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Abstract

Since the 1950’s, the theory of mathematical programming and game theory have been
developed rapidly and extensively. The literature shows the rich theory of linear pro-
gramming, convex quadratic programming, and bimatrix game, which are fundamental
subjects in these areas. As a unifying framework of such problems, the linear comple-
mentarity problem was introduced in mathematical programming in the mid 1960’s.

The linear complementarity problem is to find, for a square matrix and a vector, a vector
satisfying linear constraints and complementarity conditions.

This thesis is concerned with the analysis, implementation of interior-point methods . In
particular, we focus on two type of problems: horizontal linear complementarity prob-
lems (HLCPs) and Semidefinite linear complementarity problems (SDLCPs).

In chapter 1: we present the definitions and terms that will be used throughout the thesis.
In chapter 2: we present a full-Newton feasible step interior-point algorithm for solving
monotone horizontal linear complementarity problems. The idea of this algorithm is to
follow the centers of the perturbed HLCP by using only full-Newton steps with the ad-
vantage that no line search is required and restricts iterates in a small neighborhood of
the central-path by introducing a suitable proximity measure during the solution process.
Then we prove across a new appropriate choice of the defaults of the threshold of the
parameter 7 which defines the size of the neighborhood of the central-path and of the
update barrier parameter 6 that our algorithm is well-defined and the full-Newton step to
the central-path is locally quadratically convergent. Moreover, we derive its complexity
bound. which coincides with the best known iteration bound for such feasible IPMs. Fi-
nally, we report some numerical results to show the ability of this approach.

In chapter 3: we deal with the complexity analysis and the numerical implementation

of primal-dual interior-point methods for monotone semidefinite linear complementarity



problems based on a new parametric kernel function. The proposed kernel function is nei-
ther a self-regular and nor the usual logarithmic barrier function. By means of the feature
of the kernel function, we study the complexity analysis of primal-dual IPMs and derive
the currently best known iteration bound for the large-update algorithm. Finally, we re-
port some numerical results to show the practical performance of the proposed algorithm
with different parameters.

keywords: Semidefinite linear complementarity problems; Horizontal linear complemen-
tarity problems; Interior-point methods; Kernel function; Full-Newton step; Polynomial

complexity.
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Glossary of Notation

Problem Classes

(MP)
(SDO)
(LP)
(QP)
(P)
(D)
IPC
IPMs
P
KK.T

Spaces
R

R
R,
Rxn
R

STL

Mathematical Programming;

Semidefinite Optimization;

Linear Programming or linear optimization;
Quadratic Programming;

Primal of a mathematical programming;
Dual of (P);

Interior-Point-Condition;

Interior-Point Methods;

Interior-Point;

Karush-Kuhn-Tucker;

the real n-dimensional space;

the nonnegative orthant of R";

the positive orthant of R";

the set of all n X n squared matrices;

the space ofm x nreal matrices;

denotes the set of all symmetric n X n matrices;

the cone of positive semidefinite symmetric matrices of order n;



Matrices
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X >0

N(X)i=1,. ..
Aman(X),i =1,

Amin(X), 1 =
Tr(X)
Ae X

1

X1

o(X)

AT
A~B

Vectors

X = Diag(x)

Functions
Vi) = (2

Vi) = (
o(t)

N axﬁx]

<x)) 1<i, j<n
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means X € S” is positive semidefinite;

means X € S"is positive definite.;

the eigenvalues of X;

the largest eigenvalues of X;

the smallest eigenvalues of X;

Doy Xii = 22 Mi(X);

Tr(AT X) the inner-product betweenA € S"and X € S™;
identity matrix;

| X||r = VX e X.Frobenius matrix norm (Schur);
denote the spectrum, or the set of eigenvalues,

of a matrix X € R™*"

the transpose of the matrix A;

P non-singular with A = PBP~!;

1,..., )7,

(x1,...,2,) the transpose of a vectorz
with components z;;

(T1y1, - .-, TnYn)? Hadamard product;

n
> x;y; the standard inner product in R";

=1

T

1 T2 Tn

(_7_7"'7_> (y#())a
Y1 Y2 Yn

(VLo V) (2 0)
(i L i) (2 £ 0):

x1 Ty Ty

the diagonal matrix of X with X;; = x;;

the gradient of a function f : R" — R;

the Hessian matrix of f : R” — R;

a kernel function;
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Introduction

This doctoral thesis deals with the complexity analysis and numerical implementation of
interior point methods for symmetric cones linear complementarity problems (SCLCP for
short). Mathematically, consider a Euclidean finite dimensional vector space E over the
field R equipped with inner product (., .). Let £ : E — E be a given linear transformation,

and ¢ € E. The SCLCP consists of finding a pair of elements (x, y) such that
reK y=L(r)+qeK, and (z,y) =0,

where K is a symmetric cone i.e., K is homogenous and self-dual.(see e.g. [25, 46])

The SCLCP is not an optimization problem but it is closely related to the optimality con-
ditions for conic optimization i.e., linear, convex quadratic and semidefinite optimization
over symmetric cones. Although if K = R’ the orthant positive cone, then the SCLCP
reduces to linear complementarity problems (LCP) meanwhile if K = S, the cone of
symmetric semidefinite positive matrices, the SCLCP becomes the semidefinite linear
complementarity problem (SDLCP)(see e.g. [21, 25, 46]).

Since the publication of the famous paper of Karamarkar [32] in 1984, for solving the
linear programming problem (LP), the field of interior-point methods (IPMs) becomes one
of the most active areas of research in mathematical programming. Interior point methods
are known for their polynomial convergence, speed and efficiency and have proven to be
true competitors of classical methods (simplex and Lemeke, etc.). These methods have
been widely disseminated in the literature and have been enriched with several variants
in order to improve their complexity and their numerical efficiency. This latter can be

classified into four main categories:

e Projective methods,
e Affine-scaling methods,

12
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e Potential-reduction methods,
e Path-following methods or central path methods.

In this thesis we focus on the primal-dual IPMs to solving two classes of monotone

SCLCP, namely,
e Horizontal linear complementarity problems (HLCP).
e Semidefinite linear complementarity problems (SDLCP).

The HLCPs has been very popular in the literature due to its numerous applications [39].
In the literature of IPMs, this problem has also been an active subject since it includes the
standard LCP, LP and convex quadratic optimization (CQO), and finds many applications
in economic equilibrium problems, traffic assignment problems, and optimization prob-
lems [21]. There are a variety of solutions approaches for HLCP which have been studied
intensively. Among them, path-following IPMs gained much more attention than other
methods [43, 51]. These methods are powerful tools to solve a wide large of mathemati-
cal problems such as LP [43, 54, 58], CQO [2, 54], LCP [4, 21, 54, 59], linearly convex
constrained optimization (LCOO) [7], the semidefinite programming (SDP) [3, 39], and
the semidefnite linear complementarity problem (SDLCP) [8].

In the last years, the SDLCPs has received considerable attention from researchers be-
cause of its wide applications such as control theory linear and bilinear matrix inequalities,
semidefinite linear complementarity problem (SDLCP) is a special class of mathematical
programming, which became popular during the 1960’s. The SDLCPs are extensions of
LP and LCP, respectively, with the cone of nonnegative real vectors replaced by the cone
of symmetric positive semidefinite real matrices.

This problem was introduced in a slightly different form by Kojima, Shindoh, and Hara
[34] as a model unifying various problems arising from system and control theory and
combinatorial optimization. The SDLCP can be regarded as a generalization of the LCP
[8, 9]. There are many approaches for solving this class of problems. Among them, the
path following IPMs are the most efficient and fundamental methods which obtain the

best complexity bounds (see e.g. [2, 6, 22, 24, 27, 42, 49]).
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In 2001, Peng et al. [43] designed a new paradigm of primal-dual algorithms based
on the so-called self-regular proximity functions for LP. They improved iteration bound
with large-update from O(n log %) with logarithmic kernel function to O(y/nlog nlog 2).
Subsequently, in 2004, Bai et al. [15], introduced new primal-dual IPMs based on new
proximity functions which were called non logarithmic eligible barrier kernel functions.
These functions enjoy useful properties and determine new search directions for primal-
dual interior point algorithms. Based on these functions, they obtained the best known
complexity results for large-update methods, namely, O(y/nlognlog®) and good nu-
merical results. Some examples of kernel functions which have been analyzed in earlier
papers can be seen in references (see e.g.,[1, 3, 14, 16, 33, 36, 37, 38, 42, 50, 52]).

Kernel functions play an important role in the design of new primal-dual interior point
algorithms for solving many instances such as LP, CQO, SDO and LCP. Their extensions
to SDLCPs is with great importance since, on one hand the feasible set of this problem is
not a polyhedral set and therefore the classical simplicial methods does not applicable. On
the other hand, as for our knowledge there is no interior-point methods based on kernel
functions are developed for solving this problem. To do so, we suggest the following

parametric kernel function

-1 qit—1 (¢g—1)
W(t) = + - t—1),t>0, (1)
(t) 5 e . (t—1)

where ¢ > 1 is a barrier parameter. The proposed kernel function is neither a self-regular
and nor a logarithmic barrier function. Based on this kernel function, we show that the
proposed large-update algorithm enjoy the favorable best iteration complexity for the spe-
cific choice of the barrier parameter’s function.

The table 1 shows the iteration bound based on some studied kernel functions in the liter-

ature.
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kernel function ;(t) Iteration bound ref
P (t) = 97_1 + qjlz);l, qg>1 O(y/nlognlog?) | [1]
o (t) = E52 — log(t) O(nlog™) [13]
Pa(t) = 5t — 1) O(ns log ™) [13]
Galt) = B+ 0 g > 1 O(gn* log?) | [13]
ws(t) = 1 + tqlgj]q_;)l ~ Lt —1),g>1| O(gn™ log®) | [39]
() = S5t 4 <= O(y/nlog*nlog2) | [13]
dr(t) =t -1+ g > 1 O(gnlog?) | [14]

Table 1: Examples of some kernel functions and its iteration bound for large-update meth-

ods

Short Outline of the Thesis

The thesis contains three chapters, followed by a bibliography. This thesis is organized as

follows

e Chapter 1: In this chapter, we present the definitions and terms that will be used

throughout the thesis.

e Chapter 2: This chapter deals with the study of the polynomial complexity and
the numerical implementation for a full-Newton short-step primal-dual central-path
interior-point method for solving the class of monotone HLCPs. We show that the
corresponding algorithm enjoys the best known theoretical polynomial complexity,
namely, O (\/ﬁ log %) Some numerical results are provided to show the efficiency

of the proposed algorithm and to compare with an available method.

e Chapter 3: Based on a new parametric kernel function, this chapter presents a
primal-dual large-update interior-point algorithm for SDLCPs. By the mean of this
function we show that the proposed algorithm has the favorable complexity bound,
namely, O (\/ﬁ log n log %) with a suitable choice of the parameter barrier related

to the kernel function. Finally, we report some numerical results on some practical
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problems to show the practical performance of the proposed algorithm with differ-
ent values of the parameter barrier. Finally, we end the thesis by a conclusion and

future work.



Chapter 1

Convex Analysis and matrix theory

Contents
1.1 Preliminaries . . . . . . . . v it i e e e e e e 18
1.2 Matrixtheory . . .. ... ittt ittt v vt veeneenas 20
1.3 Tensorproduct . . . . . v v v i v i v vt v et et ot et a e 22
1.3.1 Application to Sylvester and Lyapunov Equations . . . . . . . . 22
14 Convexsetsandfunctions . . . . .. ... ............... 24
1.4.1 Convex optimization . . . . . . .. ... ... ... ...... 24
142 Convex Cones . . . . . ... ... 24
1.4.3 Examples of symmetric and nonsymmetric cones . . . . . . . . 26
1.5 Newton-Raphson’s method for nonlinear systems. . . . . ... ... 26
1.5.1 Newton-Raphson’s Method . . . ... ... .. ........ 27
1.6 Problem Description . . . . ... ... ...ttt 27
1.6.1 Linear Complementarity Problem . . ... ... ... ... .. 28
1.6.2 Classesof LCP . . . . .. ... .. ... ... .. ...... 28
1.6.3 Horizontal Linear Complementarity Problems . . . . . . . . .. 30
1.64 Classesof HLCP . . . . . ... ... ... ... .. ...... 30
1.6.5 Semidefinite Linear Complementarity Problem . . . ... . .. 32
1.6.6 Classesof SDLCP . . . .. ... ... ... ... ....... 32



CHAPTER 1. CONVEX ANALYSIS AND MATRIX THEORY 18

1.6.7 Some results of the existence and uniqueness of solution of

monotone SDLCP . . . . . . . . . . . ... ... ... ... 33

In this chapter, we present fundamental definitions and notation that will be used

throughout the thesis.

