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Abstract This paper studies the problem of predictability in fuzzy discrete event systems
(FDESs). FDESs combine fuzzy set theory with discrete events systems (DESs). They are
proposed in Lin and Ying (2001) to cope with vagueness, impreciseness, and subjectivity
in real-world problems. In this work: (1) We propose a fuzzy approach for predictability
by introducing fuzzy predictability functions to characterize the predictability degree of a
prefix, a faulty trace as well as a faulty event in a fuzzy DES. These functions take values
in the interval [0, 1]. The degree of predictability gives a valuable measure to refine the
decision about fault predictability. (2) We show that the degree of predictability of a faulty
event is always at most equal to its degree of diagnosability. This captures the idea that
predictability is stronger than diagnosability. (3) For checking predictability in FDESs, we
propose an approach based on the so-called verifier. This approach results in a polynomial
(in the number of states) complexity test for the verification of predictability. Our results
generalize those of predictability for crisp DESs and allow one to deal with the problem of
predictability for both crisp DESs and FDESs.
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1 Introduction

Nowadays, a great number of technological systems such as queuing systems, traffic sys-
tems, manufacturing systems, communication protocols and computer networks can be
modeled as discrete event systems (DES) at some abstraction level. A DES is a dynamical
process with discrete states. Its dynamic evolves from a state to another state in response to
some occurrences of discrete events. The behavior of a DES consists of all traces of events it
can execute starting from the initial state. Some sets of traces are desirable but some others
are undesirable. The execution of an undesirable trace constitutes a failure.

Besides, current systems are more and more demanding in terms of autonomy. One key
notion in increasing system’s autonomy is its diagnosability (Jiang et al. 2001; Sampath
et al. 1995; Yoo and Lafortune 2002). Indeed, diagnosability is an important property that
ensures the possibility to detect the presence of a fault after a finite time of its occurrence.
However, diagnosability concerns the ability to determine whether a fault has effectively
occurred based on the observations. Sometimes it is very expensive to recover the system
after fault occurrence, which motivates the work on the analysis of a stronger property which
is predictability, that is the ability to predict with certainty future occurrences of faults based
on the observations from the system whose current state is normal.

Likewise, predictability is an important and crucial system’s property. If the fault is pre-
dicted, the system operator can be warned and may decide to halt the system or otherwise
take preventive measures. Predictability has received considerable attention in recent years.
The first work that dealt with the problem of predicting the occurrence of a significant event
such as a failure event was considered for partially observed discrete event systems in Genc
and Lafortune (2009). After that, many works have been proposed including: predictability
of pattern occurrences (Jeron et al. 2008), predictability in distributed systems (Kumar and
Takai 2010; Takai and Kumar 2012; Ye et al. 2013, 2015), predictability in probabilistic
DESs (Jun and Kumar 2014; Nouioua et al. 2016), predictability of events occurrences in
partially observable timed systems modeled by timed automata (Cassez and Grastien 2013),
bounded predictability (Brandan Briones and Madalinski 2011, 2013; Grastien 2015) and
predictability in abstracted models with few states and transitions (Yokotani and Takai
2014). However, the problem of predictability in the framework of fuzzy discrete event
systems (FDESs) has not been addressed and most of the recent research on predictability
dealt with crisp and probabilistic DESs. In this paper, we try to fill this gap and address the
problem of predictability in FDESs.

1.1 Motivation

Imperfection of data is ubiquitous in real applications since it is rarely possible to have
a complete, consistent, certain and precise description of a studied system in applicative
contexts (Parsons 1996). Imperfection may have different forms including incompleteness,
inconsistency, uncertainty and imprecision of available data. Each of these forms requires
specific appropriate tools to dealt with.

In the context of discrete event systems we find two main variants in the literature that
cope with two different forms of possible imperfection in real applications. The first variant
corresponds to probabilistic discrete event systems where from a given state, the uncertainty
about the event which will occur and the target state which will be reached after the occur-
rence of this event are modeled by a probability value associated to each transition of the
system. The second variant corresponds to fuzzy discrete event systems used when one has
not a precise picture of the system to model. This imprecision concerns the membership
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in states where a real state is fuzzy and corresponds to being in several crisp states with
different membership degrees. Likewise, imprecision may also concern transitions between
states: a fuzzy transition may relate simultaneously different couples of states with differ-
ent possibility degrees; observability of events where a degree of observability is associated
with eachevent insteadof abinary classificationof events as completelyobservable or completely
unobservable; and finally the faulty nature of events: an event may be faulty to some extent.

It is worth noticing that probabilistic DESs and fuzzy DESs are suitable for two com-
pletely different situations that may be encountered in real applications. Probabilistic DES
are used when one is uncertain about the transition to be fired from a given state. The prob-
ability values may be induced from frequencies extracted for instance from a study of the
history of the system’s running for a sufficiently long time. Notice that in an effective run-
ning of the system, from a given state, one particular transition with one particular event and
one particular target occurs. However fuzzy DES are used when one is confronted to a lack
of granularity that prevents one to classify the states, the transitions and the events of the
system in completely crisp categories. For instance, a fuzzy transition does not correspond
in a real running to one particular transition that we have not enough certainty to determine
at the modeling stage but to a simultaneous membership, with different degrees, to several
crisp transitions.

Of course, these completely different natures of imperfection expressed by probability
theory and fuzzy sets theory make them in general incomparable and do not represent two
possible alternatives to model the same real situation. According to the nature of imper-
fection present in a real situation to model, one of the two approaches is more suitable:
probabilistic approach is suitable in cases of uncertainty and fuzzy approach is suitable in
cases of imprecision.

Much attention has been devoted to probability theory in general and on different appli-
cations around probabilistic DES. In the context of diagnosis, there are several works about
diagnosability (see. eg. Thorsley and Teneketzis (2005) and Nouioua and Dague (2008)) and
predictability (see e.g. Chang et al. (2013), Jun and Kumar (2014), Chen and Kumar (2015),
and Nouioua et al. (2016)) in probabilistic DES. A main probabilistic tool used in that works
is Markov chains. Indeed, this tool is quite suitable to capture the dynamics of probabilis-
tic systems and the well established results on Markov chains, namely those concerning
their asymptotic behavior, allow one to obtain valuable appreciation of the probability of
non-predictability and/or non-diagnosability in probabilistic DES.

In contrast, actually the use of FDES follows the idea of computing with words as sug-
gested by Zadeh (1996) as a methodology in which the objects of computation are words.
For example, “young”, “small”, “old”, “good”, and “large”, etc. can be regarded as a pos-
sibility distribution which may conform more to human’s perception when describing the
real world problems. Exactly, there exist countless DESs which can be treated better using
computing with words methodology, especially those in biomedicine (Lin and Ying 2002).
A convincing example given in Lin and Ying (2001) and Lin and Ying (2002): suppose
that the patient’s condition is represented with “Good”, “Fair”, and “Poor”, where the
patient’s condition state can simultaneously belong to “good”, “fair” and “poor” with some
possibilities. Thus the condition can be written with a word “Patient’s Condition” (PC):
PC = x/G + y/F + z/P where x, y, z ∈ [0, 1] denote the possibilities distributions of
“good”, “fair” and “poor”, respectively. In a same manner, the Patient’s Condition can be
represented with a vector [xyz]. In fact, this representation has lead Lin and Ying (2001) and
Lin and Ying (2002) to the formulation and the proposition of fuzzy finite automata and fuzzy
DESs. Lin and Ying (2001, 2002) initiated the study of FDESs by combining fuzzy logic
(Zadeh 1996) to the conventional or crisp discrete event systems (DESs) (Cassandras and
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Lafortune 1999), with the aim to solve those problems that cannot be treated by crisp DESs.
From then on, increasing attention has been received by this domain, and many important
concepts, methods and results have been proposed in the literature (see e.g. Qiu (2005),
Cao and Ying (2005, 2006), Cao et al. (2007) among others). The works in (Qiu and Liu
2009; Liu and Dziong 2013) develop an FDES model with fuzzy observability and con-
sider the issues of supervisory control (Qiu and Liu 2009) and reliable control (Liu and
Dziong 2013). Especially, FDESs have been successfully applied to biomedical control
for HIV/AIDS treatment (Ying et al. 2006, 2007; Lin et al. 2004), to Crisis Management
(Traore et al. 2014, 2015) and to robotic control (Jayasiri et al. 2011; Huq et al. 2006a, b).
To deal with the problems of failure diagnosis, fuzzy approaches are proposed in Liu and
Qiu (2009), Luoa et al. (2012), and Liu (2014).

Clearly, the above mentioned works show the relevance of fuzzy DES for modeling
imprecision in several real applications including medicine, robotics and industrial control.
Hence, there is obviously a real need to generalize the study of problems related to fault
diagnosis, namely those of faults predictability, to the FDES setting. To the best of our
knowledge, the present paper is the first one which tackles the problem of defining and
checking fault predictability in FDES.

1.2 Contributions of the paper

The main contributions of this paper are threefold:

– We propose fuzzy predictability functions to characterize the predictability degree of
(i) a prefix (ii) a faulty trace and (iii) a faulty event in the fuzzy DES. These functions
take values from the interval [0, 1] rather than the set {0, 1}. The fuzzy predictability
functions indicate that a significant faulty fuzzy event in a fuzzy system is predictable
with some degree. In particular, if the fuzzy predictability function of a faulty event
equals one, then we say that the fuzzy event is 1-predictable or completely predictable;
if the fuzzy predictability function equals zero, then we say that the fuzzy event is 0-
predictable or completely non-predictable; finally if the fuzzy predictability function
equals to λ ∈]0, 1[, then we say that the fuzzy event is λ-predictable or partially pre-
dictable with degree λ. The interval ]0, 1[ of the values of λ characterizes a continuous
spectrum of possible degrees of partial predictability. In fact, the predictability degree
is a valuable measure which can be used to refine the decision about fault predictabil-
ity. This kind of measure is beneficial in practice: It may be better in contexts where
the consequences of a fault are not very critical, to tolerate a system with a sufficiently
large (even not maximal) degree of predictability than to add the missing sensors which
can be very expensive.

– We show how to capture, in the fuzzy setting, the idea that predictability is stronger than
diagnosability by proving that the predictability degree of a faulty event in any FDES
is at most equal to its diagnosability degree. We also show that binary predictability in
crisp DES may be taken into account as a particular case of our predictability approach
in FDES.

– We use the FDES model with fuzzy observability similar to that proposed in Qiu and
Liu (2009) and Liu and Qiu (2009) and we design a verifier to check the predictabil-
ity of occurrences of a faulty fuzzy event in a FDES. The advantage of the verifier
approach is that the number of its states is polynomial. This makes more efficient the
offline verification of fuzzy predictability. A necessary and sufficient condition for the
predictability of FDESs is presented on the verifier.



Discrete Event Dyn Syst (2017) 27:641–673 645

1.3 Organization of the paper

The remainder of the paper is organized as follows. In Section 2, some preliminaries con-
cerning diagnosability and predictability in crisp DESs are reviewed. In Section 2.3, the
fuzzy discrete event systems (FDESs) model is presented. In Section 3, we formalize the
notion of fuzzy predictability for FDESs by introducing predictability functions. Section 4
presents a comparison between fuzzy diagnosability and fuzzy predictability. Section 5 is
devoted to the discussion of the proposed approach for the verification of predictability in
FDESs. In Section 6, we provide an additional example, commonly used in the literature,
which is about the treatment process of an animal modeled by a FDES. Finally, Section 7
concludes the paper and gives some perspectives of future work.

2 Preliminaries

In this section, we give some definitions (stated briefly since they are standard) concerning
the conventionel (crisp) discrete event systems (DES) theory. After that we recall the notions
of diagnosability and predictability in this context. For more details, we can refer to Sampath
et al. (1995), Yoo and Lafortune (2002), and Genc and Lafortune (2009).

2.1 Crisp discrete event systems

Finite automata or finite state machines are one of the most used modeling formalisms to
model discrete event systems. A finite automaton is denoted by G = (Q, E, δ, q0), where
Q is a finite set of states, E is a finite set of events, q0 is the initial state and δ is a partial
function from Q × E × Q to {0, 1}. For q, q ′ ∈ Q and a ∈ E, we write (q, a, q ′) ∈ δ iff
δ(q, a, q ′) = 1. A string is a finite-length sequence of events in E. Given a string s, the
length of s is denoted by ‖s‖. The set of all strings formed by events in E is denoted by E∗
(the Kleene closure of E). δ extends to words s ∈ E∗ with s = a1 . . . ak by: (q, s, q ′) ∈ δ iff
there is sequence of states qj0 , . . . , qjk

such that qj0 = q, qjk
= q ′ and (qji−1 , ai, xji

) ∈ δ

for 1 ≤ i ≤ k. Any subset of E∗ is called a language over E. L(G) (or just L if there is
no ambiguity in the context) denotes the language over E of strings generated by G. Given
a string s ∈ L , L/s is called the post-language of L after s and defined as L/s = {t ∈
E∗ : st ∈ L}. Some of the events in E are observable, i.e., their occurrence can be observed
(e.g. detected by sensors), while the other events are unobservable. Thus E is partitioned as
E = Eo ∪ Euo and Eo ∩ Euo = ∅, where Eo and Euo represent the sets of observable and
unobservable events, respectively. A language L is live if for any state q ∈ Q, there exists
an outgoing transition: ∀q ∈ Q, ∃e ∈ E, ∃q ′ ∈ Q such that (q, e, q ′) ∈ δ.

