
 

Microelectronics Reliability 69 (2017) 115–125

Contents lists available at ScienceDirect

Microelectronics Reliability

j ourna l homepage: www.e lsev ie r .com/ locate /microre l
Emulation-based fault analysis on RFID tags for robustness and
security evaluation
Ibrahim Mezzah a,b,⁎, Hamimi Chemali b, Omar Kermia a

a Centre de Développement des Technologies Avancées (CDTA), Algiers, Algeria
b Department of Electronics, University of Setif, Setif, Algeria
⁎ Corresponding author at: Centre de Développeme
(CDTA), Algiers, Algeria.

E-mail addresses: imezzah@cdta.dz (I. Mezzah), okerm

http://dx.doi.org/10.1016/j.microrel.2016.12.008
0026-2714/© 2016 Elsevier Ltd. All rights reserved.
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 10 August 2016
Received in revised form 15 December 2016
Accepted 16 December 2016
Available online 20 December 2016
This paper presents an FPGA (field-programmable gate array) based fault emulation system for analysis of fault
impact on security and robustness of RFID (radio frequency identification) tags. This emulation system that deals
with any RFID protocol consists of two tag-reader pairs, a fault injection module and an emulation controller all
implemented in a single FPGA. The designed approach performs single event upset (SEU) and single event tran-
sient (SET) fault injection and permits with high flexibility to set communication scenarios and related parame-
ters. Moreover, we propose a classification of produced errors to evaluate fault impacts and identify most
sensitive tag flip-flops causing large number of failures and security concerns. The proposed fault injection ap-
proach provides suitable means to increase tags' security and robustness. In our experimentation campaign, an
ultra-high frequency (UHF) tag architecture has been exposed to intensive SEU and SET fault injections. The du-
ration of the campaign including results analysis is 30 min in where 6,215,316 faults are experimented. Our re-
sults have shown that the tag has tolerated 61.82% of SEUs and 67.83% of SETs. The flip-flops that constitute
the tag FSM (finite state machine) have been identified as the most sensitive parts causing large number of
failures.

© 2016 Elsevier Ltd. All rights reserved.
Keywords:
RFID tag
Fault injection
SEU emulation
FPGA platform
Robustness
1. Introduction

Advances in radio frequency identification (RFID) technology have
covered a large variety of modern applications fields and recently
extra interests are focused on national security and the internet of
things. However, deployment of this technology is facing many chal-
lenges concerning authentication, security and reliability. Generally,
an RFID system consists of readers and tags communicating through
radio waves. The tag (transponder) consists of a small chip and an an-
tenna; the reader (interrogator) has the charge of monitoring tag data.
Since tags are electronic components, so they are vulnerable to external
disturbance and susceptible to fault attacks [1]. Thus, the evaluation of
tag fault tolerance and its security assessments are compulsory. Fault
analysis provides evaluation tools of tag robustness and identifies highly
vulnerable tag parts.

Single event upset (SEU) and single event transient (SET) represent
potential faults occurring in electronic devices resulting fromheavy par-
ticle effect. SEU fault is a change in state of a storage element, while SET
occurs in combinational cells as a transient output pulse. More interest
in these types of faults is solely resulting from semiconductor technolo-
gy progress, involving smaller transistors and reduced power supply.
nt des Technologies Avancées

ia@cdta.dz (O. Kermia).
Currently, estimating SEU and SET sensitivity is a crucial task in safety-
critical circuit design [2].

The purpose of this work is to carry out an SEU and SET effect anal-
ysis on RFID tags for evaluating robustness, identifying errors having
an impact on tag security and revealing tag weak parts. Indeed, more
latitude of changes with less compromising is possible in earlier design
steps. Security improvement should result through enhancements and
perfection of the tag design or via appropriate countermeasure actions
on targeted weak parts.

Fault injection techniques arewidely used to carry out fault sensitiv-
ity analysis for integrated circuits. Simulation-based fault injection ap-
proach is then frequently used to estimate the circuit sensitivity at
design level [3,4]. This technique provides high flexibility since it sup-
ports several faultmodels and configurable fault campaigns but requires
a massive computational effort. However, emulation-based fault injec-
tion is still considered as unavoidable alternativemeans for accelerating
fault injection experiments. This technique uses field-programmable
gate array (FPGA) devices to emulate the circuit under test behaviour
[5–7]. In RFID, when considering a communication between a reader
and tags during an inventory round, infinity of communication scenari-
os, from the point of view of commands and responses progress, is pos-
sible. In fact, for any given scenario, several parameters can be
supported including reader-tag calibration (RTcal), tag-reader calibra-
tion (TRcal) and communication encoding type from tags to the reader
(FM0 or Miller encoding). Thus, emulation-based fault injection
provides valuable means for performing extensive fault injection

http://crossmark.crossref.org/dialog/?doi=10.1016/j.microrel.2016.12.008&domain=pdf
http://dx.doi.org/10.1016/j.microrel.2016.12.008
mailto:okermia@cdta.dz
http://dx.doi.org/10.1016/j.microrel.2016.12.008
http://www.sciencedirect.com/science/journal/
www.elsevier.com/locate/microrel


Fig. 1. Developed RFID fault emulation platform.