1.1 Preliminaries

In this thesis we will be working in the space of vectors and in the space of matrices,
first we will define a Euclidean space E to be a finite-dimensional vector space over the
reals with which there is an inner product (.,.) : E x E — R that satisfies the following

conditions x,y,z € E, a, 8 € R
o (ax+fy,z) = oz, z) + By 2),
o (x,y) = (y,x),
e (z,x) >0, where (z,z) = 0 if and only if z = 0.
Examples of Euclidean spaces are R™ and R™*", which are the spaces of real column

vectors © = (x1,s,...,7,)" and real m X n matrices A = (a;;), respectively. The

standard inner product on R" is defined as

n

T

2Ty =" wy;,
=1

and the inner product we will use on R™*" is defined as follows

m n

(X, V) =) wiyy = Tr(XTY),

i=1 j=1
where Tr(A) = >_" | a;; is the trace of a matrix A = (a;;) € R™*™.
Now, we briefly recall some known facts from linear algebra that will be used in the sequel

of this thesis. For the details, we refer to the book [27].

Definition 1.1.1. For A, B € R™", ¢ € R" we recall a function ||.|| : R"" — R, a

matrix norm if it satisfies the following axioms

LA =0,

Al=0< A=0,
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>

2. [leAll = lefl|A

3. [[A+ Bl < ||All + |B

’

4. |AB| < ||A[l|| Bl
The Frobenius and the spectral norms are defined, respectively, as follows:

|All» = v/Tr(ATA) and ||A|, = /Tr(A2) ifA € S",

and
|All2 = vV Amax(ATA) and || Alls = Mnax(A) if A € S™.

We have the following properties.
Property 1.1.1. Let A, B € R"*", then
e Tr(A) = Tr(AT).

e Tr(A) = Tr(B) if Ais similar to B i.e., A = PBP™! for some non-singular matrix
P.

Tr(AB) = Tr(BA).

e Tr(A+ B) =Tr(A) + Tr(B).

IAB|l2 < [|All2[| Bl

[All2 < [[Allr < V/nllA

2,7121.

We list below some well known matrix theoretic properties that are needed in this

thesis

1. A is positive semidefinite (positive definite) if the usual inner product (Azx,x) >

0(> 0) for all nonzero x € R".
2. A € S™is positive definite if and only if A,,;,(A) > 0.

3. A € R™" is positive definite if and only if its symmetric part # is positive

definite.
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4. The square real matrix A is symmetric if and only if there exists an orthogonal
matrix O such that OOT = I and A = ODO? where D is a diagonal matrix, i.e.,

Lemma 1.1.1. Ler (X, Z) € S x S", we have:
1. Tr(XY') > 0, for every X, Y > 0.
2. X,Y = 0Tr(XY)=0ifand only if XY =Y X = 0.
3 XeS"andTr(XY)>0,Y 0= X = 0.

We will use also the following transformations:

The Lyapunov linear transformation,
1
L(X) = §(AX + XAT), £:S" - S", where A € R™".
The two sided multiplicative transformation,

M(X)=AXAT, M :S" —S".

1.2 Matrix theory

Every matrix X € S" is orthogonally diagonalizable, i.e., X = UDU? with an orthogo-
nal matrix U and a diagonal matrix D = diag(d;, ..., d,), where each d; is the eigenvalue
of X.

If X > 0, we have

Vdi 0 ... 0
xe—p| V& 00 U

0 0 . 0

0 0 0 Vd,

The X'/? is called the square root matrix of the matrix X.

Definition 1.2.1. We write T : H — K is a transformation from a set H to IC, the set H is
called the domain of T, then T* : K — H is called the adjoint of T and he is determined
by the formula

(Tx,y)e = (x,Ty)y, , Ve € H,ycK,
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the transformation T' is called self-adjoint if T' = T™.
Theorem 1.2.1. The properties of the adjoint:
o (A+B) = A"+ B*,(MA)* = M\A* (A € C),
o (A*)* = A, (AB)* = B*A*,
o (A1) = (A*)7' if Ais non-singular,
o [[All=[lA"]

Proposition 1.2.1. If all multiplications and additions make sense, the following hold for

matrices, A, B, C and a, b scalars

o A(aB +bC) =a(AB) + b(AC),

e (B+C)A=BA+CA

e A(BC)=(AB)C.
Lemma 1.2.1. Let A be an m x n matrix and let B be a n X p matrix. Then

(AB)" = BT AT,
and if o and B are scalars
(aA+ BB)! = aA” + 3BT,
if A and B are non-singular matrices, we have
(AB)™'=BtA™h

Definition 1.2.2. An n x n matrix A is said to be symmetric if A = A”. It is said to be

skew symmetric if AT = —A.
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1.3 Tensor product

Definition 1.3.1. Let A € R™*" and B € RP*4. Then the Kronecker product (or tensor

product) of A and B is defined as the matrix

apnB ... a,B
AQB=|: P € R™MPxna,
amiB ... am.B
Let x € R™ and y € R", then
ry = [y’ .. eayt)t
= [T, - T1Yns T2YLs - - Tl

Theorem 1.3.1. The following rules hold:

e (A® B)(C ® D) = AC @ BD,

(A+B)e(C=(AC)+ (B (C),

A (B+C)=(A®@B)+ (A (),

MA®B)=MM®B=A®\B, (A€ C),

(A B)" = (A" ® BT),

(A B)™' = (A~ ® B™'), if A and B are non-singular,

e [A® Bl =[A[lBI
Notice that the Kronecker product is non-commutative since in general we have A ®@ B #

B ® A.

1.3.1 Application to Sylvester and Lyapunov Equations

In this section we study the linear matrix equation

AX +XB=C,
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where A € R™" B € R™™ and C € R" ™. This equation is now often called a

Sylvester equation who studied general linear matrix equations of the form
k
i=1
a special case is the symmetric equation
AX + XAT = C, (1.1)

obtained by taking B = AT. When C is symmetric, the equation (1.1) is known as the

Lyapunov equation.

Definition 1.3.2. Let ¢; € R" denote the columns of C' € R"™™™, means that C' =

[c1, ..., Cm), then vec(C) is defined as follows

Theorem 1.3.2. A, C' € R"*". Then the Lyapunov equation
AX + XA =C, (1.2)

has a unique solution if and only if A and — A" have no eigenvalues in common. If C' is

symmetric and (1.1) has a unique solution, then that solution is symmetric.

Remark 1.3.1. The Lyapunov equation AX + X AT = C can also be written using the

vec notation in the equivalent form
(I®A)+ (A I))vec(X) = vec (C).

Definition 1.3.3. For any three matrices A, B, and X for which the matrix product AX B
is defined as follows
vec(AXB) = (BT @ A)vecX,

in the other hand let C' € S", the matrix equation
AXB =C,

is equivalent to following

(BT @ A)vecX = vecC.
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1.4 Convex sets and functions

We will begin by defining the concepts of convex sets and functions.

Definition 1.4.1. A set Q) in a Euclidean space E is called convex if
tr+(1—t)y e, forall z,y€Q in tel0,1].
Given a convex set (), a function f : ) — R is called convex if

flz+ (1 =t)y) <if(x)+ (1 —1)f(y),

forallz,y € Qandt € |0, 1], the function f is called strictly convex if the above inequal-

ity is strict whenever x # y and t € (0,1).

1.4.1 Convex optimization

Theorem 1.4.1. Let f : C' — R be a convex function defined on the convex set C. Let

x* € C be a local minimum of f over C. Then z* is a global minimum of f over C.

Theorem 1.4.2. Let f : C' — R be a strictly convex function defined on the convex set C.
Let x* € C be a local minimum of f over C. Then x* is a strict global minimum of f over

C.

Theorem 1.4.3. (convexity of the optimal set in convex optimization)) Let f : C' — R be
a convex function defined over the convex set C C R"™. Then the set of optimal solutions
of the problem

min{ f(x), = € C}, (1.3)

which we denote by =¥, is convex. If, in addition, f is strictly convex over C, then there

exists at most one optimal solution of the problem (1.3).

1.4.2 Convex Cones
Definition 1.4.2. A non-empty subset K C R" is called a closed convex cone if it satisfies:
e ax € Kwhenever z € K and o > 0.

o v+ y € Kwhenever x € Kandy € K.



CHAPTER 1. CONVEX ANALYSIS AND MATRIX THEORY 25

Moreover, K is pointed if

zand —r €K =z =0.

A pointed convex cone in R" defines a partial order on R™ by
r>ysxr—yek,

or equivalently
(=K) nK = {0},
with —K = {—xz | z € K}.

This partial order satisfies the following conditions:

e Vx e R" : x >u,

Ve,yeR* : x>y y>cr=x=1y,

Ve,y,z e R" : >y y>z=22> 2

Ve,y e R", Va e R, : =z >y = ar > ay,
o Vo,y, o,y €R x>y’ >y s+ >y+y,
for x,y € R".

Lemma 1.4.1. The set {X € S" : X > 0} of positive semidefinite matrices is a closed

convex cone.

Definition 1.4.3. Let K C R" be a closed convex cone. The set
K'={yeR": (y,z) >0 Vz € K}

is called the dual cone of K, with (., .) the standard scalar product in R".

Definition 1.4.4. A cone K is called self-dual, if K = K*.

Definition 1.4.5. K C R" is a proper cone if it is a cone which is closed, convex, pointed

and solid, which means it has nonempty interior.

Definition 1.4.6. A regular convex cone K C R" is called homogeneous if the automor-
phism group Aut(K) acts transitively on K°, i.e., if for every x,y € K° there exists an

automorphism A € Aut(K) such that Ax =y .

Definition 1.4.7. A self-dual, homogeneous regular convex cone is called symmetric cone.
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1.4.3 Examples of symmetric and nonsymmetric cones

e The nonnegative orthant R’} of R":

R" = {z € R"|z > 0}

e Lorentz cone L : partition every element of R™ as x = (2, 21) € R x R""! and

define the Lorentz cone (or the ice-cream cone) as

L = {(xo,21) ERXR" 1]l < 20} CR"

e The cone of symmetric positive semidefinite matrices S'; :

St ={AeS" xz"Axz >0, Vx € R"}.

e The cone of copositive matrices
C,={A€eS" 2"Az >0, Vz € R},

is not self-dual and therefore is not a symmetric cone (see e.g. [24]).

1.5 Newton-Raphson’s method for nonlinear systems

Now we are interested to the Newton-Raphson method for solving nonlinear system of
equations. This latter plays an important role in the development of interior-point meth-

ods. We have the following definition.
Definition 1.5.1. A system of nonlinear equations is a set of equations as the following:

fl(xlaan-"wrn) = 07

fg(l'l,xg, Ce ,l’n) = 0,

fn(xlax%"'?xn) = 07
where v = (x1,3,...,2,)7 € R" and f; is a nonlinear real function, i = 1,...,n. To

simplify the notation even further, define the vector valued function

f1($) f1<x1,$2,...7xn)
f(x) _ f2(l') _ f2<l’1,l‘2‘,...,xn)

fu(2) o1, @, .o xy)
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We now define the n x n Jacobian matrix J(x) as

0 0 0
8—£(x) 8—:@(@ . %(x)
fa fa ofs
o= | BB
Afn Ofn Ofn
| G(2) g(z) ... gm(x) |

where %(m) is called the partial derivative of f; at z;.

The Hessian matrix is a matrix of second order partial derivatives, define as follow:

*f 9 f 92f T
axg (aj) 8:1:13;62 (I) e 3x18;3n (I)
0%f 0% 0%
H(:L‘) = 8128?(‘31 ('T) Wj(l‘) T 8:(:28;.71 (QZ)
92 fn 2 fn 92 f,
L an](;xl (ZL’) axn]g)m (SL’) cee 8:):{21 (I) ]

1.5.1 Newton-Raphson’s Method

If x = z( (a vector) represents the first guess for the solution, successive approximations

to the solution are obtained from
Tpy1 =Ty — J  f(2,) = 2 — Ay, With 2,41 = 2, + Ay,
where Ax,, (Newton’s direction) is the solution of the following system

J(2) Az, = —f(24).

1.6 Problem Description

In the mid 1960’s, Lemke, Cottle, and Cottle and Dantzig [20] introduced the linear com-
plementarity problem (LCP), as a unifying problem of the linear and convex quadratic
programming, and the problem of finding Nash equilibrium of bimatrix games.

