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a b s t r a c t

In this paper, a Multiclass Adaptive Neuro-Fuzzy Classifier (MC-NFC) for fault detection and classification
in photovoltaic (PV) array has been developed. Firstly, to show the generalization capability in the
automatic faults classification of a PV array (PVA), Fuzzy Logic (FL) classifiers have been built based on
experimental datasets. Subsequently, a novel classification system based on Adaptive Neuro-fuzzy
Inference System (ANFIS) has been proposed to improve the generalization performance of the FL
classifiers. The experiments have been conducted on the basis of collected data from a PVA to classify five
kinds of faults. Results showed the advantages of using the fuzzy approach with reduced features over
using the entire original chosen features. Then, the designed MC-NFC has been compared with an
Artificial Neural Networks (ANN) classifier. Results demonstrated the superiority of the MC-NFC over the
ANN-classifier and suggest that further improvements in terms of classification accuracy can be achieved
by the proposed classification algorithm; furthermore faults can be also considered for discrimination.

© 2018 Elsevier Ltd. All rights reserved.
1. Introduction

Photovoltaic systems' reliability is defined in terms of maxi-
mizing the electricity production, and minimizing the factors that
cause the power losses of the photovoltaic array (PVA), which is
related to the implemented strategies for Maximum Power Point
Tracking (MPPT) algorithms [1e3] and protection devices avoiding
both energy and material losses [4].

At the end of 2016, 303 GWof photovoltaic energy was installed
around the world. About 75 GW installed only in the year of 2016
[5], and this is comes from the fact that new solutions have
encouraged government to rely more and more on this kind of
energy.

Fault diagnosis techniques (FDT) can play an important role to
reduce the energy and material losses. Fault diagnosis (FD) in DC-
side of a PVA can be classified into three categories, according to
the used detection and classification methods, the type of fault to
be discriminated, and the chosen features feeding the classifier
tory, University of Jijel, Jijel
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1) Different types of detection and classification methods were
proposed in literature. For example, in Ref. [6] the authors
proposed a Neuro-Fuzzy classifier (NFC), by first, constructing
an initial Fuzzy Classifier (FC), and then upgrading it with
learning algorithms. A database obtained by exhaustive simu-
lation with Matlab/Simulink software. A total of 5790 I-V curves
have been stored for features extraction, and further treatment.
A FD technique based on artificial neural network (ANN) tech-
nique was proposed in Ref. [7]. Two different algorithms have
been used; the first one is based on threshold detection and six
types of fault, while the second one is based on an ANN. Radial
Basis Function (RBF) and Multilayer Perceptron (MLP) archi-
tectures have been compared. This later detects and isolates four
types of fault [7]. In Ref. [8] a wavelet transform approach has
been developed, this method uses also two algorithms, the first
one was developed to detect switch open and over harmonic
fault using 3-level Multi Level Decomposition (MLD) algorithm,
and the second one detects the islanding condition using
wavelet coefficients energies. A combination of three FCs, and a
sensitivity of the indicators to different type of factors was
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Nomenclature

ANFIS adaptive neuro-fuzzy inference system
ANN artificial neural network
DC direct current
Di output decision of the classifier number i
FC fuzzy classifier
Fi classifier classifier of the fault type number i
FIS fuzzy inference system
I-V current-voltage
G irradiance
GW giga watt
MC multiclass
MC-NFC multiclass neuro-fuzzy classifier
MF membership function
MFN membership function number

MLD multi level decomposition
MLP multilayer perceptron
MPPT maximum power point tracking
MRE mean relative error
PCS Power conditioning system
PV Photovoltaic
PVA photovoltaic array
RBF radial basis function
RMSE root mean square error
R2 correlation coefficient
Si feature (classifier input) number i
SSE sum squared error
STD standard deviation
Sthi threshold for feature (input) Si
T temperature
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analyzed in Ref. [9], such as solar irradiance and PV module
temperature conditions. In Ref. [10] the authors proposed a
Graph-Based Semi-Supervised (GBSS) learning algorithm, the
model developed has the ability of self-leaning in real-time
conditions. Accordingly, it is a low cost model in terms of
training. Many other methods can be found in the literature
[11e15].

2) The fault types to be detected and classified are varying from
one author to other. For example in Ref. [6] the authors proposed
a method to detect and then classify three types of faults:
increased series resistance, by-pass diode fault, and blocking
diode fault. Eight fault types have been detected and classified
[7] (PV cells, PV module, PV string and by-pass diode faults). The
switch open fault and any over harmonic, and islanding condi-
tionwere detected and classified in Ref. [8]. These faults occur in
a Power Conditioning System (PCS), and it manifests as current-
distortion at the output of the PCS. In Ref. [9], partial shading,
increased series resistance (ISR) losses and Potential-Induced
Degradation (PID) in string PV systems where detected and
classified by measurements and extraction of the indicators
value of the full PV string I-V characteristic. Ref [10] focuses on
two groups of frequently occurring faults in PVAs that cannot be
cleared by conventional protection schemes: the line-to-line
fault and open-circuit fault. The authors in Ref. [16] have con-
structed a three state Markov model to represent the state
transition relationship of no faults, intermittent faults, and
permanent faults for not only PVA, but for all PV components.

