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Abstract 

 

In the present work, the structural, elastic, electronic, optical, thermoelectric and 

thermodynamic properties of the layered BaFAgCh (Ch = S, Se, Te) were investigated 

using the full potential linearized augmented plane wave (FP-LAPW) method in the 

framework of density functional theory (DFT). To evaluate the spin-orbit coupling (SOC) 

effect, both the scalar relativistic and full relativistic calculations were performed. The 

SOC effect is found to be not negligible in the title compounds. The calculated structural 

parameters are in good accordance with the existing experimental data. The 

monocrystalline and polycrystalline elastic modules of the title compounds were 

determined via the energy-strain method. The investigated compounds show a strong 

anisotropic behavior of the structural and elastic parameters. The calculated electronic 

band structures using the Tran-Blaha modified Becke-Johnson (TB-mBJ) potential reveal 

that the three considered systems are large direct band gap semiconductors. The 

assignments of the energy band electronic states and chemical bonding characters were 

accomplished with the help of the l-decomposed atomic densities of states diagrams. 

Frequency-dependent polarized optical functions, including dielectric function, absorption 

coefficient, refraction index, extinction coefficient, reflectivity and energy loss function, 

were computed for an energy range from 0 to 30 eV. The microscopic origin of the 

electronic states that are responsible of the optical spectra structures were determined. The 

optical spectra exhibit a considerable anisotropy. The FP-LAPW band structure and the 

semi-classical Boltzmann transport theory were used to study the charge-carrier 

concentration and temperature dependences of the thermoelectric parameters, including 

Seebeck coefficient, electrical conductivity, thermal conductivity and figure of merit. Our 

results show that the values of the thermoelectric parameters of the p-type compounds are 

larger than that of the n-type ones. The optimal p-type doping concentrations and 

temperatures that yield the maximum values of the figure of merit of the title compounds 

were calculated. These are important parameters to guide experimental works. The quasi-

harmonic Debye model in combination with the FP-LAPW method was used to study the 

temperature and pressure dependences of the unit cell volume, bulk modulus, heat 

capacity, volume thermal expansion and Debye temperature.    

 

Keywords: LaOAgS-type layered crystal; First-principles calculations; DFT; FP-LAPW; 

GGA; TB-mBJ; Spin-orbit coupling; Structural properties; Elastic modules; Electronic 

structure; Effective masse; optical functions; Thermoelectric parameters; Thermodynamic 

properties. 

 

 

 

 

 



 ملخص

 
ٔ   انكٓشٔحشاسٌح، انضٕئٍح ،، انًشَٔح، الإنكرشٍَٔحثٌٍُٕحذساسح انخٕاص انتفً ْزا انؼًم انثحصً قًُا نقذ 

تاسرؼًال طشٌقح الأيٕاض انًسرٌٕح انًرزاٌذ ،  S, Se, TeCh =   حٍس،  BaFAgCh انصٍشيٕدٌُايٍكٍح نهًشكثاخ

 ذشاتظ انؼزو انًغزنً تانؼزو انًذاسي ذقٍٍى ذأشٍش تغٍح .(DFT( فً إطاس َظشٌح دانٍح انكصافح )FP-LAPWخطٍا )

(SOC)،  دٌٔ إدخال ال حساب َسثً ظزئً تطشٌقرٍٍ: انحساتاخ ذى إظشاء(SOC )إدخال ال  ٔحساب َسثً يطهق(

SOC). ال  ٔظذَا أٌ ذأشٍشSOC    ٌهًؼايلاخ ن حسٕتحانًقٍى انٕافق رذ .يٕضٕع انذساسحانًشكثاخ  فًا يؼرثشكا

 سثهٕرنا حانًشَٔح نهًشكثاخ انًذسٔسح أحادٌ شٕاتدذى ذحذٌذ انًرٕفشج. انًقاتهح انرعشٌثٍح انقٍى يغ ذٕافقا ظٍذا  ثٌٍُٕحان

نكم  انًُاحً ثاٌٍير اسهٕكٔتشكم يؼرثش ٔسح سانًشكثاخ انًذأتذخ ذشِٕ. -طاقحشٌقح طثهٕس تالاػرًاد ػهى ران جيرؼذدٔ

ًشكثاخ انأٌ  TB-mBJانثٍُح الإنكرشٍَٔح تاسرخذاو كًٌٕ أظٓشخ انًشَٔح.  خٕاصٔ يؼايلاخ انثٍُح انثهٕسٌحيٍ 

فً ششائظ  حًساًْانانحالاخ الانكرشٍَٔح  ذحذٌذذى   .ػشٌضحًْ أشثاِ َٕاقم راخ فعٕج طاقٍح يثاششج انصلاز انًذسٔسح 

تذساسح ذغٍشاخ قًُا  انعزئٍح.انحالاخ الانكرشٍَٔح كصافح خلال دساسح  يٍ رنكٔانطاقح ٔذحذٌذ طثٍؼح انشٔاتظ انكًٍٍائٍح 

ضٍاع  ٔدانح ُؼكاسٍحلإا ،انخًٔد ، يؼايمُكساسلإا لًؼاً، الايرصاصل ًؼاً، انكٓشتائًدانح انؼزل انضٕئٍح:  انذٔال

0 انطاقحانًٕظح انضٕئٍح فً يعال ذشدد  تذلانح  انطاقح 30 eV .لاخ الانكرشٍَٔح انًساًْح حاذى ذؼٍٍٍ أصٕل ان

دسسُا  انًُاحً. انذٔال انضٕئٍح يرثاٌُح طٍافأ ٔظذَا أٌ دانح انؼزل انكٓشتائً.طٍف فً انزسٔاخ انًشاْذج فً تفؼانٍح 

( تذلانح ZTٔ يؼايم انعذاسج  𝜅، انُاقهٍح انحشاسٌح 𝜎، انُاقهٍح انكٓشتائٍح Sيؼايم سٍثٍك ) انكٓشٔحشاسٌحانخٕاص 

 انثٍُح حساتاخ اَطلاقا يٍ نثٕنرزياٌ انُقم َظشٌحتاسرؼًال  ئٍحح انحشاسج ٔ ذشكٍز حايلاخ انشحُح انكٓشتاظدس

انكٓشٔحشاسٌح فً  خلاانقٍى انؼذدٌح نهًؼاي انُرائط انًحصم ػهٍٓا أٌأظٓشخ .   FP-LAPWال تطشٌقح الإنكرشٍَٔح

يٍ ذشاكٍز انصقٕب  لاكذى ذحذٌذ  . n َٕع يٍ انرطؼٍى فً حانحذهك انًقاتهح  أكثش يٍ ًْ pحانح انرطؼٍى يٍ َٕع 

ْاذّ انُرائط يفٍذج يٕضٕع انذساسح؛  انصلازنهًشكثاخ  انعذاسجانؼظًى نًؼايم  نهقٍىانًٕافقح الأيصم  ٔدسظاخ انحشاسج

، يؼايم انخهٍح الأٔنٍح حعى ٔانضغظ ػهىذقٍٍى ذأشٍش دسظح انحشاسج ذى انرعشٌثً.  ٔذٕظٍّ انؼًمذا فً ذسٍٓم ظ

ًَٕرض دٌثاي انشثّ  طشٌقحتاسرؼًال  دٌثاي ٔدسظح حشاسجرًذد انحشاسي انحشاسج انُٕػٍح، يؼايم انالاَضغاطٍح، 

  .FP-LAPWحعى انًرحصم ػهٍٓا تاسرؼًال طشٌقح ال -اَطلاقا يٍ يؼطٍاخ طاقحذٕافقً 

 

الأيٕاض طشٌقح  ؛(DFTَظشٌح دانٍح انكصافح ) ؛ىحساتاخ انًثادئ الأٔن ؛LaOAgS َٕعيٍ تهٕسج  :المفتاحيةالكمات 

 ػزو يذاسي-ذشاتظ ػزو يغزنً ؛TB-mBJكًٌٕ  ؛GGAذقشٌة ؛ (FP-LAPW) انًسرٌٕح انًرزاٌذ خطٍا

(SOC)انًؼايلاخ  ؛انخٕاص انضٕئٍح ؛انكرهح انفؼّانح ؛حانثٍُح الإنكرشٍَٔ ؛انًشَٔح شٕاتد ؛انخٕاص انثٌٍُٕح ؛

   .حانصٍشيٕدٌُايٍكٍانخٕاص  ؛انكٓشٔحشاسٌح



Résumé 

 
Dans le travail présent, nous avons étudié les propriétés structurales, élastiques, 

électroniques, optiques, thermoélectriques et thermodynamiques des composées BaFAgCh 

(Ch = S, Se, Te) qui se cristallise dans une structure de type LaOAgS en utilisant la 

méthode des ondes planes augmentées linéarisé (FP-LAPW) dans le cadre de la théorie de 

la fonctionnelle de la densité (DFT). Pour évaluer l’effet du couplage spin-orbite (SOC), 

nous avons effectué les calculs à la fois sans et avec l’inclusion du couplage spin-orbite.   

Nous avons trouvé que l’effet du SOC est non négligeable dans les composés étudiés. Les 

paramètres structuraux calculés sont en bon accord avec les données expérimentales 

disponibles. Les constants élastiques des composés monocristallins et polycristallins sont 

déterminés en utilisant la méthode énergie-déformation. Les composés étudiés sont 

caractérisés par une forte anisotropie concernant les paramètres structuraux et les constants 

élastiques. Les structures de bandes d’énergie calculées via le potentiel TB-mBJ révèlent 

que les trois composés considérés sont des semi-conducteurs à large bande interdite. Les 

états électroniques formant les bandes d’énergie et la nature des liaisons chimiques sont 

déterminés à partir des diagrammes des densités d’états électroniques partielles.  La 

dépendance des fonctions optiques (y compris la fonction diélectrique, coefficient 

d’absorption, indice de réfraction, coefficient d’extinction, la réflectivité et la fonction de 

perte d’énergie) en énergie des photons est étudiée dans un intervalle d’énergie de 0 à 30 

eV. L'origine microscopique des états électroniques responsables des structures des 

spectres optiques est déterminée. Les spectres optiques présentent une forte anisotropie. 

Les dépendances des paramètres thermoélectriques (y compris le coefficient de Seebeck, 

conductivité électrique, conductivité thermique et figure de mérite) en température et en 

pression sont étudiées en utilisant la théorie semi-classique de transport de Boltzmann 

basée sur la structure de bande calculée via la méthode FP-LAPW. Les résultats obtenus 

montrent que les valeurs numériques des paramètres thermoélectriques des composés 

dopés p sont plus grandes que celles des composés dopés n. Les valeurs optimales de la 

concentration du dopant et de la température qui correspondent à la valeur maximale de la 

figure de mérite sont déterminées. C’est valeurs sont très importantes pour guider les 

travaux expérimentaux. Le modèle quasi-harmonique de Debye en association avec la 

méthode FP-LAPW, est utilisé pour étudier la dépendance en température et en pression du 

volume de la maille unitaire, module de compressibilité, capacité thermique, coefficient de 

dilatation thermique et la température de Debye. 

 

Mots clés : Composés de type LaOAgS ; Calcul ab-initio ; DFT ; FP-LAPW) ; GGA ; TB-

mBJ ; Couplage spin-orbite ; Paramètres structuraux ; Constantes élastiques ; Structure 

électroniques ; Masse effective ; Propriétés optiques ; Paramètres thermoélectriques ; 

Propriétés thermodynamique. 
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I.1. Preamble 

Condensed matter physics and materials science play a primordial role in the 

technological revolution that we are living nowadays. Condensed matter physics 

investigates the physical properties of condensed matter through sophisticated and modern 

theories. Materials science deals with preparing and characterizing materials of whatever 

types. Researchers in condensed matter physics and materials science fields are continually 

searching for new materials that satisfy the increasing requirements of technological 

applications. Therefore, condensed matter physics and materials science are renewed, very 

extensive and very active fields for theoretical and experimental scientific research. In fact, 

before selecting and using a material for a specific technological application, it is 

primordial to ensure that its properties; structural, electronic, mechanical, optical, magnetic 

and so on, are adapted to the desired applications as first step. Therefore, detailed and 

accurate knowledge of the physical and chemical properties (structural, electronic, 

mechanical, magnetic, optical…etc.) of synthetized materials via experimental and 

theoretical methods is substantial and necessary to identify the possibilities of their usage 

in technological applications. The physical and chemical properties of materials are closely 

related to their electronic structures.  Therefore, the main purpose of the solid-state matter 

physics and chemistry; a branch of the condensed matter physics and chemistry, is the 

determination of the electronic structures of solids. Determination of the electronic 

structures of materials is primordial to understand and explain the obtained experimental 

results on their properties and to predict their properties even if they are not yet 

experimentally determined. According to the quantum mechanics theory, the electronic 

structures of materials can be determined theoretically through the resolution of the 

corresponding Schrödinger equation. To resolve the Schrödinger equation for atoms, 

molecules and materials, theoretical chemists and physicists have developed two kind of 

theoretical methods, namely semi-empirical and ab initio (first-principles) methods. The 

so-called semi-empirical models often include many adjustable parameters where their 
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determinations require experimental input data. The so-called ab initio methods, which are 

more rigorous, more sophisticated and based on the fundamental quantum theory, require 

only atomic constants (i.e., the chemical nature of the constituting atoms of the material) as 

input parameters. Nowadays, the ab initio methods become a basic tool to study the 

structural, electronic, mechanical, optical…etc. properties of atoms, molecules and 

materials. They are also a tool of choice to explore specific properties and effects that are 

difficult or impossible to be determined experimentally and to predict new materials with 

specific properties; they sometimes replace costly experiments or even unattainable in the 

laboratory. The power of the ab initio calculations originates from the formalism of the 

density functional theory (DFT) [1, 2] and its two approximations for the exchange-

correlation energy, namely the local density approximation (LDA) and the generalized 

gradient approximation (GGA). The basic formalism of DFT is based on the theorem of 

Hohenberg and Kohn (1964) [3], which is based on the idea that the total energy of a 

system is a functional of the density of electrons. Some different methods based on the 

DFT have been developed. The full potential linearized augmented plane wave (FP–

LAPW) [4, 5] is one of the accurate methods that are developed in the framework of DFT. 

In the present work subject of the present thesis, the FP–LAPW approach based on the 

DFT was used to investigate the structural, elastic, electronic, optical, thermoelectric and 

thermodynamic  properties of the BaFAgCh  (Ch = S, Se and Te) compounds. 

 

I.2. Problematic, motivation and Key objectives 

Recently, semiconductors with superlattice structure have attracted the interest of 

the condensed matter and material engineering communities due to their promising 

physical properties and practical applications. A superlattice is a periodic structure of 

layers of two or more materials. Typically, the thickness of one layer is several 

nanometres. The layered quaternary LaOAgS-like system, named also 1111 phases, which 

consist of a periodic stacking of two alternating layers [LaO] and [AgS], forming a natural 

superlattice. The layered crystallographic structure (see Fig.I.1)  gives to this large family 

members (more than 200 compounds) two different bonding types; ionic and covalent, and 

might be the essential factor on the most interesting physical properties such as 

thermoelectricity [6], transparency [7], degenerate p-type electrical conductivity [8], 

ferromagnetic response [9], ionic conductivity [10] and medium-temperature 
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superconductivity [11,12]. Owing to their outstanding physical properties, the layered 

quaternary LaOAgS-like systems have various technological applications, such as p-type 

transparent semiconductors [13, 14], thermoelectrics [15] optoelectronic devices [16] and 

photovoltaics [17]. The whole set of the 1111-like systems can be classified into two main 

subgroups [12, 18]: (i) superconductors and (ii) transparent semiconductors. The first 

category comprises metallic-like phases, which attract the attention of researchers for their 

superconductivity and magnetic properties [11, 19]. The second one comprises the 1111-

like systems exhibiting semiconducting behaviour, which possess some interesting optical 

and thermoelectric properties [7, 20-23].  The 1111-like materials show a high flexibility to 

a large variety of constituent elements. The 1111-like oxychalcogenides have attracted the 

main attention of the researchers; however, much less investigations have been performed 

on the 1111-like chalcogenide fluorides.  

The history of the 1111-like semiconductor backs to 1994 when Zhu et al. [24] 

reported the synthesis of a new series of copper oxyselenides RCuSeO (R = La, Sm, Gd 

and Y) that are built of a fluorite type layer [RO] and an antifluorite type layer [CuSe] 

stacking alternatively along the c direction. They crystalize in a tetragonal crystalline 

structure 

Starting from 2003, Yanagi et al. [25] reported the synthesis via solid-state 

reactions and the crystalline structure of two copper chalcogenide fluorides: BaCuQF (Q = 

S, Se) materials, which are candidate transparent p-type conductors. They also 

characterized their bulk electrical and optical properties. Latter, based on the 

photoemission measurements and full-potential linearized augmented plane wave band-

structure calculations, the origin of the high hole conduction in BaCuQF (Q = S, Se) was 

investigated by Yanagi team [26]. The high hole mobility and stability in BaCuQF relative 

to most oxides afford a significantly larger p-type conductivity. 

Park et al. [27] found that the MCu[Q1-x Q’x]F (M = Ba, Sr; Q and Q’ = S, Se, Te) 

materials exhibit band gaps that allow transmission of much of the visible spectrum. These 

compounds are transparent in thin-film form with a band gap of 2.7 to 3.1 eV. Additional 

tuning of band gap and electrical properties can be achieved by replacing Ba with Sr and 

by replacing S with Se and Te. Later, the compound BaCuTeF has been prepared by using 

high-temperature reaction methods [28]. The electronic structure of BaCuTeF was 

computed using the full potential linearized augmented plane-wave formalism with the 
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GGA-PBE. However, the energy gap is somewhat different from those obtained from the 

absorption spectrum. Moreover, Seebeck and electrical conductivity measurements reveal 

p-type degenerate semiconductor behaviour.  

Recently, the quaternary barium silver fluoride chalcogenides BaFAgCh (Ch = S 

and Se) have been synthesized by Charkin et al. [29] via solid-state reactions of powdered 

BaCh, BaF2 and Ag2Ch. They crystallize in the tetragonal LaOAgS-type structure, 

symmetry group P4/nmm (No.129), Z = 2; which means that we have 8 atoms per unit cell. 

They are constituted of an alternating quasi-two-dimensional blocks [BaF] and [AgCh] 

stacked along the c crystallographic axis in the sequence… 

[BaF]/[AgCh]/[BaF]/[AgCh]…, in another word, they are a natural superlattice structure 

(See Fig. I.1). On the theoretical side, Bannikov et al. [30] calculated the electronic 

structures and optical spectra of BaAgSF and BaAgSeF employing the full-potential 

linearized augmented plane wave (FP-LAPW) method with the generalized gradient 

approximation (GGA).  

 

 

 

 

Figure I.1: The layered structure of the BaFAgS compound. 
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According to the previous studies, only the structural, electronic and optical 

properties of the BaFAgCh (Ch = S and Se) compounds were theoretically studied using 

the FP-LAPW with the GGA-PBE functional to model the exchange-correlation potential. 

However, the common GGA and LDA are well known to yield unsatisfactory band gap 

values compared to the corresponding measured ones for semiconductors and insulators. 

This is because the standard GGA/LDA cannot describe accurately the excited electronic 

states. Some functionals beyond the GGA/LDA, such the GGA/LDA+U, hybrid 

functionals…etc., are developed in order to improve the treatment of the exchange–

correlation potential and consequently better describing the electronic structures of 

semiconductors and insulators. Among the functionals that yield an improved band gap 

compared to the standard functionals with a reasonable calculating time, we find the Tran–

Blaha modified Becke–Johnson (TB-mBJ) potential [31, 32]. The TB-mBJ functional 

yields accurate fundamental band gap values for large families of semiconductors and 

isolators [33, 34]. Additionally, the reported studies [29, 30] did not include the spin-orbit 

coupling effect [35], which is not negligible in the case of the BaFAgCh (Ch = S, Se and 

Te) systems, similarly to BaCuChF [36]. Therefore, the first objective of the present work 

is the calculation of the electronic and optical properties, including band structure, charge-

carrier effective masses, density of states, density of charge distribution and optical 

spectra, of the title compounds using the FP-LAPW method with the modified Beck-

Johnson potential including the spin-orbit coupling effects. The BaFAgCh crystals have 

natural superlattice characteristics, which would result in very favourable electronic 

properties for thermoelectrics [6, 36]. Therefore, the second objective of this study is the 

prediction of the thermoelectric properties of the BaFAgCh compounds as functions of 

charge-carrier concentration and temperature using the semi-classical Boltzmann theory 

[37] in combination with the band structure obtained via the FP-LAPW method. For 

technological applications in the optoelectronic field, the semiconductor materials are 

generally grown as thin films on substrates. However, the lattice mismatch and difference 

in thermal expansion coefficients between the epitaxial layer and substrate can produce 

large stresses in the grown layer [38]. Hence, it is of extreme importance to estimate the 

elastic moduli that describe the response of materials to external stresses. To our best 

knowledge, there is no available data in the literature on the elastic constants (Cijs) of the 

studied BaFAgCh crystals. Therefore, it becomes necessary and important to calculate the 

Cijs of the BaFAgCh compounds in order to disclose their elastic properties. Prediction of 

the elastic moduli and related properties of the BaFAgCh series constitutes the third 



  

 

Chapter I 

6 

General introduction 

objective of the present work. Previews study does not give any information about the 

temperature and pressure effects on the macroscopic physical parameters. Variation of 

macroscopic properties of the mater under temperature and pressure is very necessary and 

important to evaluate its efficiency in harsh conditions and extreme environment. Hence, 

determination of the evolution of some macroscopic physical parameters with temperature 

and pressure constitutes the fourth objective of the present work. 

In the present thesis, we have performed the following works:  

 Accurate determination of the crystalline parameters, including the lattice 

parameters and atomic positions, of the title compounds using the FP-LAPW 

method with three different functionals to model the exchange correlation energy; 

the LDA [3-39], GGA-PBE [40] and GGA-PBEsol [41] as implemented in the 

Wien2K code [42]. The chemical and mechanical stability of the studied 

compounds were also checked by calculating the formation enthalpy and cohesion 

energy. 

 Investigation of the electronic (including electronic band structure, effective mass, 

total and partial density of states and electronic charge density) and optical 

(including the dielectric function and the essential derived parameters such us the 

optical absorption coefficient, index of refraction, coefficient of extinction, 

reflectivity and electron energy-loss function) properties of the studied 

compounds. This study was performed using the FP-LAPW with both the GGA08 

and TB-mBJ [43] methods to model the exchange-correlation potential. 

 Prediction of the elastic properties of the studied compounds and related properties 

using total energy-strain method as implemented in the Wien2K series of 

packages. 

 Evaluation of the spin-orbit coupling effect on the examined properties of the title 

compounds. 

 Study of the thermoelectric properties, including Seebeck coefficient, electric 

conductivity, thermal conductivity, power factor and figure of merit, using the FP-

LAPW method combined with the Boltzmann’s semi-classical theory [37] as 

implemented in the BoltzTraP code [44]. 

 Investigation of the evolution with pressure and temperature of some  macroscopic 

physical parameters, including unit cell volume, bulk modulus, thermal expansion 

coefficient, Grüneisen parameter, heat capacity, Debye temperature, internal 
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energy, free energy and entropy, using the FP-LAPW method combined with the 

quasi-harmonic Debye model as implemented in the Gibbs2 code [45, 46]. 

 

 

I.3. Thesis outline 

This manuscript consists of four chapters, general conclusion and some indexes. 

Chapter 1; General introduction, gives a literature survey about the considered 

compounds and the objectives of this thesis. 

Chapter 2; Density Functional Theory (DFT), explains the basic fundaments and 

formalism of the Density Functional Theory. 

Chapter 3; Full Potential-Linearized Augmented Plane Wave (FP-LAPW) method, gives 

the basic fundaments of the FP-LAPW method. 

Chapter 4; Results and discussion, presents the obtained results for the structural, elastic, 

electronic, optical, thermoelectric and thermodynamic properties of the quaternary 

BaFAgCh (Ch = S, Se and Te) compounds. These results are discussed and compared with 

the available results in the scientific literature.  

The thesis is concluded by a general conclusion, which provides the main results obtained 

through this study, and some appendices about the Wien2K suite of programs, BoltzTraP 

code, Spin-Orbit coupling and Gibbs2 program. 

 

We hope that the reported data in the resent thesis can provide theoretical support to 

the existing experimental and theoretical data and provide a basis for future experimental 

and theoretical studies in order to have insight about eventual technological applications of 

the title materials. 
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II.1. Introduction 

A solid is a collection of heavy, positively charged particles (nuclei) and lighter, 

negatively charged particles (electrons). If we have N identical nuclei, we are dealing with 

a problem of  3N 1+Z  electromagnetically interacting particles. This is a many-body 

problem, and because the particles are so light, quantum mechanics is needed. Quantum 

mechanics governs the electronic structure that is responsible for material properties, such 

as relative stability, chemical bonding, relaxation of atoms, phase transitions, electrical, 

mechanical, optical or magnetic properties…etc. Schrödinger's wave function seemed 

extremely promising as it contains all of the information available about a system. The 

form of the Schrödinger equation depends on the physical situation. However, the most 

general form is the time-dependent Schrödinger equation, which gives a description of a 

system evolving with time (t) [1]: 

  
  ( ⃗   )

  
  ̂ ( ⃗   )                            (    ) 

where: 

i: is the imaginary unit; 
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 : is the reduced Planck constant or Dirac's constant (      ;  : is the Planck's 

constant); 

 : is the wave function of the quantum system; 

 ̂: is the Hamiltonian operator, which characterizes the total energy of any given wave 

function and takes different forms depending on the situation. 

The wavefunction can be written as  ( ⃗   )   (  ) 
     , and it also satisfies the time-

independent Schrödinger equation [2]: 

 ̂| ⟩   | ⟩                                           (    ) 

 

Calculation of the energy “E” of a crystal consisting of a very large number of interacting 

particles (electrons and atomic nuclei) is difficult. So necessarily, we go through a certain 

number of simplifying hypothesis. First, neglecting the effects of temperature, and limit the 

interactions between particles to the most important terms that constitute the Colombian 

interactions (neglecting the magnetic interactions spin-spin and spin orbits). So, the exact 

many-particle Hamiltonian for this system consists of the nuclei kinetic TN, the electronic 

kinetic Te part and the interaction part between the nuclei VN-N and electrons Ve-e with 

nuclei-electrons interaction VN-e: 

                                                      (    ) 

 

For a solid system with N nuclei cores and n electrons, the Hamiltonian is written: 

 

      
 

 
∑

 
 
→

 

 

 

 

   

 
 

 
∑

 
 
→

 

 

  

 

   

  
 

    
∑

      

|  ⃗⃗   ⃗⃗ |

 

       

 
 

    
∑

  

|  ⃗   ⃗ |

 

       

 
 

    
∑∑

    

|  ⃗⃗   ⃗ |

 

   

 

   

                                             (    ) 

 

me: is the mass of the electron; 

|  ⃗   ⃗ |: is the distance between the electron i and the electron j; 

M: is the mass of nucleus;  

|  ⃗⃗   ⃗⃗ |: is the distance between the nucleus I and the nucleus J. 

      : are the atomic numbers of the nuclei I and J, respectively. 
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This Hamiltonian is subjected to the time-independent Schrödinger equation: 

            ( ⃗   ⃗⃗ )     ( ⃗   ⃗⃗ )                                          (    ) 

 

where   is the normalized eigenfunction of the Hamiltonian operator  ̂   . In (Eq. II.4), 

the last three terms have complex structure. It is out of question to solve this problem 

exactly. In order to find acceptable approximate eigenstates, we will need to make 

approximations at 3 different levels. 

 The 1
st
 level: Born Oppenheimer approximation. 

 The 2
nd

 level: Density-Functional Theory. 

 The 3
rd

 level: Solving the Kohen-Sham equation. 

 

II.2. Born-Oppenheimer approximation 

In 1927, physicists Max Born and Julius Robert Oppenheimer [3] published an 

approximation method to simplify the resolution of Schrödinger equation. Born-

Oppenheimer approximation is based on the fact that nuclei are several thousand times 

heavier than electrons. The proton, itself, is approximately 2000 times more massive than 

an electron. In a dynamical sense, the electrons can be regarded as particles that follow the 

nuclear motion adiabatically, meaning that they are “dragged” along with the nuclei 

without requiring a finite relaxation time. Another consequence of the mass difference 

between electrons and nuclei is that the nuclear components of the wave function are 

spatially more localized than the electronic component of the wave function. In the 

classical limit, the nuclear are fully localized about single points representing classical 

point particles [3, 4]. Assuming this hypothesis, we particularly simplify the Schrödinger 

equation, since the kinetic energy of the nuclei becomes zero, the interaction energy of the 

nuclei becomes constant, but which can be rendered null by a suitable choice of the origin. 

Taking into account that      and        , we can define an electronic wave function 

which depends on the coordinates of the nuclei only parametrically, and the Schrödinger 

equation is written as: 

      (             )                                 (    ) 

 

The total electron wave function depends on the coordinates of all the electrons making up the 

system and cannot be decomposed into single particle contributions because the electrons interact 

strongly with each other and their displacements are thus correlated. The difficulty always lies in 
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    ; the term describing the set of electrons in mutual interaction, which unlike    and       

couples the coordinates of all interacting electrons, which makes analytical resolution of the 

Schrödinger equation impossible, even numerically, except in very simple cases like that of the 

hydrogen atom. In order to circumvent this difficulty, we are led to make a series of approximations; 

we go to the second level of approximation [5]. 

 

II.3. Density Functional Theory 

The quantum many body problem obtained after the first level approximation 

(Born-Oppenheimer) is much simpler than the original one, but still far too difficult to 

solve. Several methods exist to reduce (Eq. II.6) to an approximate but tractable form. A 

historically very important one is the Hartree-Fock method (HF). It performs very well for 

atoms and molecules, and is therefore used a lot in quantum chemistry. For solids it is less 

accurate, however. A more modern and probably also more powerful method: Density 

Functional Theory (DFT) was developed to resolve the many body problem. Although its 

history goes back to the early thirties of the 20th century, DFT has been formally 

established in 1964 by two theorems due to Hohenberg and Kohn [6] . 

The fundamental concept of the density functional is that the energy of an electronic system 

can be expressed as a function of its density. It is in fact an old idea dating mainly from the works of 

Thomas [7] and Fermi [8]. The use of electronic density as a fundamental variable to describe the 

properties of the system has existed since the earliest approaches to the electronic structure of matter, 

but it has obtained proof only by the demonstration of the two so-called Hohenberg and Kohn 

theorems. 

 

The wave function   of an N-electron system includes 3N variables, while the density, ρ 

no matter how large the system is, has only three variables x, y, and z. Moving from 

E[ ] to E[ρ] significantly reduces the computational effort needed to understand 

electronic properties of atoms, molecules, and solids. 

 

II.3.1. Hohenberg-Kohn theorems 

The theorem upon which DFT is based is that of Hohenberg and Kohn. It states that 

the total energy, E, of a non-spin-polarized system of interacting electrons in an external 

potential (for our purposes the Coulomb potential due to the nuclei in a solid) is given 

exactly as a functional of the ground state electronic density    [9]: 
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   [ ]                                          (    ) 

 

The theory can be extended to nonzero temperatures by considering a statistical electron 

density defined by Fermi–Dirac occupation numbers [10]. The theory is also easily 

extended to the spin-indexed density [11]. 

The traditional formulation of the two theorems of Hohenberg and Kohn [6] is as 

follows: 

1
st
 theorem: There is a one-to-one correspondence between the ground-state density  ( ⃗) 

of a many-electron system (atom, molecule, solid) and the external potential,     . An 

immediate consequence is that the ground-state expectation value of any observable  ̂  is a 

unique functional of the exact ground-state electron density: 

⟨ |  ̂| ⟩    ̂[ ]                              (    ) 

 

2
nd 

theorem: For  ̂  being the hamiltonian  ̂, the ground-state total energy functional  

 [ ]       
[ ] is of the form: 

     
[ ]  ⟨ | ̂   ̂| ⟩  ⟨ | ̂   | ⟩     [ ]  ∫ ( ⃗)    ( ⃗)  ⃗                 (    ) 

 

where the Hohenberg-Kohn density functional    [ ] is universal for any many-electron 

system.      
[ ] reaches its minimal value (equal to the ground-state total energy) for the 

groundstate density corresponding to     . 

 

For these theorems, three keywords are remarkable: inevitability (one-to-one 

correspondence ρ ↔     ), universality and variational access (minimal value). 

 

It is obvious that a given many-electron system has a unique external potential, 

which by the Hamiltonian and the Schrödinger equation yields a unique ground-state many 

particles wave function. From this wave function, the corresponding electron density is 

easily found. An external potential hence leads in a well-defined way to a unique ground-

state density corresponding to it. The density contains as much information as the wave 

function does (i.e., everything you could possibly know about an atom, molecule or solid). 

All observable quantities can be retrieved therefore in a unique way from the density only, 

i.e., they can be written as functionals of the density. 
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Eq. II.9 is easily written by using the density operator, and supposing the ground-

state density is known, the contribution to the total energy from the external potential can 

be exactly calculated. An explicit expression for the Hohenberg-Kohn functional     is 

not known. But anyway, because     does not contain information on the nuclei and their 

position, it is a universal functional for any many-electron system. This means that in 

principle an expression for    [ ] exists which can be used for every atom, molecule or 

solid which can be imagined. 

The second theorem makes it possible to use the variational principle of Rayleigh-

Ritz in order to find the ground-state density. Out of the infinite number of possible 

densities, the one which minimizes      
[ ] is the ground-state density corresponding to 

the external potential     ( ). Of course, this can be done only if (an approximation to) 

   [ ] is known. But having found ρ, all knowledge about the system is within reach. It is 

useful to stress the meaning of the energy functional      
[ ] once more. When it is 

evaluated for the density   corresponding to the particular      for this solid, it gives the 

ground state energy. When it is evaluated for any other density however, the resulting 

number has no physical meaning [9]. 

 

DFT theory is based on Hohenberg–Kohn theorems, which show that the external 

potential function     ( ⃗) of an N-electron system is determined by its ground-state 

electron density  . 

 

II.3.2. The Kohn-Sham equations 

The equations of Kohn and Sham, published in 1965 [12], turn DFT into a practical 

tool. They are a practical procedure to obtain the ground state density. The Hohenberg-

Kohn functional      
[ ] can be expressed as follows :      

     
[ ]    [ ]    [ ]     [ ]      [ ]              (     ) 

 

Here, T0 is the functional for the kinetic energy of a non-interacting electron gas,    stands 

for the Hartree contribution and     for the exchange-correlation contribution and Vext for 

the external potential. One can interpret the above expression as the energy functional of a 

non-interacting classical electron gas, subject to two external potentials: one due to the 

nuclei, and one due to exchange and correlation effects. The corresponding Hamiltonian – 

called the Kohn-Sham Hamiltonian – is: 
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 ̂    ̂   ̂   ̂    ̂                            (     ) 

The theorem of Kohn and Sham, published in 1965, that turns DFT into a practical tool 

[12], is formulated as follows: The exact ground-state density  ( ⃗) of an N-electron system 

is: 

 ( ⃗)  ∑ 
 
( ⃗)   

 
( ⃗)

 

   

                       (     ) 

 

where the single-particle wave functions  
 
( ⃗) are the N lowest-energy solutions of the 

Kohn-Sham equation:                    

 ̂ 
 
( ⃗)      

( ⃗)                                  (     ) 

 

To find the ground-state density, we don‟t need to use the second Hohenberg-Kohn 

theorem any more, but we can rely on solving familiar Schrodinger-like no interacting 

single-particle equations (Kohn-Sham equations). The alternative of using the regular 

Schrodinger equation, would have led to a far more difficult system of coupled differential 

equations, because of the electron-electron interaction. Be aware that the single-particle 

wave functions  
 
( ⃗) are not the wave functions of electrons! They describe mathematical 

quasi-particles, without a direct physical meaning. Only the overall density of these quasi-

particles is guaranteed to be equal to the true electron density. Also the single-particle 

energies    are not single-electron energies. Both the Hartree operator VH and the 

exchange-correlation operator Vxc depend on the density  ( ⃗), which in turn depends on 

the  
 
( ⃗), which are being searched. This means we are dealing with a self-consistency 

problem: the solutions ( 
 
( ⃗)) determine the original equation (VH and Vxc in HKS), and the 

equation cannot be written down and solved before its solution is known. An iterative 

procedure is needed to escape from this paradox (See Fig. II.1). Some starting density    is 

guessed, and a Hamiltonian HKS1 is constructed with it. The eigenvalue problem is solved, 

and results in a set of  
 
 from which a density    can be derived. Most probably    will 

differ from   . Now    is used to construct HKS2, which will yield a   …etc. The 

procedure can be set up in such a way that this series will converge to a density ρf which 

generates a HKSf which yields as solution again   , this final density is then consistent with 

the Hamiltonian. 
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Figure II.1: Schematic representation of the organization chart of KS equations resolution 

within self-consistent way based on an initial guess and convergence criteria [9, 13]. 
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II.4. Solving the Kohn–Sham equations 

The resolution of the Schrödinger equation in the context of the Kohn-Sham 

approach is reduced to solving equations of the following form: 

( ̂           ̂  )                                  (     ) 

 

Various ab-initio methods for calculating the electronic structure are based on DFT and 

can be classified according to the representations used for the density, potential and Kohn-

Sham orbitals of. „Solving‟ in most methods means that we want to find the coefficients     

needed to express    in a given basis set   : 

   ∑   

 

                                            (     ) 

Since, given a choice of basis, these coefficients are the only variables in the problem (note 

that the density depends only on the KS orbitals), and since the total energy in DFT is 

variational, solution of the self-consistent KS equations amounts to determining the     for 

the occupied orbitals that minimize the total energy. 

It is very common to separate the determination of the     and the determination of 

the self-consistent charge density in density functional calculations. The solutions for the 

density and the     are done hierarchically in this case, as shown schematically in (Fig. 

II.1). In this scheme, it is necessary to repeatedly determine the     that solve the single 

particle equations for fixed charge density. This may be done using standard matrix 

techniques. Specifically, given the basis, the Kohn-Sham Hamiltonian and overlap 

matrices, H and S are constructed and the matrix eigenvalue equation [14], 

(      )                                           (     ) 
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II.5. Exchange-Correlation potential 

The term exchange-correlation has its origins in the electron-electron interaction, 

and its knowledge is necessary for the study of the electronic system. It should be noted, 

however, that    [ ] is only known approximately [13].  