In this section, we start from a mathematical definition of LCP, we begin with some math-
ematical definitions, before introducing a standard form of semidefinite linear comple-
mentarity problem (SDLCP), in section 1.6.1 we introduce the standard linear comple-
mentarity problem, then in section 1.6.3 the Horizontal linear complementarity problem,

and in section 1.6.5 the semidefinite linear complementarity problem (SDLCP).
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1.6.1 Linear Complementarity Problem

LCP is not an optimization problem, but it has robust relationship with both linear pro-
gramming (LP) and convex quadratic programming (CQP) problems. This strong rela-
tionship is based on the fact that Karush-Kuhn-Tucker (KKT) optimality conditions for
LP and QP can be converted into LCP. Many optimization problems from engineering,
finance, transportation, etc. can be directly written as LCP. Therefore, solving LCPs has
been very important topic for many years.
LCPs is a problem of finding a particular vector in a finite real vector space that satisfies
a certain system of inequalities. Mathematically, given a vector ¢ € R" and a matrix
M € R™ " we want to find a vector x € R" (or to show such a vector does not exist)
such that

t>0,y>0y—Mzr=gq, 27y=0. (1.4)

We will denote
F={(z,y) eR™:y=Mz+q, x>0,y >0}.

The feasible set of points of the LCP as defined in (1.4).

The solution set of the LCP is given by:

Sol(M,q) = {(z,y) € F: 2"y=0}.

1.6.2 Classes of LCP

In the literature of LCPs there are more than 50 matrix classes. In this section, we recall
some important used classes in an [PM framework.

Let M € R™™ 2 € R"™ and x > 0.

e M is called a skew-symmetric matrix if
z€R" : 2" Mz =0.
e M is called a positive semi-definite matrix if

reR™ . 2T Mx > 0.
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e M is called a Fy-matrix if
(0#xz e R")(Fiel)(x;(Mz); >0).

e M is called a P-matrix: Matrix with all principal minors positive or equivalently
(0#2 e R")(FieI)(x;(Mz); > 0).

e M is called a P, (x)-matrix if

(L+4r) Y (m(Mx))+ Y (z:(Mz);) > 0,Vz € R",

ielt(z) i€l (z)
where
I'(x) = {i:2;(Mz); >0}, 1 (z) = {i : ;(Mx); < 0},
or
"Mz > —4k Z (xi(Mx);),Vx € R".
ielt(z)
Example 1.6.1.

Recall that a pair of primal-dual LP programs is defined as

. T
min ch max b Y
X (y,z)

s.t. Az =b , anditsdual ¢ ATy + 2 =,
€ Z 07 z Z 0,
withz,z e R",y € R™, c € R", b € R™ and A € R™*". LP can be converted into LCP

thanks to KKT conditions
Az = b, >0

ATy+z = ¢ 220

The LCP is given as follows:

where Z = , T = M= and g = ,
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1.6.3 Horizontal Linear Complementarity Problems

Given two square matrices M, N € R™ ™ and a vector ¢ € R", the horizontal linear

complementarity problem (HLCP) consists in finding a pair x,y € R" such that
r>0,y>0 Ny—Mz=gq, 27y =0. (1.5)
We will denote
Fr= {(x,y) eR™: Ny= Mz +q, $20,y20}.

The feasible set of points of the HLCP as defined in (1.5). The solution set of the HLCP
is given by:

Sol(M,N,q) = {(z,y) € F: 2"y =0} .

Remark 1.6.1. If N = I or N~ ! exists, the HLCP reduced to the standard LCP.

1.6.4 Classes of HLCP

In this section, we recall some important classes of HLCP. Let M, N € R"*", x,y € R"

and Kk > 0.
e {M, N} is called a monotone pair if
—Mz+Ny=0= 2"y >0.
Or [M, N] is full row rank (i.e., rank [M, N] = n).
e {M,N}iscalled a Py-pair if —Mxz + Ny = 0and (z,y) # 0

(0#2zeR"or0#y e R")(Fi € I)(z;y; > 0).
e {M,N}iscalled a P.(k)-pair if —Mz + Ny = 0 implies that
ielt(x) i€l (x)
where
I'(x)={i:zy; >0}, 1 (x) = {i:zy <0},
or

2y > —dk Z xy;, Ve, y € R".

ielt(z)
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Example 1.6.2.

We consider the absolute value equation, which consists in finding z € R"” such that
Az — B|z| = b, (1.6)

where A, B € R"", b € R” and |z| denotes the vector in R" with absolute values of
components of z. Indeed, for z € R", we define 2™ = max(z,0) and 2= = max(0, —x).

Then it is easy to conclude that
2t >0, 27 >0, v=2"—2, |[z|=2"+2" and 272" = 0.

Therefore, the AVE is equivalent to the following HLCP: find z+ > 0 and 2= > 0 such

that
Nzt — Mz~ =gq
™ Tr™ =0,
withN=A—-—B,M =A+ Bandq="0.
Example 1.6.3.

Let us consider the following convex quadratic program:
1
(P) min {ch + §xTQx} : Ax <b, x >0,

where () is a symmetric semidefinite matrix in R**", ¢ € R", b € R™, z € R" and
A € R™" with rank (A) = m. Cottle [20] showed by invoking the K.K.T optimality
conditions that x is an optimal solution of P if and only if there exists y € R, and

A € R% such that

Qr+c+ ATy—XA=0 A=Qz+c+ ATy
yT'(b— Azx) =0, <4 p=—-Ax+0y+0D,
Mz =0 Mo+ ply=0, 2,9y, \, u > 0.

Therefore the K.K.T optimality conditions are equivalent to the following monotone
HLCP

Nw—Mz=quw'z=0w,2z>0
where

Q AT c
N=I M= ,q = LW = , 2=
—-A 0 b

= >
< 8
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1.6.5 Semidefinite Linear Complementarity Problem

Let S™ denotes the linear space of all n x n real symmetric matrices and S} C S" be the
closed convex cone of symmetric positive semidefinite matrices. Given a linear transfor-
mation £ : S"™ — S"™ and a symmetric matrix ) € S", the semidefinite linear complemen-
tarity problem (SDLCP), is the problem of finding a pair of matrices (X,Y) € S" x §"
such that

XY eSS, Y=L(X)+Q, XeY =0, (1.7)

where X e Y denotes the trace of the matrix product XY'.

1.6.6 Classes of SDLCP

For a linear transformation £ : S — S™, we say that

e [ has the Ry-property if the zero matrix is the only solution of SDLCP(L ,0).

L has the QQ-property if for every Q € S, SDLCP(L, Q) has a solution.

L has the P-property if

X and L£(X) commute,ie., XL(X)=L(X)X, XL(X)=20=X=0.

L has the the strict semimonotone property if

X >0, X and £(X) commute, XL(X)<0= X =0.

L is strictly monotone (monotone) if

(L(X),X)>0(=>0), forall X #0.

Definition 1.6.1. A linear transformation L : S™ — S™ is said to be nondegenerate if

XL(X)=0= X =0.
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1.6.7 Some results of the existence and uniqueness of solution of mono-

tone SDLCP

Lemma 1.6.1 ([9, 29]). The SDLCP has solutions if the transformation L is monotone
and the set of feasibility is non empty. In addition, if L is strictly monotone, then the

SDLCP has a unique solution for each () € S™.
Remark 1.6.2. These results are also valid for HLCPs.

Example 1.6.4.
The standard linear complementarity problem is a special case of the semidefinite lin-
ear complementarity problems, let M € R™ " and ¢ € R", as in (1.4), and define the

following transformation £ : S" — S" by
L(X) = Diag(Mdiag(X)),

where diag(X) is a vector whose entries are the diagonal entries of the matrix X, and
Diag(x) is a diagonal matrix whose diagonal is the vector x.

The semidefinite linear complementarity problem SDLCP(L,Diag(q)) corresponding to
the standard linear complementarity problem LCP()M ,q) is define as follows: Find X &

S™ such that
X eSt, Y=L(X)+Diag(q) €S}, and X oY =0,

if X is the solution of SDLCP(L,Diag(q)), then diag(.X) is the solution of LCP()M, q).
Conversely, if x is the solution of LCP(M, q), then Diag(x) is the solution of SDLCP(L,Diag(q)).
Example 1.6.5.

A pair of primal-dual semidefinite optimization SDO programs is defined as:

minC e X
X
st (A, X)=b;, i=1,2,....m (P)
X =0,
and its dual
max b’
(v,2) Y
sty yidi+Z=C, (D)
i=1
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with A;,C" € S", b,y € R™ and X, Z € §}. It is well-known, that finding an optimal
solution X of P and an optimal solution (y, Z) of D is equivalent to solving the following

implicit SDLCP problem characterized by the following optimality conditions
Ai.X:bi,i:1,2,...,m, XtO,

S wAi+Z=0C, Z =0,
=1
XZ =0.

Applications

Example 1.6.6.

Consider the symmetric semidefinite constrained least squares problem (SDLS) which is

defined as the following convex optimization problem:
1 9
min 5 | AX — B[,
st. X =0,
where A, B € R™*" with m > n. It is shown [35], that if rank (A) = n, the SDLS

has a unique solution X* > 0. The optimality conditions for SDLS are equivalent to the

following monotone SDLCP with £ : S" — S"™ and () € S™ are given by:

1 1
Here £(X) is a Lyapunov linear transformation, with A7 A is symmetric positive definite

matrix if rank (A) = n. Next Lemma shows the strict monotony of it.

Lemma 1.6.2. [35] The transformation L(X) = $(AT AX + X AT A) linked to the SDLS

is a strictly monotone transformation.
Proof. Let X € S", we have
1 1
(LX), X) = —(ATAX X)+ 5<XATA, X)

2

- %Tr((ATAX)TX) + %Tr((X ATA)TX)

= Tr((AX)TAX) = ||AX|3 > 0, since rank(A) = n. VX #0. O
Lemma 1.6.3 ( Theorem 3.5 in [17]). If A is symmetric positive definite matrix then the

two-sided linear transformation M(X) = AX AT is strictly monotone and consequently

the corresponding SDLCP has a unique solution for every () € S™.
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In this chapter, we present an Interior-Point Method (IPM) for monotone HLCP, we
study first the central-path of HLCP and the search directions, then we state the generic
full-Newton step feasible interior-point algorithm for HLCP in section 2.1. The details
of the analysis of the proposed algorithm will be discussed in section 2.2. Finally, some

numerical results are provided to show the efficiency of the proposed algorithm and to

compare with an available method.

We recall that the horizontal linear complementarity problem (HLCP) consists in finding

35
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apair z,y € R" such that
t>0,y>0 Ny—Mx=gq, 27y=0. 2.1)

Such that M, N € R™*" are a given two square matrices, and ¢ € R" is a vector.

2.1 Central-path for HLCP

Throughout this chapter, we assume that (2.1) satisfies the following assumptions [18, 59].

e (Interior-Point-Condition (IPC)). There exists a pair of vectors (z°,4°) such that

Na® — My =¢q, y° >0, 2° > 0.

e (Monotonicity of (2.1)). The pair of matrices [V, M| satisfies

Nu— Mv=0= u"v >0, forany u,v € R".
These two assumptions imply the existence of a solution for HLCP (see [60]). Finding an
approximate solution of HLCP is equivalent to solving the following system:

Ny — Mz = q,
zy=0,2>0,y>0.

(2.2)

The basic idea of the path-following interior-point algorithm is to replace the second equa-
tion in (2.2), the so-called the complementarity condition for (2.1), by the parameterized

equation xy = pe with o > 0. Thus one may consider the following system:

Ny — Mz =q, 23)

Ty = je.
The system (2.3) has a unique solution denoted by (x(u), y(u)) for each i > 0 [53]. Then
we call (z(u),y(u)) the p—center of HLCP. The set of u—center (with p running through
all positive real numbers) is called the central-path of HLCP. If 1 — 0, then the limit
of the central-path exists and since the limit point satisfy the complementarity condition

xy = 0, the limit yields a solution for HLCP [18].
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2.1.1 Search directions for HLCP

Now, we want to define search directions (Ax, Ay) that move in the direction of the -
centers (y(u),z(u)). Applying Newton’s method for (2.3) for a given strictly feasible

point (z,y), i.e., the IPC holds, we get the following linear system:

NAy — MAz =0,
XAy +YAx = pe — xy,

(2.4)

where X'= Diag (z) and Y= Diag (y). The unique solution (Ax, Ay) of (2.4) is guaran-

teed by our assumptions since the bloc matrix

—-M N
Yy X

is nonsingular (cf Proposition 3.1 in [58]). Therefore, the new iterate is obtained by taking

a full-Newton step according to:

Ty =x+ Az, y, =y + Ay.

Denote
v= /2, 2.5)
1
and
A A
dy = — d, = =2 (2.6)
Z )
One can easily check that
pdyd, = AzAy, and zAy + yAzx = po(d, + dy). (2.7)

Now due to (2.6) and (2.7), system (2.4) becomes

Nd, — Md, =0,
(2.8)
d;t + dy = Pv,
where M = MXV~!, N = NYV~! with V:= Diag (v) and,

Do =v !l —o.

For the analysis of the algorithm, we use a norm-based proximity measure ¢(v) defined
by:
1
0= d(ay; p) = 5llpll (2.9)
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Clearly,

d(v) =0 v=ecsry = pe.

Hence, the value of §(v) can be considered as a measure for the distance between the

given pair (z,y) and the corresponding p—center (z(u), y(u)).

