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Abstract

Since the 1950’s, the theory of mathematical programming and game theory have been

developed rapidly and extensively. The literature shows the rich theory of linear pro-

gramming, convex quadratic programming, and bimatrix game, which are fundamental

subjects in these areas. As a unifying framework of such problems, the linear comple-

mentarity problem was introduced in mathematical programming in the mid 1960’s.

The linear complementarity problem is to find, for a square matrix and a vector, a vector

satisfying linear constraints and complementarity conditions.

This thesis is concerned with the analysis, implementation of interior-point methods . In

particular, we focus on two type of problems: horizontal linear complementarity prob-

lems (HLCPs) and Semidefinite linear complementarity problems (SDLCPs).

In chapter 1: we present the definitions and terms that will be used throughout the thesis.

In chapter 2: we present a full-Newton feasible step interior-point algorithm for solving

monotone horizontal linear complementarity problems. The idea of this algorithm is to

follow the centers of the perturbed HLCP by using only full-Newton steps with the ad-

vantage that no line search is required and restricts iterates in a small neighborhood of

the central-path by introducing a suitable proximity measure during the solution process.

Then we prove across a new appropriate choice of the defaults of the threshold of the

parameter τ which defines the size of the neighborhood of the central-path and of the

update barrier parameter θ that our algorithm is well-defined and the full-Newton step to

the central-path is locally quadratically convergent. Moreover, we derive its complexity

bound. which coincides with the best known iteration bound for such feasible IPMs. Fi-

nally, we report some numerical results to show the ability of this approach.

In chapter 3: we deal with the complexity analysis and the numerical implementation

of primal-dual interior-point methods for monotone semidefinite linear complementarity
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problems based on a new parametric kernel function. The proposed kernel function is nei-

ther a self-regular and nor the usual logarithmic barrier function. By means of the feature

of the kernel function, we study the complexity analysis of primal-dual IPMs and derive

the currently best known iteration bound for the large-update algorithm. Finally, we re-

port some numerical results to show the practical performance of the proposed algorithm

with different parameters.

keywords: Semidefinite linear complementarity problems; Horizontal linear complemen-

tarity problems; Interior-point methods; Kernel function; Full-Newton step; Polynomial

complexity.
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Glossary of Notation

Problem Classes
(MP) : Mathematical Programming;

(SDO) : Semidefinite Optimization;

(LP) : Linear Programming or linear optimization;

(QP) : Quadratic Programming;

(P) : Primal of a mathematical programming;

(D) : Dual of (P);

IPC : Interior-Point-Condition;

IPMs : Interior-Point Methods;

IP : Interior-Point;

K.K.T : Karush-Kuhn-Tucker;

Spaces
Rn : the real n-dimensional space;

Rn
+ : the nonnegative orthant of Rn;

Rn
++ : the positive orthant of Rn;

Rn×n : the set of alln× n squared matrices;

Rm×n : the space ofm× n real matrices;

Sn : denotes the set of all symmetric n× n matrices;

Sn+ : the cone of positive semidefinite symmetric matrices of ordern;
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Matrices
X � 0 : means X ∈ Sn is positive semidefinite;

X � 0 : means X ∈ Snis positive definite.;

λi(X), i = 1, . . . , n : the eigenvalues ofX;

λmax(X), i = 1, . . . , n : the largest eigenvalues ofX;

λmin(X), i = 1, . . . , n : the smallest eigenvalues ofX;

Tr(X) =
∑n

i=1Xii =
∑n

i=1 λi(X);

A •X = Tr(ATX) the inner-product betweenA ∈ Sn andX ∈ Sn;

I : identity matrix;

‖X‖F : ‖X‖F =
√
X •X.Frobenius matrix norm (Schur);

σ(X) : denote the spectrum, or the set of eigenvalues,

of a matrix X ∈ Rn×n

AT : the transpose of the matrix A;

A ∼ B : P non-singular with A = PBP−1;

Vectors
e = (1, . . . , 1)T ;

xT = (x1, . . . , xn) the transpose of a vectorx

with components xi;

xy = (x1y1, . . . , xnyn)T Hadamard product;

xTy =
n∑
i=1

xiyi the standard inner product inRn;

x

y
=

(
x1

y1

,
x2

y2

, . . . ,
xn
yn

)T
(y 6= 0);

√
x =

(√
x1, . . . ,

√
xn
)T

(x ≥ 0);

x−1 =

(
1

x1

,
1

x2

, . . . ,
1

xn

)T
(x 6= 0);

X = Diag(x) : the diagonal matrix of X with Xii = xi;

Functions
∇f(x) =

(
∂f
∂x1

(x), . . . , ∂f
∂xn

(x)
)T

: the gradient of a function f : Rn → R;

∇2f(x) =

(
∂2f

∂xi∂xj
(x)

)
1≤i, j≤n

: the Hessian matrix of f : Rn → R;

ψ(t) : a kernel function;
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Introduction

This doctoral thesis deals with the complexity analysis and numerical implementation of

interior point methods for symmetric cones linear complementarity problems (SCLCP for

short). Mathematically, consider a Euclidean finite dimensional vector space E over the

field R equipped with inner product 〈., .〉. LetL : E→ E be a given linear transformation,

and q ∈ E. The SCLCP consists of finding a pair of elements (x, y) such that

x ∈ K, y = L(x) + q ∈ K, and 〈x, y〉 = 0,

where K is a symmetric cone i.e., K is homogenous and self-dual.(see e.g. [25, 46])

The SCLCP is not an optimization problem but it is closely related to the optimality con-

ditions for conic optimization i.e., linear, convex quadratic and semidefinite optimization

over symmetric cones. Although if K = Rn
+, the orthant positive cone, then the SCLCP

reduces to linear complementarity problems (LCP) meanwhile if K = Sn+, the cone of

symmetric semidefinite positive matrices, the SCLCP becomes the semidefinite linear

complementarity problem (SDLCP)(see e.g. [21, 25, 46]).

Since the publication of the famous paper of Karamarkar [32] in 1984, for solving the

linear programming problem (LP), the field of interior-point methods (IPMs) becomes one

of the most active areas of research in mathematical programming. Interior point methods

are known for their polynomial convergence, speed and efficiency and have proven to be

true competitors of classical methods (simplex and Lemeke, etc.). These methods have

been widely disseminated in the literature and have been enriched with several variants

in order to improve their complexity and their numerical efficiency. This latter can be

classified into four main categories:

• Projective methods,

• Affine-scaling methods,

12
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• Potential-reduction methods,

• Path-following methods or central path methods.

In this thesis we focus on the primal-dual IPMs to solving two classes of monotone

SCLCP, namely,

• Horizontal linear complementarity problems (HLCP).

• Semidefinite linear complementarity problems (SDLCP).

The HLCPs has been very popular in the literature due to its numerous applications [39].

In the literature of IPMs, this problem has also been an active subject since it includes the

standard LCP, LP and convex quadratic optimization (CQO), and finds many applications

in economic equilibrium problems, traffic assignment problems, and optimization prob-

lems [21]. There are a variety of solutions approaches for HLCP which have been studied

intensively. Among them, path-following IPMs gained much more attention than other

methods [43, 51]. These methods are powerful tools to solve a wide large of mathemati-

cal problems such as LP [43, 54, 58], CQO [2, 54], LCP [4, 21, 54, 59], linearly convex

constrained optimization (LCOO) [7], the semidefinite programming (SDP) [3, 39], and

the semidefnite linear complementarity problem (SDLCP) [8].

In the last years, the SDLCPs has received considerable attention from researchers be-

cause of its wide applications such as control theory linear and bilinear matrix inequalities,

semidefinite linear complementarity problem (SDLCP) is a special class of mathematical

programming, which became popular during the 1960’s. The SDLCPs are extensions of

LP and LCP, respectively, with the cone of nonnegative real vectors replaced by the cone

of symmetric positive semidefinite real matrices.

This problem was introduced in a slightly different form by Kojima, Shindoh, and Hara

[34] as a model unifying various problems arising from system and control theory and

combinatorial optimization. The SDLCP can be regarded as a generalization of the LCP

[8, 9]. There are many approaches for solving this class of problems. Among them, the

path following IPMs are the most efficient and fundamental methods which obtain the

best complexity bounds (see e.g. [2, 6, 22, 24, 27, 42, 49]).
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In 2001, Peng et al. [43] designed a new paradigm of primal-dual algorithms based

on the so-called self-regular proximity functions for LP. They improved iteration bound

with large-update fromO(n log n
ε
) with logarithmic kernel function toO(

√
n log n log n

ε
).

Subsequently, in 2004, Bai et al. [15], introduced new primal-dual IPMs based on new

proximity functions which were called non logarithmic eligible barrier kernel functions.

These functions enjoy useful properties and determine new search directions for primal-

dual interior point algorithms. Based on these functions, they obtained the best known

complexity results for large-update methods, namely, O(
√
n log n log n

ε
) and good nu-

merical results. Some examples of kernel functions which have been analyzed in earlier

papers can be seen in references (see e.g.,[1, 3, 14, 16, 33, 36, 37, 38, 42, 50, 52]).

Kernel functions play an important role in the design of new primal-dual interior point

algorithms for solving many instances such as LP, CQO, SDO and LCP. Their extensions

to SDLCPs is with great importance since, on one hand the feasible set of this problem is

not a polyhedral set and therefore the classical simplicial methods does not applicable. On

the other hand, as for our knowledge there is no interior-point methods based on kernel

functions are developed for solving this problem. To do so, we suggest the following

parametric kernel function

ψ(t) =
t2 − 1

2
+
q

1
t
−1 − 1

q log q
− (q − 1)

q
(t− 1), t > 0, (1)

where q > 1 is a barrier parameter. The proposed kernel function is neither a self-regular

and nor a logarithmic barrier function. Based on this kernel function, we show that the

proposed large-update algorithm enjoy the favorable best iteration complexity for the spe-

cific choice of the barrier parameter’s function.

The table 1 shows the iteration bound based on some studied kernel functions in the liter-

ature.
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kernel function ψi(t) Iteration bound ref

ψ1(t) = t2−1
2

+ q
1
t−1−1
q log q

, q > 1 O(
√
n log n log n

ε
) [1]

ψ2(t) = t2−1
2
− log(t) O(n log n

ε
) [13]

ψ3(t) = 1
2
(t− 1

t
)2 O(n

2
3 log n

ε
) [13]

ψ4(t) = t2−1
2

+ t1−q−1
q−1

, q > 1 O(qn
q+1
2q log n

ε
) [13]

ψ5(t) = t2−1
2

+ t1−q−1
q(q−1)

− q−1
q

(t− 1), q > 1 O(qn
q+1
2q log n

ε
) [39]

ψ6(t) = t2−1
2

+ e
1
t −e
e

O(
√
n log2 n log n

ε
) [13]

ψ7(t) = t− 1 + t1−q−1
q−1

, q > 1 O(qn log n
ε
) [14]

Table 1: Examples of some kernel functions and its iteration bound for large-update meth-

ods

Short Outline of the Thesis

The thesis contains three chapters, followed by a bibliography. This thesis is organized as

follows

• Chapter 1: In this chapter, we present the definitions and terms that will be used

throughout the thesis.

• Chapter 2: This chapter deals with the study of the polynomial complexity and

the numerical implementation for a full-Newton short-step primal-dual central-path

interior-point method for solving the class of monotone HLCPs. We show that the

corresponding algorithm enjoys the best known theoretical polynomial complexity,

namely, O
(√

n log n
ε

)
. Some numerical results are provided to show the efficiency

of the proposed algorithm and to compare with an available method.

• Chapter 3: Based on a new parametric kernel function, this chapter presents a

primal-dual large-update interior-point algorithm for SDLCPs. By the mean of this

function we show that the proposed algorithm has the favorable complexity bound,

namely, O
(√

n log n log n
ε

)
with a suitable choice of the parameter barrier related

to the kernel function. Finally, we report some numerical results on some practical
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problems to show the practical performance of the proposed algorithm with differ-

ent values of the parameter barrier. Finally, we end the thesis by a conclusion and

future work.
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1.5.1 Newton-Raphson’s Method . . . . . . . . . . . . . . . . . . . 27
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1.6.7 Some results of the existence and uniqueness of solution of

monotone SDLCP . . . . . . . . . . . . . . . . . . . . . . . . 33

In this chapter, we present fundamental definitions and notation that will be used

throughout the thesis.

1.1 Preliminaries

In this thesis we will be working in the space of vectors and in the space of matrices,

first we will define a Euclidean space E to be a finite-dimensional vector space over the

reals with which there is an inner product 〈., .〉 : E × E → R that satisfies the following

conditions x, y, z ∈ E, α, β ∈ R

• 〈αx+ βy, z〉 = α 〈x, z〉+ β 〈y, z〉,

• 〈x, y〉 = 〈y, x〉,

• 〈x, x〉 ≥ 0, where 〈x, x〉 = 0 if and only if x = 0.

Examples of Euclidean spaces are Rn and Rm×n, which are the spaces of real column

vectors x = (x1, x2, . . . , xn)T and real m × n matrices A = (aij), respectively. The

standard inner product on Rn is defined as

xTy =
n∑
i=1

xiyi,

and the inner product we will use on Rm×n is defined as follows

〈X, Y 〉 =
m∑
i=1

n∑
j=1

xijyij = Tr(XTY ),

where Tr(A) =
∑n

i=1 aii is the trace of a matrix A = (aij) ∈ Rm×n.

Now, we briefly recall some known facts from linear algebra that will be used in the sequel

of this thesis. For the details, we refer to the book [27].

Definition 1.1.1. For A,B ∈ Rn×n, c ∈ Rn we recall a function ‖.‖ : Rn×n → R, a

matrix norm if it satisfies the following axioms

1. ‖A‖ ≥ 0, ‖A‖ = 0⇔ A = 0,
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2. ‖cA‖ = |c|‖A‖,

3. ‖A+B‖ ≤ ‖A‖+ ‖B‖,

4. ‖AB‖ ≤ ‖A‖‖B‖.

The Frobenius and the spectral norms are defined, respectively, as follows:

‖A‖F =
√

Tr(ATA) and ‖A‖F =
√

Tr(A2) ifA ∈ Sn,

and

‖A‖2 =
√
λmax(ATA) and ‖A‖2 = λmax(A) ifA ∈ Sn.

We have the following properties.

Property 1.1.1. Let A,B ∈ Rn×n, then

• Tr(A) = Tr(AT ).

• Tr(A) = Tr(B) ifA is similar toB i.e.,A = PBP−1 for some non-singular matrix

P .