116 I. Mezzah et al. / Microelectronics Reliability 69 (2017) 115–125
 

experimentations covering multiple scenarios implying several sets of
parameters.

In this paper, we have developed a new FPGA-based fault emulation
platform for RFID systems. This platform is used to perform SEU and SET
analysis on an ultra-high frequency (UHF) RFID tag compatible with
electronic product code class-1 generation-2 (EPC Gen2) standard [8].
However, this approach is also applicable to other RFID protocols. It
should be noticed that the purpose of emulation-based fault injection
is for evaluating the SEU sensitivity of an ASIC (application-specific inte-
grated circuit) design, not an FPGA design. SEU effects appear in the
memory elements of circuits, which are the same in the ASIC and in
the FPGA prototype [7,9]. As far as SET experimentations are concerned,
we considered SETs that affect tag flip-flops outputs and preserve valu-
able results for ASIC design. In addition,we considered that applied SETs
have sufficient duration that affects the circuit without taking into ac-
count complicated aspects accompanying SET fault as detailed and
discussed in several works [10,11].

The paper is organised as follows. Section 2 reviews RFID tag fault
analysis and fault injection practice related works. Then, the developed
fault emulation system is presented and detailed in Section 3. Section 4
presents the adopted fault emulation process. Fault experimentation
and obtained results are discussed in Section 5 and Section 6 respective-
ly. Finally, Section 7 states the conclusions of this work.

2. Related work

Fault analysis on electronic systems has always been considered as
an important domain as proved by a tremendous collection of refer-
ences and discussions on this subject during decades following elec-
tronic technology progress. However, only a limited number of works
have covered RFID systems. Most of these works have focused on the
practice of side-channel attacks on RFID tags via several means relying
on electromagnetic interferences and optical inductions [1,12–14],
while others have practised contact based fault injection techniques
[15,1]. Bothmethods have demonstrated that fault attacks can effective-
ly break cryptographic functions embedded into RFID tags as well as
yielding to other errors on tags. These approaches generally evaluate se-
curity of manufactured tags against fault attacks but do not discern or
identify weak elements on considered tags architectures neither lead
to tag architecture improvement. It is important to evaluate tags at de-
sign level in order to get and guarantee safe designs before manufactur-
ing steps as it is considered in this paper.

A fault-tolerance evaluation method is presented in [16] where au-
thors have used an FPGA to implement a tagwith a fault injectionmech-
anism in addition to an analogue front-end and an external reader.
Identical methods are used in [17,18] for fault injection on RFID tags.
However, these approaches do not process thoroughly analysis and de-
liver weak information about injected fault effects. Another work pre-
sented in [19] also proposes an FPGA platform (DemoTag) to test tag
digital hardware designs and analyse the impact of fault attacks on
RFID but without revealing any method for accomplishing it. In our ap-
proach, we have used an FPGA to implement the tag under study and
we have built a corresponding reader in the same FPGA to get a com-
plete RFID system; thus ready for effectivemanagement andmonitoring
of predefined communication scenarios. Consequently, the behaviour of
the RFID system is under control and more trackable.

3. A configurable RFID fault emulation

The fault analysis process consists in checking the response of a cir-
cuit in the presence of faults, by comparing the behaviour of both the
fault-free and the faulty circuit. Fig. 1 shows the developed FPGA-
based fault emulation system. Faults are injected into the experimented
tag circuit to check their effects while this tag is in operation. The other
tag circuit is kept fault-free to provide comparison means as recom-
mended in testing techniques. The integrated reader in the system has
the role of communicatingwith the tag. Thus, study real RFID communi-
cation is ready with high flexibility of editing scenarios and avoiding
generation of stimulus. Reader as a block unit also provides a valuable
communication error handling (e.g. errors in the frame encoding and
errors to tolerate).

In order to carry out comparison and track injected fault effects, two
identical reader circuits are added to form two reader-tag pairs: faulty
pair and fault-free pair (Fig. 1). This autonomous communicating tag-
reader structure presents appropriate comparison conditions and thus
allows full control and monitoring of all RFID operations. The adopted
solution excludes the radio frequency (RF) communication through
implementing both readers and tags in a single FPGA. That greatly sim-
plifies the emulation process upon keeping valid analysis outcomes
since the tag behaviour is willingly maintained unaffected. Notice that
getting the same test conditions with external readers is an extremely
complicated task since it will require isolation between both RF pairs
and sever synchronisation.