2.1.2 Algorithm for HLCP

The interior-point primal-dual algorithm for HLCP works as follows. First, we use a
suitable threshold (default) value 7 > 0, with 0 < 7 < 1 and we suppose that a strictly
feasible initial point (2°,4°) exists such that 6(z%°; o) < 7, for certain i is known.
Using the obtained search directions (Az, Ay) from (2.4) and taking a full-Newton step,
the algorithm produces a new iterate (x.,y,) = (x + Az, y + Ay). Then, it updates the
barrier parameter  to (1 — 0)u with 0 < 6 < 1 and solves the Newton system (2.4), and
target a new p-center and so on. This procedure is repeated until the stopping criterion
np < e is satisfied for a given accuracy parameter €. The generic feasible full-Newton

step interior-point algorithm for HLCP is now presented in Fig 2.1, as follows.
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The generic interior-point algorithm for HLCP

Input:

A threshold parameter 0 < 7 < 1 (default 7 = %);

an accuracy parameter € > 0;

a fixed barrier update parameter 0 < 6 < 1 (default § = (5-)*/?);
a strictly feasible point (2°,y°) and o = 1 s.t. 8(z%%; p°) < 7.
begin

v =%y =y’ p = po;

While nu > € do

Solve system (2.4) to obtain (Az, Ay);

Update x := x + Ax; y ==y + Ay;

o= (1= 0);

end while

end.

Figure 2.1: Algorithm 2.1

2.2 Complexity analysis of the algorithm

In this section, we will show across the new defaults # and 7, described in Fig 2.1, that

Algorithm 2.1, is well-defined and solves the HLCP in polynomial complexity.

2.2.1 Feasibility and locally quadratically convergence of the feasible

full-Newton step

We first investigate the feasibility of a full-Newton step. Then we mainly prove that the

iterate is locally quadratically convergent. We first quote the following technical lemma

which will be used later.
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Lemma 2.2.1. Let 6 > 0 and (d,, d,) be a solution of system (2.8). Then, we have
0 <dld, <26 (2.10)

and

|dady ||l < 6%, ||dud,| < V262, (2.11)

Proof. For the first part of the first statement, let d, and d, be the unique solution of
system (2.8), hence from the first equation of it, we have N dy — Md, = 0. Substitution
N=NYV~land M = MXV~!, then MXV~1d, — NYV~'d, = 0. But since the pair

[N, M] is in the monotone HLCP, so by assumption 2, we conclude that
(Xv-1ta)"(vyv-'d,) =dtd, > 0.
For the second part of it, it follows trivially from the following equality
48 = [p P = da + d, 2 = ldall? + 1, | + 2% d, > 2"d,.
For the second statement, we have
1 2 2
dydy = 7 ((dy +dy)" — (dz — d,))7),

and

lde + dy|I* = lldo — d,|I* + 4d,.d,,.

But since dZd, > 0, it follows that
|dz — dy|| < [|ds + dy]|-
On the other hand,

1
HdwdyHoo = ZH(dﬂc + dy)2 - (dm - dy)2||oo

1

< ZmaX(de‘i‘dy”ioaHd:p_dyHio)
1

< max(|ds +dy %, ||ds — d, )
1 1

< Zde + dy|% = < |po])? = 6

< glde +dylFF = lpo]
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Therefore, ||d.d,||. < §2. To prove the last part of it, we have,

1
ldedy|I* = €"(dady)® = Toe" (e + ) = (do = d,)*)?

1

= clde+dy)* = (do = )|
1

< 7gIde + )1 + I(de — d,)[1%)
1

< Tollde +dyl* + l1de — dy 1)

< glldetdy 1t = Ll = 25
Hence, ||d.d, || < v/26%. This completes the proof. O
Lemma 2.2.2. The full-Newton step is positive if and only if e + d,d, > 0.
Proof. We have,
ryoyr = (x 4+ Ax)(y + Ay) = 2y + Ay + yAzx + AxAy.
Using (2.6) and (2.7), we get
zy Yy = ple + did,).

If x4 > 0and y, > 0 then z y; > 0 and so e + d,d, > 0. Conversely, let 0 < o < 1

and define z(a) := = + aA(z), y(«) := y + aA(y), we have
z(a)y(a) = vy + a(pe — xy) + o* AzAy.

If e + d,d, > 0 then pe + AxAy > 0 and AzAy > —pe. Hence
z(a)y(a) > (1 - a)zy + (o — a”)ue > 0.

So z(a)y(a) > 0 for each 0 < o < 1. Since z(a) and y(«) are linear functions of «
and z(0) = > 0 and y(0) = y > 0, then (1) = x4 > O and y(1) = y, > 0. This
completes the proof. O

For convenience, we may write
2 _ T4+
vl = .

_l’_
|

It is easy to deduce that

02 =e+d.dy, & vy = ple+ d.dy). (2.12)
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Lemma 2.2.3. If) < 1, then x; > 0 and y,. > 0. Thus concludes that v, > 0 and

y+ > 0 are strictly feasible for (2.1).

Proof. From Lemma 2.2.2, we have seen that z, > 0,y > 0if and only if e 4 d,d, > 0.

Because,

1+ (dydy); > 1 —|(dydy)i| > 1 — ||d,d, || for all 4,

s0, by (2.11), it follows that 1 + (d,d,); > 1 — 6%. Thus e + d,d, > 0if§ < 1. This
completes the proof. 0

The next lemma shows the influence of the full-Newton step on the proximity measure.

Lemma 2.2.4. If) < 1. Then
52

V2(1 =02

0 1= 0(vysp) <

Proof. We have

26, = [los — 07|

Due to (2.12), we have v, = /e + d,d, and v;' = \/ﬁ. Thus implies that
et+dydy
dd \|d.d, ||
204 = St < it .
* er Fdody ||~ /T = dody[loo
It follows from (2.11) that §, < \/%. This completes the proof. O
Corollary 2.2.1. Let 6 < \/LTO’ thus 6, < 0% which means the locally quadratically

convergence of the full-Newton step to the central-path.

2.2.2 Updating the barrier parameter
The following lemma gives an upper bound for the duality gap after a full-Newton step.

Lemma 2.2.5. Let § < \/LTO' Then after a full-Newton step the duality gap for the pair

(r4,yy) satisfies

zly, < 2un. (2.13)
Proof. Using (2.12), we have

aly, = pe' (e + dyd,) = p(n +dLd,).
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Using (2.10), it follows that
wlyy < p(n+26%).

Now, let § < then

\ﬁ
P 4
LYy S pn+ 5
But since foralln > 1, n + % < 2n, this gives the required result. U]
In the next lemma, we investigate the effect on the proximity of a full-Newton step fol-

lowed by an update of the barrier parameter .

Lemma 2.2.6. Let § < and piy = (1 — 0)p, where 0 < 0 < 1. Then

\F

2  (n+32) 46

52 )< = 4T Y

In addition, if

IN
|w
)
I

/\

V2 andn > 2, then 6(x 4y piy) <

2
23n) Vio

Proof. We have,

2

_ 1
A% (xyyy;ipy) = H V1-— 9U+1 - m%
) 2
= H\/ 1-— 9(?}+1 — U+) — \/1—T0’U+
92
= (=)ot — v P oy P = 260" — 0o

2
O = o = 200 e+ 200
As (v v, = n and (Lemma 2.2.5)
1 4
(040 =l = ot < (4 3).

it follows that

*(n+2) 26
2 )< (1—gyg2 4\t E) 20
Letd < \ﬁ then 62 < Z, and we deduce that

200—0) *n+12) 20
2 . < il -

Now, taking 6 = (55-)"/? then §* = hence, we get

23’

201—0) >(n+32) 20
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6(n+%) 42
Now, as ——2 < 7% for all n > 2, then

21 40

By yaigi) € =y
=15 T 230(1 - 0) 15

Again, for n > 2, we have 6 € [0, (2)'/?]. Letting

2 21 46

10 =35+ 230(1—0) " 15’

The function f(6) is continuous and monotone increasing on [0, (2)"/?]. Therefore,

3 1/2 1 3 1/2
FO < f (<%) > = 0.37256 < -, forallf € [0, <2—3) ] .

Then, after the barrier parameter is update to s, = (1 — 0)p with 6 = (55-)*/? and if

0 < \ﬁ then ,
0T yy; < —.
(T4+y+5 14) /10
This completes the proof. U
From Lemma 2.2.6, we deduce that for the defaults 7 = \/LTO and § = (5-)'/2,

Algorithm 2.1 is well-defined since the conditions x > 0, y > 0 and §(z,y,; puy) < \/LTO

are maintained during the solution process.

2.2.3 Iteration bound

We conclude this section with a theorem that gives us the iteration bound of Algorithm
2.1. Before doing this we apply the results obtained in the previous subsections and get

the following lemma.

Lemma 2.2.7. Assume that x° and 1° are strictly feasible starting point such that 6 (xz°y°; pg) <
\/Lfo for certain iy > 0. Moreover, let x* and y* be the iterate produced by Algorithm 2.1,

after k iterations. Then the inequality (z*)Ty* < ¢ is satisfied for

1. (2
k> —log( ”“0).
0 €

Proof. From (2.13), it follows that

()" < 2npm = 2n(1 — 6)* po.
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Then the inequality (2*)Ty* < € holds if
2n(1 — 0)Fuy < e
Taking logarithms, we obtain
klog(1l —6) < loge — log(2npuo)

and using —log(1 — 6) > 0 for 0 < 6 < 1, then we observe that the above inequality
holds if

2
kO > log e — log(2npug) = log ( nMO) :

€

This implies the lemma. ]

Theorem 2.2.1. If§ = (53-)'/? and j1 = i, then Algorithm 2.1 requires at most
O <\/ﬁ log 2)
€
iterations for getting an e-approximate solution of (2.1).

Proof. Let § = (50-)"/? and o = %, by using Lemma 2.2.7, the proof is straightforward.
L]

2.3 Numerical results

In this section, we test Algorithm 2.1, on some monotone HLCPs which are reformu-
lated from three interesting problems, namely the absolute value equation (AVE) (see,
e.g.,[30, 39, 44]), convex quadratic optimization programs and the monotone standard
LCP, respectively.

Recall that the AVE (Example 1.6.2) is defined as:

Ax — Blz| = b, (2.14)

Therefore, the AVE is equivalent to the following HLCP: find z+ > 0 and 2~ > 0 such

that
Naxt — Mx~ =gq

e~ =0,

(2.15)



CHAPTER 2. A FULL-NEWTON STEP IP ALGORITHM FOR HLCP 46

with N = A— B, M = A+ B and q = b. It shown under the condition that o,;, (A) >
Omax(B) (cf. Proposition 2.3 in [30]), that the HCLP in (2.15), is reduced to a P-matrix
standard LCP and therefore the HLCP has a unique solution (x*,z7) for every b (cf.
Theorem 3.3.7 in [21]). Hence, the AVE has = 2+ — 2~ as the unique solution. Now,
for the implementation of Algorithm 2.1, our accuracy is set to ¢ = 107% and we use
different values of the barrier parameters jiy and 6 in order to improve its performances.
The Algorithm 2.1 is implemented on software MATLAB 7.9 and run on a PC with CPU
2.67 GHz and 4G RAM memory and double precision format. Now, four problems of
monotone HLCP are constructed from two randomly AVE problems and from a convex
quadratic program and a monotone standard LCP. To this end we compare our Algorithm
2.1 with an iterative fixed point method.

Examplel. Consider the AVE problem of type (2.14), where A, B and b are given by

8§ 0 -1 1 —20 -15 0 1.5 05 0.1
1 1 1 4 25 0 1 0 05
A=|1 -5 0 8 —-10 |.B= 1 06 1 04 05 [.b=eeR.
0 8 1 —6 1 0 1 1 0

3 1

5 =3 0 10 0 10 O
One can easily check that the AVE in problem 1, has a unique solution since oy, (A) =

2.8215 > opax(B) = 2.7434. Therefore the corresponding HLCP in (2.15) is strictly

monotone and its data is given by

99 0 =25 05 -20.1 6.5 0 05 1.5 —-19.9

1 075 0 4 24.5 1 1.25 2 4 255
N = 0 -56 -1 7.6 —10.5 |, M= 2 —-44 1 84 -9.5

0o 7.7 0 -7 1 0 83 2 =5 1

2 5 —4 0 10 4 5> =2 0 10

and ¢ = b. The strictly feasible starting point for Algorithm 2.1, is
ry = (2.6677, 0.4111, 1.3168, 0.3506, 1.6744)",

and

rg = (1.3825, 4.9548, 2.7173, 4.6145, 1.1166)”.
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The unique solution of the corresponding HLCP is

and

z~ = (0,0, 0,0, 0.0735)7,

ot = (0.0286, 0.6808, 0.4270, 0.5953, 0).