• Tr(AB) = Tr(BA).

• Tr(A+B) = Tr(A) + Tr(B).

• ‖AB‖2 ≤ ‖A‖2‖B‖F .

• ‖A‖2 ≤ ‖A‖F ≤
√
n‖A‖2, n ≥ 1.

We list below some well known matrix theoretic properties that are needed in this

thesis

1. A is positive semidefinite (positive definite) if the usual inner product 〈Ax, x〉 ≥

0(> 0) for all nonzero x ∈ Rn.

2. A ∈ Sn is positive definite if and only if λmin(A) > 0.

3. A ∈ Rn×n is positive definite if and only if its symmetric part A+AT

2
is positive

definite.
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4. The square real matrix A is symmetric if and only if there exists an orthogonal

matrix O such that OOT = I and A = ODOT where D is a diagonal matrix, i.e.,

D := Diag(λi(A)), λi(A) ∈ σ(A).

Lemma 1.1.1. Let (X,Z) ∈ Sn × Sn, we have:

1. Tr(XY ) ≥ 0, for every X, Y � 0.

2. X, Y � 0,Tr(XY ) = 0 if and only if XY = Y X = 0.

3. X ∈ Sn and Tr(XY ) ≥ 0, Y � 0⇒ X � 0.

We will use also the following transformations:

The Lyapunov linear transformation,

L(X) =
1

2
(AX +XAT ), L : Sn → Sn, where A ∈ Rn×n.

The two sided multiplicative transformation,

M(X) = AXAT , M : Sn → Sn.

1.2 Matrix theory

Every matrix X ∈ Sn is orthogonally diagonalizable, i.e., X = UDUT with an orthogo-

nal matrix U and a diagonal matrixD = diag(d1, . . . , dn), where each di is the eigenvalue

of X .

If X � 0, we have

X1/2 = U



√
d1 0 . . . 0

0
√
d2 0 0

0 0
. . . 0

0 0 0
√
dn

U
T .

The X1/2 is called the square root matrix of the matrix X .

Definition 1.2.1. We write T : H → K is a transformation from a setH toK, the setH is

called the domain of T , then T ∗ : K → H is called the adjoint of T and he is determined

by the formula

〈Tx, y〉K = 〈x, T ∗y〉H , ∀x ∈ H, y ∈ K,
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the transformation T is called self-adjoint if T = T ∗.

Theorem 1.2.1. The properties of the adjoint:

• (A+B)∗ = A∗ +B∗, (λA)∗ = λA∗ (λ ∈ C),

• (A∗)∗ = A, (AB)∗ = B∗A∗,

• (A−1)∗ = (A∗)−1 if A is non-singular,

• ‖A‖ = ‖A∗‖.

Proposition 1.2.1. If all multiplications and additions make sense, the following hold for

matrices, A, B, C and a, b scalars

• A(aB + bC) = a(AB) + b(AC),

• (B + C)A = BA+ CA,

• A(BC) = (AB)C.

Lemma 1.2.1. Let A be an m× n matrix and let B be a n× p matrix. Then

(AB)T = BTAT ,

and if α and β are scalars

(αA+ βB)T = αAT + βBT ,

if A and B are non-singular matrices, we have

(AB)−1 = B−1A−1.

Definition 1.2.2. An n × n matrix A is said to be symmetric if A = AT . It is said to be

skew symmetric ifAT = −A.
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1.3 Tensor product

Definition 1.3.1. Let A ∈ Rm×n and B ∈ Rp×q. Then the Kronecker product (or tensor

product) of A and B is defined as the matrix

A⊗B =


a11B . . . a1nB
... . . . ...

am1B . . . amnB

 ∈ Rmp×nq.

Let x ∈ Rm and y ∈ Rn, then

x⊗ y = [x1y
T , . . . , xmy

T ]T

= [x1y1, . . . , x1yn, x2y1, . . . , xmyn]T .

Theorem 1.3.1. The following rules hold:

• (A⊗B)(C ⊗D) = AC ⊗BD,

• (A+B)⊗ C = (A⊗ C) + (B ⊗ C),

• A⊗ (B + C) = (A⊗B) + (A⊗ C),

• λ(A⊗B) = λA⊗B = A⊗ λB, (λ ∈ C),

• (A⊗B)T = (AT ⊗BT ),

• (A⊗B)−1 = (A−1 ⊗B−1), if A and B are non-singular,

• ‖A⊗B‖ = ‖A‖‖B‖.

Notice that the Kronecker product is non-commutative since in general we have A⊗B 6=

B ⊗ A.

1.3.1 Application to Sylvester and Lyapunov Equations

In this section we study the linear matrix equation

AX +XB = C,
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where A ∈ Rn×n, B ∈ Rm×m and C ∈ Rn×m. This equation is now often called a

Sylvester equation who studied general linear matrix equations of the form

k∑
i=1

AiXBi = C,

a special case is the symmetric equation

AX +XAT = C, (1.1)

obtained by taking B = AT . When C is symmetric, the equation (1.1) is known as the

Lyapunov equation.

Definition 1.3.2. Let ci ∈ Rn denote the columns of C ∈ Rn×m, means that C =

[c1, . . . , cm], then vec(C) is defined as follows

vec(C) =


c1

...

cm

 .
Theorem 1.3.2. A,C ∈ Rn×n. Then the Lyapunov equation

AX +XAT = C, (1.2)

has a unique solution if and only if A and −AT have no eigenvalues in common. If C is

symmetric and (1.1) has a unique solution, then that solution is symmetric.

Remark 1.3.1. The Lyapunov equation AX + XAT = C can also be written using the

vec notation in the equivalent form

((I ⊗ A) + (A⊗ I))vec(X) = vec (C).

Definition 1.3.3. For any three matrices A, B, andX for which the matrix product AXB

is defined as follows

vec(AXB) = (BT ⊗ A)vecX,

in the other hand let C ∈ Sn, the matrix equation

AXB = C,

is equivalent to following

(BT ⊗ A)vecX = vecC.
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1.4 Convex sets and functions

We will begin by defining the concepts of convex sets and functions.

Definition 1.4.1. A set Ω in a Euclidean space E is called convex if

tx+ (1− t)y ∈ Ω, for all x, y ∈ Ω in t ∈ [0, 1] .

Given a convex set Ω, a function f : Ω→ R is called convex if

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y),

for all x, y ∈ Ω and t ∈ [0, 1], the function f is called strictly convex if the above inequal-

ity is strict whenever x 6= y and t ∈ (0, 1).

1.4.1 Convex optimization

Theorem 1.4.1. Let f : C → R be a convex function defined on the convex set C. Let

x∗ ∈ C be a local minimum of f over C. Then x∗ is a global minimum of f over C.

Theorem 1.4.2. Let f : C → R be a strictly convex function defined on the convex set C.

Let x∗ ∈ C be a local minimum of f over C. Then x∗ is a strict global minimum of f over

C.

Theorem 1.4.3. (convexity of the optimal set in convex optimization)) Let f : C → R be

a convex function defined over the convex set C ⊆ Rn. Then the set of optimal solutions

of the problem

min{f(x), x ∈ C}, (1.3)

which we denote by x∗, is convex. If, in addition, f is strictly convex over C, then there

exists at most one optimal solution of the problem (1.3).

1.4.2 Convex Cones

Definition 1.4.2. A non-empty subset K ⊆ Rn is called a closed convex cone if it satisfies:

• αx ∈ K whenever x ∈ K and α > 0.

• x+ y ∈ K whenever x ∈ K and y ∈ K.
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Moreover, K is pointed if

x and − x ∈ K⇒ x = 0.

A pointed convex cone in Rn defines a partial order on Rn by

x ≥ y ⇔ x− y ∈ K,

or equivalently

(−K) ∩K = {0},

with −K = {−x | x ∈ K}.

This partial order satisfies the following conditions:

• ∀x ∈ Rn : x ≥ x,

• ∀x, y ∈ Rn : x ≥ y, y ≥ x⇒ x = y,

• ∀x, y, z ∈ Rn : x ≥ y, y ≥ z ⇒ x ≥ z,

• ∀x, y ∈ Rn, ∀α ∈ R+ : x ≥ y ⇒ αx ≥ αy,

• ∀x, y, x′, y′ ∈ Rn : x ≥ y, x′ ≥ y′ ⇒ x+ x′ ≥ y + y′,

for x, y ∈ Rn.

Lemma 1.4.1. The set {X ∈ Sn : X � 0} of positive semidefinite matrices is a closed

convex cone.

Definition 1.4.3. Let K ⊆ Rn be a closed convex cone. The set

K∗ = {y ∈ Rn : 〈y, x〉 ≥ 0 ∀x ∈ K}

is called the dual cone of K, with 〈., .〉 the standard scalar product in Rn.

Definition 1.4.4. A cone K is called self-dual, if K = K∗.

Definition 1.4.5. K ⊂ Rn is a proper cone if it is a cone which is closed, convex, pointed

and solid, which means it has nonempty interior.

Definition 1.4.6. A regular convex cone K ⊆ Rn is called homogeneous if the automor-

phism group Aut(K) acts transitively on K◦, i.e., if for every x, y ∈ K◦ there exists an

automorphism A ∈ Aut(K) such that Ax = y .

Definition 1.4.7. A self-dual, homogeneous regular convex cone is called symmetric cone.
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1.4.3 Examples of symmetric and nonsymmetric cones

• The nonnegative orthant Rn
+ of Rn:

Rn
+ = {x ∈ Rn|x ≥ 0}.

• Lorentz cone Ln+: partition every element of Rn as x = (x0, x1) ∈ R × Rn−1 and

define the Lorentz cone (or the ice-cream cone) as

Ln+ = {(x0, x1) ∈ R× Rn−1| ‖x1‖2 ≤ x0} ⊆ Rn

• The cone of symmetric positive semidefinite matrices Sn+:

Sn+ = {A ∈ Sn| xTAx ≥ 0, ∀x ∈ Rn}.

• The cone of copositive matrices

Cn = {A ∈ Sn| xTAx ≥ 0, ∀x ∈ Rn
+},

is not self-dual and therefore is not a symmetric cone (see e.g. [24]).

1.5 Newton-Raphson’s method for nonlinear systems

Now we are interested to the Newton-Raphson method for solving nonlinear system of

equations. This latter plays an important role in the development of interior-point meth-

ods. We have the following definition.

Definition 1.5.1. A system of nonlinear equations is a set of equations as the following:

f1(x1, x2, . . . , xn) = 0,

f2(x1, x2, . . . , xn) = 0,
...

fn(x1, x2, . . . , xn) = 0,

where x = (x1, x2, . . . , xn)T ∈ Rn and fi is a nonlinear real function, i = 1, . . . , n. To

simplify the notation even further, define the vector valued function

f(x) =


f1(x)

f2(x)
...

fn(x)

 =


f1(x1, x2, . . . , xn)

f2(x1, x2, . . . , xn)
...

fn(x1, x2, . . . , xn)

 .
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We now define the n× n Jacobian matrix J(x) as

J(x) =


∂f1

∂x1
(x) ∂f1

∂x2
(x) . . . ∂f1

∂xn
(x)

∂f2

∂x1
(x) ∂f2

∂x2
(x) . . . ∂f2

∂xn
(x)

...
... . . . ...

∂fn
∂x1

(x) ∂fn
∂x2

(x) . . . ∂fn
∂xn

(x)

 ,

where ∂fi
∂xj

(x) is called the partial derivative of fi at xj .

The Hessian matrix is a matrix of second order partial derivatives, define as follow:

H(x) =



∂2f1

∂x2
1

(x) ∂2f1

∂x1∂x2
(x) . . . ∂2f1

∂x1∂xn
(x)

∂2f2

∂x2∂x1
(x) ∂2f2

∂x2
2

(x) . . . ∂2f2

∂x2∂xn
(x)

...
... . . . ...

∂2fn
∂xn∂x1

(x) ∂2fn
∂xn∂x2

(x) . . . ∂2fn
∂x2
n

(x)

 .

1.5.1 Newton-Raphson’s Method

If x = x0 (a vector) represents the first guess for the solution, successive approximations

to the solution are obtained from

xn+1 = xn − J−1f(xn) = xn −∆xn, with xn+1 = xn + ∆xn,

where ∆xn (Newton’s direction) is the solution of the following system

J(xn)∆xn = −f(xn).

1.6 Problem Description

In the mid 1960’s, Lemke, Cottle, and Cottle and Dantzig [20] introduced the linear com-

plementarity problem (LCP), as a unifying problem of the linear and convex quadratic

programming, and the problem of finding Nash equilibrium of bimatrix games.

In this section, we start from a mathematical definition of LCP, we begin with some math-

ematical definitions, before introducing a standard form of semidefinite linear comple-

mentarity problem (SDLCP), in section 1.6.1 we introduce the standard linear comple-

mentarity problem, then in section 1.6.3 the Horizontal linear complementarity problem,

and in section 1.6.5 the semidefinite linear complementarity problem (SDLCP).
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1.6.1 Linear Complementarity Problem

LCP is not an optimization problem, but it has robust relationship with both linear pro-

gramming (LP) and convex quadratic programming (CQP) problems. This strong rela-

tionship is based on the fact that Karush-Kuhn-Tucker (KKT) optimality conditions for

LP and QP can be converted into LCP. Many optimization problems from engineering,

finance, transportation, etc. can be directly written as LCP. Therefore, solving LCPs has

been very important topic for many years.

LCPs is a problem of finding a particular vector in a finite real vector space that satisfies

a certain system of inequalities. Mathematically, given a vector q ∈ Rn and a matrix

M ∈ Rn×n, we want to find a vector x ∈ Rn (or to show such a vector does not exist)

such that

x ≥ 0, y ≥ 0, y −Mx = q, xTy = 0. (1.4)

We will denote

F =
{

(x, y) ∈ R2n : y = Mx+ q, x ≥ 0, y ≥ 0
}
.

The feasible set of points of the LCP as defined in (1.4).

The solution set of the LCP is given by:

Sol(M, q) =
{

(x, y) ∈ F : xTy = 0
}
.

1.6.2 Classes of LCP

In the literature of LCPs there are more than 50 matrix classes. In this section, we recall

some important used classes in an IPM framework.

Let M ∈ Rn×n, x ∈ Rn and κ ≥ 0.

• M is called a skew-symmetric matrix if

x ∈ Rn : xTMx = 0.

• M is called a positive semi-definite matrix if

x ∈ Rn : xTMx ≥ 0.
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• M is called a P0-matrix if

(0 6= x ∈ Rn)(∃i ∈ I)(xi(Mx)i ≥ 0).