The physical idea behind the notion of an exchange and correlation is that due to Pauli‟s 

exclusion principle electrons of parallel spin cannot come arbitrarily close to each other 

in space, and that the repulsive interaction leads to a further reduction of the pair density 

for small distances of the particles in the pair. 

 

Numerous approximations to the exchange-correlation energy    [     ] as a functional of 

the spin-densities    and    (       ) have been developed and tested. One possible 

criterion for the discussion of approximations to    [     ] is whether the functional is 

fitted to experimental data or if it is constructed to satisfy physical constraints. Most 

existing functionals combine these two approaches, i.e., while they are subject to physical 

constraints, parameters are added to better fit the experimental data. In the search for 

higher accuracy, we have recently observed the appearance of functionals with an 

increasing number of fitted parameters. Often physical constraints on the functional are 

abandoned in favour of higher accuracy on the selected experimental data set. Increasingly, 

parameters are recommended which are constructed to absorb technical problems in the 

solution of the Kohn–Sham equations [15]. 

In order to discriminate between approximations to the exchange-correlation energy 

   [     ], we employ the criterion of whether the functional is fitted to a certain 

experimental data set or if it is constructed to satisfy physical constraints. 

 

II.5.1. Local Density Approximation (LDA) 

Local-density approximations (LDA) are a class of approximations to the 

exchange–correlation (XC) energy functional in density functional theory (DFT) that 

depend solely upon the value of the electronic density at each point in space (and not, for 

example, derivatives of the density or the Kohn–Sham orbitals). Many approaches can 

yield local approximations to the XC energy. However, overwhelmingly successful local 
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approximations are those that have been derived from the homogeneous electron gas 

(HEG) model [16]. 

In the local density approximation witch originally introduced by Kohn and Sham, 

one uses the exchange-correlation energy per electron     of a homogeneous electron gas 

of the electron density  . In case of the inhomogeneous electron gas, for each  ⃗ and  ( ⃗) 

the local exchange-correlation energy is approximated by the corresponding value of  

   ( ( ⃗)) of the homogeneous electron gas [17].  

   
   [ ]  ∫ ( ⃗)   

    
( ( ⃗))   ⃗                       (     ) 

Where    
    

( ( ⃗)) is the exchange-correlation energy per particle of a uniform electron 

gas (jellium). It can be decomposed into exchange and correlation terms linearly: 

   
    

   
    

   
    

                                              (     ) 

The exchange contribution is derived as: 

  
    

  
 

  
(
  

 
)

 
  

  
  

     

  
                     (     ) 

where  (
   

 
)
 

 

 
 is the Wigner-Seitz radius (radius sphere that contains one electron). 

Unlike the exchange term which takes on a simple analytic form for the HEG. Only 

limiting expressions for the correlation density are known exactly, leading to numerous 

different approximations for   
    

. 

  
    

 (
 

  
) (     )   (  )                           →               (     )  

where in each case the constant   was calculated approximately. 

The LDA has been very successful for describing ground-state properties such as total 

energies and structural properties.  
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II.5.2. Generalized Gradient Approximation (GGA) 

The simplest approximation is the local-density approximation (LDA), which is 

based on the XC energy of the homogeneous electron gas and only requires the density at 

each point in space. A slightly more elaborate approach consists in using both the density 

and its gradient at each point in space in the so-called generalized gradient approximation 

(GGA).  

The GGA proposed here retains correct features of LDA, and combines them with the 

most energetically important features of gradient-corrected nonlocality. 

 

The GGA (so-called PBE relative to Perdew, Burke and Ernzherhof) form for the 

exchange energy is simply [18-20] , 

   
   [     ]  ∫ (             )    ⃗                          (     ) 

The GGA exchange energy will be constructed as: 

  
    ∫   ⃗  

    
( ( ⃗))  ( ( ⃗))                                  (     ) 

Where   
    

 is the exchange energy density of a uniform electron gas   
    

 

         ,   |  | (    )⁄  [with    (    )   ] is the dimensionless density 

gradient, and   ( ) is the enhancement factor for the given GGA. Any GGA that recovers 

the uniform gas limit has 

          ( →  )                                                       (     ) 

where       , and the gradient expansion,                    

The GGA for correlation in the form,  

  
   [     ]  ∫    [   

    (    )   (      )]                 (     ) 

where    is the local Seitz radius (   
 ⁄    

   
  

 

   ⁄ )    (     )   is the 

relative spin polarisation, and   |  |       is the appropriate reduced density gradient 
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for correlation. Here  ( )  [(   )    (   )   ]   is a spin-scaling factor, and 

   √        is the Thomas-Fermi screening wave number (         ). 

Unlike the LDA, there is more than one GGA: 

 PBE “Perdew-Burke-Ernzerhof “ [18, 19]. 

 PBEsol “Perdew-Burke-Ernzerhof GGA reparametrized for solids” [20], The 

PBEsol functional retains the same analytical form as the PBE functional, but two 

parameters were modified in order to satisfy other conditions. The value of µ (the 

parameter in the exchange part which determines the behavior of the functional for 

s→0) was set to         
  ⁄  in order to recover the second-order gradient 

expansion of the exchange energy, and a parameter in the correlation part was 

chosen to yield good surface exchange-correlation energy for the jellium model 

[21]. 

 WC “by Wu and Cohen” [22], where the gradient expansion for slowly varying 

densities to construct a GGA with a functional form corresponding to diffuse cut-

off. The XC-GGA damps the gradient enhancement, which results in improved 

equilibrium volumes for densely packed solids, but poorer exchange energies of 

atoms compared to the PBE [23]. 

 AM05 functional “by Armiento and Mattsson” [24] show a large success for 

crystalline solids “exceptionally well for surfaces” [25, 26].The AM05 functional is 

the first functional constructed according to the subsystem functional scheme. It 

can be seen as a consistent improvement over LDA in the sense that it reproduces 

the exact XC energy for two types of model systems: The uniform electron gas and 

the jellium surfaces, describing two situations with fundamentally different physics. 

 HTBS functional “by Haas, Tran, Blaha, and Schwarz” [27]; a functional achieves 

an outstanding performance for both, molecules and solids; it show an acceptable 

accuracy than for PBE. However, HTBS performs poorly for vibrational quantities 

[28]. 

Normally the five generalized-gradient approximation (GGA) functionals improve over 

some of the drawbacks of the LDA, although this is not always the case. 

PBEsol becomes exact for solids under intense compression, where real solids and their 

surfaces become truly slowly varying, and exchange dominates over correlation. 
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II.5.3. Problems with LDA and GGA 

One of the problems with the LDA is the absence of orbital dependence in the 

exchange-correlation potential. Since the potential does not distinguish between orbitals 

with different m-quantum numbers, for systems containing a partially filled d or f shell one 

obtains a corresponding partially-filled band with a metallic-type electronic structure 

unless the exchange and crystal field splitting create a gap between the up and down 

channel. Thus, the late transition metal oxides, which are insulators, are predicted to be 

metals by the (non-spin-polarized) LDA. 

Depending on the system you will have to consider methods going beyond DFT: 

 DFT+U 

 TB-mBJ potential 

  Hybrid functional 

 

The Band Gap Problem; Excitations are not well-predicted by the standard LDA, GGA 

forms of DFT. 

 

II.5.4. LDA+U 

Electrons in the s and p orbitals responsible for the bonding can be described 

properly by using conventional LDA band calculations. However, the highly correlated 

transition metal d-electrons and exited states. Therefore, it is necessary to treat the highly 

correlated d-electrons separately from the bonding electrons. The treatment of strongly 

interacting and correlated particles is especially problematic in (semi)local DFT. To 

reproduce band structure closer to experiment a common remedy has been applied to the 

DFT+U scheme [29, 30]. 

If your system is based on d-d transitions, or highly correlated states, then you can used 

DFT+U or Onsite-hybrid. 

 

The LDA+U approach, first introduced by Anisimov and co-workers [31, 32], has 

allowed to study a large variety of strongly correlated compounds. This approach Treat 

strong on-site Coulomb interaction of localized electrons, e.g., d and f electrons 

(incorrectly described by LDA or GGA) with an additional Hubbard-like term. Strength of 

on-site interactions usually described by U (on site Coulomb) and J (on site exchange),  

    
   +     , which can be extracted from ab-initio calculation [33, 34], but usually 
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are obtained semi-empirically, e.g., fitting to experimental formation energies or band 

gaps.  

In the LDA+U method, an orbital-dependent potential U acting only on localized d or f 

states is introduced on top of the LDA potential. 

 

For Mott–Hubbard insulators or rare-earth metal compounds where the partially 

filled 3d or 4f bands are split by the Coulomb interaction, forming the upper and lower 

Hubbard band, the LDA+U works reasonably well. The band structure, however, is 

unsatisfactory. Another problem with the method arises for systems with partially-filled 3d 

shells which are metallic, like the transition metals. In this case, the LDA+U would 

produce unphysical results since it would split the partially-filled band [35].  

 

II.5.5. TB-mBJ approach 

Theoretical methods leading to more accurate excited states are LDA+U, and GW. 

LDA+U (which is as cheap as LDA) can only be applied to localized states (typically 3d 

and 4f electrons). Whereas, GW are expensive methods. Recently, Becke and Johnson [36] 

(BJ) proposed an exchange potential, which was designed to reproduce the exact exchange 

potential in atoms. The BJ potential, which does not contain any empirical parameter, reads 
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is the KS kinetic-energy density, and 
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is the Becke-Roussel (BR) [37] exchange potential, x is determined from a nonlinear 

equation involving               , and then b is calculated with   [      (   )]   . 

Note that for reference points r very far from a finite system, (Eq. II.27) yields the 

asymptotic potential, 
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In various types of solids, the BJ potential leads to only moderately improved band gaps 

compared to standard LDA and GGA [38]. However, the improvement was moderate. 

Further improvement has been achieved by a the modified version given by Tran and 

Blaha (TB-mBJ) [39], where a new parameter are introduced to change the relative weights 

of the two terms in the BJ potential: 

  
      ( ⃗)     

  ( ⃗)  (    )
 

 
√

 

  
√

  ( ⃗)

 ( ⃗)
                                      (     ) 

  was chosen to depend linearly on the square root of the average of |  |  , (note that for 

    the original BJ potential is recovered). 

     (
 

     
∫

|  (  )|

 (  )

 

    

    )

   

                         (     ) 

      is the unit cell volume and α and β are two free parameters whose values are α = -

0.012 and β =1.023 bohr
1/2 

according to a fit to experimental results [39]. 

One remember that the TB-mBJ give just the exchange potential, Correlation effects are 

taken into account by adding a LDA or PBE correlation potential. 

 

The semi-local TB-mBJ potential is able to yield highly accurate energy band gaps 

in most semiconductors and insulators. It works not only for the classical sp-type 

semiconductors, but also for strongly correlated transition-metal compounds such as NiO. 

Because the high accuracy and predictive power could be achieved by determining a 

parameter c, using a larger testing set of solids, Different and new parameterizations were 

introduced [40, 41]. 

 

If your band gap is based on charge transfer transitions, you cannot use DFT+U and 

onsite-hybrid. Thus, the less expensive approach will be TB-mBJ potential which will 

give the band gap but not the forces. 

 

II.5.6. Hybrid functionals 

Hybrid functionals witch introduced by Axel Becke in 1993 [42] are a class of 

approximations to the exchange–correlation energy functional in density functional theory 

(DFT) that incorporate a portion of exact exchange from Hartree–Fock theory with the rest 

of the exchange-correlation energy from other sources (ab initio or empirical). This 
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hybridization provides a simple scheme for improving the calculation of many molecular 

properties, such as atomization energies, bond lengths and vibration frequencies, which 

tend to be poorly described with simple ab initio functionals. 

As we see later, in the condensed matter physics community, the most widely used 

exchange-correlation functionals have been the local density approximation (LDA) and 

semilocal generalized gradient approximation (GGA). The so-called hybrid functionals, 

defined by the sum of a local     and of a term proportional to the Hartree-Fock exact-

exchange operator. Within the generalized Kohn-Sham (GKS) formalism, the total 

nonlocal potential       is given by: [43, 44] 

   ( ⃗  ⃗
 )    ( ⃗)     ( ⃗  ⃗

 )                      (     ) 

Where    ( ⃗  ⃗
 ) is now fully nonlocal and can be expressed as: 

   ( ⃗  ⃗
 )     

     ( ⃗  ⃗   )     
     ( ⃗  ⃗   )  (   )  
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  ( ⃗  )    ( ⃗)                                   (     ) 

where α and β are parameters that determine the amount of long-range (lr) and short-range 

(sr) exact exchange, respectively. The long-range nonlocal potential   
     ( ⃗  ⃗   ) is 

defined as: 

  
     ( ⃗  ⃗   )   ∑   ( ⃗)  

 ( ⃗ )
   ( | ⃗   ⃗ |)

| ⃗   ⃗ |

    

   

             (     ) 

where ω is a parameter (separation length) and    are single-particle, occupied electronic 

orbitals. The short-range potential   
     ( ⃗  ⃗   ) is defined in a similar manner, with the 

complementary error function replacing the error function in (Eq. II.33): 
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             (     ) 

The Coulomb potential is partitioned as:  

 

 ⃗   ⃗ 
 

    ( | ⃗   ⃗ |)

| ⃗   ⃗ |
 

   ( | ⃗   ⃗ |)

| ⃗   ⃗ |
                (     ) 

When α = β, a full-range hybrid functional is obtained and α determines the fraction of 

exact exchange entering the definition of the potential: 
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   ( ⃗   ⃗ )     
  ( ⃗   ⃗ )  (   )  ( ⃗)    ( ⃗)                            (     ) 

 

The parameter α are used us an adjustable parameter to reproduce the experimental 

band gap of solids. For non-metallic, condensed systems the screening of the long-range 

tail of the Coulomb interaction is proportional to the inverse of the static dielectric constant 

  
   and it is thus intuitive to relate the parameter α in (Eq. II.36) to   

  . One may also 

justify such a relation by using many-body perturbation theory. The self-consistent cycle 

used to determine the sc-hybrid functional is shown in (Fig. II.2). The self-consistency 

loop is started with an initial guess for α, which is bound to range from 0 to 1; α determines 

the amount of exact exchange   
  ( ⃗  ⃗ ) included in the exchange correlation potential 

expression of (Eq. II.36). 

 

Figure II.2: Diagram of the self-consistent hybrid scheme [43]. 
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III.1. Introduction 

To understand the different properties of solids, it is necessary to study the behavior 

of electrons in the latter. There are many ab initio methods that physicists and chemists use 

to calculate the electronic structure. All ab initio methods have been continuously refined 

over recent years and all have benefited from the availability of increasingly powerful 

computers. Most methods can now model to study extended systems like solids (See Fig. 

III.1). The most common and widely used method, which will be used in this work, is “The 

Full-Potential Linearized Augmented Plane Wave Method”. The LAPW method is 

fundamentally a modification of the original augmented plane wave (APW) method of 

Slater.  

The full-potential linearized augmented plane wave (FP-LAPW) method has 

emerged as a widely used very robust and precise state-of-the-art ab initio electronic 

structure technique with reasonable computational efficiency to simulate the electronic 

properties of materials based on density-functional theory (DFT). The FP-LAPW method 

is an all-electron algorithm, which is universally applicable to all atoms of the periodic 

table in particular to transition metals and rare earths and to multi-atomic systems with 

compact as well as open structures. Due to the all-electron nature of the method, 

magnetism and nuclear quantities are included rigorously. In addition, open structures such 

as surfaces, clusters, organic and inorganic molecules as well as wires can be treated 
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without problems. The capability of calculating atomic forces exerted on the atoms opens 

the path to structure optimization. 

 

 

Figure III.1: Overview of electronic structure calculations [1]. 

 

III.2. The APW method 

The APW method was developed by Slater in 1937 [2, 3]. Near an atomic nucleus 

the potential and wave functions are similar to those in an atom “they are strongly varying 

but nearly spherical. Conversely, in the interstitial space between the atoms both the 

potential and wave functions are smoother. Accordingly, space is divided into two regions 

and different basis expansions are used in these regions: radial solutions of Schrodinger's 

equation inside non-overlapping atom centered spheres and plane waves in the remaining 

interstitial region (Fig. III.2) [4]. The crystalline potential  ( ⃗) and the wave function 

 ( ⃗) are written as: 

 ( ⃗)   {
 ( ⃗)                                        ⃗    

                                                ⃗    
               (     ) 
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where  ⃗⃗⃗ is Bloch vector,   is the cell volume,  ⃗ is a reciprocal lattice vector,      is the 

spherical harmonics,             are expansion coefficients (l and m are quantum 

numbers).   ( ⃗) is the regular solution of the radial Schrodinger equation defined by: 

( 
  

  

  

   
 

  

  

 (   )

  
  ( ⃗)    )    ( ⃗)                                  (     ) 

where Ei is an energy parameter, V is the spherical component of the potential in the 

sphere. The radial functions   ( ⃗) defined by (Eq. II.3) are automatically orthogonal to any 

eigenstate of the same Hamiltonian that vanishes on the sphere boundary [4]: 

(     )   ( ⃗)  ( ⃗)    

     ( ⃗)

   
   

     ( ⃗)

   
                          (     ) 

where   ( ⃗) and   ( ⃗)  are radial solutions at different energies E1 and E2. The overlap is 

constructed using this relation and integrating by parts; the surface terms vanish if either 

  ( ⃗) or   ( ⃗) vanish on the sphere boundary, while the other terms cancel. 

 

Figure III.2: The division of space in the APW method. The muffin-tin spheres “I” are 

surrounded by the interstitial region “II”. 

 

The problem of this method lies in (Eq. III.2), which does not ensure the continuity 

of the kinetic energy at the boundary of the sphere. So, it is essential to impose this 

constraint in the method, by defining the coefficients     as a function of    through the 

development in spherical harmonics of the plane waves. The coefficient of each 

component (lm) being given by [4, 5]: 
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( | ⃗⃗⃗   ⃗| )   
 ( ⃗⃗⃗   ⃗)                                  (     ) 

where    is the Bessel function of order 1 and R is the sphere radius. 

If the El's were fixed, used only as a parameter during the construction of the basis, 

the Hamiltonian could be set up in terms of this basis. This would lead to a standard 

secular equation for the band energies. Unfortunately, it turns out, that the APW basis does 

not offer enough variational freedom if the El's are kept fixed. An accurate description can 

only be achieved if they are set to the corresponding band energies. However, requiring the 

El's to be equal to the band energies, the latter can no longer be determined by a simple 

diagonalization of the Hamiltonian matrix. Since the Ul's depend on the band energies, the 

solution of the secular equation becomes a nonlinear problem, which is computationally 

much more demanding than a secular problem. 

Another disadvantage of the APW method is, that it is difficult to extend beyond 

the spherically averaged muffin-tin potential approximation, because in the case of a 

general potential the optimal choice of El is no longer the band energy. And finally, but 

less serious, if, for a given choice of El's, the radial functions ul vanish at the muffin-tin 

radius, the boundary conditions on the spheres cannot be satisfied, i.e., the plane-waves 

and the radial functions become decoupled. This is called the asymptote problem. It can 

already cause numerical difficulties if Ul becomes very small at the sphere boundary [5]. 

To overcome these difficulties, several modifications have been made to the APW method, 

notably those proposed by Anderson [6], as well as that of Koelling and Abrman [7]. 

In 1975, Anderson proposed a method in which the basic functions   ( ⃗) and their 

derivatives are continued for a given energy. This choice solves the problems encountered 

in the APW method thus giving a band structure method, flexible and precise. This method 

is called the linear LAPW augmented plane wave method. 
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III.3. The FP-LAPW method  

In the original APW formulation introduced by Slater, the plane-waves are 

augmented to the exact solutions of the Schrödinger equation within the MT at the 

calculated eigenvalues. This approach is computationally expensive because it leads to an 

explicit energy dependence of the basis functions (and consequently of the Hamilton- and 

overlap-matrices) and thus to a non-linear eigenvalue problem. Instead of performing a 

single diagonalization to solve the KS equation one repeatedly needs to evaluate (for many 

trial energies) the determinant of the secular equation in order to find its zeros and thus the 

single particle eigenvalues    [8, 9]. 

For a crystal, the space is divided into two regions: the first region is the Muffin-tin 

sphere, and the second is the remaining space that represents the interstitial region. The 

basic functions of the FP-LAPW are plane waves in the interstitial region and spherical 

harmonics multiply by the radial functions in the muffin-tin spheres .In the FP-LAPW 

method, the basic functions in the MT spheres are linear combinations of the radial 

functions   ( ⃗)    and their derivatives   ̇ ( ⃗)   ( ⃗). 

The functions Ul are defined exactly as in the APW method but with a fixed El. The 

Function Ul satisfies the following equation: 

( 
  

  

  

   
 

  

  

 (   )

  
  ( ⃗)    )   ̇ ( ⃗)     ( ⃗)                 (     ) 

where the combination of the radial functions    and  ̇  ensures continuity with the plane 

waves of the interstitial region on the surface of the sphere MT. 

The augmented wave functions are then used as basic functions of the FP-LAPW method, 

so we have: 

 ( ⃗)   

{
 
 

 
 ∑[     ( ⃗)      ̇ ( ⃗)]

  

    ( ⃗)                       

 

√ 
∑  

 

  ( ⃗⃗⃗  ⃗) ⃗                                                     
                           (     ) 

where     : are coefficients corresponding to the function   ( ⃗). 

                 are coefficients corresponding to the function  ̇ ( ⃗). 
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Inside the spheres, the LAPWs functions are better adapted than the APWs 

functions, in fact if    differs a little from the band energy E, the linear combination of the 

(Eq. III.7) will better reproduce the function radial than the APWs functions taken alone: 

  (   ⃗)     (    ⃗)   (    )  ̇ (    ⃗)    ((    )
 )                           (     ) 

where  ((    )
 ) represents the quadratic error in energy. 

In this method, the calculations lose some precision compared to the APW method 

whose wave functions are more correct. The FP-LAPW method causes an error         

 (    ) 
  of order on the wave functions and another on the band energy of order 

 (    ) 
 . Despite these minor drawbacks, the LAPWs functions form a good basis for  

-with a single El- to get all the valence bands in a fairly wide energy range. However, it is 

possible to divide the energy interval into several energy windows, each of which 

corresponds to an energy El where the solution will be obtained separately [10]. 

III.4. Construction of the Radial Functions 

III.4.1. Non-relativistic Radial Functions 

The differential equations (Eq. III.6) may be solved on the radial mesh using 

standard methods [11]. However, since (Eq. III.3) is linear, the norm of    is 

undetermined, and furthermore, given a solution,  ̇  of (Eq. III.6),  ̇      with arbitrary 

  is also a solution. In practice, it is convenient to enforce the normalization, 

∫ [   ( ⃗)]
   ⃗   

  

 

                      (     ) 

and to orthogonalize    and  ̇  

∫     ( ⃗) ̇ ( ⃗)  ⃗   
  

 

                   (      ) 

where    is the location of the sphere “atom” α, 

With this choice, the norm of  ̇  (|| ̇ ||) provides an indication as to the range over 

which the energy linearization is a reasonable approximation. In particular, the 

linearization errors are acceptable for most purposes when ‖ ̇ ‖        , where    

is/are the energy parameter(s) for those “l” for which the band in question has significant 
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character and “ ” is the band energy. 

Several options are available if a choice of El that satisfies the above criterion 

cannot be determined. These are (i) to divide the energy range into windows (also known 

as panels) and treat each window separately with El appropriate for the states in it, (ii) to 

relax the linearization using a local orbital extension (this is effectively a quadratic 

method), or (iii) to reduce the sphere sizes, thereby reducing ‖ ̇ ‖. The first two options 

are commonly used. The latter, while generally applicable, results in substantial increases 

in the basis set size, and these increases are often computationally prohibitive and further 

may exacerbate problems due to high lying extended core states (e.g., ghost bands). 

However, iterative implementations of the LAPW method impose smaller penalties for 

increased basis set size, and in these methods (iii) may be a reasonable alternative [4, 12]. 

II.4.2. Relativistic Radial Functions 

Relativistic corrections are important only when the kinetic energy is large. Since 

the band energies of interest in solids are small, this means that relativistic effects need 

only be incorporated in regions where the potential is strongly negative, i.e., near the 

nuclei. In the LAPW method, this means that relativistic effects can be safely neglected in 

the interstitial region, and the only modifications are to the radial functions in the spheres 

and the components of the Hamiltonian that operate on them. 

The relativistic modification is, therefore, to replace (Eq. III.3) and (Eq. III.6) by 

the corresponding Dirac equation and its energy derivative, and retain the relativistic terms 

when evaluating the sphere contribution to the Hamiltonian matrix elements. It is, 

however, convenient to neglect spin-orbit effects at this stage (the scalar relativistic 

approximation), since otherwise the size of the secular equation is doubled. If important, 

spin-orbit effects can be taken account of latter using the low lying band wave functions as 

the basis for a second variational step. The exception is for calculations with non-collinear 

magnetism, in which case the secular equation is doubled regardless. Koelling and Harmon 

[13] have presented a technique for solving the Dirac equation in a spherically symmetric 

potential, in which spin-orbit effects are initially neglected, but may be incorporated 

afterward [4]. 

The solution of the Dirac equation is conventionally written as, [4, 13] 
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      [
     

         
]                                                   (      ) 

Where K is the relativistic quantum number,     is a two-component spinor and the radial 

coordinate has been suppressed. 

Koelling and Harmon [13] define a new function, 

   
 

   
  

                                                                 (      ) 

Here the prime denotes the radial derivative, m is the mass,   is the speed of light and 

    
 

   
(   )                                                 (      ) 

at energy, E. Dropping the spin-orbit term, the solution is rewritten with the usual non-

relativistic “lm” quantum numbers as: 

     [

       

 

   
  (   

  
 

 
   )     

]                     (      ) 

Where    is the usual non-relativistic spinor. Defining        and        , the scalar 

relativistic equations become: 

  
      

 

 
                                                           (      ) 

and 

                            
   

 

 
  *

 (   )

    
 (    )+                       (      ) 

These can be solved numerically in the same way as the non-relativistic Schrodinger 

equation (e.g., standard predictor-corrector), given the boundary condition,  

   
   

 

 
  

[ (   )    (   ⁄ ) ]     

(   ⁄ )
                             (      ) 

The spin-orbit term (note that there are higher order terms in     that have been 

neglected) may be included by adding  (
  

     ) (   )  to the right hand side of (Eq. 
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III.16). The energy derivatives, needed for the linearization, are analogous to the non-

relativistic case. 

 ̇ 
   ( ̇     ̇ )  

 

 
 ̇                                    (      ) 

and 

  ̇   
 

 
 ̇ [

 (   )

    
 (    )]  ̇  *

 (   ) ̇

     
  +              (      ) 

From the solution. Pl and Ql, the large and small components, gl and fl can be determined 

via the definitions of   ,    and   . Both the large and small components are to be used in 

constructing the charge density or evaluating matrix elements. Thus the quantity replacing 

  
  in the normalization equation (Eq. III.9) is      . 

III.5. Semi-core states problem 

The FP-LAPW method generally gives accurate band energies in the vicinity of the 

linearization energies El and in most materials it is sufficient to choose these energies near 

the center of the bands. However, this is not always possible and in some cases the choice 

of a single value of El is not sufficient for the calculation of all energy bands. This kind of 

problem is encountered, for example, with the orbital materials 4f, as well as with the 

elements of the transition metals. This is the fundamental problem of the so-called semi-

core state: An intermediate state between the state of valence and the state of heart. In this 

case, the difficulty is overcome by (i) using the multiple energy windows or (ii) the 

(LAPW + LO) method of Singh [14-18]. 

III.5.1. Multiple energy windows 

In the two window treatment (See Fig. III.3), a division is made into semi-core and 

valence energy regions. A different set of El is chosen for each window to treat the states in 

it as accurately as possible. Separate calculations are then performed for the two windows 

and the relevant bands are used to construct semi-core and valence charge densities. This 

amounts to two independent LAPW calculations, with the exception that the potential is 

the same and the charge densities are combined. 
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Although this approach does solve many of the problems associated with the 

linearization and permits full relaxation of semi-core states, it is not fully satisfactory. First 

of all, there is a substantial overhead because separate calculations are being done for each 

window. When multiple windows are used for the conduction bands, the cost of a two 

window calculation is almost twice that of a one window calculation. For the more 

common application to semi-core states, the overhead is lower because these states are 

almost dispersionless and so only a very small number (typically only one) of k-points is 

needed for the lower window [4]. 

 

Figure III.3: Example of windows with a semi-core state. The El corresponding to the 

semi-core angular momentum is set low in the single window case [4]. 

 

III.5.2. LAPW+LO method 

The main idea of this method is the treatment of all energy states with a single 

energy window. A linear combination of two radial functions are proposed [19-21]; the 

derivatives of these functions with respect to energy are equal, but the corresponding 

linearization energies are different. The proper function has the following form: 

   
   [     ( ⃗     )   ̇     ( ⃗     )       ( ⃗     )]   ( ⃗)           (      ) 

The coefficients    ,     and     are determined by the requirements that    
   should be 

normalized and has zero value and slope at the sphere boundary. 



 

 

Chapter III The Full Potential-Linearized Augmented Plane Wave (FP-LAPW) method 

45 

References 

[1] S. Blugel, G. Bihlmayer, Full-Potential Linearized Augmented Plane wave Method, 

Comput. Nanosci.: Do It Yourself!, Vol. 31, pp. 85-129, (2006). 

[2] J. C. Slater, Wave functions in a periodic potential. Physical Review, Vol. 51, No. 10, 

pp. 846(6), (1937). 

[3] J. C. Slater, An Augmented Plane Wave Method for the Periodic Potential Problem, 

Phys. Rev., Vol. 92, No. 3, pp.603(6), (1953).  

[4] D. J. Singh, L. Nordstrom, plane waves, pseudopotentials and the LAPW method,2
nd

 

Edition, U.S.A, (2006). 

[5] Y. Mokrousov, Ab initio All-electron Full-potential Linearized Augmented Plane-wave 

Method for One-dimensional Systems, Master of Science, Rheinisch-West fälischen 

Technischen Hochschule Aachen (Germany), (2005).  

[6] O. K. Andersen, Linear methods in band theory, Phys. Rev. B ,Vol. 12, No. 8, pp. 3060-

3083, (1975). 

[7] D. D. Koelling and G. O. Arbman, Use of energy derivative of the radial solution in an 

augmented plane wave method: application to copper. J. Phys. F: Metal Phys., Vol. 5, No. 

11, p. 2041, (1975).  

[8] M. Petersen, F. Wagner, L. Hufnagel, M. Scheffler, P. Blaha and K. Schwarz, 

Improving the efficiency of FP-LAPW calculations, Comput. Phys. Commun., Vo. 126, 

No. 3, pp. 294–309, (2000). 

[9] H. Bross, and G. M. Fehrenbach, The spline augmented plane wave method. Z. Phys. 

B: Condens. Matter, Vol. 81, No 2, pp. 233-243, (1990). 

[10] L. F Mattheiss and D. R. Hamann, Linear augmented-plane-wave calculation of the structural 

properties of bulk Cr, Mo, and W, Phys. Rev. B, Vol. 33, No. 2, pp. 823-840, (1986). 

[11] M. Planitz, Numerical recipes-the art of scientific computing, by W. H. Press, B. P. Flannery, S. 

A. Teukolsky and W. T. Vetterling, (Cambridge University Press). The Mathematical Gazette, Vol. 

71, No. 457, pp. 245-246, (1987).  



 

 

Chapter III The Full Potential-Linearized Augmented Plane Wave (FP-LAPW) method 

46 

[12] S. Goedecker, Treatment of semicore states in the linearized augmented-plane-wave method 

and other linearized electronic-structure methods. Phys. Rev. B, Vol. 47, No. 15, pp. 9881-9883, 

(1993). 

[13] D. D. Koelling, and B. N. Harmon, A technique for relativistic spin-polarised calculations, J. 

Phys. C: Solid State Phys., Vol. 10, No. 16, pp. 3107-3114, (1977). 

[14] D. D. Koelling, Approximate treatment for semi-core states, Solid State Commun., Vol. 53, 

No. 11, pp. 1019-1021, (1985).  

[15] S. Goedecker and K. Maschke, Alternative approach to separable first-principles pseudo-

potentials, Phys. Rev. B, Vol. 42, No. 14, pp. 8858-8863, (1990).  

[16] P. Blaha, D. J. Singh, P. I. Sorantin,  and K. Schwarz, Electric-field-gradient calculations for 

systems with large extended-core-state contributions, Phys. Rev. B, Vol. 46, No. 3, pp. 1321-1325, 

(1992). 

[17] D. J. Singh, and J. Ashkenazi, Magnetism with generalized-gradient-approximation density 

functionals, Phys. Rev. B, Vol. 46, No. 18, pp. 11570-11577, (1992). 

[18] D. J. Singh, W. E. Pickett and H. Krakauer, Gradient-corrected density functionals: Full-

potential calculations for iron, Phys. Rev. B, Vol. 43, No. 14, pp. 11 628-11 634, (1991). 

[19] T. Takeda, and J. Kubler, Linear augmented plane wave method for self-consistent 

calculations, J. Phys. F: Metal Phys., Vol. 9, No. 4, pp. 661-672, (1979). 

[20] L. Smrčka, Linearized augmented plane wave method utilizing the quadratic energy expansion 

of radial wave functions, Czech. J. Phys. B, Vol. 34, No 7, pp. 694-704, (1984). 

[21] J. Petrů, J. and L. Smrčka, Quadratic augmented plane wave method for self-consistent band 

structure calculations, Czech. J. Phys. B, Vol, Vol. 35, No. 1, pp. 62-71, (1985). 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

                          Chapter                 IV                        
                                             

    Results and Discussion 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Chapter IV                                                                                               Results and Discussion 

47 

Chapter IV  

IV.1. Structural properties of the BaFAgCh (Ch = S, Se and Te) compounds ……… 

IV.2. Elastic properties of BaFAgCh (Ch=S, Se and Te) …………………………… 

       IV.2.1. Preamble .……………………………………………………………….. 

       IV.2.2. Calculation method …………………………………………………….. 

       IV.2.3. Single-crystal elastic constants …………………………………………. 

       IV.2.4. Polycrystalline elastic properties ……………………………………….. 

IV.3. Electronic properties of BaFAgCh (Ch=S, Se and Te) ……………………….. 

       IV.3.1. Preamble .……………………………………………………………….. 

       IV.3.2. Scalar relativistic electronic band structure …………………………….. 

       IV.3.3. Full relativistic electronic band structure ….............................................. 

       IV.3.4. Effective mass …………………………………………………………... 

       IV.3.5. Total and partial density of states ………………………………………. 

       IV.3.6. Electronics charge density ……………………………………………… 

IV.4. Optical properties of BaFAgCh (Ch = S, Se and Te) …………………………. 

IV.5. Thermoelectric properties of BaFAgCh (Ch = S, Se and Te) …………………     

       IV.5.1. Thermoelectricity ……………………………………………………….. 

       IV.5.2. Electrical and thermal conduction ……………………………………… 

       IV.5.3. optimisation of thermoelectric materials ……………………………….. 

       IV.5.4. From conventional to new thermoelectric materials ……………………. 

       IV.5.5. Chemical potential ……………………………………………………… 

       IV.5.6. Chemical potential dependence of TE properties of BaFAgCh (Ch = S, 

Se and Te) …………………………………………………………………………… 

       IV.5.7. Relaxation time and lattice thermal conductivity ………………………. 

       IV.5.8. Carrier concentration and temperature dependence of TE properties of 

BaFAgCh (Ch = S, Se and Te)……………………………………………………….. 

IV.6. Thermodynamic properties of BaFAgCh (Ch = S, Se and Te) ……………….   

References …………………………………………………………………………… 

48 

56 

56 

59 

61 

63 

70 

70 

71 

74 

76 

79 

81 

83 

99 

99 

102 

104 

106 

107 

 

109 

111 

 

113 

119 

129 

 

 

 



 

 

Chapter IV                                                                                               Results and Discussion 

48 

IV.1. Structural properties of the BaFAgCh (Ch = S, Se and Te) 

compounds 

It is well known that the physical properties of crystals depend strongly on their 

structural properties. Therefore, as first step of the present work, we have determined the 

optimized (equilibrium) structural parameters of the three studied compounds accurately. 

In order to obtain the optimized structural parameter values that are in good agreement 

with the available experimental ones, the calculation parameters should be well chosen. 

The following calculation parameters were used to calculate the optimized structural 

parameters:   

 Three different functionals, namely the local density approximation (LDA) [1], 

generalized gradient approximation (GGA) parametrized by Perdew et al. [2] (the 

so-called GGA-PBE or GGA96) and an another version of the GGA parametrized 

by Perdew et al. [3] (the so-called GGA-PBEsol or GGA08) were used to model 

the exchange-correlation.  

 The Ba: 5s
2
5p

6
6s

2
, F: 2s

2
2p

5
, Ag: 4p

6
5s

1
4d

10
, S: 3s

2
3p

4
, Se: 4s

2
3d

10
4p

4
 and Te: 

5s
2
4d

10
5p

4
 orbitals were treated as valence electron states. 

 The muffin-tin radii for the Ba, F, Ag and Ch atoms were chosen to be respectively 

2.4, 2.5, 2.5, 2.24 a.u. in BaFAgS, 2.42, 2.5, 2.5, 2.5 in BaFAgSe and 2.44, 2.5, 2.5, 

2.5 in BaFAgTe. 

 The energy convergence criterion was set to 10
−5

 Ry. 

 To achieve the total energy convergence, the plane wave cut-off parameter 

min

maxMT
R K is chosen to be equal to 10.  

 For the k-space integration over the Brillouin zone (BZ), a 16×16×7 Monkhorst-

Pack [4, 5] k-point mesh was used. 

 The geometry optimization was performed with a full structural relaxation of the 

volume and shape of the unit cell and the atomic positions until the maximum force 

on any atom should be smaller than 0.5 mRy/a.u.  

 The calculations were performed with and without including the spin-orbit coupling 

effect. 