Therefore, the unique solution of the AVE is given by

x = (0.0285, 0.6808, 0.4270, 0.5953, —0.0753)".

47

The numerical results with different theoretical and relaxed barrier values of yy and 6 are

shown in table 2.1.

Lo — 0.5 0.05 0.005 0.0005 0.00005

0] Iter CPU | Iter CPU | Iter CPU | Iter CPU | Iter CPU
(%)1/2 51 0.011 |42 0.0149 | 33 0.0194 | 24 0.0079 | 16 0.0087
ﬁﬁ 52 0.0091 | 43 0.0112 | 34 0.0095 | 25 0.0110 | 16 0.0136

Table 2.1: The numerical results, after the algorithm reaches ny < 107°

Example 2. The matrices A, B € R™™", and the vector b € R" of the AVE problem are

given by

and

6 0.5
0.5 6
0.5 0.5

0.5 0.5
0 0

-1
0.5
0.5

0.5

0.5

0.5 0.5

0.5 0.5

0.5 0.5

6 --- 05

0.5

05 ... 6
0 0

0.5 0.5
0.5 0.5
—1 0.5
0.5

0.5 -1
0 O

o O
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and

b=(21,28,...,28, 21)".

The numerical results with different size of n are summarized in tables Table 2.2 and

Table 2.3. For the initialization of the corresponding HLCP, we take
1
zy = e and rd = (3.4286, 4.5,...,4.5, 3.4286)".

The unique solution of HLCP is given by

Therefore the unique solution of the AVE is

r=(3,4,...,4,3)7"

Lo — 0.5 0.05 0.005 0.0005 0.00005
Sizen | | Iter CPU Iter CPU Iter CPU Iter CPU Iter CPU

6 o7 0.0284 | 47 0.0265 | 37 0.0271 | 27 0.0281 17 0.0269
12 83 0.0346 | 68 0.0283 | 54 0.0259 | 39 0.0265 25 0.0206
18 103 0.0452 | 85 0.0407 | 67 0.0312 | 49 0.0372 31 0.0265
24 120 0.0381 | 99 0.0340 | 78 0.0349 | 57 0.0368 36 0.0318
50 176 0.1385 | 145 0.1169 | 114 0.0734 | 83 0.0794 53 0.0510
100 251 0.7036 | 207 0.5885 | 163 0.4844 | 119 0.3945 | 75 0.3019
200 357 10.2619 | 295 9.4354 | 232 7.7834 | 169 5.7430 | 107 3.5279
1100 846 35499 | 698 2148 | 549 1511.3 | 401 1635 | 253 771.8659

Table 2.2: Numerical results with 0 = (23%)1/ 2, after the algorithm reaches ny < 107°.
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o — 0.5 0.05 0.005 0.0005 0.00005
Sizen | | Iter CPU Iter CPU Iter CPU Iter CPU Iter CPU

6 58 0.0292 | 48 0.0193 | 38 0.0256 | 28 0.0216 18 0.0316
12 85 0.0379 70 0.033 | 55 0.0307 | 40 0.0277 26 0.0199
18 105 0.0505 | 87 0.0321 | 68 0.0468 | 50 0.033 32 0.0338
24 122 0.0349 | 101 0.0354 | 80 0.0552 | 58 0.0436 37 0.0212
50 179 0.1258 | 148 0.1109 | 117 0.0964 | 85 0.0825 54 0.0604
100 256 0.7376 | 211 0.6271 | 167 0.5164 | 122 0.4129 | 77 0.3067
200 365 10.5878 | 301  9.5922 | 237 7.9824 | 173 5.8425 | 109 3.6946
1100 864 4170 | 713 2149.9 | 561 1552.9 | 410 1684.3 | 258 828.3743

Table 2.3: Numerical results with § =

1

n

Next example is constructed from a convex quadratic program.

after the algorithm reaches ny < 107°

Example 3. Let us consider the convex quadratic program P define in Example 1.6.3,

with the following data:

3 4
-3 2 1

—2

210

, Q=

140

0 0 6

, b= (10, 2)", c = (1,

Therefore the data of the corresponding monotone HLCP is given by

2 1
1 4
M= 0 0
-3 —4
3 =2

0 3 -3
0o 4 2
6 -2 1
2 0 0
-1 0 0

The starting point for Algorithm 2.1, is given by

P=ecRand w’ = (4,9, 9,5, 2).

The unique solution of the HLCP is given by

z* = (0, 0.5, 0,0, 0)”

-2, 4)%.

N =1,q=(1,-2,4,10,2)".
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and

w* = (1.5,0, 4,8, 1),
So the unique minimum z* of P is attained at the point
z* = (0, 0.5, 0)7.

The numerical results with different theoretical and relaxed barrier values of yy and 6 are

shown in table 2.4.

Lo — 0.5 0.05 0.005 0.0005 0.00005

0] Iter CPU | Iter CPU | Iter CPU | Iter CPU | Iter CPU
(23%)1/2 51 0.0046 | 42 0.0052 | 33 0.0042 | 24 0.0049 | 16 0.0036
ﬁﬁ 52 0.0051 | 43 0.0057 | 34 0.0044 | 25 0.0050 | 16 0.0037

Table 2.4: The numerical results, after the algorithm reaches ny < 1076

In the next example, we compare the performance of Algorithm 2.1 with an available
non-interior-point method, namely, an iterative fixed point algorithm developed earlier by
Yong [56]. In fact, if we take y = |2| — 2z > 0 and x = |2| + 2z > 0 in (2.1), then the

HLCP can be equivalently transformed into a system of fixed point equation
(N+M)z=(N—-M)|z]| —q. (2.16)

Based on (2.16), and assume that the matrix (/N 4+ M) is nonsingular, then the iterative

fixed point algorithm can be described below as follows.

Fixed Point Algorithm.

e Given an initial point 2° € R";
o compute s+ — (N + M) (N — M) ] — (N + 21) g

o set rFtl — Skl 4 |Zk+1

; until the iteration sequence {z*};>( is convergent.

Yong specialized in the HLCP with N = I i.e., in monotone standard LCP, he proved
under suitable conditions that the iterative fixed point method is globally convergent to a

solution of HLCP. For more details the interested reader can consult the reference [56].
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Example 4. [56] Let us consider the following monotone standard LCP with the following

data:
4 -1 0 0
-1 4 -1
M=]1 0 -1 4 0 |, N=1,qg=—e
-1
o ... 0 -1 4

The starting point for Algorithm 2.1, is
2 =eandy’ = (2,1,...,1,2)".
The unique solution of the HLCP is given by
z* = (0.3660, 0.4641, 0.4904, 0.4974, 0.5, ..., 0.5, 0.4974, 0.4904, 0.4641, 0.3660)"

and

So the unique solution z* obtained by the iterative fixed point method is
z* = (0.1830, 0.2321, 0.2452, 0.2487, 0.25, ..., 0.25, 0.2487, 0.2452, 0.2321, 0.1830).

The numerical results obtained by these two algorithms are shown in table 2.5.

Algorithms — | Fixed Point Algorithm | Algorithm 2.1
Sizen | Iter CPU Iter CPU

5 37 0.0401 16 0.0903
10 55 0.0215 23 0.0133
50 122 0.2030 23 0.1650
100 255 0.6410 75 0.2021
200 810 991.2144 170 348.6089

Table 2.5: The numerical results, after the algorithm reaches nu < 107°

Comments. Across the obtained numerical results stated in the above tables, we see that
Algorithm 2.1offers with these new defaults a solution for monotone HLCPs. Moreover,

Algorithm 2.1 obtains better numerical results with the relaxed parameter ;o = 0.00005
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6

-5-)1/2, since the number of iterations is significantly reduced.

and the update barrier 6 = (
Also our obtained numerical results compete well with those obtained with the classical

strategy of the update barrier parameter, namely, = ﬁﬁ (see [7]).

Contributions and some remarks

We end Chapter I with some contributions and remarks.

e We contribute on suggesting two new suitable parameters, namely, the barrier # and

the threshold 7 which lead to the convergence of the algorithm.

e The best polynomial complexity of the short-step algorithm is achieved with these

two new parameters.

e [f an initial point is available i.e., strictly feasible and close to the central-path, then
the advantage of this algorithm is to generate a sequence that still strictly feasible

and close to the central-path during the solution process.
Some practical difficulties of the proposed algorithm.

e [t is mentioned that these methods suffer to obtain a strictly feasible starting point
and close to central-path to initiate their associate algorithm. This because the used

neighborhood of the central-path is narrow since the threshold 7 < 1).

e The update barrier parameter # depends on the size n of the problem. If n is large

enough this leads to a slow convergence of the algorithm.
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Kernel functions play an important role in defining new search directions for interior-
point algorithms for solving monotone linear complementarity problems, for this reason
we have studied primal-dual interior point algorithms for solving SDLCP.

Based on a new parametric kernel function, this chapter presents a primal-dual large-
update interior-point algorithm (IPM) for semi-definite linear complementarity problems

(SDLCPs).

53
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The proposed kernel function is defined as follows:

2—1 q%’l—l_(q—l)(

U(t) = +
Q 2 qlogq q

t—1), t>0, 3.1)

where ¢ > 1 is the barrier parameter.

In this chapter, we will discuss the IPM method for solving a SDLCP. First, we will
explain the concept of the IPM (see e.g. [8, 34, 40]), then we will analyze its convergence
and finally we will give an estimate on the number of iterations needed to find an e-
approximate solution of SDLCP.

Recall that the semidefinite linear complementarity problem (SDLCP), is the problem of

finding a pair matrices (X,Y) € S” x S™ such that
XY eSS, Y=LX)+Q, XeY =0, (3.2)

such that £ : S® — S™ is a given linear transformation, () € S™ is a symmetric matrix and

X oY denotes the trace of the matrix product XY'.

3.1 Some results on matrices and matrix functions
Definition 3.1.1. LetV € Sﬁ and
V = Qszag()‘l(V)7 )\Q(V)a ceey )\n<v))Q>

where Q is any orthonormal matrix (Q* = Q™) ) that diagonalizes V. The matrix valued

function (V') is defined by

Y(V) = Q" diag(¥(M(V)), v (A2(V)), .., b (Aa(V)Q. (3.3)

It should be noted that the matrix () is not unique, but (V') is well defined whenever 1)(t)
is well defined on the eigenvalues of V.

Furthermore, replacing (N (V) in (3.3) by ' (\(V')), we can conclude that the matrix
functions (V)

V'(V) = Q" diag(y/ (M (V)), ¢/ (M(V)),.... ' (A(V)))@Q, (3.4)

is defined as well.
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Definition 3.1.2. A matrix X (t) is said to be a matrix of functions if each entry of X (t)
is a function of t, that is, X (t) = [X;;(t)]. The concepts of continuity, differentiability
and integrability naturally extended to matrix-valued functions of a scalar by interpreting

them component wise. Thus we can say that

d d
—X(t) = — [X;;(t)] = X'(¢).
EX(0)= 5 X, (0] = X'(0)
Suppose that the matrix-valued functions H (t) and G(t) are differentiable with respect to

t. Then we have

GG) = T (560 = T )

d

S(GWH®) = GOH®+GOH D)

For any function ¢ (t), let us denote by /\1)(t) the divided difference of 1(t):

P(t1) — P(ta)
t1 — 1y

if t1 = to, we simply write \(t1,t5) = V' (t).

Dp(ty, ta) = , Vit # to,

Lemma 3.1.1 (Lemma 16 [43]). Suppose that H(t) is a matrix of functions such that the
matrix H(t) is positive definite with eigenvalues \i(t) > Aao(t) > --- > N\, (t) > 0. If
H(t) is twice differentiable with respect to t € (l;,u;) and (t) is twice continuously
differentiable function in a domain that contains all the eigenvalues of H(t), then

STH) = TW(HOH D),
ST H®) < w | H O + T (H 0 H (1),

where

w = max {|J AW (N (), M(®)]  t € (lw), ik =1,2,... 0}

is a number depending on H'(t) and 1 (t) with

P'(t) — P (t2)

A¢,<t17 t2) - t— 1ty

, Yty ty € [l uy] .

3.2 The central-path for SDLCP

Throughout this chapter, we assume that:
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e Interior-Point-Condition (IPC). There exists a pair of matrices (X, Y?) such that:

Y' - LX) =Q, X°~0,Y" 0.

e Self-adjoint and monotonicity.

VX,Y €S"L(X)eY = X e L(Y), L(X)eX >0.

Under these assumptions, it is known that (3.2) has at least one solution [29]. Since for
X,Y € 8%, wehave (X,Y) = 0if and only if XY = 0. Then, finding a solution of (3.2)

is equivalent to solving the following system:

Y - L(X) =0Q,
XY =0, X,Y>=O0.

(3.5)

The basic idea of primal-dual IPMs is to replace the second equation in (3.5) by the

parameterized equation XY = ul, > 0. Hence, we consider the following system:

Y — L(X) =Q,
XY =ul, X,Y =0.