As illustrated in Fig. 1, the system also contains additional blocks: a
fault injection module, an emulation control unit and specific monitoring
circuits. The latter monitor both reader-tag pairs and any occurred com-
munication in order to achieve a comparison. In addition, monitoring
circuits are in charge of delivering information about injected faults
and their effects on the faulty tag. The resulting global system is
configurable, autonomous and thus able to perform complete SEU or
SET fault emulation campaignwithout any external interaction require-
ment. The emulation process can be speed-up through selecting maxi-
mum FPGA frequency. The platform works in interaction with a host
computer for loading emulation parameters, acquiring and analysing
produced emulation results.

The proposed approach offers the possibility to study any tag archi-
tecture compliant with any RFID protocol. For studying a given tag ar-
chitecture, we should use a corresponding reader circuit with its
conforming protocol. In our experimentations on EPC Gen2 protocol,
the reader is built around a configurable microcontroller IP-core
(more details can be found in Section 3.2). For completing hardware
reader part, other required blocks, developed in VHDL, are added to
the microcontroller. A simple C program code describing the reader
functionalities and supposed scenarios is created, then compiled and in-
corporated into the readers' program memory. Therefore, generating
other protocols than EPC Gen2 is possible using the same reader config-
uration. This only involves producing the targeted protocol compliant
hardware blocks and the suitable C program. Notice that the fault injec-
tion module and the emulation control unit are developed in generic
format and remain suitable for any protocol.

As far as implementation in FPGA is concerned, we have used Xilinx
ISE 14.7 tool to generate our emulation system. The fault injection cam-
paign starts after building the system in the FPGA and loading through
the host computers all the emulation parameters (see details in



 

Fig. 2. Experimented RFID tag block diagram.

Fig. 4. Experimented tag state diagram.

117I. Mezzah et al. / Microelectronics Reliability 69 (2017) 115–125
Section 3.4). A campaign involves several emulation cycles. In every
cycle, there is a fault injection, a fault classification and error analysis.
The detail of this process is given in Sections 4 and 5. More details on
fault emulation platform components are given in the next sections.

3.1. Experimented tag

In this work, a finite state machine (FSM) based tag architecture
conforming to EPC Gen2 protocol (approved as ISO 18000-6C) is
experimented. Fig. 2 illustrates the architecture with its four main
parts organisation: (1) the reception side, (2) the tag state machine
(Tag FSM), (3) peripherals, and (4) the transmission side. In addition
to the input and the output serial pins (Fig. 2), the tag uses a clock of
2.56 MHz.

Accordingly to EPC Gen2 protocol specifications [8], reader-to-tag
communication (R≥ T) carries out through PIE encoding (pulse-interval
encoding), while tag-to-reader communication relies on FM0 (bi-phase
space) encoding or Miller encoding according to reader recommenda-
tions. The reader first interrogates the tag (or tags) by sending support-
ed commands, and then the tag reacts by backscattering responses.
Mandatory commands that tags should integrate are: Select, Query,
QueryAdjust, QueryRep, ACK, NAK, Req_RN, Read, Write, Kill and Lock.
The used tag integrates all these commands in addition to the optional
Access command that is devoted to access to the secured state of the
tag by sending a password (access password).

All compliant EPC Gen2 protocol tags integrate the seven following
states: Ready, Arbitrate, Reply, Acknowledged, Open, Secured and Killed.
When powered, the not killed tag enters on Ready state, a reader can
then access to this tag by sending a series of select, inventory and ac-
knowledge commands. Fig. 3 illustrates an example of accessing to a
tag and reading the corresponding EPC (electronic product code). For
our experimented tag, the whole EPC Gen2 tag functionality including
all the tag previously defined states is solely implemented in hardware
using VHDL (Very high-speed integrated circuits Hardware Description
Language).

The Tag FSM module processes any received command and consti-
tutes the main module which controls the entirely tag functioning.
The FSM is organised as a sevenmain states accordingly to the standard
[8]. Fig. 4 shows these states and all possible transitions. Since the tag's
functionality relies upon the protocol specification and data, the dia-
gram is fully traversed by the protocol. For each FSMmain state, several
Fig. 3. Reader-tag communication example.
sub-states are defined to describe any targeted tag functioning. Notice
that different sub-states number for each main state and a total of 90
sub-states is derived.

According to the above tag FSM description, it is evident that FSM
encoding plays an important role in the robustness and the whole tag
reliability since this FSM structure monitors complete tag functionality.
For analysing the FSM encoding impacts on the tag, the FSMmain states
and sub-states are coded with 3 and 5 bits respectively, in concordance
to the minimum allowed number of bits.

The implementation of this architecture including the tag memory
occupies 1059 slices on Virtex5 (XC5VLX50T), which represents 3.67%
of the FPGAs area. This small-devoted area motivates building complete
RFID environment integrating several tags.