The projection function � : E∗ → E∗
o is used to remove the unobservable events

(elements of Euo) from any trace. Given a string s ∈ L, �(s) is obtained by removing unob-
servable events in s. The projection � is defined as: �(ε) = ε, and �(sσ) = �(s)�(σ)

for σ ∈ E and s ∈ E∗, where:

�(σ) =
{

σ, if σ ∈ Eo

ε, if σ ∈ Euo
(1)

The inverse projection operation of a string t ∈ E∗
o , denoted by �−1(t) , is the set of strings

in L whose projection is equal to t , and it is given by:

�−1(t) = {s ∈ L : �(s) = t} (2)
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Let Ef ⊆ Euo denote the set of (unobservable) failure events to be predicted.
The set of all sequences that end with a failure event is denoted �, formally:

� = {se ∈ L : s ∈ E∗, e ∈ Ef } (3)

A prefix (resp. proper prefix) of a string s = a0a1...an is a string s′ = a0a1...am where
m ≤ n (resp. m < n). We denote by Pref (s), the set of all proper prefixes of a string s.

Example 1 Figure 1 shows an example taken from Genc and Lafortune (2009) of a crisp
DES G = (Q, E, δ, q0), where Q = {q0, q1, q2, q3, q4, q5}. E = Eo ∪ Euo with Eo =
{α, β, γ } and Euo = {τ, θ}. The set of fault events is Ef = {θ}. The initial state is q0 and
the transition function is shown in Fig. 1.

2.2 Predictability and diagnosability in crisp DES

We recall in Definitions 1, 2 the notions of diagnosability and predictability as introduced
in Sampath et al. (1995) and Genc and Lafortune (2009) respectively.

First, a language L is diagnosable with respect to a fault σ if it is possible to detect the
occurrences of σ within a finite delay.

Definition 1 Sampath et al. (1995) Let L be a prefix-closed and live language. The
occurrence of event σ is diagnosable in L with respect to the projection � iff

(∃n ∈ N)(∀s ∈ �(σ))(∀t ∈ L/s)[‖t‖ ≥ n] ⇒ D where

D =
{

1, if ∀ω ∈ �−1(�(st)) ⇒ σ ∈ ω

0, otherwise

Second, the occurrence of a faulty event in a language is predictable if it is possible to
infer its future occurrences based on the observable record of strings that do not contain the
event to be predicted.

Definition 2 Genc and Lafortune (2009) Let L be a prefix-closed and live language. The
occurrence of event σ is predictable in L with respect to the projection � iff

(∃n ∈ N)(∀s ∈ �(σ))(∃t ∈ Pref (s))(σ /∈ t) ∧ P where

P =
⎧⎨
⎩

1, if (∀u ∈ L)(∀v ∈ L/u)[�(u) = �(t)

∧(σ /∈ u) ∧ ‖v‖ ≥ n] ⇒ σ ∈ v

0, otherwise

Fig. 1 A crisp Discrete event systems G (Genc and Lafortune 2009)
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It has been shown in Genc and Lafortune (2009) that predictability is stronger than diag-
nosability: Every σ ∈ E which is predictable in L with respect to the projection �, is also
diagnosable with respect to � but the inverse is not true.

Example 1 (Cont) In Example 1 illustrated in Fig. 1, the occurrence of the event θ is not
predictable in L, but it is diagnosable. Indeed, as stated in Genc and Lafortune (2009), the
set of strings that end with θ is �(θ) = {αθ, βθ}. Let s = αθ and t ∈ Pref (s). Let t = ε

and �−1�(t) ∩ (E\θ)∗ = {τ }. When u = τ , L/u = αβ∗. None of the strings in L/u

contains θ . Let t = α and �−1�(t) ∩ (E\θ)∗ = {τα, α}. If u = τα, then L/u = β∗.
None of the strings in L/u contains θ . If u = α, then L/u = θγβ∗. The strings in L/u that
have length 1 and greater contain θ . Thus, the condition P is not satisfied for all u such that
�(u) = �(t) and θ /∈ u. This means that there is a string s such that there is no t ∈ Pref (s)

which satisfies the condition in Definition 2. Thus, θ is not predictable in L.
However, θ is diagnosable in L. The set of strings that end with θ is �(θ) = {αθ, βθ}.

First let s = αθ and t ∈ L/s. Let t = γ , so �−1(�(st)) = {αθγ }. All strings in
�−1(�(st)) contain θ . Now Let s = βθ and t ∈ L/s. Let t = γ , so �−1(�(st)) = {βθγ }.
All strings in �−1(�(st)) contain θ . For all strings in �(θ) there exists a continuation
t = γ which satisfies the condition D in Definition 1. Thus, θ is diagnosable in L.

2.3 Fuzzy discrete event systems

Fuzzy discrete event systems (FDESs) combine fuzzy set theory (Zadeh 1996) with crisp
DESs (Cassandras and Lafortune 1999). They have been successfully applied to many real-
world complex systems such as biomedical systems in which vagueness, impreciseness, and
subjectivity are typical features.

In this work, we use a FDES model with fuzzy observability which has been proposed
in Qiu and Liu (2009) and Liu and Qiu (2009). FDESs are modeled as fuzzy automata with
fuzzy states and fuzzy events denoted by vectors and matrices, respectively. In the FDESs
framework, we suppose Q = {q1, q2, · · · qn}, be the set of the crisp states, then every fuzzy
state q̃ is represented with a vector over the set of crisp states, denoted as [a1, a2, ..., an],
where ai ∈ [0, 1] represents the possibility that the system being in state qi . In addition,
each event σ̃ is a represented by a state transition matrixmatrix[aij ]n×n , where aij ∈ [0, 1]
represents the likelihood of the system changing from state qi to state qj . Formally, fuzzy
discrete event systems are defined as follows.

Definition 3 Qiu (2005)
A fuzzy automaton is a system G̃ = (Q̃, Ẽ, δ̃, q̃0) where Q̃ is a set of fuzzy states, q̃0

is the initial fuzzy state and Ẽ is the set of fuzzy events. δ̃ is partial function from Q̃ × Ẽ

to Q̃ and defined as δ̃(q̃, σ̃ ) = q̃ � σ̃ . Note that � is a max-min operation: for a matrix
A[aij ]n×m and a matrix B[bij ]m×k , A � B = [cij ]n×k is defined by:

cij = maxm
l=1min{ailblj } (4)

Example 2 Let G̃ = (Q̃, Ẽ, δ̃, q̃0) be an FDES. Suppose that we have a fuzzy state q̃ ∈ Q̃

and a fuzzy event σ̃ ∈ Ẽ where q̃ = [0.3, 0.5] and σ̃ =
(
0.4 0.8
0.2 0.3

)
then:

There is two crisp states in the system, say q1 and q2. Being in the fuzzy state q̃ means the
fuzzy membership in q1 with degree 0.3 and the fuzzy membership in q2 with degree 0.5.
The fuzzy event σ expresses the fuzzy membership in four transitions: from q1 to q1 with
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degree 0.4, from q1 to q2 with degree 0.8, from q2 to q1 with degree 0.2 and from q2 to q2
with degree 0.3.

Now, being in fuzzy state q̃ the occurrence of the fuzzy event σ̃ leads to the fuzzy state
q̃ ′ given by:

q̃ ′ = δ̃(q̃, σ̃ ) = q̃ � σ̃ = [0.3, 0.5] �
(
0.4 0.8
0.2 0.3

)
= [0.3, 0.3]

3 Predictability in fuzzy DES

In this section, we formalize the notion of predictability for FDESs. To do so, fuzzy
predictability functions are introduced to characterize the predictability degree of (i) a non-
faulty prefix of a trace ending by a faulty event, (ii) a trace ending by a faulty event and (iii)
a faulty event in the FDES. Let us first start by giving some basic concepts.

3.1 Basic concepts

In the framework of FDESs, each fuzzy event has simultaneous membership in the observ-
able event set, in the unobservable event set, and in the failure event set; with different
degrees. We use three fuzzy subsets: the unobservable events fuzzy subset: �̃uo : Ẽ →
[0, 1], the observable events fuzzy subset �̃o : Ẽ → [0, 1] and the failure events fuzzy
subset �̃f : Ẽ → [0, 1]. �̃f (σ̃ ) denotes the possibility of failure occurring on σ̃ ∈ Ẽ and
�̃o(σ̃ ) (resp. �̃uo(σ̃ )) represents the observability (resp. unobservability) degree of σ̃ . We
have: �̃uo(σ̃ ) + �̃o(σ̃ ) = 1.

The language generated by G̃ , denoted as L
G̃
(or simply L when it is clear from the

context), is defined as follows:

L = {s̃ ∈ Ẽ∗ : (∃q̃ ∈ Q̃) δ̃(q̃0, s̃) = q̃} (5)

�̃f (s̃) = max{�̃f (σ̃ ) : σ̃ ∈ s̃} and �̃o(s̃) = min{�̃o(σ̃ ) : σ̃ ∈ s̃} represent the failure
degree and observability degree of the string s̃ ∈ L

G̃
, respectively.

We use the maximal observable event set Ẽmo composed of the events having the largest
observability degree:

Ẽmo = {σ̃ ∈ Ẽ : (∀σ̃ ′ ∈ Ẽ) �̃o(σ̃ ) ≥ �̃o(σ̃ ′)} (6)

Remark 1 Let G̃ be an FDES. As usual, we suppose that the language of G̃ is live (for every
fuzzy state q̃, there is a fuzzy event σ̃ such that δ̃(q̃, σ̃ ) is defined) and G̃ does not contain
a cycle in where states are connected only with events whose observability is less than the
observability of the event to be predicted.

The post language of L after s̃ is the set of continuations of s̃ in G̃, i.e.

L/s̃ = {t̃ ∈ Ẽ∗ (∃q̃ ∈ Q̃) δ̃(q̃0, s̃t̃ ) = q̃} (7)

Definition 4 Qiu and Liu (2009) Let σ̃ ∈ Ẽ, the σ̃ -projection operation �̃σ̃ : Ẽ∗ → Ẽ∗ is
defined as: �̃σ̃ (ε) = ε , and �̃σ̃ (s̃ã) = �̃σ̃ (s̃)�̃σ̃ (ã) for ã ∈ Ẽ and s̃ ∈ Ẽ∗, where

�̃σ̃ (ã) =
{

ã, if ã ∈ Ẽmo or �̃o(ã) > �̃o(σ̃ )

ε, otherwise
(8)
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The inverse projection operation is given by:

�̃−1
σ̃

(t̃ ) = {s̃ ∈ L : (∃q̃ ∈ Q̃) δ̃(q̃0, s̃) = q̃ ∧ �̃σ̃ (s̃) = t̃ } (9)

Remark 2 The aim of σ̃ -projection is to erase the fuzzy events in which the observability is
lower than �̃o(σ̃ ).

In order to make a correct predictability decision, we specify an upper bound �̃f (σ̃ ) for
each σ̃ ∈ Ẽ. If the possibility of the failure in a string s̃ exceeds a specified bound (i.e.,
�̃f (s̃) > �̃f (σ̃ )) then we consider that s̃ is a failure string. In the following, we formalize
an approach of “fuzzy predictability” to predict the occurrence of the failure strings that
exceed the specified upper bound.

We denote the set of faulty events by Ẽf = {σ̃ ∈ Ẽ : �̃f (σ̃ ) > 0}. For σ̃ ∈ Ẽf , the set
of all traces that end with an event where the possibility of failure occurring is greater than
�̃f (σ̃ ) is defined as follow:

�̃σ̃ = {s̃ẽ ∈ L : ẽ ∈ Ẽf , �̃f (ẽ) > �̃f (σ̃ )}.

3.2 Fuzzy predictability functions

Before presenting the fuzzy predictability functions, let us first introduce two new concepts
that will be used in the definition of these functions.

The first concept, denoted by //, is a variant of the notion of a post-language of a trace
after another one.

Definition 5 For σ̃ ∈ Ẽf , let t̃ ∈ L
G̃
such that �̃f (t̃) < �̃f (σ̃ ), We define L//t̃ as follow:

L//t̃ = {(ũ, ṽ) : ũ ∈ L
G̃

∧ ṽ ∈ L/ũ ∧ �̃σ̃ (ũ) = �̃σ̃ (t̃)

∧�̃f (ũ) < �̃f (σ̃ )} (10)

Intuitively, L//t̃ is the set of couples (ũ, ṽ) where ũ is a non-faulty word of L which
shares the same observables as t̃ and ṽ is a continuation of ũ in L. Notice that since one
possible value of ũ is t̃ itself, it holds that: (∀ṽ ∈ L/t̃) (t̃ , ṽ) ∈ L//t̃ .

The second concept is that of a maximal non-faulty prefix of a faulty trace:

Definition 6 Let s̃ ∈ �̃σ̃ be a trace of L
G̃
ending by a faulty event. The maximal prefix of

s̃ without a fault denoted MaxPref (s̃) is defined by:
t̃ = MaxPref (s̃) if and only if:

• t̃ ∈ Pref (s̃) and �̃f (t̃) < �̃f (σ̃ ).
• for all t̃ ′ ∈ Pref (s̃), if �̃f (t̃ ′) < �̃f (σ̃ ) and t̃ ′ �= t̃ then t̃ ′ ∈ Pref (t̃).