(3.6)

If IPC holds, then for each 1 > 0 system (3.6) has a unique solution. This solution,
denoted by (X (u),Y (n)), is called the p-center of SDLCP. The set of pu-centers gives
the central-path of SDLCP. It has been shown by Kojima et al.[34] that the limit of the

central-path exists as p tends to zero and it is a solution of (3.2).

3.2.1 The search directions determined by kernel functions

The core idea of primal-dual IPMs is to follow the central-path approximately and to
approach the solution of (3.2) as 4 — 0. A direct application of Newton’s method to

(3.6), produces the following system for the search direction AX and AY":

AY — L(AX) =0
AXY + XAY = ul — XY,

(3.7)

or equivalently
AY — LAX)=0
AX + XAYY 1= puy—1 - X,

(3.8)
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Clearly, AX is not symmetric due to the matrix XAYY 1. Therefore, a way to sym-
metrizing the second equation in (3.8) is to introduce an non-singular matrix P and to

replace it by the equation AX + PAY PT = Y ! — X. Thus, we obtain

AY — L(AX) =0
AX + PAYPT = py—1 — X.

(3.9)

Now, AX is symmetric and AY is automatically so. Among several symmetrization

scheme, we use the Nesterov-Todd (NT) direction where the matrix P is defined as
P = X1/2(X1/2Y)(1/2>71/2xl/2 — Y71/2(Y1/2XY1/2)1/2Y71/2.

To simplify the analysis, we adopt the matrix D = P2, Then D can be used to rescale

X and Y to the same symmetric positive definite matrix V' because

1 1
V:=—D'XD'!'= —DYD. (3.10)
Vi Vi
Moreover, let us further define
| R . 1
Dxy=—D "AXD ", Dy =—DAYD. (3.11)
NG Vi

Now, due to (3.10) and using the scaled directions (3.11), system (3.9) can be rewritten as

follows:
L(Dx)=D
(Dx) = Dy .
Dx +Dy =V1-V,
where
— 1
L(Dyx) = ﬁDﬁ(AX)D = DL(DDxD)D.

It is not difficult to verify that the right-hand side V'~ —V in the second equation in (3.12)

equals minus the derivative of the classical logarithmic barrier function

n

T (V) = Tr(ee(V) =D (e(X(V)))

i=1

= ; (%2_1 - log()\i(V))) . (3.13)

That is to say
Vo, (V)=V"-V.
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Moreover, we call 1.(t) the kernel function of the logarithmic barrier function W (V).

Thus, the system (3.12) becomes

L(Dx) = Dy
Dx + Dy = =V (V).

(3.14)

The approach in this chapter, is to replace the logarithmic barrier W.(1') by a scaled
barrier function ¥ (V') defined W(V) = > ¥(X\;(V)), where ¢ is defined in (3.1).
Now, we replace the right hand side of the second equation in (3.14) by —VW¥ (V). Thus

the new search directions Dx and Dy are obtained by solving the following system

L(Dx) = Dy
Dy + Dy = —VU(V).

(3.15)

This system has a unique solution (D, Dy ) for each p > 0 which can be used to compute
AX and AY via 3.11). If (X,Y) # (X(p),Y (1)), then (AX, AY) is non zero. By

taking a step-size « along the search directions, we construct a new pair according to
X, =X+aAX, Y, =Y +aAY.

Note that for the SDO case [3, 22], we have (D, Dy) = 0, i.e., Dx and Dy are orthog-
onal. However, for the case of SDLCP this relation does not hold. Since £ is a monotone

transformation we have

Liax avy =1
u i

(Dx, Dy) = (AX, L(AX)) > 0. (3.16)

This is the only difference between the SDLCP problem and the SDO problem in their
analysis.
In the algorithm, we use the barrier function W(1") as a measure function and also we

introduce the norm-based proximity measure §(1") to the central-path as follows:

SOV =00) = LW = 5\ S @I
i=1
Clearly,
XY =pl &V =T V)=0c (V) =0

Hence, the value of §(V') can be considered as a measure for the distance between the

matrix pair (X,Y") and the central-path.
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3.3 The generic primal-dual IPM for SDLCP

The general outline of the generic primal-dual kernel-function-based (IPMs) for SDLCP
works as follows. We suppose that there exists a strictly feasible initial point (X°, Y°) in
a T-neighborhood i.e., U(V') < 7. Then the value of the barrier parameter x is reduced
by the factor (1 — 6)u with some fixed 0 < ¢ < 1 which changes the value of V' and
obtains a new p-center (X (u), Y (1)). Hence the value of W(1) exceeds the threshold 7
i.e., U(V) > 7. Now, we start the inner iteration by solving the Newton system (3.15) and
use (3.11), to obtain the unique search direction. In order to reduce the value of ¥ (V).
a step-size is introduced. If necessary, the procedure is repeated until we find the iterate
that again belongs to the 7- neighborhood of the current p-center and so on. At this point
we start a new outer iteration by reducing the value of ; again. This procedure is repeated
until the stopping criterion nu < € is satisfied for a given accuracy parameter €. The

details of our generic IPM outlined above is summarized in Fig 3.1 as follows.
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The generic interior-point algorithm for SDLCP

Input:

A threshold parameter default 7 > 1;

an accuracy parameter € > 0;

a fixed barrier update parameter 6, 0 < 6 < 1;

a strictly feasible pair (X", Y?) and pig = 1 s.t. U(X° Y0 o) < 7.
begin

X = X%Y =Y 1= po;

while ny > e do

= (1—=0)u

while U (V') > 7 do

solve system (3.15) and use (3.11) to obtain AX, AY;
determine the default step-size o;

update X := X + aAX,Y =Y 4+ aAY;

end while

end while

end

Figure 3.1: Algorithm 3.1
We will prove that Algorithm 3.1 is well-defined and the currently best known iteration

bound for large-update method, namely, O(/nlognlog #) is derived.

3.4 Properties of the Kernel (barrier) function

In this section, we study some basic properties of our kernel function ¢(¢) in (3.1) and the

corresponding barrier function ¥(1"). As we need the first three derivatives of (¢) with
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respect to ¢ frequently, we provide them as follows:

1 1, (¢g—1)

P(t) = t—q?q? T (3.18)
logq+ 2t 1_
V() = 1+th L (3.19)
log? ¢ + 6t + 6t 1 )
o) = 28T t6+ 984 11 forall g > 1. (3.20)
q

It follows that
(1) =9'(1) =0, "(t) > 1,
and

limy(t) = lim 9(t) = +oo, ¥"(t) <0, forallt > Oandq > 1.

t—0 t——+o0

Moreover, 9 (t) is strictly convex and ¢”(¢) is monotonically decreasing in ¢ € (0, 00).
As mentioned before we will restrict ourselves in this chapter to the case where 1(V/) is
separable with identical coordinate functions. Thus, letting ¢ denote the function on the

coordinates, we have

Y(V) = iwi(‘/)- (3.21)

Let us denote by o : [0,00) — [1,00)] the inverse function of ¢ (¢) for ¢ > 1 and by
p : [0,00) —> (0,1] the inverse function of the restriction of —1¢/(¢) to the interval

(0, 1]. In what follows, we state the following lemma. For a detailed proofs, see [15].

Lemma 3.4.1. Let () be the barrier term of 1(t) and let p : [0,00) — [0, 1] be the

inverse function of the restriction of —iy(t) to the interval [0, 1]. Then one has.
p(s) > p(1 +2s).
Lemma 3.4.2. For 1(t) with ¢ > 1, we have

V14+2s < o(s) <1+4++V2s, s>0,

1
p(s) > W, s> 0. (3.22)
log ¢

Proof. From the equation—1,(t) = s we have

1

—hp(t) = Eq -

:5’

o+ =

1
q%—l = qstQ(:)(Z—l) logq = log s + 2logt + log q.
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Fort € (0, 1], we find that log ¢ < log1 = 0 and as a result
1

1
<_ _ 1) log g < logs +log q & ¢ = p(s) > ——.
2+ Tog q

By using Lemma 3.4.1, we derive a lower bound for p(s) as follows:

1
p(s) > PYTESDR (3.23)
log g
[

This implies the lemma.

The following property plays an important role in the analysis of kernel-function based

(IPMs).
Lemma 3.4.3 (Exponential convexity. Lemma 2.1 [15]). Ift; > 0 and ty > 0, then one

has

(¥(t1) +(ta)).

N | —

Y(Vits) <

We have the following theorems.

Theorem 3.4.1 (Proposition 3(II) [43]). Let V;,V, € ST}, then

w ([ < S(un) + ().

", and 3 > 1. Then

")y,

Theorem 3.4.2 (Theorem 3.2 [15]). Let V € S
(BV) < m ( -

Corollary 3.4.1. Let0 < 0 < land V, = %, if U < 7. Then

U (V) < ngp (\%L_)e)

Theorem 3.4.3 (Theorem 4.8 [15]). Let V € S% . Then

5(V) > S0/ (o(W(V))).

Corollary 3.4.2. Let V € ST} . Then
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Proof. We have

1 9
1 1 q\/1+2\p(v) q— 1
S(V) > =o' (o(T(V)) > = | V1+20(V)— -
V) =z ¢ (e(¥(V)) 2 5 +2¥(V) o0 1 20(V)) .
> 1+ 20(V il > L /Trau) -1
2 g | VIRV gy | 2 VR S )
U(V) 1 1
> —(U(V))2
~/1+2@(V)+1—\/§< )
This implies the lemma. ]

3.5 Analysis of the interior-point algorithm

In the next subsection, we compute a default step-size o and the resulting decrease in the

barrier function.

3.5.1 Decrease of the barrier function and choice of the default step-
size
After a damped step, we have
Xy =X+aAX, Y, =Y +aAY. (3.24)
From (3.10) and (3.11) we have
X, =X +aAX = X +ay/uDDxD = \/uD(V + aDx)D, (3.25)
and
Y, =Y +aAY =Y + a\/uDDyD = \/ﬁDfl(V + aDy)Dfl. (3.26)
Thus we obtain

D'X.Y,D
W

1 1
we can verify that Vf ~ X7Y, X? and consequently is similar to

VZ= = (V +aDx)(V +aDy), (3.27)

N|=
D=

(V + OZD)() (V + OéDy)(V‘f‘OéDx) .



CHAPTER 3. IPMETHODS FOR SDLCP BASED ON A NEW KERNEL FUNCTION64

We define the following matrix

o=
-

V, = ((V+aDX) (V+aDy)(V+aDX)%>§. (3.28)

Hence, since VU is convex and from Theorem 3.4.1 we have

(V) =9(V,) < %(\P(V—l—aDX) + U(V + aDy)). (3.29)
Defining
fla) =0(Vy) = 0(V) = (Vi) = ¥(V). (3.30)
We thus have f(a) < fi(«), where
fula) = %(\I/(VJrozDX) LUV +aDy)) — U(V). (331)
Obviously,
£(0) = f1(0).
Taking the derivative with respect to « , we get
(o) = %(\Il’(V +aDx)Dx + ¥ (V + aDy)Dy). (3.32)

This gives, using the second equation in (3.15),

F/(0) = SW(V)(Dx + Dy)) = ST(—/(V)) = —25(V)%. (333)

Differentiating once more, we obtain

1
() = 5(\11”(1/ +aDyx)D3% + 9" (V + aDy)D})

< @lIDx]? + wall Dy ), (3.34)
with
wy = max{|AY' (\;(V + aDx), \(V + aDx))| : 4,k =1,2,...,n},
and

we = max{|AY'(N;(V + aDy), \(V + aDy))| : j,k=1,2,...,n}.

Below we use the following notation:
Vii=Anin(V), 0 :=9(V),

with §(1') as defined in (3.17).
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Lemma 3.5.1 (Lemma 2 [47]). Let A, A+ B € S, one has
MN(A+B) > M(A) — | M(B)],i=1,2,...,n.
Lemma 3.5.2. One has f"(a) < 26%)"(V} — 2a9).
Proof. Due to (3.16) and (3.17), we have
16(V)? := 46° = | Dx + Dy || = | Dx|* + |Dy " + 2(Dx, Dy) > || Dx]|* + || Dy ||*.

This implies that
1A (Dx)| <26, and |\ (Dy)| < 26, (3.35)

on the other hand, using Lemma 3.5.1, we have
N(V+aDx) > M\(V) —a|M(Dx)| = A(V) —2ad, i =1,2,...n. (3.36)
Similarly, we have
ANV +aDy) > (V) —2ad, i =1,2,...n.
Thus from the choice of w;, we can conclude that
wi = {|JAY' (N, (V + aDx), M, (V + aDx))| : ju, ke = 1,2,...,n}.