3.2. RFID reader

The developed platform uses a VHDL RFID circuit reader based on a
configurable microcontroller IP-core [20,21]. Multiple reader functions
including frames encoding anddecoding are then implemented in hard-
ware, thus simplifies processing any mandatory, optional or custom
command through only few software instructions. The reader software
is developed using C language, it is structured on several functions
allowing generation, reception, and processing of frames according to
the protocol. For every fault injection analysis, a suitable communica-
tion scenario instructs the reader. During this fault emulation process,
the reader delivers information about the communication scenario
progress and supplies information about any detected error during the
communication. This information is collected through the reader output
port.

3.3. Fault injection module

Current fault injection techniques aremanifold and hence use differ-
ent resources with a variety of costs. However, fault injection at behav-
ioural-level models is known as a low-cost technique [22,23]. Basing on
this technique, a configurable and generic fault injection mechanism is
designed and built to process SEU and SET faults emulation. This mech-
anism relies on a designed configurable fault injection slice (CFIS)which
is configurable to inject SEU and SET fault. The use of this slice is illus-
trated in Fig. 5. Several slices may be inserted to support the targeted
vector signals for fault injection (Data_in). Every bit of this vector is
linked to one CFIS that delivers the corresponding faulty data
(Data_out); a mask is then used to select corresponding bits for fault
injection.

The CFIS comprises two flip-flops (FFs) and some combinational
logic as shown in Fig. 6.When enabling fault injection, data bit inversion
occurs. The FF1, used as the main circuit to enable fault injection for at
least one period of the injection clock (inj_clock), is set to ‘1’ when the
input signal inj_enable is activated. Its function is essential since it iso-
lates the combinational logic delivering inj_enable signal. Notice that
for each injection enabling, the fault is injected on the next cycle of
the clock. In SET mode (SE_mode = ‘0’), FF1 enables the fault injection
during one cycle of the clock for each activation of the signal inj_enable,



 

Fig. 5. Fault injection logic structure.

Fig. 6. Composition of the configurable fault injection slice (CFIS).

118 I. Mezzah et al. / Microelectronics Reliability 69 (2017) 115–125
whereas in SEUmode, for each activation of inj_enable signal, FF1 allows
fault injection until the next Data_clock edge or Data_reset, hence pro-
vides the emulating SEU effect.

The FF2 concerns only the SEUmode and generates a reset signal for
FF1 by disabling the encountered fault injection. This action takes place
in the presence of one of the two following cases: (1)when aData_clock
edge arrives or (2) when Data_reset signal activation occurs. When
using CFIS to accomplish SEU fault injection in FFswith clock enable sig-
nal, one might add it to FF2 or use it in clock gating. It appears clear for
the SET mode case that the FF2 remains disabled. Fig. 7 shows how to
use CFIS in the two modes: in the SEU mode, it is necessary to provide
Fig. 7. CFIS use: (a) SEU m
Data_reset and Data_clock with corresponding FF data (Fig. 7a), while
in SET mode only fixing SE_mode at ‘0’ logic is needed (Fig. 7b).

3.4. Emulation control unit (ECU)

In this developed system, the effective emulation task is carried out
under a complete supervision of an emulation control unit (ECU). This
latter not only monitors every system components but synchronises
the whole emulation process. The role of this unit is therefore multiple,
it organises each fault emulation cycle's progress, collects emulation re-
sults and finally transfers results to a host computer. The communica-
tion with the host computer is achieved through the serial port. A
transmission buffer is used for saving and shifting one emulation cycle
results. A reception buffer integrated to the unit serves as a storage reg-
ister for configuration settings. It is loaded from the host computer. The
ECU also integrates a specific circuit for performing exhaustive emula-
tion in space and time. This means that it is possible to perform auto-
matically, through one emulation activation, one fault injection at
each emulation clock cycle (time exhaustive) and for any bit of the
data vector (space exhaustive). The defined exhaustive mode operates
separately for time and space, so separate or combined modes are pos-
sible. All the emulation parameters including exhaustive mode activa-
tion, fault injection mode, emulation duration and others are loadable
through the serial port.

4. Fault emulation process

In this designed platform, an emulation cycle processes in four
phases (Fig. 8):

The ECU starts by initializing readers, tags andmonitoring circuits in
the first phase.

1. It enables readers and tags to communicate together for a sufficient
period in order to accomplish a desired scenario. Note that during
this time and according to stated injection parameters, faults are ef-
fectively introduced into the faulty tag.Moreover, the addedmonitor-
ing circuits check and record all-important events.

2. When emulation period expires, the ECU saves yielded results in
transmission buffers.

3. Finally, the ECU transfers the data outcome to the host computer.

Notice that any experimentation generally needs several emulation
cycles. Therefore, a pipeline is used to shorten the emulation time. As
shown in Fig. 8, phases 1 and 2 occur in parallel with phases 3 and 4.