• M is called a P -matrix: Matrix with all principal minors positive or equivalently

(0 6= x ∈ Rn)(∃i ∈ I)(xi(Mx)i > 0).

• M is called a P∗(κ)-matrix if

(1 + 4κ)
∑

i∈I+(x)

(xi(Mx)i) +
∑

i∈I−(x)

(xi(Mx)i) ≥ 0,∀x ∈ Rn,

where

I+(x) = {i : xi(Mx)i ≥ 0}, I−(x) = {i : xi(Mx)i < 0},

or

xTMx ≥ −4κ
∑

i∈I+(x)

(xi(Mx)i),∀x ∈ Rn.

Example 1.6.1.
Recall that a pair of primal-dual LP programs is defined as


min
x
cTx

s.t. Ax = b

x ≥ 0,

, and its dual


max
(y,z)

bTy

s.t. ATy + z = c,

z ≥ 0,

with x, z ∈ Rn, y ∈ Rm, c ∈ Rn, b ∈ Rm and A ∈ Rm×n. LP can be converted into LCP

thanks to KKT conditions

Ax = b, x ≥ 0

ATy + z = c, z ≥ 0

xT z = 0.

The LCP is given as follows:

LCP(M, q) : z = Mx+ q

where z =

 z

0

, x =

 x

y

, M =

 0 −AT

A 0

 and q =

 c

−b

 ,
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1.6.3 Horizontal Linear Complementarity Problems

Given two square matrices M,N ∈ Rn×n and a vector q ∈ Rn, the horizontal linear

complementarity problem (HLCP) consists in finding a pair x, y ∈ Rn such that

x ≥ 0, y ≥ 0, Ny −Mx = q, xTy = 0. (1.5)

We will denote

F∗ =
{

(x, y) ∈ R2n : Ny = Mx+ q, x ≥ 0, y ≥ 0
}
.

The feasible set of points of the HLCP as defined in (1.5). The solution set of the HLCP

is given by:

Sol(M,N, q) =
{

(x, y) ∈ F∗ : xTy = 0
}
.

Remark 1.6.1. If N = I or N−1 exists, the HLCP reduced to the standard LCP.

1.6.4 Classes of HLCP

In this section, we recall some important classes of HLCP. Let M,N ∈ Rn×n, x, y ∈ Rn

and κ ≥ 0.

• {M,N} is called a monotone pair if

−Mx+Ny = 0⇒ xTy ≥ 0.

Or [M,N ] is full row rank (i.e., rank [M,N ] = n).

• {M,N} is called a P0-pair if −Mx+Ny = 0 and (x, y) 6= 0

(0 6= x ∈ Rn or 0 6= y ∈ Rn)(∃i ∈ I)(xiyi ≥ 0).

• {M,N} is called a P∗(κ)-pair if −Mx+Ny = 0 implies that

(1 + 4κ)
∑

i∈I+(x)

xiyi +
∑

i∈I−(x)

xiyi ≥ 0,∀x, y ∈ Rn,

where

I+(x) = {i : xiyi ≥ 0}, I−(x) = {i : xiyi < 0},

or

xTy ≥ −4κ
∑

i∈I+(x)

xiyi,∀x, y ∈ Rn.
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Example 1.6.2.
We consider the absolute value equation, which consists in finding x ∈ Rn such that

Ax−B|x| = b, (1.6)

where A, B ∈ Rn×n, b ∈ Rn and |x| denotes the vector in Rn with absolute values of

components of x. Indeed, for x ∈ Rn, we define x+ = max(x, 0) and x− = max(0,−x).

Then it is easy to conclude that

x+ ≥ 0, x− ≥ 0, x = x+ − x−, |x| = x+ + x− and x+Tx− = 0.

Therefore, the AVE is equivalent to the following HLCP: find x+ ≥ 0 and x− ≥ 0 such

that  Nx+ −Mx− = q

x+Tx− = 0,

with N = A−B, M = A+B and q = b.

Example 1.6.3.
Let us consider the following convex quadratic program:

(P) min
x

[
cTx+

1

2
xTQx

]
: Ax ≤ b, x ≥ 0,

where Q is a symmetric semidefinite matrix in Rn×n, c ∈ Rn, b ∈ Rm, x ∈ Rn and

A ∈ Rm×n with rank (A) = m. Cottle [20] showed by invoking the K.K.T optimality

conditions that x is an optimal solution of P if and only if there exists y ∈ Rm
+ , and

λ ∈ Rn
+ such that

Qx+ c+ ATy − λ = 0

yT (b− Ax) = 0,

λTx = 0

⇔


λ = Qx+ c+ ATy

µ = −Ax+ 0y + b,

λTx+ µTy = 0, x, y, λ, µ ≥ 0.

Therefore the K.K.T optimality conditions are equivalent to the following monotone

HLCP

Nw −Mz = q, wT z = 0, w, z ≥ 0

where

N = I, M =

 Q AT

−A 0

 , q =

 c

b

 , w =

 λ

µ

 , z =

 x

y

 .
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1.6.5 Semidefinite Linear Complementarity Problem

Let Sn denotes the linear space of all n× n real symmetric matrices and Sn+ ⊂ Sn be the

closed convex cone of symmetric positive semidefinite matrices. Given a linear transfor-

mation L : Sn → Sn and a symmetric matrix Q ∈ Sn, the semidefinite linear complemen-

tarity problem (SDLCP), is the problem of finding a pair of matrices (X, Y ) ∈ Sn × Sn

such that

X, Y ∈ Sn+, Y = L(X) +Q, X • Y = 0, (1.7)

where X • Y denotes the trace of the matrix product XY .

1.6.6 Classes of SDLCP

For a linear transformation L : Sn → Sn, we say that

• L has the R0-property if the zero matrix is the only solution of SDLCP(L ,0).

• L has the Q-property if for every Q ∈ Sn, SDLCP(L, Q) has a solution.

• L has the P -property if

X and L(X) commute, i.e., XL(X) = L(X)X, XL(X) � 0⇒ X = 0.

• L has the the strict semimonotone property if

X � 0, X and L(X) commute, XL(X) � 0⇒ X = 0.

• L is strictly monotone (monotone) if

〈L(X), X〉 > 0(≥ 0), for all X 6= 0.

Definition 1.6.1. A linear transformation L : Sn → Sn is said to be nondegenerate if

XL(X) = 0⇒ X = 0.
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1.6.7 Some results of the existence and uniqueness of solution of mono-

tone SDLCP

Lemma 1.6.1 ([9, 29]). The SDLCP has solutions if the transformation L is monotone

and the set of feasibility is non empty. In addition, if L is strictly monotone, then the

SDLCP has a unique solution for each Q ∈ Sn.

Remark 1.6.2. These results are also valid for HLCPs.

Example 1.6.4.
The standard linear complementarity problem is a special case of the semidefinite lin-

ear complementarity problems, let M ∈ Rn×n and q ∈ Rn, as in (1.4), and define the

following transformation L : Sn → Sn by

L(X) = Diag(Mdiag(X)),

where diag(X) is a vector whose entries are the diagonal entries of the matrix X , and

Diag(x) is a diagonal matrix whose diagonal is the vector x.

The semidefinite linear complementarity problem SDLCP(L,Diag(q)) corresponding to

the standard linear complementarity problem LCP(M ,q) is define as follows: Find X ∈

Sn such that

X ∈ Sn+, Y = L(X) + Diag(q) ∈ Sn+, and X • Y = 0,

if X is the solution of SDLCP(L,Diag(q)), then diag(X) is the solution of LCP(M, q).

Conversely, if x is the solution of LCP(M, q), then Diag(x) is the solution of SDLCP(L,Diag(q)).

Example 1.6.5.
A pair of primal-dual semidefinite optimization SDO programs is defined as:

min
X

C •X

s.t. 〈Ai, X〉 = bi, i = 1, 2, . . . ,m (P)

X � 0,

and its dual

max
(y,Z)

bTy

s.t.
m∑
i=1

yiAi + Z = C, (D)

Z � 0,
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with Ai, C ∈ Sn, b, y ∈ Rm and X,Z ∈ Sn+. It is well-known, that finding an optimal

solutionX of P and an optimal solution (y, Z) ofD is equivalent to solving the following

implicit SDLCP problem characterized by the following optimality conditions

Ai •X = bi, i = 1, 2, . . . ,m, X � 0,
m∑
i=1

yiAi + Z = C, Z � 0,

XZ = 0.

Applications
Example 1.6.6.
Consider the symmetric semidefinite constrained least squares problem (SDLS) which is

defined as the following convex optimization problem:

min
X

1

2
‖AX −B‖2

F ,

s.t. X � 0,

where A,B ∈ Rm×n with m ≥ n. It is shown [35], that if rank (A) = n, the SDLS

has a unique solution X∗ � 0. The optimality conditions for SDLS are equivalent to the

following monotone SDLCP with L : Sn → Sn and Q ∈ Sn are given by:

L(X) =
1

2
(ATAX +XATA) and Q = −1

2
(ATB +BTA).

Here L(X) is a Lyapunov linear transformation, with ATA is symmetric positive definite

matrix if rank (A) = n. Next Lemma shows the strict monotony of it.

Lemma 1.6.2. [35] The transformation L(X) = 1
2
(ATAX+XATA) linked to the SDLS

is a strictly monotone transformation.

Proof. Let X ∈ Sn, we have

〈L(X), X〉 =
1

2
〈ATAX,X〉+

1

2
〈XATA,X〉

=
1

2
Tr((ATAX)TX) +

1

2
Tr((XATA)TX)

= Tr((AX)TAX) = ‖AX‖2
2 > 0, since rank(A) = n. ∀X 6= 0.

Lemma 1.6.3 ( Theorem 3.5 in [17]). If A is symmetric positive definite matrix then the

two-sided linear transformationM(X) = AXAT is strictly monotone and consequently

the corresponding SDLCP has a unique solution for every Q ∈ Sn.
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In this chapter, we present an Interior-Point Method (IPM) for monotone HLCP, we

study first the central-path of HLCP and the search directions, then we state the generic

full-Newton step feasible interior-point algorithm for HLCP in section 2.1. The details

of the analysis of the proposed algorithm will be discussed in section 2.2. Finally, some

numerical results are provided to show the efficiency of the proposed algorithm and to

compare with an available method.

We recall that the horizontal linear complementarity problem (HLCP) consists in finding

35
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a pair x, y ∈ Rn such that

x ≥ 0, y ≥ 0, Ny −Mx = q, xTy = 0. (2.1)

Such that M,N ∈ Rn×n are a given two square matrices, and q ∈ Rn is a vector.

2.1 Central-path for HLCP

Throughout this chapter, we assume that (2.1) satisfies the following assumptions [18, 59].

• (Interior-Point-Condition (IPC)). There exists a pair of vectors (x0, y0) such that

Nx0 −My0 = q, y0 > 0, x0 > 0.

• (Monotonicity of (2.1)). The pair of matrices [N, M ] satisfies

Nu−Mv = 0⇒ uTv ≥ 0, for any u, v ∈ Rn.

These two assumptions imply the existence of a solution for HLCP (see [60]). Finding an

approximate solution of HLCP is equivalent to solving the following system: Ny −Mx = q,

xy = 0, x ≥ 0, y ≥ 0.
(2.2)

The basic idea of the path-following interior-point algorithm is to replace the second equa-

tion in (2.2), the so-called the complementarity condition for (2.1), by the parameterized

equation xy = µe with µ > 0. Thus one may consider the following system: Ny −Mx = q,

xy = µe.
(2.3)

The system (2.3) has a unique solution denoted by (x(µ), y(µ)) for each µ > 0 [53]. Then

we call (x(µ), y(µ)) the µ−center of HLCP. The set of µ−center (with µ running through

all positive real numbers) is called the central-path of HLCP. If µ → 0, then the limit

of the central-path exists and since the limit point satisfy the complementarity condition

xy = 0, the limit yields a solution for HLCP [18].
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2.1.1 Search directions for HLCP

Now, we want to define search directions (∆x,∆y) that move in the direction of the µ-

centers (y(µ), x(µ)). Applying Newton’s method for (2.3) for a given strictly feasible

point (x, y), i.e., the IPC holds, we get the following linear system: N∆y −M∆x = 0,

X∆y + Y∆x = µe− xy,
(2.4)

where X= Diag (x) and Y = Diag (y). The unique solution (∆x, ∆y) of (2.4) is guaran-

teed by our assumptions since the bloc matrix −M N

Y X


is nonsingular (cf Proposition 3.1 in [58]). Therefore, the new iterate is obtained by taking

a full-Newton step according to:

x+ := x+ ∆x, y+ := y + ∆y.

Denote

v =

√
xy

µ
, (2.5)

and

dx =
v∆x

x
, dy =

v∆y

y
. (2.6)

One can easily check that

µdxdy = ∆x∆y, and x∆y + y∆x = µv(dx + dy). (2.7)

Now due to (2.6) and (2.7), system (2.4) becomes N̄dy − M̄dx = 0,

dx + dy = pv,
(2.8)

where M̄ = MXV −1, N̄ = NY V −1 with V := Diag (v) and,

pv = v−1 − v.

For the analysis of the algorithm, we use a norm-based proximity measure δ(v) defined

by:

δ := δ(xy;µ) =
1

2
‖pv‖. (2.9)
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Clearly,

δ(v) = 0⇔ v = e⇔ xy = µe.

Hence, the value of δ(v) can be considered as a measure for the distance between the

given pair (x, y) and the corresponding µ−center (x(µ), y(µ)).

2.1.2 Algorithm for HLCP

The interior-point primal-dual algorithm for HLCP works as follows. First, we use a

suitable threshold (default) value τ > 0, with 0 < τ < 1 and we suppose that a strictly

feasible initial point (x0, y0) exists such that δ(x0y0;µ0) ≤ τ, for certain µ0 is known.

Using the obtained search directions (∆x,∆y) from (2.4) and taking a full-Newton step,

the algorithm produces a new iterate (x+, y+) = (x + ∆x, y + ∆y). Then, it updates the

barrier parameter µ to (1− θ)µ with 0 < θ < 1 and solves the Newton system (2.4), and

target a new µ-center and so on. This procedure is repeated until the stopping criterion

nµ ≤ ε is satisfied for a given accuracy parameter ε. The generic feasible full-Newton

step interior-point algorithm for HLCP is now presented in Fig 2.1, as follows.
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.

The generic interior-point algorithm for HLCP

.

