 

maximum function (0, x) by a sigmoid (see Figure 3.20): 
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The disjunction operator can be obtained by a similar method. 
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                      Minimum                                                             softmin 

Figure 3.19    Minimum (x, y) and softmin (x, y) functions. 

 

Figure 3.20    Approximation of the function Maximum (0, x) (dashed) by a sigmoid (in a 

continuous line). 

Probabilistic logic: the  operators of probabilistic logic are derivable and therefore do not pose 

problems. 

3.4.1.3. Inference and defuzzification 

These two phases are generally realized by the units of the last layer (or layers) of the 

network. The threshold functions used depend on the type of rules chosen: 

- Mamdani type rules: the many defuzzification methods proposed for rules of this type can 

not generally be expressed by a derivable expression. H. R. Berenji and P. Khedar [55] provide a 

particular solution in the case where the membership functions of the fuzzy subsets appearing in 

the conclusions are triangular functions. A first layer of neurons calculates a numerical value for 

each rule using the following expression: 

                                               )1)((
2

1
premisegd LLSoutput                                       (3.37) 

Where S is the abscissa of the summit of the triangular membership function, Ld and Lg are 

respectively the lengths of the subset portions to the right and left of S, and premise  is the 

degree of truth of the premise of the rule. 

This value corresponds to the average of the area for which the fuzzy subset has a maximum 

value (see Figure 3.21). 

A last layer of neurons (the output layer) produces a normalized sum of the values thus 

obtained for the different rules. This defuzzification method is called local average maxima. 
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Figure 3.21    Defuzzification by local average maxima. The fuzzy subset corresponding to the 

result of the rule is shown in gray. 

 

3.4.1.4. Examples of the multilayer network 

a. Example of Mamdani method 

It is the simplest in its rule form, but it is tedious to put in the form of nonlinear adaptive 

network (NAN). 

Description 

As shown in Figure 3.22, there are five layers. Each layer represents a part of the fuzzy 

inference system. 

 

Layer 1: It consists of fixed nodes. Nodes have the same function. 

liliili xffO  )(  

liO is the output of the nodes (i) of the layer 1, lix  is the input of the nodes (i) of the layer 1,  and  

if function of the nodes of the layer 1. 

This layer distributes the information of the input. 

 

Layer 2: It consists of nodes with adjustable parameters. These nodes represent the membership 

functions associated with the fuzzy values taken by the linguistic variables, which appear in the 

premises. Each node has a function. 
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Layer 3: The nodes of this layer are fixed, and perform functions simulating the inference 

engine. Each node has the function. 
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Layer 4: This layer is a little special, because it works in two modes: 

Mode 1: It performs the aggregation, so each node has the function. 
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Mode 2: It is used for learning, and it receives its inputs from layer 5. 

 

Layer 5: There are two types of nodes in this layer: 

Type 1: Nodes of this type perform defuzzification and have the function: 
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Type 2: Nodes of this type are used for learning. They receive the desired ones and transmit them 

to layer 4. 

  They have the function. 

                                                                 dd yffy  )(5                                                       (3.42) 

Where  yis the output of the node, x1, x2,........, xn  are the  node inputs, yd the desired output, 

and  m,σ,m1, σ1,...,mn, σn  the parameters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.22    Fuzzy rule system in the form of a NAN (Mamdani). 

 

A.1) Learning 

After the classification of the learning data, the back-propagation algorithm is used, which 

consists in minimizing the following quadratic error: 
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Where yd is the desired output and ythe real output. 
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b. Example of sugeno method 

Obtaining fuzzy rules in the form of sugeno is difficult. But, the representation in the form of 

an NAN is very simple. 

These rules are the most frequently encountered in neuro-fuzzy applications. Since the output 

is only a real constant, it is sufficient to code its value by the weight of the link between the 

neuron calculating the degree of truth of the premise and a neuron calculating the output value. 

The latter computes, once again, a normalized sum of the values of the different rules as 

described by the equation (3.28). 

- Sugeno type rules of higher order: when the output of the rules used is a function of the 

inputs, it is sufficient to add a layer of neurons calculating this function. 

 

B.1) Description 

The network is made up of five layers. The shape of such a network is shown by the example 

of Figure 3.13. This example presents the two fuzzy rules, in the form of sugeno, as follows: 

 

IF ((x is A1) and (y is B1)) So (z=p1x+q1y+r1) 

IF ((x is A2) and (y is B2)) So (z=p2x+q2y+r2) 

 

Layer 1: 

Each node of this layer has adjustable parameters. The function of the node is identical to the 

membership function to a fuzzy subset of the universe ofdiscourse of the inputs. 
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Where x  the input of the node and Ai the linguistic value associated with Ai  
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With iii cba ,,  the  node parameters for (1, i). 

Layer 2: The nodes of this layer are fixed, and they have the functions. 
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Layer 3: The nodes of this layer are fixed, they possess the functions. 
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Layer 4: Each node of this layer is adjustable, and has a function. 
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With iii rqp ,,  the adjustable parameters. 

Layer 5: It is a single node, fixed and serves as summing.  
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z :  the output. 

 

 
 

 

 

 

 

 

 

 

 

 

Figure 3.23    System of fuzzy rules in the form of an NAN (Sugeno). 

Learning 

Suppose one has an NAN with  L layers, and nk nodes in layer k. Let the function and also the 

output of the node (k, i). The output of a node depends on the inputs of this node as well as its 

parameters. 
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a, b,..., c the node parameter (K, i). 

The learning is done by the algorithm of back-propagation by minimizing the error E. 
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Where   

P :the number of examples to be learned. 

Tm.p  :the component of the desired node output (L, m). 

OL
m.p  :the component of the actual output of the node (L, m). 
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3.5.  Conclusion 

Fuzzy logic is a very powerful tool that makes it possible to obtain results and generate 

responses from vague, ambiguous, incomplete and imprecise information, where the 

mathematical models of the system are unknown or difficult to extract. Thus, the introduction of 

fuzzy logic into a process is intended to add a dimension to it. Intelligence, inspired by human 

thought which is a superposition of intuition. 

The knowledge acquisition phase presents a very delicate task, especially in the absence of an 

expert who can provide his know-how on the problem to be addressed. For this reason, extensive 

research has led to the development of systematic and optimal methods for the design of fuzzy 

controllers. Among these techniques are neuro-fuzzy, which are very powerful competitors in 

thefield of optimization and learning. 
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Chapter  04 

RESULTSAND DISCUSSIONS 

4.1.  Introduction  

This chapter talks about the implementation of the Neuro-Fuzz-Genetic control of a 

manipulator arm and a mobile robot. The traditional approach to fuzzy design is essentially based 

on the knowledge acquired by expert operators formulated as rules. Operators may not be able to 

transcribe their knowledge and experience into a fuzzy logic controller. Based on these findings, 

several optimal and systematic methods for designing fuzzy controllers have been developed. 

Among these methods one has adopted the connectionist approach of combining artificial 

neural networks and fuzzy systems to form neuro-fuzzy systems, genetic algorithms are used 

especially for optimizationof fuzzy subsets. 

4.2.  The first application  

(control of The  manipulator robot ROBAI Cyton  Gamma 1500) 

The ROBAI Cyton  Gamma 1500 is a humanoid robot arms, with seven degrees of freedom. It 

can reach around obstacles and by pass-gaps, reconfigure for strength, and manipulate objects with 

a clever fluid movement. In this study, we kept  only the first three joints with the end effector, see 

Figure 4.1. The three degrees of freedom are controlled by three DC servo motors, dynamixel 

MX-64. 
 

 

Figure 4.1    The ROBAI Cyton arm. 

 

The most general form is [56] 

                                                              𝑀(𝑞)𝑞̈ + 𝐻(𝑞, 𝑞̇) + 𝐺(𝑞) + 𝐹(𝑞, 𝑞̇) = 𝜏                                      (4.1) 

Where 𝑀(𝑞)  the  2 × 2 inertia matrix, 𝐻(𝑞, 𝑞̇)  2 × 1  Coriolis/centrifugal vector, 𝐺(𝑞)  2 × 1  

gravity vector,  𝐹(𝑞, 𝑞̇)    2 × 1  friction torque,  𝑞̇, 𝑞̈   2 × 1 velocity and acceleration vectors  and  

𝜏   2 × 1 the generalized joint torque vector.  