Intuitively, MaxPref (s̃) is the prefix of s̃ followed by the first occurrence of an event ẽ
in s̃ such that �̃f (ẽ) ≥ �̃f (σ̃ ).

Now, we are ready to define fuzzy predictability functions that allow one to quantify
predictability degree of a non-faulty trace, of a trace ending by a faulty event and more
generally of a FDES with respect of a given faulty event.

We start by defining the predictability degree associated to a non-faulty prefix of a trace
ending by a fault. We limit ourselves only to non-faulty prefixes of traces ending by faults
because the study of the predictability degree associated to such traces is not an objective
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per se but it is used later on in determining the predictability degree of a trace ending by
a given fault (the maximal degree over all its non-faulty prefixes) which in turn is used to
compute the predictability degree of the system with respect to a given fault (the minimal
degree over all traces ending by the fault). In addition to this technical argument, intuitively,
it does not make sense to associate a fault predictability degree to a prefix which can never
be extended to a trace containing a fault.

Definition 7 For σ̃ ∈ Ẽf , let s̃ ∈ �̃σ̃ and t̃ ∈ Pref (s̃) such that �̃f (t̃) < �̃f (σ̃ ) and

let n > 0. We define the partial predictability function FP
(1)
σ̃

: Ẽ∗ × N → [0, 1] which
mesures the predictability degree of the prefix t̃ to rank n as follows:

FP
(1)
σ̃

(t̃ , n) = min{�̃f (σ̃ ), �̃f (ω̃) : ω̃ ∈ L(G̃) ∧ ω̃ = ũṽ ∧ (ũ, ṽ) ∈ L//t̃ ∧ ‖ṽ‖ = n}
�̃f (σ̃ )

(11)
Then, the predictability degree of the prefix t̃ is defined as follows: t̃ is predictable with

respect to the fuzzy event σ̃ with degree λ iff:

(∃n0 ∈ N)(∀n > n0) FP
(1)
σ̃

(t̃ , n) = λ (12)

The function FP
(1)
σ̃

(t̃ , n) is computed by taking the minimal degree of fault of all traces
of the form ũṽ where ũ is a non-faulty trace that shares the same observables as t̃ and ṽ

is a continuation of ũ of length n. If this degree (say d) is at least equal to �̃f (σ̃ ) (resp.

null) then FP
(1)
σ̃

(t̃ , n) takes the maximal (resp. the minimal) value 1 (resp. 0). Otherwise,

FP
(1)
σ̃

(t̃ , n) takes a value in the interval ]0, 1[ such that, the more the value of d is close to

�̃f (σ̃ ) (resp. close to 0), the more the value of FP
(1)
σ̃

(t̃ , n) is close to 1 (resp. close to 0).

The following proposition says that given a prefix t̃ , the function FP
(1)
σ̃

(t̃ , n) is an
increasing function (with respect to n).

Proposition 1 Let s̃ ∈ �̃σ̃ and t̃ ∈ Pref (s̃) such that �̃f (t̃) < �̃f (σ̃ ).

(∀n, n′ > 0) if (n > n′) then FP
(1)
σ̃

(t̃ , n) ≥ FP
(1)
σ̃

(t̃ , n′) (13)

Notice that the predictability degree λ of a prefix t̃ corresponds to FP
(1)
σ̃

(t̃ , n) for n

sufficiently large. Thus it holds that: λ = FP
(1)
σ̃

(t̃ ,∞).1 However, λ is reached for a finite
rank n > 0 after which it is kept for all ranks greater than n.

Now, using the previous definition, the predictability degree of a trace ending by a fault
is defined as the maximal predictability degree over all its non-faulty prefixes.

Definition 8 For σ̃ ∈ Ẽf , let s̃ ∈ �̃σ̃ and n > 0.

We define the partial function FP
(2)
σ̃

: Ẽ∗ × N → [0, 1] which measures the
predictability degree of s̃ to rank n as follows:

FP
(2)
σ̃

(s̃, n) = max{FP
(1)
σ̃

(t̃ , n) : t̃ ∈ Pref (s̃) and �̃f (t̃) < �̃f (σ̃ )} (14)

1FP
(1)
σ̃

(t̃ ,∞) is an abbreviation of : limn→∞ FP
(1)
σ̃

(t̃ , n). It is clear that the sequence FP
(1)
σ̃

(t̃ , n) is bounded
and from Proposition 1, it is increasing. Hence it is convergent and its limit is its supremum which is λ (from
Eq. 12).
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Then, the predictability degree of the trace s̃ is defined as follows: s̃ is predictable with
respect to the fuzzy event σ̃ with degree λ iff:

(∃n0 ∈ N)(∀n > n0) FP
(2)
σ̃

(s̃, n) = λ (15)

The following proposition shows that the function FP
(2)
σ̃

is an increasing function (with
respect to n).

Proposition 2 Let s̃ ∈ �̃σ̃ .

(∀n, n′ > 0) if (n > n′) then FP
(2)
σ̃

(s̃, n) ≥ FP
(2)
σ̃

(s̃, n′) (16)

Notice that the predictability degree λ of a trace s̃ ending by a fault corresponds to
FP

(2)
σ̃

(s̃, n) for n sufficiently large. Thus it holds that: λ = FP
(2)
σ̃

(s̃,∞).2 However, λ is
reached for a finite rank n > 0 after which it is kept for all ranks greater than n.

It turns out that the predictability degree of a trace s̃ ending by a faulty event depends
only on the predictability degree of its maximal non-faulty prefix.

Proposition 3 Let s̃ ∈ �̃σ̃ and t̃ = MaxPref (s̃)

(∀n > 0) FP
(2)
σ̃

(s̃, n) = FP
(1)
σ̃

(t̃ , n) (17)

Finally, based on the previous definition, we define the predictability degree of a FDES
with respect to a faulty event. This degree corresponds to the minimal predictability degree
over all the traces ending by the faulty event at hand.

Definition 9 Let H̃ the set of FDES and σ̃ ∈ Ẽf .
We define the function FPσ̃ : H̃ ×N → [0, 1] which measures the predictability degree

of G̃ to rank n with respect to σ̃ as follows:

FPσ̃ (G̃, n) = min{FP
(2)
σ̃

(s̃, n) : s̃ ∈ �̃σ̃ } (18)

The predictability degree of the FDES G̃ is then defined as follows: G̃ is predictable with
respect to the fuzzy event σ̃ with degree λ (G̃ is λ-predictable) iff:

(∃n0 ∈ N)(∀n > n0) FPσ̃ (G̃, n) = λ (19)

Similarly to the previous analyses, the predictability degree λ of a fault σ̃ in a FDES G̃

corresponds to FPσ̃ (G̃, n) for n sufficiently large. Thus it holds that: λ = FPσ̃ (G̃, ∞).3

However, λ is reached for a finite rank n > 0 after which it is kept for all ranks greater
than n.

Using Proposition 3 and then Definition 7, the predictability degree of a FDES with
respect to a faulty event may be equivalently characterized as follows:

2FP
(2)
σ̃

(t̃ ,∞) is an abbreviation of : limn→∞ FP
(2)
σ̃

(t̃ , n). It is clear that the sequence FP
(2)
σ̃

(t̃ , n) is bounded
and from Proposition 2, it is increasing. Hence it is convergent and its limit is its supremum which is λ (from
Eq. 15).
3A same reasoning is valid for showing that FPσ̃ (G̃,∞) = λ.
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Corollary 1 We have:

FPσ̃ (G̃, n) = min{FP
(1)
σ̃

(t̃ , n) : t̃ = MaxPref (s̃) and s̃ ∈ �̃σ̃ } (20)

hence:

FPσ̃ (G̃, n) =
min{�̃f (σ̃ ), �̃f (ω̃) : ω̃ ∈ L(G̃), ω̃ = ũṽ, (ũ, ṽ) ∈ L//t̃,

t̃ = MaxPref (s̃), s̃ ∈ �̃σ̃ , ‖ṽ‖ = n}
�̃f (σ̃ )

(21)

Let us now analyze the cases where the fuzzy event σ̃ is: (1) Completely predictable
((∃n0 ∈ N)(∀n > n0) FPσ̃ (G̃, n) = 1) in the FDES G̃, (2) partially predicable ((∃n0 ∈
N)(∀n > n0) FPσ̃ (G̃, n) = λ, with 0 < λ < 1) and (3) completely non-predictable
((∃n0 ∈ N)(∀n > n0) FPσ̃ (G̃, n) = 0).

Proposition 4 Let G̃ be an FDES. G̃ is 1-predictable iff

(∃n0 ∈ N)(∀n > n0)(∀s̃ ∈ �̃σ̃ )(∀ũ ∈ L
G̃
)(∀ṽ ∈ L/ũ) :

[�̃σ̃ (ũ) = �̃σ̃ (MaxP ref (s̃)) and �̃f (ũ) < �̃f (σ̃ ) and ‖ṽ‖ = n] ⇒
�̃f (ũṽ) ≥ �̃f (σ̃ )

Unsurprisingly, the characterization of 1-predictability is very close to that of classical
predictability. The main difference consists in replacing the fact that the continuation v must
contain the fault by the fact that the degree of fault of ũṽ is not less than the degree of fault
of the faulty event σ̃ at hand.4 Now, the λ-predictability with λ ∈ [0, 1[ is characterized as
follows:

Proposition 5 Let G̃ be an FDES and λ ∈ [0, 1[. G̃ is λ − predictable iff:

(∃n0 ∈ N)(∀n > n0) (D1 ∧ D2)where :
1. D1: (∃s̃ ∈ �̃σ̃ )(∃ũ ∈ L

G̃
)(∃ṽ ∈ L/ũ):

[�̃σ̃ (ũ) = �̃σ̃ (MaxP ref (s̃)) and �̃f (ũ) < �̃f (σ̃ ) and ‖ṽ‖ = n] and �̃f (ũṽ) =
λ.�̃f (σ̃ )

2. D2: (∀s̃ ∈ �̃σ̃ )(∀ũ ∈ L
G̃
)(∀ṽ ∈ L/ũ):

[�̃σ̃ (ũ) = �̃σ̃ (MaxP ref (s̃)) and �̃f (ũ) < �̃f (σ̃ ) and ‖ṽ‖ = n] ⇒ �̃f (ũṽ) ≥
λ.�̃f (σ̃ )

ConditionD1 means that we are not in the case of a complete predictability (λ �= 0) while
condition D2 determines the exact value of λ for which G̃ is λ-predictable with respect to σ̃ .

For λ = 0, condition D2 in the previous proposition becomes trivial and 0-predictability
(complete non-predictability) is given by the following corollary:

4Note that since �̃f (ũ) < �̃f (σ̃ ) and from the definition of the degree of fault of a trace, it follows that
�̃f (ũṽ) ≥ �̃f (σ̃ ) if and only if �̃f (ṽ) ≥ �̃f (σ̃ ).
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Fig. 2 Fuzzy Discrete event systems G̃

Corollary 2 Let G̃ be an FDES. G̃ is 0-predictable iff:

(∃n0 ∈ N)(∀n > n0)(∃s̃ ∈ �̃σ̃ )(∃ũ ∈ L
G̃
)(∃ṽ ∈ L/ũ) :

[�̃σ̃ (ũ) = �̃σ̃ (MaxP ref (s̃)) and �̃f (ũ) < �̃f (σ̃ ) and ‖ṽ‖ = n] and �̃f (ũṽ) = 0

(22)

Example 3 Let us take the fuzzy FDES G̃ depicted in Fig. 2 which is a fuzzy version of the
DES of Example 1 presented in Fig. 1.

In G̃ = (Q̃, Ẽ, δ̃, q̃0) the set of fuzzy states is Q̃ = {q̃0, q̃1, q̃2, q̃3, q̃4, q̃5} and the set of
fuzzy events is Ẽ = {α̃, β̃, γ̃ , θ̃ , τ̃ }. Each state in G̃ is denoted by a vector q̃ = [a0, a1, a2]
meaning that the system can simultaneously belong to three crisp states with membership
degrees a0 , a1 and a2, respectively. Furthermore, a fuzzy event is represented by a 3 × 3
matrix.