Input:

A threshold parameter 0 < τ < 1 (default τ = 2√
10

);

an accuracy parameter ε > 0;

a fixed barrier update parameter 0 < θ < 1 (default θ = ( 6
23n

)1/2);

a strictly feasible point (x0, y0) and µ0 = 1
2

s.t. δ(x0y0;µ0) ≤ τ.

begin

x := x0; y := y0; µ := µ0;

While nµ ≥ ε do

Solve system (2.4) to obtain (∆x,∆y);

Update x := x+ ∆x; y := y + ∆y;

µ := (1− θ)µ;

end while

end.

Figure 2.1: Algorithm 2.1

2.2 Complexity analysis of the algorithm

In this section, we will show across the new defaults θ and τ , described in Fig 2.1, that

Algorithm 2.1, is well-defined and solves the HLCP in polynomial complexity.

2.2.1 Feasibility and locally quadratically convergence of the feasible

full-Newton step

We first investigate the feasibility of a full-Newton step. Then we mainly prove that the

iterate is locally quadratically convergent. We first quote the following technical lemma

which will be used later.
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Lemma 2.2.1. Let δ > 0 and (dx, dy) be a solution of system (2.8). Then, we have

0 ≤ dTx dy ≤ 2δ2, (2.10)

and

‖dxdy‖∞ ≤ δ2, ‖dxdy‖ ≤
√

2δ2. (2.11)

Proof. For the first part of the first statement, let dx and dy be the unique solution of

system (2.8), hence from the first equation of it, we have N̄dy − M̄dx = 0. Substitution

N̄ = NY V −1 and M̄ = MXV −1, then MXV −1dy −NY V −1dx = 0. But since the pair

[N,M ] is in the monotone HLCP, so by assumption 2, we conclude that

(XV −1dy)
T (Y V −1dx) = dTx dy ≥ 0.

For the second part of it, it follows trivially from the following equality

4δ2 = ‖pv‖2 = ‖dx + dy‖2 = ‖dx‖2 + ‖dy‖2 + 2dTx dy ≥ 2dTx dy.

For the second statement, we have

dxdy =
1

4
((dx + dy)

2 − (dx − dy)2),

and

‖dx + dy‖2 = ‖dx − dy‖2 + 4dTx dy.

But since dTx dy ≥ 0, it follows that

‖dx − dy‖ ≤ ‖dx + dy‖.

On the other hand,

‖dxdy‖∞ =
1

4
‖(dx + dy)

2 − (dx − dy)2‖∞

≤ 1

4
max(‖dx + dy‖2

∞, ‖dx − dy‖2
∞)

≤ 1

4
max(‖dx + dy‖2, ‖dx − dy‖2)

≤ 1

4
‖dx + dy‖2 =

1

4
‖pv‖2 = δ2.
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Therefore, ‖dxdy‖∞ ≤ δ2. To prove the last part of it, we have,

‖dxdy‖2 = eT (dxdy)
2 =

1

16
eT ((dx + dy)

2 − (dx − dy)2)2

=
1

16
‖(dx + dy)

2 − (dx − dy)2‖2

≤ 1

16
(‖(dx + dy)

2‖2 + ‖(dx − dy)2‖2)

≤ 1

16
(‖dx + dy‖4 + ‖dx − dy‖4)

≤ 1

8
‖dx + dy‖4 =

1

8
‖pv‖4 = 2δ4.

Hence, ‖dxdy‖ ≤
√

2δ2. This completes the proof.

Lemma 2.2.2. The full-Newton step is positive if and only if e+ dxdy > 0.

Proof. We have,

x+y+ = (x+ ∆x)(y + ∆y) = xy + x∆y + y∆x+ ∆x∆y.

Using (2.6) and (2.7), we get

x+y+ = µ(e+ dxdy).

If x+ > 0 and y+ > 0 then x+y+ > 0 and so e + dxdy > 0. Conversely, let 0 ≤ α ≤ 1

and define x(α) := x+ α∆(x), y(α) := y + α∆(y), we have

x(α)y(α) = xy + α(µe− xy) + α2∆x∆y.

If e+ dxdy > 0 then µe+ ∆x∆y > 0 and ∆x∆y > −µe. Hence

x(α)y(α) > (1− α)xy + (α− α2)µe ≥ 0.

So x(α)y(α) > 0 for each 0 ≤ α ≤ 1. Since x(α) and y(α) are linear functions of α

and x(0) = x > 0 and y(0) = y > 0, then x(1) = x+ > 0 and y(1) = y+ > 0. This

completes the proof.

For convenience, we may write

v2
+ =

x+y+

µ
.

It is easy to deduce that

v2
+ = e+ dxdy ⇔ x+y+ = µ(e+ dxdy). (2.12)
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Lemma 2.2.3. If δ < 1, then x+ > 0 and y+ > 0. Thus concludes that x+ > 0 and

y+ > 0 are strictly feasible for (2.1).

Proof. From Lemma 2.2.2, we have seen that x+ > 0, y+ > 0 if and only if e+ dxdy > 0.

Because,

1 + (dxdy)i ≥ 1− |(dxdy)i| ≥ 1− ‖dxdy‖∞ for all i,

so, by (2.11), it follows that 1 + (dxdy)i ≥ 1 − δ2. Thus e + dxdy > 0 if δ < 1. This

completes the proof.

The next lemma shows the influence of the full-Newton step on the proximity measure.

Lemma 2.2.4. If δ < 1. Then

δ+ := δ(v+;µ) ≤ δ2√
2(1− δ2

.

Proof. We have

2δ+ = ‖v+ − v−1
+ ‖.

Due to (2.12), we have v+ =
√
e+ dxdy and v−1

+ = e√
e+dxdy

. Thus implies that

2δ+ =

∥∥∥∥∥ dxdy√
e+ dxdy

∥∥∥∥∥ ≤ ‖dxdy‖√
1− ‖dxdy‖∞

.

It follows from (2.11) that δ+ ≤ δ2√
2(1−δ2)

. This completes the proof.

Corollary 2.2.1. Let δ ≤ 2√
10

, thus δ+ ≤ δ2 which means the locally quadratically

convergence of the full-Newton step to the central-path.

2.2.2 Updating the barrier parameter

The following lemma gives an upper bound for the duality gap after a full-Newton step.

Lemma 2.2.5. Let δ ≤ 2√
10

. Then after a full-Newton step the duality gap for the pair

(x+, y+) satisfies

xT+y+ ≤ 2µn. (2.13)

Proof. Using (2.12), we have

xT+y+ = µeT (e+ dxdy) = µ(n+ dTx dy).
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Using (2.10), it follows that

xT+y+ ≤ µ(n+ 2δ2).

Now, let δ ≤ 2√
10

, then

xT+y+ ≤ µ

(
n+

4

5

)
.

But since for all n ≥ 1, n+ 4
5
≤ 2n, this gives the required result.

In the next lemma, we investigate the effect on the proximity of a full-Newton step fol-

lowed by an update of the barrier parameter µ.

Lemma 2.2.6. Let δ ≤ 2√
10

and µ+ = (1− θ)µ, where 0 ≤ θ ≤ 1. Then

δ2(x+y+;µ+) ≤ 2

15
+
θ2(n+ 4

5
)

4(1− θ)
+

4θ

15
.

In addition, if δ ≤ 2√
10

, θ = ( 6
23n

)1/2 and n ≥ 2, then δ(x+y+;µ+) ≤ 2√
10

.

Proof. We have,

4δ2(x+y+;µ+) =

∥∥∥∥√1− θv−1
+ −

1√
1− θ

v+

∥∥∥∥2

=

∥∥∥∥√1− θ(v−1
+ − v+)− θ√

1− θ
v+

∥∥∥∥2

= (1− θ)‖v−1
+ − v+‖2 +

θ2

1− θ
‖v+‖2 − 2θ(v−1

+ − v+)Tv+

= (1− θ)‖v−1
+ − v+‖2 +

θ2

1− θ
‖v+‖2 − 2θ(v−1

+ )Tv+ + 2θ(v+)Tv+.

As (v−1
+ )Tv+ = n and (Lemma 2.2.5)

(v+)Tv+ = ‖v+‖2 =
1

µ
xT+y+ ≤

(
n+

4

5

)
,

it follows that

δ2(x+y+;µ+) ≤ (1− θ)δ2
+ +

θ2(n+ 4
5
)

4(1− θ)
+

2θ

5
.

Let δ ≤ 2√
10

, then δ2
+ ≤ 2

15
, and we deduce that

δ2(x+y+;µ+) ≤ 2(1− θ)
15

+
θ2(n+ 4

5
)

4(1− θ)
+

2θ

5
.

Now, taking θ = ( 6
23n

)1/2 then θ2 = 6
23n

, hence, we get

δ2(x+y+;µ+) ≤ 2(1− θ)
15

+
6

23n
(n+ 4

5
)

4(1− θ)
+

2θ

5
.
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Now, as 6(n+ 4
5

)

23n
≤ 42

115
for all n ≥ 2, then

δ2(x+y+;µ+) ≤ 2

15
+

21

230(1− θ)
+

4θ

15
.

Again, for n ≥ 2, we have θ ∈ [0, ( 3
23

)1/2]. Letting

f(θ) =
2

15
+

21

230(1− θ)
+

4θ

15
.

The function f(θ) is continuous and monotone increasing on [0, ( 3
23

)1/2]. Therefore,

f(θ) ≤ f

((
3

23

)1/2
)

= 0.37256 <
4

10
, for all θ ∈

[
0,

(
3

23

)1/2
]
.

Then, after the barrier parameter is update to µ+ = (1 − θ)µ with θ = ( 6
23n

)1/2 and if

δ ≤ 2√
10

, then

δ(x+y+;µ+) ≤ 2√
10
.

This completes the proof. �

From Lemma 2.2.6, we deduce that for the defaults τ = 2√
10

and θ = ( 6
23n

)1/2,

Algorithm 2.1 is well-defined since the conditions x > 0, y > 0 and δ(x+y+;µ+) ≤ 2√
10

are maintained during the solution process.

2.2.3 Iteration bound

We conclude this section with a theorem that gives us the iteration bound of Algorithm

2.1. Before doing this we apply the results obtained in the previous subsections and get

the following lemma.

Lemma 2.2.7. Assume that x0 and y0 are strictly feasible starting point such that δ(x0y0;µ0) ≤
2√
10

for certain µ0 > 0. Moreover, let xk and yk be the iterate produced by Algorithm 2.1,

after k iterations. Then the inequality (xk)Tyk ≤ ε is satisfied for

k ≥ 1

θ
log

(
2nµ0

ε

)
.

Proof. From (2.13), it follows that

(xk)Tyk ≤ 2nµk = 2n(1− θ)kµ0.
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Then the inequality (xk)Tyk ≤ ε holds if

2n(1− θ)kµ0 ≤ ε.

Taking logarithms, we obtain

k log(1− θ) ≤ log ε− log(2nµ0)

and using − log(1 − θ) ≥ θ for 0 ≤ θ ≤ 1, then we observe that the above inequality

holds if

kθ ≥ log ε− log(2nµ0) = log

(
2nµ0

ε

)
.

This implies the lemma. �

Theorem 2.2.1. If θ = ( 6
23n

)1/2 and µ0 = 1
2
, then Algorithm 2.1 requires at most

O
(√

n log
n

ε

)
iterations for getting an ε-approximate solution of (2.1).

Proof. Let θ = ( 6
23n

)1/2 and µ0 = 1
2
, by using Lemma 2.2.7, the proof is straightforward.

2.3 Numerical results

In this section, we test Algorithm 2.1, on some monotone HLCPs which are reformu-

lated from three interesting problems, namely the absolute value equation (AVE) (see,

e.g.,[30, 39, 44]), convex quadratic optimization programs and the monotone standard

LCP, respectively.

Recall that the AVE (Example 1.6.2) is defined as:

Ax−B|x| = b, (2.14)

Therefore, the AVE is equivalent to the following HLCP: find x+ ≥ 0 and x− ≥ 0 such

that  Nx+ −Mx− = q

x+Tx− = 0,
(2.15)
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with N = A − B, M = A + B and q = b. It shown under the condition that σmin(A) >

σmax(B) (cf. Proposition 2.3 in [30]), that the HCLP in (2.15), is reduced to a P -matrix

standard LCP and therefore the HLCP has a unique solution (x+, x−) for every b (cf.

Theorem 3.3.7 in [21]). Hence, the AVE has x = x+ − x− as the unique solution. Now,

for the implementation of Algorithm 2.1, our accuracy is set to ε = 10−6 and we use

different values of the barrier parameters µ0 and θ in order to improve its performances.

The Algorithm 2.1 is implemented on software MATLAB 7.9 and run on a PC with CPU

2.67 GHz and 4G RAM memory and double precision format. Now, four problems of

monotone HLCP are constructed from two randomly AVE problems and from a convex

quadratic program and a monotone standard LCP. To this end we compare our Algorithm

2.1 with an iterative fixed point method.

Example1. Consider the AVE problem of type (2.14), where A, B and b are given by

A =



8 0 −1 1 −20

1 1 1 4 25

1 −5 0 8 −10

0 8 1 −6 1

3 5 −3 0 10


, B =



−1.5 0 1.5 0.5 0.1

0 0.25 1 0 0.5

1 0.6 1 0.4 0.5

0 0.3 1 1 0

1 0 1 0 0


, b = e ∈ R5.

One can easily check that the AVE in problem 1, has a unique solution since σmin(A) =

2.8215 > σmax(B) = 2.7434. Therefore the corresponding HLCP in (2.15) is strictly

monotone and its data is given by

N =



9. 5 0 −2. 5 0.5 −20. 1

1 0.75 0 4 24. 5

0 −5. 6 −1 7. 6 −10. 5

0 7. 7 0 −7 1

2 5 −4 0 10


, M =



6. 5 0 0.5 1. 5 −19. 9

1 1. 25 2 4 25. 5

2 −4. 4 1 8. 4 −9. 5

0 8. 3 2 −5 1

4 5 −2 0 10


,

and q = b. The strictly feasible starting point for Algorithm 2.1, is

x−0 = (2.6677, 0.4111, 1.3168, 0.3506, 1.6744)T ,

and

x+
0 = (1.3825, 4.9548, 2.7173, 4.6145, 1.1166)T .
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The unique solution of the corresponding HLCP is

x− = (0, 0, 0, 0, 0.0735)T ,

and

x+ = (0.0286, 0.6808, 0.4270, 0.5953, 0)T .

Therefore, the unique solution of the AVE is given by

x = (0.0285, 0.6808, 0.4270, 0.5953, −0.0753)T .