3) Selection of classifier input plays an important role to get a high
classifier performance for both detection and classification
phases. In Ref. [6] the authors have used two features:
Maximum Power Point (MPP), and open-circuit voltage (Voc),
and when they found it insufficient to discriminate between the
considered PV module faults, they add a new ones, namely
short-circuit current and filling factor. Five features have been
used in Ref. [7]: a reduction in the short circuit current (C1), A
reduction in the open circuit voltage (V1), a reduction or an in-
crease in the output current (C2), a reduction or an increase in
the output voltage (V2) and number of peaks in the current-
voltage characteristics. The contribution of the previous attri-
butes is analyzed and the most influencing are retained for each
type of fault. In Ref. [8] the employed features are: Multi-level
Decomposition (MLD) of the wavelet transform, and wavelet
coefficients energies are extracted from the grid current and the
grid voltage. In Ref. [9] the authors used as inputs classifier: the
equivalent thermal voltage (Vte), I-V curve flexing factor (IVf),
Maximum power point factor (MPPf), Equivalent series resis-
tance (Rse) and Fill factor (FF).

For more details, a comprehensive review on fault detection and
diagnosis (FDD) methods in photovoltaic systems is published
recently in Ref. [17], in which the authors addressed the major PV
system failures as well as advantages and limits of FDD methods in
terms of feasibility, complexity, cost-effectiveness and generaliza-
tion capability for large-scale integration.

In the above three categories, the methods have been used for
detection and classification of the PV string/array faults, which are
mainly based on I-V curves to extract features and run their algo-
rithms. There are many other methods based on visual inspection,
and infrared imaging, in which surface soiling, dust accumulation,
and hot spot phenomena in PV modules can be detected and
removed [18e20].

As reported in Refs. [6e10], fault detection and classification
algorithms in a PVA involve the discrimination of many classes at a
time. As a solution of this issue, a MC-NFC algorithm is developed,
which is mainly based on some strategies that can be adopted in
Ref. [21]. One-against-all and one-against-one strategies are the
most popular ones. The two strategies are the same in term of
classification accuracy. In this paper, the one-against-all strategy is
used, which is better than the other in terms of training time, and
also for the number of trained classifiers.

An outline of the main contributions of the paper is as follow:

� First, new features have been introduced into the classifier
input. Namely, I-V curve area and slopes at different points of
the I-V curve.

� Second, unlike in Refs. [6e9], where authors start by some
features, and in the case where they found it insufficient to
discriminate the total chosen faults, they add new ones. Others
like in Ref. [21] used some indicators, and when they found
them not meaningful they omit them and seek for new signifi-
cant parameters. This seems to be done visually by looking to
data and using some performance criteria, without using any
based-automatic methods for features selection. This paper
proposes an inverse method, starting by using many features,
and then reducing their number by using variable dimension-
ality reduction techniques. This alternative solution saves a lot of
time for classifiers development.

� Third, in the proposed method some patterns of faults are used,
but it can detect all possible real patterns for the concerned
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fault, unlike in Ref. [22], where they used some discrete real
situation and these patterns could not be exist in real conditions.

� Finally, a Multiclass Adaptive Neuro-Fuzzy Classifier (MC-NFC)
has been developed to discriminate between five different types
of faults in a PVA.

This study focuses mainly on two objectives. First, feature space
dimensionality reduction techniques. Subsequently, a MC-NFC has
been designed for detection and classification of five kinds of PVA
faults. The rest of the paper is organized as follows: the next section
presents the necessary steps in the process of MC-NFC develop-
ment. Experimental results and discussion are given in Section 3.

2. Multiclass neuro-fuzzy classifierdevelopment

For an efficient and organized manner, six basic steps are
necessary in the process of classifier development (See Fig. 1): 1)
implement the PVAmodel; 2) datasets collection covering themost
possible scenario for each fault, and the normal operation; 3) fea-
tures extraction; 4) threshold adjustment for faults detection; 5)
classifiers training and testing; 6) classifiers fusion for final
decision.

More details about the aforementioned steps will be given in the
following paragraphs.

2.1. PV array implementation and data collection

Data sets have been collected by using a real time emulator [23]
developed in power electronics and industrial control laboratory
(LEPCI) at S�etif-1- University, Algeria (See Fig. 2a and 2b). The
advantage of using a real time emulator is that we cannot create
faults in a real PVA and we cannot also change the operation con-
ditions. Therefore, in the emulator these constraints can be avoided,
and it allows also repeating the same results (I-V curves) and
introducing more testing conditions that are not feasible on real PV
modules (such as PV cell cracking) (see Fig. 4) (see Fig. 3).

Fig. 2a and b show the schematic representation and the
photograph of the used real time emulator, respectively. It consists
basically of two parts:

- A software part: Matlab/Simulink and ControlDesk.
- A hardware part: the DS1104 platformwhich is connected to the
PC via PCI slot, and to the APS-1102A programmable DC/AC
power source via PLC1104 module.

Current sensor is used to provide a feedback signal to the
implemented SPVAmodel. The control voltage in the external input
of the programmable power comes from the controller board. Duty
cycle changes regularly from 0 to 1 with a constant slope, then
controlling the I-V plotter switch. A resistive load of 5 (ohms)/8 (A)
is used.