Due to the definition of Av/(¢;,t5) and the mean value theorem, there exists a constant

& € min{\;, (V +aDx), A\, (V + aDx)},max{\;,(V + aDx), e,V + aDx)}],
the function ¢ satisfies

V(&) =AY (N, (V 4+ aDx), A (V 4+ aDx)) .

Due to (3.18), ¥ (t) is monotonically decreasing in ¢t € (0, c0). Therefore, from (3.36),

we obtain

wi = Y(&) <P (min{A; (V + aDx), A, (V + aDx)})
< " (V) = 2a8) < " Ain(V) — 200) .

Similarly, we have

%) S 1/// (/\mm(v) — 2@6) .
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Then it follows from (3.34) that

V(@) < 20" nin(V) = 200) (IIDx|* + | Dy [|) < 26*0" (Vi — 20).

1
2
This proves the lemma. 0

Lemma 3.5.3 (Lemma 4.2 [15]). f{(«) < 0 certainly holds if « satisfies the inequality
=/ (Vi — 2a0) +¢'(V1) < 26. (3.37)

Lemma 3.5.4 (Lemma 4.3 [15]). Let p : [0,00) — (0, 1] denote the inverse function of

the restriction of —%w’ (t) to the interval (0, 1]. Then the largest step-size « is given by

&= o< (p(6)  p(29)). (3.38)

Lemma 3.5.5 (Lemma 4.4 [15]). Let p and @ be as defined in Lemma 3.5.4. Then

1 1
) == Thm) o
In what follows we use the notation
_ 1
o= W (3.40)
Lemma 3.5.6 (Lemma 4.5 [15]). If the step-size « is such that o < &, then
fla) < —ad®. (3.41)

Combining the results of Lemmas 3.5.5 and 3.5.6, we obtain the following theorem.

Theorem 3.5.1. We have
1
5
1+ (logq +2)(1+ 49) (2 + 1502

log g

o>

(3.42)

Proof. The function ¢ (t) is monotonically decreasing, from Lemma 3.4.1, we obtain

1 1
0((20)) = 0 (p(1 1 45))°

Putting t = p(1 + 4s), we have t < 1. Then

a>

1 1
>

a > > .
W'(t) 1+ longith q%_l

(3.43)
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In other hand we have

1
t=p(1+4s) & 1+4s=—9'(t) = ﬁqu’
the equation (3.43) becomes
_ 1
@ log g-+2t
1+ =25 (1 4 4s)
1
. (3.44)
14 9582(1 + 4s)
We have ,
l:_ 1 < 1 < 2+10g(1+45) '
2 p(1+2s)2 = p(20)? log ¢
Substituting this equation in (3.44), we obtain
1
a > 5 (3.45)
L+ (log g +2)(1 + 49) (2 + 5000
This completes the proof of the theorem. O
Theorem 3.5.2. With & being the default step-size, as given by (3.40), one has
(V)2
fla) < - W) (3.46)

.
20(log g +2) (2 -+ EEE/)

log g

o> \/E (3.47)

According to Lemma 3.5.6, with (3.42) and (3.47), we obtain

Proof. We have

52
fa) <-a0® < - 2
log(1446
1+ (logg+2)(1+ 46) (2 + —gl(ogq )>
52
< - 2
log(14-46)
104(log g + 2) (2 + W)
< - 2
log(1+45
10(log ¢ + 2) (2 + %)
< _ U(V)z 5
10V (logq +2) (2 + e/
This completes the proof. ]

Lemma 3.5.7 (Lemma 12 [43]). Let h(t) be twice differentiable convex function with
h(0) = 0, K (0) < 0, and let h(t) attain its (global) minimum at t* > 0, if h"(t) ) is

monotonically increasing for t € {0,t*} then h(t) < th;(o), 0<t<t
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3.5.2 Iteration bound

We need to count how many inner iterations are required to return to the situation where
U(V') < 7 after a u-update. We denote the value of (V') after u-update as ¥, the subse-
quent values in the same outer iteration are denoted as ¥y, k = 1,..., K, K denotes the

total number of inner iterations in the outer iteration.

Lemma 3.5.8 (Lemma 14 [43]). Let ty, tq,...,t, be a sequence of positive numbers such
that
thn <ty —B, 7, k=0,1,... K —1.

Where > 0and 0 < v < 1, then K < [%]
Thus, it follows that
U < \Ilk—/@(\lf)lﬂ, k=0,1,..., K — 1. (3.48)

With
1 1

PR Y=5-
10v/2(2 + log q) (2 + M) 2

log q

R =

Hence, by Lemma 3.5.8 the number K of inner iterations is bounded above by

2
1 log(1 + /W
K <02 (20x/§(2 +log q) (2 + W) ) : (3.49)
0gq
As a result we have that if ¥(V') < 7and § = \/% then
o(3)
Ly(n,0,7)=n¥ | ——=2= |, 3.50
is an upper bound for ¥ ( h) , the value of ¥)(V) after the u-update.

By lemma 3.4.1 we have o(s) <1+ v/2s, and also using (3.50) we have

0 (%) 14 4/&
Uy < Lg(n,0,7) =nV¥ & <n¥ | ——

vV1—20 vV1—20

Since 1(t) < 97—1 for t > 1, we have

n
\IJOSE

1+ ,/%
)~ < <—T Ir_\/g_T) — O(n). (3.51)
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So (3.49) becomes
2
V2 1-6 1
K <20v2(2 +logq) [ T2V |2y “log 2~ (3.52)
1—4 log q 0 €
We have
‘I/() S O(Tl),
by choosing
¢=1+0(n).

the best iteration bound is obtained. We have the following theorem.

Theorem 3.5.3. For large-update methods with T = O(n), and 0 = O(1), Algorithm 3.1

requires at most
O (ﬁlognlog E) ,
€

iterations. This is the best well-known complexity results for large-update methods.

3.6 Numerical results

In this section, we test Algorithm 3.1 on some monotone SDLCPs where its implementa-
tion is done under the software MATLAB 7.9 and run on a pc. The initial strictly feasible
point (X, Y?) with py > 0 is chosen such that ¥(X° YY; 119) < 7. However, the imple-
mentation with the selected theoretical step-size o during each inner iteration guarantees
the convergence of the method but it yields unfavorable numerical results i.e., a slow con-
vergence of the algorithm. Therefore, we compute at each inner iteration a practical step-
8ize (ipax such that X + aa AX = 0 and Y 4 appax AY = 0 with apay = pmin(ay, ay)

and p € (0, 1), where

axy = _m if)‘min(XilAX) <0
1 if )\min(X_lAX) > O’
and
) ey A (Y TTAY) <0
Qy =

1 if A (Y LAY > 0.



CHAPTER 3. IPMETHODS FOR SDLCP BASED ON A NEW KERNEL FUNCTIONT0

The kernel functions used here are:

21 g 1-1 ¢g—1
Y(t) = + — t—1), g>1.
Q 2 qloggq q ( )

In the implementation, we take different values of the parameters , ¢ and « as follows.
6 € {0.15, 0.35, 0.55, 0.65, 0.75, 0.9}, ¢ € {1.1, 1+O(n), 5} and @ € {0.2, 0.5, ax }-
The favored threshold is 7 = /n with p € [0.95, 0.99] and ¢ = 107%. The number of
iterations and the time produced by Algorithm 3.1, are denoted by "It ” and "CPU”, re-
spectively.

Now, three test problems of monotone semidefinite linear complementarity problems are
considered where the first is reformulated from the symmetric semidefinite constrained
least squares problem (SDLS), the second one is linked to the two-sided linear trans-
formation, and the last one is given by a pair of primal-dual semidefinite optimization
problem.

Example 1.

For example for m = 6 and n = 5, the data of the SDLS (Example 1.6.6) is given by:

6 1 1 11 1 0 0 0 0

06 111 -04 1 0 0 0

006 11 -04 —-04 1 0 0
A — 5 B =

0 00©G6 1 -04 0 =04 1 0

00 0O0®G6 -04 O 0 -04 1

0 00O01 -04 O 0 0 —-04

The unique optimal solution X* € S7, is given by:

0.1929 —0.0333 —0.0346 —0.0391 —0.0506
—0.0333 0.1778 —0.0409 —0.0066 —0.0064
X* = —0.0346 —0.0409 0.1808 —0.0403 —0.0069
—0.0391 —0.0066 —0.0403 0.1791 —0.0426
—0.0506 —0.0064 —0.0069 —0.0426 0.1558

For the initialization, we take
X" = Diag [0.2920, ..., 0.2920],

as the strictly feasible starting point.
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0 — 0.15 0.35 0.55 0.65 0.75 0.9
al It CPU It CPU It CPU It CPU It CPU It CPU
a=0.2 98 0.4134 | 93 0.3152 | 88 0.2733 | 87 0.2673 | 78 0.2365 | 73 0.2303
a=0.5 86 0.2843 | 33 0.1661 | 31 0.1564 | 29 0.1383 | 28 0.1324 | 25 0.1193
O = Qmax | 86 0.2252 | 33 0.1342 | 18 0.1051 | 14 0.0989 | 10 0.0871 | 10 0.0832
Table 3.1: Numerical results with ¢ = 1.1, after the algorithm reaches nu < 1079
0 — 0.15 0.35 0.55 0.65 0.75 0.9
al It CPU It CPU It CPU It CPU It CPU It CPU
a=02 |83 0.4090 | 8 0.2971 | 81 0.2618 | 81 0.2499 | 73 0.2334 | 70 0.2396
a=05 |86 0.2719 | 33 0.1786 | 28 0.1539 | 28 0.1365 | 25 0.1249 | 24 0.1201
O = Qmax | 86 1.2907 | 33 0.1338 | 18 0.1133 | 14 0.1017 | 11 0.0891 | 10 0.0753
Table 3.2: Numerical results with ¢ = 5, after the algorithm reaches nu < 1076
0 — 0.15 0.35 0.55 0.65 0.75 0.9
al It CPU It CPU It CPU It CPU It CPU It CPU
a=02 86 0.4533 | 83 0.3390 | 78 0.3577 | 79 0.2934 | 72 0.2885 | 68 0.2472
a=0.5 86 0.3090 | 33 0.2185 | 27 0.2150 | 27 0.1922 | 25 0.2545 | 24 0.1378
O = Qmax | 86 0.2879 | 33 0.1213 | 18 0.1534 | 14 0.1721 | 10 0.1295 | 10 0.1364

Table 3.3: Numerical results with ¢ = 1 + O(n), after the algorithm reaches ny < 107°

Example 2.

The monotone SDLCP considered in this example is linked to the two-sided multiplicative

transformation £ : S — S™ given by:

L(X)=AXAT.

Balaji et al. [17] showed that if A is a positive definite matrix, then £(X) is strictly

monotone and therefore the associated SDLCPs, is uniquely globally solvable for every
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@ € S". For n = 5, the data of our example is given by:

36.04 7.2
7.2 37.04

A=1 02 72
0 0.2

0 0

and

—5.92  0.64

0.64 —5.92

Q=1 14 06
144 0.2

1.6 0

The optimal solution X* € S’ is given by:

0.2
7.2
37.04
7.2
0.2

1.44
0.6
—5.92
0.6
0.2

—0.0002

0.0053 —0.0024
—0.0024  0.0058
X* =1 —0.0002 —0.0025 0.0058

—0.0009  0.0008

—0.0010  0.0001

0.0005

0 0
02 0
72 02 |,
37.04 7.2
72 38
1.44 1.6
0.2 0
0.6 0.2
-5.92 0.6
0.6000 —5.6
—0.0009 —0.0010
0.0001

—0.0025 0.0008
—0.0026  0.0005
—0.0026  0.0058
—0.0023  0.0045

—0.0023

The numerical results for this example with the feasible starting point:

X" = Diag [0.0357, ..., 0.0357],

are summarized in tables 3.4, 3.5 and 3.6.

0 — 0.15 0.35 0.55 0.65 0.75 0.9
al It CPU It CPU It CPU It CPU It CPU It CPU
a=02 199 04078 | 94 0.3030 | 88 0.2598 | 87 0.2494 | 79 0.2224 | 74 0.2078
a=0.5 |86 0.2797 | 33 0.1648 | 32 0.1408 | 30 0.1279 | 29 0.1138 | 26 0.1054
o= Qmax | 86 0.2163 | 33 0.2793 | 19 0.0916 | 14 0.0807 | 10 0.0665 | 10 0.0604

Table 3.4: Numerical results with ¢ = 1.1, after the algorithm reaches nu < 107°
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0 — 0.15 0.35 0.55 0.65 0.75 0.9
al It CPU It CPU It CPU It CPU It CPU It CPU
a=0.2 |89 0.3854 |8 0.2775 | 81 0.2443 | 81 0.2292 | 75 0.2159 | 70 0.1964
a=05 |86 0.2642 | 33 0.1644 | 29 0.1320 | 29 0.1234 | 26 0.1089 | 25 0.0995
o= Oax | 86 0.2678 | 33 0.1173 | 18 0.0899 | 14 0.0815 | 11 0.0723 | 10 0.0672

Table 3.5: Numerical results with ¢ = 5, after the algorithm reaches nu < 107°

0 — 0.15 0.35 0.55 0.65 0.75 0.9
al It CPU It CPU It CPU It CPU It CPU It CPU
a=0.2 86 0.3938 | 84 0.2812 | 79 0.2408 | 80 0.2335 | 73 0.2184 | 69 0.1903
a=0.5 86 0.2635 | 33 0.1561 | 28 0.1296 | 28 0.1165 | 26 0.1069 | 24 0.0966
Q= Qmax | 86 0.2704 | 33 0.1158 | 18 0.0884 | 14 0.2144 | 10 0.0685 | 9 0.0628

Table 3.6: Numerical results with ¢ = 1 + O(n), after the algorithm reaches ny < 107°

Problem 1.