The second joint 

The third joint 
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4.2.1. Trajectory  generation 

The robot dynamics require from us to impose realizable trajectories. Continuity in position, 

speed and acceleration makes it possible for the robot to continue the trajectory with realizable 

controls, as in Figure 4.14. 

One can ensure this continuity by a Third-order polynomial trajectories, which is given by the 

equation 

                      𝑞𝑑(𝑡) = 𝑎0 + 𝑎1(𝑡 − 𝑡0) + 𝑎2(𝑡 − 𝑡0)
2 + 𝑎3(𝑡 − 𝑡0)

3        𝑡0 ≤ 𝑡 ≤ 𝑡𝑓               (4.2) 

 

a0 = q0 ,    𝑎1 = 𝑞̇0,      𝑎2 =
−3(𝑞0−𝑞𝑓)−(2𝑞̇0+𝑞̇𝑓)(𝑡𝑓−𝑡0)

(𝑡𝑓−𝑡0)
2 , 

𝑎3 =
2(𝑞0 − 𝑞𝑓) + (𝑞̇0 + 𝑞̇𝑓)(𝑡𝑓 − 𝑡0)

(𝑡𝑓 − 𝑡0)3
 

With 𝑡𝑓the movement final time, and 𝑞𝑑 the reference trajectory, 𝑞0, 𝑞̇0 and 𝑞𝑓 , 𝑞̇𝑓 the initial 

and final positions and velocities. 

4.2.2. Application of the fuzzy control  

First one applies a fuzzy control with a Mamdani-type regulator on a robot with two degrees of 

freedom. The control algorithm is as follows: 

1. Login values x1 and x2 (Controller inputs)  

2. Calculate mf1[i] and mf2[i] for all i, j.   (Find the values of all membership functions for input 

values x1 and x2). 

3. Calculate prem[i, j]=min [mf1[i], mf2[j]] for all i and j. (Find the values of the premises of the 

membership functions x1 and x2 given using the min operator).     

4. Calculate imps[i, j]=surfimp[rule[i, j], prem[i, j]] for all i and j. (Find the surfaces below the 

membership functions for all fuzzy sets involved). 

5. Initialisation num=0, den=0. (Initialize the numerator and denominator values of the gravity 

center CG). 

6. For i = 0 to n, for j = 0 to n, (Sweeping all surfaces to find the gravity center CG). 

num = num + imps[i, j]* center [rule[i, j]] (Calculate the numerator for the CG). 

den = den+imps[i, j]  (Calculate the denominator for the CG) 

7. Next  i, Next  j 

8. Output u=num/den.  (Output signal for the fuzzy controller). 

9. Go to step 1.    

4.2.2.1. Fuzzy controller with three membership functions 

In this step, one uses a PD-type fuzzy controller that contains three membership functions for 

the error and the variation of the error. 

The rules basics.(N: negative, Z: zero, P: positive). 

P Z N ΔE 

E 

Z N N N 

P Z N Z 

P P Z P 

Table 4.1    Rules base 
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a. Membership functions: 

The form of the membership functions associated with the error, the variation of the error, for 

the two regulators is given in Figure 4.2. 

 

   

 

 

 

 

 

 

Figure 4.2    Membership functions, FLC of three membership functions. 

 

The graphs in Figure 4.3 represent the two joints of the robot, during the trajectories tracking. 

 

Figure 4.3     Response of the system.(Fuzzy- regulatorof 3 membership functions).  

 A.  without load.       B. with load. 

From the simulation results obtained one can notice that: 

- The joints of the robot follow the desired trajectories, with a maximum error that does not 

reach 5 × 10-2 radians. 

- A quasi-linear relationship between the error and the control. 

- The oscillations at the start of the robot are due to the inertia of the arm. 

In order to test the robustness of the controller onecarries out the following tests: 

 

b. Load test: 

In this case the FLC (3 × 3) was tested for a sudden change in the load carried by the robot. 

This is achieved by letting load of 0.18 and 0.36 Kg at 3.6 seconds. It is concluded from Figure 

4.4 that the two regulators provide a higher torque to compensate the effect of the additional load. 

The fall of the latter during the movement does not affect the system, because of the response 

speed of the regulators. 
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Figure 4.4    Response of the system.(Fuzzy- regulatorof 3 membership functions). A. letting load 

of 0.18 Kg, B. letting load of 0.36 Kg. 

c. Drive rupture: 

This test consists of simulating a failure of one of the two regulators controlling the robot 

during its movement. One introduces a fault on regulator 1 at t = 2 seconds. 

The simulation results obtained in Figure 4.5 show that despite the divergence of the first joint 

caused by the failure introduced on the first regulator, the second follows its reference trajectory 

with an acceptable error. This illustrates the advantage of decentralized control over centralized 

control. 

To represent the influence of the number of membership functions, and the rules on the control 

law oneincreases the number of membership functions. 

 

Figure 4.5    Response of the system.(Fuzzy- regulatorof 3 membership functions). Rupture drive. 
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4.2.2.2. Fuzzy controller with five membership functions 

In this case one uses 5 membership functions, with 25 rules in the knowledge base. 

The forms of the membership function and the normalization gains are the same as those of the 

3 membership functions regulator. 

The rules basics. 

PB PS ZE NS NB ∆E 

E 

ZE NS NB NB NB NB 

PS ZE NS NB NB NS 

PB PS ZE NS NB ZE 

PB PB PS NE NS PS 

PB PB PB PS ZE PB 

Table 4.2    Basic rules, FLC (5 × 5). 

Membership functions: 

 

 

 

 

 

 

Figure 4.6    Membership functions, FLC of 5 membership functions. 

To be able to compare the performance of the synthesized controls, one does the same 

performance tests for the three membership functions fuzzy controller. 

The simulation results obtained are represented in Figure 4.7, Figure 4.8 where no significant 

improvement in performance is observed. 

 

Figure 4.7    Response of the system.(Fuzzy- regulatorof 5 membership functions). A. without 

load.B.with load. 
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Figure 4.8    Response of the system.(Fuzzy- regulatorof 5 membership functions).  

A.  letting load of 0.18 Kg,   B. letting load of 0.36 Kg. 

4.2.2.3. Fuzzy controller with eleven membership functions 

In this case one has synthesized a fuzzy regulator that has 121 rules in the knowledge base. One 

does the same thing as the 3 and 5 membership functions regulators. 

The rules basics. 

PB 

 

PT PC PD PA ZE NA ND NC NT NB ∆E 

E 

ZE NA ND NC NT NB NB NB NB NB NB NB 

PA ZE NA ND NC NT NB NB NB NB NB NT 

PD PA ZE NA ND NC NT NB NB NB NB NC 

PC PD PA ZE NA ND NC NT NB NB NB ND 

PT PC PD PA ZE NA ND NC NT NB NB NA 

PB PT PC PD PA ZE NA ND NC NT NB ZE 

PB PB PT PC PD PA ZE NA ND NC NT PA 

PB PB PB PT PC PD PA ZE NA ND NC PD 

PB PB PB PB PT PC PD PA ZE NA ND PC 

PB PB PB PB PB PT PC PD PA ZE NA PT 

PB PB PB PB PB PB PT PC PD PA ZE PB 

Table 4.3    Basic rules, FLC (11 × 11). 

Membership functions: 

 

 

 

  

Figure 4.9    Membership functions, FLC of 11membership functions. 
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Figure 4.10    Response of the system.(Fuzzy- regulatorof 11 membership functions). A. without 

load.B.with load. 

 

Figure 4.11    Response of the system.(Fuzzy- regulatorof 11 membership functions).  

A. letting load of 0.18 Kg,   B. letting load of 0.36 Kg. 

4.2.2.4. Comparative analysis 

Looking at the results already presented in  Table 4.4, it can be seen that: 

The regulator with 3 membership functions give better results than those given by the 

regulators with 5, and with 11 membership functions. 