According to injected fault effects on considered scenario evolution,
a five-category fault classification is defined as follows:

1. Silent (S): communication scenario achievedwith no error detection.

2. Frame alteration (FA): communication scenario achieved in the pres-
ence of non-damaging frame alteration.
ode, (b) SET mode.



 

Fig. 8. Fault emulation progress.

Fig. 10. Illustration of the fault effect on the flip-flop output: (a) SEU effect, (b) SET effect.

119I. Mezzah et al. / Microelectronics Reliability 69 (2017) 115–125
3. Latent (L): communication scenario achieved but accompanied by
memory content altered which in turnmay produce failure on forth-
coming cycles.

4. Latentwith frame alteration (L&FA): similar to latent but in the pres-
ence of frame alteration.

5. Failure (F): no achievement of communication scenario.

It should be pointed out that in typical fault classification, threemain
categories, silent (masked), latent and failure, are generally supported
[24–26]. However, in our experimentation on RFID, new unsupported
situations concerning frame alteration have led to the introduction of
two categories FA and L&FA. This new classification has in fact allowed
a better insight of the tag behaviour as demonstrated in the results
session.

5. Experimentation

The developed platform supports extensive analysis of SEU and SET
impact on RFID tags. In our experiments, we have adopted a typical
communication scenario as illustrated in Fig. 9 which gives the com-
mand/reply steps detail [8]. For this scenario, an emulation cycle dura-
tion takes 8000 tag clock periods where about 7600 periods are
sufficient to accomplish the scenario. Notice that the emulation cycle
duration should be bigger than the time required for the scenario
achievement. This gives enough time to detect eventual unexpected
tag activities whose time exceeds scenario time.
Fig. 9. Experimented communication scenario.
In this paper, two experimentations have been carried out for SEU
and SET faults independently:

1. In the first experimentation, an exhaustive injection of SEU fault
(Fig. 10a) is performed where one SEU is injected for every tag flip-
flop at every clock cycle. In total, 314 FFs have been subject to
2,071,772 SEUs in where 6598 SEUs concern each FF. The complete
operation consisting of fault introduction and analysis runs
automatically.

2. In the second experimentation, we have processed with two SETs
fault injection for every FF output (Fig. 10b) and at every clock
cycle. So a one-half clock period length SET has been injected exhaus-
tively before active clock edge; and a second SET exhaustive injection
occurred after the active edge.

As mentioned above, the two fault injection experimentations
targeted all modules that include FFs. Thereby, Tag Memory and Mem-
ory Controller modules are not involved since they do not include any
FFs. In addition, since injected faults produce the same results when
the tag remains in idle cycles, injection results of one cycle is thus a rep-
resentative of the entire idle cycles.
6. Experimental results and discussion

Thepreviously described experimentations have been carried out on
Digilent Genesys board equipped with a Virtex-5 FPGA (XC5VLX50T).
The complete system design has consumed 69% of FPGA resources.
The fault injection module and the ECU, as shown in Fig. 1, consume
10,982 slices representing then 38% of the used FPGA area. Initially, in
the first experimentation, 110 min have been necessary to accomplish
the 2,071,772 SEUs emulation using the actual tag functioning clock
(2.56 MHz, 3.22 ms/emulation cycle). As the number of emulated SETs
in the second experimentation is double, so the experimentation time
has consequently doubled (220 min). However, we managed to reduce
the emulation time by increasing the emulation clock frequency up to
maximum allowed implementation frequency without altering emula-
tion results. The maximum possible frequency for our implementation
is 29 MHz, so durations of experimentations using this frequency be-
came 10 min and 20min for SEU and SET experimentations respective-
ly. The total duration of the fault injection campaign (6,215,316 SEUs
and SETs) including results analysis is 30 min. Notice that the yielded
experimentation duration is specific to the scenario of Fig. 9 and this du-
rationwill increase, as well as the number of injected faults, with longer
scenarios. However, the proposed emulation platform and fault classifi-
cation remain suitable for any scenario.

Fig. 11 illustrates an example of SEU emulation. Shown signals depict
the communication of fault-free and faulty pairs during SEU emulation;
these signals are obtained via FPGA pins and visualised using a digital
oscilloscope. The injected SEU fault in this example has caused a failure
(frame corruption) as illustrated in Fig. 11. The numbering of actions in
this figure shows an emulation cycle progress in conformity with sce-
nario detailed in Fig. 9.



 

Fig. 11. Fault-free and faulty communication signals during SEU emulation.