The numerical results with different theoretical and relaxed barrier values of µ0 and θ are

shown in table 2.1.

µ0 → 0.5 0.05 0.005 0.0005 0.00005

θ ↓ Iter CPU Iter CPU Iter CPU Iter CPU Iter CPU

( 6
23n

)1/2 51 0.011 42 0.0149 33 0.0194 24 0.0079 16 0.0087

1
2
√
n

52 0.0091 43 0.0112 34 0.0095 25 0.0110 16 0.0136

Table 2.1: The numerical results, after the algorithm reaches nµ ≤ 10−6

Example 2. The matrices A, B ∈ Rn×n, and the vector b ∈ Rn of the AVE problem are

given by

A =



6 0.5 0.5 . . . 0.5 0

0.5 6 0.5 . . . 0.5 0

0.5 0.5 6 · · · 0.5
...

...
... . . . . . . 0.5 0

0.5 0.5 0.5 . . . 6 0

0 0 . . . 0 0 6


and

B =



−1 0.5 0.5 . . . 0.5 0

0.5 −1 0.5 . . . 0.5 0

0.5 0.5 −1 · · · 0.5
...

...
... . . . . . . 0.5 0

0.5 0.5 0.5 . . . −1 0

0 0 . . . 0 0 −1


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and

b = (21, 28, . . . , 28, 21)T .

The numerical results with different size of n are summarized in tables Table 2.2 and

Table 2.3. For the initialization of the corresponding HLCP, we take

x−0 =
1

2
e and x+

0 = (3.4286, 4.5, . . . , 4.5, 3.4286)T .

The unique solution of HLCP is given by

x+ = (3, 4, . . . , 4, 3)T and x− = (0, . . . , 0)T .

Therefore the unique solution of the AVE is

x = (3, 4, . . . , 4, 3)T .

µ0 → 0.5 0.05 0.005 0.0005 0.00005

Size n ↓ Iter CPU Iter CPU Iter CPU Iter CPU Iter CPU

6 57 0.0284 47 0.0265 37 0.0271 27 0.0281 17 0.0269

12 83 0.0346 68 0.0283 54 0.0259 39 0.0265 25 0.0206

18 103 0.0452 85 0.0407 67 0.0312 49 0.0372 31 0.0265

24 120 0.0381 99 0.0340 78 0.0349 57 0.0368 36 0.0318

50 176 0.1385 145 0.1169 114 0.0734 83 0.0794 53 0.0510

100 251 0.7036 207 0.5885 163 0.4844 119 0.3945 75 0.3019

200 357 10.2619 295 9.4354 232 7.7834 169 5.7430 107 3.5279

1100 846 3549.9 698 2148 549 1511.3 401 1635 253 771.8659

Table 2.2: Numerical results with θ = ( 6
23n

)1/2, after the algorithm reaches nµ ≤ 10−6.
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µ0 → 0.5 0.05 0.005 0.0005 0.00005

Size n ↓ Iter CPU Iter CPU Iter CPU Iter CPU Iter CPU

6 58 0.0292 48 0.0193 38 0.0256 28 0.0216 18 0.0316

12 85 0.0379 70 0.033 55 0.0307 40 0.0277 26 0.0199

18 105 0.0505 87 0.0321 68 0.0468 50 0.033 32 0.0338

24 122 0.0349 101 0.0354 80 0.0552 58 0.0436 37 0.0212

50 179 0.1258 148 0.1109 117 0.0964 85 0.0825 54 0.0604

100 256 0.7376 211 0.6271 167 0.5164 122 0.4129 77 0.3067

200 365 10.5878 301 9.5922 237 7.9824 173 5.8425 109 3.6946

1100 864 4170 713 2149.9 561 1552.9 410 1684.3 258 828.3743

Table 2.3: Numerical results with θ = 1
2
√
n

, after the algorithm reaches nµ ≤ 10−6

Next example is constructed from a convex quadratic program.

Example 3. Let us consider the convex quadratic program P define in Example 1.6.3,

with the following data:

A =

 3 4 −2

−3 2 1

 , Q =


2 1 0

1 4 0

0 0 6

 , b = (10, 2)T , c = (1, −2, 4)T .

Therefore the data of the corresponding monotone HLCP is given by

M =



2 1 0 3 −3

1 4 0 4 2

0 0 6 −2 1

−3 −4 2 0 0

3 −2 −1 0 0


, N = I, q = (1, −2, 4, 10, 2)T .

The starting point for Algorithm 2.1, is given by

z0 = e ∈ R5 and w0 = (4, 9, 9, 5, 2)T .

The unique solution of the HLCP is given by

z∗ = (0, 0.5, 0, 0, 0)T
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and

w∗ = (1.5, 0, 4, 8, 1)T .

So the unique minimum x∗ of P is attained at the point

x∗ = (0, 0.5, 0)T .

The numerical results with different theoretical and relaxed barrier values of µ0 and θ are

shown in table 2.4.

µ0 → 0.5 0.05 0.005 0.0005 0.00005

θ ↓ Iter CPU Iter CPU Iter CPU Iter CPU Iter CPU

( 6
23n

)1/2 51 0.0046 42 0.0052 33 0.0042 24 0.0049 16 0.0036

1
2
√
n

52 0.0051 43 0.0057 34 0.0044 25 0.0050 16 0.0037

Table 2.4: The numerical results, after the algorithm reaches nµ ≤ 10−6

In the next example, we compare the performance of Algorithm 2.1 with an available

non-interior-point method, namely, an iterative fixed point algorithm developed earlier by

Yong [56]. In fact, if we take y = |z| − z ≥ 0 and x = |z| + z ≥ 0 in (2.1), then the

HLCP can be equivalently transformed into a system of fixed point equation

(N +M)z = (N −M) |z| − q. (2.16)

Based on (2.16), and assume that the matrix (N + M) is nonsingular, then the iterative

fixed point algorithm can be described below as follows.

Fixed Point Algorithm.

• Given an initial point z0 ∈ Rn;

• compute zk+1 = (N +M)−1(N −M)
∣∣zk∣∣− (N +M)−1q;

• set xk+1 = zk+1 +
∣∣zk+1

∣∣; until the iteration sequence {xk}k≥0 is convergent.

Yong specialized in the HLCP with N = I i.e., in monotone standard LCP, he proved

under suitable conditions that the iterative fixed point method is globally convergent to a

solution of HLCP. For more details the interested reader can consult the reference [56].
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Example 4. [56] Let us consider the following monotone standard LCP with the following

data:

M =



4 −1 0 . . . 0

−1 4 −1 . . .
...

0 −1 4 . . . 0
...

...
... . . . −1

0 . . . 0 −1 4


, N = I, q = −e.

The starting point for Algorithm 2.1, is

x0 = e and y0 = (2, 1, . . . , 1, 2)T .

The unique solution of the HLCP is given by

x∗ = (0.3660, 0.4641, 0.4904, 0.4974, 0.5, . . . , 0.5, 0.4974, 0.4904, 0.4641, 0.3660)T

and

y∗ = (0, . . . , 0)T .

So the unique solution z∗ obtained by the iterative fixed point method is

z∗ = (0.1830, 0.2321, 0.2452, 0.2487, 0.25, . . . , 0.25, 0.2487, 0.2452, 0.2321, 0.1830)T .

The numerical results obtained by these two algorithms are shown in table 2.5.

Algorithms→ Fixed Point Algorithm Algorithm 2.1

Size n ↓ Iter CPU Iter CPU

5 37 0.0401 16 0.0903

10 55 0.0215 23 0.0133

50 122 0.2030 53 0.1650

100 255 0.6410 75 0.2021

500 810 991.2144 170 348.6089

Table 2.5: The numerical results, after the algorithm reaches nµ ≤ 10−6

Comments. Across the obtained numerical results stated in the above tables, we see that

Algorithm 2.1offers with these new defaults a solution for monotone HLCPs. Moreover,

Algorithm 2.1 obtains better numerical results with the relaxed parameter µ0 = 0.00005
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and the update barrier θ = ( 6
23n

)1/2, since the number of iterations is significantly reduced.

Also our obtained numerical results compete well with those obtained with the classical

strategy of the update barrier parameter, namely, θ = 1
2
√
n

(see [7]).

Contributions and some remarks

We end Chapter I with some contributions and remarks.

• We contribute on suggesting two new suitable parameters, namely, the barrier θ and

the threshold τ which lead to the convergence of the algorithm.

• The best polynomial complexity of the short-step algorithm is achieved with these

two new parameters.

• If an initial point is available i.e., strictly feasible and close to the central-path, then

the advantage of this algorithm is to generate a sequence that still strictly feasible

and close to the central-path during the solution process.

Some practical difficulties of the proposed algorithm.

• It is mentioned that these methods suffer to obtain a strictly feasible starting point

and close to central-path to initiate their associate algorithm. This because the used

neighborhood of the central-path is narrow since the threshold τ < 1).

• The update barrier parameter θ depends on the size n of the problem. If n is large

enough this leads to a slow convergence of the algorithm.
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Kernel functions play an important role in defining new search directions for interior-

point algorithms for solving monotone linear complementarity problems, for this reason

we have studied primal-dual interior point algorithms for solving SDLCP.

Based on a new parametric kernel function, this chapter presents a primal-dual large-

update interior-point algorithm (IPM) for semi-definite linear complementarity problems

(SDLCPs).
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The proposed kernel function is defined as follows:

ψ(t) =
t2 − 1

2
+
q

1
t
−1 − 1

q log q
− (q − 1)

q
(t− 1), t > 0, (3.1)

where q > 1 is the barrier parameter.

In this chapter, we will discuss the IPM method for solving a SDLCP. First, we will

explain the concept of the IPM (see e.g. [8, 34, 40]), then we will analyze its convergence

and finally we will give an estimate on the number of iterations needed to find an ε-

approximate solution of SDLCP.

Recall that the semidefinite linear complementarity problem (SDLCP), is the problem of

finding a pair matrices (X, Y ) ∈ Sn × Sn such that

X, Y ∈ Sn+, Y = L(X) +Q, X • Y = 0, (3.2)

such that L : Sn → Sn is a given linear transformation, Q ∈ Sn is a symmetric matrix and

X • Y denotes the trace of the matrix product XY .

3.1 Some results on matrices and matrix functions

Definition 3.1.1. Let V ∈ Sn+ and

V = QTdiag(λ1(V ), λ2(V ), . . . , λn(V ))Q,

whereQ is any orthonormal matrix (QT = Q−1) ) that diagonalizes V . The matrix valued

function ψ(V ) is defined by

ψ(V ) = QTdiag(ψ(λ1(V )), ψ(λ2(V )), . . . , ψ(λn(V )))Q. (3.3)

It should be noted that the matrixQ is not unique, but ψ(V ) is well defined whenever ψ(t)

is well defined on the eigenvalues of V.

Furthermore, replacing ψ(λl(V )) in (3.3) by ψ′(λl(V )), we can conclude that the matrix

functions ψ(V )

ψ′(V ) = QTdiag(ψ′(λ1(V )), ψ′(λ2(V )), . . . , ψ′(λn(V )))Q, (3.4)

is defined as well.
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Definition 3.1.2. A matrix X(t) is said to be a matrix of functions if each entry of X(t)

is a function of t, that is, X(t) = [Xij(t)]. The concepts of continuity, differentiability

and integrability naturally extended to matrix-valued functions of a scalar by interpreting

them component wise. Thus we can say that

d

dt
X(t) =

d

dt
[Xij(t)] = X ′(t).

Suppose that the matrix-valued functions H(t) and G(t) are differentiable with respect to

t. Then we have

d

dt
(Tr(G(t))) = Tr

(
d

dt
G(t)

)
= Tr(G′(t))

d

dt
(G(t)H(t)) = G′(t)H(t) +G(t)H ′(t).

For any function ψ(t), let us denote by4ψ(t) the divided difference of ψ(t):

4ψ(t1, t2) =
ψ(t1)− ψ(t2)

t1 − t2
, ∀t1 6= t2,

if t1 = t2, we simply write4ψ(t1, t2) = ψ′(t).

Lemma 3.1.1 (Lemma 16 [43]). Suppose that H(t) is a matrix of functions such that the

matrix H(t) is positive definite with eigenvalues λ1(t) ≥ λ2(t) ≥ · · · ≥ λn(t) > 0. If

H(t) is twice differentiable with respect to t ∈ (lt, ut) and ψ(t) is twice continuously

differentiable function in a domain that contains all the eigenvalues of H(t), then

d

dt
Tr(ψ(H(t))) = Tr(ψ′(H(t)H ′(t)),

d2

dt2
Tr(ψ(H(t))) ≤ ω ‖H ′(t)‖2

+ Tr(ψ′(H(t)H ′′(t)),

where

ω = max {|∆ψ′(λj(t), λk(t))| : t ∈ (lt, ut), j, k = 1, 2, . . . , n}

is a number depending on H ′(t) and ψ(t) with

∆ψ′(t1, t2) =
ψ′(t1)− ψ′(t2)

t1 − t2
, ∀t1, t2 ∈ [lt, ut] .

3.2 The central-path for SDLCP

Throughout this chapter, we assume that:
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• Interior-Point-Condition (IPC). There exists a pair of matrices (X0, Y 0) such that:

Y 0 − L(X0) = Q, X0 � 0, Y 0 � 0.

• Self-adjoint and monotonicity.

∀X, Y ∈ Sn,L(X) • Y = X • L(Y ), L(X) •X ≥ 0.

Under these assumptions, it is known that (3.2) has at least one solution [29]. Since for

X, Y ∈ Sn+, we have 〈X, Y 〉 = 0 if and only if XY = 0. Then, finding a solution of (3.2)

is equivalent to solving the following system: Y − L(X) = Q,

XY = 0, X, Y � 0.
(3.5)

The basic idea of primal-dual IPMs is to replace the second equation in (3.5) by the

parameterized equation XY = µI , µ > 0. Hence, we consider the following system: Y − L(X) = Q,

XY = µI, X, Y � 0.
(3.6)

If IPC holds, then for each µ > 0 system (3.6) has a unique solution. This solution,

denoted by (X(µ), Y (µ)), is called the µ-center of SDLCP. The set of µ-centers gives

the central-path of SDLCP. It has been shown by Kojima et al.[34] that the limit of the

central-path exists as µ tends to zero and it is a solution of (3.2).