The PVAmodel was developed under Matlab software, and then
implemented into a DSPACE 1104 control board. The PVA consists of
six PV modules connected in series and each module is a connec-
tion in series of 36 solar cells (the PV model used is a Bishop model
Fig. 1. Process of classifier building for fault detection and classification in a PVA.
[6,24]). The computation of its parameters is done by the method
described in Ref. [25]. The electrical characteristics of the used PV
module are given in Table 1.

As a real time emulator has been used, the data collection period
was accelerated by implementing a loop that changed the type of
the fault and its severity by considering all possible combinations of
solar irradiance and module temperature. The whole dataset was
collected within about 6 h divided into two days. In fact, the whole
dataset cannot be stored at ones, because of memory limitation in
our system.
2.2. Faults in PV array

For the following situations, the I-V curves have been measured
by changing solar irradiance and PV module temperature in order
to cover all possible real operating conditions, and then the fault is
introduced with different discrete values.

✓ PVAwithout fault (NF): the normal operation condition is in the
range of [100W/m2, 1000W/m2] for the solar irradiance, with
step of 100W/m2. Themodule temperature is arranged between
[0 �C, 60 �C], with step of 5 �C. The same conditions will be
applied in the following situations, but degrees of the fault
severity will be added.

✓ Partial shading fault (F1): Nine different partial shading patterns
have been considered. 25%, 50% and 75% of nine PV cell in one
PVmodule, 25%, 50% and 75% of nine PV cell in two PV modules.
Finally 25%, 50% and 75% of nine PV cell in three PV modules.

✓ Increased series resistance (F2): The Rs of one PV module is
increased by 1U, 5U, 10U, 15U and 20U.

✓ By-pass diode short-circuited (F3): One by-pass diode in the
whole PVA short-circuited.

✓ By-pass diode impedance (F4): By-pass diode is assimilated to
resistors with different values, 1U, 5U, 10U, 15U and 20U.

✓ PV module short-circuited (F5): The contribution of one PV
module in the energy of PVAwas eliminated by making it short-
circuit.

By changing the operation conditions (module temperature and
solar irradiance), and introducing faults in the plant (single faults),
we get more new I-V characteristics. These characteristics are
recorded in workspace of Matlab software. Then, we get two
matrices (one for the current, and the other one for the voltage).
Thus, the real time simulation is finished.

Five datasets are considered, each of them corresponds to one
type of fault, and the normal operation dataset (see Table 2). The
whole database was split into two equal sets. The first one contains
a training data for model construction, and the second one contains
a test data for the accuracy estimation of the classifier.

From the previous Table, it can be seen that 2730 I-V curves
(faulty PVA), and 130 I-V curves (healthy PVA) have been collected
and stored into two distinct matrices, the first one is the current
matrix (2860x200), and the second one is the voltage matrix
(2860x200). The number 200 comes from the number of points in
each I and V vectors.
2.3. Features construction

Feature construction is a process which makes a map from raw
data to the classifier input. The aim is to build more efficient fea-
tures for fault detection and classification task. Voltage and current
matrices collected from the PVA, and storage in Matlab workspace
for further processing are:



Fig. 2. a. Schematic of the photovoltaic emulator with an APS61102A Programmable Power Source. b. Photograph of the emulator used for data collection: 1) buck converters, 2)
load, 3) programmable power source, 4) scope, 5) ControlDesk, 6) ds1104 platform.

Fig. 3. Overview of the proposed method for real-time fault detection and classifica-
tion phase of unknown samples.

Fig. 4. Scheme used for precision and recall computation in the detection phase.

Table 1
PV module's electrical characteristics and temperature coefficients (JW-50P).

JW-50P PV module's electrical characteristics

Number of series cells 36
Open-circuit voltage (Voc) 21.9 V
Voltage at maximum power (Vmp) 17.4 V
Short-circuit current (Isc) 3.13 A
Current at maximum power (Imp) 2.87 A
Maximum power at. STC (Pmax) 50 Wp

Table 2
Datasets for normal and faulty cases of the investigated PVA.

# of Dataset Fault type # of samples

0 Normal operation (NF) 130
1 Shading (F1) 1170
2 Increased series resistance (F2) 650
3 By-pass diode short-circuited (F3) 130
4 By-pass diode impedance (F4) 650
5 PV module short-circuited (F5) 130
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V ¼
2
4 V11 / V1n

« 1 «
Vm1 / Vmn

3
5 (1)

I ¼
2
4 I11 / I1n

« 1 «
Im1 / Imn

3
5 (2)

Let us introduce some useful notations for the two matrices. For
the i-th I-V characteristic, such as i runs over 1 to m, there are n
points (in this study, n¼ 200 points) of index j for each character-
istic (these notations are common for both voltage and current
matrices).

From the raw data (I and Vmatrices) we extract features Sf (f¼ 1
… 12) for both healthy and faulty PVA using the following formulas:

a) Feature 1: I-V curve area (S1).

The area under the I-V curve is calculated by the integral:

S1 ¼
ZVoc

0

VðIÞdI (3)

Since the voltage and current vectors (for I-V characteristic)
have non-uniform spaced discrete values, one can use the following
approximation for numerical implementation of the area of the i-th
I-V curve:



A. Belaout et al. / Renewable Energy 127 (2018) 548e558552
S1 ¼
ZVoc

0

VðIÞdIz1
2

Xn
j¼1

�
Ijþ1 � Ij

��
f
�
Ijþ1

�þ f
�
Ij
��

(4)

This method is known as the trapezoidal rule.

b) Feature 2: short-circuit current (S2).