The drive is always in a quasi-linear relation with the error. 
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Table 4.4    The tracking errors at the end of trajectory of the two joints. 

 joint 2 joint 3  

Simulation results Simulation results 

errors at the end 

of trajectory 

(rad) 

∑|Drive2|  

(Dynamixel 

unit) 

errors at the 

end of 

trajectory (rad) 

∑|Drive3| 

(Dynamixel 

unit) 

a) Fuzzy-regulatorof 3 membership 

functions, without load 

0.0096 5515.6 0.0100 5519.3 

b) Fuzzy-regulatorof 3 membership 

functions, with load 

0.0099 5631.6 0.0110 5514.8 

c) Fuzzy-regulatorof 5 membership 

functions, without load 

0.0148 5458.3 0.0166 5408.8 

d) Fuzzy-regulatorof 5 membership 

functions, with load 

0.0120 5523.4 0.0144 5451.4 

e) Fuzzy-regulatorof 11 membership 

functions, without load 

0.0164 5409.1 0.0176 5380.9 

f) Fuzzy-regulatorof 11 membership 

functions, with load 

0.0131 5469.5 0.0155 5406.3 

4.2.2.5. Justification 

• The low value of the error is ensured by the normalization gains at the inputs and the  output 

of the  regulator. 

• The quasi-linear relationship between error and error variation and control is justified by the 

fact that oneuses a fuzzy PD controller. This type of controller behaves in the neighborhood  of  

the 0 error and the variation of the error as being a linear regulator having the proportional and 

derivative actions. 

4.2.3. Neuro-Fuzzy Regulator (2×2)  

The structure of the regulator in the form of an adaptive network is presented in Figure 4.12. 

 

 

 

 

 

 

 

 

 

 

Figure 4.12    Regulator of the Sugeno (2×2) type in the form of ANN. 

It contains, as inputs, the tracking error 𝑒𝑖 and the error variation ∆𝑒𝑖 for the second and the 

third joint and, as an output, the drive joint 𝜏𝑖 for each joint.  
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4.2.4. Control Algorithm 

1)  Layer1:  

The output of each node in this layer  

𝑂1,𝑛
𝑖 = 𝜇𝐴𝑛

𝑖 (𝑒), 𝑓𝑜𝑟 𝑛 = 1,2. (4.3) 

𝑂1,𝑛
𝑖 = 𝜇𝐵𝑛

𝑖 (∆𝑒), 𝑓𝑜𝑟 𝑛 = 3,4.(4.4) 

Such as 𝜇𝐴
𝑖 and 𝜇𝐵

𝑖 are related to the membership function form, of fixed parameters associated 

with the premises.   

2) Layer2: The nodes outputs of this layer are expressed by 

                                                                             

{
 
 

 
 
𝑂2 ,1
𝑖 = 𝑂1 ,1

𝑖 . 𝑂1 ,3
𝑖 = 𝑤1 

𝑖

𝑂2 ,2
𝑖 = 𝑂1 ,1

𝑖 . 𝑂1 ,4
𝑖 = 𝑤2 

𝑖

𝑂2 ,3
𝑖 = 𝑂1 ,2

𝑖 . 𝑂1 ,3
𝑖 = 𝑤3 

𝑖

𝑂2 ,4
𝑖 = 𝑂1 ,2

𝑖 . 𝑂1 ,4
𝑖 = 𝑤4 

𝑖

                                                   (4.5) 

3) Layer 3: The node output is given by   

                                                                      𝑂3 ,𝑛
𝑖 = 𝑤𝑛

𝑖 =
𝑤𝑛
𝑖

∑ 𝑤𝑚
𝑖4

𝑚=1
𝑛 = 1…4                                             (4.6) 

4) Layer 4: The nodes of this layer have adjustable parameters, their functions are  

                                                                        𝑂4 ,𝑛
𝑖 = 𝑤𝑛

𝑖 (𝑟𝑛
𝑖 + 𝑓𝑛

𝑖𝑒𝑖 + 𝑙𝑛
𝑖 ∆𝑒𝑖)                                               (4.7) 

Where  𝑟𝑛𝑖 , 𝑓𝑛 𝑖 , 𝑙𝑛 𝑖  are the adjustable parameters. 

5) Layer 5: This layer contains only one node which carries out the sum of the nodes outputs of 

the preceding layer      

                                                                                       𝑂5
𝑖 = ∑ 𝑂4 ,𝑛

𝑖4
𝑛=1                                                            (4.8) 

The parameters of the premises are supposed to be fixed, therefore 𝑂5
𝑖  can be written in the form 

                                                          𝑂5
𝑖 = ∑ (𝑤𝑛

𝑖 )𝑟𝑛
𝑖 + (𝑤𝑛

𝑖 𝑒𝑖)𝑓𝑛
𝑖 + (𝑤𝑛

𝑖∆𝑒𝑖)𝑙𝑛
𝑖4

𝑛=1                                     (4.9) 

4.2.5. Training Algorithm 

The extended Kalman filter cannot only estimate the states of nonlinear dynamical systems 

from noisy measurements, but can also be used to estimate the parameters of a nonlinear system. 

Among the applications of the parameter estimation is the parameter estimation of the neural 

networks, so one uses the extended Kalman filter as a training  algorithm [57,58]. 

The regulator is characterized by a parameter vector 𝜂. The objective is to find the values of the 

vector  𝜂 by minimizing the following error [59]:     

                                                                                𝑒𝑖(𝑘) = 𝑞𝑑𝑖(𝑘) − 𝑞𝑖(𝑘)                                                  (4.10) 

The approach of the extended Kalman filter consists at any moment to linearize the output 𝑞𝑖 

around the estimated vector 𝜂̂𝑖. The well known form of the solution is   

                                                              𝜂̂𝑛
𝑖 (𝑘) = 𝜂̂𝑛

𝑖 (𝑘 − 1) + 𝑝𝑛
𝑖 (𝑘)𝜓𝑛

𝑖 (𝑘)𝑒𝑖(𝑘)                                    (4.11) 

Where 



CHAPTER 04                                                                                                               RESULTS AND DISCUSSIONS. 

88 
 

                                                                     𝜓𝑛
𝑖 (𝑘) =

𝜕𝑂5
𝑖

𝜕𝜂𝑖
                                                           (4.12) 

                                                                                      𝑝𝑛
𝑖 (𝑘) =

𝛼1

𝛼2+𝜓𝑛
𝑖𝑇𝜓𝑛

𝑖
                                                      (4.13) 

Where  𝛼1 , 𝛼2 is the adaptation gains for varying the convergence rate.  

4.2.6. Neuro-fuzzy control optimized by GAs 

In this second application, we have applied the neuro-fuzzy system of Sugeno type, similar to 

the preceding one, to control the second and the third joint of the robot ROBAI Cyton, but we 

have optimized the various inputs/outputs, which represent the position and the shape of the 

different membership functions of inputs, and the gains of outputs [41,60,61,62,63].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.13    Neuro-Fuzzy Subsets Form-Genetic Control algorithm (N-FSF-GC). 

In this case, we have at the beginning 6 parameters to be optimized with GAs, which are two 

inputs normalization gains ( ai, bi) of fuzzification, equation (4.14), see Figure 4.16 B), (where(-ai, 

ai)  or (-bi, bi)  represent the limits of straight line membership) and one output gain of 

defuzzification for each decentralized regulator. So, one has taken as  initial values the absolute 

values of ai  andbifor the case of a standard regulator neuro-fuzzy Sugeno type. The type of the 

used coding is the binary coding. The objective function is the absolute sum of the two errors on 

the entire trajectory. Tuned  neuro-fuzzy control is shown in Figure 4.13, where the  Table 

4.6presents the parameters of GAs.   

And after one takes the inputs normalization gains optimized previously (ai, bi) for the error 𝑒𝑖  

and the variation error (∆𝑒𝑖)  (𝑖 = 2, 3), and interpolated each straight line (-ai, ai),(-bi, bi) of the 

fuzzy subsets by an interpolation function: 

-First,with three points, where the two points on the limits are (-ai, ai)  for the error, and  
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(-bi, bi) for the variation error, and one point in the middle of the curve which is optimized by the 

GAs of Figure 4.16.C, (𝑐1𝑖 , 𝑑1𝑖 , equation (4.15)). 