3.2.1 The search directions determined by kernel functions

The core idea of primal-dual IPMs is to follow the central-path approximately and to

approach the solution of (3.2) as µ → 0. A direct application of Newton’s method to

(3.6), produces the following system for the search direction ∆X and ∆Y : ∆Y − L(∆X) = 0

∆XY +X∆Y = µI −XY,
(3.7)

or equivalently  ∆Y − L(∆X) = 0

∆X +X∆Y Y −1 = µY −1 −X.
(3.8)
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Clearly, ∆X is not symmetric due to the matrix X∆Y Y −1. Therefore, a way to sym-

metrizing the second equation in (3.8) is to introduce an non-singular matrix P and to

replace it by the equation ∆X + P∆Y P T = µY −1 −X . Thus, we obtain ∆Y − L(∆X) = 0

∆X + P∆Y P T = µY −1 −X.
(3.9)

Now, ∆X is symmetric and ∆Y is automatically so. Among several symmetrization

scheme, we use the Nesterov-Todd (NT) direction where the matrix P is defined as

P = X1/2(X1/2Y X1/2)−1/2X1/2 = Y −1/2(Y 1/2XY 1/2)1/2Y −1/2.

To simplify the analysis, we adopt the matrix D = P 1/2. Then D can be used to rescale

X and Y to the same symmetric positive definite matrix V because

V :=
1
√
µ
D−1XD−1 =

1
√
µ
DY D. (3.10)

Moreover, let us further define

DX =
1
√
µ
D−1∆XD−1, DY =

1
√
µ
D∆Y D. (3.11)

Now, due to (3.10) and using the scaled directions (3.11), system (3.9) can be rewritten as

follows:  L(DX) = DY

DX +DY = V −1 − V,
(3.12)

where

L(DX) =
1
√
µ
DL(∆X)D = DL(DDXD)D.

It is not difficult to verify that the right-hand side V −1−V in the second equation in (3.12)

equals minus the derivative of the classical logarithmic barrier function

Ψc(V ) := Tr(ψc(V )) =
n∑
i=1

(ψc(λi(V )))

=
n∑
i=1

(
λi(V )2 − 1

2
− log(λi(V ))

)
. (3.13)

That is to say

∇Ψc(V ) = V −1 − V.
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Moreover, we call ψc(t) the kernel function of the logarithmic barrier function Ψc(V ).

Thus, the system (3.12) becomes L(DX) = DY

DX +DY = −∇Ψc(V ).
(3.14)

The approach in this chapter, is to replace the logarithmic barrier Ψc(V ) by a scaled

barrier function Ψ(V ) defined Ψ(V ) =
∑n

i=1 ψ(λi(V )), where ψ is defined in (3.1).

Now, we replace the right hand side of the second equation in (3.14) by −∇Ψ(V ). Thus

the new search directions DX and DY are obtained by solving the following system L(DX) = DY

DX +DY = −∇Ψ(V ).
(3.15)

This system has a unique solution (DX , DY ) for each µ > 0 which can be used to compute

∆X and ∆Y via (3.11). If (X, Y ) 6= (X(µ), Y (µ)), then (∆X,∆Y ) is non zero. By

taking a step-size α along the search directions, we construct a new pair according to

X+ := X + α∆X, Y+ := Y + α∆Y.

Note that for the SDO case [3, 22], we have 〈DX , DY 〉 = 0, i.e., DX and DY are orthog-

onal. However, for the case of SDLCP this relation does not hold. Since L is a monotone

transformation we have

〈DX , DY 〉 =
1

µ
〈∆X,∆Y 〉 =

1

µ
〈∆X,L(∆X)〉 ≥ 0. (3.16)

This is the only difference between the SDLCP problem and the SDO problem in their

analysis.

In the algorithm, we use the barrier function Ψ(V ) as a measure function and also we

introduce the norm-based proximity measure δ(V ) to the central-path as follows:

δ(X, Y ;µ) := δ(V ) =
1

2
‖ψ′(V )‖ =

1

2

√√√√ n∑
i=1

ψ′(λi(V ))2. (3.17)

Clearly,

XY = µI ⇔ V = I ⇔ ψ′(V ) = 0⇔ Ψ(V ) = 0.

Hence, the value of δ(V ) can be considered as a measure for the distance between the

matrix pair (X, Y ) and the central-path.
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3.3 The generic primal-dual IPM for SDLCP

The general outline of the generic primal-dual kernel-function-based (IPMs) for SDLCP

works as follows. We suppose that there exists a strictly feasible initial point (X0, Y 0) in

a τ -neighborhood i.e., Ψ(V ) ≤ τ. Then the value of the barrier parameter µ is reduced

by the factor (1 − θ)µ with some fixed 0 < θ < 1 which changes the value of V and

obtains a new µ-center (X(µ), Y (µ)). Hence the value of Ψ(V ) exceeds the threshold τ

i.e., Ψ(V ) ≥ τ. Now, we start the inner iteration by solving the Newton system (3.15) and

use (3.11), to obtain the unique search direction. In order to reduce the value of Ψ(V ).

a step-size is introduced. If necessary, the procedure is repeated until we find the iterate

that again belongs to the τ - neighborhood of the current µ-center and so on. At this point

we start a new outer iteration by reducing the value of µ again. This procedure is repeated

until the stopping criterion nµ ≤ ε is satisfied for a given accuracy parameter ε. The

details of our generic IPM outlined above is summarized in Fig 3.1 as follows.
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.

The generic interior-point algorithm for SDLCP

.

Input:

A threshold parameter default τ ≥ 1;

an accuracy parameter ε > 0;

a fixed barrier update parameter θ, 0 < θ < 1;

a strictly feasible pair (X0, Y 0) and µ0 = 1 s.t. Ψ(X0, Y 0;µ0) ≤ τ.

begin

X := X0;Y := Y 0; µ := µ0;

while nµ ≥ ε do

µ := (1− θ)µ;

while Ψ(V ) > τ do

solve system (3.15) and use (3.11) to obtain ∆X,∆Y ;

determine the default step-size α;

update X := X + α∆X , Y := Y + α∆Y ;

end while

end while

end

Figure 3.1: Algorithm 3.1

We will prove that Algorithm 3.1 is well-defined and the currently best known iteration

bound for large-update method, namely, O(
√
n log n log n

ε
) is derived.

3.4 Properties of the Kernel (barrier) function

In this section, we study some basic properties of our kernel function ψ(t) in (3.1) and the

corresponding barrier function Ψ(V ). As we need the first three derivatives of ψ(t) with
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respect to t frequently, we provide them as follows:

ψ′(t) = t− 1

qt2
q

1
t
−1 − (q − 1)

q
, (3.18)

ψ′′(t) = 1 +
log q + 2t

qt4
q

1
t
−1, (3.19)

ψ′′′(t) = − log2 q + 6t2 + 6t log q

qt6
q

1
t
−1, for all q ≥ 1. (3.20)

It follows that

ψ(1) = ψ′(1) = 0, ψ′′(t) > 1,

and

lim
t→0

ψ(t) = lim
t→+∞

ψ(t) = +∞, ψ′′′(t) < 0, for all t > 0 and q ≥ 1.

Moreover, ψ(t) is strictly convex and ψ′′(t) is monotonically decreasing in t ∈ (0, ∞).

As mentioned before we will restrict ourselves in this chapter to the case where ψ(V ) is

separable with identical coordinate functions. Thus, letting ψ denote the function on the

coordinates, we have

Ψ(V ) =
n∑
i=1

ψi(V ). (3.21)

Let us denote by % : [0,∞) −→ [1,∞)] the inverse function of ψ(t) for t ≥ 1 and by

ρ : [0,∞) −→ (0, 1] the inverse function of the restriction of −1
2
ψ′(t) to the interval

(0, 1]. In what follows, we state the following lemma. For a detailed proofs, see [15].

Lemma 3.4.1. Let ψb(t) be the barrier term of ψ(t) and let ρ : [0,∞) −→ [0, 1] be the

inverse function of the restriction of −ψb(t) to the interval [0, 1]. Then one has.

ρ(s) ≥ ρ(1 + 2s).

Lemma 3.4.2. For ψ(t) with q > 1, we have

√
1 + 2s ≤ %(s) ≤ 1 +

√
2s, s ≥ 0,

ρ(s) ≥ 1

2 + log(1+2s)
log q

, s ≥ 0. (3.22)

Proof. From the equation−ψb(t) = s we have

−ψb(t) =
1

qt2
q

1
t
−1 = s,

q
1
t
−1 = qst2 ⇔

(
1

t
− 1

)
log q = log s+ 2 log t+ log q.
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For t ∈ (0, 1], we find that log t ≤ log 1 = 0 and as a result(
1

t
− 1

)
log q ≤ log s+ log q ⇔ t = ρ(s) ≥ 1

2 + log s
log q

.

By using Lemma 3.4.1, we derive a lower bound for ρ(s) as follows:

ρ(s) ≥ 1

2 + log(1+2s)
log q

. (3.23)

This implies the lemma.

The following property plays an important role in the analysis of kernel-function based

(IPMs).

Lemma 3.4.3 (Exponential convexity. Lemma 2.1 [15]). If t1 > 0 and t2 > 0, then one

has

ψ(
√
t1t2) ≤ 1

2
(ψ(t1) + ψ(t2)).

We have the following theorems.

Theorem 3.4.1 (Proposition 3(II) [43]). Let V1, V2 ∈ Sn++, then

Ψ
([
V

1
2

1 V2V
1
2

1

])
≤ 1

2
(Ψ(V1) + Ψ(V2)).

Theorem 3.4.2 (Theorem 3.2 [15]). Let V ∈ Sn++, and β ≥ 1. Then

Ψ (βV ) ≤ nψ

(
Ψ(V )

n

)
.

Corollary 3.4.1. Let 0 ≤ θ < 1 and V+ = V√
1−θ , if Ψ ≤ τ . Then

Ψ (V+) ≤ nψ

(
%
(
τ
n

)
√

1− θ

)
.

Theorem 3.4.3 (Theorem 4.8 [15]). Let V ∈ Sn++. Then

δ (V ) ≥ 1

2
ψ′ (%(Ψ(V ))) .

Corollary 3.4.2. Let V ∈ Sn++. Then

δ (V ) ≥ 1√
2

(Ψ(V ))
1
2 .
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Proof. We have

δ (V ) ≥ 1

2
ψ′ (%(Ψ(V ))) ≥ 1

2

√1 + 2Ψ(V )− q
1√

1+2Ψ(V )
−1

q(1 + 2Ψ(V ))
− q − 1

q


≥ 1

2

√1 + 2Ψ(V )− q
1√

1+2Ψ(V )
−1

1 + 2Ψ(V )

 ≥ 1

2
(
√

1 + 2Ψ(V )− 1)

=
Ψ(V )√

1 + 2Ψ(V ) + 1
≥ 1√

2
(Ψ(V ))

1
2 .

This implies the lemma.

3.5 Analysis of the interior-point algorithm

In the next subsection, we compute a default step-size α and the resulting decrease in the

barrier function.

3.5.1 Decrease of the barrier function and choice of the default step-

size

After a damped step, we have

X+ = X + α∆X, Y+ = Y + α∆Y. (3.24)

From (3.10) and (3.11) we have

X+ = X + α∆X = X + α
√
µDDXD =

√
µD(V + αDX)D, (3.25)

and

Y+ = Y + α∆Y = Y + α
√
µDDYD =

√
µD−1(V + αDY )D−1. (3.26)

Thus we obtain

V 2
+ =

D−1X+Y+D

µ
= (V + αDX)(V + αDY ), (3.27)

we can verify that V 2
+ ∼ X

1
2
+Y+X

1
2
+ and consequently is similar to

(V + αDX)
1
2 (V + αDY )(V + αDX)

1
2 .
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We define the following matrix

V + =
(

(V + αDX)
1
2 (V + αDY )(V + αDX)

1
2

) 1
2
. (3.28)

Hence, since Ψ is convex and from Theorem 3.4.1 we have

Ψ(V+) = Ψ(V +) ≤ 1

2
(Ψ(V + αDX) + Ψ(V + αDY )). (3.29)

Defining

f(α) = Ψ(V+)−Ψ(V ) = Ψ(V +)−Ψ(V ). (3.30)

We thus have f(α) ≤ f1(α), where

f1(α) =
1

2
(Ψ(V + αDX) + Ψ(V + αDY ))−Ψ(V ). (3.31)

Obviously,

f(0) = f1(0).

Taking the derivative with respect to α , we get

f ′(α) =
1

2
(Ψ′(V + αDX)DX + Ψ′(V + αDY )DY ). (3.32)

This gives, using the second equation in (3.15),

f ′(0) =
1

2
(Ψ′(V )(DX +DY )) =

1

2
Tr(−ψ′(V )2) = −2δ(V )2. (3.33)

Differentiating once more, we obtain

f ′′(α) =
1

2
(Ψ′′(V + αDX)D2

X + Ψ′′(V + αDY )D2
Y )

≤ 1

2
(ω1‖DX‖2 + ω2‖DY ‖2), (3.34)

with

ω1 = max{|∆ψ′(λj(V + αDX), λk(V + αDX))| : j, k = 1, 2, . . . , n},

and

ω2 = max{|∆ψ′(λj(V + αDY ), λk(V + αDY ))| : j, k = 1, 2, . . . , n}.

Below we use the following notation:

V1 := λmin(V ), δ := δ(V ),

with δ(V ) as defined in (3.17).
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Lemma 3.5.1 (Lemma 2 [47]). Let A,A+B ∈ Sn+ , one has

λi(A+B) ≥ λn(A)− |λ1(B)| , i = 1, 2, . . . , n.

Lemma 3.5.2. One has f ′′(α) ≤ 2δ2ψ′′(V1 − 2αδ).

Proof. Due to (3.16) and (3.17), we have

4δ(V )2 := 4δ2 = ‖DX +DY ‖2 = ‖DX‖2 + ‖DY ‖2 + 2〈DX , DY 〉 ≥ ‖DX‖2 + ‖DY ‖2 .

This implies that

|λ1(DX)| ≤ 2δ, and |λ1(DY )| ≤ 2δ, (3.35)

on the other hand, using Lemma 3.5.1, we have

λi(V + αDX) ≥ λn(V )− α |λ1(DX)| ≥ λn(V )− 2αδ, i = 1, 2, . . . n. (3.36)

Similarly, we have

λi(V + αDY ) ≥ λn(V )− 2αδ, i = 1, 2, . . . n.

Thus from the choice of ω1, we can conclude that

ω1 = {|∆ψ′(λj∗(V + αDX), λk∗(V + αDX))| : j∗, k∗ = 1, 2, . . . , n}.