This feature can be obtained by the following simple formula:

S2 ¼ IjV¼0 ¼ Isc (5)

From Eq. (5) short-circuit current is the current provided by the
PV array where its voltage is equal to zero.

c) Feature 3: open-circuit voltage (S3).

The open-circuit voltage can be calculated as:

S3 ¼ V jI¼0 ¼ Voc (6)

From Eq. (6) open-circuit voltage is the voltage provided by the
PV array where its current is equal to zero.

d) Feature 4: maximum power point (S4).

The maximum power of the I-V curve is given as:

S4 ¼ maxðV � IÞ (7)

e) Feature 5: voltage at the maximum power point (S5). If the index
of the voltage V for the i-th I-V curve at the maximum power
point (MPP) is P, then:

S5 ¼ V jVip
(8)
f) Feature 6: current at the maximum power point (S6). Vip is
defined in Feature 5.

S6 ¼ IjVip
(9)
g) Feature 7: I-V curve slope at the vicinity of Voc (S7).

S7 ¼ dI
dV

����
Voc

(10)
h) Feature 8: I-V curve slope at the midpoint between MPP and
open-circuit voltage point (S8). We denote by md1 this first
midpoint, so:

S8 ¼ dI
dV

����
md1

(11)
i) Feature 9: I-V curve slope at the MPP (S9).

S9 ¼ dI
dV

����
ViP

(12)
j) Feature 10: IeV curve slope at short-circuit current Isc (S10)
S10 ¼ dI
dV

����
Isc

(13)
k) Feature 11: I-V curve slope at themidpoint between short-circuit
current point and MPP(S11). We denote by md2 the second
midpoint, so:

S11 ¼ dI
dV

����
md2

: (14)
l) Feature 12: filling factor (S12).

S12 ¼ ðS5 � S6Þ
S2 � S3

(15)

Features for faulty PVA have been compared to those of normal
PVA, and then the results are normalized. In fact, all features for
abnormal operation are compared to those for normal operation by
using the following formula to get normalized features:

feature ¼ featureðnormalÞ � featureðabnormalÞ
featureðnormalÞ (16)

The obtained values for all features are normalized by using Eq.
(16), and the final product is a matrix of dimension (2730x12). This
latter will be used in the next section for MC-NFC model
construction.

As described in Section 2.2, by changing solar irradiance and
module temperature in the way to sweep all possible combinations
of the operating conditions, we get 130 I-V curves (healthy case).
The same conditions have been applied for faulty condition, but
degrees of fault severity have been involved. For more clearness, we
take the case of Increased series resistance (F2): repeating 130
possible combination of couple (G, T) five times (the number of
Increased Series Resistance scenarios), the number of normalized
features using Eq (16) is 130� 5¼ 650 samples. Thus, the 130 I-V
curves for healthy case are used for generating samples by Eq. (16)
for all scenarios of different fault types, the raison why we get only
2730 samples at the end.

Once the classifier built, the unknown samples will be
normalized using the same Eq. (16). Where feature (normal) is
computed from the implemented model in ds1104 platform, and
feature (abnormal) is computed from the real PVA, according to the
following flowchart:

If unknown samples are presented to the NF classifier, the de-
cision at the classifier output will be “other fault”, indicating that
PVA is subject to another fault type that is not considered in this
study.
2.4. Threshold detection

To avoid false alarm and the problem of non-detection, a
threshold should be chosen for all features, by taking into account
measurement errors. For normal operation conditions, the features
vector should be inside the hyperbox determined by the following
threshold vector:

Sth ¼ ½Sth1; Sth2;…Sth12� (17)

Each of the Sth vector components corresponds to one feature
threshold.

Since the error of measurement is coming mainly from current
and voltage sensors, one can compute the error just for these
quantities. The remaining threshold components are derived from



Fig. 5. ANFIS architecture with two inputs, two membership function and one output.
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the current and voltage thresholds.
The IEC 61724-1998 standard [26] tolerates 1% for the current

and voltage measurements. The errors for computation of Sth2(Ith)
and Sth3(Vth) are the same as the tolerance previously mentioned.
Accordingly, Sth2 (Ith) and Sth3(Vth) are used for fault detection.

In the detection phase we focus only on the presence and the
absence of the fault in PVAwithout looking for the type of the fault.
In this section, a study of the detection accuracy in terms of pre-
cision and recall is conducted (this is a type of binary classification,
healthy or faulty PVA).

The following scheme is used to compute precision and recall
percentages:

Where Vh, Vf, Ih and Vf are the voltage and the current for the
healthy and faulty cases. As reported in Table 2 the number of in-
stances for normal operation is 130 I-V curves, and for the faulty
case, the number of instances is 2730 I-V curves. Using these data,
the precision and recall percentages are given in the following:

The above scheme for recognizing faulty case in dataset iden-
tifies 2703 faulty instances in a dataset containing 2730 faulty in-
stances. Of the 2703 faulty instances identified, 2680 actually are
faulty (true positives), while the rest are healthy (false positives).
Thus, the detection's precision is 99.15% (2680/2703) while its recall
is 98.17% (2680/2730).
2.5. Binary adaptive neuro-fuzzy classifier concept

Fuzzy systems have the ability to handle uncertain and impre-
cise information, but cannot update and fine tune their parameters
automatically. To overcome this drawback, some supervised
learning algorithms were applied in Ref. [27], based on training
data set. In this study, a well-known Sugeno Fuzzy Inference Sys-
tem (FIS) is used, where its consequent is a constant, this FIS is
known as “zero-order Sugeno type” [28].