The BaFAgCh (Ch = S, Se and Te) compounds crystallize in a tetragonal layered 

structure of the LaOAgS-type with the space group P4/nmm (n. 129) [6]. There are two 

chemical formulas in the unit cell (Z = 2), e.g., the BaFAgCh unit cell contains 2 Ba, 2 F, 2 
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Ag and 2 Ch atoms. The Wyckoff positions of the four inequivalent atomic positions in the 

BaFAgCh compounds are Ba: 2c (0.25, 0.25, zBa), Ag: 2b (0.75, 0.25, 0.5), Ch: 2c (0.25, 

0.25, zCh) and F: 2a (0.75, 0.25, 0), where zBa and zCh are respectively the internal 

coordinates along the c-axis of the Ba and Ch atoms. Each Fluoride (Silver) atom is 

contouring by four barium (Chalcogenide) atoms as showed in Fig. IV.1. The BaFAgCh 

(Ch = S, Se, Te) compounds may be schematically viewed as an alternating stacking of 

quasi two-dimensional [BaF] and [AgCh] layers along the c-axis. Therefore, the BaFAgCh 

(Ch = S, Se, Te) compounds are a natural superlattice structure. 

 

 

 

 

Figure IV.1: The unit-cell crystalline structure (left) and polyhedrons on the 1x2x1 super 

cell (right) of BaFAgS. 
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The BaFAgCh (Ch = S, Se and Te) compounds are characterized by four structural 

parameters that are not fixed by the symmetry group, namely the lattice parameters: a and 

c, and the internal coordinates zBa and zCh, which need to be optimized. To obtain the 

optimized crystalline structure, i.e., the structural parameters that correspond to the total 

energy minimum, i.e., equilibrium state, we proceeded as follows: 

(i) Calculate the total energy (Etot) for a set of unit cell volumes (V = 0.9Vexpt, 0.95 

Vexpt, Vexpt, 1.05 Vexpt and 1.10 Vexpt), which were chosen around the 

experimental value of the unit cell (Vexpt) (or the equilibrium one if the 

experimental one is not available), where the c/a ratio and the atomic positions 

were optimized for each volume 

(ii) Fit the obtained Etot-V data to the Birch–Murnaghan equation of state (EOS) [7]: 

 

 ( )     
     

  
{[(

  

 
)
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  [(

  

 
)

 
 
  ]

 

[   (
  

 
)

 
 
]}            (    ) 

 

Here V0 is the equilibrium volume of the unit cell and E0 is the corresponding total energy 

(the minimum of the total energy), B0 is the equilibrium bulk modulus and B’ is its 

pressure derivative. The mentioned procedure to calculated the optimized structural 

parameters is implemented in a special package developed by Jamal Morteza [8] which is 

implemented in the Wien2K code. The calculated equilibrium unit-cell parameters (a and 

c) and internal atomic coordinates (zBa and zCh) for each considered compound and the 

corresponding measured and previously calculated values (when available) are collected in 

Tab. IV.1. From Tab. IV.1, one can note the following: 

 Owing to the fact that measures of the lattice parameters were performed at room 

temperature whereas our results are predicted for zero temperature, one will expect that 

correct calculated values for the lattice parameters will be slightly smaller than their 

corresponding measured ones. From Tab. IV.1, one can note that the GGA96-calculated 

(LDA-calculated) lattice parameters of the three considered compounds are somewhat 

larger (somewhat smaller) than the measured ones. This stems from the well-known fact 

that the LDA tends to slightly underestimate the interatomic distances and the GGA96 

tends to slightly overestimate them. However, from Tab. IV.1, one can appreciate that the 

GGA08 calculated lattice parameters are practically equal to the arithmetic averages of the 

GGA96 and LDA-calculated values and are slightly smaller than their corresponding 

https://en.wikipedia.org/wiki/Birch%E2%80%93Murnaghan_equation_of_state
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experimental ones as expected. It is worth to note that the GGA08 [3] has been developed 

specifically to improve the description of the exchange-correlation effects in solids. The 

maximum relative deviation of our calculated structural parameters values from the 

experimental ones (
expt expt

(%) (( ) / ) 100d x x x   ), where x = a, c, does not exceed 1%, 

which demonstrates the reliability of the obtained results. Therefore, the GGA08 optimized 

structural parameters were adopted for the calculations of the remaining investigated 

properties. 

 The lattice parameters increase when substituting the Ch atom in the following 

sequence: S Se Te  , which can be explained by the increase of the atomic radius 

(R) of the chalcogen atom Ch:  R(S)=1.09 Å< R(Se)=1.22 Å< R(Te)=1.42 Å. 

 The inclusion of the spin-orbit coupling leads to a non-significant effect on the lattice 

parameters values.  

  The bulk modulus (B) value decreases when the Ch atom in the BaFAgCh compound 

is replaced in the following sequence: S Se Te  . This result is consistent with the 

fact that B is inversely proportional with the unit cell volume (V): (     ⁄ ) [9, 10]. 
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Table IV.1: Calculated lattice parameters (a and c, in Å), relative deviation from the 

experimental value  ( )  [(       )      ]     , (x = a, c), internal atomic 

coordinates (zBa and zCh, dimensionless), unit-cell volume (V0, in Å
3
), bulk modulus (B0, in 

GPa), cohesive energy (    , in eV) and formation enthalpy (  , in eV) for the BaFAgCh 

(Ch = S, Se, Te) compounds, compared with the available experimental and theoretical 

data. 

BaFAgS 

 Present  Expt.
 
[6]  Other [11] 

a 4.2035
a
, 4.1963

a,*
, 4.2880

b
, 4.1523

c
  4.2406  4.280 

  -0.87
a
, 1.04

a,*
 +1.12

b
,+2.08

c
  -  - 

c 9.2423
a
 ,9.2327

a,*
 ,9.4537

b
, 9.1114

c
  9.3029  9.411 

  -0.65
a
, -0.75

a,*
, +1.62

b
 , -2.06

c
  -  - 

zBa 0.1698
a
 0.1687

a,*
 0.1676

b
 0.1694

c
  0.1665  - 

zS 0.6745
a
 0.6752

a,*
 0.6750

b
 0.6750

c
  0.6760  - 

V0 163.306a, 162.578
a,*

, 173.8246
b
157.0951

c 
 167.2911  172.3945 

B0 61.1462
a
 51.4222

b
, 70.3551

c
  -  - 

     -7.7244     

    -5.9081     

BaFAgSe 

 Present  Expt. [6]  Other [11] 

a 4.3177
a
, 4.3078

a,*
, 4.4035

b
, 4.2712

c
  4.3449  4.390 

  -0.63
a
, -0.85

 a,*
, +1.35

b
, -1.70

c
  -  - 

c 9.3327
a
, 9.3349

 a*
, 9.5701

b
, 9.1604

c
  9.4018  9.558 

  -0.73
a
, -0.71

 a,*
, +1.80

b
, -2.57

c
  -  - 

zBa 0.1627
a
, 0.1567

 a,*
, 0.1603

b
, 0.1622

c
  0.1598  - 

zSe 0.6803
a
, 0.6819

 a,*
, 0.6802

b
, 0.6812

c
  0.6798  - 

V0 173,9852
a
, 173.2290

 a,*
, 185.4720

b
, 167.1145

c
  177,4886  184.2027 

B0 55.0176
a
, 45.7175

b
, 63.1989

c
  -  - 

     -7.5893     

    -5.2899     

BaFAgTe 

 Present  Expt.  Other 

a 4.4987
a
, 4.5013

a,*
, 4.5809

b
, 4.4583

c
     

  -     

c 9.5035
a
, 9.4515

 a,*
, 9.7991

b
, 9.2773

c
     

  -     

zBa 0.1497
a
, 0.1452

a,*
, 0.1474

b
, 0.1468

c
     

zTe 0.6849
a
, 0.6859

 a,*
, 0.6843

b
, 0.6885

c
     

V0 192,3347
a
, 191.5035

a,*
, 205.6306

b
, 184.3997

c
     

B0 46.9707
a
, 40.5974

b
, 53.0310

c
     

     -7.4296     

    -5.2115     
a 
Present work using the GGA08, 

b 
Present work using the GGA96, 

c 
Present work using the LDA. 

a* 
Present work using the GGA08 including the spin-orbit coupling (SOC). 
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To confirm the chemical and structural stabilities of the studied crystals, we 

calculated their cohesive energies (    ) and formation enthalpies (  ). The cohesive 

energy, the energy that is required for the crystal to decompose into free atoms, is given by 

the following relationship: 

 

     
 

              
*    

       

 (       
  (    )

       
 (    )

        
  (    )

        
  (    )

)+ (    ) 

 

The formation enthalpies (  ) is given by the following expression: 
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Here                    are the numbers of Ba, F, Na and Ch atoms, respectively, in the 

unit-cell of the BaFAgCh compound;     
  (    )

      
 (    )

      
  (     )

         
  (    )

 are 

the total energies of the Ba, F, Ag and Ch isolated atoms, respectively;     
  (     )

  

    
  (     )

 and     
  (     )

 are the total energies per atom of the solid state of the Ba, Ag and 

Ch pure elements, respectively;     
 (   )

 is the total energy per atom of the gas state of the 

pure element F. The obtained values for the cohesive energies and formation enthalpies are 

listed in Tab. IV.1. The obtained results show that: 

 Calculated cohesive energies and formation enthalpies are negative, confirming the 

chemical and structural stabilities of the studied compounds, including the hypothetical 

one; BaFAgTe.   

 Both cohesive energy and formation enthalpy decrease when going from BaFAgS to 

BaFAgSe to BaFAgTe. 

 

Variations of the bond lengths (d) and angles between atoms (See Fig. IV.2) when 

the chalcogenide element (Ch) is substituted in the BaFAgCh compounds in the following 

sequence:  S Se Te   are given in Tab. IV.2. Crystal structure drawings were produced 

using the program VESTA [12]. From Tab. IV.2 data, one can note:   



 

 

Chapter IV                                                                                               Results and Discussion 

54 

 Variations of the    and    angles in the [BaF] block are more considerable than in 

the [AgCh] block; the    (Ba-F-Ba) angle increases while    (Ba-F-Ba) angle 

decreases, indicating that the block [BaF] will be more flat when going from 

BaFAgS to BaFAgSe to BaFAgTe. This result is consistent with the diminution of 

the c/a ratio in the same sequence.  

  The bond length between Ba and F; 
Ba-F

d , increases slowly, by about 0.019 Å in 

average, when going from BaFAgS to BaFAgSe to BaFAgTe.  

 The bond length between Ag and Ch; 
Ag-Ch

d , increases, by about 0.1025 Å in 

average, when the Ch atom is substituted in the sequence: S Se Te  .  

 Calculated bond lengths and angles between the constituent atoms of the BaFAgCh 

(Ch = S, Se, Te) compounds are in good agreement with the available experimental 

findings [6]. 

 

 

 

 

 

Figure IV.2: Bond lengths and angles between the constituent atoms of the BaFAgS 

compound. 
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Table IV.2: Bond lengths (d, in A˚) and angles ( , in degree) for the BaFAgCh (Ch = S, 

Se, Te) compounds. 

 

  BaFAgS  BaFAgSe  BaFAgTe 

Pres.  Exp. [6]  Pres.  Exp. [6]  Pres.  Exp. [6] 

Ba-F
d   2.623  2.626  2.639  2.642  2.661  2.668 

Ba-Ch
d   3.302  3.337  3.387  3.422  3.548  3.586 

Ag-Ch
d   2.649  2.679  2.737  2.753  2.854  2.879 

 2 (Ba-F-Ba)  106.5  107.69  109.77  110.65  115.38  116.15 

 4 (Ba-F-Ba)  110.98  110.37  109.32  108.88  106.60  106.24 

 2 (Ch-Ag-Ch)  104.98  104.65  104.14  104.22  104.01  103.69 

 4 (Ch-Ag-Ch)  111.76  111.93  112.20  112.16  112.27  112.43 
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IV.2. Elastic properties of the BaFAgCh (Ch = S, Se and Te) compounds 

IV.2.1. Preamble 

All solid objects are deformable under the applied external forces; there is an 

internal force, which resists to this deformation. The resistance against deformation in 

crystals is greater than that in amorphous materials. The external forces can change size 

and shape of a solid. This change is called deformation. Elasticity is the physical property 

of a material that returns matter to its original form and dimensions after the removal of 

stresses (external forces) that affect the material and lead to its deformation (distortion). 

This means that the stress-strain response is reversible and consequently the material has a 

preferred natural state. In general, the relation between stress and strain is nonlinear, and 

the corresponding theory is called the nonlinear theory of elasticity. However, if the 

relationship between stress and strain is linear, the material is said to be linearly elastic, 

and the corresponding theory is called the linear theory of elasticity [13]. Fig. IV.3 shows 

the behaviour of a solid material under an applied force F that stretch the solid elastically 

from    to      . The force is divided among chains of atoms that make the solid. Each 

chain carries a force     [14]. 

 

 

Figure IV.3: The behaviour of a solid material under an applied force F [14]. 

 

Hooke’s law of elasticity [15, 16], established by the English scientist Robert 

Hooke in 1660, states that: «Forces can cause objects to deform (i.e., change their shape). 

The way in which an object is deformed depends on its dimensions, the nature of the 
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material of which it is made, the size of the force and direction of the force». That means, 

for relatively small deformations of an object, the displacement or size of the deformation 

is directly proportional to the deforming force or load. Under these conditions, the object 

returns to its original shape and size upon removal of the load. Elastic behaviour of solids 

according to Hooke’s law can be explained by the fact that small displacements of their 

constituent molecules, atoms, or ions from normal positions is also proportional to the 

force F that causes the displacement X,  

                                 (    ) 

Here   is a constant known as the rate or spring constant. However, the strain state in a 

solid medium around some point, cannot be described by a single vector. The same parcel 

of material, no matter how small, can be compressed, stretched, and sheared at the same 

time, along different directions. The relevant state of the medium around a point must be 

represented by two-second-order tensors, the strain tensor   (instead of the displacement X) 

and the stress tensor σ (replacing the restoring force F). The linear law for the relation 

between stress and strain is called the generalized Hooke's law. The general form of 

writing Hooke's law is as follows: 

                     (    ) 

    ∑        

   

  

                       (    ) 

   is a tensor of rank four, which is  called the stiffness tensor or elasticity tensor;  the 

quantities       are called the elastic coefficients of a body. The stiffness tensor   is 

represented by a matrix of       real numbers      , however, this number is reduced in 

systems that exhibit symmetry. According to the Voigt notation, the single-crystal elastic 

constants are noted Cij and the relation (IV.6) can be given as follows: 

   ∑     

 

 

                (    ) 

Here   (          ),   (          ) and     are strain, stress, and single-crystal elastic 

(stiffness) constants, respectively.  
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Theoretically, there are two ways for calculating the possible 21 elastic constants Cij:  

(i) 1. Applying a set of strain patterns tensors (  (          ),) that allows the 

calculations of the elastic constants of interest, 2. Calculating the corresponding 

stress tensors (  (          )) via first-principles calculations and then 3. Once 

the stress is calculated for each strain, the single-crystal elastic constants are 

retrieved by linear least-squares fitting. 

(ii) 1. Applying a set of strain patterns, 2.  Calculating the corresponding elastic 

potential energy (E) via first-principles calculations and then calculating the 

possible 21 elastic constants Cij using the following expression:  

    
 

 
 

   

      
                  (    ) 

Here V is the volume of the unit cell.  In the present work, we used the second method 

(Total energy-stain) to calculate the elastic constants Cij.  

In addition to the single-crystal elastic constants, there are some other elastic 

moduli that are used usually to characterize the mechanical properties of solid, such as: 

 Young's modulus (E), which describes the tensile elasticity or the tendency of an object 

to deform along an axis when opposing applied forces along that axis, is defined as the 

ratio of tensile stress to tensile strain: 

 

  
 

 
                 (    ) 

 

 where   is the uniaxial stress, or uniaxial force per unit surface, in Pascal, and   is the 

strain; change in length divided by original length (dimensionless). In other words, 

E describes the material's strain response to uniaxial stress in the direction of this stress. 

 The bulk modulus (B), which describes volumetric elasticity, or the tendency of an 

object to deform in all directions when uniformly loaded in all directions, is defined as 

volumetric stress over volumetric strain, and is the inverse of compressibility: 

    
  

  
                 (     ) 

https://en.wikipedia.org/wiki/Pascal_(unit)
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where P is pressure, V is volume, and  
  

  
  denotes the derivative of volume with respect 

to pressure. The bulk modulus is an extension of Young's modulus to three dimensions. 

In other words, B describes the material's response to (uniform) hydrostatic pressure. 

 The shear modulus (G), which describes an object's tendency to shear (the deformation 

of shape at constant volume) when acted upon by opposing forces, is defined as shear 

stress over shear strain. In other words, G describes the material's response to shear 

stress. 

 Poison’s ratio ( )  is the ratio of transverse contraction strain to longitudinal extension 

strain in the direction of stretching force. Tensile deformation is considered positive and 

compressive deformation is considered negative. The definition of Poisson's ratio 

contains a minus sign so that normal materials have a positive ratio, 

 

   
           

             
            (     ) 

In other words,   describes the response in the directions orthogonal to this uniaxial stress. 

 

IV.2.2. Calculation method 

To calculate the single-crystal elastic constants Cij using the “Energy-strain” 

method, we proceeded as flows: 

 

1. Optimize the crystalline structure with full relaxation. 

2. Select the elastic constants Cij of interest; choose the appropriate strain 

tensors that allow the calculation of the elastic constants of interest. 

3. Deform the crystal according the chosen strain tensors. 

4. Re-optimize the crystalline structure for each deformed crystalline structure. 

5. Repeat step 3. for a set of similar deformations with different amplitudes, 

creating a Total Energy vs.   curve (a parabola). 

6. Fit the curve to extract the second derivative of the total energy and calculate 

elastic constants 

More details for the procedure to calculate the elastic constants for some 

crystalline systems can be found in Ref. [17] 

 

https://en.wikipedia.org/wiki/Derivative
https://en.wikipedia.org/wiki/Pressure
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Polycrystalline solid is composed of randomly oriented crystalline regions; called 

crystallites; crystallite is a domain of solid-state matter that has the same structure as a 

single crystal.  Theoretically, the isotropic polycrystalline elastic moduli B and G can be 

calculated from the single crystal elastic constants Cij through the Voigt-Reuss 

approximations [18, 19]. The stress and strain are generally unknown in the composite and 

are expected to be no uniform. To calculate the B and G moduli for a polycrystalline solid, 

Voigt [20] assumed that the strain is everywhere uniform (See Fig. IV.4.a), so his 

approximation yields the upper bound (upper limit) for the B and G moduli, while Reuss 

[21] assumed that the stress is everywhere uniform (See Fig. IV.4.b), so his approximation 

yields the lower bound (lower limit). Hill [22, 23] proposed that the arithmetic average of 

the upper and lower bounds of the modulus yields the effective value.   

 

 

(a)                                          (b) 

Figure IV.4:  Geometric interpretations of the stress and strain on a polycristallin, (a): 

Voigt iso-strain model, (b): Reuss iso-stress model. 

 

The Voigt-Reuss-Hill (VRH) average provides a simple way to estimate the elastic 

moduli of a textured polycrystalline in terms of its crystallographic texture and the elastic 

constants of the constituting crystallites. According to the VRH approximations, Voigt B 

and G moduli (BV and GV), Reuss B and G moduli (BR and GR) and Hill B and G moduli 

(BH and GH) can be calculated from the single-crystal elastic constants using the following 

relationships [24, 25]:  

http://www.newworldencyclopedia.org/entry/Crystal
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Furthermore, the calculated isotropic bulk moduli B and shear moduli G allow calculation 

of the  Young’s modulus E and Poisson’s ratio   via the following relationships [24, 25]: 

  
   

    
                                   (     ) 

and 

  
     

 (    )
                             (     ) 

 

IV.2.3. Single-crystal elastic constants 

A Tetragonal crystal has six independent second-order elastic constants, namely 

C11, C33, C44, C66, C12 and C13. After determination of the lattice parameters that match the 

experimental value, we calculated the elastic constants for the title compounds using the 

“Energy–strain” method [17]. As there are no available data for the elastic constants of the 
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considered compounds in the literature to be compared with our results, we have calculated 

the elastic constants Cij using the “stress-strain” method as implemented in the CASTEP 

code [26]. It is worth to note here that the CASTEP code is an implementation of the 

pseudopotential plane wave (PP-PW) method. The calculated values of the six Cij elastic 

constants, namely C11, C33, C44, C66, C12 and C13, for the title materials are listed in Tab. 

IV.3.   

Table IV.3: Calculated single-crystal elastic constants (Cij, in GPa) for the BaFAgS, 

BaFAgSe and BaFAgTe compounds obtained using both the “energy-stain” and “stress-

strain” methods. 

 BaFAgS  BaFAgSe  BaFAgTe 

 FP-LAPW 
a
  PP-PW 

b
  FP-LAPW  PP-PW  FP-LAPW  PP-PW 

C11 101.3  111.4  102.6  105.7  86.2  90.9 

C33 76.8  77.6  61.7  66.6  32.9  51.7 

C44 33.7  34.8  32.2  33.2  21.2  21.1 

C66 21.4  23.3  20.9  22.1  18.9  19.9 

C12 27.6  34.7  28.4  33.4  23.7  31.1 

C13 43.2  47.2  41.7  45.3  28.6  39.4 

a
 : As implemented in the Wien2k code , 

b 
: As implemented in CASTEP code. 

 

The obtained results for the     allow us to make the following conclusions: 

 Calculated elastic constants     (Tab. IV.3) satisfy the mechanical stability criteria 

for tetragonal crystals [25]:  

 

{

                        
(       )    (            )    

 (       )             
                            (     ) 

 

 

Therefore, the examined compounds (including the hypothetical BaFAgTe 

compound) are mechanically stable. 

 In a tetragonal system, the C11 characterizes the resistant to the compressional 

stress along the a-axis (b-axis) while the C33 characterizes the resistant to the 
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compressional stress along the c-axis. From Tab. IV.3, one can note that C11 is 

larger than C33, indicating that the studied crystals are more resistant to 

compressional strains along the a-axis than that along the c-axis. This is in 

agreement with the layered nature of the studied compounds, where the bonding 

between the [AgCh] and [BaF] layers, stacked along the c-axis, is weaker than the 

intralayer bonding in the ab-plane. The difference between the values of C11 and 

C33, characterizing the elasticity in the stacking plane (C11) and in the perpendicular 

[001] direction (C33), demonstrates also that the studied materials are elastically 

anisotropic. 

 C11 and C33 are larger than C44 and C66, demonstrating that the resistance of the 

examined materials against shear deformations is much weaker compared to that 

against t compressional deformations. 

 Elastic constants calculated using the FP-LAPW method are slightly smaller than 

those obtained using the PP-PW one. 

 

IV.2.4. Polycrystalline elastic properties 

Calculated elastic moduli for the polycrystalline phases of the studied compounds 

through the Voigt–Reuss–Hill approximations are listed in Tab. IV.4.  From the Tab. IV.4 

data, the following conclusions can be made: 

 Values of both B (which measures the resistance to volume change) and G (which 

measures the resistance to shear deformation) decrease when going from BaFAgS 

to BaFAgSe to BaFAgTe, indicating that the hardness of these compounds 

decreases in the same consequence. 

 For each considered compound, the calculated B value from the single-crystal 

elastic constants through the Voigt-Reuss-Hill average is in good agreement with 

the corresponding one derived from the EOS fit. Therefore, this good agreement 

between the B values obtained via two different computational methods constitutes 

another proof of the reliability and accuracy of the computed elastic moduli. 

 The considered compounds have a relatively small Young’s modulus (E) value. 

This confirms the rather low stiffness of the considered compounds. As E 

characterizes the resistance of solid against uniaxial deformation, so it is related to 

C11 and C33 elastic constants, which explains the decrease of E when going from 

BaFAgS to BaFAgSe to BaFAgTe in the same sequence as C11 and C33. The shear 
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modulus G decreases also when going from BaFAgS to BaFAgSe to BaFAgTe in 

accordance with the decrease of the C44. 

 The calculated values of the Poisson’s ratio are smaller than ∼ 0.33, which is 

typical of ductile metallic materials.  

 For all examined systems, the bulk modulus B is larger than the shear modulus G; 

this implies that the parameter limiting the mechanical stability of these materials is 

the shear modulus. 

Table IV.4: Calculated polycrystalline elastic moduli: bulk modulus (B, in GPa), shear 

modulus (G, in GPa), Young’s modulus (E, in GPa), Poisson’s coefficient ( 

 , dimensionless), longitudinal, transversal and average sound velocities ( 

  ,    and   , respectively, in m/s), Debye temperature (  , in K), Pugh’s indicator (B/G), 

universal anisotropy index A
U 

and melting temperature (Tm, in K) for the  BaFAgCh  (Ch = 

S, Se, Te) compounds 

 BaFAgS  BaFAgSe  BaFAgTe 

B 56.365
V
, 56.203

R
, 

56.284
 H 

 54.502
V
, 52.571

R
, 

53.536
H
 

 40.818
V
, 32.341

R
, 

36.579
H
 

G 28.773
V
, 26.584

R
, 

27.678
H
 

 27.411
V
, 24.069

R
, 

25.740
H
 

 20.582
V
, 16.528

R
, 

18.555
H
 

E 73.766
V
,68.890

R
, 

71.340
H
 

 70.426
V
, 62.646

R 
, 

66.553
H
 

 52.861
V
, 42.366

R
, 

47.614
H
 

  0.281
V
, 0.295

R
, 

0.288
H
 

 0.284
V
, 0.301

R
, 

0.292
H
 

 0.284
V
, 0.281

R
, 

0.283
H
 

   3932.8  3662.3  3010.6 

   2143.3  1982.3  1656.1 

   2390.7  2212.2  1845.9 

   260.4  235.9  190.4 

B/G 2.03  2.08  1.97 

A
U
 0.41  0.73  1.49 

Tm 772.977 ± 300  754.520 ± 300  662.177 ±  300 
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Debye temperature    is an important parameter in solids; it is the temperature of a 

crystal’s highest normal mode of vibration, and it correlates the elastic properties with the 

thermodynamic properties such as phonons. Debye temperature can be calculated from the 

elastic constants using the followng relationship [27]: 

    
 

  
[

  

    
]

 
 
                              (     ) 

Here, h is Plank’s constant,    is Boltzmann’s constant, n is the number of atoms in the 

molecule, and Va is the atomic volume. The average sound wave velocity    in a 

polycrystalline material integrated over several crystal directions is given by the following 

expression [27]: 

   *
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                         (     ) 

Here,    and    are respectively the shear and longitudinal sound velocities, which can be 

calculated from the bulk (B) and shear (G) moduli using the Navier’s equations [28]: 

   (
 

 
)
   

                                              (     ) 

   (
     

  
)
   

                                 (     ) 

 

Here,   is the mass density. Calculated   ,   ,    and    are listed in Tab. IV.4. From Tab.  

IV.4 data one can note: 

 The longitudinal wave velocity is larger than the transverse one and both the 

longitudinal and transverse waves decrease when going from BaAgSF to BaAgSeF 

to BaAgTeF. This can be explained by the decrease of the single-crystal elastic 

constants in the same sequence; the elastic wave velocities are proportional to the 

square root of the corresponding elastic constants. 

 The TD value decreases when going from BaFAgS to BaFAgSe to BaFAgTe, which 

is in accordance with the decrease of the stiffness in the same sequence. This might 

indicate a decrease of the thermal conductivity when going from BaFAgS to 

BaFAgSe to BaFAgTe. 
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Brittle/ductile behavior is one of important mechanical characteristics of materials, 

which is closely related to their reversible compressive deformation and fracture ability. 

One of the most widely used malleability measures of materials is the Pugh’s criterion 

(B/G ratio) [29]. The empirical Pugh’s indicator stipulates that if B/G >1.75, the material 

behaves in a ductile manner, otherwise, it demonstrates brittleness. The B/G value is 

obviously greater than the critical value 1.75 for all studied compounds, suggesting that 

these compounds are ductile materials. A ductile material is resistant to thermal shocks. 

The bulk modulus B is two times the shear modulus G, indicating that the shear 

deformation is easier to occur in the considered compounds.  

 

Most materials are elastically anisotropic; their stiffness depends on the direction in 

which the stress is applied. It is established that the anisotropy of the coefficient of thermal 

expansion and elastic anisotropy can cause microcracks in materials [30]. It is also 

accepted that the elastic anisotropy can significantly influence the nanoscale precursor 

textures in alloys [31]. Therefore, it becomes necessary and important to estimate the 

elastic anisotropy extent in solids. Some different indexes have been established to 

estimate the elastic anisotropy degree in crystals. To evaluate the elastic anisotropy degree 

in the considered BaFAgCh compounds, two different approaches were employed. 

(i) Ranganathan and Ostoja-Starzewski [32] proposed a universal index   , defined as 

follows          ⁄      ⁄    , to quantify the elastic anisotropy extent in a crystal. 

An isotropic crystal is characterized by A
U 

= 0. Any deviation of    from zero indicates 

the presence of an elastic anisotropy and the degree of this deviation gives extent of this 

elastic anisotropy. The computed values of the    
(Tab. IV.4) demonstrate that the 

considered compounds exhibit a noticeable elastic anisotropy and its degree increases 

when going from BaFAgS to BaFAgSe to BaFAgTe.   

(ii) A more used tool to visualize the elastic anisotropy extent of crystals is by plotting 

three-dimensional (3-D) representations of the directional dependence of their elastic 

moduli. 3-D representations of the directional dependence of the Young’s modulus E and 

compressibility   (    ⁄ ) were used in the present work. For a tetragonal crystal, the 

crystallographic direction dependence of the Young’s modulus E and compressibility β are 

expressed by the  following relations [33]:  

 

 

 
 (  

    
 )      

       
   

 (        )    
 (    

 )(        )            (     ) 
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  (           )     
 (               )                        (     ) 

 

In Eqs. 23 and 24, Sijs are the elastic compliance constants and l1, l2 and l3 are the 

directional cosines with respect to the x-, y- and z-axes, respectively. In a closed 3D-

representation, the distance from the origin of the coordination system to the surface gives 

the value of the represented modulus in a given direction. Thus, for an isotropic material, 

the representative closed surface should exhibit a spherical shape. Any deviation of the 

representative closed surface from the spherical shape announces the presence of an elastic 

anisotropy. From Figs. IV.5 and IV.6, one can appreciate that the shape of the 3D-closed 

surfaces for E and   are considerably different from the spherical shape, suggesting a 

strong elastic anisotropy of the examined materials. The cross-sections of the 3D-closed 

surface of the E modulus in the xy and xz planes are also represented in Fig. IV.6 in order 

to more visualizing the elastic anisotropy. These 2D-representations clearly show the 

pronounced elastic anisotropy of the considered systems. The highest value of the Young’s 

modulus (Emax) is realized for applied external stress along the [100] and [010] 

crystallographic directions and the lowest value of the Young’s modulus Emin is along the 

[001] direction, which is consistent with the fact that the a-axis is more resistant against 

compression than the c-axis. The Emin is approximately 57% Emax in BaFAgS, 49% Emax in 

BaFAgSe and 43% Emax in BaFAgTe, which indicates that the elastic anisotropy degree 

increases when going from BaFAgS to BaFAgSe to BaFAgTe. 

 

Another important parameter, which can be estimated from the elastic constants Cij, 

is the melting point Tm, which is the temperature at which a substance changes from solid 

to liquid state. Tm can be calculated through the following the empirical formula [34]:  

          
        

 
                             (     ) 
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Figure IV.5: The compressibility (  ) 3D-representation for the BaFAgS, BaFAgSe  and 

BaFAgTe compounds. 
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Figure IV.6: The Young’s modulus 3D-representations and their cross-section in the xy 

and xz planes for the BaFAgS, BaFAgSe and BaFAgTe compounds. 
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IV.3. Electronic properties of the BaFAgCh (Ch=S, Se and Te) 

compounds 

IV.3.1. Preamble  

The electrons of a single and isolated atom occupy atomic orbitals where each one 

has a discrete energy level. When two or more atoms join together to form into a molecule, 

their atomic orbitals overlap. The Pauli exclusion principle dictates that no two electrons 

can have the same quantum numbers in a molecule. So, if two identical atoms combine to 

form a diatomic molecule, each atomic orbital splits into two molecular orbitals of 

different energy, allowing the electrons in the former atomic orbitals to occupy the new 

orbital structure without any having the same energy. Similarly, if a large number N of 

identical atoms come together to form a solid, the atoms' orbitals overlap. Since the Pauli 

exclusion principle dictates that no two electrons in the solid will have the same quantum 

numbers, each atomic orbital splits into N discrete molecular orbitals, each one with a 

different energy. Since the number of atoms in a macroscopic piece of solid is a very large 

number (N~10
22

), the number of orbitals is very large and thus they are very closely spaced 

in energy (of the order of 10
−22

 eV). The energy of adjacent levels is so close together that 

they can be considered as a continuum, an energy band [35, 36]. This formation of bands is 

mostly a feature of the outermost electrons (valence electrons) in the atom, which are the 

ones involved in chemical bonding and electrical conductivity. The inner electron orbitals 

do not overlap to a significant degree, so their bands are very narrow. 

The band structure plays critical roles in assisting scientists to interpret the 

structural stability and correlate crystal structures with physical properties such as 

electronic conductivity, optical and magnetic properties. The electronic properties of a 

crystalline material are generally determined by its electronic band structure. Valence band 

is the highest energy band, which is completely occupied by electrons. The next higher 

lying energy band is the conduction band. The electrical conductivity of a material is 

determined by the distribution of electrons in the conduction and valence bands. In a metal, 

the conduction band is partially occupied. These high-energy electrons can be easily 

scattered into unoccupied states on application of an external electric field resulting in the 

good electrical conductivity of metals. In an insulator, the highest energy electron is in the 

valence band, which is completely filled. As a result, there is no scope for the intra-band 

scattering of electrons on the application of an external electric field and insulators do not 



 

 

Chapter IV                                                                                               Results and Discussion 

71 

conduct electricity. The conduction and valence bands in an insulator are separated by an 

energy gap, known as the band gap energy. The situation for a semiconductor is very 

similar to that in an insulator. However, the band gap in case of a semiconductor is much 

less than that in insulators (< 6 eV). As a result, electrons can be excited from the valence 

band to the conduction band by absorption of light in the visible and near infra-red region 

of the electromagnetic spectrum, which results in many interesting properties of 

semiconductors [37]. Electronic transitions between the valence and conduction bands 

shown in crystal start at the absorption edge, which corresponds to the minimum energy 

difference between the lowest minimum of the conduction and the highest maximum of the 

valence band. If these extremes lie at the same point in the K-space, the transitions are 

called direct and if this is not the case, the transitions are possible only when phonon–

assisted and are called indirect transitions [38]. 

 

IV.3.2. Scalar relativistic electronic band structure  

Firstly, scalar relativistic (SR; without including spin-orbit coupling) electronic 

energy band dispersions at the optimized structural parameters (Tab. IV.1) of the BaFAgS, 

BaFAgSe and BaFAgTe systems were calculated using the full potential-linearized 

augmented plane wave (FP-LAPW) method within both the GGA08 and TB-mBJ 

functionals along the high symmetry lines of the BZ (See Fig. IV.7) and depicted in Fig. 

IV.8.  

 

 

Figure IV.7: High-symmetry points and lines in the Brillouin zone, A (0.5, 0.5, 

0.5), M (0.5, 0.5, 0), Γ ( 0, 0, 0), Z ( 0,0,0.5), R ( 0, 0.5, 0.5) and X (0, 0.5, 0 ). 
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Figure IV.8: Scalar relativistic (without including the spin-orbit coupling) GGA-PBEsol 

and TB-mBJ band structures of the BaFAgS, BaFAgSe and BaFAgTe compounds. The 

energy zero level corresponds to the Fermi level. 
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Our obtained results reveal that: 

 The barium silver fluoride chalcogenides BaFAgCh (Ch = S, Se, Te) compounds 

have similar electronic structure. 

 The valence band maximum (VBM) and the conduction band minimum (CBM) are 

both located at the   point, therefore these compounds are direct band gap ( )   

semiconductors ). 

 The energy band gap decreases when moving from BaFAgS to BaFAgSe to 

BaFAgTe, due to the decrease of the ionization potential when moving in the same 

sequence. 

 For all investigated compounds, the overall profile of the GGA08 band structure is 

almost similar to that of the TB-mBJ one, but there is an important quantitative 

difference between the TB-mBJ band gap and the GGA08; the obtained TB-mBJ 

(GGA08) fundamental band gap is 3.13 eV (1.44 eV) for BaFAgS, 2.85
 
eV (1.25

 

eV) for BaFAgSe and 2.71
 
eV (1.55

 
eV) for BaFAgTe. The use of the TB-mBJ 

approximation leaded to the displacement of the conduction bands towards higher 

energies with respect to the top of the valence band, resulting in a considerable 

opening of the energy band gap. The TB-mBJ approach improves the band gap 

values of BaFAgS, BaFAgSe and BaFAgTe by approximately 117%, 128%, and 

75%, respectively, compared to the corresponding GGA08 ones  

 The substitution of the Ch atom in the BaFAgCh series in the sequence 

S Se Te   leads to a monotonously narrowing of the TB-mBJ fundamental 

band gap; it is not the case when using the GGA08. 

 One can observe the presence of quasi flat valence bands along the Z , R X  

and M A  directions in the Brillouin zone, along with highly dispersive valence 

bands in the other high symmetry directions. This noticeable dependence of the 

dispersion of the valence bands on the crystallographic directions is an indicative of 

a highly bonding anisotropy in the layered BaFAgCh. The bonds along the c-axis 

(interlayer bonding; the inter-adjacent-blocks bonding between the [BaF] and 

[AgCh] blocks) should differ considerably from those in the ab-plane (intralayer 

bonding; the chemical bonding inside the blocks [BaF] and [AgCh]). The 

simultaneous presence of large and small hole effective masses is a favourable 

indicator of thermoelectric performance; small hole effective mass is favourable for 
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good electrical conductivity, while large hole effective mass is favourable for large 

Seebeck coefficient for p-type compounds.  