Due to the definition of ∆ψ′(t1, t2) and the mean value theorem, there exists a constant

ξ∗ ∈ [min{λj∗(V + αDX), λk∗(V + αDX)},max{λj∗(V + αDX), λk∗(V + αDX)}] ,

the function ψ satisfies

ψ′′(ξ∗) = ∆ψ′ (λj∗(V + αDX), λk∗(V + αDX)) .

Due to (3.18), ψ′′(t) is monotonically decreasing in t ∈ (0,∞). Therefore, from (3.36),

we obtain

ω1 = ψ′′(ξ∗) ≤ ψ′′ (min{λj∗(V + αDX), λk∗(V + αDX)})

≤ ψ′′ (λn(V )− 2αδ) ≤ ψ′′ (λmin(V )− 2αδ) .

Similarly, we have

ω2 ≤ ψ′′ (λmin(V )− 2αδ) .
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Then it follows from (3.34) that

f ′′1 (α) ≤ 1

2
ψ′′ (λmin(V )− 2αδ)

(
‖DX‖2 + ‖DY ‖2) ≤ 2δ2ψ′′ (V1 − 2αδ) .

This proves the lemma.

Lemma 3.5.3 (Lemma 4.2 [15]). f ′1(α) ≤ 0 certainly holds if α satisfies the inequality

−ψ′(V1 − 2αδ) + ψ′(V1) ≤ 2δ. (3.37)

Lemma 3.5.4 (Lemma 4.3 [15]). Let ρ : [0,∞) −→ (0, 1] denote the inverse function of

the restriction of −1
2
ψ′(t) to the interval (0, 1]. Then the largest step-size α is given by

α =
1

2δ
(ρ(δ)− ρ(2δ)). (3.38)

Lemma 3.5.5 (Lemma 4.4 [15]). Let ρ and α be as defined in Lemma 3.5.4. Then

1

ψ′′(ρ(2δ))
≤ α ≤ 1

ψ′′(ρ(δ))
. (3.39)

In what follows we use the notation

α̃ =
1

ψ′′(ρ(2δ))
. (3.40)

Lemma 3.5.6 (Lemma 4.5 [15]). If the step-size α is such that α ≤ α̃, then

f(α) ≤ −αδ2. (3.41)

Combining the results of Lemmas 3.5.5 and 3.5.6, we obtain the following theorem.

Theorem 3.5.1. We have

α ≥ 1

1 + (log q + 2)(1 + 4δ)
(

2 + log(1+4δ)
log q

)2 . (3.42)

Proof. The function ψ′′(t) is monotonically decreasing, from Lemma 3.4.1, we obtain

α ≥ 1

ψ′′(ρ(2δ))
≥ 1

ψ′′(ρ(1 + 4s))
.

Putting t = ρ(1 + 4s), we have t ≤ 1. Then

α ≥ 1

ψ′′(t)
≥ 1

1 + log q+2t
qt4

q
1
t
−1
. (3.43)
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In other hand we have

t = ρ(1 + 4s)⇔ 1 + 4s = −ψ′(t) =
1

qt2
q

1
t
−1,

the equation (3.43) becomes

α ≥ 1

1 + log q+2t
t2

(1 + 4s)

≥ 1

1 + log q+2
t2

(1 + 4s)
. (3.44)

We have
1

t2
=

1

ρ(1 + 2s)2
≤ 1

ρ(2δ)2
≤
(

2 +
log(1 + 4δ)

log q

)2

.

Substituting this equation in (3.44), we obtain

α ≥ 1

1 + (log q + 2)(1 + 4δ)
(

2 + log(1+4δ)
log q

)2 . (3.45)

This completes the proof of the theorem.

Theorem 3.5.2. With α̃ being the default step-size, as given by (3.40), one has

f(α̃) ≤ − Ψ(V )
1
2

20(log q + 2)
(

2 + log(1+
√

Ψ0)
log q

)2 . (3.46)

Proof. We have

δ ≥
√

Ψ

2
. (3.47)

According to Lemma 3.5.6, with (3.42) and (3.47), we obtain

f (α̃) ≤ −α̃δ2 ≤ − δ2

1 + (log q + 2)(1 + 4δ)
(

2 + log(1+4δ)
log q

)2

≤ − δ2

10δ(log q + 2)
(

2 + log(1+4δ)
log q

)2

≤ − δ

10(log q + 2)
(

2 + log(1+4δ)
log q

)2

≤ − Ψ(V )
1
2

10
√

2(log q + 2)
(

2 + log(1+
√

Ψ0)
log q

)2 .

This completes the proof.

Lemma 3.5.7 (Lemma 12 [43]). Let h(t) be twice differentiable convex function with

h(0) = 0, h′(0) ≤ 0, and let h(t) attain its (global) minimum at t∗ > 0, if h′′(t) ) is

monotonically increasing for t ∈ {0, t∗} then h(t) ≤ th′(0)
2
, 0 ≤ t ≤ t∗.
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3.5.2 Iteration bound

We need to count how many inner iterations are required to return to the situation where

Ψ(V ) ≤ τ after a µ-update. We denote the value of Ψ(V ) after µ-update as Ψ0 the subse-

quent values in the same outer iteration are denoted as Ψk, k = 1, . . . , K, K denotes the

total number of inner iterations in the outer iteration.

Lemma 3.5.8 (Lemma 14 [43]). Let t0, t1, . . . , tk be a sequence of positive numbers such

that

tk+1 ≤ tk − β1−γ
k , k = 0, 1, . . . , K − 1.

Where β > 0 and 0 < γ ≤ 1, then K ≤
[
tγ0
βγ

]
.

Thus, it follows that

Ψk+1 ≤ Ψk − κ(Ψ)1−γ, k = 0, 1, . . . , K − 1. (3.48)

With

κ =
1

10
√

2(2 + log q)
(

2 + log(1+
√

Ψ0)
log q

)2 , γ =
1

2
.

Hence, by Lemma 3.5.8 the number K of inner iterations is bounded above by

K ≤ Ψ
1
2
0

(
20
√

2(2 + log q)

(
2 +

log(1 +
√

Ψ0)

log q

)2
)
. (3.49)

As a result we have that if Ψ(V ) ≤ τ and β = 1√
1−θ , then

LΨ(n, θ, τ) = nΨ

(
%
(
τ
n

)
√

1− θ

)
, (3.50)

is an upper bound for Ψ
(

V√
1−θ

)
, the value of ψ(V ) after the µ-update.

By lemma 3.4.1 we have %(s) ≤ 1 +
√

2s, and also using (3.50) we have

Ψ0 ≤ LΨ(n, θ, τ) = nΨ

(
%
(
τ
n

)
√

1− θ

)
≤ nΨ

1 +
√

2τ
n√

1− θ

 .

Since ψ(t) ≤ t2−1
2

for t ≥ 1, we have

Ψ0 ≤
n

2


1 +

√
2τ
n√

1− θ

2

− 1

 ≤ (τ +
√
nτ

1− θ

)
= O(n). (3.51)



CHAPTER 3. IP METHODS FOR SDLCP BASED ON A NEW KERNEL FUNCTION69

So (3.49) becomes

K ≤ 20
√

2(2 + log q)

(
τ +
√

2nτ

1− θ

) 1
2

2 +

log

(
1 +

√
τ+
√

2nτ
1−θ

)
log q


2

1

θ
log

n

ε
. (3.52)

We have

Ψ0 ≤ O(n),

by choosing

q = 1 +O(n).

the best iteration bound is obtained. We have the following theorem.

Theorem 3.5.3. For large-update methods with τ = O(n), and θ = Θ(1), Algorithm 3.1

requires at most

O
(√

n log n log
n

ε

)
,

iterations. This is the best well-known complexity results for large-update methods.

3.6 Numerical results

In this section, we test Algorithm 3.1 on some monotone SDLCPs where its implementa-

tion is done under the software MATLAB 7.9 and run on a pc. The initial strictly feasible

point (X0, Y 0) with µ0 > 0 is chosen such that Ψ(X0, Y 0;µ0) ≤ τ . However, the imple-

mentation with the selected theoretical step-size α during each inner iteration guarantees

the convergence of the method but it yields unfavorable numerical results i.e., a slow con-

vergence of the algorithm. Therefore, we compute at each inner iteration a practical step-

size αmax such thatX+αmax∆X � 0 and Y +αmax∆Y � 0 with αmax = ρmin(αX , αY )

and ρ ∈ (0, 1), where

αX =

 − 1
λmin(X−1∆X)

if λmin(X−1∆X) < 0

1 if λmin(X−1∆X) ≥ 0,

and

αY =

 − 1
λmin(Y −1∆Y )

if λmin(Y −1∆Y ) < 0

1 if λmin(Y −1∆Y ) ≥ 0.



CHAPTER 3. IP METHODS FOR SDLCP BASED ON A NEW KERNEL FUNCTION70

The kernel functions used here are:

ψ(t) =
t2 − 1

2
+
q

1
t
−1 − 1

q log q
− q − 1

q
(t− 1), q > 1.

In the implementation, we take different values of the parameters θ, q and α as follows.

θ ∈ {0.15, 0.35, 0.55, 0.65, 0.75, 0.9}, q ∈ {1.1, 1+O(n), 5} and α ∈ {0.2, 0.5, αmax}.

The favored threshold is τ =
√
n with ρ ∈ [0.95, 0.99] and ε = 10−6. The number of

iterations and the time produced by Algorithm 3.1, are denoted by ”It ” and ”CPU”, re-

spectively.

Now, three test problems of monotone semidefinite linear complementarity problems are

considered where the first is reformulated from the symmetric semidefinite constrained

least squares problem (SDLS), the second one is linked to the two-sided linear trans-

formation, and the last one is given by a pair of primal-dual semidefinite optimization

problem.

Example 1.

For example for m = 6 and n = 5, the data of the SDLS (Example 1.6.6) is given by:

A =



6 1 1 1 1

0 6 1 1 1

0 0 6 1 1

0 0 0 6 1

0 0 0 0 6

0 0 0 0 1


, B =



1 0 0 0 0

−0.4 1 0 0 0

−0.4 −0.4 1 0 0

−0.4 0 −0.4 1 0

−0.4 0 0 −0.4 1

−0.4 0 0 0 −0.4


.

The unique optimal solution X∗ ∈ S5
+ is given by:

X∗ =



0.1929 −0.0333 −0.0346 −0.0391 −0.0506

−0.0333 0.1778 −0.0409 −0.0066 −0.0064

−0.0346 −0.0409 0.1808 −0.0403 −0.0069

−0.0391 −0.0066 −0.0403 0.1791 −0.0426

−0.0506 −0.0064 −0.0069 −0.0426 0.1558


.

For the initialization, we take

X0 = Diag [0.2920, . . . , 0.2920],

as the strictly feasible starting point.
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θ → 0.15 0.35 0.55 0.65 0.75 0.9

α ↓ It CPU It CPU It CPU It CPU It CPU It CPU

α = 0.2 98 0.4134 93 0.3152 88 0.2733 87 0.2673 78 0.2365 73 0.2303

α = 0.5 86 0.2843 33 0.1661 31 0.1564 29 0.1383 28 0.1324 25 0.1193

α = αmax 86 0.2252 33 0.1342 18 0.1051 14 0.0989 10 0.0871 10 0.0832

Table 3.1: Numerical results with q = 1.1, after the algorithm reaches nµ ≤ 10−6

θ → 0.15 0.35 0.55 0.65 0.75 0.9

α ↓ It CPU It CPU It CPU It CPU It CPU It CPU

α = 0.2 88 0.4090 85 0.2971 81 0.2618 81 0.2499 73 0.2334 70 0.2396

α = 0.5 86 0.2719 33 0.1786 28 0.1539 28 0.1365 25 0.1249 24 0.1201

α = αmax 86 1.2907 33 0.1338 18 0.1133 14 0.1017 11 0.0891 10 0.0753

Table 3.2: Numerical results with q = 5, after the algorithm reaches nµ ≤ 10−6

θ → 0.15 0.35 0.55 0.65 0.75 0.9

α ↓ It CPU It CPU It CPU It CPU It CPU It CPU

α = 0.2 86 0.4533 83 0.3390 78 0.3577 79 0.2934 72 0.2885 68 0.2472

α = 0.5 86 0.3090 33 0.2185 27 0.2150 27 0.1922 25 0.2545 24 0.1378

α = αmax 86 0.2879 33 0.1213 18 0.1534 14 0.1721 10 0.1295 10 0.1364

Table 3.3: Numerical results with q = 1 +O(n), after the algorithm reaches nµ ≤ 10−6

Example 2.

The monotone SDLCP considered in this example is linked to the two-sided multiplicative

transformation L : Sn → Sn given by:

L(X) = AXAT .

Balaji et al. [17] showed that if A is a positive definite matrix, then L(X) is strictly

monotone and therefore the associated SDLCPs, is uniquely globally solvable for every
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Q ∈ Sn. For n = 5, the data of our example is given by:

A =



36.04 7.2 0.2 0 0

7.2 37.04 7.2 0.2 0

0.2 7.2 37.04 7.2 0.2

0 0.2 7.2 37.04 7.2

0 0 0.2 7.2 38


,

and

Q =



−5.92 0.64 1.44 1.44 1.6

0.64 −5.92 0.6 0.2 0

1.44 0.6 −5.92 0.6 0.2

1.44 0.2 0.6 −5.92 0.6

1.6 0 0.2 0.6000 −5.6


.

The optimal solution X∗ ∈ S5
+ is given by:

X∗ =



0.0053 −0.0024 −0.0002 −0.0009 −0.0010

−0.0024 0.0058 −0.0025 0.0008 0.0001

−0.0002 −0.0025 0.0058 −0.0026 0.0005

−0.0009 0.0008 −0.0026 0.0058 −0.0023

−0.0010 0.0001 0.0005 −0.0023 0.0045


.

The numerical results for this example with the feasible starting point:

X0 = Diag [0.0357, . . . , 0.0357],

are summarized in tables 3.4, 3.5 and 3.6.