α̃ =
⎛
⎝ α11 α12 α13

α21 α22 α23
α31 α32 α33

⎞
⎠

For instance, the fuzzy event α32 ∈ [0, 1] represents the fact that the system transits from
the third crisp state to the second crisp state with membership degree α32. q̃0 = [a0, a1, a2]
is the initial state. Then, we can calculate the other states by the max-min operation. The
observable and fault membership degrees of the fuzzy events are given as follows:

�̃o(α̃) = 1, �̃o(β̃) = 0.8, �̃o(γ̃ ) = 0.6, �̃o(θ̃) = 0.1, �̃o(τ̃ ) = 0

�̃f (α̃) = 0, �̃f (β̃) = 0.2, �̃f (γ̃ ) = 0.3, �̃f (θ̃) = 0.7, �̃f (τ̃ ) = 0

Let us compute the predictability degree of the fuzzy event θ̃ in the FDES G̃. We have:
�̃θ̃ (�̃f ) = {α̃θ̃ , β̃θ̃}.
– For s̃ = α̃θ̃ , t̃ = MaxPref (s̃) = α̃. We have:5

{
�̃f (t̃) < �̃f (θ̃)

L//t̃ = {(τ̃ α̃, β̃∗), (α̃, θ̃ γ̃ β̃∗)}

5For the sake of simplification, we abuse notation and we write L//t̃ = {(τ̃ α̃, β̃∗), (α̃, θ̃ γ̃ β̃∗)} to indicate
the set of all couples of the form (τ̃ α̃, w) or of the form (α̃, θ̃ γ̃ w) where w is any word of the language β̃∗.
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By Definition 7, we calculate the predictability degree FP
(1)
θ̃

(t̃ , n) of t̃ = α̃ by:

FP
(1)
θ̃

(t̃ , n) =
min{�̃f (θ̃), �̃f (ω̃) : ω̃ ∈ L(G̃) ∧ ω̃ = ũṽ

∧(ũ, ṽ) ∈ L//t̃ ∧ ‖ṽ‖ = n}
�̃f (θ̃)

For n = 1 we have:

FP
(1)
θ̃

(t̃ , 1) =
min{�̃f (θ̃), �̃f (ω̃) : ω̃ ∈ L(G̃) ∧ ω̃ = ũṽ

∧(ũ, ṽ) ∈ {(τ̃ α̃, β̃), (α̃, θ̃ )}}
�̃f (θ̃)

FP
(1)
θ̃

(t̃ , 1) = min{0.7, 0.2, 0.7}
0.7

� 0.28

We can check that for all n ≥ 1, FP
(1)
θ̃

(t̃ , n) = FP
(1)
θ̃

(t̃ , 1) � 0.28. It follows from

Proposition 3, for s̃ = α̃θ̃ that: ∀n ≥ 1, FP
(2)
θ̃

(s̃, n) = FP
(1)
θ̃

(t̃ , 1) � 0.28.

Then, the predictability degree of the faulty string s̃ = α̃θ̃ is 0.28.

– For s̃ = β̃θ̃ , t̃ = MaxPref (s̃) = β̃. In a similar way, we use Definition 7 to calculate
the predictability degree of t̃ = β̃. For n = 1 we have:

FP
(1)
θ̃

(t̃ , 1) =
min{�̃f (θ̃), �̃f (ω̃) : ω̃ ∈ L(G̃) ∧ ω̃ = ũṽ

∧(ũ, ṽ) ∈ {(β̃, θ̃ )}
�̃f (θ̃)

= min{0.7, 0.7}
0.7

= 1

We can check that for all n ≥ 1, FP
(1)
θ̃

(t̃ , n) = FP
(1)
θ̃

(t̃ , 1) = 1. It follows from

Proposition 3, for s̃ = β̃θ̃ that: ∀n ≥ 1, FP
(2)
θ̃

(s̃, n) = FP
(1)
θ̃

(t̃ , 1) = 1.

Then, the predictability degree of the faulty string s̃ = β̃θ̃ is 1.

Now, from Definition 9, the predictability of the fuzzy event θ̃ in the FDES G̃ is
calculated by: FPθ̃ (G̃, n) = min{FP

(2)
θ̃

(s̃, n) : s̃ ∈ �̃θ̃ (�̃f )}. It follows that: ∀n ≥
1, FPθ̃ (G̃, n) = min{FP

(2)
θ̃

(s̃, n) : s̃ ∈ �̃θ̃ (�̃f )} = min{0.28, 1} = 0.28

In conclusion, we can say that the fuzzy event θ̃ is partially predictable in FDES G̃ with
degree 0.28. In fact , the fuzzy predictability degree 0.28 means that we cannot exactly
predict the occurring failure, but we may say that the possibility of predicting the failure
event θ in all sequences of the system is 0.28. This means also that θ belongs only with
degree 0.28 to the fuzzy set of predictable events. Note that in Example 1 we have used
exactly the same DES but in a non-fuzzy setting. We have shown that event θ is (completely)
non predictable. In the present example where the used DES is fuzzy, the decision is no
longer binary but gradual. It says that θ has a relatively small degree of predictability which
means that it is neither completely predictable nor completely non-predictable, but it is
closer to non-predictable events.

3.3 Predictability of crisp DES as a special case of predictability of fuzzy DES

The aim of this section is to show that predictability of fuzzy DES as defined in this paper
is a proper generalization of classical predictability defined for crisp DES (see Genc and
Lafortune (2009)). In a crisp DES, the observable event set and the failure event set are crisp
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instead of fuzzy, i.e for each ã ∈ Ẽ, �̃o(ã) ,�̃f (ã) ∈ {0, 1}. More precisely, for each ã ∈ Ẽ,
�̃f (ã) = 1 if ã ∈ Ẽf and �̃f (ã) = 0 otherwise. Similarly, �̃o(ã) = 1 if ã ∈ Ẽo and
�̃o(ã) = 0 otherwise. Accordingly, For a given crisp DES G̃ and a fault σ , the predictability
degree of G̃ with respect to σ is either 1 if σ is predictable in G̃ or 0 otherwise.

Let G̃ be a crisp DES and ũ ∈ L be a trace of G̃. Then, �̃f (ũ) < �̃f (σ̃ ) (resp. �̃f (ũ) ≥
�̃f (σ̃ )) is simply replaced by σ /∈ ũ (resp. σ ∈ ũ). Proposition 4 is then rewritten as follows:

G̃ is 1-predictable iff : (∃n0 ∈ N)(∀n > n0)(∀s̃ ∈ �̃σ̃ )(∀ũ ∈ L
G̃

)(∀ṽ ∈ L/ũ) :
[�̃σ̃ (ũ) = �̃σ̃ (MaxP ref (s̃)) and (σ /∈ ũ) and ‖ṽ‖ = n] ⇒ (σ ∈ ũṽ)

Or equivalently:

G̃ is 1-predictable iff : (∃n ∈ N)(∀s̃ ∈ �̃σ̃ )(∀ũ ∈ L
G̃
)(∀ṽ ∈ L/ũ) :

[�̃σ̃ (ũ) = �̃σ̃ (MaxP ref (s̃)) and (σ /∈ ũ) and ‖ṽ‖ ≥ n] ⇒ (σ ∈ ṽ)

This is equivalent to the6 classical predictability characterization for crisp DESs given in
Genc and Lafortune (2009).7

4 Predictability vs diagnosability in FDES

In this section we show that fuzzy predictability is stronger than fuzzy diagnosability. This
idea is captured by the fact that the predictability degree of any FDES G̃ with respect to a
fuzzy event σ̃ is at most equal to diagnosability degree with respect to the same fuzzy event.
We paraphrase the definition of fuzzy diagnosability function used in Liu and Qiu (2009) to
adapt it to a form similar to our predictability functions.

Definition 10 Let H̃ be the set of FDESs and σ̃ ∈ Ẽf . The fuzzy diagnosability function
is defined as a partial function FDσ̃ : H̃ × N → [0, 1] where:

FDσ̃ (G̃, n) = min{�̃f (σ̃ ), �̃f (ω̃) : ω̃ ∈ �̃−1(�(s̃.s̃′)), s̃ ∈ �̃σ̃ , s̃′ ∈ L/s̃, ‖s̃′‖ = n}
�̃f (σ̃ )

(23)
G̃ is diagnosable with respect to the fuzzy event σ̃ with degree γ iff:

(∃n0 ∈ N)(∀n > n0) FDσ̃ (G̃, n) = γ (24)

The diagnosability degree γ of a fault σ̃ in a FDES G̃ corresponds to FDσ̃ (G̃, n) for n

sufficiently large. Thus it holds that: γ = FDσ̃ (G̃, ∞). However, γ is reached for a finite
rank n > 0 after which it is kept for all ranks greater than n. The predictability and the
diagnosability degrees are related as follows:

Proposition 6 Let G̃ be a FDES and σ̃ be a fuzzy event in G̃. The degree of predictability
of G̃ with respect to σ̃ is at most equal to its degree of diagnosability with respect to σ̃ , i.e.,
FPσ̃ (G̃, ∞) ≤ FDσ̃ (G̃, ∞).

6We have replaced: “(∃n0 ∈ N)(∀n > n0) . . . ‖ṽ‖ = n] ⇒ . . . ” by the equivalent form: “(∃n ∈ N) . . . ‖ṽ‖ ≥
n] ⇒ . . .”. We replaced also (σ ∈ ũṽ) by (σ ∈ ṽ). Indeed, since σ /∈ ũ, (σ ∈ ũṽ) if and only if (σ ∈ ṽ).
7Notice that here, we use the maximal non-faulty prefix of s̃ while in Genc and Lafortune (2009) any non-
faulty prefix of s̃ may be used. It is easy to show by a similar idea as that used in the proof of Proposition 3
that the two forms are equivalent.
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This proposition is important since it states that the predictability degree of a FDES with
respect to a faulty fuzzy event is always at most equal to its diagnosability degree with
respect to the same event. This captures, in the fuzzy setting, the fact that predictability is
stronger than diagnosability.

Example 3 (Cont) Let us take again the example of the FDES depicted in Fig. 2 and com-
pare the degrees of diagnosability and predictability of the fuzzy event θ̃ . We have shown in
Section 3, Example 3 that the fuzzy event θ̃ in FDES G̃ is partially predictable with degree
0.28.
Now let us use Definition 10 to show that θ̃ is completely diagnosable in G̃. For the fuzzy
event θ̃ , we have: �̃θ̃ (�̃f ) = {α̃θ̃ , β̃θ̃}.

For n = 1:

FDθ̃ (G̃, 1) = min{�̃f (θ̃), �̃f (w) : w ∈ �̃−1(�(s̃t̃)) where s̃t̃ ∈ {α̃θ̃ γ̃ , β̃θ̃ γ̃ }}
�̃f (θ̃)

FDθ̃ (G̃, 1) = min{�̃f (θ̃), �̃f (w) : w ∈ {α̃θ̃ γ̃ , β̃θ̃ γ̃ }}
�̃f (θ̃)

= min{0.7, 0.7, 0.7}
0.7

= 1

It follows that for n ≥ 1, FDθ̃ (G̃, 1) = 1. In summary, the fuzzy event θ̃ is completely
diagnosable but it is only partially predictable with degree 0.28.

5 Verification of predictability in FDES

Until now, we have given the definition of predictability in FDESs and we have shown
the relationship between fuzzy diagnosability and fuzzy predictability. In this section, we
tackle the problem of verifying predictability in Fuzzy DES. For that purpose, one can adapt
two approaches used in verifying predictability in crisp DESs (see (Genc and Lafortune
2009)). The first approach is based on the so-called diagnoser whereas the second one is
based on the so-called verifier. For efficiency reasons, we have chosen to develop here the
adaptation of the second approach to the fuzzy setting. Indeed, unlike the diagnoser in which
the number of states may be exponential on the number of states of the input system, the
verifier contains only a polynomial number of states.

5.1 Constructing of the verifier

The verifier is a nondeterministic finite state machine first proposed in Yoo and Lafortune
(2002).8 It has initially been used to check diagnosability (Yoo and Lafortune 2002) and
then predictability (Genc and Lafortune 2009) of crisp DES by polynomial time algorithms.
We use here a fuzzy version of the verifier with a modified state transition function inspired
from (Liu 2014).

Let G̃ = (Q̃, Ẽ, δ̃, q̃0) be a FDES. We denote by Ṽ
G̃

the verifier built for G̃ and the
fuzzy event σ̃ ∈ Ẽf : ṼG̃

= (Q̃v, Ẽ, δ̃v, q̃v0, σ̃ ) where:

8A similar structure called the twin plant has been proposed independently in (Jiang et al. 2001) for the
same reason. In the twin plant, only observables are kept whereas the verifier used in this paper, keeps both
observable and unobservable events.
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Q̃v is the set of verifier states. It is a subset of Q̃ × {F,Nμ} × Q̃ × {F,Nμ}.9 Each
verifier state q̃v ∈ Q̃v is of the form: q̃v = [(q̃1, l1), (q̃2, l2)] where q̃1, q̃2 ∈ Q̃ and l1, l2 ∈
{F,Nμ}. The label F stands for “faulty” and means that the possibility of the occurring
failure exceeds the specified degree �̃f (σ ). The label Nμ stands for “normal” with degree
μ such that μ ∈ {�̃f (ã) : ã ∈ Ẽ} where μ < �̃f (σ̃ ) .

q̃v0 = [(q̃0, N0), (q̃0, N
0)] is the initial state of the verifier andN0 means that the verifier

starts from a normal state with failure degree 0.
The transition function of the verifier Ṽ

G̃
is a partial function proposed in Liu (2014) and

defined as follows:
Let q̃v = [(q̃1, l1), (q̃2, l2)] ∈ Q̃v and ã ∈ Ẽ. The transition δ̃v([(q̃1, l1), (q̃2, l2)], ã) is

formalized by the following four cases:

1. case (1): if �̃o(ã) ≥ �̃o(σ̃ ) and �̃f (ã) ≥ �̃f (σ̃ ) then:

δ̃v([(q̃1, l1), (q̃2, l2)], ã) = [(δ̃(q̃1, ã), F ), (δ̃(q̃2, ã), F )]
2. case (2): if �̃o(ã) ≥ �̃o(σ̃ ) and �̃f (ã) < �̃f (σ̃ ) then:

δ̃v([(q̃1, F ), (q̃2, F )], ã) = [(δ̃(q̃1, ã), F ), (δ̃(q̃2, ã), F )]
δ̃v([(q̃1, Nμ1), (q̃2, F )], ã) = [(δ̃(q̃1, ã), Nμ1′

), (δ̃(q̃2, ã), F )]
δ̃v([(q̃1, F ), (q̃2, N

μ2)], ã) = [(δ̃(q̃1, ã), F ), (δ̃(q̃2, ã), Nμ2′
)]

δ̃v([(q̃1, Nμ1), (q̃2, N
μ2)], ã) = [(δ̃(q̃1, ã), Nμ1′

), (δ̃(q̃2, ã), Nμ2′
)]

where μ1′ = max{μ1, �̃f (ã)} , μ2′ = max{μ2, �̃f (ã)}.