 The dispersion of the valence bands around the VBM is highly anisotropic; the 

upper valence bands show a large dispersion around the VBM along the M  

and X  directions in the reciprocal space (k-space) and a pronounced flatness 

along the Z  direction. The flatness of the upper valence bands along the 

Z  direction in the k-space promotes a large hole effective mass along the c-

axis direction, while their large dispersions along the M  and X  

directions in the k-space reveal a small hole mass along the a-axis direction and in 

the ab-plane. 

 The conduction bands exhibit a pronounced dispersion along all the considered 

directions in the BZ, suggesting that the n-type compounds should show less 

thermoelectric performance than the p-type ones. 

 

IV.3.3. Full relativistic electronic band structure  

Full relativistic (with including the spin-orbit coupling) calculation of the energy 

band dispersions along the lines of high symmetry of the BZ using TB-mBJ for the 

BaFAgS, BaFAgSe and BaFAgTe compounds are presented in Fig. IV.9. We limited the 

energy range between -6 eV and 6 eV for the clarity of the figure. Spin-orbit coupling 

effect on the BaFAgCh (Ch=S, Se and Te) band structures can be summarized as follows:  

 Inclusion of the spin-orbit coupling causes the splitting of bands at the valence 

band maximum. The SOC band splitting at the valence band maximum is 25 meV 

in BaFAgS, 108 meV in BaFAgSe and 269 meV in BaFAgTe. The SOC effect 

increases with the increase of chalcogenide atom weight. 

 The TB-mBJ-SOC energy band gaps of BaFAgS, BaFAgSe and BaFAgTe are 

reduced by approximately 0.97%, 2.44% and 7.54%, respectively, compared to the 

corresponding ones obtained using the TB-mBJ-SR. 

 The SOC effect increases when going from BaAgSF to BaAgSeF to BaAgTeF. 

This trend may be attributed to the increase of the atomic number of the chalcogen 

atoms; Z
(S)

 = 16, Z
(Se)

 = 34 and Z(Te) = 52. 
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 The substitution of the Ch atom in the BaFAgCh series in the sequence 

S Se Te  leads to a monotonously narrowing of the TB-mBJ fundamental band 

gap. It is not the case when using the GGA08. 

 There is no experimental data for the energy band gaps of the BaFAgCh (Ch = S, 

Se, Te) compounds to be compared with our results. The TB-mBJ-SOC band gaps 

of the BaFAgCh (Ch = S, Se, Te) compounds, which range from 2.52 eV to 3.10 

eV, are comparable with the measured band gaps for some isostructural compounds 

SrFCuS (3.0 eV) [39], SrFCuSe (2.7 eV) [39], BaFCuS (3.2 eV) [40], BaFCuSe 

(3.0 eV) [40] and BaFCuTe (2.3 eV) [41].  

To facilitate the comparison between band gap values obtained using different 

approachs, we visualize the calculated energy band gap values using the GGA08-SR, 

GGA08-SOC, TB-mBJ-SR and TB-mBJ-SOC in Fig. IV.10 and Tab. IV.5.  

 

 

Figure IV.9: Calculated energy band structure for the BaFAgCh (Ch = S, Se, Te) 

compounds using the TB-mBJ-SR (Red dashed lines) and the TB-mBJ-SOC (Black solid 

lines). 
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Figure IV.10: Comparison between the calculated fundamental band gap ( ) values 

(Eg, in eV) obtained using different approaches: GGA08-SR, GGA08-SOC, mBJ-SR and 

mBJ-SOC for the BaFAgCh (Ch = S, Se, Te) compounds. 

 

Table IV.5: Calculated fundamental energy band gap (Γ- Γ) for the BaFAgCh (Ch=S, Se, 

Te) compounds. 

System Present cal. Previous cal. 

GGA08-SR GGA+SOC TB-mBJ+SR TB-mBJ+SOC 

BaFAgS 1.44 1.43 3.13 3.10 1.387
[11]

 

BaFAgSe 1.25 1.17 2.85 2,78 1.278
[11]

 

BaFAgTe 1.55 1.34 2.71 2.52  

 

 

IV.3.4. Effective mass 

Transport properties in semiconductors are principally controlled by the effective 

masses of charge-carriers [42]. Therefore, it becomes necessary to evaluate the electron 

and hole effective masses of the investigated compounds at the band edges. To calculate 

the hole effective mass *

h
m  (electron effective mass *

e
m ), we first fit the dispersion ( ( )E k

) of the topmost valence band (lowest conduction band) around the VBM (around the 

CBM) to a quadratic polynomial in the reciprocal lattice vector k  (
2( )E k Ak ), then the 
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effective mass m* (in unit of m0, where m0 denotes the electron rest mass) can be estimated 

using the following expression:  

 

  
 

  

  
(
   ( )

   
)|

    

                           (     )  

                                                                                   

The predicted effective masses of holes *

h
m  at the valence band topmost and of electrons 

*

e
m  at the conduction band bottom towards three different directions in the k space; 

Z , X and M , for the title compounds are listed in Tab. IV.6. To facilitate 

the comparison between the values of *

h
m  and *

e
m , the obtained results are visualized in 

Fig. IV.11. It is apparent that both  
*

h
m  and *

e
m  exhibit noticeable dependences on the 

crystallographic directions. The values of *

h
m   and  *

e
m  along the c-axis ( Z direction 

in the k-space) are significantly larger than the corresponding ones in the ab-plane              

( M direction in the k-space) and along the a-axis ( X direction in the k-space). 

According to these results, the mobility of charge-carries along the a-axis should be 

significantly larger than that along the c-axis, while the Seebeck coefficient will be larger 

along the c-axis. The obtained results reveal also that the hole effective mass is more 

dependent on the crystallographic direction than the electron one, demonstrating that the 

anisotropy of the effective mass and its related properties, such as Seebeck coefficient and 

electrical conductivity, should be more pronounced in the p-type compounds than in the n-

type ones. 

 

Table IV.6: Calculated hole and electron effective masses of the BaFAgCh (Ch = S, Se, 

Te) compounds along different directions at the Γ-point in the BZ. The values are given in 

the unit of free electron mass (m0). 

 

Carrier type    
 

    
  

directions  Γ-X  Γ -Z  Γ-M  Γ-X  Γ -Z  Γ-M 

BaFAgS  1.00  14.14  0.95  0.57  0.79  0.57 

BaFAgSe  0.64  9.31  0.63  0.45  0.61  0.45 

BaFAgTe  0.42  7.63  0.41  0.32  1.82  0.32 
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Figure IV.11: Representation of the calculated hole and electron effective masses of the 

BaFAgCh (Ch = S, Se, Te) compounds along different directions at Γ-point in the BZ. The 

values are given in the unit of free electron mass (m0). 
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IV.3.5. Total and partial density of states 

Total (TDOS) and atomic-resolved l-projected (PDOS) densities of electronic states 

diagrams help to assign the electronic states of the electronic energy bands. Calculated 

TDOS PDOS with a dense k-mesh (50x50x23) for the BaFAgS, BaFAgSe and BaFAgTe 

compounds are shown in Fig. IV.12. From the calculated DOS diagrams, one can make the 

following conclusions: 

 Three narrow band valence groups centered at about ~ -54, ~ -26 and ~ -24 eV, 

which are not shown in Fig. IV.12 for clarity of the diagrams, are mainly formed 

from the 4p-Ag, 5s-Ba and 2s-F states, respectively.  

 The lower valence band group in Fig. IV.12 are made predominantly of the 5p-Ba 

and ns-chalcogen states (n = 3 for S, n = 4 for Se and n = 5 for Te) with a small 

contribution from the 2p-F states. In the BaFAgTe DOS diagram, this valence band 

group splits into two groups clearly separated by an energy gap because the 5s-Te 

states are located somewhat higher in energy than the 5p-Ba ones. 

 The upper part (from about -5 eV to the Fermi level) is mainly composed of 4d-Ag 

states hybridized with np-Ch states, and 2p-F states (fine and high pick around -

5eV). The hybridization of the np-Ch and 4d-Ag states suggests that the Ch-Ag 

bonds inside the blocks [AgCh] are mainly covalent. 

 The width of the near-Fermi level valence band group increases slightly when the 

chalcogen atom in the BaFAgCh series is replaced in the following sequence: 

S Se Te  , indicating the decrease of hybridization between np-Ch and 4d-Ag 

states inside the blocks [AgCh]  

 The bottom of the conduction band is composed from an admixture of the ns-Ch, 

4s-Ag and 5d-Ba states. 
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Figure IV.12: Total and atomic-resolved l-decomposed densities of states (TDOS and 

PDOS, respectively) for the BaFAgS, BaFAgSe and BaFAgTe systems. The energy zero 

level corresponds to the Fermi level. 
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IV.3.6. Electronic charge density 

Chemical structure and bonding are key features and concepts in chemical systems, 

which are used in deriving structure–property relationships, and hence in predicting 

physical and chemical properties of compounds. Atoms sticking together in molecules or 

crystals are said to be bonded with one another. A chemical bond is a lasting attraction 

between atoms, ions or molecules that enables the formation of chemical compounds. It 

can be covalent bond, ionic bond, Hydrogen bond, Van der Waals force or metallic 

bonding. The bond may result from the electrostatic force of attraction between oppositely 

charged ions as in ionic bonds, or through the sharing of electrons as in covalent bonds. 

When a chemical bond is formed between two elements, the differences in the 

electronegativity of the atoms determine where on the sliding scale the bond falls. Large 

differences in electronegativity favour ionic bonds, and relatively small differences cause 

the formation of covalent bonds [43]. More than simple attraction and repulsion, the 

energies and distributions characterize the availability of an electron to bond to another 

atom.  

The electronic charge density distributions (in the unit eV/Å
3
) in the [AgCh] block 

and in (400) plane are plotted in Fig. IV.13. From Fig. IV.13, the following conclusions 

can be made: 

 For the tree studied compounds, the bonding in the [AgCh] and [BaF] blocks are of 

mixed ionic and covalent nature. The Ag-Ch bond inside the [AgCh] layer is 

predominantly of covalent character, which is due to the strong hybridization 

between the Ag: 4d and Ch: np states, while the Ba-F bond in the layer [BaF] is 

predominantly ionic. This can be predicted by the periodic table of the elements, 

where the barium atom is located on the left and the fluorine atom on the right, so 

the difference in the electronegativity is very clear. As for the elements Ag and Ch, 

the relatively small differences cause the formation of covalent bonds. 

 The electronic charge density around the chalcogen atom become less localized in 

the sense of S Se Te  . This is consistent with the results obtained through the 

study of the nature of the chemical bonding from the density of states. 

 The substitution of S by Se and Te leads to the decrease the degree of covalency.  
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Figure IV.13: Electronic charge density of BaFAgCh (Ch=S, Se and Te): in the [AgCh] 

block (a) and in the (400) crystallographic plane (b). 
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IV.4 Optical properties of BaFAgCh (Ch = S, Se and Te) 

Optical properties of materials are those characteristic properties that determine 

how the matter interact with light. Light is not only the electromagnetic radiation that we 

can see; wavelengths in the visible range, typically 400 to 700 nm, in many applications, 

light is the electromagnetic radiation that can have somewhat shorter or longer 

wavelengths such as ultraviolet (UV) and infrared (IR) light 

Interaction of light with a material leads to a number of phenomena: The photons 

that constituting the light may give their energy to the material (absorption); photons give 

their energy, but photons of identical energy are immediately emitted by the material 

(reflection); photons may not interact with the material structure (transmission); or during 

transmission photons change their velocity (refraction). At any instance of light interaction 

with a material, the total intensity of the incident light (I0) striking a surface is equal to sum 

of the absorbed (IA), reflected (IR), and transmitted (IT) intensities, i.e., I0=IA+IR+IT.   

Optical properties of materials depend on the dielectric polarization mechanisms as 

well as the wavelength of the radiation [14]. The dielectric polarization is given by the 

dielectric function ( ( )). The dielectric function ( ( ))  describes the response of 

materials to an external electromagnetic field. The dielectric function of an anisotropic 

material is a complex symmetric tensor;  ( )    ( )     ( ). The imaginary part 

(  ( )) of the dielectric function ( ( )) characterizes the absorption of the incident light 

by the matter - it is directly related with the absorption spectrum -, so sometimes; it is 

called the absorptive part and can be computed by summing all allowed electronic 

transitions from occupied to unoccupied states. The real part (  ( )) characterizes the 

dispersion of the incident radiation when it traverses a medium, so sometimes; it is called 

the dispersive part. In the limit of the linear optics, in the case of non-spin polarization, and 

within the independent particle approximation, random phase approximation, the 

imaginary part of the dielectric tensor (  ( )) can be computed from knowledge of the 

electronic band structure of a solid from the well-known relation [44, 45]:  

      ( )    
  ( )

 
    

    
∑∫⟨ |  | ⟩⟨ |  | ⟩  (    )(        )   

   

      (    ) 
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In this expression, ⟨ |  | ⟩ and ⟨ |  | ⟩ are the dipole matrix elements corresponding to 

the   and   directions of the crystal (x, y or z), and f, i are the final and initial states, 

respectively. Wn is the Fermi distribution function for the n th state, and En is the electron 

energy in the nth state. The real part (  ( )) of the frequency-dependent dielectric 

function expression    ( ) is computed from   
  ( ) using the Kramers-Kronig relations 

in the form [46, 47]: 

  
  ( )      

 

 
 ∫

    
  

(  )

      

 

 

                            (     )  

where P is the Cauchy principal value of the integral. Optical constants, such as the 

refractive index )(n , extinction coefficient )(k , reflectivity )(R , coefficient of 

absorption )(  and the loss function )(L , can be calculated from the dielectric function 

 ( )    ( )     ( ) using the well known relations: 

 ( )  
√ 

 
 √   ( )  √  ( )    ( )                 (     ) 
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                             (     ) 
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 ∫

 (  )   

      
   

  

 

                         (     ) 
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√  ( )    ( ) 
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              (     ) 

 

 ( )     (
 

 ( )
)  

  ( )

  
 ( )    

 ( )
                  (     ) 

 

For the tetragonal symmetry only the diagonal dielectric tensor components, namely   

        and    
 , are non-zero. The dielectric tensor component    (   ) corresponds 

to the electric fields E of the incident radiation parallel to the x-axis (y-axis) (i.e., / /E a  (

/ /E b )) and to the z-axis (i.e., / /E c ). 
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Calculated frequency-dependent dispersive (  ( )) and absorptive (  ( ))  parts 

of the dielectric function ( ( ))  for the BaFAgS, BaFAgSe and BaFAgTe systems are 

depicted in Fig. IV.14. In view of Fig. IV.14, one can observe the following features:  

(i) There are noticeable differences between the magnitudes, shapes and locations 

of the main peaks in the   
  ( ) ( / /E a ) and   

  ( ) ( / /E c ), revealing a 

strong anisotropy of the dielectric response of the examined systems to the 

incident radiation.  

(ii) Tthe overall shape of the dielectric function spectra of BaFAgS and BaFAgSe 

are almost similar, whereas that of BaFAgTe is somewhat different from them. 

This difference can be attributed to the fact that the energy band dispersion of 

BaFAgTe is somewhat different from those of BaFAgS and BaFAgSe. 

(iii) The intensity of the peaks increases when we move in the following sequence: 

BaFAgS BaFAgSe BaFAgTe  . The   
  ( ) and   

  ( ) spectra start at 

the same energy (E0), indicating an isotropic energy gap. However,   
  ( ) and   

  
  ( )  grow with different rates.  

To access the electronic transitions that are responsible for the peaks observed in 

the   ( ) spectra, the   ( )
 
spectrum is decomposed to the individual contribution from 

each electronic transition from occupied valence band Vi to unoccupied conduction band 

Cj, i.e., determination of the contribution of each allowed electronic transition ( i jV C ) to 

the 
 
  ( ) spectrum. To determine which electronic states of the bands iV  and jC  are 

involved in the i jV C  transition, the electronic transition energies  ( )ijE k  (

( ) ( ) ( )
j iij C VE k   E k   E k  ) are plotted along the high-symmetry directions of the BZ. For sake 

of brevity, only decomposition of the   ( ) spectrum of BaFAgS to individual 

contributions of the electronic transitions ( i jV C ) and the corresponding transition 

energy ( )ijE k   dispersion are shown in Fig. IV.15, as representative for the other studied 

systems. The first threshold energy E0 of 2 ( )  , termed also fundamental absorption edge, 

is originated from the direct electronic transition between the topmost valence band 1V  and 

the bottommost conduction band 1C  ( 1 1V C ). It is to note that the bands counting is up 

(down) from the bottommost (topmost) of the conduction (valence) band. The locations of 

the major peaks iE  (i =1, 2…etc.) and the origin of the dominant optical transitions in an 

energy range up to 10 eV are listed in Tabs. IV.7-12. The obtained electronic static 
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dielectric constant   ( )    (   ), which is a parameter of fundamental importance 

in many aspects of material properties, are given in Tab. IV.13. Our results are in 

agreement with the available theoretical results for BaFAgS [11]. The   ( )  increases in 

the following sequence: BaFAgS BaFAgSe BaFAgTe  and the   
  (   ) 

component is larger than the  
  (   ) component. The   ( ) value increases when the 

energy gap    decreases. This is in accordance with the Penn model [48]:               

  ( )    (      )
 
;   ( )  is inversely proportional with    , i.e., smaller    yields 

larger   ( ).  

 

 

Figure IV.14: Frequency-dependent imaginary (  
  ( ) and   

  ( ); red line)  and real 

(  
  ( )  and   

  ( ); black line)  parts of the dielectric function tensor components for 

the BaFAgCh (Ch = S, Se and Te) compounds.  
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Figure IV.15: Decomposition of the imaginary part of the dielectric function   
  ( ) into 

band-to-band contribution (upper panel (a)) and the transition energy band structure (lower 

panel (b)) for BaFAgS. The counting of the bands is down (up) from the top (bottom) of 

the valence (conduction) band. 
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Table IV.7: Peak positions of the   
  ( ) spectrum together with the dominant interband 

transition contributions to every peak and their location in the Brillouin zone for the 

BaFAgS compound. 

 

Optical structures  Dominant interband transition contributions 

Structure Peak position  Transition Region Energy (eV) 

E1 3.21  V2-C1 Z, M-Γ, Z-R, X-Γ 3.21 

 

E2 

 

 

4.39 

 V1-C1 

V1-C2 

V1-C2 

Z, M-Γ, Z-R, X-Γ 

Z-A, M-Γ 

Z-A, M-Γ 

3.19 

4.30 

4.29 

E3 4.86  V2-C2 Z-A, M-Γ 4.85 

E4 5.56  V4-C3 Z-A, M-Γ, X-Γ 5.51 

   V4-C2 Z-A, M-Γ 5.57 

   V2-C4 Z-A, M-Γ, Z-R 5.51 

   V1-C4 Z-A, M-Γ, Z-R 5.53 

E5 6.00  V2-C5 Z-A, M-Γ, Γ-Z, Z-R, X-Γ 5.94 

E6 6.54  V6-C1 Z-A, A-M, M-Γ, Z-R, X-Γ 6.64 

   V5-C2 Z-A, A-M, M-Γ, Z-R, X-Γ 6.60 

   V4-C5 Z-R, R-X, X-Γ 6.49 

   V1-C6 Z-A, M-Γ, Z-R, R-X, X-Γ 6.56 

   V1-C8 Z-A, M-Γ, Γ-Z, Z-R, X-Γ 6.47 

E7 7.66  V16-C1 Z-A, M-Γ, Z-R, X-Γ 7.78 

   V15-C1 Z-A, M-Γ, Z-R, X-Γ 7.68 

   V14-C1 Z-A, M-Γ, Z-R, R-X, X-Γ 7.63 

   V13-C1 Z-A, M-Γ, Z-R, R-X 7.62 

   V5-C3 Z-A, M-Γ, Z-R, X-Γ 7.79 

E8 9.05  V10-C5 Z-A, M-Γ, Z-R, X-Γ 8.88 

E9 9.35  V1-C16 Z-A, M-Γ, Z-R, X-Γ 9.31 
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Table IV.8: Peak positions of the   
  ( ) spectrum together with te dominant interband 

transition contributions to every peak and their location in the Brillouin zone for the 

BaFAgS compound. 

 

Optical structures  Dominant interband transition contributions 

Structure Peak position  Transition Region Energy (eV) 

E1 

 

E2 

 

 

E3 

 

 

 

E4 

 

 

 

 

E5  

 

 

 

 

E6 

 

 

 

E7 

E8 

7.69 

 

4.78 

 

 

5.86 

 

 

 

6.46 

 

 

 

 

6.87 

 

 

 

 

7.69 

 

 

 

8.64 

9.35 

 V2-C1 

V3- C2 

V1-C2 

V1-C3 

V4-C4 

V1-C5 

V1-C6 

V2-C5 

V4-C5 

V2-C7 

V3-C6 

V3-C5 

V3-C7 

V7-C4 

V6-C2 

V2-C8 

V3-C8 

V1-C9 

V15-C1 

V14-C1 

V13-C1 

V5-C4 

V5-C6 

V12-C3 

Z-A, M-Γ, Z-R, X-Γ 

Z-A, M-Γ, Z-R, X-Γ 

Z-A, M-Γ, Z-R, X-Γ 

Z-A, M-Γ 

Z-A, M-Γ, Z-R, X-Γ 

Z-A, M-Γ 

Z-A, M-Γ, Γ-Z, Z-R, X-Γ 

Z-R, X-Γ 

Z-A, M-Γ, Γ-Z, Z-R, X-Γ 

M-Γ, Z-R, X- Γ 

Z-A, M-Γ, Γ-Z, Z-R, X-Γ 

Z-A, M-Γ, Z-R, X- Γ 

Z-A, M-Γ, Γ-Z, Z-R, X-Γ 

Z-A, Z-R 

Z-A, M-Γ 

Z-A, M-Γ 

Z-A, M-Γ, Z-R, X-Γ 

Z-A, M-Γ, Z-R, X-Γ 

Z-A, M-Γ, Z, Z-R 

Z-A, M-Γ, Z-R, X 

Z-A, M-Γ, Z-R, R-X 

Z-A, M-Γ, Z-R, R-X 

Z-A, M-Γ, Z-R, X-Γ 

Z-A, M-Γ, Z-R, X-Γ 

Z-A 

4.17 

4.04 

4.90 

4.70 

4.78 

5.94 

5.79 

5.86 

5.90 

6.47 

6.43 

6.42 

6.41 

6.45 

6.87 

6.79 

7.12 

6.74 

6.87 

7.64 

7.63 

7.73 

7.82 

8.65 

9.29 
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Table IV.9: Peak positions of the   
  ( ) spectrum together with the dominant interband 

transition contributions to every peak and their location in the Brillouin zone for the 

BaFAgSe. 

 

Optical structures  Dominant interband transition contributions 

Structure Peak position  Transition Region Energy (eV) 

E1 

 

 

E2 

 

E3 

 

 

 

E4 

 

 

 

E5 

 

 

E6 

 

E7 

 

 

E8 

 

4.15 

 

 

4.59 

 

5.21 

 

 

 

5.65 

 

 

 

6.25 

 

 

6.98 

 

7.55 

 

 

8.99 

 V3-C1 

V2-C2 

V1-C1 

V3-C2 

V2-C2 

V4-C2 

V4-C3 

V2-C3 

V1-C4 

V4-C4 

V3-C5 

V2-C5 

V1-C3 

V5-C2 

V4-C5 

V1-C6 

V5-C5 

V3-C3 

V15-C2 

V14-C1 

V13-C1 

V13-C3 

V1-C15 

Z-A, M-Γ, Z-R, R-X, X-Γ 

Z-A, M-Γ, Z-R, R-X, X-Γ 

Z-A, M-Γ, Z, R-X 

Z-A, M-Γ, Z-R, X-Γ 

Z-A, M-Γ, Z-R 

Z-A, M-Γ, Z-R 

Z-A, Γ-Z, Z-R, X-Γ 

Z-A, M-Γ 

Z-A, M-Γ, Z-R, X-Γ 

Z-A, M-Γ, Z-R, X-Γ 

Z-A, Z-R, X-Γ 

Z-A, M-Γ, Γ-Z, Z-R, X-Γ 

Z-A, M-Γ 

Z-A, M-Γ, Z-R, X-Γ 

Z-R, R-X, X 

Z-A, M- Γ, Z-R, R-X, X-Γ 

Z-A, M-Γ, Γ-Z, Z-R, X-Γ 

Z-A, M-Γ 

R-X, X-Γ 

Z-A, M-Γ, Z-R, R-X, X-Γ 

Z-A, M-Γ, Z-R, R-X 

Z-A, A-M, M-Γ 

Z-A, M-Γ, Z-R, X-Γ 

4.19 

4.11 

4.13 

4.65 

4.57 

5.20 

5.16 

5.19 

5.18 

5.60 

5.71 

5.62 

5.64 

6.31 

6.27 

6.24 

6.95 

6.98 

7.59 

7.60 

7.49 

9.00 

9.01 
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Table IV.10: Peak positions of the   
  ( ) spectrum together with the dominant interband 

transition contributions to every peak and their location in the Brillouin zone for the 

BaFAgSe compound. 

 

Optical structures  Dominant interband transition contributions 

Structure Peak position  Transition Region Energy (eV) 

E1 

 

E2 

 

 

E3 

 

 

 

E4 

 

 

 

E5 

 

 

 

E6 

 

 

E7 

 

 

 

E8 

E9 

 

 

 

E10 

3.99 

 

4.03 

 

 

5.43 

 

 

 

6.19 

 

 

 

6.49 

 

 

 

6.82 

 

 

7.55 

 

 

 

8.37 

8.88 

 

 

 

9.21 

 V1-C2 

V2-C1 

V3-C2 

V1-C2 

V2-C3 

V2-C4 

V2-C5 

V1-C5 

V1-C6 

V3-C4 

V3-C5 

V3-C6 

V3-C7 

V6-C2 

V3-C8 

V2-C8 

V1-C9 

V7-C4 

V2-C9 

V1-C10 

V15-C1 

V14-C1 

V13-C1 

V5-C4 

V4-C12 

V12-C3 

V11-C3 

V11-C5 

V3-C16 

V5-C11 

Z-A, M-Γ, Z-R, X-Γ 

Z-A, M-Γ, Z-R, X-Γ 

Z-A, M-Γ, Z-R, X-Γ 

Z-A, M-Γ 

Z-A, M-Γ, Z-R, X-Γ 

Z-A, M-Γ, Z-R 

Z-A 

Z-A, Z-R, X-Γ 

Z-R, X-Γ 

Z-A, M-Γ 

Z-A, M-Γ, Z-R, R, X-Γ 

Z-A, M-Γ, Z-R, R, X-Γ 

M-Γ, Z-R 

Z-A, M-Γ 

Z-A, M-Γ, Z-R, X-Γ 

Z-A, M-Γ, Z-R, X-Γ 

Z-A, M-Γ, Z-R, X-Γ 

Z-A, M-Γ, Z-R, X-Γ 

Z-A, M- Γ, Z-R, X- Γ 

Z-A, M-Γ, Z-R, X-Γ 

Z-A, M-Γ, Z-R, R-X, X-Γ 

Z-A, M-Γ, Z-R, R-X, X-Γ 

Z-A, M-Γ, Z-R, R-X 

Z-A, Z-R, R-X, X-Γ 

Z-A, Z-R, X-Γ 

Z-A, M-Γ, Z-R 

Z-A, M-Γ 

Z-A, M-Γ, Z-R, R-X, X-Γ 

Z-A, M-Γ, Z-R, X-Γ 

Z-A, M-Γ, Z-R, X-Γ 

4.00 

4.03 

4.62 

4.42 

4.44 

5.41 

5.54 

5.40 

5.45 

6.22 

6.22 

6.21 

6.19 

6.76 

6.44 

6.48 

6.48 

6.78 

6.76 

6.84 

7.60 

7.58 

7.54 

7.49 

8.39 

8.95 

8.87 

8.95 

8.89 

9.23 
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Table IV.11: Peak positions of the   
  ( ) spectrum together with the dominant interband 

transition contributions to every peak and their location in the Brillouin zone for the 

BaFAgTe compound. 

 

Optical structures  Dominant interband transition contributions 

Structure Peak position  Transition Region Energy (eV) 

E1 

 

 

 

E2 

 

 

 

 

E3 

 

 

 

 

E4 

 

 

 

3.88 

 

 

 

4.50 

 

 

 

 

5.05 

 

 

 

 

7.74 

 V2-C1 

V2-C2 

V1-C2 

V1-C1 

V4-C3 

V4-C2 

V3-C3 

V2-C3 

V1-C4 

V3-C4 

V3-C3 

V2-C3 

V2-C5 

V1-C7 

V16-C1 

V16-C2 

V15-C1 

V15-C2 

Z-A, M-Γ, Z-R, X-Γ 

Z-A, M-Γ, Z-R, X-Γ 

Z-A, M-Γ 

Z-A, M-Γ 

Z-R, X-Γ 

Z-A, M-Γ, Z-R, X-Γ 

Γ-Z 

Z-A, M-Γ 

Z-A, M-Γ, Z-R, X-Γ 

Z-A, M-Γ, Z-R, X-Γ 

Z-A, M-Γ 

Z-A, M-Γ 

Z-A, M-Γ, Z-R, X-Γ 

M-Γ, Z-R, X-Γ 

Z-A, M-Γ, Z-R, X-Γ 

Z-A, M-Γ, Γ-Z, Z-R, X-Γ 

Z-A, M-Γ, Z-R, X-Γ 

Z-A, M-Γ, Z-R, X-Γ 

3.81 

3.89 

3.86 

3.86 

4.45 

4.51 

4.44 

4.50 

4.55 

4.99 

5.04 

5.04 

5.13 

5.13 

7.83 

7.78 

7.78 

7.72 
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Table IV.12: Peak positions of the   
  ( ) spectrum together with the dominant interband 

transition contributions to every peak and their location in the Brillouin zone for the 

BaFAgTe compound. 

 

Optical structures  Dominant interband transition contributions 

Structure Peak position  Transition Region Energy (eV) 

E1 

 

 

 

 

E2 

 

 

 

 

E3 

 

 

E 4 

 

 

 

 

E 5 

 

 

E 6 

4.15 

 

 

 

 

4.59 

 

 

 

 

5.05 

 

 

5.51 

 

 

 

 

6.16 

 

 

7.52 

 V4-C1 

V2-C2 

V2-C1 

V2-C3 

V1-C2 

V4-C3 

V3-C3 

V1-C5 

V1-C4 

V1-C2 

V2-C6 

V2-C1 

V1-C5 

V3-C6 

V3-C3 

V3-C7 

V2-C7 

V2-C8 

V3-C3 

V3-C4 

V2-C9 

V15-C1 

V14-C2 

V14-C1 

V13-C1 

V13-C2 

M-Γ, Γ-Z, Z-R, X-Γ 

Z-A, M-Γ 

Z-A, M-Γ 

Z-A, M-Γ, Z-R, X-Γ 

Z-A, M-Γ 

Γ-Z, Z-R, X-Γ 

Z-A, M-Γ 

Z-R, X-Γ 

Z-A, M-Γ, Z-R 

Z-A, M-Γ 

Z-A, M-Γ, Γ-Z, Z-R, X-Γ 

Z-A, M-Γ 

Z-A, M-Γ, Z-R, X-Γ 

Z-A, M- Γ, Γ -Z, Z-R, R-X, X- Γ 

Z-A, M-Γ 

Z-A, M-Γ, Z-R, X-Γ 

Z-A, M-Γ, Z-R, X-Γ 

Z-A, M-Γ, Γ-Z, Z-R, X-Γ 

Z-A, M-Γ 

Z-A, M-Γ 

Z-A, M-Γ, Z-R, R-X, X-Γ 

Z-A, M-Γ, Z-R, R, X-Γ 

A-M, M-Γ, Γ-Z, Z-R, X-Γ 

Z-A, A-M, M-Γ, Z-R, X-Γ 

Z-A, A-M, M-Γ, Z-R, X-Γ 

A-M, M-Γ, Γ-Z, Z-R, X-Γ 

4.07 

4.13 

4.15 

4.18 

4.14 

4.55 

4.60 

4.53 

4.60 

4.56 

5.06 

5.08 

5.06 

5.47 

5.50 

5.49 

5.51 

5.57 

6.19 

6.19 

6.15 

7.48 

7.63 

7.47 

7.56 

7.47 
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Table IV.13: Calculated static dielectric constant   ( ) and, static refractive index and 

static optical reflectivity for BaFAgS, BaFAgSe and BaFAgTe as calculated using the TB-

mBJ for two different polarizations of the incident radiations, compared with the available 

data in the scientific literature. 

 

System   
  ( )   

  ( )    ( )    ( )    ( )    ( ) 

BaFAgS 

 

BaFAgSe 

BaFAgTe 

4.53 

5.22 
[11]

 

4.80 

5.75 

4.17 

4.89 
[11]

 

4.53 

5.31 

2.08 

 

2.19 

2.40 

2.04 

 

2.13 

2.31 

12.4 

 

13.9 

16.9 

11.7 

 

13.0 

15.6 

 

 

 

Figs. IV.16-19 presents the frequency-dependent  coefficient of absorption ( )  , 

index of refraction ( )n  , coefficient of extinction ( )k  , reflectivity ( )R  and electron 

energy-loss function ( )L   for incident radiation polarized both along the a-axis ( / /E a ) 

and  c-axis ( / /E c ) in a wider spectral region up to 25 eV. The optical spectra for / /E a  

are quite different from those for / /E c , implying the optical anisotropy of these systems. 

The optical absorption coefficient ( )  , which defines the amount of light absorbed by 

the matter, is an important criterion to judge if a material could have an eventual 

application in the photoelectric field. The examined compounds exhibit a high coefficient 

of absorption (higher than 10
4 

cm
-1

) in a large energy range extending from the absorption 

edge Eg (from ~2.6 to 2.9 eV) up to 30 eV, suggesting that they could be suitable absorber 

layers for photovoltaic applications. Obviously, these materials with a band gap higher 

than 2.6 eV may absorb the blue and violet rays of the visible spectrum. The calculated 

refractive index spectra for the three examined materials are given in Fig. IV.17. The 

refractive index reaches its maximum in the near ultra-violet (~3.8 ─ 5eV). One can note 

the refractive index value increases when going from BaFAgS to BaFAgSe to BaFAgTe, 

which is in accordance with the usual trend of the refractive index, i.e., the refractive index 

increases when the band gap decreases. The calculated static refractive index ( (0)n ), 

which is a very important physical quantity for semiconductors, is listed in Tab. IV.13. 

From Fig. IV.18, one can observe that the title systems exhibit a weak reflectivity at low 
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energies and the magnitude of the reflectivity increases slightly when going from BaFAgS 

to BaFAgSe to BaFAgTe. Calculated static reflectivity coefficients ( (0)R ) of the three 

studied systems are given in Tab. IV.13. The energy loss-function ( )L  spectra are 

depicted in Fig. IV.19. )(L is an important factor  describing the energy loss of a fast 

electron traversing in a material. The peaks in )(L  spectra represent the characteristic 

associated with the plasma resonance and the corresponding frequency is the so called 

plasma frequency p . The peaks of )(L  correspond to the trailing edges in the reflection 

spectra., for instance, the peak of L(ω) is at about  12 eV corresponding to the abrupt 

reduction of )(R . 

 

 

Figure IV.16: Calculated absorption coefficient (α (ω)) for the BaFAgCh (Ch = S, Se and 

Te) compounds for two different applied light polarizations ( ⃗⃗    ⃗ ; black line, and  ⃗⃗     ; 

red line). 
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Figure IV.17: Calculated refractive index (n (ω); left panels) and extinction coefficient (k 

(ω); right panels) of BaFAgCh (Ch = S, Se and Te) for two different applied light 

polarizations ( ⃗     ; black line, and  ⃗     ; red line). 
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Figure IV.18: Calculated optical reflectivity R (ω) of BaFAgCh (Ch=S, Se and Te) for 

two different applied light polarizations ( ⃗     ; black line, and  ⃗     ; red line). 

. 
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Figure IV.19: Calculated energy-loss function L (ω) of BaFAgCh (Ch=S, Se and Te) for 

two different applied light polarizations ( ⃗     ; black line, and  ⃗     ; red line). 

. 
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IV.5. Thermoelectric properties of BaFAgCh (Ch=S, Se and Te)  

IV.5.1. Thermoelectricity 

Transport phenomena refer to physical phenomena resulting from the motion of 

charge carriers under the action of internal or external fields or temperature gradients. They 

include electric and thermal conductivities, galvanomagnetic, thermomagnetic and 

thermoelectric phenomena. Thermoelectric phenomena refer to the direct conversion of 

heat into electricity [49]. 

Early, peoples know the heat and use it in different ways to facility live. Heat is a 

form of energy that flows between two samples of matter due to their difference 

in temperature. However, the electricity would remain little more than an intellectual 

curiosity for millennia until 1600, when the English scientist William Gilbert made a 

careful study of electricity and magnetism [50]. Electricity is a form of energy that are 

produced fundamentally by the movement of electrical charges in the material and that 

provides power to devices that create light, heat…etc. [51]. Both, heat and electricity 

express or exhibit the energy that could be storing in material or flowing between two 

materials. However, the amount of energy that lost during production, transport and using 

the electricity has been very considerable. Furthermore, the global energy crisis and 

environmental impact of fossil fuels led us to thinking to conserve energy and recover lost 

ones. Renewable energy sources [52] are important for the production of energy 

(electricity) to address the needs of a growing population without destroying the 

environment. Thermoelectricity is one of the simplest technologies applicable to energy 

conversion; thermoelectric materials can generate electrical power from heat, and use 

electricity to function as heat pumps providing active cooling or heating [53]. For example, 

in a car, the maximum efficiency of an internal combustion engine ranged 40 to 50%; 

means that 50 to 60% of energy that producing from the motor is lost, However, it is a 

useful energy that could be used to operate the car parts and reduce the load on the  motor 

[54] . 