θ → 0.15 0.35 0.55 0.65 0.75 0.9

α ↓ It CPU It CPU It CPU It CPU It CPU It CPU

α = 0.2 99 0.4078 94 0.3030 88 0.2598 87 0.2494 79 0.2224 74 0.2078

α = 0.5 86 0.2797 33 0.1648 32 0.1408 30 0.1279 29 0.1138 26 0.1054

α = αmax 86 0.2163 33 0.2793 19 0.0916 14 0.0807 10 0.0665 10 0.0604

Table 3.4: Numerical results with q = 1.1, after the algorithm reaches nµ ≤ 10−6
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θ → 0.15 0.35 0.55 0.65 0.75 0.9

α ↓ It CPU It CPU It CPU It CPU It CPU It CPU

α = 0.2 89 0.3854 85 0.2775 81 0.2443 81 0.2292 75 0.2159 70 0.1964

α = 0.5 86 0.2642 33 0.1644 29 0.1320 29 0.1234 26 0.1089 25 0.0995

α = αmax 86 0.2678 33 0.1173 18 0.0899 14 0.0815 11 0.0723 10 0.0672

Table 3.5: Numerical results with q = 5, after the algorithm reaches nµ ≤ 10−6

θ → 0.15 0.35 0.55 0.65 0.75 0.9

α ↓ It CPU It CPU It CPU It CPU It CPU It CPU

α = 0.2 86 0.3938 84 0.2812 79 0.2408 80 0.2335 73 0.2184 69 0.1903

α = 0.5 86 0.2635 33 0.1561 28 0.1296 28 0.1165 26 0.1069 24 0.0966

α = αmax 86 0.2704 33 0.1158 18 0.0884 14 0.2144 10 0.0685 9 0.0628

Table 3.6: Numerical results with q = 1 +O(n), after the algorithm reaches nµ ≤ 10−6

Problem 1.

Recall that a pair of primal-dual SDO programs is defined as

min
X

C •X

s.t. 〈Ai, X〉 = bi, i = 1, 2, . . . ,m (P)

X � 0,

and its dual

max
(y,Z)

bTy

s.t.
m∑
i=1

yiAi + Z = C, (D)

Z � 0,

with Ai, C ∈ Sn, b, y ∈ Rm and X,Z ∈ Sn+.

Example 1.

Let us consider the following pair of primal-dual problems P and D with the following

data:
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A1 =



0 1 0 0 0

1 2 0 0 −1

0 0 0 0 1

0 0 0 −2 −1

0 −1 1 −1 −2


, A2 =



0 0 −2 2 0

0 2 1 0 2

−2 1 −2 0 1

2 0 0 0 0

0 2 1 0 2


,

A3 =



2 2 −1 −1 1

2 0 2 1 1

−1 2 0 1 0

−1 1 1 −2 0

1 1 0 0 −2


, C =



3 3 −3 1 1

3 5 3 1 2

−3 3 −1 1 2

1 1 1 −3 −1

1 2 2 −1 −1


,

b = (−2, 2,−2)T .

An optimal-dual solution of P and D is given by

X =



0.0714 −0.0718 0.0169 0.0649 −0.1583

−0.0718 0.0724 −0.0183 −0.0602 0.1676

0.0169 −0.0183 0.0103 −0.0084 −0.0772

0.0649 −0.0602 −0.0084 0.1481 0.0056

−0.1583 0.1676 −0.0772 0.0056 0.6022


,

y =


0.8585

1.0937

0.7831

 , Z =



1.4338 0.5754 −0.0295 −0.4043 0.2169

0.5754 1.0956 0.3401 0.2169 −0.1120

−0.0295 0.3401 1.1874 0.2169 0.0478

−0.4043 0.2169 0.2169 0.2831 −0.1415

0.2169 −0.1120 0.0478 −0.1415 0.0957


,

The numerical results with the strictly feasible triplet starting point (X0, y0, Z0) = (I, e, I)

and with different values of θ, q and α are stated in tables 3.7, 3.8 and 3.9.
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θ → 0.15 0.35 0.55 0.65 0.75 0.9

α ↓ It CPU It CPU It CPU It CPU It CPU It CPU

α = 0.3 81 4.9977 56 0.2295 52 0.1957 51 0.1879 49 0.1805 47 0.1678

α = 0.5 81 0.3236 31 0.1688 29 0.1452 26 0.1402 27 0.1250 24 0.1121

α = αmax 81 0.2108 31 0.1305 17 0.0984 14 0.0963 12 0.0927 13 0.0885

Table 3.7: Numerical results with q = 1.1, after the algorithm reaches nµ ≤ 10−6

θ → 0.15 0.35 0.55 0.65 0.75 0.9

α ↓ It CPU It CPU It CPU It CPU It CPU It CPU

α = 0.3 81 1.2777 51 0.2144 50 0.1935 47 0.1718 47 0.1633 44 0.1592

α = 0.5 81 0.2535 31 0.1696 26 0.1377 26 0.1258 25 0.1191 24 0.1105

α = αmax 81 0.2157 31 0.1307 17 0.0969 14 0.0962 12 0.0935 13 0.0926

Table 3.8: Numerical results with q = 5, after the algorithm reaches nµ ≤ 10−6

θ → 0.15 0.35 0.55 0.65 0.75 0.9

α ↓ It CPU It CPU It CPU It CPU It CPU It CPU

α = 0.3 81 0.3264 51 0.2390 48 0.2044 46 0.1955 46 0.1863 43 0.1790

α = 0.5 81 0.2983 31 0.2021 25 0.1362 25 0.1640 24 0.1655 23 0.1648

α = αmax 81 0.2085 31 0.1307 16 0.1077 13 0.0923 11 0.0852 11 0.0842

Table 3.9: Numerical results of ψ(t) with q = 1 + O(n), after the algorithm reaches

nµ ≤ 10−6

Contributions and some remarks

Some contributions and remarks for Chapter II:

• Extension of a new primal-dual IP paradigm based on the barrier kernel functions

for SDLCP.

• Introduction of a new parametric kernel function and elaboration of a primal-dual

with large-step algorithm.
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• With the choice of the parameter q = 1 +O(n), the best polynomial complexity of

this algorithm is reached.

• Improvement of the complexity obtained by EL Ghami et al. for LP and SDP.

• Presentation of important numerical experiences for some problems in practice.

Some difficulties and advantages of this paradigm.

• Contrary to the short-step algorithm used for HLCP, a linear search is made to

ensure the positive definite of the iterates during the solution procedure.

• The theoretical step given in this algorithm ensures the convergence of the method

but numerically leads to a slow convergence.

• To remedy this handicap, a practical procedure was used to accelerate the conver-

gence.

• The advantage of this method is that the size of the neighborhood of the central-

path is wide because the threshold τ ≥ 1, which gives a flexibility to have a strictly

feasible starting point.



General conclusion and future work

This manuscript presents a theoretical analysis and numerical study of primal-dual path-

following interior point methods (IPMs) applied to the symmetric cones linear comple-

mentarity problems (SCLCP). Recall that given a symmetric cone K ⊂ E where E is a

Euclidean space equipped with an inner product 〈., .〉E×E on the corps R,a linear trans-

formation L : E→ E and q ∈ E, the SCLCP consists in finding a pair (x, y) ∈ K×K

such that:

y = L(x) + q ∈ K 〈x, y〉 = 0E.

In particular, we have studied two primal-dual IPMs for solving the monotone horizontal

LCP (HLCP) and the SDLCP that act on the cone of nonnegative orthant K = Rn
+ and of

symmetric semidefinite matrices K = Sn+, respectively.

In the first part, we have deal with the short-step primal-dual IPMs for solving the

HLCPs. The advantage of this algorithm is to use only full-Newton steps to obtain a so-

lution, i.e., the step-size α = 1, and avoid to use the classical line search methods for its

determination because it costs highly in practice. On the other hand, the main fundamen-

tal ingredient in the analysis of this algorithm is to maintain during the solution process

the strictly feasibility of the full-Newton steps. This task is very hard and is based in

choosing a suitable neighborhood of size τ and an updating barrier parameter θ to stay

near the central-path. This difficulty is overcome where, through a suitable analysis, the

best values have been given where τ = 2√
10

. and θ = ( 6
23n

)1/2. Again and across these

two parameters, we have shown that this algorithm has the best polynomial complexity,

namely, O
(√

n log n
ε

)
to get an ε−solution of HLCP. Meanwhile, for its numerical per-

formances, we have used different values of the barrier parameter µ > 0, and θ. Thus lead

to reduce significantly the number of iterations and the time produced by the algorithm.

Our testing examples are selected from some practical instances such as the absolute value

77
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equations (partial differential equations), the convex quadratic optimization, and the stan-

dard monotone linear complementarity problems. We have end this first part of the thesis,

with comparison of our obtained numerical results with those obtained by an iterative

(non interior point methods) fixed point method. Finally, we deduce from this study the

following facts.

1. These methods have the best known polynomial complexity.

2. These algorithms are simple and easy to implement and give the solution of the

considered problems.

3. The main difficulty is the strictly feasible initial point to start their algorithm. This

handicap is a very hard task to release in practice.

4. The theoretical and numerical treatment of the HLCPs have a great applications for

some other instances of mathematical problems.

For the second part of the thesis, we have developed a large-update primal-dual path-

following IPMs for solving the monotone SDLCPs based on a new eligible parametric

kernel function. In brief, we have analyzed across this latter the polynomial complexity

of large-update IP algorithms. The iteration bound is calculated by choosing a suitable

value of the barrier parameter q > 1, namely q = 1 + O(n) and therefore the best well-

known polynomial complexity isO(
√
n log n log n

ε
). We have also deduce from this study

the following general facts.

1. We mention that for our knowledge, is the first primal-dual IPMs for SDLCPs based

on the barrier kernel functions.

2. The feasible set of the SDLCPs is not a polyhedral therefore the necessity of interior-

point methods for solving it.

3. The study of SDLCPs needs a great background of Matrix Theory and Convex

Analysis.

4. The kernel function used in this work is a kind of generalization of the one used by

Bai for LP and SDO.
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5. Their polynomial complexity is improved by a factor of log n.

6. The Nesterov-Todd direction are computed via the Kronecker operator.

7. The theoretical step-size determined by the analysis of these methods along this

direction leads to a slow convergence of the algorithm. To remedy this drawback an

economical and practical step-size is proposed and this leads to a good numerical

results.

8. The testing examples are selected from three problems such as the symmetric semidef-

inite constrained least squares problem (SDLS), the second one is linked to the

two-sided linear transformation, and the last one is given by a pair of primal-dual

semidefinite optimization problem.

Future Work

In this section, we will give some interesting topics for further research.

• The generalization of primal-dual (IPMs) for HLCPs and SDLCPs to an arbitrary

symmetric cone linear complementarity problems (SCLCPs) is interesting topic.

• The development of infeasible interior-point algorithm based on the analysis (fea-

sible) given in the first part seems to be an interesting.

• The generalization of the results obtained in the first part to other class of matrices

such us P∗(κ).

• It would be interesting to use other directions rather to Nesterov-Todd, such us

Alizadeh-HaeberlyOverton (AHO), Monteiro-Zhang (MZ) family and Helmberg et

al, Kojima et al and Monteiro (HKM) family, directions for solving the monotone

SDLCPs.

• The implementation of Algorithm 3.1 on problems of SDLCPs with large size

(high-dimension) is an important topic of research.

• The weighted path method is also an interesting study in order to give a relaxation

of getting a good initial starting point for these methods.
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• The comparison of our obtained numerical results to other kernel functions be an

interesting topic in the future.

• The extension of this analysis for the second-order cone linear complementarity

problems (SOCLCP), such that the SOCLCP is to find x, y ∈ Rn satisfying

y = M(x) + q, xTy = 0, x ∈ Ln, y ∈ Ln,

with

Ln = {(x0, x1) ∈ R× Rn−1| ‖x1‖2 ≤ x0} ⊆ Rn

• The extension of these methods for more general semidefinite complementarity

problems such as the semidefinite nonlinear complementarity problems (SNLCP).
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 صملخ
كثر المسألة ھي الأ ھذه.الرتيبة  نصف المعرفةو و عددية لمسألة التتام الخطية الأفقيةھذه الأطروحة دراسة نظرية نقدم في 

التتام الخطي الأفقي  سألةلحل م طة الداخليةذات النق يھتم بتطوير خوارزميةالجزء الأول  .رةدراسة في السنوات الأخي

 أخيرا،  . الخوارزمية ذات تكلفة حدودية الدراسة تثبت أن ذهھ . الصغيرة ات الخطوةذ  المركزيتعمال طريقة المسار باس

خوارزمية النقطة الداخلية من في الجزء الثاني نقدم  .قمنا بإعطاء بعض النتائج العددية لإظھار فعالية الخوارزمية المقترحة

 .نصف المعرفةالتتام الخطية لة أو ذلك لحل مس نواة جديدةحاجز ذات اعتمادا على دالة  ذو خطوة كبيرة ادفمر-صنف أولى

  .لأخيرةلإظھار فعالية ھذه او ذلك  نتائج عددية بتقديم قمناالتكلفة الحدودية لھذه الخوارزمية عينت و  

  

 الحدوديةالتكلفة المرادف،  -الأولى ةخوارزمي الداخلية،  طةطرق النق ، مسألة التتام : الكلمات المفتاحية

 

 
Résumé 
Dans cette thèse, nous présentons une étude théorique et algorithmique concernant les 
problèmes de complémentarité linéaire horizontale (PCLH) et semi-défini (PCLSD) 
monotone. Ces problèmes sont les plus étudiés ces dernières années. La première partie est 
concerné par le développement d’un algorithme de trajectoire centrale de type primal-
dual à petit pas pour résoudre le  problème de complémentarité linéaire horizontale. On 
montre que l’algorithme admet une complexité polynomiale. Finalement, quelques 
résultats numériques sont donnés pour montrer l'efficacité de cet algorithme. Dans la 
deuxième partie un nouvel algorithme de point intérieur de type primal-dual à grand-pas 
basé sur une nouvelle fonction barrière de noyau pour résoudre le problème de 
complémentarité linéaire semi-défini est présenté. Son complexité polynomiale est calculée 
de plus des résultats numériques sont donnés pour montrer l'efficacité de ce dernier. 
 

Mots clés : Problème de complémentarité, méthodes de point-intérieur, algorithme 
primal-dual, complexité polynomiale 
 

 

Abstract 
In this thesis, we present a theoretical and algorithmic study for the monotone horizontal 
linear complementarity problems (HLCPs) and monotone semi-definite problems 
(SDLCPs). These problems are the most studied in recent years. The first part is concerned 
with the development of a short-step primal-dual interior-point algorithm for monotone 
horizontal linear complementarity problems. We prove that the corresponding algorithm 
has polynomial complexity. Finally, some numerical results are given to show the 
efficiency of the proposed algorithm. In the second part, a new long-step primal-dual 
interior-point algorithm for solving SDLCPs based on a new barrier kernel function is 
presented. Moreover, its complexity polynomial is computed and some numerical results 
are given to show the effectiveness of this latter. 
 

Keywords: Complementarity problem, interior-point methods, primal‐dual path 
algorithm, polynomial complexity 
 

 