120 I. Mezzah et al. / Microelectronics Reliability 69 (2017) 115–125
6.1. SEUs emulation results

The SEU emulation results are summarised in Table 1. For each
experimented tag block, the details about the number of injected SEUs
and resulting classification are presented. Analysis of these results
shows that the fault effect is linked to each block or side function and
in fact, reflects the appropriate integrated functions. For example,
higher failures (33%) have been registered in the Tag FSM block since
it is in charge of controlling all the other tag parties. In the opposite, de-
tected failures are minimal for the so-called peripherals (under 5%) in
concordance with their minor activities during the tag active mode.

On the other hand, silent SEUs are considerable and go up to 71.95%
and 75.85% for the reception and the transmission sides respectively.
Several signals contained in these two parts are initialised when not
used, so the SEU effect disappears following clearance through this
initialisation yielding then to a high number of silent SEUs. For SEUs
classified under the frame alteration category, their number is limited
and mainly concentrated (6.21%) in the transmission side in charge of
Table 1
SEU emulation results.

Block name Number of FFs Number of injected SEUs

Reception side PIE Decoder 42 277,116
Command Decoder 68 448,664
CRC Decoder 21 138,558
Total 131 864,338

Peripherals PRNG 16 105,568
Slot Counter 15 98,970
T2 Timer 6 39,588
T1 Timer 12 79,176
Session Flags 5 32,990
Total 54 356,292

Transmission side Backs. clock 5 32,990
Backs. Generator 40 263,920
FM0/Miller Encoder 15 98,970
Total 60 395,880

Tag FSM 69 455,262

Total 314 2,071,772
the frame generation. SEUs which produce latency (latent) and latency
with frame alteration (latent & frame alt.) are concentrated on periph-
erals (31.32% and 26.84% respectively) in agreement with relative
changes occurring in PRNG, Slot Counter and Session Flags blocks.

In total, the proportion of SEUs causing system failure is about 16%;
the percentage of latent SEUs (L and L&FA) is higher (22.15%) whereas
more than 60% of emulated SEUs have a silent effect.

Fig. 12 shows SEU fault classification details where every horizontal
line represents a separate tag FF. A full line characterises the total emu-
lated SEUs for any FF (one injection in each clock cycle so 6598 SEUs per
line). This depicts an overall SEUs effects distribution and provides a
straight identification of critical FFs.

Flip-flops that produce failures are concentrated in the Tag FSM,
these FFs are the eight bits of FSM encoding register, one FF generating
system reset, the RN16 register (16 bits), FFs storing the Query com-
mand parameters (D, M and TRext) [8] and finally the four MSB bits of
the register that stores TR calibration. Regarding faults producing
frame alteration, they appear in a triangle format (with green colour)
Fault classification

Failure (F) Latent & frame alt. (L&FA) Latent (L) Frame alt. (FA) Silent (S)

38,523 9952 59,252 306 169,083
62,402 18,244 31,277 1 336,740
17,692 0 4800 0 116,066
118,617 28,196 95,329 307 621,889
13.72% 3.26% 11.03% 0.04% 71.95%
0 95,456 10,112 0 0
15 0 70,350 0 28,605
8 0 0 0 39,580
13,388 163 38 2005 63,582
1906 0 31,084 0 0
15,317 95,619 111,584 2005 131,767
4.30% 26.84% 31.32% 0.56% 36.98%
4599 22,926 66 1542 3857
25,370 216 255 19,575 218,504
17,615 5 0 3448 77,902
47,584 23,147 321 24,565 300,263
12.02% 5.85% 0.08% 6.21% 75.85%
150,577 25,770 78,900 2567 197,448
33.07% 5.66% 17.33% 0.56% 43.37%
332,095 172,732 286,134 29,444 1,251,367
16.03% 8.34% 13.81% 1.42% 60.40%



 

Fig. 12. SEUs classification for each tag flip-flop.

121I. Mezzah et al. / Microelectronics Reliability 69 (2017) 115–125
in the Backscatter Generator. The concerned FFs are those of the 16-bit
shift register; this frame alteration number increases linearly from LSB
to MSB (most significant bit) and thus the resulted triangle format.

The maximum number of detected silent SEUs is related to the fol-
lowing FFs: T2 Timer FFs, four FFs in T1 Timer, two LSB (least significant
bit) FFs of the PW Counter situated in PIE Decoder and six FFs responsi-
ble for Miller encoding in FM0/Miller Encoder block where exclusively
the FM0 encoding is used in this scenario.

6.2. SETs emulation results

As described above for this experimentation, two SETs are injected
in every clock cycle and for every FF. Fig. 13 (a) presents the
classification of SETs injected before the active clock edge, while
Fig. 13 (b) presents the classification of SETs injected after the active
clock edge. The sum of each fault class and its percentage in both
cases are given at the top of the figure. For the first case where SETs
are injected before the active primary system clock edge, the result is
similar to SEUs emulation for the majority of blocks except for Com-
mand Decoder, CRC Decoder and Backscatter Generator blocks where
the silent faults increased since these blocks use different clocks gener-
ated by the PIE Decoder and Backscatter clock Generator, silent faults
are then increased by 7%. In the second case where SETs are injected
after the active primary system clock edge, only 2% of the injected faults
have not silent effect. This portion is related to 13 FFs (Fig. 13b); these
FFs are used in general as set/reset signals.