In 1331, the German scientist Thomas Seebeck (1770-1831) discovered the 

Thermoelectric effect; he found that a closed loop formed by two different metals (Copper 

and Bismuth) joined in two places (See Fig. IV.20)”, with a temperature difference 

between the joints generates a magnetic field around them. Seebeck did not recognize there 

was an electric current involved, so he called the phenomenon "thermomagnetic effect". 

https://www.thoughtco.com/definition-of-energy-in-chemistry-604456
https://www.thoughtco.com/definition-of-matter-and-examples-604565
https://www.thoughtco.com/temperature-definition-602123
https://en.wikipedia.org/wiki/Heat_engine#Efficiency


 

 

Chapter IV                                                                                               Results and Discussion 

100 

Danish physicist Hans Orsted has been able to explain this phenomenon and attributed it to 

the generation of an electric voltage between the two nodes coined the term 

"thermoelectricity", contrary to what Seebeck thought was that magnetism resulted from 

the join of the two metals. This phenomenon has been used in the measurement of 

temperature in so-called thermocouples. 

 

Figure IV.20: Schematic illustration of Seebeck effect (original experience with 

Bismuth and Copper). 

In general, the Seebeck effect is described locally by the creation of an 

electromotive force (emf). The value of this thermal emf depends on the temperature 

difference between the cold and the hot side (junction) and may be expressed as: 

                                    (     ) 

Or                                                                          (     )                       

S is the thermoelectric coefficient or Seebeck coefficient (also called thermo-power) 

expressed as the potential difference (i.e.,         ) per degree change in temperature 

between the cold (c) junction and the hot (h) junction (i.e.,         ) [55].  

We notice that for thermocouples, Seebeck coefficient given as [56] : 

  
         

     
                           (     ) 

Here    (  ) is the Seebeck coefficient of holes (electrons),    (  ) is the electrical 

conductivity of holes (electrons). 
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                  (a) 

 

 

 

                  (b) 

 

 

     

 

 

                

                  (c) 

 

 

Figure IV.12: Diagram illustrating the Seebeck effect: n-type semiconductor (a), p-type 

semiconductor (b) and thermocouples (c). 

 

 

In the same period, French scientist Jean Peltier was able to discover the reverse 

phenomenon; when an electric current is passed in the circuit, one of the two nodes 

produces heat and the other absorbs the heat. In reverse, the opposite occurs. Similar to 

Seebeck, Peltier didn’t completely understand the physics of this phenomenon [57], and it 

was Emil Lenz who recognized the reversibility of this effect and demonstrated that the 

rate of heat ejection or absorption   was proportional to the electrical current   with the 

proportionality coefficient   that was subsequently named after J. Peltier. 

                                       (     ) 

In 1851, William Thomson, famously known as Lord Kelvin , was able to discover 

the Thomson effect that single material carrying an electric current could absorb or release 

heat if it had a temperature difference over its length. Absorbing or evolving heat   will 

https://en.wikipedia.org/wiki/William_Thomson,_1st_Baron_Kelvin
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depend on direction of current and proportional to the electrical current   and the 

temperature gradient through a proportionality coefficient   (Thomson coefficient): 

    (   )                            (     ) 

In 1840, the English physicist Joule suggested that heat could be generated by an 

electrical current. Electric energy is converted to heat through resistive losses in the 

material. It is generated on the micro-scale when the conduction electrons transfer energy 

to the conductor's atoms by way of collisions. Joule deduced that the heat produced 

was proportional to the square of the current multiplied by the electrical resistance: 

   ∫   
  

  

                              (     ) 

In a conductor subject to a temperature gradient, the increase of its cold end temperature is 

always observed as a result of heat conduction, which is expressed as following:  

     
  

  
                              (     ) 

Here A is the cross-section area of the conductor and k is material’s thermal conductivity, 

the expression is known as Fourier law. The thermoelectric efficiency loss caused by heat 

conduction is directly proportional to K, hence the materials with low thermal conductivity 

are required for efficient energy conversion. 

 

Thermoelectric conversion technology, which can realize the direct and reversible 

conversion between heat and electricity without moving parts, offers a promising 

solution to critical energy and environmental challenges. 

 

IV.5.2. Electrical and thermal conduction  

Electrical conduction involves the motion of charges in a material under the 

influence of an applied electric field [14]. Solid-state materials can be classified into three 

groups: insulators, semiconductors and conductors. Fig. IV.22 shows typical conductivities 

for metals, semiconductors and insulators. Semiconductors can be seen lying between 

metals and insulators, one important difference is that semiconductor conductivities are 

https://en.wikipedia.org/wiki/Physicist
https://en.wikipedia.org/wiki/James_Prescott_Joule
https://en.wikipedia.org/wiki/James_Prescott_Joule
https://en.wikipedia.org/wiki/Proportionality_(mathematics)
https://en.wikipedia.org/wiki/Square_(algebra)
https://en.wikipedia.org/wiki/Electrical_resistance
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shown varying over several orders of magnitude. This is a very important property of 

semiconductors. We can vary the conductivity of semiconductors by doping the 

semiconductor, in a controlled fashion, with minute amounts of impurity atoms [58]. 

 

 

Figure IV.11: Comparison of electrical conductivities for insulators, metals and 

semiconductors [58]. 

 

Good electrical conductors, such as metals, are also known to be good thermal 

conductors (See Fig. IV.23). The conduction of thermal energy, which is one of the three 

forms of heat transfer (conduction, conversion and radiation), from higher to lower 

temperature regions in a metal involves the conduction electrons carrying the energy. 

Consequently, there is an innate relationship between the electrical and thermal 

conductivities, which is supported by theory and experiment. The early studies of electrical 

conduction in metals were done in the nineteenth centuries, where Physicists have tried to 

construct simple models to explain qualitatively and even quantitatively the characteristic 

properties of metals. 
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Figure IV.12: Thermal conductivity   versus electrical conductivity   for various metals 

(elements and alloys) at     . The solid line represents the WFL law with           

    (       ) [14] 

 

IV.5.3. Optimisation of thermoelectric materials 

The performance of thermoelectric compounds is defined by their figure of merit 

   that given as: [55] 

   
   

 
  

   

      
                                 (     ) 

The thermal conductivity   includes two parts: the electronic thermal conductivity     (i.e., 

the carriers consisted of electrons and holes transporting heat) and the lattice thermal 

conductivity    (i.e., phonon transporting heat). The fundamental problem in creating 

efficient thermoelectric materials is that they need to be good at conducting electricity, but 

not at conducting thermal energy. That way, one side can get hot while the other gets cold, 

instead of the material quickly equalizing the temperature. However, in most materials, 

electrical and thermal conductivity go hand in hand [59]. Fig. IV.24 shows the compromise 

between high thermo-power and large electrical conductivity in potential thermoelectric 

materials that must be achieved to maximize the thermoelectric figure of merit. The 

optimal temperature at which the figure of merit peaks is achieved at carrier concentration 

between 10
18

 and 10
21

 carrier per cm
3
. This type of carrier concentration is found in 
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common metals and heavily doped semiconductors. Insulators and semiconductors are 

both low carrier concentration and show large Seebeck coefficients (See Tab. IV.24). 

However, low carrier concentration materials result in low electrical conductivity. 

 

 

Figure IV.13: Evolution of the figure merit value ZT and the different electrical and 

thermal properties as a function of charge carrier concentration [60]. 

 

The increase in ZT is due to the introduction of interfaces created by the lattice 

mismatches of the bulk materials that make up the superlattice. These interfaces serve to 

scatter the phonons reducing the thermal conductivity while not adversely affecting the 

electrical conductivity. 
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Table IV.14: Electronics transport properties of Metals, semi-conductors and isolates at 

300 K [60]. 

Properties 

 

Metals 

 

Semiconductors 

 

Isolates 

 
S (µV.K

-1
) ~ 5 ~ 200 ~ 10

3
 

  (Ω
-1

.cm
-1

) ~ 10
6
 ~ 10

3
 ~ 10

-12
 

Z (K
-1

) ~ 3x10
-6

 ~ 2x10
-3

 ~ 5x10
-17

 

 

IV.5.4. From conventional to new thermoelectric materials 

Over the past few years, thermoelectric materials are of renewed interest for 

applications as heat pumps and power generators. Bismuth telluride (Bi2Te3) is a well-

known narrow bandgap semiconductor, this compound has been widely studied principally 

for its thermoelectric properties. It currently stands as one of the best room-temperature 

thermoelectric materials (See Fig. IV.25 and Tab. IV.15) [61]. Low-dimensional systems 

allow for the alteration of the electronic structure through the choice of dimensionality, 3D 

to 0D. In 1993, L.D. Hicks and M.S. Dresselhaus published theoretical results exploring 

the effects of a 2D system on the thermoelectric figure-of-merit. The theoretical 

investigation proposed that a 2D quantum well structure could increase ZT of bismuth 

telluride (Bi2Te3). 

 

Table IV.15: Thermoelectric coefficients of conventional materials. 

  

 Temperature for 

maximum ZT (K) 

Effective 

mass (  ) 

Mobility 

(      ) 

Lattice thermal 

conductivity (     ) 

   

Bi2Te3 300 0.2 0.12 1.5 1.3 

PbTe 650 0.05 0.17 1.8 1.1 

Si1-xGex 1100 1.06 0.01 4.0 1.3 

 

Recently, many semiconductors have already been tested as potentially appropriate 

materials for thermoelectric applications, such as Skutterudites [62], Clathrates « Phonon-

glass electron-crystal » [63], Heusler compounds and their alloys [64], Tetrahedrite and 

Tennantite materials [65], Zintl phases [66], layered compounds [67]…. etc. There is much 
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excitement about layered structure material for high-density applications and for replacing 

conventional material. 

 

 

 

Figure IV.14: Figure of merit as a function of temperature for a number of some p-type 

materials [68]. 

 

The best thermoelectric materials commercially available today are alloys of bismuth 

telluride.  

  

IV.6.5. Chemical potential  

Chemical potential was first, described by the American engineer, chemist and 

mathematical physicist Josiah Willard Gibbs. He defined it for a thermodynamic system 

as the total change in free energy per extra mole of substance; it is measured in units of 

energy/particle or, equivalently, energy/mole: [69, 70] 

   (
  

   
)
        

                               (    ) 

Here    is the infinitesimal change of internal energy U, and    is the infinitesimal 

change of particle number Ni of species i as particles are added or subtracted. Respectively, 

S and V is the entropy and volume for a thermodynamic system in thermal equilibrium.  

https://en.wikipedia.org/wiki/Willard_Gibbs
https://en.wikipedia.org/wiki/Thermodynamic_system
https://en.wikipedia.org/wiki/Internal_energy
https://en.wikipedia.org/wiki/Entropy
https://en.wikipedia.org/wiki/Volume_(thermodynamics)
https://en.wikipedia.org/wiki/Thermodynamic_system
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More specifically chemical potential called total chemical potential. If two 

locations have different total chemical potentials for a species, some of it may be due to 

potentials associated with "external" force fields, while the rest would be due to 

"internal". Therefore, the total chemical potential can be split into internal chemical 

potential and external chemical potential: 

                                              (     ) 

The term "chemical potential" sometimes means "total chemical potential", but that is not 

universal. In some fields, such us solid-state physics, the term "chemical potential" means 

internal chemical potential. In the case of semiconductor, the temperature witch 

considering us an external field, lead to electron transition from the valence band to the 

conduction band and generation of free holes on the valence band. Resulting non-current 

state. 

                                                         (     ) 

The intrinsic chemical potential is an increasing function of the carrier concentration 

provided the physical system is stable. 

(    )    (  )    (  )    
  

  
                     (     ) 

Respectively, (  )     and (  )    are the Fermi levels of an extrinsic and intrinsic 

semiconductors. 

 

In semiconductor physics, the chemical potential of a system of electrons at a 

temperature of zero Kelvin is known as the Fermi energy. The Fermi level expresses the 

work required to add an electron to it, or equally the work obtained by removing an 

electron. 

   

Assuming the electron transport in the material is due to a single parabolic band, 

the density of states scales as square root of energy. Further, as electrons are Fermions, 

only a small bandwidth of energy (few kBT, where kB is Boltzmann constant and T is 

temperature) close to the chemical potential is relevant for electron transport. As one shifts 

the chemical potential further into a band from an energy gap, the carrier concentration 

increases. As one know, as the chemical potential increases and lies deeper into the band, 

the electrical conductivity increases, explaining why metals are good conductors compared 

to semiconductors. On the other hand, electrical conductivity is directly related to thermo-
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power; hence, this value decreases as the chemical potential moves further deep into the 

band. This explains the origin of low thermo-power of metals as compared to 

semiconducting materials. This conflicting nature of thermo-power and electrical 

conductivity evolution with carrier concentration is the key reason why carrier 

concentration is used as an optimization parameter to achieve high figure of merit ZT [71]. 

IV.5.6. Chemical potential dependence of TE properties of BaFAgCh (Ch 

= S, Se and Te) 

The band structure calculation for BaFAgCh (Ch = S, Se and Te) shows that the 

three investigated compounds have high densities of states near the band gap and a flat 

band dispersion on the valence band, especially along the z directions, suggesting the high 

thermoelectric efficiency of these compounds. The BoltzTraP code based on the semi-

classical Boltzmann theory are used to investigate the thermoelectric coefficients of the 

BaFAgCh (Ch = S, Se and Te) compounds. Respecting to the relaxation time, the 

BoltzTraP code gives the electronic transport versus three variable:    

 Temperature. 

 Carrier concentration. 

 Chemical potential. 

Together, temperature and carrier concentration, provide an understanding of how 

the matter behave. In Fig. IV.26, the Seebeck tensor S and the power factor (PF = S
2
σ/τ) 

are plotted with respect to the chemical potential μ at three fixed temperatures: 300, 600 

and 900 K. The total density of state is also displayed in Fig. IV.26; this can explain which 

bands are contributing more towards the thermoelectric coefficients. According to the 

obtained  results, the following points can be concluded:     
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Figure IV.26: Variation of Seebeck coefficient (in the unit of µV/K) and Power factor (in 

the unit of W/(K
2
ms)) vs chemical potential at three fixed temperatures: T = 300 K, T = 

600 K, and T = 900 K. The total density of state is also plotted for a direct comparison. The 

Fermi energy is plotted as a dashed line. 

 

 

 At Fermi level, the Seebeck coefficient show positive values, indicating that the 

majority charge carriers are holes, for the three compounds. 

 Near the Fermi level, the power factor is more dominate in the negative chemical 

potential region, suggesting that doping with holes might will be more favourite for 

thermoelectric efficiency than doping with electrons.  

 Both Seebeck coefficient and power factor of the BaFAgCh (Ch = S, Se and Te) 

increase with increasing temperature. 

 Both Seebeck coefficient and power factor of BaFAgCh (Ch = S, Se and Te) 

decrease when the Ch atom is substituted in  the following sequence S Se Te  .  
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 The needed hole concentration to obtain the maximum power factor increases when 

going from of length from BaFAgS than BaFAgSe and BaFAgTe. 

 

IV.5.7. Relaxation time and lattice thermal conductivity 

Within the constant relaxation time approximation (CRTA), the Seebeck coefficient 

can be calculated without any adjustable parameters; however, the electrical conductivity 

has to be calculated with respect to the relaxation time, therefore it is crucial to determine   

to estimate the electrical conductivity and thermal conductivity. Generally, two ways are 

proposed to determine the   value: (i) from the experimental value of the resistivity, or (ii) 

from a theoretical calculation. As there are no experimental data that allow the calculation 

of the   values of the considered compounds, a theoretical method was used to estimate  . 

An approximation that has a large success for calculating   is based on the deformation 

potential theory developed by Bardeen and Shockley [72-74]: 

 

  
 √       

 (     )
 
    

 
                                (     ) 

 

where     is the 3D elastic constant,     is the 3D deformation potential and m* is the 

charge-carrier effective mass. The method to calculate     and     can be found in Ref. 

[75]. The necessary parameters to calculate   are listed in Tab. IV.16. The variation of   as 

function of temperature is depicted in Fig. IV.27. Practically, temperature dependence of 

the relaxation time is similar in the three studied compounds; the relaxation time d 

ecreases with increasing temperature. When temperature increases, the thermal speed of 

electrons increases and consequently collisions between electrons become more 

considerable, and the vibration amplitude of atoms around their mean positions increases; 

all these decrease the relaxation time. 

Thermal conductivity describe the capacity of matter to transport the heat energy 

under applied gradient temperature, it consist from two part; the first one (   ), it has their 

origin from the motion of electrons, called electronic thermal conductivity, lattice thermal 

conductivities (  ) is the second part which express the vibration response of the lattice 

(i.e., phonons). Meanwhile, the BoltzTraP code gives just the electronic part. For more 

accurate calculation, it is necessary to calculate the contribution of the lattice vibration to 

the thermal conductivity. Usually, the best values of the figure of merit of materials occur 
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at mid or high temperature, and at this range of temperature, their lattice thermal 

conductivities (  ) are comparable to their minimum lattice conductivities (    ). At high 

temperature, the lattice thermal conductivity deceases to a lower limit (    )  with 

increasing temperature. The minimum lattice thermal conductivity (    )  can be 

calculated using Cahill model [76, 77], which gives a good estimation of the minimum 

lattice thermal conductivity for a large class of materials [78, 79]. The calculated values of 

the minimum lattice thermal conductivity      for the considered compounds are listed in 

Tab. IV.16. The calculated       of the three studied compounds are smaller than unity, 

suggesting that these compounds might be good TE candidates 

 

Table IV.16: Calculated 3D elastic constant (Cβ, in GPa unit), 3D deformation potential 

(Eβ, in eV unit) and the minimum lattice thermal conductivity (kmin, in Wm
-1

K
-1

 unit) using 

Cahill model for the BaFAgCh (Ch = S, Se and Te) compounds. 

 

properties Cβ Eβ kmin 

 Direction a-axis 

 

c-axis 

 

a-axis c-axis 

Carrier h e h e 

BaFAgS 110.32 77.78 9.35 11.83 10.98 13.94 0.612 

BaFAgSe 103.60 62.92 9.70 12.40 9.88 12.97 0.544 

BaFAgTe 94.26 50.53 10.59 13.37 9.78 12.80 0.420 
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Figure IV.27: Temperature dependence of the relaxation time ( ) for the BaFAgCh (Ch = 

S, Se and Te) compounds. 

 

 

IV.5.8. Carrier concentration and temperature dependence of TE 

properties for BaFAgCh (Ch = S, Se and Te) 

Variation of the Seebeck coefficient, electrical conductivity, thermal conductivity 

and figure of merit as functions of carrier concentration for both p-type and n-type 

BaFAgS, BaFAgSe and BaFAgTe in the range 10
16

 - 10
20 

cm
-3

 along the [100] (a-axis) and 

[001] (c-axis) crystallographic directions at T = 900 K are plotted in Fig. IV.28. From this 

curves, the following conclusions can be made: 
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 The absolute value (magnitude) of the Seebeck coefficient (S) decreases with increasing 

carrier concentration and increases with increasing temperature for both the n-type and 

p-type compounds. 

 The magnitude of S for the p-type system is higher than that of the n-type one 

throughout the considered concentration range of charge carriers. This result is 

consistent with the already predicted result from the calculated charge-carrier masses; 

large effective masses of charge-carriers translates to a high Seebeck coefficient. 

 The thermo-power (S) shows practically the same behaviour regarding the variation of 

carrier concentration and temperature for the three studied compounds. This behaviour 

is attributed to the similarity of their energy band dispersions around the Fermi level. 

 For the charge-carrier concentration, the value of (S) decreases when we move from 

BaFAgS to BaFAgSe to BaFAgTe. This might be due to the decrease of the charge-

carrier effective masses when we move in the same sequence. 

 Seebeck coefficient has almost an isotropic behaviour along the different 

crystallographic directions. 

The p-type BaFAgS, BaFAgSe and BaFAgTe compounds are more favourable for TE 

performance than the n-type ones. 

 

 The electrical conductivity, electronic thermal conductivity and figure of merit are 

considerably anisotropic, which is consistent with the layered structure of the title 

compounds.  

 The electrical conductivity, thermal conductivity and figure of merit of the p-type 

compounds along the a-axis and in the ab-plane are considerably larger than the 

corresponding ones along the c-axis. This might be because the lower hole effective 

mass along the a-axis and in the ab-plane compared to the corresponding one along the 

c-axis. 

 The anisotropy of the electrical and thermal conductivities in the n-type compounds is 

less pronounced than that in the p-type one. This might be due to the almost equal 

values of the electron effective masses along the different crystallographic directions. 

 To facilities the comparison, all the numerical values were listed in Tab. IV.17.  

 We note that curves corresponding to 300 K and 600 K are similar to those obtained at 

T = 900 K. 

 Our results compare favourably with the values of order reported for the Cu-based p-

type transparent conductors. 
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Figure IV.28: Charge carrier concentration dependence of the Seebeck coefficient, 

electrical conductivity, electronic thermal conductivity and figure of merit at T = 900 K for 

the BaFAgCh (Ch =S, Se, Te) compounds. 
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It is very important to know the best ranges of the charge carrier concentration and 

temperature where the TE efficiency is high. High TE efficiency requires a high Seebeck 

coefficient, high electrical conductivity and low thermal conductivity. Fig. IV.29 shows the 

Seebeck coefficient (S), electrical conductivity ( ), electronic thermal conductivity (   ) 

and factor of merit (ZT) maps as functions of temperature and carrier concentration along 

the a-direction for the p-type BaFAgS, BaFAgSe and BaFAgTe. Fig. IV.29 and Tab. IV.17 

show that the Seebeck coefficient increases with increasing temperature and decreases with 

increasing hole concentration, but at high hole concentration, it saturates at high 

temperatures. The electrical conductivity decreases with increasing temperature for a fixed 

hole concentration. The thermal conductivity remains approximately constant with 

increasing temperature for a fixed hole concentration. However, at a fixed temperature, 

both the electrical and thermal conductivities increase sharply with increasing hole 

concentration.  

The influence of carrier concentration on the figure of merit is much more evident 

than that of the temperature. The high values of the figure of merit are found for carrier 

concentration around 10
19

 cm
-3

 with a large range of temperature from 300 K to 900 K. For 

BaFAgS, ZT along the a-axis = 0.88 at T = 900 K and hole concentration of 
19 35 10 cm  , 

for BaFAgSe, ZT along the a-axis = 0.89 at T = 900 K and hole concentration of 

19 32 10 cm  and for BaFAgTe, ZT along the a-axis = 0.90 at T = 900 K and hole 

concentration of 
18 36 10 cm  . It is worth to note here that ZT of the considered compounds 

attains a value slightly higher than the aforementioned ones for temperature higher than 

900 K. The thermoelectricity efficiency of the studied compounds can be enhanced if one 

could reduce the lattice thermal conductivity    by introducing further phonon scattering 

centres by alloying or doping by chemical elements that reduce the lattice thermal 

conductivity. 
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Figure IV.29: Maps of the calculated hole concentration and temperature dependences of 

the Seebeck coefficient (S, in µV/K unit), electrical conductivity (     (       ) unit), 

electronic thermal conductivity (       (       ) unit) and figure of merit (ZT, 

dimensionless) for the BaFAgCh (Ch = S, Se, Te) compounds. 
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IV.6. Thermodynamic properties of BaFAgCh (Ch = S, Se and Te)  

Thermodynamics [80], is the branch of physics concerned with pressure and 

temperature and their relation to energy and work. The behaviour of these quantities is 

governed by the four laws of thermodynamics, irrespective of the composition or specific 

properties of the material or system in question. The laws of thermodynamics are explained 

in terms of macroscopic constituents by statistical mechanics. Thermodynamic properties 

(including heat capacity, thermal expansion coefficients, Debye temperature…etc.) is a 

very useful tool in science and engineering, including geophysics, physical chemistry, 

chemical engineering and mechanical engineering. 

Many physical properties of an atomic crystalline lattice can be successfully 

determined from first principles within the static approximation at zero temperature. 

However, the crystal lattice is not just a rigid collection of atoms under symmetry 

constraints. On the contrary, it is in a continuous dynamical state, with atoms vibrating 

around their respective equilibrium positions. Thermodynamic properties related directly 

with the atomic vibration witch can be expressed as energy or the wavy nature of energy. 

At 0 K, the atoms have the minimum energy. When heat is supplied to the material, the 

atoms gain heat energy and vibrate at a particular amplitude and frequency. This vibration 

produces an elastic wave called a "phonon". The phonon energy can be expressed as a 

function of wavelength or frequency, in much the same way as that of a photon, using the 

Planck relation (       
 ⁄ ). Thus, the material gains or lose heat by gaining or losing 

phonons [81]. 

Previously, we have carried out detailed studies concerning the ground states of the 

quaternary compounds. The data computed through the equation of state (i.e., Energy 

versus volumes data that obtained using GGA08) are employed to evaluate pressure and 

temperature dependences of thermodynamic properties of BaFAgCh (Ch = S, Se and Te). 

In our study, the quasi-harmonic Debye model that implemented in the Gibbs2 code (See 

Appendix) was used to study the variation of some fundamental physical properties with 

both temperature (from 0 to 900 K) and hydrostatic pressure (from 0 to 35 GPa). 

From the macroscopic vision, the volume of matter (primitive cell volume) is 

strongly related to the temperature and pressure; the increase of the first one lead to 

increase of inter atomic distance; consequently the lattice parameters (volume), however 

the increasing of the second one reduce all the lattice parameters. The variation of the 
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primitive cell volume in (Bohr
3
) with temperature at four fixed pressures: 0 GPa, 5 GPa, 10 

GPa and 15 GPa, and with pressure at four fixed temperatures: 0 K, 300 K, 600 K and 900 

K for BaFAgS, BaFAgSe and BaFAgTe are shown in Fig. IV.30. From Fig. IV.30 one can 

note the following: 

 Qualitatively, temperature (T) and pressure (P) dependencies of the volume for the 

three investigated compounds are similar. For low temperature; less than 100 K (

100 T K ), the volume is practically constant, but it increases remarkably with 

increasing temperature for temperatures 100 T K . On the next, we interesting by 

analysis of BaFAgS results.  

- At a pressure equal to 0 GPa, the BaFAgS unit cell volume is equal to 1130.65 Bohr
3
 

at T = 300 K and 1162.98 Bohr
3
 at T= 600 K, which corresponds to an increase of 

2.86%. 

- At pressure equal 5 GPa, the BaFAgS unit cell volume is equal to 1047.44 Bohr
3
 at T 

= 300 K and 1066.48 Bohr
3
 at T= 600 K, which corresponds to an increase of 1.82%. 

- At pressure equal 10 GPa, the BaFAgS unit cell volume is equal to 990.52 Bohr
3
 at T 

= 300 K and 1004.14 Bohr
3
 at T= 600 K, which corresponds to an increase of 1.38%. 

- At pressure equal 15 GPa, the BaFAgS unit cell volume is equal to 947.29 Bohr
3
 at T 

= 300 K and 957.91 Bohr
3
 at T= 600 K, which corresponds to an increase of 1.05%. 

The volume increases practically linearly with temperature, and the increase becomes 

slower with increasing pressure. 

 At a fixed temperature, the volume decreases with pressure. 

- At temperature equal 0 K, the BaFAgS unit cell volume is equal to 1111.52 

Bohr
3
 at P = 0 GPa and 1035.99 Bohr

3
 at P = 5 GPa, which corresponds to an 

decrease of 6.80%, indicating that the influence of the pressure on the volume is 

much more evident than that of the temperature. 

 

Fig. IV.31 and Fig. IV.32 gives respectivly the variation of the adiabatic bulk 

modulus BS and the isothermal bulk modulus BT with temperature and pressure for 

BaFAgCh (Ch = S, Se and Te). It is noted from the figure that the relationship between 

bulk modulus and pressure (temperature) is nearly linear at fixed temperature (pressure). 
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Figure IV.30: Variation of the primitive cell volume with temperature and pressure for 

BaFAgCh (Ch=S, Se and Te). 

 

 

Figure IV.31: Variation of the adiabatic bulk modulus BS with temperature and pressure 

for BaFAgCh (Ch = S, Se and Te). 
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Figure IV.32: Variation of the isothermal bulk modulus BT versus temperature and 

pressure for BaFAgCh (Ch = S, Se and Te). 

 

Heat capacity or thermal capacity [80, 82] is a measurable physical quantity equal 

to the ratio of the heat added to (or removed from) an object to the resulting temperature 

change. The unit of heat capacity is joule per kelvin (J/K). Measuring the heat capacity, 

sometimes referred to as specific heat, at constant volume can be prohibitively difficult for 

liquids and solids. That is, small temperature changes typically require large pressures to 

maintain a liquid or solid at constant volume, implying that the containing vessel must be 

nearly rigid or at least very strong (see coefficient of thermal expansion and 

compressibility). Instead, it is easier to measure the heat capacity at constant pressure 

(allowing the material to expand or contract freely) and solve for the heat capacity at 

constant volume using mathematical relationships derived from the basic thermodynamic 

laws. Starting from the fundamental thermodynamic relation one can show that: 

       (
  

  
)
   

(
  

  
)
 
                 (      ) 
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where the partial derivatives are taken at constant volume and constant number of particles, 

and constant pressure and constant number of particles, respectively. This can also be 

rewritten as: 

        
  

 
                         (      ) 

Constant volume heat capacity CV for the three compounds under different pressures and 

temperatures is curved in Fig. IV.33. At sufficiently low temperature, the changing CV 

values under given pressures is proportional to T
3
, then at high temperature, the 

amplification of CV slows down evidently, and it tends towards a limited value when 

temperature keeps increasing, namely, Dulong-Petit limit. CV decreases with increasing 

pressure; it can be easily found that CV is more sensitive to the temperature than the 

pressure. Variations of the constant volume heat capacity CP versus temperature and 

pressure are presented in Fig. IV.34. 

 

 

Figure IV.33: Calculated constant volume heat capacity CV versus temperature and 

pressure for BaFAgCh (Ch = S, Se and Te). 
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Figure  

Figure IV.34: Calculated constant pressure heat capacity CP versus temperature and 

pressure for BaFAgCh (Ch = S, Se and Te). 

 

Thermal expansion coefficient is an important parameter as it enters into many 

thermodynamic formulas and is expressed as the tendency of matter to change in volume in 

response to a change in temperature, typically represented by the symbol α: 

   (     )   (    )                   (      ) 

Or 

   (     )   (    )               (      ) 

Where lT  (VT) is the length (volume) of material at given temperature T. For a cubic 

material, αl = 1/3αV, where “l” is the length of an isotropic material. 

From another side it’s given as: 

  
    

 
                                              (      ) 

Where            are the Gruneisen parameter (typically in the range of 1 to 3), specific 

heat at constant volume and  isothermal compressibility, respectively. 
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With:  

   (  ⁄ )(    ⁄ )                         (      ) 

There are many potential applications for materials with controlled thermal 

expansion properties, as thermal expansion causes many problems in engineering, and 

indeed in everyday life. Within small temperature changes, the change in the length of a 

material is proportional to its change in temperature. The vast majority of materials have a 

positive coefficient of thermal expansion and their volume increases on heating and 

different materials expand by different amounts as shown in the table below. However, 

negative or even zero values could be observed in some cases: Zero expansion composites 

can be employed, for example, in high precision optical mirrors, where thin metallic layers 

are coated on a substrate; the use of a zero expansion substrate leads to a mirror whose 

optical properties do not degrade as temperature is varied. Perhaps the best known 

examples of materials with a negative thermal expansion coefficients are the ZrW2O8, 

ZrP2O7 and Sc2(WO4)3 families [83-87]. Fig. IV.35 shows that for a two-coordinate 

bridging atom a longitudinal vibration will lead to an expansion of the interatomic 

distances, so the length will be increase. During a transverse vibration, however, if the 

interatomic distances remains essentially unchanged, the length will decrease. 

 

 

 

Figure IV.35: Schematic representation of the effect of different types of vibrational mode 

on thermal expansion. Transverse “guitar string” vibrations tend to lead to negative 

thermal expansion [83]. 



 

 

Chapter IV                                                                                               Results and Discussion 

126 

The thermal expansion coefficient   of the quaternary compounds BaFAgCh (Ch = 

S, Se and Te) as a function of temperature at different pressures is curved in Fig. IV.36, 

left panel. From the (T)  curves we can observe that α increases rapidly with temperature 

at the range of low temperatures, then gradually show a linear smoothly increasing trend 

when the temperature increases. The thermal expansion coefficient   decreases with 

increasing pressure; Fig. IV.36, right panel. 

 

 

 

 

Figure IV.36: Variations of the thermal expansion coefficient α versus temperature and 

pressure for BaFAgCh (Ch = S, Se and Te). 

 

Grüneisen parameter is an extremely useful quantity in high-pressure physics. This 

parameter allows the extraction of a maximum of information from a minimum of data, 

which is a special virtue for experimental conditions where data are often difficult to 

obtain. Variations of the Grüneisen parameter γ versus pressure and temperature for the 

three considered compounds are shown in Fig. IV.37. From these curves one can observe 
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that γ increases linearly with temperature, especially at low pressures. Grüneisen parameter 

decreases slowly and smoothly with increasing pressure.  

 

 

 

 

Figure IV.37: Variations of the Grüneisen parameter γ versus temperature and pressure for 

the BaFAgCh (Ch = S, Se and Te) compounds. 

 

 

In Debye theory, the Debye temperature    is the temperature of a crystal's 

highest normal mode of vibration, i.e., the highest temperature that can be achieved due to 

a single normal vibration. The Debye temperature is given by:             

   
   

  
                               (     ) 

                    

Here, h is Planck's constant,    is Boltzmann's constant, and    is the Debye frequency. 

Fig. IV.38 displays the variations of Debye temperature versus temperature at some fixed 

pressures for the three studied compounds. It can be seen that    is nearly constant at low 

http://scienceworld.wolfram.com/physics/DebyeTheory.html
http://scienceworld.wolfram.com/physics/Temperature.html
http://scienceworld.wolfram.com/physics/NormalMode.html
http://scienceworld.wolfram.com/physics/Temperature.html
http://scienceworld.wolfram.com/physics/PlancksConstant.html
http://scienceworld.wolfram.com/physics/BoltzmannsConstant.html
http://scienceworld.wolfram.com/physics/DebyeFrequency.html
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temperature and decreases linearly with increasing temperature. With increasing pressure 

the slope of the   ( ) curve becomes gentler. Debye temperature    increases almost 

linearly with increasing  pressure at fixed temperature. 

 

 

 

Figure IV.38: Variations of Debye temperature    versus temperature and pressure for the 

BaFAgCh (Ch = S, Se and Te) compounds. 
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In the present work, we have studied in details the structural, elastic, electronic, 

optical and thermoelectric properties of three quaternary layered LaOAgS-type 

compounds, namely BaFAgS, BaFAgSe and BaFAgTe, using the Full Potential-Linearized 

Augmented Plane Wave (FP-LAPW) method in the framework of density functional 

theory (DFT) as implemented in the WIEN2k package. The main obtained results can be 

summarized as follows.  

1. Structural properties  

Calculated structural parameters, including lattice parameters and atomic 

coordinates, are in good agreement with available experimental data. Relative deviations 

between calculated lattice parameters (a and c) and the corresponding experimental ones 

are less than 1%, confirming the reliability of the performed calculations. Calculated 

cohesive energies and formation enthalpies confirm the chemical and structural stabilities 

of the title compounds. 

2. Elastic properties 

Calculated single-crystal elastic constants, using the energy-strain method, satisfy 

the mechanical stability criteria. The noticeable difference between C11 and C33 values 

indicates the strong elastic anisotropy. This is in agreement with the layered structure of 

the studied compounds.  

Polycrystalline elastic moduli were calculated from the calculated single-crystal 

elastic constants through the Voigt–Reuss–Hill (VRH) approximations. One notes:  

 Calculated bulk modulus (B) values from the EOS fitting are in good agreement with 

the corresponding ones derived from the calculated single-crystal elastic constants. This 

constitutes a proof of the reliability of the performed calculations.  

 Young’s modulus (E) values are relatively small, confirming the rather low stiffness of 

the considered compounds. The value of E decreases when one moves   in the following 

sequence BaFAgS  BaFAgSe  BaFAgTe. 

 The bulk modulus (B) value is approximately the double of the shear modulus (G) one, 

indicating that the shear deformation is easier to occur in the considered compounds 

than the compression one. 

 Based on the Pugh's empirical criterion, the considered compounds are ductile.  

 The studied compounds exhibit a noticeable elastic anisotropy and its degree increases 

when one moves from BaFAgS to BaFAgSe to BaFAgTe. 
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 Debye temperature      value decreases when going from BaFAgS to BaFAgSe to 

BaFAgTe, which is in accordance with the stiffness trend. This indicates the decrease of 

the thermal conductivity when going from BaFAgS to BaFAgSe to BaFAgTe. 

3. Electronic properties 

The LDA and GGA functionals underestimate the band gaps of semiconductors and 

isolators. Therefore, to improve the calculated band structures of the investigated 

compounds, the TB-mBJ functional was used to model the exchange-correlation potential. 

Both scalar relativistic (without inclusion of the spin-orbit coupling) and full relativistic 

calculation (with inclusion of the spin-orbit coupling) calculations were performed for the 

electronic properties. The obtained results reveal: 

 The studied compounds have similar band structure features. They are wide direct band 

gap (Γ-Γ) materials, which range from 2.52 to 3.10 eV. 

  Qualitatively, the GGA08 band structure profile is almost similar to the corresponding 

TB-mBJ one, but quantitatively, there is an important difference between the TB-mBJ 

band gap and the GGA08 one. The TB-mBJ approach improves the band gap value of 

BaFAgS, BaFAgSe and BaFAgTe by approximately 117%, 128%, and 75%, 

respectively, compared to the corresponding GGA08 one. 

 The dispersion of the valence bands around the VBM is highly anisotropic; the upper 

valence bands show a large dispersion around the VBM along the M  and X  

directions in the k-space and a pronounced flatness along the Z  direction. In 

consequence, the hole effective mass value along the c-axis ( Z direction) should 

be significantly larger than the corresponding ones in the ab-plane ( M direction) 

and along the a-axis ( X direction). 

 The spin-orbit coupling has an important effect on the electronic properties:  

(i) Splitting of the energy bands, especially, the valence bands near to Fermi level 

at Γ point,  

(ii)  Reduction of the band gap value.  

(iii) Spin-orbit coupling effect becomes more important when one moves from 

BaFAgS to BaFAgSe to BaFAgTe. 

 The assignments of the energy band electronic states and chemical bonding characters 

were accomplished with the help of the calculated DOS diagrams and electronic charge 

density maps. The bonding in the [AgCh] and [BaF] blocks are of mixed ionic and 

covalent nature. The Ag-Ch bond inside the [AgCh] layer is predominantly of covalent 
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character, which is due to the strong hybridization between the Ag: 4d and Ch: np 

states, while the Ba-F bond in the layer [BaF] is predominantly ionic. 