Before model development, we present a simple architecture
that illustrates the procedure of the neuro-fuzzy. Assume we have
two inputs, short-circuit current (S2) and open-circuit voltage (S3),
and one output, increase series resistance. According to the zero-
order Sugeno type classifier and in the case where only two rules
exist, the output Rs is computed by the summation of the following
two functions ðf1 ; f2Þ:

� f1: is computed by the rule:

If S2 is A1 and S3 is B1; then f1 ¼ p11 � S2 þ p12 � S3 þ r1 (18)
� f2is computed by the rule:

If S2 is A2 and S3 is B2; then f2 ¼ p21 � S2 þ p22 � S3 þ r2 (19)

where pij and riði ¼ j ¼ 1; 2Þ, are the consequent parameters. Fig. 5
shows a typical ANFIS architecture of such model. Note that in this
architecture, squares represent adaptive nodes, whereas circles are
fixed nodes.

The word ‘adaptive’ is specific to the NF architecture itself. The
adaptive-networks-based fuzzy inference system is a fuzzy infer-
ence system implemented in the structure of adaptive network. The
output of an adaptive networks depends on the parameter (not
features) relevant to the adaptive nodes that is changed to mini-
mize a given error measure using supervised learning procedure
[28].

A brief description of the different layers is as follows:

a) Features layer
The output of the node i in this layer is calculated by eq.:

O1
i ¼ mA1ðS2Þfor i ¼ 1; 2 ; (20)

Or

O1
i ¼ mB�2ðS3Þfor i ¼ 1; 2 ; (21)

where, S2 and S3 are the crisp features feeding the input of the node
i.Ai and Bi are linguistic terms associated with their appropriate
membership functions. Membership function for linguistic terms
can be any suitable parameterized membership function. Trape-
zoidal membership function is one of the membership functions
that will be used in this study.

mAi
¼

8>>>>>>>>>>>><
>>>>>>>>>>>>:

0; S2 � ai
S2 � ai
bi � ai

; ai � S2 � bi

1; bi � S2 � ci
di � S2
di � ci

; ci � S2 � di

0; di � S2

(22)

mBi
¼

8>>>>>>>>>>>><
>>>>>>>>>>>>:

0; S3 � ai
S3 � ai
bi � ai

; ai � S3 � bi

1; bi � S3 � ci
di � S3
di � ci

; ci � S3 � di

0; di � S3

(23)

where ai, bi, ci and di are the parameters to be changed by the
training algorithm to deal with training data set. Hence, the trap-
ezoidal function varies consequently.

b) Rules layer

The nodes in this layer provide what is known by firing
strengthO2

i , and it is the product of all outputs coming from layer
one. It can be seen that no parameter to be adjusted, so it is a fixed
node.

O2
i ¼ wi ¼ mAi

ðS2ÞmBðS3Þ; i ¼ 1; 2 (24)

c) Normalization layer
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The node i of this layer takes the ratio of the ith rule's firing
strength to the sum of all rule's firing strengths. For that reason,
outputs of this layer are called normalized firing strength.

O3
i ¼ wi ¼

wiX
i

wi
; i ¼ 1; 2

(25)

d) Consequent layer

The output of the node i of this layer is computed by the
following node function:

O4
i ¼ wifi i ¼ 1; 2 (26)

where, wi is a normalized firing strength from the previous layer,
and the formula that computes fiis given in Eqs. (17) and (18).

e) Output layer

The single fixed node in this layer computes the overall output
by summing all coming signals from the previous layer. Conse-
quently, the process of Defuzzification is achieved by getting a crisp
overall output.

O5
i ¼ ISR ¼

X
i

wifi ¼

X
i

wifi
X
i

wi
; i ¼ 1; 2 (27)

We note that, the above described ANFIS classifier is just an
example. In the following we will use more inputs. More rules will
be also generated using learning algorithms. For more explanations
on the ANFIS architecture the reader can refer to [28].

2.6. Extension to multiclass classification problem

For a multiclass problem, instead of using one binary classifier
we can use a group of them [29]. We can then take their decision
and compare it by using “winner-takes-all” rule. The diagram block
of the MC-NFC concept is illustrated in Fig. 6.

Each classifier feed this rule by a crisp class label which is
assigned to S. The final class label of S is the one that have the
biggest crisp value at the outputs of the classifiers pool. If the de-
cision at the output of the classifier i, is di, then the label L at the
output of the above mentioned rule is given by:

L ¼ maxðdiÞ (28)
Fig. 6. Diagram block of the MC-NFC concept.
2.7. Classifier performance evaluation criterions

Any constructed classifier should be evaluated at the end of its
design, and this allows us to compare it to other type of classifier.
Classifier performance will be evaluated by using some statistical
criterions: sum squared error, correlation coefficient, mean percent
relative error, root mean squared error and standard deviation (See
Appendix).