- Second, with five interpolation points, where the three points inside the curve are optimized 

by the GAs for only the error subsets Figure 4.18, (𝑐𝑎𝑖 , 𝑑𝑎𝑖 , 𝑓𝑎𝑖 , 𝑓𝑏𝑖 , 𝑑𝑏𝑖 , 𝑐𝑏𝑖 equation (4.16)). For 

the errors variation form inputs (𝜇(∆𝑒2), 𝜇(∆𝑒3), of Figure 4.18) one keeps the same form as a 

three points interpolation (equation (4.16)) to reduce the number of optimized points, because one 

finds that they do not have an influence on the tracking.One always chooses an odd point number 

to ensure that there is a point in the middle, because the error is around zero [59].     

               

{
  
 

  
 

{
μei1(ei) = 1

μei2(ei) = 0  
if ei ≤ -ai , {

μei1(ei) = 0

μei2(ei) = 1  
if ei ≥ ai, and thus: {

μei1(ei) =
ei-ai

-2ai
, if-ai ≤ ei ≤ ai ,   

μei2(ei) =
ei+ai

2ai
, if-ai ≤ ei ≤ ai ,    

  i = 2,3

{
μΔei1(Δei) = 1

μΔei2(Δei) = 0  
if Δei ≤ -bi , {

μΔei1(Δei) = 0

μΔei2(Δei) = 1  
if Δei ≥ bi, and thus: {

μΔei1(Δei) =
Δei-bi

-2bi
 , if-bi ≤ Δei ≤ bi

μΔei2(Δei) =
Δei+bi

2bi
  , if-bi ≤ Δei ≤ bi

 i = 2,3

      (4.14) 

 

{
  
 

  
 

{
μei1(ei) = 1

μei2(ei) = 0  
if ei ≤ -ai , {

μei1(ei) = 0

μei2(ei) = 1  
if ei ≥ ai, and thus: {

μei1(ei) =
ei(ei-ai)

2ai
2
+ c1i

(ei+ai)(ei-ai)

-ai
2

, if-ai ≤ ei ≤ ai ,   

μei2(ei) =
ei(ei+ai)

2ai
2
+ c1i

(ei+ai)(ei-ai)

-ai
2

 , if-ai ≤ ei ≤ ai ,       
 i = 2,3

{
μΔei1(Δei) = 1

μΔei2(Δei) = 0  
if Δei ≤ -bi , {

μΔei1(Δei) = 0

μΔei2(Δei) = 1  
if Δei ≥ bi, and thus: {

μΔei1(Δei) =
Δei(Δei-bi)

2bi
2 + d1i

(Δei+bi)(Δei-bi)

-bi
2  , if-bi ≤ Δei ≤ bi

μΔei2(Δei) =
Δei(Δei+bi)

2bi
2 + d1i

(Δei+bi)(Δei-bi)

-bi
2   , if-bi ≤ Δei ≤ bi

 i = 2,3

 

 

 (4.15) 
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𝜇𝑒𝑖1(𝑒𝑖) = 1

𝜇𝑒𝑖2(𝑒𝑖) = 0  
𝑖𝑓 𝑒𝑖 ≤ −𝑎𝑖  , {

𝜇𝑒𝑖1(𝑒𝑖) = 0

𝜇𝑒𝑖2(𝑒𝑖) = 1  
𝑖𝑓 𝑒𝑖 ≥ 𝑎𝑖 , and thus:

𝜇𝑒𝑖1(𝑒𝑖) =
𝑒𝑖 (𝑒𝑖 +

𝑎𝑖

3
) (𝑒𝑖 −

𝑎𝑖

3
)(𝑒𝑖 − 𝑎𝑖)

2𝑎𝑖
2 (−𝑎𝑖 −

𝑎𝑖

3
) (−𝑎𝑖 +

𝑎𝑖

3
)
+ 𝑐𝑎𝑖

𝑒𝑖 (𝑒𝑖 −
𝑎𝑖

3
)(𝑒𝑖 − 𝑎𝑖)(𝑒𝑖 + 𝑎𝑖)

2 (
𝑎𝑖

3
)
2

(−𝑎𝑖 −
𝑎𝑖

3
)(𝑎𝑖 −

𝑎𝑖

3
)
+ 𝑑𝑎𝑖

(𝑒𝑖 − 𝑎𝑖)(𝑒𝑖 − 𝑎𝑖/3)(𝑒𝑖 + 𝑎𝑖/3)(𝑒𝑖 + 𝑎𝑖)

𝑎𝑖
2 (

𝑎𝑖

3
)
2

+ 𝑓𝑎𝑖
𝑒𝑖(𝑒𝑖 − 𝑎𝑖) (𝑒𝑖 +

𝑎𝑖

3
)(𝑒𝑖 + 𝑎𝑖)

2 (
𝑎𝑖

3
)
2

(−𝑎𝑖 +
𝑎𝑖

3
) (𝑎𝑖 +

𝑎𝑖

3
)
, 𝑖𝑓 − 𝑎𝑖 ≤ 𝑒𝑖 ≤ 𝑎𝑖  ,         

𝜇𝑒𝑖2(𝑒𝑖) =
𝑒𝑖 (𝑒𝑖 +

𝑎𝑖

3
) (𝑒𝑖 −

𝑎𝑖

3
) (𝑒𝑖 + 𝑎𝑖)

2𝑎𝑖
2 (𝑎𝑖 −

𝑎𝑖

3
) (𝑎𝑖 +

𝑎𝑖

3
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3
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2 (
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3
)
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{
𝜇𝛥𝑒𝑖1(𝛥𝑒𝑖) = 1

𝜇𝛥𝑒𝑖2(𝛥𝑒𝑖) = 0  
𝑖𝑓 𝛥𝑒𝑖 ≤ −𝑏𝑖  , {

𝜇𝛥𝑒𝑖1(𝛥𝑒𝑖) = 0

𝜇𝛥𝑒𝑖2(𝛥𝑒𝑖) = 1  
𝑖𝑓 𝛥𝑒𝑖 ≥ 𝑏𝑖 , and thus:

{
 
 

 
 𝜇𝛥𝑒𝑖1(𝛥𝑒𝑖) =

𝛥𝑒𝑖(𝛥𝑒𝑖 − 𝑏𝑖)

2𝑏𝑖
2 + 𝑑1𝑖

(𝛥𝑒𝑖 + 𝑏𝑖)(𝛥𝑒𝑖 − 𝑏𝑖)

−𝑏𝑖
2  , 𝑖𝑓 − 𝑏𝑖 ≤ 𝛥𝑒𝑖 ≤ 𝑏𝑖

𝜇𝛥𝑒𝑖2(𝛥𝑒𝑖) =
𝛥𝑒𝑖(𝛥𝑒𝑖 + 𝑏𝑖)

2𝑏𝑖
2 + 𝑑1𝑖

(𝛥𝑒𝑖 + 𝑏𝑖)(𝛥𝑒𝑖 − 𝑏𝑖)

−𝑏𝑖
2   , 𝑖𝑓 − 𝑏𝑖 ≤ 𝛥𝑒𝑖 ≤ 𝑏𝑖

𝑖 = 2,3

 

(4.16) 

4.2.7. Simulation results 

The simulation time is4sec, the desired joints trajectory is chosen to be a third-order 

polynomial function. Joints move simultaneously from 𝑞2,3 = 0.3491 radian to 𝑞2,3 =

2.7053  radian to sweeping the maximum operating range applied on the second and third joint of 

the robot ROBAI Cyton (see Table 4.5) [59]. 

Designed control system is highly ineffective when the unstructured and structured 

uncertainties of the manipulator robot (e.g., external disturbance and changing payload) are 

present. 

From the exactly known behaviour of the linguistic variables, the fuzzy sets are easily 

characterized by the triangular membership functions. 

By applying the control law, the desired joint trajectory is presented in Figure 4.14, the position 

tracking errors without load and the joints torques are shown in Figure 4.15 A, where the neuro-

fuzzy controller is not optimized by GAs. From the simulation results provided above (see Table 

4.7, a), one draws the conclusion that the proposed controller is quite insensitive to various 
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uncertainties of the robot dynamics. However, if the uncertainties become unreasonably large the 

controller will collapse. This can be explained from the fact that under such situations the torques 

are computed from the trained feedforward neuro-fuzzy and consequently do not hold. The site of 

the fuzzy subsets before optimization are presented in Figure 4.16 A.  