4. Optical properties 

Based on the band structure obtained using the TB-mBJ with including SOC, the 

absorptive and dispersive parts of the dielectric function, absorption coefficient, refractive 

index, extinction coefficient, optical reflectivity and energy-loss function spectra were 

calculated for the [100] and [001] polarized incident radiation in a wide energy range up to 

25 eV.  

 The calculated optical spectra show a noticeable anisotropy.  

 The magnitude of the peaks of the optical spectra increase with increasing atomic 

number of the Ch element.  

 The origins of the electronic transitions that are responsible of the observed structures in 

the optical spectra were assigned in terms of the calculated energy band structure.  

 The zero-frequency limit of the real part of the dielectric function 
1
(ω)   increases 

when the energy band gap value decreases.  

5. Thermoelectric properties 

The semi-classical Boltzmann transport theory was used to investigate charge-

carrier (holes and electrons) concentration and temperature dependences of the 

thermoelectric parameters, including Seebeck coefficient, electrical conductivity and 

thermal conductivity, along the two principal crystallographic directions, i.e., a and c axes. 

The obtained results show: 

 The Seebeck coefficient (S) increases with increasing temperature and decreases with 

increasing charge-carrier concentration, but at high hole concentration, it saturates at 

high temperatures. 

 The electrical conductivity (σ) decreases with increasing temperature for a fixed hole 

concentration. 

 The thermal conductivity remains approximately constant with increasing temperature 

for a fixed hole concentration. However, at a fixed temperature, both the electrical and 

thermal conductivities increase sharply with increasing charge-carrier concentration. 

 Thermoelectric parameter values of the for the p-type compounds are larger than that of 

the n-type ones. 

 The studied thermoelectric parameters exhibit a strong degree of anisotropy. 



 

 

Conclusions 

139 

 The minimum lattice thermal conductivity of the studied materials was evaluated from 

the elastic properties, using Cahill’s model. It is found that the minimum lattice thermal 

conductivity is relatively small and decrease when one moves from BaFAgS to 

BaFAgSe to BaFAgTe. 

 Finally, calculated thermoelectric efficiency, given by the dimensionless figure of merit 

ZT, indicates that the studied compounds show a high performance along the a-axis for 

a large range of temperature. 

6. Thermodynamic properties 

Using the quasi-harmonic Debye model, temperature (from 0 to 900 K) and 

pressure (from 0 to 35 GPa) dependences of the heat capacity, thermal expansion, Debye 

temperature, bulk modulus and Grüneisen parameter were predicted. The obtained results 

reveal: 

 Temperature effect on the aforementioned parameters decreases with increasing 

pressure. 

 The pressure influence on the volume and bulk modulus is much more evident than 

that of the temperature. 

 At low temperature, the constant volume heat capacity curve CV(T) is proportional 

to T
3
. At high temperature, it tends towards a limited value, the so-called Dulong-

Petit limit. In addition, CV and the pressure constant heat capacity (Cp) are more 

sensitive to temperature than to pressure. 

 The thermal expansion coefficient   increases with increasing temperature (sharply 

at low temperatures, and slowly at high temperature) and decreases with increasing 

pressure. 

 Debye temperature (  ) is more sensitive to temperature than to pressure. The 

   value decreases when going from BaFAgS to BaFAgSe to BaFAgTe.  
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A.1. Wien2k Code 

First principles calculations are mainly performed within Density Functional 

Theory (DFT). In the framework of DFT, the many-body problem of interacting electrons 

and nuclei is mapped to a series of one electron equation, the so-called Kohn–Sham (KS) 

equations. Several methods have been developed for the solution of KS equations. The 

Linearized Augmented Plane-Wave (LAPW) method is one among the most accurate ones 

for solving the KS equations. One successful implementation of the full-potential LAPW 

(FP-LAPW) method is the program package WIEN2k, which is developed by Blaha and 

co-workers [1, 2]. It has been successfully applied to a wide range of crystal properties. 

Minimizing the total energy of a system by relaxing the atomic coordinates for complex 

systems became possible by the implementation of atomic forces, and even molecular 

dynamics became feasible. Also, relativistic correction terms are included [3]: 

 The scalar-relativistic corrections: mass-velocity correction and Darwin correction, 

 The spin-orbit coupling correction. 

A.1.1. Description of general input and output files 

 The master input file “case.struct” 

“case.struct” is the file that defines the crystal structure and is the main input file that is 

required for all programs of the WIEN2k code.  

 The history file “case.scf” 

During the self-consistent field (SCF) cycle, the essential data are appended to the 

file “case.scf” in order to generate a summary of previous iterations. For an easier retrieval 

of certain quantities, the essential lines are labelled with: LABEL, which can be used to 
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monitor these quantities during self-consistency as explained below. The most important: 

LABELs are [4]: 

:ENE: total energy (Ry). 

:DIS: charge distance between last 2 iterations (∫|       |  ).  

:FER: Fermi energy. 

:FORxx: force on the atom xx in mRy/Bohr. 

:FGLxx: force on the atom xx in mRy/Bohr. 

:DTOxx: total difference charge density for the atom xx between last 2 iterations. 

:CTOxx: total charge in the sphere xx (mixed after MIXER). 

:NTOxx: total charge in the sphere xx (new (not mixed) from LAPW2+LCORE). 

:QTLxx: partial charges in the sphere xx. 

:EPLxx: l-like partial charges and ``mean energies'' in the lower (semi core) energy 

window for the atom xx used as energy parameters in case.in1 for next iteration. 

:EPHxx: l-like partial charges and ``mean energies'' in higher (valence) energy window for 

the atom xx used as energy parameters in case.in1 for next iteration. 

:EFGxx: Electric field gradient (EFG)     for the atom xx. 

:ETAxx: Asymmetry parameter of EFG for the atom xx. 

:RTOxx: Density for the atom xx at the nucleus (first radial mesh point). 

:VZERO: Gives the total, Coulomb and xc-potential at z=0 and z=0.5 (meaningful only 

for slab calculations). 

 To check to which type of calculation a scf file corresponds, we use: 

:POT: Exchange-correlation potential used in this calculation. 

:LAT: Lattice parameters in this calculation. 

:VOL: Volume of the unit cell. 

:POSxx: Atomic positions for the atom xx (as in case.struct). 



 

 

Appendix 

142 

:RKM: Actual matrix size and resulting RKmax. 

:NEC: Normalization check of electronic charge densities. If a significant amount of 

electrons is missing, one might have core states, whose charge density is not completely 

confined within the respective atomic sphere. In such a case the corresponding states 

should be treated as band states (using LOs). 

 For spin-polarized calculations: 

:MMTOT: Total spin magnetic moment/cell. 

:MMIxx: Spin magnetic moment of the atom xx. Note, that this value depends on RMT. 

:CUPxx: spin-up charge (mixed) in the sphere xx. 

:CDNxx: spin-dn charge (mixed) in the sphere xx. 

:NUPxx: spin-up charge (new, from lapw2+lcore) in the sphere xx. 

:NDNxx: spin-dn charge (new, from lapw2+lcore) in the sphere xx. 

:ORBxx: Orbital magnetic moment of the atom xx (needs SO calculations and 

LAPWDM). 

:HFFxx: Hyperfine field of the atom xx (in kGauss). 

 One can monitor the energy eigenvalues (listed for the first k-point only), the 

Fermi-energy or the total energy. Often the electronic charges per atom reflect the 

convergence. Charge transfer between the various atomic spheres is a typical 

process during the SCF cycles: large oscillations should be avoided by using a 

smaller mixing parameter; monotonic changes in one direction suggest a larger 

mixing parameter. 

 In spin-polarized calculations the magnetic moment per atomic site is an additional 

crucial quantity which could be used as convergence criterion. 

 If a system has electric field gradients and one is interested in that quantity, one 

should monitor the EFGs, because these are very sensitive quantities. 

 It is better to monitor several quantities, because often one quantity is converged, 

while another still changes from iteration to iteration. The script run_lapw has three 

different convergence criteria built in, namely the total energy, the atomic forces 

and the charge distance. 
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 We recommend the use of UNIX commands like: grep: ENE case.scf or use 

“Analysis”‟ from the graphical user interface w2web for monitoring such 

quantities.  

A.1.2. Flow of programs 

As a starting point of the calculation, one needs to check the convergence of the 

results with respect to k-points, Radius of Muffin-Tin spheres (RMT) and cut-off energy. 

The initialization consists of running a series of small auxiliary programs which generates 

the inputs for the main programs (See Fig. A.1). One starts by defining the structure in 

“case.struct”. The initialization can be invoked by the script “init_lapw” and consists of 

running [2-6]: 

NN: a program, which lists the nearest neighbour distances up to a specified limit (defined 

by a distance factor f) and thus helps to determine the atomic sphere radii. In addition it is 

a very useful additional check of your “case.struct” file (equivalency of atoms). 

SGROUP: determines the space group of the structure defined in your “case.struct” file. 

SYMMETRY: generates from a raw “case.struct” file the space group symmetry 

operations, determines the point group of the individual atomic sites, generates the LM 

expansion for the lattice harmonics and determines the local rotation matrices. 

LSTART: generates free atomic densities and determines how the different orbitals are 

treated in the band structure calculations (i.e., as core or band states, with or without local 

orbitals...). 

KGEN: generates a k-mesh in the irreducible part of the BZ. 

DSTART: generates a starting density for the scf cycle by a superposition of atomic 

densities generated in LSTART. 
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Figure A.1: Program flow in WIEN2k. [1] 
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Then a self-consistency cycle is initiated and repeated until convergence criteria are met 

(See Chap. II). This cycle can be invoked with a script run_lapw, and consists of the 

following steps:  

LAPW0: (POTENTIAL) generates the potential from a given charge density. 

LAPW1: (BANDS) calculates valence bands (eigenvalues and eigenvectors). 

LAPW2: (RHO) computes valence densities from eigenvectors. 

LCORE: computes core states and densities. 

MIXER: mixes the densities generated by LAPW2 and CORE with the density of the 

previous iteration to generate a new charge density. 

LAPW1 and LAPW2 programs are the most time consuming, while the time needed to 

run CORE and MIXER are basically negligible.  

 

In order to calculate physical properties of solid, equilibrium DFT crystal lattice 

parameters have to be used, and they are different for GGA and for LDA. Within the defect 

calculation, all the atoms must be allowed to relax without any symmetry constrains. 

A.2. Spin-Orbit Coupling 

A.2.1. Definition 

Spin-Orbit Coupling (SOC) is defined as the interaction of the electron spin 

magnetic moment with magnetic field due to the motion of the electron in the electrostatic 

field of the proton. This interaction leads to the splitting of atomic energy levels; it‟s 

usually known in atomic physics and spectroscopy by the name of fine structure of levels 

(spectral lines). The origin of the spin-orbital splitting is the same as of the splitting of 

energy level of isolated atoms, which results in the formation of energy bands when the 

atoms interact with one another [7-9]. 

In states subject to spin-orbit coupling, in the atomic limit, spin and orbital angular 

momenta (S and L) are not good quantum numbers; total angular momentum J is instead 

the conserved quantity. The total angular momentum operator defined as: 
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Figure A.2: Spin-orbit splitting of l-quantum number. [8, 9] 

 

 

Scalar-relativistic p-orbital is similar to p
3/2

 wave function thus   does not contain p
1/2 

basis, so we need to add „local orbital with p
1/2

. 

 

In quantum physics, the spin–orbit interaction is a relativistic interaction of a 

particle's spin with its motion inside a potential. So, the Schrödinger equation became [7]: 

                            

Where     is the energy of the interaction between spin and the orbital moment. 

In mathematical physics and mathematics, the Pauli matrices are a set of three     

complex matrices which are Hermitian and unitary [10]. These matrices are named after 

the physicist Wolfgang Pauli. In quantum mechanics, they occur in the Pauli equation 

which takes into account the interaction “   ” of the spin of a particle with an external 

electromagnetic field. 

https://en.wikipedia.org/wiki/Quantum_physics
https://en.wikipedia.org/wiki/Special_relativity
https://en.wikipedia.org/wiki/Spin_(physics)
https://en.wikipedia.org/wiki/Potential_well


 

 

Appendix 

147 

    
       

   

   
     

                   

Where: 

    is the screening constant. 

       | |is the charge of the nucleus screened by the inner electron shells. 

 L is the orbital mechanical angular momentum M in unit of ħ (     . 

The spin-orbital should be observed for all states except the s-states (L = 0) where the 

orbital angular momentum (M = ħL) is zero. 

 

A.2.2. Implementation of SOC in Wien2K  

The FP-LAPW method divide the solid into two regions: (i) Muffin-Tin spheres, 

and (ii) interstitial region. In the interstitial region, the valence electrons are not relativistic, 

while in the MT spheres, core states are fully-relativistic (include SOC), and the valence 

electrons are treated classically [8, 9]: 

 Fully-relativistic core,  

 Scalar-relativistic valence, 

 Mass-velocity and Darwin s-shift,  

 No spin-orbit interaction. 

In the Fully-relativistic calculation, several levels of treating are illustrated in 

(Fig.A.3), we use the scalar-relativistic (pure-spin) eigenstates   as basis and add the Spin-

Orbit interaction: 

 adding SO in “second variation” (using previous eigenstates as basis). 

 adding p
1/2

 LOs to increase accuracy. 

 x lapw1 (increase E-max for more eigenvalues, to have basis for lapwso). 

 x lapwso 

 x lapw2 –so –c (SO always needs complex lapw2 version). 
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Figure A.3: Including the Spin-Orbit coupling for calculating the physical properties in the 

WIEN2k code. [8, 9] 

 

A.2.3. Spin-orbit effect 

Many results about the electronic structure of solids with and without including the 

SOC interaction are presented in the scientific literature as a comparative study. The 

important observed effects of SOC are: (i) reducing the energy band gap [11-13] and (ii) 

splitting of the first degenerated conduction levels [14-16]. However, Spin-orbit effects 

generally give small corrections to the non-relativistic band structure, except near k-points 

where bands are degenerate in the non-relativistic structure. 

 

  

Scalar Relativistic 
calculation (NREL in 

case.struct )  
init-so p1/2 LOs  

x lapw1 x lapwso x lapw2 –so -c 

Calcution of 
the diffrent 
properties 
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Figure A.4: Electronic band structure of CH3NH3PbI3, without (a) and with (b) the 

spin−orbit coupling interaction. The origin of the energy scale is taken at the top of the 

VB. [11] 

 

Figure A.5: Electronic band structure of the VSe without inclusion of the spin-orbit 

coupling (SOC), “left panel”, and with inclusion of the SOC, “right panel”. [14] 

 

The major role of spin−orbit coupling (SOC) that significantly reduces the band gap by 

inducing a large splitting of the first degenerated conduction levels. 
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A.3. BoltzTraP Code  

A.3.1. Description and method 

Boltzmann Transport Properties (BoltzTraP) is a program for calculating the semi-

classic transport coefficients. It uses a mesh of band energies and is interfaced to the 

WIEN2k, ABINIT, SIESTA, VASP and Quantum Espresso programs. The program is 

based on a smoothed Fourier interpolation of the bands. From this analytical representation 

we calculate the derivatives necessary for the transport distributions. The method is 

compared to earlier calculations, which in principle should be exact within Boltzmann 

theory, and a very convincing agreement is found [17]. The idea of this procedure was 

developed in 1986 by Koelling and Wood [18] and implemented in a code by Madsen and 

Singh in 2006 [17] for solving the Boltzmann equation. BoltzTraP code calculates 

electronic transport coefficients depending on the chemical potential, i.e. charge carrier 

densities and temperature. Only an energy independent relaxation time is assumed so far. 

Transport coefficients for phonons are not calculated. BoltzTraP code relies on a Fourier 

expansion of the band energies where the space group symmetry is maintained by using 

star functions. The idea of the Fourier expansion is to use more star functions than band 

energies, but to constrain the fit so that the extrapolated energies are exactly equal to the 

calculated band-energies and use the additional freedom to minimize a roughness function 

and thereby suppress oscillations between the data points. Using the analytical 

representation of the bands it is then a reasonable simple procedure to calculate band-

structure dependent quantities as mentioned in Fig. A.6. 

 

Figure A.6:  Flowchart illustrating the calculation scheme used to calculate and store 

transport properties. 
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The input data needed to run BoltzTraP are the crystal structure and the electronic 

band structure on a uniform grid. More than 10 output files are being generated, they allow 

the user to check the results on a more detailed level. The traces of the conductivity tensors 

are written as a function of µ and T in the file called case.trace (See Tab. A.1). 

Table A.1: Output in case.trace. 

Column 1 2 3 4 5 6 7 8 9 10 

Quantity 

unit 

µ 

Ry 

T 

K 

N 

e/u.c. 

n 

e/u.c. 

S 

V/K 

    

1/(   ) 

RH 

m
3
/C 

   

W/( mKs) 

C 

J/(molK) 

  

m
3
/mol 

 

The program outputs the individual components of the conductivity tensors (files 

case.condtens and case.halltens). The first three columns are like in the case.trace file. In 

case.condtens next nine columns are the     components (3x3 tensor). These are followed 

by the nine Seebeck components and finally the nine    components. In case.halltens 27 

columns follow (The Hall tensor is 3x3x3 tensor). The coordinate-system used is defined 

so that the x-axis is parallel to the crystallographic a-axis (of the conventional cell). The y-

axis lies in the crystallographic ab plane and is orthogonal to the x-axis and the z-axis is 

orthogonal to the x and y axes. 

BoltzTraP is a computer code to calculate transport properties of materials from First 

Principles electronic band structures. 

 

A.3.2. Semi-classical Boltzmann theory  

In order to evaluate transport phenomena occurring at the electronic level, a 

microscopic model of the transport process is needed to assess the transport coefficients of 

materials. The basic transport equation of the current density j, in presence of an electrical 

field E and magnetic field B, and a temperature gradient ΔT, is, [17,19] 

                                                      

A semi-classical approach based on solving Boltzmann‟s equation, within the 

relaxation time approximation, is commonly used to describe the conductivity tensors. This 

model evaluates the electrical conductivity introducing a lifetime, τ, for an electron that 
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encapsulates all the different scattering mechanisms that it can undergo. The conductivity 

tensors can be written as: 

                                                                

and using the Levi-Civita tensor     :  

                
               

                                        

in terms of the group velocity and the inverse mass tensor: 

        
 

 
 
     
   

                                     

   
        

 

 
 
      

      
                           

The relaxation time, τ, in principle is dependent on both the band index and the k 

vector direction. However detailed studies of the direction dependence of τ have shown 

that, to a good approximation, τ is direction independent and that even in the 

superconducting cuprates, that have substantially anisotropic conduction and cell-axes, the 

τ is almost isotropic.  

The three main transport tensors depending on the temperature T and the Fermi 

level (or chemical potential) of the electrons μ are: 

         
 

 
∫      * 

        

  
+                                                   

         
 

   
∫           * 

        

  
+                                  

   
        

 

    
∫            * 

        

  
+                        

          
 

 
∫       * 

        

  
+                                                 

where κ
0
 is the electronic part of the thermal conductivity. The Seebeck and Hall 

coefficients can then easily be calculated:  

      (   )
  

                                                           



 

 

Appendix 

153 

     
  

   

  
      

    
              

                                    

 

A.4. Gibbs2 program 

A.4.1. Description and method 

Thermodynamic properties of solids are among the fundamental properties in 

condensed matter physics, materials science, and geophysics, where the ability of using 

materials in different devices and applications does not related only by the characteristic of 

matter, the dependence on the environment condition is very important to evaluate the 

efficiency of materials in given condition. Hence, the study of pressure and temperature 

dependence of thermodynamic properties is very helpful.  

Gibbs2 program [20-22] derives thermal behaviour out from energy versus volume 

data obtained from ab initio calculations.  Gibbs2 code does not give just pressure and 

temperature dependence of the thermodynamic properties, it could be also used to study 

the phase transitions of a solid. Gibbs2 reads one main input file (the case.ing) that contain 

the E(V) data and basic properties of the crystal (i.e., atomic mass), and generates the main 

output that have the same root. Fig. A.7 illustrate the calculation scheme used to calculate 

the Pressure P(GPa) and Temperature T(K) (those given by the user) dependence of 

thermodynamic properties. Among them: equilibrium volume V(bohr
3
), static energy Estatic 

(Hy), Gibbs free energy G  (kJ/mol), Isothermal bulk modulus B (GPa), Constant volume 

heat capacity CV (J/molK), Debye temperature      , Grüneisen parameter  , Volumetric 

thermal expansion coefficient α, Adiabatic bulk modulus Bs(GPa), Constant pressure heat 

capacity Cp (J/molK), Vibrational contribution to the Helmholtz free energy Fvib (kJ/mol), 

Vibrational contribution to the internal energy Uvib (kJ/mol), Vibrational contribution to the 

entropy Svib (J/molK). 
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Figure A.7: Flowchart illustrating the calculation scheme used to calculate and store 

thermodynamic properties. 

A.4.2. Thermal models 

The effect of pressure is accounted for in a simple way by adding a +PV term. The 

effect of temperature, however, requires a thermal model: a way of including the thermal 

contribution of the crystal degrees of freedom to the free energy. These contributions are 

dominated, in general, by the vibrational free energy, so the bulk of the gibbs2 program 

deals with how to incorporate the vibrational effects. Several thermal models with 

increasing complexity have been implemented [22]: 

 Static: no temperature effects. 

 Debye and Debye-Grüneisen: require the knowledge of the static energy. 

Optionally, the Poisson ratio and the Grüneisen gamma can also be input. 

 Debye-Einstein: in addition, requires the vibrational frequencies at the gamma 

point of the first Brillouin zone (1BZ). 

 Quasi-harmonic approximation (QHA): together with the static energy curve, 

either the phonon density of states or the frequencies on a grid sampling the 1BZ 

are required at each volume.  

A.4.3. Quasi-harmonic Debye Model 

It is known that all thermodynamic quantities of a crystal can be obtained from the 

vibrational density of states,     . This function gives the number of normal modes of 

vibration between   and     . Debye model starts from the hypothesis that the crystal 
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can be modelled as a continuous medium, such that normal vibrations are stationary elastic 

waves. With this condition, you can calculate wavenumber whose frequency is in the range 

        , providing the density of states corresponding to the model [23].  

Within the Debye model, the force constants are evaluated from a harmonic-

approximation consideration of the potential energy. This amounts that   , Debye 

temperature, is constant, and that it must be obtained from the elastic constants of the same 

geometry. However, this purely harmonic model lacks one of the most important 

experimental characteristics of the crystals, such as the thermal expansion. Indeed, since 

the temperature only influences the Helmholtz function through the vibrational term, and 

this in turn depends on the force constants (or elastic constants) that are being considered 

constant, there is no relation between temperature and geometry of the system (volume). 

To overcome this deficiency, it is necessary to introduce interdependence between T and V 

in the model. One possible treatment is the quasi-harmonic approximation, which assumes 

harmonic vibrations, at positions different from the equilibrium positions. Hence, vibration 

frequencies are dependent on the crystal geometry (volume), being evaluated as related to 

the corresponding second derivatives of the potential energy surface at off-equilibrium 

position. Clearly, under static conditions, these do not produce real frequencies of 

vibration, the vibration must be around a minimum. However, in the presence of external 

conditions, such as pressure, which act such as generalized forces on the crystal, the 

equilibrium geometry displaces up to the situation in which external forces cancel the 

gradient of the static potential energy surface [24]. 

Recently, thanks to the advent of very efficient methods of computing the 

vibrational dispersion relations of a crystal, The QHA considered as the highly popular 

method. The function that controlling the geometry and phase stability of a solid under a 

given pressure and temperature is the non-equilibrium Gibbs free energy, [20] 

                                                   

where x represents the internal geometry of the solid (i.e., the independent unit cell lengths 

and angles of this phase, and all the free crystallographic coordinates of the atoms in non-

fixed Wyckoff positions),            is the static energy that obtained directly from the 

ab-initio calculation (i.e., null temperature and absence of zero point vibrational energy) 

and    is the Helmholtz free energy, which is defined as : 
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where     and      are electronic excitations and ionic vibrations, respectively. Because of 

the difficulty of calculating   , a usual approach is restricting the internal variables to 

those resulting of a minimization of the static energy at any given volume (i.e.,          

             ), that transforms Eq. A.15 to:  

                          
                                    

The vibrational Helmholtz free energy,            can be written as: [25] 
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)]                          

where         is the debye integral, and is defined as: 
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where n represents the number of atoms per formula unit. Debye temperature   is 

described as: 
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where M is the mass of per formula unit,   Poisson ration and    the adiabatic bulk 

modulus that is approximated as: 
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Therefore, for the given pressure P and temperature T with respect to the volume V, the 

nonequilibrium Gibbs function merely depends on V(P,T) and can be solved as: 
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As a result, the heat capacity    (at constant volume), and the heat capacity    (at constant 

pressure), and the thermal expansion are given by: 
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where the Grüneisen parametercis is defined as: 
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First-principles density functional calculations were performed to investigate
the structural parameters, elastic moduli and related properties, electronic
band structure and optical properties of three LaOAgS-type barium silver
fluoride chalcogenides BaAgChF (Ch denotes the chalcogenides S, Se and Te).
The calculated structural parameters are in good accordance with the existing
experimental data. The single-crystal and polycrystal elastic moduli were
determined via the strain–stress technique. The investigated compounds show
a strong anisotropic behaviour of the structural and elastic parameters. The
calculated electronic band structure using the Tran–Blaha modified Becke–
Johnson potential reveals that the three considered systems are large direct
band gap semiconductors. The assignments of the energy band electronic
states and chemical bonding character were accomplished with the help of the
l-decomposed atomic densities of states diagrams. Frequency-dependent
polarized optical functions were computed for an energy range from 0 eV to
30 eV. The microscopic origin of the electronic states that is responsible for the
optical spectra structures were determined. The optical spectra exhibit a
considerable anisotropy. Several trends in the variation of the considered
physical properties with the atomic number Z of the chalcogenide Ch element
in the BaAgChF series are observed.

Key words: 1111-like systems, first-principles calculations, elastic constants,
electronic band structures, optical spectra

INTRODUCTION

The quaternary equiatomic LaOAgS-like sys-
tems, named also 1111 phases, form large family
members (more than 200 compounds) in the crystal
world.1–8 This large class of quaternary materials
exhibits some interesting physical properties, such

as thermoelectricity,6 transparency,9 degenerate
p-type electrical conductivity,5 ferromagnetic
response,10 ionic conductivity8 and medium-tem-
perature superconductivity.11,12 Owing to these
outstanding physical properties, these 1111-like
systems have various technological applications,
such as p-type transparent semiconductors,7,13

thermoelectrics,14 optoelectronic devices15 and
photovoltaics.16 The whole set of the 1111-like
systems can be classified into two main(Received November 26, 2016; accepted March 13, 2017)
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subgroups.3,12 The first one comprises metallic-like
phases, which attract the attention of researchers
for their superconductivity and magnetic proper-
ties.11,17 The second one comprises the 1111-like
systems exhibiting semiconducting behavior,
which possess some interesting optical proper-
ties.9,18–21 The 1111-like materials show a high
flexibility to a large variety of constituent ele-
ments. The 1111-like oxychalcogenides have
attracted the main attention of the researchers;
however, much less investigations have been per-
formed on the 1111-like chalcogenide fluorides.12,21

Recently, quaternary barium silver fluoride
chalcogenides BaAgChF (Ch = S and Se) have
been synthesized by Charkin et al.2 via solid-state
reactions of powdered BaCh, BaF2 and Ag2Ch (or
Ba, BaF2, Ag and Ch). Synthetic details, XRD
characterisations and structural properties of the
above-mentioned materials can be found in Ref. 2
These systems adopt the tetragonal P4/nmm (No.
129) crystalline structure, Z = 2.2 On the theoret-
ical side, Bannikov et al.12 calculated the elec-
tronic structures and optical spectra of BaAgSF
and BaAgSeF employing the full-potential lin-
earized augmented plane wave (FP-LAPW)
method within the Perdew–Burke–Ernzerhof ver-
sion of the generalized gradient approximation
(GGA-PBE).22 However, the GGA is well known by
its misjudgment of the energy band gaps for
semiconducting and insulating compounds. Typi-
cally, the energy band gap calculated through
density functional theory (DFT) within the stan-
dard GGA/LDA is underestimated by approxi-
mately 30–50% compared to the measured
one.23–25 Accurate determination of the energy
band dispersion and optical spectra of materials
are especially required for eventual applications in
the optoelectronic devices.26 This constitutes the
first objective of the present work. For technolog-
ical applications in the optoelectronic field, the
semiconductor materials are generally grown as
thin films on substrates. However, the lattice
mismatch and difference in thermal expansion
coefficients between the epitaxial layer and sub-
strate can produce large stresses in the grown
layer.27 Hence, it is of extreme importance to
estimate the elastic moduli that describe the
response of materials to external stresses. To the
best knowledge of the authors, there is no avail-
able data in the literature on the elastic constants
(Cijs) of the studied BaAgChF crystals. Therefore,
it becomes necessary and important to calculate
the Cijs of the BaAgChF compounds in order to
disclose their elastic properties. Prediction of the
elastic moduli and related properties of the
BaAgChF series constitutes the second objective
of the present work. A third objective of the
present work is the investigation of the aforemen-
tioned properties for the hypothetical compound
BaAgTeF, which is still completely unexplored to
the best of our knowledge.

COMPUTATIONAL DETAILS

Two complementary codes based on the density
functional theory were employed for a complete
investigation of the structural parameters, elastic
moduli, electronic properties and optical spectra of
the barium silver fluoride chalcogenides BaAgChF
(Ch = S, Se, Te).

The first part of the present work, namely, the
structural optimization and elastic constants, was
performed using the first-principles plane wave
pseudopotential (PW-PP) approach as implemented
in the CASTEP suite of programs.28 The exchange–
correlation functional was treated through the local
density approximation (LDA)29 and two different
parameterizations of the GGA, namely, the GGA-
PBE (termed also GGA96)22 and the GGA-PBEsol
(labelled also GGA08).30 The GGA08 functional has
been especially elaborated in order to improve the
exchange–correlation potential modelling in solids.
The Vanderbilt ultrasoft pseudopotentials31 were
used to model the interaction of the valence elec-
trons with the nucleus and frozen core electrons.
The electronic configurations for pseudo-atoms are
Ba: 5s25p66s2, Ag: 3d105s1, F: 2s22p5, S: 3s23p4, Se:
4s24p4 and Te: 5s25p4. A kinetic energy cut-off of
400 eV and a Monkhorst–Pack algorithm32 with a
12 9 12 9 5 k-point mesh to sample the Brillouin
zone (BZ) were used to ensure a total energy
convergence of 10�6 eV/atom. The following conver-
gence criteria: total energy variation smaller than
5.0 9 10�6 eV/atom, maximum force on any atom
smaller than 0.01 eV/Å�1, stress smaller than
0.02 GPa and atomic displacement smaller than
5.0 9 10�4 Å were used to perform the full geometry
optimization via the BFGS minimization algo-
rithm.33 The six single-crystal independent elastic
constants, namely C11, C33, C44, C66, C12 and C13,
were determined by means of a linear fitting of the
stress–strain data obtained from first-principles
calculations.28 The polycrystalline aggregate elastic
moduli, namely the bulk (B) and shear (G), were
derived from the single-crystal elastic constants via
the Voigt–Reuss–Hill approach.34

Generally, the common GGA and LDA yield
unsatisfactory band gap values compared to the
corresponding measured ones for semiconductors
and insulators. This is because the standard GGA/
LDA cannot describe accurately the excited elec-
tronic states. Some functionals beyond the GGA/
LDA are developed in order to improve the treat-
ment of the exchange–correlation potential and
consequently better describing the electronic struc-
tures of semiconductors and insulators. Among
these functionals, which yield an improved band
gap compared to the standard functionals, we find
the Tran–Blaha modified Becke–Johnson (TB-mBJ)
potential.35–37 The TB-mBJ functional yields accu-
rate fundamental band gap values for large families
of semiconductors and isolators.38 The predicted
band gap values using the TB-mBJ are almost
comparable with the experimental ones but with
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much less computing time compared to the sophis-
ticated hybrid functionals and GW method. For this
reason, the electronic and optical properties of the
examined systems were studied using the TB-mBJ
functional as implemented in the WIEN2k pack-
age39 in order to provide electronic structure data
more accurate than those reported previously.12 The
WIEN2k code39 is an implementation of the full-
potential linearized augmented plane wave (FP-
LAPW) formalism based on the DFT. It is worth to
note that the TB-mBJ potential functional is opti-
mized to reproduce the energy band gaps of semi-
conducting and isolating materials and cannot be
used for structural and elastic properties.6 For the
structural and elastic properties, we used the GGA-
PBEsol, which is well tested for solids.30

The complex dielectric function: eðxÞ ¼ e1ðxÞþ
ie2ðxÞ characterizes the linear response of matter
to incident radiation. The imaginary part (e2(x)) of
the dielectric function (e(x)) characterizes the
absorption of the incident light by matter and can
be computed by summing all allowed electronic
transitions from occupied to unoccupied states. The
real part (e1(x)) characterizes the dispersion of the
incident radiation when it traverses a medium and
can be derived from e2(x) via the Kramer–Kronig
transformation. The knowledge of both e1(x) and
e2(x) permits one to compute all other macroscopic
optical constants. To obtain accurate results for the
optical constants, a dense k-point set is necessary. A
24 9 24 9 11 k-point mesh was employed to calcu-
late the dipole matrix element, which is the key for
the optical spectra.

RESULTS AND DISCUSSION

Structural Properties

One conventional cell of the BaAgSF compound is
depicted in Fig. 1 as a prototype for the BaAgChF
series. As described elsewhere,2 the barium silver
fluoride chalcogenides BaAgChF (Ch = S, Se, Te)
crystalize in a tetragonal layered structure of the
LaOAgS-type with the space group P4/nmm and
may be schematically viewed as an alternating
stacking of quasi two-dimensional [BaF] and [AgCh]
layers along the c-axis.21 The Wyckoff positions of
the four inequivalent atomic positions in the
BaAgChF compounds are Ba: 2c (0.25, 0.25, zBa),
Ag: 2b (0.75, 0.25, 0.5), Ch: 2c (0.25, 0.25, zCh) and F:
2a (0.75, 0.25, 0), where zBa and zCh are the internal
z-coordinates of the Ba and chalcogen Ch atoms,
respectively. The calculated equilibrium unit-cell
parameters (a and c) and internal atomic coordi-
nates (zBa and zCh) for each considered compound
and the corresponding measured and previously
calculated values (when available) are collected in
Table I. Owing to the fact that the experiments
were performed at room temperature whereas our
results are predicted for zero temperature, one
would expect that correct calculated values for the
lattice parameters will be slightly smaller than

their corresponding measured ones. From Table I,
one can note that the GGA96-calculated (LDA-
calculated) lattice parameters of the three consid-
ered compounds are somewhat larger (somewhat
smaller) than the measured ones. This stems from
the well-known fact that the LDA tends to slightly
underestimate the interatomic distances, and the
GGA96 tends to slightly overestimate them. How-
ever, from Table I, one can appreciate that the
GGA08 calculated lattice parameters are practically
equal to the arithmetic averages of the GGA96 and
LDA-calculated values and are slightly smaller than
their corresponding experimental ones, as expected.
It is worth to note that the GGA0830 has been
developed specifically to improve the description of
the exchange–correlation effects in solids. The max-
imum discrepancy between the GGA08-calculated
structural parameters and the experiment is about
1.5% for the c parameter and less than 1% for the
remaining parameters, which demonstrates the
reliability of the obtained results. Therefore, the
GGA08 optimized structural parameters were
adopted for the calculations of the remaining inves-
tigated properties. The unit-cell parameters, a and
c, increase when the chalcogenide atom Ch is
substituted in the following sequence:

Fig. 1. The unit-cell crystalline structure of BaAgSF layered struc-
ture.
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S ! Se ! Te in the BaAgChF series. This is a
consequence of the increase of the Ch atomic radii

(R); R Sð Þ ¼ 1:09 Å <R Seð Þ ¼ 1:22 Å <R Teð Þ ¼ 1:42 Å.
One can appreciate that the calculated cohesive
energy and formation energy (see Table I) are
negative for each investigated compound, indicating
that all studied compounds (including the hypothet-
ical one; BaFAgTe) are chemically stable, confirm-
ing the fact that these compounds can be easily
synthesized.

Pressure dependence of the relative shrinkage of
the lattice parameters (a/a0 and c/c0) and unit-cell
volume (V/V0) and the internal atomic coordinates
(zBa and zCh) are visualized in Fig. 2 (V, a, c, zBa and
zCh are the values of the corresponding parameters at
a fixed pressure P, whereas V0, a0 and c0 are the
corresponding values at zero pressure). In Fig. 2, the
symbols represent the calculated results and solid
lines represent the fits of these results to a second-
order polynomial. One can appreciate that the

Table I. Calculated lattice parameters (a and c, in Å), internal atomic coordinates (zBa and zCh (Ch = S, Se
and Te), dimensionless), unit-cell volume (V, in (Å3)), cohesion energy (Ecoh, in eV), formation enthalpy (DH,
in eV) for the BaAgChF compounds, compared with available experimental and theoretical data

Property

BaAgSF BaAgSeF BaAgTeF

This work Expt.A OtherB This work Expt.A OtherB This work

a 4.2047a 4.2406 4.280 4.2982a 4.3449 4.345 4.5015a

4.1420b 4.2463b 4.4332b

4.2785c 4.3679c 4.5018c

4.2047d 4.3108d 4.5078d

c 9.1718a 9.3029 9.411 9.2690a 9.4018 9.558 9.5170a

9.0004b 9.0849b 9.2666b

9.3918c 9.5186c 9.5164c

9.2365d 9.3203d 9.5024d

V 162.15a 167.29 171.24a 177.49 192.85a

zBa 0.1676a 0.1665 0.1616a 0.1598 0.1472a

0.1693d 0.1624d 0.1494d

zCh 0.6743a 0.6760 0.6796a 0.6798 0.6859a

0.6747d 0.6809d 0.6846d

ECoh �5.0056a �4.8942a �4.6850a

DH �2.0536a �2.4271a �1.9476a

aPresent, using GGA08 (PP-PW).bPresent, using LDA.cPresent, using GGA-PBE.dPresent, using GGA08 (FP-LAPW).ARef. 2.BRef. 11.