3. Experimental results

The importance of feature dimensionality reduction techniques
and the advantage of MC-NFC over traditional ones will be shown.
First, in the experiment 1, the proposed method for feature
dimensionality reduction has been applied to five classifiers: Partial
shading fault classifier (F1 classifier), increased series resistance
classifier (F2 classifier), By-pass diode short-circuited classifier (F3
classifier), By-pass diode impedance classifier (F4 classifier), and PV
module short-circuited classifier (F5 classifier). Then, in the exper-
iment 2, the proposedMC-NFC trained and tested with the reduced
entire original feature space, which is defined by a vector of 12
features. Finally, in the experiment 3 the MC-NFC will be compared
to an ANN classifier.

3.1. Experiment 1: feature selection for each neuro-fuzzy classifier

First, constructed features have been created without prior in-
formation on their effect on the classifier that will be designed.
However, what it is known certainly, is that the constructed fea-
tures will not have the same effect on the classifier decision
(output), some of them have the same effect, and some others have
no effect on the classifier output at all. These reasons conduct us to
reduce the feature space dimensionality. This leads, to avoid
redundant information, in the case where some collinear features
exist, and also eliminating features that have no effect on output of
the decision function.

A standard way to pick a best set of features is via feature space
dimensionality reduction techniques. A Matlab program (see Fig. 7)
has been developed in order to reduce the classifier input dimen-
sionality. Let us consider n the total number of features, and k the
number of selected features, and then the number of trained clas-
sifier is given by the following formula (known as combination
without repetition):

P ¼
�n
k

�
¼ n!

k!ðn� kÞ! (29)

The following flowchart explains the algorithm used for inputs
Fig. 7. Overview of the proposed method used for inputs (features) classifier reduction.



Table 3b
Features (inputs) selection for F2 classifier.
- F3 classifier features reduction

n 12 12 12 12

k 1 2 3 4

RMSE (Training) 0.7600 0.6298 0.5758 0.5500
RMSE (Testing) 0.7572 0.6319 0.5539 0.5200
Best combination of features S3 S4 S12 S4 S11 S12 S2 S8 S11 S12

Table 3c
Features (inputs) selection for F3 classifier.
- F4 classifier features reduction

n 12 12 12 12

k 1 2 3 4

RMSE (Training) 0.1073 0.0626 0.0356 0.0231
RMSE (Testing) 0.0428 0.0352 0.0331 0.0400
Best combination of features S3 S3 S4 S1 S3 S12 S1 S3 S8 S12

Table 3d
Features (inputs) selection for F4 classifier.
- F5 classifier features reduction

n 12 12 12 12

k 1 2 3 4

RMSE (Training) 0.7290 0.5940 0.5521 0.5250
RMSE (Testing) 0.7252 0.5662 0.5301 0.5100
Best combination of features S4 S1 S4 S1 S4 S8 S1 S2 S4 S11

Table 3e
Features (inputs) selection for F5classifier.

n 12 12 12 12

k 1 2 3 4

RMSE (Training) 0.3428 0.0027 0.0012 0.0005
RMSE (Testing) 0.3420 0.0014 0.0011 0.0004
Best combination of features S1 S3 S4 S1 S3 S4 S1 S3 S4 S12

Bold number indicate the optimal values of RMSE and the best selected
combination.
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(features) classifier reduction.
As indicated in Fig. 7, the algorithm chooses automatically a

subset of a 12 features (described in Section 2.3) and train and test
the classifier using these latter. Then, the built model will be stored
with its performance for further usage. The procedure is repeated
until all features combinations are used. At the end, all classifier
performances will be compared, and the features will be retained
for a given fault type detection and classification.

An ANFIS classifier was built for each combination, and in order
to reduce the computation time, the classifier was trained for only
one epoch. After that, obtained classifiers must be classified ac-
cording to their RMSE, and the most relevant combination pre-
dicting the output is retained.

As we have five classifiers, the best combination of features is
selected for each one of them. In the following, n is always equal to
12 (the total number of features), and k varies from 1 to 12 (the
number of features selected for each combination).

- F1 classifier features reduction

Table 3a demonstrates the result of selecting classifier inputs
from one to four, and the best combination of features has been
hold. It can be seen clearly that the minimal training (and checking)
error are reduced by increasing the number of the selected features.
Therefore we will stick to the four-feature classifier for further
investigation.

Concerning F2classifier (See Table 3b) increasing the number of
features from 3 to 4 does not minimize significantly the training
(checking error), which indicates clearly that the newly added
feature does not improve the classification accuracy much. For
better generalization, we always prefer a model with fewer inputs.
Therefore we will stick to the three-feature classifier for further
investigation.

For the same raisons as in F2 classifier, only two features have
been selected for F3 classifier (See Table 3c).

For the same raisons as in F2 classifier, only two features are
selected for F4 classifier (See Table 3d).

For the same raisons as in F2 classifier, only two features are
selected for F5 classifier (See Table 3e).

The results from the above Tables (3ae3e)indicate that the
combinations (S1, S3, S6, S12), (S4, S11, S12),(S3, S4), (S1, S4) and (S3, S4)
are the most influential features with respect to the decision
function output the F1classifier, F2 classifier, F3 classifier, F4 classifier
and F5 classifier, respectively. Consequently, the whole space
dimensionality has been reduced from 12 features to only 5 fea-
tures, namelyS1, S2, S3, S4, S11 and S12.