3. case (3):if �̃o(ã) < �̃o(σ̃ ) and �̃f (ã) ≥ �̃f (σ̃ ) then:

δ̃v([(q̃1, l1), (q̃2, l2)], ã) =
⎧⎨
⎩

[(δ̃(q̃1, ã), F ), (q̃2, l2)]
[(q̃1, l1), (δ̃(q̃2, ã), F )]
[(δ̃(q̃1, ã), F ), (δ̃(q̃2, ã), F )]

4. case (4):if �̃o(ã) < �̃o(σ̃ ) and �̃f (ã) < �̃f (σ̃ ) then:

δ̃v([(q̃1, F ), (q̃2, F )], ã) =
⎧⎨
⎩

[(δ̃(q̃1, ã), F ), (q̃2, F )]
[(q̃1, F ), (δ̃(q̃2, ã), F )]
[(δ̃(q̃1, ã), F ), (δ̃(q̃2, ã), F )]

δ̃v([(q̃1, Nμ1), (q̃2, F )], ã) =
⎧⎨
⎩

[(δ̃(q̃1, ã), Nμ1′
), (q̃2, F )]

[(q̃1, Nμ1), (δ̃(q̃2, ã), F )]
[(δ̃(q̃1, ã), Nμ1′

), (δ̃(q̃2, ã), F )]

δ̃v([(q̃1, F ), (q̃2, N
μ2)], ã) =

⎧⎨
⎩

[(δ̃(q̃1, ã), F ), (q̃2, N
μ2)]

[(q̃1, F ), (δ̃(q̃2, ã), Nμ2′
)]

[(δ̃(q̃1, ã), F ), (δ̃(q̃2, ã), Nμ2′
)]

δ̃v([(q̃1, Nμ1), (q̃2, N
μ2)], ã) =

⎧⎨
⎩

[(δ̃(q̃1, ã), Nμ1′
), (q̃2, N

μ2)]
[(q̃1, Nμ1), (δ̃(q̃2, ã), Nμ2′

)]
[(δ̃(q̃1, ã), Nμ1′

), (δ̃(q̃2, ã), Nμ2′
)]

where μ1′ = max{μ1, �̃f (ã)} , μ2′ = max{μ2, �̃f (ã)}.

9Here we abused notation for the sake of simplification. To take into account all possible values of μ, he
exact expression is: Q̃ × ({F } ∪ {Nμ : μ ∈ [0, 1]}) × Q̃ × ({F } ∪ {Nμ : μ ∈ [0, 1]}).
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Fig. 3 Verifier Ṽ
G̃
with respect to θ̃ of Example 3 FDES G̃

We say that a verifier state q̃v = [(q̃1, l1), (q̃2, l2)] is: normal if l1 = l2 = Nμ or l1 = Nμ1

and l2 = Nμ2; certain if l1 = l2 = F ; and uncertain if l1 = F and l2 = Nμ or vice versa.
We denote by Q̃N

v the set of verifier states that are normal, by Q̃C
v the set of states that are

certain, and by Q̃U
v the set of the verifier states that are uncertain.

Example 3 (Cont)
We continue with Example 3. Figure 3 shows the verifier Ṽ

G̃
with respect to the fuzzy

event θ̃ built from the FDES depicted in Fig. 2. The verifier state [(q̃5, F ), (q̃5, F )] is
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certain while the state [(q̃2, N0.2), (q̃2, N
0.2)] is normal and the state [(q̃2, N0), (q̃4, F )] is

uncertain.

5.2 Necessary and sufficient condition of predictability for FDESs

After having presented the method of constructing the verifier, let us now give some of
its related definitions before giving the necessary and sufficient conditions of the fuzzy
predictability for FDESs using the verifier approach. Similarly to the verifier-based pre-
dictability checking approach for crisp DES used in Genc and Lafortune (2009) we need to
define the set F ′

V of verifier states that are normal but immediately followed in the verifier
by non-normal states as well as the set FV of verifier states that share at least on of the two
components of a state of F ′V .

Definition 11 Genc and Lafortune (2009) A subset of normal verifier states F ′
V is defined

as follows:

F ′
V = {xv ∈ Q̃N

v : yv = δ̃v(xv, t̃uoσ̃p) is def ined f or t̃uo ∈ Ẽ∗ and

�̃f (t̃uo) < �̃f (σ̃ ) and �̃o(t̃uo) < �̃o(σ̃ ) and �̃f (σ̃p) ≥ �̃f (σ̃ ) and yv /∈ Q̃N
v }

Then, the set FV is constructed using the states in F ′
V as follows:

FV = {q̃v = [(x, lx), (y, ly)] ∈ Q̃N
v : [(x, lx), (., .)] or [(., .), (y, ly)] ∈ F ′

V } (25)

where (., .) denotes any one of the state components in a verifier state.

The different kinds of cycles present in the verifier are defined as follows:

Definition 12 Let Ṽ
G̃

= (Q̃v, Ẽ, δ̃v, q̃v0, σ̃ ) be the verifier of G̃ with respect to σ̃ . a set
{q̃v,1, ã1, q̃v,2, ã2, ..., q̃v,k, ãk, q̃v,1} is said to form:

• a μ − normal cycle in Ṽ
G̃

if {q̃v,1, q̃v,2, ..., q̃v,k} are normal states, and the set
{q̃v,1, ã1, q̃v,2, ã2, ..., q̃v,k, ãk, q̃v,1} form a cycle in Ṽ

G̃
andμ < �̃f (σ̃ ) is the minimum

value appearing in the normal labels of the states of the cycle;
• a certain cycle in Ṽ

G̃
if {q̃v,1, q̃v,2, ..., q̃v,k} are certain states, and the set

{q̃v,1, ã1, q̃v,2, ã2, ..., q̃v,k, ãk, q̃v,1} form a cycle in Ṽ
G̃
;

• a μ − uncertain cycle in Ṽ
G̃

if {q̃v,1, q̃v,2, ..., q̃v,k} are uncertain states, and the set
{q̃v,1, ã1, q̃v,2, ã2, ..., q̃v,k, ãk, q̃v,1} form a cycle in Ṽ

G̃
andμ < �̃f (σ̃ ) is the minimum

value appearing in the normal labels of the states of the cycle.

The accessible part of the verifier from a given state is defined as follows:

Definition 13 Genc and Lafortune (2009) Let Ṽ
G̃

= (Q̃v, Ẽ, δ̃v, q̃v0, σ̃ ) be the verifier of
G̃ with respect to σ̃ and q̃v ∈ Q̃v . The accessible part of Ṽ

G̃
with respect to q̃v is denoted

by Ac(Ṽ
G̃
, q̃v) such that:

Ac(Ṽ
G̃
, q̃v) = (Q̃Ac, Ẽ, δ̃Ac, q̃v) (26)

Where Q̃Ac = {q̃ ′
v ∈ Q̃v : (∃s̃ ∈ Ẽ∗) s.t. δ̃(q̃v, s̃) = q̃ ′

v is defined and δ̃Ac = δ̃ |
Q̃Ac×Ẽ

.10

10This refers to the restriction of the transition function to the subset Q̃Ac of states.
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Before stating the necessary and sufficient condition of fuzzy predictability, let us first
state some useful lemmas.

Lemma 1 Genc and Lafortune (2009) Let G̃ = (Q̃, Ẽ, δ̃, q̃0) be a FDES that generates
L

G̃
. and let s̃1, s̃2 ∈ L

G̃
such that q̃s̃1 = δ̃(q̃0, s̃1) and q̃s̃2 = δ̃(q̃0, s̃2) are defined, and let

Ṽ
G̃

= (Q̃v, Ẽ, δ̃v, q̃v0, σ̃ ) the verifier of G̃ and σ̃ then:

�̃σ̃ (s̃1) = �̃σ̃ (s̃2) ⇔ q̃v = [(q̃s̃1 , ls̃1), (q̃s̃2 , ls̃2)] ∈ Q̃v where ls̃1 , ls̃2 ∈ {F,Nμ}

Lemma 2 Genc and Lafortune (2009) Any uncertain or certain verifier state is reached
from a verifier state in FV .

Lemma 3 Let G̃ = (Q̃, Ẽ, δ̃, q̃0) be a FDES and Ṽ
G̃

= (Q̃v, Ẽ, δ̃v, q̃v0, σ̃ ) its verifier. Let

μ < �̃f (σ̃ ). There is a state q̃v ∈ FV and a cycle C in Ac(Ṽ
G̃
, q̃v) which is normal or

uncertain such that each state in C contains a state of G̃ labelled by Nμ if and only if the
condition H holds:

H : (∃n0 ∈ N)(∀n > n0)(∃s̃ ∈ �̃σ̃ )(∃ũ ∈ L
G̃

)(∃ṽ ∈ L/ũ) :
�̃σ̃ (ũ) = �̃σ̃ (MaxP ref (s̃)) and �̃f (ũ) < �̃f (σ̃ ) and ‖ṽ‖ = n and �̃f (ũṽ) = μ

Now, 1-predictability (complete predictability) is characterized in the verifier in exactly
the same manner as in the crisp DES (see Genc and Lafortune (2009)):

Theorem 1 Let G̃ = (Q̃, Ẽ, δ̃, q̃0) be a FDES and Ṽ
G̃

= (Q̃v, Ẽ, δ̃v, q̃v0, σ̃ ) its verifier.

The fuzzy event σ̃ is 1-predictable (completely predictable) in Ṽ
G̃
if and only if Pv holds where:

Pv : f or all q̃v ∈ FV , there is only certain cycles in Ac(Ṽ
G̃
, q̃v).

The case of partial predictability i.e., predictability of degree λ < 1 is characterized by
the following theorem.

Theorem 2 Let G̃ = (Q̃, Ẽ, δ̃, q̃0) be a FDES and Ṽ
G̃

= (Q̃v, Ẽ, δ̃v, q̃v0, σ̃ ) its verifier.

The fuzzy event σ̃ is λ-predictable (partially predictable with the degree λ) in G̃ if and only
if conditions R1 and R2 hold where:
R1: there is q̃v ∈ FV , there is cycle C in Ac(Ṽ

G̃
, q̃v) which is normal or uncertain.

R2: the minimal μ-normal or μ-uncertain in Ac(Ṽ
G̃
, q̃v) for all q̃v ∈ FV satisfies μ =

λ.�̃f (σ̃ )

Condition R1 states that we are not in the situation of completely predictability. Con-
dition R2 allows one to quantify the predictability degree by using the minimal μ-normal
cycle (having the minimal value of μ in its labels of the form Nμ) accessible from a state
of FV . The particular case of 0-predictability is then given as follows:

Corollary 3 Let G̃ = (Q̃, Ẽ, δ̃, q̃0) be a FDES and Ṽ
G̃

= (Q̃v, Ẽ, δ̃v, q̃v0, σ̃ ) its verifier.

The fuzzy event σ̃ is 0-predictable (completely non-predictable) in G̃ if and only if there is
q̃v ∈ FV and there is a 0-normal or a 0-uncertain cycle in Ac(Ṽ

G̃
, q̃v).

Example 3 (Cont) We take again Example 3 given above. Let us use Theorem 2 to calculate
the predictability degree of the fuzzy event θ̃ in the FDES depicted in Fig. 2, where its verifier
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Ṽ
G̃

is shown in the Fig. 3. (In Section 3.2, we have used Definitions 7 and 9 to prove that θ̃

is partially predictable with a degree λ = 0.28.) First, we determine from the verifier that the
set F ′

V containing the normal states that have a certain or uncertain verifier as imme-
diate successor: F ′

V = {[(q̃3, N0), (q̃3, N
0)], [(q̃3, N0.2), (q̃3, N

0.2)], [(q̃3, N0), (q̃2, N
0)],

[(q̃2, N0), (q̃3, N
0)]}. And from F ′

V we construct the set FV = F ′
V ∪ {[(q̃2, N0.2),

(q̃2,N
0.2)], [(q̃3, N0), (q̃4, F)], [(q̃4, F), (q̃3,N

0)], [(q̃3,N0.2), (q̃4, F)], [(q̃4, F), (q̃3,N
0.2)],

[(q̃4, F ), (q̃2, N
0)], [(q̃2, N0), (q̃4, F )]}. The states of the set FV are presented with dashed

rectangles.
Clearly, Ac(Ṽ

G̃
, [(q̃2, N0.2), (q̃2, N

0.2)]) contains a single cycle that is a minimal 0.2-
normal cycle and it is presented in the verifier with bold-border rectangle. Thus, based on

Theorem 2 the fuzzy event θ̃ is partially predictable with a degree λ = μ

�̃f (σ̃ )
= 0.2/0.7 =

0.28.