 

Fig. 13. SETs classification for each tag flip-flop: (a) SETs injected before the active clock edge, (b) SETs injected after the active clock edge.

Table 2
Summary of produced errors for the SEU experimentation.

Errors Number Proportion Fault category

Major Enter into the secured state 8 1/258,971 F
Enter into the killed state 0 0% F
Change of tag memory content 0 0% F

Minor Valid altered frame 202,176 9.76% L&FA/FA
Frame corruption 68,143 3.29% F
Invalid frame 40,875 1.97% F
Identification failed 157,795 7.62% F
Exiting the current round 61,368 2.96% F
Change of inventoried parameters 34,926 1.69% F/L/L&FA
Change of query parameters 107,085 5.17% F/L/L&FA

122 I. Mezzah et al. / Microelectronics Reliability 69 (2017) 115–125
6.3. Errors analysis

Based on monitoring circuits and readers outcomes, an analysis of
occurred errors during the SEUs experimentation has been done.
Table 2 summarises the deduced errors, they are divided into two cate-
gories, major errors and minor errors, according to their impact on the
tag security and reliability. Notice that one faultmayproduce several er-
rors at the same time.

Minor errors have limited impact on the tag. For example,with ‘valid
altered frame’ error, frames either include non-destructive encoding
faults or have delays without any scenario corruption or breaking the
communication. The remaining minor errors may be recovered at new
interrogations or when initiating a new round.

In addition, the presence of major errors, although in a minority
(eight in total), is damaging since the tag security and data contents



 

Fig. 14. Presentation of five selected errors from Table 2.

123I. Mezzah et al. / Microelectronics Reliability 69 (2017) 115–125
are affected. ‘Enter into the Secured state’ error is a serious tag security
threat since it can lead to secure data delivering or data altering unwill-
ingly. Notice that ‘enter into the Killed state’ and ‘change of tagmemory
content’, considered as major errors, have not been detected through
the performed exhaustive injection.

Fig. 14 illustrates the link between five errors selected from Table 2
and tag FFs (filtration of Fig. 12). This representation allows identifying
effectively the critical FFs: whenever a FF is responsible of the occur-
rence of several error types, this FF is considered as critical. Thus, as
shown in Fig. 14, FF245 to FF252 (FSM register) and FF255 (general sys-
tem reset signal) stand for highly vulnerable FFs within the Tag FSM.
Among these FFs, FF251 and FF252 are the most critical FFs since they
generate the eight SEUs which cause ‘enter into the Secured state’
error previously depicted (see Fig. 14).

Critical FFs are more easily identified when we carried the superpo-
sition of all errors reported in Table 2 for each FF; the result is illustrated
in Fig. 15. In this figure, the darker the FF is, the more it is subject to er-
rors. Therefore, critical FFs previously described (eight FFs of the FSM
register) and the FF of global reset appear clearly in dark. In addition,
Fig. 15 shows other critical FFs, less affected than those of FSM register,
situated in PIE Decoder and Command Decoder.
Sincemajor errors occurred, their eradication is mandatory. It is rec-
ommended either to redesign sensitive parts if severe modification is
targeted, or build new protection means. Increasing FSM encoding
length, as well as adding specific monitoring circuits for preventing
FSM false transitions may also be considered as suitable alternatives.

7. Conclusion

This work proposes a new FPGA based fault emulation method for
RFID tags robustness and security evaluation. The designed configurable
platform allows performing SEU and SET impact analysis on tags with
flexibility in setting scenarios and related parameters. An EPC Gen2
tag has been experimented under intensive SEU and SET faults with
this method not only to provide useful results for improving future
RFID designs but also to validate the followed approach to build a versa-
tile FPGA-based platform. This approach is also applicable to other RFID
protocols. Fault analysis on experimented tag allowed signalling that
60.40% of SEUs have been tolerated, 16.03% of SEUs caused failures
while 23.57% of SEUs produced frame alteration or memory latency.

A classification of produced errors through the emulation system
outcomes has permitted evaluating SEU and SET fault impacts. Only



 

Fig. 15. Error intensity for each tag flip-flop.

124 I. Mezzah et al. / Microelectronics Reliability 69 (2017) 115–125
eight SEUs in 2,071,772 have caused major errors forcing the
experimented tag to enter unwillingly into secured states. Our system
has not only identified the concerned major errors FFs but also the
most sensitive FFs causing, for instance, a large number of failures. The
experimentation has also demonstrated how to derive suitable design
actions for low-cost RFID security improvement. Obtained results and
produced error classification strategy can be employed to generally en-
hance RFID diagnosis.