Fig. 8 shows the detection and classification algorithm basic
tasks. First, I-V curve is preprocessed for noise elimination. Second,
features extracted from I-V curve by Eqs. (1)e(15) have been
normalized by using Eq. (16). Then, switch is positioned on
normalized features only if thresholds Sth2 and Sth3 are reached,
otherwise classifiers will be fed by a zero values for all its inputs
components (which means that no fault occurring in the PVA).

Finally classifier output decisions have been compared to decide
Table 3a
Features (inputs) selection for F1 classifier.
- F2 classifier features reduction

n 12 12 12 12

k 1 2 3 4

RMSE for training 0.6277 0.4183 0.2342 0.1660
RMSE for testing 0.6041 0.4271 0.2046 0.1740
Best combination of features S3 S3 S11 S4 S8 S12 S1 S3 S6 S12
which one is the biggest for final decision.

3.2. Experiment 2: MC-NFC building with reduced feature space

In this experiment, the MC-NFC will be trained and tested with
the reduced entire original feature space, which is defined by a
vector of 12 features. During the training phase, the ANFIS pa-
rameters have been tuned by a hybrid learning algorithm, which
consists of a combination of the least-squares method and the
back-propagation gradient descent method, and one versus all
strategy was applied for all classifiers. The MC-NFC is based on
considering the data of the fault to be discriminated as one set, and
the remaining data of other faults are forming the other set.
Accordingly the problem of multiclass is reduced to a binary clas-
sification problem.

An efficient methodology has been adopted to find the best
ANFIS model based on the idea of decreasing RMSE and increasing
the accuracy of the designed architecture. The main parts of the
MC-NFC that will be designed consists on the type of membership
functions (Gaussian, triangular, pi-shaped curve, generalized bell-
shaped, trapezoidal and differential of two sigmoidal), the num-
ber of MFs, outputMFs types (constant, linear), the learning process
that changes the parameters associated with the MFs and the



Fig. 8. Thestructure of the fault detection and classification algorithm based on clas-
sifiers decision outputs fusion.
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number of epochs to avoid the problem of over fitting.
A grid partitioning method has been applied to generate a rule

base relationship between the input and the output of the classifier.
The classifier output is a linear combination of its inputs (Sugeno
fuzzy inference system).
Table 4a
Errors of F1 classifier membership functions types during the optimization process.

MF-MFN Membership function type description

Gaussmf-2 Gaussian curve
Trimf-2 Triangular curve
Pimf-2 Pi-shaped curve
Gbellmf-2 Generalized bell-shaped curve
Trapmf-2 Trapezoidal curve
Dsigmf-2 difference of two sigmoidal membership functions

Bold number indicate the optimal values of RMSE and the best selected combination.

Table 4b
Errors of F2 classifier membership functions types during the optimization process.

MF-MFN Membership function type description

Gaussmf-2 Gaussian curve
Trimf-2 Triangular curve
Pimf-2 Pi-shaped curve
Gbellmf-2 Generalized bell-shaped curve
Trapmf-2 Trapezoidal curve
Dsigmf-2 difference of two sigmoidal membership functions

Table 4c
Errors of F3 classifier membership functions types during the optimization process.

MF-MFN Membership function type description

Gaussmf-2 Gaussian curve
Trimf-2 Triangular curve
Pimf-2 Pi-shaped curve
Gbellmf-2 Generalized bell-shaped curve
Trapmf-2 Trapezoidal curve
Dsigmf-2 difference of two sigmoidal membership functions
During the optimization process different built-in membership
functions (MFs) types has been involved to choose the most
appropriate one for MC-NFC model development. Tables 4aee
demonstrate the errors of MFs during the optimization process.
Moreover, the number of MF for each feature has been chosen ac-
cording to the classifier output performance (See Table 5).

With reference to the above Tables 4 (aee), it can be summa-
rized that the best membership functions for each classifier is as
follows:

About F1 classifier the best membership function is the differ-
ential of two sigmoidal membership function (dsigmf). For F2
classifier the best membership function is also the differential of
two sigmoidal membership function (dsigmf). Concerning F3 clas-
sifier the best membership function is the trapezoidal membership
function (trapmf). The best membership function is the generalized
bell-shaped membership function (gbellmf) if the case of F4 clas-
sifier. About the F5 classifier the best membership function is the pi-
shaped membership function (pimf).

With respect to Table 5, it can be reported that the best number
of membership function for each classifier is as follows:

F1 classifier: the number of differential of two sigmoidal mem-
bership functions is two.
F2 classifier: the number of differential of two sigmoidal mem-
bership functions is four.
F3 classifier: the number of trapezoidal membership functions is
two.
F4 classifier: the number of generalized bell-shaped member-
ship function is three.