6 Another illustrative example: Treatment process on an animal

Consider the treatment process of an animal, modeled by fuzzy DES G̃3 depicted in Fig. 4
(this example is inspired from Liu and Qiu (2009)). This animal becoming sick with a
new disease. The drugs Theophylline, Ipratropium Bromide, Erythromycin Ethylsucci-
nate, and Dopamine are denoted by fuzzy event α̃, β̃, γ̃ and θ̃ , respectively. The doctor
believes that these drugs may be useful in treating the disease. A state in this fuzzy DES
is denoted by a vector q̃ = (a1, a2, a3) which means that the animal’s condition can
simultaneously belong to “good”, “fair” and “poor” with respective membership degrees
a1, a2 and a3. The initial state is q̃0 = [0.9, 0.1, 0] and the other states calculated using
max-min operation (see Definition 3) are: q̃1 = [0.4, 0.9, 0.4], q̃2 = [0.9, 0.4, 0.4],
q̃3 = [0.4, 0.9, 0.4], q̃4 = [0.9, 0.9, 0.4], q̃5 = [0.5, 0.1, 0], q̃6 = [0.5, 0.4, 0.4] and
q̃7 = [0.5, 0.4, 0.4].

Since it is imprecise to determine the exact point at which the animal has evolved from
one state to another after a drug treatment, each fuzzy event is modeled by a 3 × 3 matrix.

α̃ =
⎛
⎝ 0.4 0.9 0.4

0 0.4 0.4
0 0 0.4

⎞
⎠ β̃ =

⎛
⎝ 0.4 0 0

0.9 0.4 0
0.4 0.4 0.4

⎞
⎠ γ̃ =

⎛
⎝ 0.9 0.9 0.4

0 0.4 0.4
0 0 0.4

⎞
⎠ θ̃ =

⎛
⎝ 0.5 0 0

0.1 0.1 0
0.1 0.1 0.1

⎞
⎠

Suppose that the observability degrees and the failure possibilities of the events are
defined as follows:

�̃o(α̃) = 0.5, �̃o(β̃) = 0.4, �̃o(γ̃ ) = 0.6, �̃o(θ̃) = 0.3

�̃f (α̃) = 0.1, �̃f (β̃) = 0.2, �̃f (γ̃ ) = 0.3, �̃f (θ̃) = 0.4.

Fig. 4 Treatment process (Liu and Qiu 2009) modeled by FDES G̃3
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6.1 Using the fuzzy predictability definition

1. For the failure event α̃, we have: �̃α̃(�̃f ) = {α̃, θ̃}. Notice that θ̃ is added to �̃α̃(�̃f )

because �̃f (θ̃) > �̃f (α̃).

– For s̃ = α̃, t̃ = MaxPref (s̃) = ε. We have:{
�̃f (t̃) < �̃f (α̃)

L//t̃ = {(ε, α̃(β̃γ̃ α̃)∗), (ε, θ̃ α̃(β̃γ̃ α̃)∗)}
For n = 1 we have:

FP
(1)
α̃

(t̃ , 1) =
min{�̃f (α̃), �̃f (ω̃) : ω̃ ∈ L(G̃) ∧ ω̃ = ũṽ

∧(ũ, ṽ) ∈ {(ε, α̃), (ε, θ̃ )}}
�̃f (α̃)

= 1

We can check that for all n ≥ 1 we have: FP
(1)
α̃

(t̃ , n) = FP
(1)
α̃

(t̃ , 1) = 1.
It follows from Proposition 3, for s̃ = α̃ that:

∀n ≥ 1, FP
(2)
α̃

(s̃, n) = FP
(1)
α̃

(t̃ , 1) = 1

Then, the predictability degree of the faulty string s̃ = α̃ is 1.

– For s̃ = θ̃ , t̃ = MaxPref (s̃) = ε.
For n = 1 we have:

FP
(1)
α̃

(t̃ , 1) =
min{�̃f (α̃), �̃f (ω̃) : ω̃ ∈ L(G̃) ∧ ω̃ = ũṽ

∧(ũ, ṽ) ∈ {(ε, α̃), (ε, θ̃ )}}
�̃f (α̃)

= 1

We can check that for all n ≥ 1 we have: FP
(1)
α̃

(t̃ , n) = FP
(1)
α̃

(t̃ , 1) = 1.

It follows from Proposition 3, for s̃ = θ̃ that:

∀n ≥ 1, FP
(2)
α̃

(s̃, n) = FP
(1)
α̃

(t̃ , 1) = 1

Then, the predictability degree of the faulty string s̃ = θ̃ is 1.

Now, from Definition 9, the predictability of the fuzzy event α̃ in the FDES G̃3 is
calculated by: FPα̃(G̃3, n) = min{FP

(2)
α̃

(s̃, n) : s̃ ∈ �̃α̃(�̃f )}.
It follows that: ∀n ≥ 1, FPα̃(G̃3, n) = min{FP

(2)
α̃

(s̃, n) : s̃ ∈ {α̃, θ̃}} = 1.

So, the fuzzy event α̃ is completelly predictable in G̃3 which means that the pos-
sibility of failure occurring (i.e., high white blood cell count) is predictable on each
treatment strategy.

2. For the failure event β̃, we have, �̃ ˜̃
β
(�̃f ) = {α̃β̃, θ̃}. We have added θ̃ because

�̃f (θ̃) > �̃f (β̃). In a similar way as for the fuzzy event α̃ we obtain: ∀n ≥
1, FPβ̃(G̃3, n) = min{FP

(2)
β̃

(s̃, n) : s̃ ∈ �̃β̃ (�̃f )} = min{1, 1} = 1

It follows that the fuzzy event β̃ is completely predictable in G̃3.

3. For the failure event γ̃ , we can use the same method as for α̃ and β̃ , we obtain:

∀n ≥ 1, FPγ̃ (G̃3, n) = 1
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We conclude that the fuzzy event γ̃ is also completely predictable in G̃3.

4. For the failure event θ̃ , we have: �̃ ˜̃
θ
(�̃f ) = {θ̃}.

For s̃ = θ̃ , t̃ = MaxPref (s̃) = ε. We have:{
�̃f (t̃) < �̃f (θ̃)

L//t̃ = {(ε, α̃(β̃γ̃ α̃)∗), (ε, θ̃ α̃(β̃γ̃ α̃)∗)}
For n = 1 we have:

FP
(1)
θ̃

(t̃ , 1) =
min{�̃f (θ̃), �̃f (ω̃) : ω̃ ∈ L(G̃) ∧ ω̃ = ũṽ

∧(ũ, ṽ) ∈ {(ε, α̃), (ε, θ̃ )}}
�̃f (θ̃)

= 0.25

For n = 2 we have:

FP
(1)
θ̃

(t̃ , 2) =
min{�̃f (θ̃), �̃f (ω̃) : ω̃ ∈ L(G̃) ∧ ω̃ = ũṽ

∧(ũ, ṽ) ∈ {(ε, α̃β̃), (ε, θ̃ α̃)}}
�̃f (θ̃)

= 0.5

For n = 3 we have:

FP
(1)
θ̃

(t̃ , 3) =
min{�̃f (θ̃), �̃f (ω̃) : ω̃ ∈ L(G̃) ∧ ω̃ = ũṽ

∧(ũ, ṽ) ∈ {(ε, α̃β̃γ̃ ), (ε, θ̃ α̃β̃)}}
�̃f (θ̃)

= 0.75

We can check that for all n ≥ 3 we have: FP
(1)
θ̃

(t̃ , n) = FP
(1)
θ̃

(t̃ , 3) = 0.75.

It follows from Proposition 3, for s̃ = θ̃ that:

∀n ≥ 3, FP
(2)
θ̃

(s̃, n) = FP
(1)
θ̃

(t̃ , 3) = 0.75

Then, the predictability degree of the faulty string s̃ = θ̃ is 0.75.
Now, from Definition 9, the predictability of the fuzzy event θ̃ in the FDES G̃3 is
calculated by: FPθ̃ (G̃3, n) = min{FP

(2)
θ̃

(s̃, n) : s̃ ∈ �̃θ̃ (�̃f )}.
It follows that: ∀n ≥ 3, FPθ̃ (G̃3, n) = min{FP

(2)
θ̃

(s̃, n) : s̃ ∈ �̃θ̃ (�̃f )} = 0.75.

In conclusion, we can say that the fuzzy event θ̃ is 0.75-predictable in G̃3, i.e., par-
tially predictable with degree λ = 0.75. The result shows that we cannot predict the
failure occurring on the treatment strategy ω̃ containing the drug Dopamine, but we
may ensure that the possibilities of failure occurring on all sequences of the system are
at least 0.75 times that �̃f (θ̃). So, we can say that the fuzzy FDES G̃ depicted in Fig. 4
is 75% predictable.

6.2 Using the verifier approach

Now we use the verifier approach to verify the fuzzy predictability of fuzzy events in the
FDES G̃3.

1. The verifier with respect to β̃ is shown in Fig. 5. The set F ′
V of normal ver-

ifier states with an uncertain or a certain verifier state as an immediate suc-
cessor, is F ′

V = {[(q̃0, N0), (q̃0, N
0)], [(q̃1, N0.1), (q̃1, N

0.1)]}. We can check
that FV = F ′

V ∪ {[(q̃2, F ), (q̃1, N
0.1)], [(q̃1, N0.1), (q̃2, F )], [(q̃4, F ), (q̃0, N

0)],
[(q̃5, F ), (q̃1, N

0.1)], [(q̃6, F ), (q̃1, N
0.1)], [(q̃0, N0), (q̃4, F )], [(q̃1, N0.1), (q̃5, F )],
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Fig. 5 Verifier Ṽ
G̃3

of FDES G̃3 with respect to β̃

[(q̃1, N0.1), (q̃6, F )]}. All states in cycles of the accessible part for each q̃v ∈ FV ,
Ac(Ṽ

G̃3
, q̃v) are certain states. Thus, from Theorem 1, the occurrences of the fuzzy

event β̃ are completely predictable in G̃3. In a similar way, we can check that α̃ and γ̃

are also completely predictable in G̃3.
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Fig. 6 Verifier Ṽ
G̃3

of FDES G̃3 with respect to θ̃

2. The verifier with respect to θ̃ is shown in Fig. 6. The set F ′
V of normal states with an

uncertain or a certain state as an immediate successor is F ′
V = {[(q̃0, N0), (q̃0, N

0)]}.
Then, FV = F ′

V ∪ {[(q̃4, F ),

(q̃0, N
0)], [(q̃0, N0), (q̃4, F )]}. There is a minimal μ-normal and two minimal μ-

uncertain cycles in the accessible part Ac(Ṽ
G̃3

, q̃v) such that q̃v ∈ FV . It is easy to see

in Fig. 6 that μ = 0.3 < �̃f (θ̃) = 0.4. Since μ = λ�̃f (θ̃), it follows that: λ = 0.75.
Therefore, by Theorem 2, the fuzzy event θ̃ is partially predictable with degree 0.75
in the FDES G̃3. This is in accordance with the result found in Section 6.1 using the
predictability definition.

7 Conclusion and future work

In this paper, we have dealt with the problem of failures predictability in the framework of
fuzzy DESs. First, we have formalized the concept of fuzzy predictability in fuzzy DESs
by means of fuzzy predictability functions that take their values in the interval [0, 1] rather
than in the binary set {0, 1}. These functions quantifies the predictability degree of a failure
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event at different levels including (i) the predictability degree of a non-faulty prefix of a
word ending by a failure event (ii) the predictability degree of a word ending by a failure
event, and (iii) the predictability degree of a failure event in the fuzzy DES. We have also
shown that the new setting generalizes the classical setting of predictability in crisp DESs.
Indeed, by using an adapted presentation of any crisp DES as a special fuzzy DES, our
proposed fuzzy approach leads to the correct decision about the (classical) predictability of
any failure event in the crisp DES.

Then, we have shown that the well-known result stating that the predictability prop-
erty is stronger than the diagnosability property continue to hold in the fuzzy framework.
This result is expressed in the fuzzy framework by the fact that for any fuzzy DES, the
predictability degree of any failure event is at most equal to its degree of diagnosability.

After that we have proposed an approach for the verification of failures predictability
in fuzzy DESs based on discrete event structure commonly used in the literature. From a
computation complexity point of view, the number of states in the verifier is polynomial
with respect to the number of states in the input system.