In order to optimize the input gains(ai, bi), which represent the normalization gains of 

fuzzification, and the output gains   of deffizification of each neuro-fuzzy-genetic control applied 

to drive the manipulator robot (Figure 4.13), one uses the GAs which are the basis of the 

optimization stochastic algorithms, where the (Table 4.6) presents the parameters of GAs. Thus, 

Figure 4.15 B illustrates the position tracking errors without load in order to test the performances 

of the proposed control scheme. Hence, oneconcludes that proposed neuro-fuzzy-genetic 

controller with robust design yields a better result in comparison to neuro-fuzzy approache (Table 

4.7,b). 

The neuro-fuzzy- genetic controller has the best structure for the tracking control of the robot 

with uncertainties. The site of the fuzzy subsets after optimization is presented in Figure 4.16 B. 

Figure 4.15 C presents the tracking errors without load after the interpolation of the lines fuzzy 

subsets by a three points interpolation functions, where the limits of the straight line are ((-ai, ai) 

,(-bi, bi)) and just the point in the middle who is optimized by GAs. The fuzzy subsets form 

obtained are shown in Figure 4.16 C.    

Figure 4.17 A provide the same information as above without load, but with five interpolation 

points for the error, where two points always ((-ai, ai) ,(-bi, bi)) and the remainder three points 

inside the curve are optimized by GAs. One can notice from the previous figures that the tracking 

errors, especially the errors at the end of trajectories, are improved (Table 4.7,d) for each case.  

In Figure 4.17 A, one was able to obtain a drive which is perfectly smooth without a mass load 

because of the fuzzy subsets forms of the errors inputs   (𝜇(𝑒2), 𝜇(𝑒3),Figure 4.18), but for the 

errors variation form inputs (𝜇(∆𝑒2), 𝜇(∆𝑒3), Figure 4.18)  one finds that they have not an 

influence, so one keeps the same form as a three points interpolation (equation (4.16)) to reduce 

the number of optimized points. 

When one changes the mass load to 0.36 Kg, one finds a small lose of performances 

appearance, in the case of five points interpolation (Table 4.7,e), because the system is changed. 

On the other hand, the subsets form obtained with0Kg follow exactly the dynamic of 0 Kg system, 

so onetries to find another fuzzy subsets for 0.36 Kg load, for the dominate fuzzy  subsets which 

represent just one between the two fuzzy subsets form for the error input for the first regulator and 

the same for the second (𝜇(𝑒2), 𝜇(𝑒3), Figure 4.18 blue color). Just the point in the middle of the 

five points interpolation which change because the error around the zero, dai equation (4.16), the 

performance becomes better (Table 4.7,f).      

One can note from Table 4.7 that the energy dissipated is almost the same for the two joints in 

the four first cases, which explains that the control curve, whenever it can be  linearized around 

the last case (the curve of five points interpolation Figure 4.17 A), i.e.,  the controller overcomes 

the system dynamics. Thus, one can linearize the control with a high performance tracking error. 

When one compares this work with that of [25,29], one finds that they used a triangular 

membership functions (MFs), with linguistic hedges to modify the shape of the MFs.  

The advantage of the method [25,29] is that the number of optimized parameters is reduced and 

is the same number with the proposed method when oneuses three points interpolation. However 

the membership function form obtained is not the most appropriate one. The advantage of the 
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proposed method is that the resulting form would be the most appropriate form with five points 

interpolation, though the number of optimized parameters is very important and to remedy this 

latter problem one uses only two fuzzy subsets for each input 𝑒𝑖 and ∆𝑒𝑖.  

After one has made a generalization, i.e., for each value of load between 0 Kg  and 0.36 Kg, 

one had a fuzzy subsets forms, between the two  values of load 0 Kgand 0.36 Kg by adjusting the 

point in the middle of the curve  𝜇(𝑒2), 𝜇(𝑒3)Figure 4.18 figure 4.18 (point around zero of  error 

axis, 𝑑𝑎𝑖 equation (4.16)),  by an interpolation function. One supposes that the value of 0 Kg and 

0.36 Kg are the minimum and the maximum of this function, then tries to find the other values to 

get the fuzzy subsets related to the load value.      

Figure 4.19  presents response of the system after five interpolation points with fall of load 

from 0.36 Kg to 0 Kg at 3.6  second (practically at the end). One can see that the errors at the end 

of the trajectories have been well compensated (Table 4.7,h), this is because one changes the form 

of the fuzzy subsets following the change of the load; otherwise, one has well understood the 

dynamics of the manipulator robot with the load variation, comparatively with (Table 4.7,g) when 

one keeps the same membership functions of 0.36 Kg. 

 

Table 4.5    Parameters of  ROBAI Cyton. 

Parameters Link/Joint 1 2 3 

Mass(kg)  0.364 0.1387 

Length(m)  0.12583 0.105 

Stall Torque 6(N.m) with 

external gear ratio 5 

 6×5 6×5 

 

Table 4.6    Parameters of GAs. 

GAs parameters 

Population size 200 

Crossover fraction 0.8 

Mutation 0.1 

 

Table 4.7    The tracking errors at the end of trajectory of the two joints. 

 joint 2 joint 3  

Simulation 

results 

Practical results Simulation 

results 

Practical results 

errors 

at the 

end of 

trajecto

ry (rad) 

∑|Dri

ve2|  

(Dyna

mixel 

unit) 

errors 

at the 

end of 

trajecto

ry 

(rad)  

∑|Drive2

|(Dynam

ixel 

unit) 

errors 

at the 

end of 

traject

ory 

(rad) 

∑|Driv

e3| 

(Dyna

mixel 

unit) 

errors 

at the 

end of 

traject

ory 

(rad) 

∑|Drive

3| 

(Dynam

ixel 

unit) 

a) Before optimization (Fig. 4.15 

A)  

0.0033 53806 0.0059 46901 0.0015 53442 0.0013 52122 

b) After optimization (Fig. 4.15 B)  0.0005 54322 0.0017 48681 0.0012 53157 0.0002 50746 

c) After 3  interpolation points (Fig. 0.0004 54778 0.0013 48573 0.0007 53648 0.0002 51270 
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4.15 C) 

d) After 5 interpolation points (Fig. 

4.17 A, without load, membership 

functions 0 Kg) 

0.0002 53862 0.0002 48580 0.0007 53189 0.0002 51932 

e) After 5  interpolation points 

(with load, but membership 

functions of 0 Kg)  

0.0009 53780 0.0017 50148 0.0033 53544 0.0002 51511 

f) After 5  interpolation points (Fig. 

4.17 B with load, membership 

functions of 0.36 Kg)  

0.0008 53952 0.0002 49614 0.0032 53390 0.0002 51164 

g) After 5  interpolation points with 

load variation at 3.6 𝑠𝑒𝑐 from 

0.36 Kg to 0 Kg and one keeps the 

same membership functions of 

0.36 Kg (Fig. 4.18, Fig. 4.19 A)  

0.0011 54135 0.0033 50537 0.0026 53349 0.0013 51703 

h) After 5  interpolation points with 

load variation at 3.6 sec from 

0.36 Kg to 0 Kg but one changes 

the membership functions from 

0.36 Kg to 0 Kg (Fig. 4.18, Fig. 

4.19 B)    

0.0007 54153 0.0002 49997  0.0022 53337 0.0013 50843 

 

 

Figure 4.14    The trajectory of the two joints. 
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Figure 4.15    Response of the system for a tracking,without load.  A. Neuro-fuzzy regulator of 

the  (2×2)Sugeno type, without optimization B. Neuro-fuzzy regulator optimized by genetic of  

(2×2) Sugenotype,  C. Neuro-fuzzy-genetic regulator of  (2×2) Sugenotype with three 

interpolation points, where the point in the middle optimized by GAs. 

 

Figure 4.16    The membership functions for the two regulators (e : error, ∆e : error  variation),  

A. Before optimization, B. After optimization of the  sub-set fuzzy (normalization gains of 

fuzzification),  C. After three interpolation points, where the point in the middle optimized by 

GAs. 
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Figure 4.17    Response of the system.( Neuro-fuzzy-genetic regulator of  (2×2) Sugenotype), 

after five interpolation point. A. without load.B.with load. 