Fig. 2. Pressure dependence of the lattice parameters (a and c) and internal coordinates (ZBa and ZCh) for BaAgSF, BaAgSeF and BaAgTeF.
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shrinkage along the c-axis is faster than that along the
a-axis, indicating that the chemical bonding between
the blocks [AgCh] and [BaF] along the c-axis are
weaker than those between atoms inside these blocks
along the a-axis. This demonstrates the chemical
bonding anisotropy of the studied materials.

The calculated primitive-cell volume (V) versus
pressure (P) and total energy (E) versus primitive-
cell volume were fitted to some different equations
of states (EOS) to determine the bulk modulus (B)
and its pressure derivative (B0) for the examined
systems. Figure 3 presents the fit curves of the
calculated E–V and P–V data to the corresponding
Birch–Murnaghan EOS40 as a prototype. The
obtained values of B and B0 from the fitting of
the calculated E–V and V–P data with the Birch–

Murnaghan,40 Murnaghan41 and Vinet42 EOSs are
collected in Table II. One can appreciate the good
consistency between the values of B obtained via
these different versions of EOS. It can be observed
that the value of B decreases in BaAgChF series
when going in the sequence BaAgSF !
BaAgSeF ! BaAgTeF. This is in agreement with
the known fact that the bulk modulus is inversely
proportional to the primitive-cell volume, i.e.,
B � V�1. The relatively small values of B of the
considered materials indicate that these com-
pounds possess a high compressibility. The com-
puted bulk modulus values from the EOS fits will
be employed later to examine the consistency and
accuracy of the present work results by comparing
them to the corresponding ones that will be

Fig. 3. The Young’s modulus 3-D-representation for BaAgSF (a), BaAgSeF (b) and BaAgTeF (c) and their cross-section in the xy and xz planes
(BaAgSF (d), BaAgSeF (e) and BaAgTeF (f)).
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derived from the single-crystal elastic parameters
(Cijs).

Elastic Constants and Related Properties

The calculated values of the six Cij elastic con-
stants, namely C11, C33, C44, C66, C12 and C13, and
the corresponding elastic compliances Sijs for the
title materials are listed in Table III. From Table III
data, the following conclusions can be made:

I The computed Cijs satisfy the well-known
mechanical stability restrictions for tetragonal
crystals.42 Therefore, the examined compounds
(including the hypothetical BaAgTeF com-
pound) are mechanically stable.

II The difference between the values of C11 and
C33 characterizes the elastic anisotropy in the

stacking plane (C11) and in the perpendicular
[001] direction (C33) in the studied systems. C11

is larger than C33, indicating that these crystals
are more resistant to compressional strains
along the a-axis than that along the c-axis. This
is in agreement with the fact that the bonding
between the [AgCh] and [BaF] layers, stacked
along the c-axis, is weaker than the intralayer
bonding in the ab plane, discussed above in the
‘‘Structural properties’’ section. On the other
hand, this result demonstrates that these
materials are elastically anisotropic. One can
also observe that C11 and C33 are larger than
C44 and C66, demonstrating that the resistance
of the examined materials against the shear
deformations is much weaker compared to that
against the compressional deformations.

Table II. The bulk modulus (B0, in GPa) and its pressure derivative (B0, dimensionless) as extracted from
Birch-Murnaghan (B.M.), Murnaghan (M.) and Vinet equation of states (EOS) for BaAgSF, BaAgSeF and
BaAgTeF

Systems Property

B.M. EOS fit M. EOS fit Vinet EOS fit

E–V EOS P–V EOS E–V EOS P–V EOS E–V EOS P–V EOS

BaAgSF B0 60.87 61.82 60.32 62.40 61.77 61.50
B0 4.70 4.49 4.59 4.17 4.085 4.67

BaAgSeF B0 55.37 56.36 54.78 56.94 55.67 56.04
B0 4.58 4.36 4.47 4.03 4.605 4.55

BaAgTeF B0 46.34 45.49 45.54 46.18 46.72 45.11
B0 4.51 4.734 4.44 4.31 4.529 4.97

Table III. Calculated single-crystal elastic constants (Cij, in GPa), Bulk modulus (B, in GPa), shear modulus
(G, in GPa), Young’s modulus (E, in GPa), Poisson’s coefficient (r, dimensionless), Pugh’s indicator (B/G),
longitudinal, transversal and average sound velocities (Vl, Vt and Vm, respectively, in m/s) and Debye
temperature (TD, in K) for BaAgSF, BaAgSeF and BaAgTeF. The subscript V, R and H stand to Voigt, Reuss
and Hill approximations. The compliance tensor S (Sij) was calculated as the inverse of the stiffness matrix C
(S = C21)

Property BaAgSF BaAgSeF BaAgTeF

C11 (S11) 111.4 (0.0121457) 105.7 (0.0133843) 90.94 (0.0165082
C33 (S33) 77.62 (0.021210) 66.59 (0.0269921) 51.67 (0.0382949)
C44 (S44) 34.82 (0.0287206) 33.24 (0.0300857) 21.07 (0.0497541)
C66 (S66) 23.31 (0.0428973) 22.19 (0.0450560) 19.91 (0.0502173)
C12 (S12) 34.66 (�0.0008780) 33.44 (�0.0004625) 31.12 (�0.0003468)
C13 (S13) 47.18 (�0.0068492) 45.33 (�0.0087960) 39.43 (�0.0123439)
BV 62.06 58.46 50.39
BR 61.16 56.65 47.24
BH 61.61 57.55 48.82
GV 30.02 27.99 20.65
GR 27.71 24.88 18.31
GH 28.87 26.43 19.48
BH/GH 2.134 2.177 2.506
E 74.90 68.77 51.57
r 0.2974 0.3008 0.3239
Vl 4062 3734 3329
Vt 2181 1993 1699
Vm 2435 2226 1904
TD 266.1 238.9 196.3
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III Theoretically, the macroscopic mechanical
properties of polycrystals, which are expressed
by B and G, can be evaluated from a proper
averaging of the Cijs via the Voigt–Reuss–Hill
approach.34 The Voigt and Reuss averages
represent the extreme limits of B and G and
according to Hill,34 the effective values of B and
G can be expressed by the arithmetic mean of
these two limits. The expressions of Voigt (V)
and Reuss (R) approximations of B (BR, BV) and
G (BR, GV) for a tetragonal structure can be
found in Refs. 43 and 44. The orientation-
averaged Young’s modulus E and the Poisson’s
ratio r can be calculated from B and G using
the well-known relations.26 The predicted val-
ues for the B, G, E and r moduli are listed in
Table IV. From Table IV data, the following
conclusions can be made:

A For each considered compound, the calcu-
lated B value from the single-crystal elas-
tic constants through the Voigt-Reuss-Hill
average is in good agreement with the
corresponding one derived from the EOS
fit. Therefore, this good agreement be-
tween the B values obtained via two
different computational methods consti-
tutes another proof of the reliability and
accuracy of the computed elastic moduli.

B The considered compounds have a rela-
tively small Young’s modulus (E) value.
This confirms the rather low stiffness of the
considered compounds. As E characterizes
the resistance of a solid against uniaxial
deformation, so it is related to C11 and C33

elastic constants, which explains the de-
crease of E when going from BaAgSF to
BaAgSeF to BaAgTeF in the same se-
quence as C11 and C33. The shear modulus
G decreases also when going from BaAgSF
to BaAgSeF to BaAgTeF in accordance
with the decrease of the C44.

C According to an empirical criterion by
Pugh,45 a solid is brittle (ductile) if the B/G
ratio is smaller (greater) than 1.75. TheB/G
ratios of all herein studied compounds are

greater than 1.75, suggesting their ductile
behaviour. A ductile material is resistant to
thermal shocks. The bulk modulus B is two
times the shear modulus G, indicating that
the shear deformation is easier to occur in
the considered compounds.

IV It is established that the anisotropy of the
coefficient of thermal expansion and elastic
anisotropy can cause microcracks in materi-
als.46 It is also accepted that the elastic
anisotropy can significantly influence the na-
noscale precursor textures in alloys.47 There-
fore, it becomes necessary and important to
estimate the elastic anisotropy extent in solids.
Some different indices have been established to
estimate the elastic anisotropy degree in crys-
tals. To evaluate the elastic anisotropy degree
in the considered BaAgChF compounds, two
different approaches were employed.

1. Ranganathan and Ostoja-Starzewski48

proposed a universal index AU, defined as
follows AU ¼ 5GV=GR þ BV=BR � 6, to
quantify the elastic anisotropy extent in a
crystal. An isotropic crystal is character-
ized by AU = 0. Any deviation of AU from
zero indicates the presence of an elastic
anisotropy and the degree of this deviation
gives the extent of this elastic anisotropy.
The computed values of the AU (AU = 0.43
for BaAgSF, AU = 0.66 for BaAgSeF and
AU = 0.71 for BaAgTeF) demonstrate that
the considered compounds exhibit a notice-
able elastic anisotropy and its degree
increases when going from BaAgSF to
BaAgSeF to BaAgTeF.

2. A more used tool to visualize the elastic
anisotropy extent of crystals is by plotting
three-dimensional (3-D) representations of
the directional dependence of their elastic
moduli. 3-D representations of the direc-
tional dependence of the Young’s modulus
E and compressibility b (b ¼ 1=B) were
used in the present work. For a tetragonal

Table IV. Calculated acoustic wave velocities (in m/s) propagating along the [100], [110] and [001] directions
in the BaAgSF, BaAgSeF and BaAgTeF systems

Direction Polarisation BaAgSF BaAgSeF BaAgTeF

[100] [100]: tl 4286 3984 3671
[010]: tt1 2395 2235 1767
[001]: tt2 1960 1826 1718

[001] [001]: tl 3577 3163 2767
[100]: tt1 1960 1826 1718
[001]: tt2 1960 1826 1718

[110] [110]: tl 3985 3713 3464
[1-10]: tt1 2395 2235 1767
[001]: tt2 2515 2329 2106
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crystal, the crystallographic direction
dependence of the Young’s modulus E and
compressibility b are expressed by the
following relations49:

1

E
¼ ðl41 þ l42Þs11 þ l43s33 þ l21l

2
2ð2s12 þ s66Þ

þ l23ð1 � l23Þð2s13 þ s44Þ
ð1Þ

b¼ ðs11 þ s12 þ s13Þþ l23ðs11 þ s12 � s13 � s33Þ:
ð2Þ

In Eqs. 1 and 2, Sijs are the elastic compli-
ance constants and l1, l2 and l3 are the
directional cosines with respect to the x-, y-
and z- axes, respectively. In a closed 3D-
representation, the distance from the origin
of the coordination system to the surface
gives the value of the represented modulus
in a given direction. Thus, for an isotropic
material, the representative closed surface
should exhibit a spherical shape. Any devi-
ation of the representative closed surface
from the spherical shape announces the
presence of an elastic anisotropy.50 From
Figs. 3 and 4, one can appreciate that the
shape of the 3D-closed surfaces for E and b
are considerably different from the spherical
shape, suggesting a strong elastic aniso-
tropy of the examined materials. The cross-
sections of the 3D-closed surface of the E
modulus in the xy and xz planes are also
represented in Fig. 3 in order to more
visualize the elastic anisotropy. These 2D-
representations clearly show the pro-
nounced elastic anisotropy of the considered
systems. The highest value of the Young’s
modulus (Emax) is realized for applied exter-
nal stress along the [100] and [010] crystal-
lographic directions, and the lowest value of
the Young’s modulus Emin is along the [001]
direction, which is consistent with the fact
that the a-axis is more resistant against
compression than the c-axis. The Emin is
approximately 57% Emax in BaAgSF, 49%
Emax in BaAgSeF and 43% Emax in BaAg-
TeF, which indicates that the elastic aniso-
tropy degree increases when going from
BaAgSF to BaAgSeF to BaAgTeF.

V One can calculate the Debye temperature (TD),
which is correlated with many important fun-
damental physical properties of solids, from the
computed B and G moduli as follows51:

TD ¼ h

kB

3n

4pVa

� �1=3

Vm: ð3Þ

Here, h is Plank’s constant, kB is Boltzmann’s
constant, n is the number of atoms in the

molecule, and Va is the atomic volume. The
average sound wave velocity Vm in a polycrys-
talline material is given by52:

Fig. 4. The compressibility (b) 3D-representation for BaAgSF (a),
BaAgSeF (b) and BaFAgTe (c).
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Vm ¼ 1

3
2V�3

t þ V�3
l

� �� ��1=3

: ð4Þ

In Eq. 4, Vl and Vt are the transverse and
longitudinal elastic waves in the polycrystalline
phase of material, respectively, which are given
by the Navier’s equations:

Vl ¼
3Bþ 4G

3q

� �1=2

; Vt ¼
G

q

� �1=2

: ð5Þ

Here, q is the mass density. Calculated TD and
average sound wave velocities (Vl, Vt and Vm)
values are listed in Table III. The TD value
decreases when going from BaAgSF to BaAg-
SeF to BaAgTeF, which is an accordance with
the decreases of the stiffness in the same
sequence. This might indicate a decrease of
the thermal conductivity when going from
BaAgSF to BaAgSeF to BaAgTeF.

VI The sound wave velocities are related to some
physical properties of crystals such as the
thermal conductivity. In a tetragonal crystal,
the elastic wave velocities propagating along
the [100], [001] and [110] crystallographic
directions can be calculated using the
known relationships given in Ref. 53. The
obtained elastic wave velocities are gathered
in Table IV. The longitudinal wave velocities
are larger than the transverse ones and both
the longitudinal and transverse waves
decrease when going from BaAgSF to BaAgSeF
to BaAgTeF. This can be explained by the
decease of the single-crystal elastic constants
in the same sequence; the elastic wave veloc-
ities are proportional to the square root of the
corresponding elastic constants.

Electronic Band Dispersion and Density
of States

Figure 5 shows the calculated GGA08 and TB-mBJ
energy band dispersions along some high symmetry
lines of the BZ for the BaAgSF, BaAgSeF and
BaAgTeF systems at the equilibrium lattice param-
eters obtained using the FP-LAPW method with the
GGA08 (see Table I). Both the upper valence band
maximum (UVBMa) and lower conduction band
minimum (LCBMi) occur at the center of the BZ,
demonstrating that these compounds are direct
energy band gap (C–C) semiconductors. For all
investigated compounds, the overall profile of the
GGA08 band structure is almost similar to that of
the TB-mBJ one. There is an important quantitative
difference between the TB-mBJ band gap and the
GGA08 one; the obtained TB-mBJ (GGA08) funda-
mental band gap is 2.89 eV (1.47 eV) for BaAgSF,
2.66 eV (1.22 eV) for BaAgSeF and 2.56 eV (1.56 eV)
for BaAgTeF. The TB-mBJ displaces the conduction
bands toward higher energies with respect to the top

of the valence band, so, the TB-mBJ band gap is
larger than the GGA08 one. No experimental data
concerning the band gaps of the title materials are
available in the literature to be compared with our
results. Our calculated GGA08 band gaps for
BaAgSF and BaAgSeF are in acceptable agreement
with the available theoretical results,12 which were
performed using the FP-LAPW method within the
GGA96. If we bear in mind that the GGA DFT band
gap is approximately 30–50% smaller than the
corresponding experimental one,23–25 we can expect
that the real band gaps of the considered materials
will be larger than those obtained using the GGA08.
From Table V, one can appreciate that the TB-mBJ
approach improves the band gap values of BaAgSF,
BaAgSeF and BaAgTeF by approximately 49%, 54%,
and 40%, respectively, compared to the correspond-
ing GGA08 ones. Therefore, the calculated TB-mBJ
band gaps might be expected to be in reasonable
agreement with the real values. The TB-mBJ band
gaps for the BaAgChF series, expanding in the
energy interval from 2.6 eV to 2.9 eV, are compara-
ble with the measured gaps for the isostructural
SrCuSF (3.0 eV) and SrCuSeF (2.7 eV).54 Owing to
the advantages of the TB-mBJ, we report and
discuss only the results obtained within the TB-
mBJ potential in the rest of the manuscript. One can
note that the overall profile of the band structure
dispersions of the BaAgSF and BaAgSeF compounds
are practically identical, whereas that of BaAgTeF is
somewhat different; for example, the lower valence
band group in BaAgSF and BaAgSeF (Fig. 5) splits
into two distinct narrow band groups in BaAgTeF.
The width of the near-Fermi level valence band
group increases slightly when the Ch chalcogen
atom in the BaAgChF series is replaced in the
following sequence: S fi Se fi Te, indicating a
slight increase of the ionic character. One can
observe narrow quasi-flat valence bands along the
C–Z, A–M and R–X lines of the BZ, which correspond
to the crystallographic c-axis, and relatively broad
large dispersive valence bands along the Z–A, C–M,
Z–R and C–X directions of the BZ, which are in the
ab plane of the crystal. These behaviours demon-
strate the high anisotropy of the chemical bonding in
the layered BaAgChF systems; the chemical bonding
inside the blocks [BaF] and [AgCh] differs consider-
ably from the inter-adjacent-blocks bonding. Similar
behaviours of the high-energy valence bands, i.e.,
the coexistence of quasi-flat and relatively high
dispersive valence bands, were reported for other
1111-like oxychalcogenides and fluorochalco-
genides.5,6,12,21,54 These features are considered as
favourable indicators of high p-type conductivity,
promoting a relatively high hole mobility and a high
hole concentration.12,54

The total (TDOS) and atomic-resolved l-projected
(PDOS) densities of electronic states diagrams help
to assign the electronic states of the electronic
energy bands. The calculated TDOS and PDOS
diagrams for the BaAgSF, BaAgSeF and BaAgTeF
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Fig. 5. GGA-PBEsol (a) and TB-mBJ (b) band structures of the BaAgSF, BaAgSeF and BaAgTeF systems along some high-symmetry lines in
the Brillouin zone. The energy zero level corresponds to the Fermi level.

Table V. Calculated energy band gaps (Eg, in eV) within the GGA-PBEsol (GGA08) and TB-mBJ
approximations compared to the available theoretical results

System Eg (C–Z) Eg (C–A) Eg (C–M) Eg (C–C) Eg (C–R) Eg (C–X)

BaFAgS
GGA08a 2.002 3.674 3.427 1.516 2.742 2.605
GGA08b 1.939 3.700 3.477 1.468 2.800 2.571
TB-mBJb 3.170 4.791 4.591 2.886 3.774 3.651
Other12 1.387

BaFAgSe
GGA08a 1.912 3.390 3.053 1.323 2.554 2.414
GGA08b 1.875 3.397 3.082 1.218 2.379 2.515
TB-mBJb 3.025 4.364 4.099 2.663 3.486 3.351
Other12 1.278

BaFAgTe
GGA08a 1.999 2.989 2.438 1.534 2.346 2.202
GGA08b 1.974 3.070 2.551 1.557 2.364 2.227
TB-mBJb 2.774 3.818 3.378 2.595 3.170 3.021

aPresent, using CASTEP code.bPresent, using WIEN2K code.
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compounds are depicted in Fig. 6. Three narrow
band valence groups centred at about ��54, ��26
and ��24 eV, which are not shown in Fig. 6 for
clarity of the diagrams, are mainly formed from the
4p-Ag, 5s-Ba and 2s-F states, respectively. The
lower valence band group (Fig. 6) in the BaAgSF
and BaAgSeF DOS spectra exhibits three well-
distinguished peaks that are made predominantly
of the 5p-Ba and ns-chalcogen states (n = 3 for S,
n = 4 for Se and n = 5 for Te) with a small

contribution from the 2p-F states. In the BaAgTeF
DOS diagram, this valence band group splits into
two groups clearly separated by an energy gap
because the 5s-Te states are located somewhat
higher in energy than the 5p-Ba ones. The upper
valence band group (UVB), which is extended from
approximately �5.5 eV to Fermi level EF, is formed
of two main structures. The lower structure of the
UVB, ranging from approximately �5.5 eV to
�2.0 eV, is formed from the 4d-Ag, 2p-F and np-

Fig. 6. The total and atomic-resolved l-decomposed densities of states (TDOS and PDOS, respectively) for the BaAgSF, BaAgSeF and
BaAgTeF systems. The energy zero level corresponds to the Fermi level.

Fig. 7. The frequency-dependent imaginary (e2ðxÞ (b)) and real (e1ðxÞ (a)) parts of the dielectric function tensor components for the BaAgSF,
BaAgSeF and BaAgTeF systems.
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Ch states and the higher one, which is extended
approximately from �2.0 eV to EF, is attributed to
the 4d-Ag states well mixed with np-Ch states
(n = 3 for S, n = 4 for Se and n = 5 for Te). The
hybridization of the np-Ch and 4d-Ag states sug-
gests that the Ch-Ag bonds inside the blocks
[AgCh] are mainly covalent. On the other hand,

from the PDOS diagrams, one can easily observe
the weak contribution of the Ba states in the UVB
group, whereas a consistent contribution of the
fluorine states is localised in the bottom of this
valence band group. Consequently, the overlapping
of Ba and F states is quite weak, indicating that the
Ba-F chemical bonding inside the [BaF] blocks is
mainly of ionic character. The bottom of the
conduction band is attributed to an admixture of
the ns-Ch, 4sp-Ag and 5sd-Ba states.

Optical Properties

The calculated frequency-dependent dispersive
(e1ðxÞ) and absorptive (e2ðxÞ) parts of the dielectric
function (eðxÞ) for the BaAgSF, BaAgSeF and
BaAgTeF systems are depicted in Fig. 7. Due to
the tetragonal symmetry of the title materials, only
the diagonal dielectric tensor components, namely
exx ¼ eyy and ezz, are non-zero. The dielectric tensor
component exxðeyyÞ corresponds to the electric fields

E
!

of the incident radiation parallel to the x-axis (y-

axis) (i.e., ~E==~a (~E==~b)) and to the z-axis (i.e., ~E==~c).
In view of Fig. 7, one can observe the following
features: First, there are noticeable differences
between the magnitudes, shapes and locations of

the main peaks in the exx2 ðxÞ(~E==~a) and ezz2 ðxÞ (~E==~c),
revealing a strong anisotropy of the dielectric
response of the examined systems to the incident
radiation. Second, the overall shape of the dielectric

Fig. 8. Decomposition of the imaginary part of the dielectric function
exx2 ðxÞ into band-to-band contribution (upper panel a) and the tran-
sition energy band structure (lower panel b) for BaAgSF. The
counting of the bands is down (up) from the top (bottom) of the
valence (conduction) band.

Table VI. Peak positions of the exx
2
ðxÞ spectrum together with the dominant interband transition

contributions to every peak and their location in the Brillouin zone for the BaFAgS compound

Optical structures Dominant interband transition contributions

Structure Peak position Transition Region Energy (eV)

E1 3.21 V2–C1 Z, M–C, Z–R, X–C 3.21
E2 4.39 V1–C1 Z, M–C, Z–R, X–C 3.19

V1–C2 Z–A, M–C 4.30
V1–C2 Z–A, M–C 4.29

E3 4.86 V2–C2 Z–A, M–C 4.85
E4 5.56 V4–C3 Z–A, M–C, X–C 5.51

V4–C2 Z–A, M–C 5.57
V2–C4 Z–A, M–C, Z–R 5.51
V1–C4 Z–A, M–C, Z–R 5.53

E5 6.00 V2–C5 Z–A, M–C, C–Z, Z–R, X–C 5.94
E6 6.54 V6–C1 Z–A, A–M, M–C, Z–R, X–C 6.64

V5–C2 Z–A, A–M, M–C, Z–R, X–C 6.60
V4–C5 Z–R, R–X, X–C 6.49
V1–C6 Z–A, M–C, Z–R, R–X, X–C 6.56
V1–C8 Z–A, M–C, C–Z, Z–R, X–C 6.47

E7 7.66 V16–C1 Z–A, M–C, Z–R, X–C 7.78
V15–C1 Z–A, M–C, Z–R, X–C 7.68
V14–C1 Z–A, M–C, Z–R, R–X, X–C 7.63
V13–C1 Z–A, M–C, Z–R, R–X 7.62
V5–C3 Z–A, M–C, Z–R, X–C 7.79

E8 9.05 V10–C5 Z–A, M–C, Z–R, X–C 8.88
E9 9.35 V1–C16 Z–A, M–C, Z–R, X–C 9.31
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Table VII. Peak positions of the ezz
2
ðxÞ spectrum together with the dominant interband transition

contributions to every peak and their location in the Brillouin zone for the BaFAgS compound

Optical structures Dominant interband transition contributions

Structure Peak position Transition Region Energy (eV)

E1 7.69 V2–C1 Z–A, M–C, Z–R, X–C 4.17
V3–C2 Z–A, M–C, Z–R, X–C 4.04

E2 4.78 V1–C2 Z–A, M–C, Z–R, X–C 4.90
V1–C3 Z–A, M–C 4.70
V4–C4 Z–A, M–C, Z–R, X–C 4.78

E3 5.86 V1–C5 Z–A, M–C 5.94
V1–C6 Z–A, M–C, C–Z, Z–R, X–C 5.79
V2–C5 Z–R, X–C 5.86
V4–C5 Z–A, M–C, C–Z, Z–R, X–C 5.90

E4 6.46 V2–C7 M–C, Z–R, X– C 6.47
V3–C6 Z–A, M–C, C–Z, Z–R, X–C 6.43
V3–C5 Z–A, M–C, Z–R, X– C 6.42
V3–C7 Z–A, M–C, C–Z, Z–R, X–C 6.41
V7–C4 Z–A, Z–R 6.45

E5 6.87 V6–C2 Z–A, M–C 6.87
V2–C8 Z–A, M–C 6.79
V3–C8 Z–A, M–C, Z–R, X–C 7.12
V1–C9 Z–A, M–C, Z–R, X–C 6.74
V15–C1 Z–A, M–C, Z, Z–R 6.87

E6 7.69 V14–C1 Z–A, M–C, Z–R, X 7.64
V13–C1 Z–A, M–C, Z–R, R–X 7.63
V5–C4 Z–A, M–C, Z–R, R–X 7.73
V5–C6 Z–A, M–C, Z–R, X–C 7.82

E7 8.64 V12–C3 Z–A, M–C, Z–R, X–C 8.65
E8 9.35 Z–A 9.29

Table VIII. Peak positions of the exx
2
ðxÞ spectrum together with the dominant interband transition

contributions to every peak and their location in the Brillouin zone for the BaFAgSe

Optical structures Dominant interband transition contributions

Structure Peak position Transition Region Energy (eV)

E1 4.15 V3–C1 Z–A, M–C, Z–R, R–X, X–C 4.19
V2–C2 Z–A, M–C, Z–R, R–X, X–C 4.11
V1–C1 Z–A, M–C, Z, R–X 4.13

E2 4.59 V3–C2 Z–A, M–C, Z–R, X–C 4.65
V2–C2 Z–A, M–C, Z–R 4.57

E3 5.21 V4–C2 Z–A, M–C, Z–R 5.20
V4–C3 Z–A, C–Z, Z–R, X–C 5.16
V2–C3 Z–A, M–C 5.19
V1–C4 Z–A, M–C, Z–R, X–C 5.18

E4 5.65 V4–C4 Z–A, M–C, Z–R, X–C 5.60
V3–C5 Z–A, Z–R, X–C 5.71
V2–C5 Z–A, M–C, C–Z, Z–R, X–C 5.62
V1–C3 Z–A, M–C 5.64

E5 6.25 V5–C2 Z–A, M–C, Z–R, X–C 6.31
V4–C5 Z–R, R–X, X 6.27
V1–C6 Z–A, M– C, Z–R, R–X, X–C 6.24

E6 6.98 V5–C5 Z–A, M–C, C–Z, Z–R, X–C 6.95
V3–C3 Z–A, M–C 6.98

E7 7.55 V15–C2 R–X, X–C 7.59
V14–C1 Z–A, M–C, Z–R, R–X, X–C 7.60
V13–C1 Z–A, M–C, Z–R, R–X 7.49

E8 8.99 V13–C3 Z–A, A–M, M–C 9.00
V1–C15 Z–A, M–C, Z–R, X–C 9.01
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Table IX. Peak positions of the ezz
2
ðxÞ spectrum together with the dominant interband transition

contributions to every peak and their location in the Brillouin zone for the BaFAgSe compound

Optical structures Dominant interband transition contributions

Structure Peak position Transition Region Energy (eV)

E1 3.99 V1–C2 Z–A, M–C, Z–R, X–C 4.00
V2–C1 Z–A, M–C, Z–R, X–C 4.03

E2 4.03 V3–C2 Z–A, M–C, Z–R, X–C 4.62
V1–C2 Z–A, M–C 4.42
V2–C3 Z–A, M–C, Z–R, X–C 4.44

E3 5.43 V2–C4 Z–A, M–C, Z–R 5.41
V2–C5 Z–A 5.54
V1–C5 Z–A, Z–R, X–C 5.40
V1–C6 Z–R, X–C 5.45

E4 6.19 V3–C4 Z–A, M–C 6.22
V3–C5 Z–A, M–C, Z–R, R, X–C 6.22
V3–C6 Z–A, M–C, Z–R, R, X–C 6.21
V3–C7 M–C, Z–R 6.19

E5 6.49 V6–C2 Z–A, M–C 6.76
V3–C8 Z–A, M–C, Z–R, X–C 6.44
V2–C8 Z–A, M–C, Z–R, X–C 6.48
V1–C9 Z–A, M–C, Z–R, X–C 6.48

E6 6.82 V7–C4 Z–A, M–C, Z–R, X–C 6.78
V2–C9 Z–A, M– C, Z–R, X– C 6.76
V1–C10 Z–A, M–C, Z–R, X–C 6.84

E7 7.55 V15–C1 Z–A, M–C, Z–R, R–X, X–C 7.60
V14–C1 Z–A, M–C, Z–R, R–X, X–C 7.58
V13–C1 Z–A, M–C, Z–R, R–X 7.54
V5–C4 Z–A, Z–R, R–X, X–C 7.49

E8 8.37 V4–C12 Z–A, Z–R, X–C 8.39
E9 8.88 V12–C3 Z–A, M–C, Z–R 8.95

V11–C3 Z–A, M–C 8.87
V11–C5 Z–A, M–C, Z–R, R–X, X–C 8.95
V3–C16 Z–A, M–C, Z–R, X–C 8.89

E10 9.21 V5–C11 Z–A, M–C, Z–R, X–C 9.23

Table X. Peak positions of the exx
2
ðxÞ spectrum together with the dominant interband transition

contributions to every peak and their location in the Brillouin zone for the BaFAgTe compound

Optical structures Dominant interband transition contributions

Structure Peak position Transition Region Energy (eV)

E1 3.88 V2–C1 Z–A, M–C, Z–R, X–C 3.81
V2–C2 Z–A, M–C, Z–R, X–C 3.89
V1–C2 Z–A, M–C 3.86
V1–C1 Z–A, M–C 3.86

E2 4.50 V4–C3 Z–R, X–C 4.45
V4–C2 Z–A, M–C, Z–R, X–C 4.51
V3–C3 C–Z 4.44
V2–C3 Z–A, M–C 4.50
V1–C4 Z–A, M–C, Z–R, X–C 4.55

E3 5.05 V3–C4 Z–A, M–C, Z–R, X–C 4.99
V3–C3 Z–A, M–C 5.04
V2–C3 Z–A, M–C 5.04
V2–C5 Z–A, M–C, Z–R, X–C 5.13
V1–C7 M–C, Z–R, X–C 5.13

E4 7.74 V16–C1 Z–A, M–C, Z–R, X–C 7.83
V16–C2 Z–A, M–C, C–Z, Z–R, X–C 7.78
V15–C1 Z–A, M–C, Z–R, X–C 7.78
V15–C2 Z–A, M–C, Z–R, X–C 7.72
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function spectra of BaAgSF and BaAgSeF are
almost similar, whereas that of BaAgTeF is some-
what different from them. This difference can be
attributed to the fact that the energy band disper-
sion of BaAgTeF is somewhat different from those of
BaAgSF and BaAgSeF. Third, the intensity of the
peaks increases when we move in the following
sequence: BaAgSF ! BaAgSeF ! BaAgTeF. The
exx2 ðxÞ and ezz2 ðxÞ spectra start at the same energy
(E0), indicating an isotropic energy gap. However,
exx2 ðxÞ and ezz2 ðxÞ grow with different rates. To access
the electronic transitions that are responsible for
the peaks observed in the e2ðxÞ spectra, the e2ðxÞ
spectrum is decomposed to the individual contribu-
tion from each electronic transition from the

occupied valence band Vi to the unoccupied conduc-
tion band Cj, i.e., determination of the contribution
of each allowed electronic transition (Vi ! Cj) to the
e2ðxÞ spectrum. To determine which electronic
states of the bands Vi and Cj are involved in the
Vi ! Cj transition, the electronic transition ener-
gies EijðkÞ (EijðkÞ ¼ ECj

ðkÞ � EVi
ðkÞ) are plotted

along the high-symmetry directions of the BZ. For
sake of brevity, only decomposition of the exx2 ðxÞ
spectrum of BaAgSF to individual contributions of
the electronic transitions (Vi ! Cj) and the corre-
sponding transition energy EijðkÞ dispersion are
shown in Fig. 8, as representative for the other
studied systems. The first threshold energy E0 of
e2ðxÞ, termed also the fundamental absorption edge,

Table XI. Peak positions of the ezz
2
ðxÞ spectrum together with the dominant interband transition

contributions to every peak and their location in the Brillouin zone for the BaFAgTe compound

Optical structures Dominant interband transition contributions

Structure Peak position Transition Region Energy (eV)

E1 4.15 V4–C1 M–C, C–Z, Z–R, X–C 4.07
V2–C2 Z–A, M–C 4.13
V2–C1 Z–A, M–C 4.15
V2–C3 Z–A, M–C, Z–R, X–C 4.18
V1–C2 Z–A, M–C 4.14

E2 4.59 V4–C3 C–Z, Z–R, X–C 4.55
V3–C3 Z–A, M–C 4.60
V1–C5 Z–R, X–C 4.53
V1–C4 Z–A, M–C, Z–R 4.60
V1–C2 Z–A, M–C 4.56

E3 5.05 V2–C6 Z–A, M–C, C–Z, Z–R, X–C 5.06
V2–C1 Z–A, M–C 5.08
V1–C5 Z–A, M–C, Z–R, X–C 5.06

E4 5.51 V3–C6 Z–A, M– C, C –Z, Z–R, R–X, X– C 5.47
V3–C3 Z–A, M–C 5.50
V3–C7 Z–A, M–C, Z–R, X–C 5.49
V2–C7 Z–A, M–C, Z–R, X–C 5.51
V2–C8 Z–A, M–C, C–Z, Z–R, X–C 5.57

E5 6.16 V3–C3 Z–A, M–C 6.19
V3–C4 Z–A, M–C 6.19
V2–C9 Z–A, M–C, Z–R, R–X, X–C 6.15

E6 7.52 V15–C1 Z–A, M–C, Z–R, R, X–C 7.48
V14–C2 A–M, M–C, C–Z, Z–R, X–C 7.63
V14–C1 Z–A, A–M, M–C, Z–R, X–C 7.47
V13–C1 Z–A, A–M, M–C, Z–R, X–C 7.56
V13–C2 A–M, M–C, C–Z, Z–R, X–C 7.47

Table XII. Calculated static dielectric constant e1ð0Þ and, static refractive index and static optical reflectivity
for BaFAgS, BaFAgSe and BaFAgTe as calculated using the TB-mBJ for two different polarizations of the
incident radiations, compared with the available data in the scientific literature

System exx1 ð0Þ ezz1 ð0Þ nxxð0Þ nzzð0Þ Rxxð0Þ Rzzð0Þ

BaFAgS 4.53 4.33 2.13 2.08 13.0 12.0
5.2212 4.8912

BaFAgSe 5.03 4.74 2.24 2.17 14.6 13.6
BaFAgTe 5.85 5.37 2.42 2.32 17.2 15.8
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is originated from the direct electronic transition
between the topmost valence band V1 and the
bottommost conduction band C1 (V1 ! C1). It is to
be noted that the bands counting is up (down) from
the bottommost (topmost) of the conduction (va-
lence) band. The locations of the major peaks Ei

(i = 1, 2…etc.) and the origin of the dominant optical
transitions in an energy range up to 10 eV are listed
in Tables VI, VII, VIII, IX, X, and XI. The obtained
electronic static dielectric constant eeð0Þ ¼ e1

ðx ! 0Þ, which is a parameter of fundamental
importance in many aspects of material properties,
is given in Table XII. Our results are in agreement
with the available theoretical results for BaAgSF.12

The e1ð0Þ increases in the following sequence:
BaAgSF ! BaAgSeF ! BaAgTeF and the exx

1

ðx ! 0Þ component is larger than the ezz
1
ðx ! 0Þ

component. The e1ð0Þ value increases when the
energy gap Eg decreases. This is in accordance with

the Penn model55: e1ð0Þ � 1 þ ð�hxp=EgÞ2; e1ð0Þ is
inversely proportional with Eg, i.e., smaller Eg

yields larger e1ð0Þ.
Figure 9 presents the frequency-dependent coef-

ficient of absorption aðxÞ, index of refraction nðxÞ,
coefficient of extinction kðxÞ, reflectivity RðxÞ and
electron energy-loss function LðxÞ for incident

radiation polarized both along the a-axis (~E==~a)

and c-axis (~E==~c) in a wider spectral region up to

30 eV. The optical spectra for ~E==~a are quite

different from those for ~E==~c, implying the optical

anisotropy of these systems. The optical absorption
coefficient aðxÞ is an important criterion to judge if
a material could have an eventual application in
the photoelectric field. The examined compounds
exhibit a high coefficient of absorption (higher
than 104 cm�1) in a large energy range extending
from the absorption edge Eg (from �2.6 eV to
2.9 eV) up to 30 eV, suggesting that they could be
suitable absorber layers for photovoltaic applica-
tions. Obviously, these materials with a band gap
higher than 2.6 eV may absorb the blue and violet
rays of the visible spectrum. The calculated
refractive index spectra for the three examined
materials are given in Fig. 9b. The refractive
index reaches its maximum in the near ultra-
violet (�3.8–5 eV). One can note the refractive
index value increases when going from BaAgSF to
BaAgSeF to BaAgTeF, which is in accordance with
the usual trend of the refractive index, i.e., the
refractive index increases when the band gap
decreases. The calculated static refractive index
(nð0Þ), which is a very important physical quantity
for semiconductors, is listed in Table XII. From
Fig. 9d, one can observe that the title systems
exhibit a weak reflectivity at low energies and the
magnitude of the reflectivity increases slightly
when going from BaAgSF to BaAgSeF to BaAg-
TeF. Calculated static reflectivity coefficients
(Rð0Þ) of the three studied systems are given in
Table XII. The energy loss-function LðxÞ spectra
are depicted in Fig. 9e.