Our proposal may be used at the design stage of the general context of failure diagnosis
of DESs tainted with imprecision in their states, events, observability as well as failure sta-
tus. The importance of our proposal comes from the fact that these kinds of imperfections
are common in real-life application contexts where it is rare to have a precise and complete
amount of information about the functioning of the studied system. The evaluation of the
predictability degrees of the different failure events occurring in the system provides the
designer of the model with valuable hints about the possible changes to perform on the
model, according to the criticality of the application and the gravity of failures. The objec-
tive being to make the predictability degree of a critical failure as high as possible in the
limits of the available resources. Indeed, increasing the predictability degree of a failure
often comes down to use additional sensors (which may be costly) in order to increase its
observability degree or the observability degree of other events. Thus, the indications given
by the predictability degrees helps the designer in finding a reasonable tradeoff between the
global predictability of the system and the cost necessary to ensure it.

As future work, a natural further issue worthy of consideration is to generalize our pre-
dictability approach to the framework of distributed fuzzy DESs. Another future work that
we plan to do is to study predictability of patterns in fuzzy DESs where a failure in no
longer a single event but rather a pattern, i.e., a set of sequences of events that are consid-
ered as “abnormal”. Finally, another interesting future issue to consider is the study of safe
predictability in fuzzy DESs.

Appendix: Proofs

Proof of Proposition 1 The proof follows immediately from Definition 7 and the definition
of the degree of fault of a trace in the language.

Proof of Proposition 2 Follows immediately from Definition 8 and Propositions 1, 3.

Proof of Proposition 3 Let s̃ ∈ �̃σ̃ and t̃ = MaxPref (s̃). Let us first show that: (∀t̃1 ∈
Pref (t̃))(∀n > 0)(∃n′ > n) E(t̃, n) ⊆ E(t̃1, n

′) where E(r̃, n) = {ω̃ ∈ L
G̃

: ω̃ =
ũṽ, (ũ, ṽ) ∈ L//r̃, ‖ṽ‖ = n}.
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Let t̃1 ∈ Pref (t̃) and suppose that t̃ = t̃1s̃1. If ω̃ ∈ E(t̃, n), then:

ω̃ = ũṽ where ũ ∈ L
G̃
, ṽ ∈ L/ũ, �̃σ̃ (ũ) = �̃σ̃ (t̃), �̃f (ũ) < �̃f (σ̃ ) and ‖ṽ‖ = n, i.e.,

ω̃ = ũṽ where ũ ∈ L
G̃
, ṽ∈ L/(ũ), �̃σ̃ (ũ)=�̃σ̃ (t̃1)�̃σ̃ (s̃1), �̃f (ũ) < �̃f (σ̃ ) and ‖ṽ‖= n

Let us put ũ = ũ1ũ2 such that �̃σ̃ (ũ1) = �̃σ̃ (t̃1) and �̃σ̃ (ũ2) = �̃σ̃ (s̃1). Let ṽ′ = ũ2ṽ

and n′ = ‖ṽ‖ + ‖ũ2‖, then we have:
ω̃ = ũ1ṽ

′where ũ1 ∈ L
G̃

, ṽ′ ∈ L/ũ1, �̃σ̃ (ũ1) = �̃σ̃ (t̃1), �̃f (ũ1) < �̃f (σ̃ ) and ‖ṽ′‖ = n′

This means that ω̃ ∈ E(t̃1, n
′) and hence, E(t̃, n) ⊆ E(t̃1, n

′). It follows that:

(∀t̃1 ∈ Pref (t̃))(∀n > 0)(∃n′ > n) :
min {�̃f (ω̃) : ω̃ ∈ L

G̃
and ω̃ = ũṽ, (ũ, ṽ) ∈ L//t̃1, ‖ṽ‖ = n′} ≤

min {�̃f (ω̃) : ω̃ ∈ L
G̃

and ω̃ = ũṽ, (ũ, ṽ) ∈ L//t̃, ‖ṽ‖ = n}, i.e.,
(∀t̃1 ∈ Pref (t̃))(∀n > 0)(∃n′ > n), FP

(1)
σ̃

(t̃1, n
′) ≤ FP

(1)
σ̃

(t̃ , n)

But from Proposition 1 and the fact that n < n′, it holds that: FP
(1)
σ̃

(t̃1, n) ≤ FP
(1)
σ̃

(t̃1, n
′).

We deduce finally that: (∀t̃1 ∈ Pref (t̃))(∀n > 0), FP
(1)
σ̃

(t̃1, n) ≤ FP
(1)
σ̃

(t̃ , n).
The proposition follows then directly from Definition 8.

Proof of Corollary 1 The proof follows immediately from Definition 9, Definition 7 and
Proposition 3.

Proof of Proposition 4 G̃ is 1-predictable ⇔ (∃n0 ∈ N)(∀n > n0)FPσ̃ (G̃, n) = 1 .........
(1)
(1) ⇔ (∃n0 ∈ N)(∀n > n0) min{FP

(1)
σ̃

(t̃ , n) : t̃ = MaxPref (s̃), s̃ ∈ �̃σ̃ } = 1

(1) ⇔ (∃n0 ∈ N)(∀n > n0)(∀s̃ ∈ �̃σ̃ ) FP
(1)
σ̃

(MaxP ref (s̃), n) = 1

(1) ⇔ (∃n0 ∈ N)(∀n > n0)(∀s̃ ∈ �̃σ̃ )

min{�̃f (σ̃ ), �̃f (ω̃) : ω̃ ∈ L(G̃) ∧ ω̃ = ũṽ

∧(ũ, ṽ) ∈ L//MaxP ref (s̃) ∧ ‖ṽ‖ = n}
�̃f (σ̃ )

= 1

(1) ⇔ (∃n0 ∈ N)(∀n > n0)(∀s̃ ∈ �̃σ̃ )

min{�̃f (σ̃ ), �̃f (ω̃) : ω̃ ∈ L(G̃) ∧ ω̃ = ũṽ ∧ (ũ, ṽ) ∈ L//MaxP ref (s̃)∧ ‖ṽ‖ = n} =
�̃f (σ̃ )

(1) (∃n0 ∈ N)(∀n > n0)(∀s̃ ∈ �̃σ̃ )(∀ũ ∈ L
G̃
)(∀ṽ ∈ L/ũ) :

[�̃σ̃ (ũ) = �̃σ̃ (MaxP ref (s̃)) and �̃f (ũ) < �̃f (σ̃ ) and ‖ṽ‖ = n] ⇒ �̃f (ũṽ) ≥
�̃f (σ̃ )

Proof of Proposition 5 Let G̃ be an FDES. G̃ and λ ∈ [0, 1[.
G̃ is λ-predictable ⇔ (∃n0 ∈ N)(∀n > n0)FPσ̃ (G̃, n) = λ .................. (1)
(1) ⇔ (∃n0 ∈ N)(∀n > n0) min{FP

(1)
σ̃

(t̃ , n) : t̃ = MaxPref (s̃), s̃ ∈ �̃σ̃ } = λ

(1) ⇔ (∃n0 ∈ N)(∀n > n0)(H1 ∧ H2) where: H1: (∃s̃ ∈ �̃σ̃ ) FP
(1)
σ̃

(MaxP ref (s̃), n) = λ

and H2: (∀s̃ ∈ �̃σ̃ ) FP
(1)
σ̃

(MaxP ref (s̃), n) ≥ λ

H1 ⇔ (∃s̃ ∈ �̃σ̃ )

min{�̃f (σ̃ ), �̃f (ω̃) : ω̃ ∈ L(G̃) ∧ ω̃ = ũṽ ∧ (ũ, ṽ) ∈ L//MaxP ref (s̃)∧ ‖ṽ‖ = n} =
λ.�̃f (σ̃ )
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H1 ⇔ (∃s̃ ∈ �̃σ̃ )(H ′
1 ∧ H ′

2) where:

H ′
1 : (∃ũ ∈ L

G̃
)(∃ṽ ∈ L/ũ)

[�̃σ̃ (ũ)=�̃σ̃ (MaxP ref (s̃)) and �̃f (ũ)<�̃f (σ̃ ) and ‖ṽ‖=n] and�̃f (ũṽ)=λ.�̃f (σ̃ )

H ′
2 : (∀ũ ∈ L

G̃
)(∀ṽ ∈ L/ũ)

[�̃σ̃ (ũ)=�̃σ̃ (MaxP ref (s̃)) and �̃f (ũ)<�̃f (σ̃ ) and ‖ṽ‖=n] ⇒ �̃f (ũṽ)≥λ.�̃f (σ̃ )

H2 ⇔ (∀s̃ ∈ �̃σ̃ )

min{�̃f (σ̃ ), �̃f (ω̃) : ω̃ ∈ L(G̃) ∧ ω̃= ũṽ ∧ (ũ, ṽ) ∈ L//MaxP ref (s̃) ∧ ‖ṽ‖=n} ≥ λ.�̃f (σ̃ )

H2 ⇔ (∀s̃ ∈ �̃σ̃ )(∀ũ ∈ L
G̃

)(∀ṽ ∈ L/ũ)

[�̃σ̃ (ũ)=�̃σ̃ (MaxP ref (s̃)) and �̃f (ũ)<�̃f (σ̃ ) and ‖ṽ‖=n]⇒�̃f (ũṽ)≥λ.�̃f (σ̃ ) ⇔ D2

It is easy to check that:

(H1 ∧ H2) ⇔ (((∃s̃ ∈ �̃σ̃ )(H ′
1 ∧ H ′

2)) ∧ D2)

⇔ (((∃s̃ ∈ �̃σ̃ ) H ′
1) ∧ D2)

⇔ (D1 ∧ D2).

Proof of Corollary 2 Follows immediately from Proposition 4 and Proposition 5.

Proof of Proposition 6 Suppose that the degree of predictability (resp. of diagnosability) of
σ̃ in G̃ is λ = FPσ̃ (G̃, ∞) (resp. γ = FGσ̃ (G̃, ∞)), then:

γ = min{�̃f (σ̃ ), �̃f (ω̃) : ω̃ ∈ E}
�̃f (σ̃ )

where: E = {ω̃ : ω̃ ∈ �̃−1(�(s̃.s̃′)), s̃ ∈ �̃σ̃ , s̃′ ∈ L/s̃, ‖s̃′‖ = ∞} and

λ = min{�̃f (σ̃ ), �̃f (ω̃) : ω̃ ∈ E′}
�̃f (σ̃ )

where: E′ = {ω̃ : ω̃ = ũṽ, (ũ, ṽ) ∈ L//t̃, t̃ = MaxPref (s̃), s̃ ∈ �̃σ̃ , ‖ṽ‖ = ∞}
We have: E = {ω̃ : �(ω̃) = �(s̃s̃′), s̃ ∈ �̃σ̃ , s̃′ ∈ L/s̃, ‖s̃′‖ = ∞}
For all s̃ ∈ �̃σ̃ , we put s̃ = t̃ t̃ ′ where t̃ = MaxPref (s̃). Then:
E = {ω̃ : ω̃ = ũṽ, �(ũ) = �(t̃),�(ṽ) = �(t̃ ′s̃′), t̃ = MaxPref (s̃), s̃ ∈ �̃σ̃ , s̃′ ∈
L/s̃, ‖s̃ ′‖ = ∞}
Since ũ may or may not be faulty, E may be written: E = E1 ∪ E2 where:
E1 = {ω̃ : ω̃ = ũṽ, �(ũ) = �(t̃), �̃f (ũ) < �̃f (σ̃ ),�(ṽ) = �(t̃ ′s̃′), t̃ =
MaxPref (s̃), s̃ ∈ �̃σ̃ , s̃′ ∈ L/s̃, ‖s̃′‖ = ∞}. i.e., E1 = {ω̃ : ω̃ = ũṽ, (ũ, ṽ) ∈
L//t̃, �(ṽ) = �(t̃ ′s̃′), t̃ = MaxPref (s̃), s̃ ∈ �̃σ̃ , s̃ = t̃ t̃ ′, s̃′ ∈ L/s̃, ‖ṽ′‖ = ∞}
and E2 = {ω̃ : ω̃ = ũṽ, �(ũ) = �(t̃), �̃f (ũ) ≥ �̃f (σ̃ ),�(ṽ) = �(t̃ ′s̃′), t̃ =
MaxPref (s̃), s̃ ∈ �̃σ̃ , s̃′ ∈ L/s̃, ‖s̃′‖ = ∞}
Note that, for every ω̃ ∈ E2, it holds that �̃f (ω̃) ≥ �̃f (σ̃ ) since every ω̃ ∈ E2 is of the form
ũṽ where �̃f (ũ) ≥ �̃f (σ̃ ). It follows that: min{�̃f (ω̃) : ω̃ ∈ E2} ≥ �̃f (σ̃ ) and hence:

γ = min{�̃f (σ̃ ), �̃f (ω̃) : ω̃ ∈ E1}
�̃f (σ̃ )

It is clear that E1 ⊆ E′. Indeed, among all the traces ũṽ ∈ E′, E1 contains only those
traces where v1 shares the same observables as t̃ ′s̃′. It follows that:
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min{�̃f (ω̃) : ω̃ ∈ E′} < min{�̃f (ω̃) : ω̃ ∈ E1}, i.e., min{�̃f (σ̃ ), �̃f (ω̃) : ω̃ ∈ E′} <

min{�̃f (σ̃ ), �̃f (ω̃) : ω̃ ∈ E1} and hence: λ ≤ γ

Proof of Lemma 1 The proof is done by induction on the sequence of observable events.

Proof of Lemma 2 The proof is done by induction on the sequence of observable events.