 

Figure 4.18    The membership functions for the two regulators (e : error, ∆e : errorvariation) after 

five interpolation points, where the three  points inside the curve optimized by GAs. 
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Figure 4.19    Response of the system.( Neuro-fuzzy-genetic regulator of  (2×2) Sugenotype), 

after five interpolation points with  fall of load from 0.36 Kg to 0 Kg at 3.6 sec time.  A. one keeps 

the same membership functions of 0.36 Kg. B. one changes the membership functions from 0.36 

Kg to 0 kg at 3.6 sec time. 

4.2.8. Practical results  

To show the effectiveness of the above mentioned controller, it was tested for the control of 

two freedom degrees of ROBAI Cyton manipulators actuated by direct current servo motors 

dynamixel MX-64, where the value of the torque is transformed to a value varying between zero 

and a maximum (30 Nm because of the external gear ratio) corresponding to 1023 unit. 

These experimental results, shown in Figure 4.20, Figure 4.21, and Figure 4.22,   are compared 

with the simulated results, depicted in Figure 4.15, Figure 4.17, and Figure 4.19, using identical 

trajectories and the same optimized gains for both controllers. Very similar results are obtained in 

both cases with perfectly smooth driving torques. 
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Figure 4.20 Same practical results as in Figure 4.15. 

 

 

Figure 4.21    Same practical results as in Figure 4.17. 
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Figure 4.22    Same practical results as in Figure 4.19. 

4.3.  Second application  

(Control of the mobile robot Pioneer P3-DX)   

4.3.1. Kinematics modeling  

Consider the unicycle-type mobile robot shown in Figure 4.23. This robot consists of three 

degrees of freedom, i.e., x, y and θ. For simplicity, the robot is represented by its projection on a 

plane parallel to the ground. The unicycle is equipped with two independently operated wheels 

[64] [65]. To model this system oneconsiders the point located in the middle of the wheels axle. A 

frame 𝑅′ = (𝑂′, 𝑥′⃗⃗  ⃗, 𝑦′⃗⃗  ⃗, 𝑧′⃗⃗  ⃗) is associated with this point, as shown in Figure 4.23. An inertial frame 

𝑅 = (𝑂, 𝑥 , 𝑦 , 𝑧 ) is fixed to the ground, whose axis is vertical. A configuration vector of the 

unicycle is given by: 𝑞 = (𝑥, 𝑦, 𝜃) ∈ 𝑄 = ℝ2 × 𝕊1. 

Where (𝑥, 𝑦)represent the coordinates of the point situated in the middle of the axis of the rear 

wheels, 𝜃 the angle (the orientation angle of the robot), 𝜑𝑟the angle of rotation of the right 

wheeland  𝜑𝑙𝑡ℎe angle of rotation of the left wheel. 

Let  𝜃  be the radius of the wheels and the 𝐿 distance between the point 𝑂′ and the midpoint of 

each wheel. 

The robot in the absolute coordinate system OXY is specified by the vector q: 

                                                                        𝑞 = [
𝑥
𝑦
𝜃
]                                                               (4.17) 
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Figure 4.23    Kinematic representation of a mobile robot unicycle type. 

 

The contact between the wheels of the mobile robot and the ground, satisfies the non-

holonomic conditions of pure rolling and non-slipping device [65] [66]. 

 

                                            𝑥̇𝑠𝑖𝑛𝜃 − 𝑦̇𝑐𝑜𝑠𝜃 = [𝑠𝑖𝑛𝜃 −𝑐𝑜𝑠𝜃 0] [
𝑥̇
𝑦̇
0

]                                   (4.18) 

 

To characterize the configuration of the unicycle robot. An associated kinematic model is given 

by: 

 

                          𝑞̇ = 𝐽𝜁 ⟺ {
𝑥̇ = 𝑣𝑐𝑜𝑠𝜃
𝑦̇ = 𝑣𝑠𝑖𝑛𝜃

𝜃̇ = 𝜔

, 𝑞̇ = [
𝑥̇
𝑦̇

𝜃̇

] , 𝜁 = [
𝑣1
𝑣2
] = [

𝑣
𝜔
] , 𝐽 = [

𝑐𝑜𝑠𝜃 0
𝑠𝑖𝑛𝜃 0
0 1

]                (4.19) 

Where  𝑣1 = 𝑣 =
𝑟

2
(𝜑̇𝑟 + 𝜑̇𝑙)   the longitudinal or advancing speed of the robot and 

𝑣2 = 𝜃̇ = 𝜔 =
𝑟

2𝐿
(𝜑̇𝑟 − 𝜑̇𝑙) the rotation speed about the axis perpendicular to the rolling plane. 

 

In the proposed case, we used the MobileSim to simulate the robot Pionner 3DX, which works 

with MATLAB. 

4.3.2. The trajectory tracking control  

Trajectory tracking control of differential speed drives is giving for feedforward and feedback 

control law as suggested in Kanayama et al. [67], where in the proposed  study, we introduced a 

control law as an adaptation of the control strategy presented  by A. De Luca and al. [68].  
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Figure 4.24    The trajectory tracking control of the mobile robot. 

 

Wetracked the eight-shaped trajectory represented by the following equations: 

                                                          𝑥𝑟(𝑡) = 𝑠𝑖𝑛
𝑡

10
, 𝑦𝑟(𝑡) = 𝑐𝑜𝑠

𝑡

10
,    𝑡 ∈ [0 𝑇]                                 (4.20) 

With                                    𝑞𝑟 = [𝑥𝑟 𝑦𝑟 𝜃𝑟]
𝑇 , 𝜁𝑐 = [𝑣𝑟 𝑤𝑟]𝑇 

A simple design of a trajectory tracking control is based on tangent linearization along the 

reference trajectory, where the error posture 𝑇𝑒(𝑞𝑟 − 𝑞), which represent the  difference between 

the current posture and the reference posture is giving by: 

 

                                𝑒 = 𝑇𝑒(𝑞𝑟 − 𝑞),        [

𝑒1
𝑒2
𝑒3
] = [

𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃 0
−𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 0
0 0 1

] [

𝑥𝑟 − 𝑥
𝑦𝑟 − 𝑦
𝜃𝑟 − 𝜃

]                       (4.21) 

 

The auxiliary linear velocity and the angular velocity terms 𝜁𝑐 ensure the control of the mobile 

robot. 

4.3.3. Linear Control Design  

Using the nonlinear transformation of velocity inputs [67], [69] 

 

                                                       𝜁𝑐 = [
𝑣𝑟𝑐𝑜𝑠𝑒3 + 𝑘1𝑒1

𝑤𝑟 + 𝑘2𝑠𝑖𝑔𝑛(𝑣𝑡(𝑡))𝑒2 + 𝑘3𝑒3
]                                           (4.22) 

Where 𝑘1,  𝑘2,  𝑘3 are positive constants parameters 

𝑘1 = 𝑘3 = 2𝜍√𝑤𝑟2(𝑡) + 𝑔𝑣𝑟2(𝑡),                   𝑘2 = 𝑔|𝑣𝑟(𝑡)|,               𝑔 > 0 

 

In terms of the original control inputs, this design leads to the non linear time-varying 

controller 

 

                      {
𝑣 = 𝑣𝑟 𝑐𝑜𝑠(𝜃𝑟 − 𝜃) + 𝐾1[𝑐𝑜𝑠𝜃(𝑥𝑟 − 𝑥) + 𝑠𝑖𝑛𝜃(𝑦𝑟 − 𝑦)]

𝑤 = 𝑤𝑟 +𝐾2𝑠𝑖𝑔𝑛(𝑣𝑟)[𝑐𝑜𝑠𝜃(𝑦𝑟 − 𝑦) − 𝑠𝑖𝑛𝜃(𝑥𝑟 − 𝑥)] + 𝐾3(𝜃𝑟 − 𝜃)
             (4.23) 

𝑒 Te 
𝜁𝑐(𝑒, 𝜁𝑟 , 𝐾) 

Or :𝜁𝑐(𝑥̈𝑟 , 𝑦̈𝑟 , 𝑃𝐷, 𝜃) 