Fig. 9. Frequency-dependent absorption coefficient (aðxÞ (a)), refractive index (nðxÞ(b)), extinction coefficient (kðxÞ (c)), optical reflectivity
(RðxÞ(d)) and energy-loss function (LðxÞ(e)) spectra for BaAgSF, BaAgSeF and BaAgTeF systems for two different light polarizations as
calculated using the TB-mBJ potential.
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CONCLUSIONS

Structural, elastic, electronic and optical proper-
ties of three LaOAgS-type silver fluoride chalco-
genides: BaAgSF, BaAgSeF and BaAgTeF were
studied in the present work using first-principles
density theory calculations. Successful determina-
tion of the equilibrium structural parameters of the
BaAgChF materials using pseudopotential plane-
wave density functional theory reveals that an
increase of the atomic number of the Ch chalco-
genide element leads to an increase of the lattice
constants and a decrease of the bulk modulus. The
a-axis is more resistant to compressional deforma-
tions than the c-axis. After that, single-crystal and
polycrystalline elastic moduli and related properties
were numerically estimated. The obtained results
reveal that the considered materials can be classi-
fied as soft materials with ductile character and a
considerable elastic anisotropy.

DFT-based FP-LAPW method within the GGA08
and TB-mBJ functionals was used to perform the
band structure and density of states diagrams. The
examined materials are found to be wide direct band
gap C–C semiconductors, from �2.6 eV to �2.9 eV.
An increase of the atomic number Z of the chalcogen
element causes a decrease of the band gap value.
The bottommost of the conduction band is con-
tributed mainly by np-Ch, 4p-Ag and 5d-Ba states.
The topmost valence band is almost dispersionless
and is contributed by the hybridized np-Ch and 4d-
Ag states. The inter-atomic chemical bonding inside
the [AgCh] blocks is of covalent character while that
inside the [BaF] ones is of ionic character. Based on
the accurate band structure obtained using TB-
mBJ, the absorptive and dispersive parts of the
dielectric function, absorption coefficient, refractive
index, extinction coefficient, optical reflectivity and
energy-loss function spectra were calculated for the
[100] and [001] polarized incident radiation in a
wide energy range up to 30 eV. The calculated
optical spectra show a noticeable anisotropy. An
increase of the atomic number of the Ch element
leads to an increase of the magnitude of the peaks of
the optical spectra. The zero-frequency limit e1ð0Þ
increases when the energy band gap value
decreases. The origins of the observed structures
in the optical spectra are assigned in terms of the
calculated energy band structure.
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a b s t r a c t

By using the full potential linearized augmented plane wave (FP-LAPW) method, the electronic prop-
erties of the layered BaAgChF (Ch¼ S, Se, Te) were investigated. Both the standard GGA and the TB-mBJ
potential were used to model the exchange-correlation potential. To evaluate the spin-orbit coupling
(SOC) effect, both the scalar relativistic and full relativistic calculations were performed. The SOC effect is
found to be not negligible in the title compounds. The FP-LAPW band structure and the semi-classical
Boltzmann transport theory were used to study the charge-carrier concentration and temperature de-
pendences of the thermoelectric parameters, including Seebeck coefficient, electrical conductivity,
thermal conductivity and figure of merit. Our results show that the values of the thermoelectric pa-
rameters of the p-type compounds are larger than that of the n-type ones. The optimal p-type doping
concentrations and temperatures that yield the maximum values of the figure of merit of the title
compounds were calculated. These are important parameters to guide experimental works.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The history of thermoelectricity backs to 1821, when Seebeck
observed that if two dissimilar materials (copper and bismuth) are
joined together and the junctions are held at different tempera-
tures, T and Tþ DT, a voltage difference, DV, proportional to the
temperature difference DT [1,2], i.e., DV ¼ �SDT, is developed. The
ratio of the developed voltage to the temperature gradient, S ¼
�DV=DT, which is related to an intrinsic property of materials, is
called Seebeck coefficient (also known as thermopower). Generally,
thermoelectricity, which is the direct conversion of heat into
electricity, is the term that indicates the physical phenomena
resulting from the motion of charge carriers under the action of
temperature gradient [1].

Recently, thermoelectric materials (TE) attract a heightened

interest because they would allow the fabrication of both efficient
thermoelectric generators that transfer the lost heat energy into a
useful electrical energy (Seebeck effect) and efficient refrigerators
that utilize electricity for cooling (Peltier effect) [3]. The conversion
of waste heat into electrical energy may play an important role in
our current challenge to develop alternative energy technologies to
reduce our dependence on fossil fuels and reduce greenhouse gas
emissions. Efficient thermoelectric devices could be realized if
high-efficient TE could be elaborated. The performance of TE can be
quantified by the dimensionless figure of merit ZT given by

Ref. ZT ¼ S2s
k T [2], where S, s, T and k are the Seebeck coefficient,

electrical conductivity, absolute temperature and thermal con-
ductivity that includes both the electronic (ke) and lattice (kl)
contributions, i.e., k ¼ keþkl. A high ZT requires a combination of
high electrical conductivity, high thermopower and low thermal
conductivity. Though there is no theoretical upper limit of the ZT
value, it is challenging to achieve higher values because the three
conflicting transport parameters S, sand k[4]. Therefore, a
compromise has to be reached between S, sand k to enhance ZT.
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Efficient TE materials can be obtained via two principal ways. The

first one is by increasing the value of S2s (known as power factor
(PF)), which define the electrical property of materials, by engi-
neering the electronic structure around the Fermi level [5,6]. The
second way is by reducing the lattice thermal conductivity kl by
introducing phonon scattering centres, nanostructuring and
increasing the grain boundaries [7e9].

The layered quaternary LaOAgS-type compounds (also known as
“1111” structure), such as oxychalcogenides and fluo-
rochalcogenides, have recently received an increasing amount of
interest [10e32] because of their natural superlattice features, such
as near two-dimensional electronic structures. They are potential
candidates for awide range of technological applications, such as p-
type transparent semiconductors [10,24,26,30], thermoelectrics
[12e14,18,28], optoelectronic devises [10,31] and photovoltaics
[24,32]. The present work focuses on the BaAgChF (Ch¼ S, Se, Te)
compounds.

The quaternary barium silver fluoride chalcogenides BaAgChF
(Ch¼ S, Se) have been synthetized and their structural parameters
determined by Charkin and co-workers [16]. They crystallize in the
tetragonal LaOAgS-type structure, symmetry group P4/nmm. They
are constituted of an alternating quasi-two-dimensional blocks
[BaF] and [AgCh] stacked along the c! crystallographic axis in the
sequence… [BaF]/[AgCh]/[BaF]/[AgCh]…, in another word, they are
a natural superlattice structure. A 1� 2� 1 supercell of the BaAgSF
crystal is shown in Fig. 1 for a better illustration of the layered
structure of the considered compounds. The BaAgChF (Ch¼ S, Se,
Te) compounds appear as interesting candidates for thermoelectric
applications [12,18] owing to their layered structure. On the theo-
retical side, Bannikov and co-workers [20] calculated the electronic
structures and optical spectra of BaAgSF and BaAgSeF employing
the full-potential linearized augmented plane wave (FP-LAPW)
method with the generalized gradient approximation (GGA). Bou-
diaf et al. [29] investigated the elastic properties of BaAgSF, BaAg-
SeF and BaAgTeF using the pseudopotential plane wave method
with the GGA and their electronic and optical properties using the
FP-LAPWmethod with the modified Beck-Johnson potential, which
is more accurate than the GGA for the calculation of the energy
band structure and optical spectra. Unfortunately, both previous

studies [20,29] did not include the spin-orbit coupling effect that is
not negligible in the case of the BaAgChF (Ch¼ S, Se and Te) sys-
tems. Therefore, the first objective of the present work is the
calculation of the electronic properties, including band structure,
charge-carrier effective masses, density of states and density of
charge distribution, of the title compounds using the FP-LAPW
method with the modified Beck-Johnson potential including the
spin-orbit coupling. Additionally, the BaAgChF crystals have natural
superlattice characteristics, which would result in very favourable
electronic properties for thermoelectrics [12,14]. Therefore, the
second objective is the prediction of the thermoelectric properties
of the BaAgChF compounds as functions of charge-carrier concen-
tration and temperature using the semi-classical Boltzmann theory
in combination with the band structure obtained via the FP-LAPW
method.

2. Computational methods

Calculation of the optimized structural parameters, including
the lattice parameters (a and c) and atomic position coordinates,
and the electronic properties of the BaAgChF (Ch¼ S, Se and Te)
compounds were performed using the full-potential linearized
augmented plane wave (FP-LAPW) method [33] based on the
density functional theory (DFT) as implemented in the WIEN2k
code [34]. For the structural properties, the electronic exchange and
correlation effects were treated using the generalized gradient
approximation (GGA) as parameterized by Perdew et al. (the so-
called GGA-PBEsol or GGA08) [35]. It is well known that the
calculated DFT band gaps with the traditional approximations, such
as the local density approximation (LDA) or the GGA, are under-
estimated compared to the measured ones [36e39]. Different
schemes have been developed to overcome this issue, such as the
hybrid functionals and the GW approach. Unfortunately, these
aforementioned schemes are computationally very demanding
compared to the LDA and GGA. Fortunately, Tran and Blaha [40e42]
have developed a new functional entitled Tran-Blaha modified
Beck-Johnson potential (denoted TB-mBJ), which better describes
the electronic properties and gives rise to better estimation of the
band gap [43]. The TB-mBJ approach is a decent alternative for the
GW approach and hybrid functionals; it can achieve a comparable
accuracy with a much lower computing time. Therefore, for the
electronic band structure, in addition to the GGA08, we have used
the TB-mBJ potential to model the electronic exchange and corre-
lation effects. To evaluate the spin-orbit coupling effect on the
examined properties of the title compounds, we have calculated
them bothwith andwithout including the spineorbit coupling. The
calculation with including the spin-orbit coupling, i.e., full relativ-
istic calculations, is denoted SOC and that without including the
spin-orbit coupling, i.e., scalar relativistic calculations, is denoted
SR. In the FP-LAPW method, the unit cell is divided into non-
overlapping spheres centered at the atomic sites, which are
labeled muffin-tin spheres (MTS), and the space between the MTS,
which is labeled interstitial region (IR). Linear combinations of
radial atomic functions and their energy derivatives times spherical
harmonics are used to expand the wave functions inside the MTS,
whereas a plane wave basis set is used in the IR. The plane wave
basis set cut-off Kmax (the maximum plane wave vector in the k-

space) was chosen equal to 10=Rmin
MT (Rmin

MT Kmax ¼ 10), where Rmin
MT is

the smallest muffin-tin sphere radius. The muffin-tin sphere radii
were chosen to ensure no charge leakage out of the MTS. The
Brillouin zone integration was replaced by a summation over
16� 16� 7 Monkhorst-Pack [44] k-points. The self-consistent field
iterations were repeated until the calculated total energy of the
crystal converged to less than 10�5 Ry. and the maximum force onFig. 1. 1� 2� 1 super cell of BaAgSF.
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any atom was smaller than 0.5 mRy:=a:u: (a.u.: atomic unit).
The thermoelectric properties, including Seebeck coefficient,

electrical conductivity and thermal conductivity, of the considered
compounds were calculated from the energy bands using the
Boltzmann transport theory with the rigid band approach (RBA)
[45,46] and the constant scattering time approximation (CRTA) as
implemented in the BoltzTrap program [47]. Based on this
approach, the Seebeck coefficient (S) and the electrical conductivity
(s) as functions of absolute temperature T and chemical potential m
can be calculated from the band structure calculation by integrating
the transport distribution tensor sabðεÞ as follows [47]:

sabðT ;mÞ ¼
1
U

Z
sabðεÞ �

�
vf0ðT ; ε;mÞ

vE

�
dε; (1)

SabðT ;mÞ ¼
1

eTUsabðT;mÞ
Z

sabðεÞðε� mÞ �
�

vf0ðT ; ε;mÞ
vε

�
dε; (2)

where a and b are tensor indices, U is the volume of the unit cell, f0
is the Fermi-Dirac distribution function and e is the electron charge.
The essential part of s and S is the transport distribution function
tensor sabðEÞ, which contains the system dependent information,
defined as:

sabðεÞ ¼
e2

N

X
i;k

ti;kyaði; kÞybði; kÞ
d
�
ε� εi;k

�
dε

(3)

where N is the number of k-points, i is the band index, k is the wave
vector and yaði; kÞ (a ¼ x, y, z) is the ath component of the group
velocity v(i, k) of charge-carriers, which can be obtained directly
from the band structure calculation as:

yaði; kÞ ¼ 1
Z

vEi;k
vka

(4)

where Zis the reduced Planck constant.
The wave vector dependent relaxation time (ti;k) appearing in

the expression of sabðEÞ is difficult to be determined from first-
principles calculations and hence eq. (3) is solved under constant
relaxation time approximation (RTA). Because of the high sensi-
bility of the transport properties to the number of k-points, the
Brillouin zone sampling was performed with a uniform
50� 50� 23 Monkhorst-Pack k-point grid.

3. Results and discussion

3.1. Structural properties

The BaAgChF (Ch¼ S, Se, Te) compounds crystallize in a layered
tetragonal structure of the LaOAgS-type, space group P4/nmm
(n.189) [16e20,25]. This structure may be viewed as alternating
blocks of [BaF] and [AgCh] stacked along the c! crystallographic
axis, as shown in Fig. 1. There are four inequivalent atomic positions
in the conventional cell, which are Ba: 2c (1/4, 1/4, zBa), F: 2a (3/4, 1/
4, 0), Ag: 2b (3/4, 1/4, 1/2) and Ch: (1/4, 1/4, zCh), where zBa and zCh
are the z-coordinates of the Ba and Ch atoms, respectively. At the
first step, we calculated the equilibrium structural parameters,
including the lattice parameters (a and c) and the atomic position
coordinates, using the GGA08 with and without including the spin-
orbit coupling effect. The optimized structural parameters of the
examined materials along with the available experimental reports
are listed in Table 1. The optimized lattice parameters are in
excellent agreement with the corresponding measured ones [16];
the relative deviation (dð%Þ) of the calculated lattice parameter xcal:

from the measured one xExpt: (dð%Þ ¼ ½ðxcal: � xExpt:Þ=xExpt:� � 100)
does not exceed 1%. The electronic and thermoelectric properties
were performed at these optimized structures.

To confirm the chemical and structural stabilities of the studied
crystals, we have calculated their cohesive energies (ECoh:) and
formation enthalpies (DH). The cohesive energy is the energy that
is required for the crystal to decompose into free atoms. The more
negative the formation enthalpy and cohesive energy the more
stable the structure. The cohesive energy ECoh: and formation
enthalpy DH of the studied systems were calculated using the
following expressions:

DH ¼ 1
NBa þ NF þ NAg þ NCh

h
EBaFAgChtot �

�
NBaE

BaðsolidÞ
tot þ NFE

FðgazÞ
tot

þ NAgE
AgðsolidÞ
tot þ NChE

ChðsolidÞ
tot

�i

ECoh: ¼
1

NBa þ NF þ NAg þ NCh

h
EBaFAgChtot �

�
NBaE

BaðatomÞ
tot

þ NFE
FðatomÞ
tot þ NAgE

AgðatomÞ
tot þ NChE

ChðatomÞ
tot

�i

where NBa, NF, NAg and NCh are the numbers of Ba, F, Na and Ch
atoms, respectively, in the unit-cell of the BaFAgCh compound;

EBaFAgChtot is the total energy of the unit-cell of BaFAgCh; EBaðsolidÞtot ,

EAgðsolidÞtot and EChðsolidÞtot are the total energies per atom of the solid

state of the Ba, Ag and Ch pure elements, respectively; EFðgazÞtot is the
total energy per atom of the gas state of the pure element F;

EBaðatomÞ
tot , EFðatomÞ

tot , EAgðatomÞ
tot and EChðatomÞ

tot are the total energies of the
Ba, F, Ag and Ch isolated atoms, respectively. The obtained values
for the cohesive energies and formation enthalpies are listed in
Table 1. The calculated cohesive energies and formation enthalpies
of the BaAgChF (Ch¼ S, Se, Te) compounds are negative, confirming
their chemical and structural stabilities.

3.2. Electronic properties

The calculated band energy dispersions of the BaAgChF (Ch¼ S,
Se, Te) systems along some selected high-symmetry directions in
the Brillouin zone (BZ) using the TB-mBJ potential with and
without including the spin-orbit coupling (SOC and SR) are depic-
ted in Fig. 2. One can note that the band profiles of the three
examined compounds look quite similar. All three studied com-
pounds are direct wide energy band gap semiconductors; both the
conduction band minimum (CBM) and valence band maximum
(VBM) are localized at the G-point in the BZ. The main difference
between the band structures of the examined compounds is the
size of their band gaps. The calculated energy band gaps using the
GGA08-SR, GGA08-SOC, TB-mBJ-SR and TB-mBJ-SOC of the inves-
tigated systems are gathered in Table 2 along with the available
theoretical results in the scientific literature. It is worth to note that
the previous calculations did not include the spin-orbit coupling.
We visualize the calculated energy band gap values using the
GGA08-SR, GGA08-SOC, TB-mBJ-SR and TB-mBJ-SOC in Fig. 3 to
facilitate the comparison between them. From Figs. 2 and 3, and
Table 2, one can make the following conclusions:

(i) The inclusion of the spin-orbit coupling causes the splitting
of bands at the valence band maximum. The SOC band
splitting at the valence band maximum is 25meV in BaAgSF,
108meV in BaAgSeF and 269meV in BaAgTeF.

(ii) The TB-mBJ-SOC energy band gaps of BaFAgS, BaFAgSe and
BaFAgTe are reduced by approximately 0.97%, 2.44% and
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7.54%, respectively, compared to the corresponding ones
obtained using the TB-mBJ-SR.

(iii) The SOC effect increases when going from BaAgSF to BaAgSeF
to BaAgTeF. This trend may be attributed to the increase of
the atomic number of the chalcogen atoms; ZðSÞ ¼ 16,
ZðSeÞ ¼ 34 and ZðTeÞ ¼ 52.

(iv) The substitution of the Ch atom in the BaFAgCh series in the
sequence S/Se/Teleads to a monotonously narrowing of
the TB-mBJ fundamental band gap. It is not the case when
using the GGA08.

(v) The TB-mBJ-SOC approach improves the band gap values of
BaAgSF, BaAgSeF and BaAgTeF by approximately 54%, 58%

Table 1
Calculated lattice parameters (a¼ b and c, in Å unit), relative deviation from the experimental value dð%Þ ¼ ½ðx� xExpt:Þ=xExpt:� � 100 (x¼ a, c), internal atomic coordinates (ZBa
and ZCh), formation enthalpies (DH, in eV) and cohesion energies (ECoh: , in eV) for BaAgChF (Ch¼ S, Se, Te) compared with the corresponding experimental ones.

BaFAgS BaFAgSe BaFAgTe

RS SOC Expt [16]. RS SOC Expt [16]. RS SOC

a 4.2035 4.1963 4.2406 4.3177 4.3078 4.3449 4.4987 4.5013
dð%Þ �0.87 �1.04 �0.63 �0.85
c 9.2423 9.2327 9.3029 9.3327 9.3349 9.4018 9.5035 9.4515
dð%Þ �0.65 �0.75 �0.73 �0.71
ZBa 0.1698 0.1687 0.1665 0.1627 0.1567 0.1598 0.1497 0.1452
ZCh 0.6745 0.6752 0.6760 0.6803 0.6819 0.6798 0.6849 0.6859
DH �5.9081 �5.2899 �5.2115
ECoh �7.7244 �7.5893 �7.4296

Fig. 2. Calculated energy band structure for the BaAgChF (Ch¼ S, Se, Te) compounds using the TB-mBJ-SR (Red dashed lines) and the TB-mBJ-SOC (Black solid lines). (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

Table 2
Calculated fundamental energy band gap (Eg, in eV unit) for the BaAgChF (Ch¼ S, Se,
Te) compounds compared with previous calculations.

System Present cal. Previous cal.

GGA08-SR GGA08-SOC mBJ-SR mBJ-SOC

BaAgSF 1.44 1.43 3.13 3.10 1.387 [21] 2.889 [29]
BaAgSeF 1.25 1.17 2.85 2.78 1.278 [21]

2.663 [29]
BaAgTeF 1.55 1.34 2.71 2.52 2.595 [29]

Fig. 3. Comparison between the calculated fundamental band gap (G-G) values (Eg, in
eV) obtained using different approaches: GGA08-SR, GGA08-SOC, mBJ-SP and mBJ-SOC
for the BaAgChF (Ch¼ S, Se, Te) compounds.
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and 47%, respectively, compared to the corresponding ones
obtained using the GGA08-SOC. There is no experimental
data for the energy band gaps of the BaFAgCh (Ch¼ S, Se, Te)
compounds to be compared with our results. However, if we
bring in mind that the DFT-GGA band gap is approximately

30� 50% smaller than the corresponding experimental one
[48,49], we can expect that the calculated TB-mBJ band gap
values might be in a reasonable agreement with the real
ones. The TB-mBJ-SOC band gaps of the BaAgChF com-
pounds, which range from 2.52 eV to 3.10 eV, are comparable
with the measured band gaps for some isostructural com-
pounds: SrCuSF (3.0 eV) [11], SrCuSeF (2.7 eV) [11], SrCuSF
(3.2 eV) [10], BaCuSeF (3.0 eV) [10] and BaCuTeF (2.3 eV) [27].

Table 3
Calculated hole (m�

h) and electron (m�
e) effective masses for the BaAgChF (Ch¼ S, Se,

Te) at the CBM and VBM, respectively, along the a!-axis (G-X direction in k-space),
ab-plane (G-M direction) and c!-axis (G -Z direction). The effective mass values are
given in the unit of free electron massm0.

Carrier type m�
h m�

e

Directions G-X G -Z G-M G-X G -Z G-M
BaFAgS 1.00 14.14 0.95 0.57 0.79 0.57
BaFAgSe 0.64 9.31 0.63 0.45 0.61 0.45
BaFAgTe 0.42 7.63 0.41 0.32 1.82 0.32

Fig. 4. Comparison between the calculated hole and electron effective mass values at
the valence band maximum and conduction band minimum, respectively, along the a
and c crystallographic axes for the BaAgChF (Ch¼ S, Se, Te) compounds. The values are
given in the unit of free electron mass.

Fig. 5. Calculated projected (PDOS) and total (TDOS) densities of states for the BaAgChF (Ch¼ S, Se, Te) compounds.

Fig. 6. Contour plot of the electron charge density distribution in the plane (400) for
BaAgTeF.
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(vi) From Fig. 2, one can observe the presence of quasiflat valence
bands along the G/Z, R/X and M/Adirections in the
Brillouin zone, along with highly dispersive valence bands in
the other high symmetry directions. This is consistent with
the layered structure of the considered compounds.

(vii) The dispersion of the valence bands around the VBM is
highly anisotropic; the upper valence bands show a large
dispersion around the VBM along the G/M and G/X di-
rections in the reciprocal space (k-space) and a pronounced
flatness along the G/Z direction. The flatness of the upper
valence bands along the G/Z direction in the k-space pro-
motes a large hole effective mass along the c-axis direction,
while their large dispersion along the G/M and G/X di-
rections in the k-space reveal a small hole mass along the a-
axis direction and in the ab-plane. The simultaneous pres-
ence of large and small hole effective masses is a favourable
indicator of thermoelectric performance; small hole effective
mass is favourable for good electrical conductivity, while
large hole effective mass is favourable for large Seebeck co-
efficient for p-type compounds. This noticeable dependence
of the dispersion of the valence bands on the crystallographic

directions is an indicative of a highly bonding anisotropy in
the layered BaAgChF. The bonds along the c-axis (interlayer
bonding) should differ considerably from those in the ab-
plane (intralayer bonding)

(viii) The conduction bands exhibit a pronounced dispersion along
all the considered directions in the BZ, suggesting that the n-
type compounds should show less thermoelectric perfor-
mance than the p-type ones.

Transport properties in semiconductors are principally
controlled by the effective masses of the charge-carriers. Therefore,
it becomes necessary to estimate the effective masses of electrons
and holes along different crystallographic directions at the band
edges of the studied materials. The predicted effective masses of
holes (m*

h) at the valence band top and of electrons (m*
e) at the

conduction band bottom towards three different directions in the k-
space; G/Z, G/X and G/M, for the title compounds are listed in
Table 3. To facilitate the comparison between the values of m*

h and

m*
e , the obtained results are visualized in Fig. 4. It is apparent that

both m*
h and m*

e exhibit noticeable dependences on the crystallo-

graphic directions. The values of m*
h and m*

e along the c-axis (G/Z
direction in the k-space) are significantly larger than the corre-
sponding ones along the a-axis (G/Mdirection in the k-space) and
in the ab-plane (G/Xdirection in the k-space). According to these
results, the mobility of charge-carries along the a-axis should be
significantly larger than that along the c-axis, while the Seebeck
coefficient will be larger along the c-axis. The obtained results
reveal also that the hole effective mass is more dependent on the
crystallographic direction than the electron one, demonstrating
that the anisotropy of the effective mass and its related properties,
such as Seebeck coefficient and electrical conductivity, should be
more pronounced in the p-type compounds than in the n-type

Table 4
Calculated 3D elastic constant (Cb , in GPa unit), 3D deformation potential (Eb , in eV
unit) and the minimum lattice thermal conductivity (kmin , in Wm�1K�1 unit) using
Cahill model for the BaAgChF (Ch¼ S, Se, Te) compounds.

Cb Eb kmin

a-axis c-axis a-axis c-axis

hole Elec. hole Elec.

BaAgSF 110.32 77.78 9.35 11.83 10.98 13.94 0.612
BaAgSeF 103.60 62.92 9.70 12.40 9.88 12.97 0.544
BaAgTeF 94.26 50.53 10.59 13.37 9.78 12.80 0.420

Fig. 7. Temperature dependence of the relaxation time (t) for the BaAgChF (Ch¼ S, Se, Te) compounds.

K. Boudiaf et al. / Journal of Alloys and Compounds 759 (2018) 32e43 37



ones. On another side, the hole effective mass is larger than the
electron one, suggesting that the mobility of holes should be small
than that of electrons in the considered compounds. Therefore, as
the electrical conductivity s is inversely proportional to the charge-
carrier masses, one can expect that for the same charge-carrier
concentration and temperature, the electrical conductivity s of
the n-type system should be larger than that of the p-type one.
Moreover, as the Seebeck coefficient S is proportional to the
effective masses of charge-carriers, one can expect that the S of the
p-type system should be larger than that of the n-type one. The
charge-carrier effective masses decrease when going from BaAgSF
to BaAgSeF to BaAgTeF, suggesting that BaAgSF should have the
highest Seebeck coefficient and BaAgTeF should have the highest
electrical conductivity. There is no available experimental or
theoretical data about the charge-carrier masses in the literature to
be compared with our results.

The total and atomic-projected l-decomposed densities of states
(TDOS and PDOS) of the investigated compounds are depicted in
Fig. 5. The near-Fermi part of the upper valence band group, which
ranges approximately from �2.0 eV to 0 eV, is composed of the
hybridized Ag: 4d and Ch: np (Ch¼ S (n¼ 3), Se (n¼ 4), Te (n¼ 5))
orbitals, while the lower part, which ranges approximately
from �2.0 eV to �5.5 eV, is dominated by the F: 2p and Ag: 4d
states. The conduction band bottom is also composed of the states
related to the blocks [AgCh]. Therefore, both the VBM and CBM are
composed exclusively of the Ag: 4d and Ch: np states of the blocks
[AgCh].

For more insight into the chemical bonding of the considered
compounds, the charge density distribution map in the (400) plane
for BaAgTeF, as representative, is shown in Fig. 6. From this figure,
one can note that the intralayer bonding in the [AgCh] and [BaF]
blocks, i.e., Ag-Ch and Ba-F bonds, are of mixed ionic and covalent

Fig. 8. Charge carrier concentration dependence of the Seebeck coefficient, electrical condctivity, electronic thermal conductivity and figure of merite for T¼ 900 K for the BaAgChF
(Ch¼ S, Se, Te) compounds.
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nature. The Ag-Ch bond inside the [AgCh] layer is predominantly of
covalent character, which is due to the strong hybridization be-
tween Ag: 4d and Ch: np, while the Ba-F bond in the layer [BaF] is
predominantly ionic. The interlayer bonding between the [AgCh]
and [BaF] blocks is ionic. This predominantly covalent character of
the chemical bonds along the a-axis and their predominantly ionic
nature along the c-axis lead to the quasi two-dimensional elec-
tronic structure.

3.3. Thermoelectric properties

3.3.1. Relaxation time and lattice thermal conductivity
Within the CRTA, the Seebeck coefficient can be calculated

without any adjustable parameters; however, the electrical con-
ductivity has to be calculated with respect to the relaxation time t,
therefore it is crucial to determine t to estimate the electrical

conductivity and thermal conductivity. Generally, two ways are
proposed to determine the t value: (i) from the experimental value
of the resistivity [49], or (ii) from a theoretical calculation. As there
are no experimental data that allow the calculation of the t values
of the considered compounds, a theoretical method was used to
estimate t. An approximation that has a large success for calcu-
lating t is based on the deformation potential theory developed by

Bardeen and Shockley [50e52]: t ¼ 2
ffiffiffiffiffi
2p

p
Cbh

4

3ðm�KBTÞ
3
2 E2

b

, whereCb is the 3D

elastic constant, Eb is the 3D deformation potential and m* is the
charge-carrier effective mass. The method to calculate Eb and Cb

can be found in Ref. [53]. The necessary parameters to calculate t
are listed in Tables 3 and 4. The variation of t as function of tem-
perature is depicted in Fig. 7. Practically, temperature dependence
of the relaxation time is similar in the three studied compounds;

Fig. 9. Charge carrier concentration dependence of the Seebeck coefficient, electrical condctivity, electronic thermal conductivity and figure of merite for T¼ 600 K for the BaAgChF
(Ch¼ S, Se, Te) compounds.
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the relaxation time decreases with increasing temperature. When
temperature increases, the thermal speed of electrons increases
and consequently collisions between electrons become more
considerable, and the vibration amplitude of atoms around their
mean positions also increases; all these decrease the relaxation
time.

For more accurate calculation of the thermoelectric parameters,
it is necessary to calculate the contribution of the lattice vibration
into the thermal conductivity. Usually, the best values of the figure
of merit of materials occur at mid or high temperature, and at this
range of temperature, their lattice thermal conductivities (kl) are
comparable to their minimum lattice conductivities (kmin). At high
temperature, the lattice thermal conductivity deceases to a lower
limit kminwith increasing temperature. The minimum lattice ther-
mal conductivity kmin can be calculated using Cahill model [54,55],
which gives a good estimation of the minimum lattice thermal

conductivity for a large class of materials [54e57]. The calculated
values of the minimum lattice thermal conductivity kmin for the
considered compounds are listed in Table 4. The calculated kminof
the three studied compounds are smaller than unity, suggesting
that these compounds might be good TE candidates.

3.3.2. Thermoelectric properties
Variation of the Seebeck coefficient, electrical conductivity,

thermal conductivity and figure of merit as functions of carrier
concentration for both p-type and n-type BaAgSF, BaAgSeF and
BaAgTeF in the range 1016 � 1020cm�3 along the [100] (a-axis) and
[001] (c-axis) crystallographic directions for T¼ 300, 600 and 900 K
are plotted in Figs. 8e10. The absolute value (magnitude) of the
Seebeck coefficient S decreases with increasing carrier concentra-
tion and increases with increasing temperature for both the n-type
and p-type compounds. This is a common trend in thermoelectric

Fig. 10. Charge carrier concentration dependence of the Seebeck coefficient, electrical condctivity, electronic thermal conductivity and figure of merite for T¼ 300 K for the BaAgChF
(Ch¼ S, Se, Te) compounds.
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materials. The magnitude of S for the p-type system is higher than
that of the n-type one throughout the considered concentration
range of charge carriers. This result is consistent with the already
predicted result from the calculated charge-carrier masses; large
effective masses of charge-carriers translates to a high Seebeck
coefficient S. Thus, one can conclude that the p-type BaAgSF,
BaAgSeF and BaAgTeF compounds are more favourable for TE per-
formance than the n-type ones. Therefore, we focus our study on
the p-type compounds. The thermopower S shows practically the
same behavior regarding the variation of carrier concentration and
temperature for the three studied compounds. This behavior is
attributed to the similarity of their energy band dispersions around
the Fermi level. For the same temperature and same charge-carrier
concentration, the value of S decreases whenwemove from BaAgSF
to BaAgSeF to BaAgTeF. This might be due to the decrease of the
charge-carrier effective masses when we move in the same
sequence. The Seebeck coefficient has almost an isotropic behavior

along the different crystallographic directions.
From Figs. 8e10, one can note that the electrical conductivity,

electronic thermal conductivity and figure of merit are consider-
ably anisotropic, which is consistent with the layered structure of
the title compounds. The electrical conductivity, thermal conduc-
tivity and figure of merit of the p-type compounds along the a-axis
and in the ab-plane are considerably larger than the corresponding
ones along the c-axis. This might be because the lower hole effec-
tive mass along the a-axis and in the ab-plane (the G/Mand G/X
directions in the k-space) compared to the corresponding one along
the c-axis (the G/Z direction in the k-space). The pronounced
upper valence band dispersions along the G/M and G/X di-
rections in the k-space, induced by the Ag-Ch (Ch¼ S, Se, Te) co-
valent bonding, result in a relatively low hole effective masses and
thus a relatively high hole conductivity along these directions. The
anisotropy of the electrical and thermal conductivities in the n-type
compounds is less pronounced than that in the p-type one. This

Fig. 11. Maps of the calculated hole concentration and temperature dependences of the Seebeck coefficient (S, in mV/K unit), electrical conductivity (s, in U�1m�1 unit), electronic
thermal conductivity (kel , in Wm�1K�1 unit) and figure of merit (ZT, dimensionless) for the BaAgChF (Ch¼ S, Se, Te) compounds.
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might be due to the almost equal values of the electron effective
masses along the different crystallographic directions.

It is very important to know the best ranges of the charge carrier
concentration and temperature where the TE efficiency is high.
High TE efficiency requires a high Seebeck coefficient, high elec-
trical conductivity and low thermal conductivity. Fig. 11 shows the
Seebeck coefficient (S), electrical conductivity (s), electronic ther-
mal conductivity (kel), and factor of merit (ZT) maps as functions of
temperature and carrier concentration along the a-direction for the
p-type BaAgSF, BaAgSeF and BaAgTeF. Fig. 11 shows that the See-
beck coefficient increases with increasing temperature and de-
creases with increasing hole concentration, but at high hole
concentration, it saturates at high temperatures. The electrical
conductivity decreases with increasing temperature for a fixed hole
concentration. The thermal conductivity remains approximately
constant with increasing temperature for a fixed hole concentra-
tion. However, at a fixed temperature, both the electrical and
thermal conductivities increase sharply with increasing hole con-
centration. The influence of carrier concentration on the figure of
merit is much more evident than that of the temperature. The high
values of the figure of merit are found for carrier concentration
around 1019 cm�3 with a large range of temperature from 300 K to
900 K. For BaFAgS, ZT//a¼ 0.88 for T¼ 900 K and hole concentration
of 5� 1019 cm�3, for BaFAgSe, ZT//a¼ 0.89 for T¼ 900 K and hole
concentration of 2� 1019 cm�3 and for BaFAgTe, ZT//a¼ 0.90 for
T¼ 900 K and hole concentration of 6� 1018 cm�3. It is worth to
note here that ZT of the considered compounds attains a value
slightly higher than the aforementioned ones for temperature
higher than 900 K. The thermoelectricity efficiency of the studied
compounds can be enhanced if one could reduce the lattice thermal
conductivity kl by introducing further phonon scattering centres by
alloying or doping by chemical elements that reduce the lattice
thermal conductivity.

4. Conclusion

In this work, we have investigated the structural, electronic and
thermoelectric properties of the barium silver fluoride chalcogen-
ides BaAgChF (Ch¼ S, Se, Te) using the full potential linearized
augmented plane wave approach in the framework of density
functional theory. The GGA-PBEsol optimized structural parame-
ters of the title compounds are in excellent agreement with the
available experimental data. Analysis of the calculated band
structures using the GGA-PBEsol and TB-mBJ both with and
without including the spin-orbit coupling reveals that the studied
compounds are direct band gap semiconductors. The spin-orbit
coupling effect leads to the split of the valence band maximum at
G-point and to the reduction of the band gap value. This effect in-
creases with increasing atomic number of the chalcogenide atom.
The simultaneous presence of flat and dispersive bands at the
valence band maximum of the studied compounds is a favourable
indicator of their thermoelectric performance. The charge-carrier
effective masses exhibit noticeable dependence on the crystallo-
graphic directions; their values along the c-axis are significantly
larger than the corresponding ones along the a-axis. Calculated
density of states and charge density distribution show that the Ag-
Ch bond inside the [AgCh] layer is predominantly of covalent
character, the Ba-F bond in the layer [BaF] is predominantly ionic
and the interlayer bonding between the [AgCh] and [BaF] blocks is
ionic. Calculated Seebeck coefficient demonstrates that p-type title
compounds are more favourite for thermoelectric performance
than the n-type ones. The calculated thermoelectric parameters
exhibit a strong dependence on the crystallographic directions. The
tile compounds show more thermoelectric performance along the
a-axis than along the c one. We are not aware of any experimental

or theoretical data for the temperature and carrier concentration
dependences of the thermoelectrics properties of the considered
compounds, so we look forward for the experimentalist to confirm
our obtained results.
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