And finally, F5classifierthe number of pi-shaped membership
function is two.
MPRE RMSE R2

�2.5478 0.16617 0.9724
�4.6026 0.18866 0.9644
2.0421 0.16169 0.9738
�1.0257 0.17528 0.9693
2.3275 0.15921 0.9746
1.0529 0.15022 0.9774

MPRE RMSE R2

�5.1359 0.5406 0.7077
�8.4089 0.6119 0.6255
�3.0729 0.5480 0.6997
�4.2902 0.5387 0.7098
�1.3245 0.5453 0.7027
�3.2864 0.5378 0.7107

MPRE RMSE R2

�0.2958 0.0093 0.9999
�0.1207 0.0073 0.9999
0.0157 0.0020 0.9999
�0.5259 0.0112 0.9999
0.0054 0.0018 0.9999
�0.1370 0.0031 0.9999



Table 4d
Errors of F4 classifier membership functions types during the optimization process.

MF-MFN Membership function type description MPRE RMSE R2

Gaussmf-2 Gaussian curve �0.6987 0.5272 0.7221
Trimf-2 Triangular curve �4.6295 0.7077 0.4992
Pimf-2 Pi-shaped curve �1.5422 0.5308 0.7183
Gbellmf-2 Generalized bell-shaped curve �2.4022 0.5256 0.7237
Trapmf-2 Trapezoidal curve �1.4081 0.5339 0.7150
Dsigmf-2 difference of two sigmoidal membership functions �0.7887 0.5278 �0.7887

Bold number indicate the optimal values of RMSE and the best selected combination.

Table 4e
Errors of F5 classifier membership functions types during the optimization process.

MF-MFN Membership function type description MPRE RMSE R2

Gaussmf-2 Gaussian curve 0.0021 0.00016 0.9999
Trimf-2 Triangular curve �0.3748 0.00670 0.9999
Pimf-2 Pi-shaped curve �0.0019 0.00009 0.9999
Gbellmf-2 Generalized bell-shaped curve �0.0059 0.00018 0.9999
Trapmf-2 Trapezoidal curve �0.0001 0.00003 0.9999
Dsigmf-2 difference of two sigmoidal membership functions �0.0024 0.00010 0.9999

Table 5
Errors of classifiers membership functions number during the optimization process.

F1-dsigmf F2-dsigmf F3-trapmf F4-gbellmf F5-pimf

RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2

2MFs 0.235 0.945 0.737 0.456 0.000 1.000 0.526 0.724 0.000 1.000
3MFs 0.248 0.938 0.626 0.607 0.000 1.000 0.514 0.736 0.000 1.000
4MFs 0.244 0.940 0.592 0.648 0.000 1.000 0.515 0.734 0.000 1.000
5MFs 0.30 0.91 0.61 0.63 0.00 1.00 0.52 0.73 0.00 1.00

Bold number indicate the optimal values of RMSE and the best selected combination.

Table 6
Comparison between MC-NFC and ANN-classifier.

F1 F2 F3 F4 F5

MC-NFC ANN MC-NFC ANN MC-NFC ANN MC-NFC ANN MC-NFC ANN

RMSE 0.23 0.55 0.59 0.65 0.00 0.31 0.51 0.58 0.00 0.00
R2 0.95 0.56 0.65 0.66 1.00 0.91 0.74 0.66 1.00 1.00
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3.3. Experiment 3: classification with artificial neural network
(ANN) classifier

For comparisons purpose, the designed MC-NFC has been
compared to ANN classifier (See Table 6). This later is a multilayer
feed-forward perceptron (MLP) with one hidden layer. The well-
known Levenberg-Marquardt (LM) back-propagation algorithm
has been employed.

This experiment shows clearly the superiority of the MC-NFC
over traditional ANN-classifier with respect to the reduced
feature space dimensionality. Moreover, the proposed MC-NFC can
be used to further improve these important results.
4. Conclusions

In this paper, a MC-NFC has been developed for fault detection
and classification in photovoltaic arrays. From the conducted ex-
periments, it can be strongly recommended the use of the space
dimensionality reduction techniques for classification of PVA faults,
due to its capability to speed up the process of classifiers building.
This provides to the classifiers a clean manner to select their inputs,
high classification accuracy and lower features (inputs) space
dimensionality.

The proposed MC-NFC can discriminate between five types of
fault occurring in a PVA. Furthermore, the developed algorithm is
implemented in a DS1104 platform to show its ability to detect and
classify PV array faults in real time applications. Firstly, the original
space features was reduced according to their effect of the classifier
output. Subsequently, classifiers have been built based on the best
combination of the original feature space for each case. Finally, the
constructed MC-NFC has been compared to an ANN classifier, and
the results show the importance of using the MC-NFC over the
traditional one.

Further exploration endeavors the use of other combination of
faults, using also other type of classifiers to get more discrimination
capacity.
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Appendix

- Sum squared error ðSSEÞ, that is given by the following
expression:

SSE ¼
Xn
i¼1

ðmi � piÞ2
- Correlation coefficients ðR2Þ, that is given by the following
expression:

R2 ¼ 1� SSE
Pn
i¼1

p2i
- Mean percent relative error ðMPREÞ, that is given by the
following expression:

MPRE ¼ 100%
n

Xn
i¼1

mi� pi
pi
- Root mean squared error ðRMSEÞ, that is given by the following
expression:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

ðmi � piÞ2

n

vuuut
- Standard deviation ðSTDÞ, that is given by the following
expression:

STD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

ðmi � piÞ2

n� 1

vuuut

where mi is the actual value, pi is the predicted output of the
classifier, and n is the number of the input data.
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