Proof of Lemma 3 (⇒) Suppose q̃v ∈ FV and C is a cycle in Ac(Ṽ
G̃
, q̃v) such that C is

normal or uncertain and each state in C contains a state of G̃ labelled by Nμ. Suppose C

formed by the states x̃v,1, x̃v,2, ..., x̃v,m and events σ̃1, σ̃2, ..., σ̃m ∈ Ẽ∗ i.e. δ̃d (x̃v,i , σ̃i ) =
x̃v,i+1 for 1 ≤ i ≤ m and δ̃v(x̃v,m, σ̃m) = x̃v,1. Each state x̃v,i contains a state of G̃ (say x̃i)
labelled by Nμ in Ṽ

G̃
i.e. (x̃i , N

μ) ∈ x̃v,i .
Let q̃v = [(q̃1, Nμ1), (q̃2, N

μ2)] ∈ δ̃(q̃v0, w̃1) where q̃1, q̃2 ∈ Q̃ and w̃1 ∈ Ẽ∗. If q̃v ∈
FV then there exist ỹv and z̃v , such that ỹv = δ̃(q̃ ′

v, t̃uo) and z̃v = δ̃(ỹv, σ̃p)where: t̃uo ∈ Ẽ∗,
�̃f (t̃uo) < �̃f (σ̃ ), �̃o(t̃uo) < �̃o(σ̃ ), �̃f (σ̃p) ≥ �̃f (σ̃ ) and q̃ ′

v = [(q̃1, Nμ1), (., .)] or
q̃ ′
v = [(., .), (q̃2, Nμ2)]. The existence of ỹv and z̃v follows from Lemma 1 and the existence

of q̃ ′
v follows from the definition of FV .
There is s̃ ∈ �̃σ̃ such that �̃σ̃ (s̃) = �̃σ̃ (w̃1 t̃uoσ̃p). let s̃ = s̃1σ̃p where s̃1 ∈ Ẽ∗ and

�̃f (σ̃p) ≥ �̃f (σ̃ ) .take a state from the cycle C . without lost of generality take the state
x̃v,1 . let t̃ = s̃1 = MaxPref (s̃). let x̃v,1 = [(x̃1, Nμ), (x̃2, lx2)] where x̃1, x̃2 ∈ Q̃ and
lx2 ∈ {Nμ, Nμ′

, F } and suppose that x̃v,1 is reached from q̃v by w̃2 ∈ Ẽ∗: x̃v,1 = δ̃(q̃v, w̃2).
There is ũ ∈ L

G̃
and ũ′ ∈ L

G̃
/ũ such that �̃σ̃ (w̃1) = �̃σ̃ (ũ) and �̃f (ũ) < �̃f (σ̃ ) and

δ̃(q̃0, ũũ′) = x̃1, since
(x̃1, N

μ) ∈ x̃v,1 and since �̃σ̃ (w̃1) = �̃σ̃ (w̃1 t̃uo) = �̃σ̃ (s̃1) = �̃σ̃ (t̃) then �̃σ̃ (ũ) =
�̃σ̃ (t̃). because there is a cycle C in the verifier Ṽ

G̃
fromed by x̃v,1, x̃v,2, ..., x̃v,m and events

σ̃1, σ̃2, ..., σ̃m ∈ Ẽ∗, so there exist a corresponding cycle in G̃ formed by normal states
in x̃v,i for i = 1, · · · ,m and a subsequence w̃′

1, ..., w̃
′
m′ ∈ Ẽ∗ where m′ ≤ m is

a positive integer. Moreover we have: ∀k ≥ 1, x̃1 = δ̃(q̃0, ũũ′(w̃′
1, ..., w̃

′
m′)k) and

�̃f (ũũ′(w̃′
1, ..., w̃

′
m′)k) = μ.

Take n0 = ‖ũ′‖ + k and ṽ = ũ′(w̃′
1, ..., w̃

′
m′)k) then:

(∃n0 ∈ N)(∀n > n0)(∃s̃ ∈ �̃σ̃ )(∃ũ ∈ L
G̃

)(∃ṽ ∈ L/ũ) :
�̃σ̃ (ũ) = �̃σ̃ (MaxP ref (s̃)) and �̃f (ũ) < �̃f (σ̃ ) and ‖ṽ‖ = n and �̃f (ũṽ) = μ

(⇐) Suppose that:

(∃n0 ∈ N)(∀n > n0)(∃s̃ ∈ �̃σ̃ )(∃ũ ∈ L
G̃

)(∃ṽ ∈ L/ũ) :
�̃σ̃ (ũ) = �̃σ̃ (MaxP ref (s̃)) and �̃f (ũ) < �̃f (σ̃ ) and ‖ṽ‖ = n and �̃f (ũṽ) = μ

Let us take s̃ ∈ �̃σ̃ and let s̃ = s̃1σ̃p where �̃f (s̃1) < �̃f (σ̃ ) and �̃f (σ̃p) ≥ �̃f (σ̃ ).
t̃ = s̃1 = MaxPref (s̃). We have �̃f (t̃) < �̃f (σ̃ ). Take ũ ∈ L

G̃
such that �̃σ̃ (ũ) =

�̃σ̃ (t̃) = �̃σ̃ (s̃1) and �̃f (ũ) < �̃f (σ̃ ).
Let x̃ = δ̃(q̃0, s̃1) and ỹ = δ̃(x̃, σ̃p). There exist x̃v = [(x̃, Nμ1), (x̃′, l′x)] and ỹv =

[(x̃, F ), (ỹ′, l′y)] ∈ Q̃v such that ỹv ∈ δ̃v(x̃v, σ̃p) where x̃′, ỹ′ ∈ Q̃ and l′x, l′y ∈ {Nμ3, F }
then x̃v ∈ Q̃N

v ∪ Q̃U
v and ỹv ∈ Q̃u

v ∪ Q̃c
v . We distinguish two cases for x̃v:
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case (i): x̃v ∈ Q̃N
v and ỹv /∈ Q̃N

v then x̃v ∈ FV .
case (ii): x̃v /∈ Q̃N

v but in this case , by Lemma 2, there is a state w̃v ∈ FV reachable from
q̃v0 such that x̃v is reachable from w̃v .
So, in both cases, there is a state q̃v ∈ FV (q̃v = x̃v or q̃v = w̃v) from which ỹv is reached
from q̃v by σp: ỹv = δ̃v(q̃v, σp). On the other hand ṽ may be chosen arbitrarily long and
then has the from: ṽ = ũ′(w̃1...w̃m)k) for k ≥ 1 with �̃f (ũṽ) = μ.

Let �̃σ̃ (ũ′) = s̃′
1 and �̃σ̃ (w̃1...w̃m) = s̃′′

1 = σ̃1...σ̃l , (l ≤ m). We have two cases:
case A: s̃′

1 �= ε then let x̃′
v = δ̃v(x̃v, s̃

′
1) we have: x̃

′
v = δ̃v(x̃

′
v, σ̃1...σ̃l).

case B: s̃′
1 = ε then let x̃′

v = δ̃v(x̃v, σ̃1) we have: x̃′
v = δ̃v(x̃

′
v, σ̃2...σ̃l σ̃1)

In both cases: x̃′
v = δ̃v(q̃v0, s̃1s̃

′
1(σ̃1...σ̃l)

k), k ≥ 1. Since �̃f (ũṽ) = μ , it is clear that there
is (x̃i , N

μ) ∈ x̃′
v and x̃′

v is involved in cycle C reached from q̃v . From the fault propagation
in the verifier, each state of C contains a state labelled by Nμ.

Proof of Theorem 1 (⇒) Suppose that σ̃ is 1-predictable. Then we have:

(∃n0 ∈ N)(∀n > n0)(∀s̃ ∈ �̃σ̃ )(∀ũ ∈ L
G̃
)(∀ṽ ∈ L/ũ) :

[�̃σ̃ (ũ)=�̃σ̃ (MaxP ref (s̃)) and �̃f (ũ) < �̃f (σ̃ ) and ‖ṽ‖ = n]⇒�̃f (ũṽ) ≥ �̃f (σ̃ )(�)

For the sake of contradiction, suppose that Pv does not holds. So, there is q̃v ∈ FV and
there is a cycle C ∈ Ac(Ṽ

G̃
, q̃v) such that C is uncertain or normal. This means that there

is a state x̃v,i ∈ C containing (x̃i , N
μ) for some x̃i ∈ Q̃ and μ < 1. Then from Lemma 3

we obtain:

(∃n0 ∈ N)(∀n > n0)(∃s̃ ∈ �̃σ̃ )(∃ũ ∈ L
G̃
)(∀ṽ ∈ L/ũ) :

�̃σ̃ (ũ)=�̃σ̃ (MaxP ref (s̃)) and �̃f (ũ)<�̃f (σ̃ ) and ‖ṽ‖ = n and �̃f (ũṽ)=μ<�̃f (σ̃ )

This contradicts (�)

(⇐) Suppose that Pv holds: for all q̃v ∈ FV , there is only certain cycles in Ac(Ṽ
G̃
, q̃v).

For the sake of contradiction, suppose that G̃ is not 1-predictable i.e. G̃ is λ-predictable for
some 0 ≤ λ < 1. From Proposition 4 it follows that:

(∃n0 ∈ N)(∀n > n0)(∃s̃ ∈ �̃σ̃ )(∃ũ ∈ L
G̃
)(∃ṽ ∈ L/ũ) :

�̃σ̃ (ũ) = �̃σ̃ (MaxP ref (s̃)) and �̃f (ũ)<�̃f (σ̃ ) and ‖ṽ‖ = n and �̃f (ũṽ) = λ.�̃f (σ̃ )

Let us put μ = λ.�̃f (σ̃ ). We have μ < �̃f (σ̃ ). From Lemma 3 it follows that there
is q̃v ∈ FV and there is a cycle C in Ac(Ṽ

G̃
, q̃v) which is normal or uncertain (hence, not

certain). This contradicts Pv .

Proof of Theorem 2 (⇒) σ̃ is λ-predictable in G̃ . from Proposition 5 we have:

(i) (∃n0 ∈ N)(∀n > n0)(∃s̃ ∈ �̃σ̃ )(∃ũ ∈ L
G̃
)(∃ṽ ∈ L/ũ) :

�̃σ̃ (ũ)=�̃σ̃ (MaxP ref (s̃)) and �̃f (ũ)<�̃f (σ̃ ) and ‖ṽ‖=n and �̃f (ũṽ) = λ.�̃f (σ̃ )

(ii) (∃n0 ∈ N)(∀n>n0)(∀s̃ ∈ �̃σ̃ )(∀ũ ∈ L
G̃

)(∀ṽ ∈ L/ũ) :
[�̃σ̃ (ũ)=�̃σ̃ (MaxP ref (s̃)) and �̃f (ũ)<�̃f (σ̃ ) and ‖ṽ‖=n]⇒�̃f (ũṽ)≥λ.�̃f (σ̃ )

Let us put λ.�̃f (σ̃ ) = μ. Then R1 follows from (i) and Lemma 3.
To showR2, suppose thatμ is not minimal, i.e. there isμ′ < μ, there is q̃v ∈ FV and a cycle
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C in Ac(Ṽ
G̃
, q̃v) such that C is μ′-normal or μ′-uncertain. From Lemma 3 it follows that:

(∃n0 ∈ N)(∀n > n0)(∃s̃ ∈ �̃σ̃ )(∃ũ ∈ L
G̃
)(∃ṽ ∈ L/ũ) :

�̃σ̃ (ũ)=�̃σ̃ (MaxP ref (s̃)) and �̃f (ũ)<�̃f (σ̃ ) and ‖ṽ‖=n and �̃f (ũṽ)=μ′<λ.�̃f (σ̃ )

This contradicts the condition (ii) of λ-predictability.
(⇐) Suppose that the two conditions R1 and R2 hold where:
R1: there is q̃v ∈ FV , there is cycle C in Ac(Ṽ

G̃
, q̃v) which is normal or uncertain.

R2: the minimal μ-normal or μ-uncertain in Ac(Ṽ
G̃
, q̃v) for all q̃v ∈ FV satisfies μ =

λ.�̃f (σ̃ ).
From R1 and Lemma 3we have:

(i) (∃n0 ∈ N)(∀n > n0)(∃s̃ ∈ �̃σ̃ )(∃ũ ∈ L
G̃
)(∃ṽ ∈ L/ũ) :

�̃σ̃ (ũ)=�̃σ̃ (MaxP ref (s̃)) and �̃f (ũ)<�̃f (σ̃ ) and ‖ṽ‖=n and �̃f (ũṽ) = λ.�̃f (σ̃ )

From R2 we have:

(ii) (∃n0 ∈ N)(∀n > n0)(∀s̃ ∈ �̃σ̃ )(∀ũ ∈ L
G̃

)(∀ṽ ∈ L/ũ) :
[�̃σ̃ (ũ)=�̃σ̃ (MaxP ref (s̃)) and �̃f (ũ)<�̃f (σ̃ ) and ‖ṽ‖=n]⇒�̃f (ũṽ)≥λ.�̃f (σ̃ )

From (i), (ii) and from Proposition 5 we deduce that σ̃ is λ-predictable in G̃.

Proof of Corollary 3 Follows immediately from Theorem 2.
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