 

𝜁𝑟(𝑣𝑟(𝑥𝑟 , 𝑦𝑟), 𝑤𝑟(𝜃𝑟)) 

𝑥𝑟 , 𝑦𝑟 , 𝑥̇𝑟 , 𝑦̇𝑟 , 𝑥̈𝑟 , 𝑦̈𝑟 

 𝑞𝑟 𝜁𝑐 𝑞 

𝑥, 𝑦, 𝑥̇, 𝑦̇, 𝑥̈, 𝑦̈, 𝜃 
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4.3.4. Nonlinear Control Design  

A nonlinear design for trajectory tracking is done 

                                      𝜁𝑐 = [
𝑣𝑟𝑐𝑜𝑠𝑒3 + 𝑘1(𝑣𝑟(𝑡),𝑤𝑟(𝑡))𝑒1

𝑤𝑟 + 𝑘̅2𝑣𝑟(𝑡)
𝑠𝑖𝑛𝑒3

𝑒3
𝑒2 + 𝑘3(𝑣𝑟(𝑡),𝑤𝑟(𝑡))𝑒3

]                             (4.24) 

 

𝑘1(𝑣𝑟(𝑡),𝑤𝑟(𝑡)) = 𝑘3(𝑣𝑟(𝑡),𝑤𝑟(𝑡)) = 2𝜍√𝑤𝑟2(𝑡) + 𝑔𝑣𝑟2(𝑡),          𝑘2 = 𝑔,   𝑔 > 0,   𝜍 ∈ (0, 1) 

4.3.5. Dynamic Feedback Linearization  

Define the linearizing output vector as 𝜂 = (𝑥, 𝑦), so the differentiation gives [39] 
 

                                                        𝜂̇ = [
𝑥̇
𝑦̇
] = [

𝑐𝑜𝑠𝜃 0
0 𝑠𝑖𝑛𝜃

] [
𝑣
𝑤
]                                             (4.25) 

Showing that only v affects 𝜂̇, whereas the angular velocity 𝑤 can not be recovered from this 

first-order differential information. To do this, an integrator (whose state is designated by 𝜉) must 

be added to the linear velocity input 

                                                                      𝑣 = 𝜉,    𝜉̇ = 𝑎 ⟹  𝜂̇ = [
cos 𝜃
sin 𝜃

]                                            (4.26) 

Oneassume another input a which represents the linear acceleration, by the differentiation of 

the linear velocity. 

                                                𝜂̈ = 𝜉̇ [
cos 𝜃
sin 𝜃

] + 𝜉𝜃̇ [
−sin 𝜃
cos𝜃

] = [
cos 𝜃 −𝜉sin 𝜃
sin 𝜃 𝜉 cos𝜃

] [
𝑎
𝑤
]                          (4.27) 

In order that the matrix which multiplies (𝑎, 𝑤) is not singular, it is necessary that 𝜉 ≠ 0. 

According to this hypothesis, one can define. 

                                                                      [
𝑎
𝑤
] = [

cos 𝜃 −𝜉sin 𝜃
sin 𝜃 𝜉 cos𝜃

]
−1

[
𝑢1
𝑢2
]                                            (4.28) 

In order to obtain:  

𝜂̈ = [
𝜂̈1
𝜂̈2
] = [

𝑢1
𝑢2
] = 𝑢 

The resulting dynamic compensator is 

                                                    

𝜉̇ = 𝑢1 cos 𝜃 + 𝑢2 sin 𝜃
𝑣 = 𝜉

𝑤 =
𝑢2 cos 𝜃−𝑢1 sin 𝜃

𝜉

⟹ 𝜁𝑐 = [
𝜉

𝑢2 cos𝜃−𝑢1 sin 𝜃

𝜉

]                             (4.29) 

Where 

                                                     
𝑢1 = 𝑥̈𝑟(𝑡) + 𝑘𝑝1(𝑥𝑟(𝑡) − 𝑥) + 𝑘𝑑1(𝑥̇𝑟(𝑡) − 𝑥̇)

𝑢2 = 𝑦̈𝑟(𝑡) + 𝑘𝑝2(𝑦𝑟(𝑡) − 𝑦) + 𝑘𝑑2(𝑦̇𝑟(𝑡) − 𝑦̇)
                               (4.30) 

𝑘𝑝𝑖 , 𝑘𝑑𝑖 are positive constants parameters. 

 



CHAPTER 04                                                                                                               RESULTS AND DISCUSSIONS. 

101 
 

4.3.6. Dynamic Feedback Linearization with Neuro-fuzzy-Genetic controller  

In this section, we used the same controller presented in equation (4.29), but replaced the PD 

compensator of equation (4.30) by a neuro-fuzzy-genetic presented in section (4.2.3). 

4.3.7. Simulation results  

We used the MobileSim simulator which works with MATLAB to simulate the Pioneer P3-DX 

robot, the inputs of the robot are the linear and the angular velocity(𝑣, 𝑤), and the outputs are the 

position (𝑥, 𝑦) giving by the odometric which requires the filtering of the signal and the 

orientation (𝜃), we  choosed the same trajectory eight-shaped reference proposed by [39], see 

Figure 4.25 for tests, where the trajectory starts from the origin with 𝜃𝑟(0) = 𝜋/6 𝑟𝑎𝑑 (the 

starting configuration robot is coordinated with the reference trajectory), Figure 4.26give the 

desired trajectory tracking, after the tests of some control techniques, we noticed that the LCD and 

NCD controls give almost the same results for the same 𝜍 𝑎𝑛𝑑 𝑔  (equations (4.22) and (4.24)) 

which are presented in Figure 4.27.    

 

 

Figure 4.25    The Eight-shaped reference trajectory. 

 

 

Figure 4.26    Trajectory tracking. 
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Figure 4.27    Trajectory tracking, LCD.Linear Control Design, NCD.Nonlinear Control Design. 

 

Figure 4.28    Trajectory tracking, PD-DFL.Dynamic feedback linearization, NF-DFL.Neuro-

fuzzy Dynamic feedback linearization before optimization. 

To improve the DFL control, the idea is to replace the classical PD compensator presented in 

the equation (4.30) by a Neuro-fuzzy controller, when the results of the two control laws are 

compared, see Figure 4.28 before optimization, and Figure 4.29 after optimization, we found that 

the two controllers have almost the same performance.  
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Figure 4.29    Trajectory tracking, PD-DFL.Dynamic feedback linearization, NF-DFL.Neuro-

fuzzy Dynamic feedback linearization after optimization. 

Another set of experiments was performed, with an initial position of the eight-shaped 

reference trajectory 𝑞𝑟 = (0.2, −0.3) (𝑚,𝑚), and (𝑥(0), 𝑦(0), 𝜃(0)) = (0,0,0) Figure 4.30, 

We have noticed that the tracking is better for the DFL conventional controller, where the 

tracking error is minimal and the tracking shape is better. The Figure 4.31shows the Cartesien 

motion (x, y)  (m). 

 

Figure 4.30    Trajectory tracking with initial error, PD-DFL.Dynamic feedback linearization, 

NF-DFL.Neuro-fuzzy Dynamic feedback linearization after optimization. 
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Figure 4.31    Cartesien motion (x, y) (m)  with an initial error. 

4.3.8. Practical results 

The  Differential mobile robot Pioneer P3-DX  

The Pioneer P3-DX of figure 4.32 is a mobile robot designed for research.It is built by Adept 

Mobile Robots.Because of its reliability and durability, the Pioneer is a reference platform for 

research in robotics, fully programmable and equipped with sensors necessary for good 

navigation. It comes fully assembled with a built-in controller, motors with 500-head encoders, 

19 cm wheels, a strong aluminium body, 8 ultrasonic sensors facing forward (sonar), 8 optional 

sensors, 1, 2 or 3 hot-swappable batteries and a complete software development kit, and an 

optional internal computer or laptop. Additional sensors, manipulators and accessories are 

available to customize the operation of Pioneer for specific and complex tasks.  

For the development of applications with the "Pioneer P3-DX" mobile robot, five toolsare 

available: 

1- A library of C ++ codes, "with a simple extension in Matlab" well supplied, under Linux 

and Windows, with ARIA. 