Recall that a pair of primal-dual SDO programs is defined as

and its dual

st (A, X)=b;, i=1,2....m

minC e X
X
X =0,

max b’
(v,2) Y

S.t. iylAz +7Z=0C,

=1

Z =0,

with 4;,C € S", b,y € R" and X, Z € §'.

Example 1.

(P)

(D)

Let us consider the following pair of primal-dual problems P and D with the following

data:
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01 0 0 0 0 0 -2 20

1 2 0 0 -1 0 2 1 0 2
Al=10 0 0 0 1 |,4A=|-21-201]/],

0 0 0 —2 —1 2 0 0 00

0 —1 1 -1 =2 0 2 1 0 2

2 2 -1 -1 1 3 3 -3 1 1

2 0 2 1 1 3 5 3 1 2
A= -1 2 0o 1 o0 |[.C=|-33 -1 1 2 |,

-11 1 =2 0 1 1 1 =3 —1

1 1. 0 0 =2 1 2 2 -1 -1

b=(-2,2,-2)".
An optimal-dual solution of PP and D is given by
0.0714 —0.0718 0.0169  0.0649 —0.1583
—0.0718 0.0724 —0.0183 —0.0602 0.1676
X = 0.0169 —0.0183 0.0103 —0.0084 —0.0772 |,
0.0649 —0.0602 —0.0084 0.1481  0.0056
—0.1583 0.1676 —0.0772 0.0056  0.6022

1.4338  0.5754 —0.0295 —-0.4043 0.2169

0.8585 0.5754  1.0956  0.3401  0.2169 —0.1120
y=1 1.0937 |, Z=1] —0.0295 0.3401 1.1874 0.2169  0.0478 )
0.7831 —0.4043 0.2169  0.2169  0.2831 —0.1415

0.2169 —0.1120 0.0478 —0.1415 0.0957
The numerical results with the strictly feasible triplet starting point (X, y°, Z%) = (I ¢, 1)

and with different values of 0, ¢ and « are stated in tables 3.7, 3.8 and 3.9.
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0 — 0.15 0.35 0.55 0.65 0.75 0.9
al It CPU It CPU It CPU It CPU It CPU It CPU
a=0.3 |81 49977 |56 0.2295 | 52 0.1957 | 51 0.1879 | 49 0.1805 | 47 0.1678
a=05 |81 03236 | 31 0.1688 | 29 0.1452 | 26 0.1402 | 27 0.1250 | 24 0.1121
O = Oax | 81 0.2108 | 31 0.1305 | 17 0.0984 | 14 0.0963 | 12 0.0927 | 13 0.0885

Table 3.7: Numerical results with ¢ = 1.1, after the algorithm reaches nu < 107°

0 — 0.15 0.35 0.55 0.65 0.75 0.9
al It CPU It CPU It CPU It CPU It CPU It CPU
a=03 |81 1.2777 | 51 0.2144 | 50 0.1935 | 47 0.1718 | 47 0.1633 | 44 0.1592
a=0.5 |81 0.2535 | 31 0.1696 | 26 0.1377 | 26 0.1258 | 25 0.1191 | 24 0.1105
Q= Qmax | 81 0.2157 | 31 0.1307 | 17 0.0969 | 14 0.0962 | 12 0.0935 | 13 0.0926

Table 3.8: Numerical results with ¢ = 5, after the algorithm reaches nu < 1076

0 — 0.15 0.35 0.55 0.65 0.75 0.9
al It CPU It CPU It CPU It CPU It CPU It CPU
a=0.3 81 0.3264 | 51 0.2390 | 48 0.2044 | 46 0.1955 | 46 0.1863 | 43 0.1790
a=0.5 81 0.2983 | 31 0.2021 | 25 0.1362 | 25 0.1640 | 24 0.1655 | 23 0.1648
o= Oax | 81 0.2085 | 31 0.1307 | 16 0.1077 | 13 0.0923 | 11 0.0852 | 11 0.0842

Table 3.9: Numerical results of 1(¢) with ¢ = 1 4+ O(n), after the algorithm reaches

np < 107°

Contributions and some remarks

Some contributions and remarks for Chapter 1I:

e Extension of a new primal-dual IP paradigm based on the barrier kernel functions

for SDLCP.

e Introduction of a new parametric kernel function and elaboration of a primal-dual

with large-step algorithm.
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e With the choice of the parameter ¢ = 1 + O(n), the best polynomial complexity of

this algorithm is reached.
e Improvement of the complexity obtained by EL. Ghami et al. for LP and SDP.
e Presentation of important numerical experiences for some problems in practice.
Some difficulties and advantages of this paradigm.

e Contrary to the short-step algorithm used for HLCP, a linear search is made to

ensure the positive definite of the iterates during the solution procedure.

e The theoretical step given in this algorithm ensures the convergence of the method

but numerically leads to a slow convergence.

e To remedy this handicap, a practical procedure was used to accelerate the conver-

gence.

e The advantage of this method is that the size of the neighborhood of the central-
path is wide because the threshold 7 > 1, which gives a flexibility to have a strictly

feasible starting point.



General conclusion and future work

This manuscript presents a theoretical analysis and numerical study of primal-dual path-
following interior point methods (IPMs) applied to the symmetric cones linear comple-
mentarity problems (SCLCP). Recall that given a symmetric cone K C E where E is a
Euclidean space equipped with an inner product (., .)g, g on the corps R.a linear trans-
formation £ : E — E and ¢ € E, the SCLCP consists in finding a pair (z,y) € K x K
such that:

y=L(x)+qeK (z,y) = Og.

In particular, we have studied two primal-dual IPMs for solving the monotone horizontal
LCP (HLCP) and the SDLCP that act on the cone of nonnegative orthant K = R} and of
symmetric semidefinite matrices K = S"', respectively.

In the first part, we have deal with the short-step primal-dual IPMs for solving the
HLCPs. The advantage of this algorithm is to use only full-Newton steps to obtain a so-
lution, i.e., the step-size a = 1, and avoid to use the classical line search methods for its
determination because it costs highly in practice. On the other hand, the main fundamen-
tal ingredient in the analysis of this algorithm is to maintain during the solution process
the strictly feasibility of the full-Newton steps. This task is very hard and is based in
choosing a suitable neighborhood of size 7 and an updating barrier parameter 6 to stay
near the central-path. This difficulty is overcome where, through a suitable analysis, the
best values have been given where 7 = \/Lfo' and 0 = ( %)1/ 2. Again and across these
two parameters, we have shown that this algorithm has the best polynomial complexity,
namely, O (\/ﬁ log %) to get an e—solution of HLCP. Meanwhile, for its numerical per-
formances, we have used different values of the barrier parameter p > 0, and §. Thus lead
to reduce significantly the number of iterations and the time produced by the algorithm.

Our testing examples are selected from some practical instances such as the absolute value

77
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equations (partial differential equations), the convex quadratic optimization, and the stan-
dard monotone linear complementarity problems. We have end this first part of the thesis,
with comparison of our obtained numerical results with those obtained by an iterative
(non interior point methods) fixed point method. Finally, we deduce from this study the

following facts.
1. These methods have the best known polynomial complexity.

2. These algorithms are simple and easy to implement and give the solution of the

considered problems.

3. The main difficulty is the strictly feasible initial point to start their algorithm. This

handicap is a very hard task to release in practice.

4. The theoretical and numerical treatment of the HLCPs have a great applications for

some other instances of mathematical problems.

For the second part of the thesis, we have developed a large-update primal-dual path-
following IPMs for solving the monotone SDLCPs based on a new eligible parametric
kernel function. In brief, we have analyzed across this latter the polynomial complexity
of large-update IP algorithms. The iteration bound is calculated by choosing a suitable
value of the barrier parameter ¢ > 1, namely ¢ = 1 + O(n) and therefore the best well-
known polynomial complexity is O(/n logn log ). We have also deduce from this study

the following general facts.

1. We mention that for our knowledge, is the first primal-dual IPMs for SDLCPs based

on the barrier kernel functions.

2. The feasible set of the SDLCPs is not a polyhedral therefore the necessity of interior-

point methods for solving it.

3. The study of SDLCPs needs a great background of Matrix Theory and Convex
Analysis.

4. The kernel function used in this work is a kind of generalization of the one used by

Bai for LP and SDO.
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5. Their polynomial complexity is improved by a factor of log n.
6. The Nesterov-Todd direction are computed via the Kronecker operator.

7. The theoretical step-size determined by the analysis of these methods along this
direction leads to a slow convergence of the algorithm. To remedy this drawback an
economical and practical step-size is proposed and this leads to a good numerical

results.

8. The testing examples are selected from three problems such as the symmetric semidef-
inite constrained least squares problem (SDLS), the second one is linked to the
two-sided linear transformation, and the last one is given by a pair of primal-dual

semidefinite optimization problem.

Future Work

In this section, we will give some interesting topics for further research.

e The generalization of primal-dual (IPMs) for HLCPs and SDLCPs to an arbitrary

symmetric cone linear complementarity problems (SCLCPs) is interesting topic.

e The development of infeasible interior-point algorithm based on the analysis (fea-

sible) given in the first part seems to be an interesting.

e The generalization of the results obtained in the first part to other class of matrices

such us P.(k).

e It would be interesting to use other directions rather to Nesterov-Todd, such us
Alizadeh-HaeberlyOverton (AHO), Monteiro-Zhang (MZ) family and Helmberg et
al, Kojima et al and Monteiro (HKM) family, directions for solving the monotone

SDLCPs.

e The implementation of Algorithm 3.1 on problems of SDLCPs with large size

(high-dimension) is an important topic of research.

e The weighted path method is also an interesting study in order to give a relaxation

of getting a good initial starting point for these methods.
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e The comparison of our obtained numerical results to other kernel functions be an

interesting topic in the future.

e The extension of this analysis for the second-order cone linear complementarity

problems (SOCLCP), such that the SOCLCP is to find z,y € R" satisfying
y=M(z)+q, v7y=0, € L" yec L

with

L" = {(xg,71) € R X ]R”_1| lz1|lo < 2o} CR™

e The extension of these methods for more general semidefinite complementarity

problems such as the semidefinite nonlinear complementarity problems (SNLCP).
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Résumé

Dans cette thése, nous présentons une étude théorique et algorithmique concernant les
problémes de complémentarité linéaire horizontale (PCLH) et semi-défini (PCLSD)
monotone. Ces problémes sont les plus étudiés ces derniéres années. La premiére partie est
concerné par le développement d’un algorithme de trajectoire centrale de type primal-
dual a petit pas pour résoudre le probleme de complémentarité linéaire horizontale. On
montre que ['algorithme admet une complexité polynomiale. Finalement, quelques
résultats numériques sont donnés pour montrer l'efficacité de cet algorithme. Dans la
deuxiéme partie un nouvel algorithme de point intérieur de type primal-dual a grand-pas
basé sur une nouvelle fonction barriere de noyau pour résoudre le probleme de
complémentarité linéaire semi-défini est présenté. Son complexité polynomiale est calculée
de plus des résultats numériques sont donnés pour montrer l'efficacité de ce dernier.

Mots clés : Probleme de complémentarité, méthodes de point-intérieur, algorithme
primal-dual, complexité polynomiale

Abstract

In this thesis, we present a theoretical and algorithmic study for the monotone horizontal
linear complementarity problems (HLCPs) and monotone semi-definite problems
(SDLCPs). These problems are the most studied in recent years. The first part is concerned
with the development of a short-step primal-dual interior-point algorithm for monotone
horizontal linear complementarity problems. We prove that the corresponding algorithm
has polynomial complexity. Finally, some numerical results are given to show the
efficiency of the proposed algorithm. In the second part, a new long-step primal-dual
interior-point algorithm for solving SDLCPs based on a new barrier kernel function is
presented. Moreover, its complexity polynomial is computed and some numerical results
are given to show the effectiveness of this latter.

Keywords: Complementarity problem, interior-point methods, primal-dual path
algorithm, polynomial complexity