2- MobileEyes software to control and visualize the position of your robot remotely. 

3- MobileSim tool to simulate all possible configurations. 

4- Mapper 3 Perform all your robot mapping operations. 

5-SONARNL to ensure the location and the control of your robot through the information 

obtained by the sonar integrated into your robot. 
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Figure 4.32    The mobile robot  PioneerP3-DX 

 

To show the effectiveness of the above controllers, the developed algorithmwas applied to 

drive areal mobile robot Pioneer P3-DX. These experimental results are compared to simulation 

results, using identical trajectory tracking, and controller gains. 

The comparison of the practical results with those of the simulations, reveals very small 

differences. 

 
Figure 4.33    Same practical results asFigure 4.27. 
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Figure 4.34    Similar practical results as in fFigure 4.29. 

 

Figure 4.35    Similar practical results as in fFigure 4.30. 
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Figure 4.36    Similar practical results as in fFigure 4.31. 

4.4.  Conclusion 

This chapter focuses on the simulation and practical results of fuzzy and neuro-fuzz control 

with decentralized structure, optimized by GAs, applied to a manipulator arm and a mobile robot. 

The approach followed is first to synthesize the Mamdani regulator type with several 

membership functions. However, given the fixed structure of this regulator, the tracking 

performance is degraded in the presence of parametric variations.  

To overcome this problem, we considered the structural projection of the fuzzy inference 

system in a multilayer network as well as the Sugeno-type regulator. In order to adjust the widths 

of the universes of discourse and the weights of the connections, by alearning algorithm based on 

the extended Kalman filter which consists in linearizing at any moment the joint control around 

the estimated vector. GAs are used to optimize the location and the shape of fuzzy subsets. The 

simplicity relative to the structure of the controlers as well as the results obtained would allow 

one to envisage an adjustment of the parameters on very complex systems. 
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GENERAL CONCLUSION AND PERSPECTIVES 

The work presented in this thesis deals with the controls in the articular space of rigid 

manipulator robots, and the control of mobile robots. 

The proposed approach is the modeling of the manipulator arm by exploiting the Euler -

Lagrange formalism. Once the dynamic model of the robot is obtained, one was interested in the 

planning of an adequate trajectory which ensures continuity in position, speed and acceleration 

to realize the tracking of the position trajectory, through a feasible drive. 

For the mobile robot from a control viewpoint, the peculiar nature of nonholonomic 

kinematics makes that feedback stabilization at a given position cannot be achieved via smooth 

time-invariant control. This indicates that the problem is really nonlinear and  linear control is 

ineffective, even locally, and innovative design techniques are needed. 

Three control structures have been proposed namely fuzzy control, neuro-fuzzy control, and 

finally neuro-fuzzy control optimized by genetic algorithms. 

The neuro-fuzzy control optimized by GAs for a  robot. With this aim in mind, we proceeded 

to model the robot. Weused a regulator, which is a combination of fuzzy logic, and neural 

networks in the form of a multi-layer network, for the automatic extraction of the rules, where 

the human expertise is generally needed.The main advantages of the neuro-fuzzycontroller were 

the learning capacity, the processing speed, and the adaptability.The neuro-fuzzy controller does 

not require knowledge of the parameter values of the robot and it does not need neither dynamic 

models of the system nor control experts for the robot control problem. But in robotics, it is 

important to optimize the work plan and the robot motions by using an evaluation function. In 

the case of complex tasks, there are many factors such as energy, time and distance, to evaluate 

the motions of robot. 

To avoid the problem of fuzzy subsets positions and their shapes, we used trapezoidal fuzzy 

subsetswhere each straight lines is supposed to be an interpolation functions of  three  points, and 

then of five points. By optimizing these functions using the genetic algorithms (GAs), and 

minimizing a performance criterion based on the tracking error, we found the most suitable 

position and form of the fuzzy subsets which ensure a good tracking, whatever the assigned task 

was. The obtained results show the effectiveness of the suggested approach.  

The obtained results show that the combination of both algorithms, namely online training 

Kalman filter for neural networks to extract fuzzy rules and GAs for the fuzzy subsets, improves 

significantly the fuzzy controller performances.   

Finally,we can say that the Neuro-fuzzy approach optimized by the genetic algorithms 

proposed decentralized structure is a very useful tool for the design of controllers, even if the 

number of elementary regulators is higher. 

As perspectives for this work, it would be interesting to apply this control technique to a robot 

arms that requires high precision such as surgical medical robots, or robots that make integrated 

circuits, and to study the effects of other parameters on the robot dynamics for the choice and the 

variation of the membership functions. 
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 ملـخـص:

وروبوت  ذراع آليي مشتق من روبوت العصبي الجيني لنظام غير خط الغامضي هذه الأطروحة ، وصفنا شكلاً جديداً من التحكم ف

تحكم متطلبالي لافالعصبية والتي تثير اهتمامًا متزايداً في مجال الروبوتات ،  اتوالشبك غامضتجمع الطريقة المقترحة بين المنطق ال.متحرك

لتطبيق الحركة المعقدة للربوتات وظيفة تقييم تأخذ  معرفة القيم المميزة للربوت .علاوة على ذلك, تتطلب الخوارزميات الجينية العصبي الغامض

الخوارزميات الجينية من أجل توفير الشكل الأكثر ملاءمة للمجموعات في الاعتبار عدة عوامل. يتم تطبيق خوارزمية تحسين تستند إلى 

مهما كانت المهمة المسندة إليه. وتوضح المحاكاة  الجزئية الغامضة والتي تعتبر كعلاقات ربط. يوفر المنهج المقترح تعلم جيد لديناميات الربوت

 والنتائج العملية فعالية الإستراتجية المقترحة. إضافة إلى مناقشة مزايا الأسلوب المقترح وإمكانية التحسينات الإضافية.

 

, العصبي الجيني لجينية,الغامض, الخوارزميات االعصبية اتالشبكمتحكم متكيف, شكل المجموعات الجزئية الغامضة, كلمـات مفتاحيـــة :

.روبوت  

Résumé : 

  

Dans cette thèse, nous décrivons une nouvelle forme de conception de contrôleur neuro-flou-génétique pour 

un système non linéaire dérivé d'un robot manipulateur et d'un robot mobile. La méthode proposée combine 

la logique floue et les réseaux de neurones qui sont de plus en plus utilisés en robotique, le contrôleur neuro-

flou ne nécessite pas la connaissance des valeurs des paramètres du robot. En outre, les algorithmes 

génétiques pour la planification de mouvements complexes de robots nécessitent une fonction d'évaluation 

qui prend en compte plusieurs facteurs. Un algorithme d'optimisation basé sur les algorithmes génétiques est 

appliqué afin de fournir la forme la plus adéquate des sous-ensembles flous considérés comme des fonctions 

d'interpolation. L'approche proposée fournit un bon apprentissage de la dynamique du robot quelle que soit la 

tâche assignée. les résultats de simulation et pratiques illustrent l'efficacité de la stratégie proposée. Les 

avantages de la méthode proposée et les possibilités d'améliorations supplémentaires sont discutés. 

 

Mots Clés : Contrôle adaptatif, forme de sous-ensembles flous, réseaux de neurones, algorithmes génétiques, 

Neuro-flou-génétique, robot. 

Abstract:  

In this thesis, we describe a new form of neuro-fuzzy-genetic controller design for nonlinear system derived 

from a manipulator robot and a mobile robot. The proposed method combines fuzzy logic and neuronal 

networks which are of growing interest in robotics, the neuro-fuzzy controller does not require the knowledge 

of the robot parameters values. Furthermore, the genetic algorithms for complex motion planning of robots 

require an evaluation function which takes into account multiple factors. An optimizing algorithm based on 

the genetic algorithms is applied in order to provide the most adequate shape of the fuzzy subsets that are 

considered as interpolation functions. The proposed approach provides a good learning technique of the robot 

dynamics whatever the assigned task. Simulation and practical results illustrate the effectiveness of the 

proposed strategy. The advantages of the proposed method and the possibilities of further improvements are 

discussed. 

Key Words: Adaptive control, fuzzy subsets form, Neural Networks, genetic algorithms, Neuro-fuzzy-

Genetic, robot.  
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