As the actual platform performance permits carrying out multiple
event upsets (MEUs), several dedicated campaigns are in process to de-
rive their effects and getmore insight about security and robustness. Fu-
ture work will extend this research to cover multiple other tags'
architectures and RFID's standards. Rapid technology changes impose
continuous improvement in tag robustness and security, thus strategy
through protection means should be more involved and developed.
References

[1] M. Hutter, J.M. Schmidt, T. Plos, RFID and its Vulnerability to Faults, Cryptographic
Hardware and Embedded Systems - CHES, Washington, USA, 2008 363–379.

[2] R. Velazco, S. Rezgui, R. Ecoffet, Predicting error rate for microprocessor-based digi-
tal architectures through CEU (code emulating upsets) injection, IEEE Trans. Nucl.
Sci. 47 (6) (2000) 2405–2411.

[3] E. Jenn, J. Arlat, M. Rimen, J. Ohlsson, J. Karlsson, Fault injection into VHDL models:
the MEFISTO tool, FTCS-24, Int. Symp. Fault tolerant, Computing (1994) 66–75.

[4] L. Berrojo, F. Corno, L. Entrena, I. González, C. López, M. Sonza, G. Squillero, An Indus-
trial Environment for High-level Fault-tolerant Structures Insertion and Validation,
IEEE VLSI Test Symp., Monterey, CA, May 2002 229–236.

http://refhub.elsevier.com/S0026-2714(16)30445-0/rf0005
http://refhub.elsevier.com/S0026-2714(16)30445-0/rf0005
http://refhub.elsevier.com/S0026-2714(16)30445-0/rf0010
http://refhub.elsevier.com/S0026-2714(16)30445-0/rf0010
http://refhub.elsevier.com/S0026-2714(16)30445-0/rf0010
http://refhub.elsevier.com/S0026-2714(16)30445-0/rf0015
http://refhub.elsevier.com/S0026-2714(16)30445-0/rf0015
http://refhub.elsevier.com/S0026-2714(16)30445-0/rf0020
http://refhub.elsevier.com/S0026-2714(16)30445-0/rf0020
http://refhub.elsevier.com/S0026-2714(16)30445-0/rf0020


125I. Mezzah et al. / Microelectronics Reliability 69 (2017) 115–125
 

[5] L. Antoni, R. Leveugle, B. Feher, Using Run-time Reconfiguration for Fault Injection in
HW Prototypes, IEEE Int. Symp. Defect and Fault Tolerance in VLSI Systems, 2002
245–253.

[6] P. Civera, L. Macchiarulo, M. Rebaudengo, M. Sonza Reorda, M. Violante, FPGA-based
fault injection techniques for fast evaluation of fault tolerante in VLSI circuits, Forum
on Programmable Logic (FPL), Belfast, Northern Ireland, 2001.

[7] C. López-Ongil, M. García-Valderas, M. Portela-García, L. Entrena, Autonomous fault
emulation: a new FPGA-based acceleration system for hardness evaluation, IEEE
Trans. Nucl. Sci. 54 (2007) 252–261.

[8] EPC Radio-Frequency Identity Protocols Class-1 Generation-2 UHF RFID, Protocol for
Communications at 860 MHz–960 MHz, Version 1.2.0, EPCglobal Inc., 2008http://
gs1.org.

[9] A. Ejlali, S.G. Miremadi, Error propagation analysis using FPGA-based SEU-fault in-
jection, Microelectron. Reliab. 48 (2) (2008) 319–328.

[10] M.G. Valderas, L. Entrena, R.F. Cardenal, C.L. Ongil, M.P. García, SET emulation under
a quantized delay model, J. Electron. Test. 25 (1) (2009) 107–116.

[11] G. Wirth, F.L. Kastensmidt, I. Ribeiro, Single event transients in logic circuits—load
and propagation induced pulse broadening, IEEE Trans. Nucl. Sci. 55 (6) (2008)
2928–2935.

[12] T. Plos, Susceptibility of UHF RFID tags to electromagnetic analysis, Topics in Cryp-
tology–CT-RSA 2008, pp. 288–300.

[13] M. Hutter, S. Mangard, M. Feldhofer, Power and EM Attacks on Passive 13.56 MHz
RFID Devices, International Workshop on Cryptographic Hardware and Embedded
Systems, 2007 320–333.

[14] A. Barenghi, C. Hocquet, D. Bol, F.X. Standaert, F. Regazzoni, I. Koren, Exploring the
feasibility of low cost fault injection attacks on sub-threshold devices through an ex-
ample of a 65 nmAES implementation, InternationalWorkshop on Radio Frequency
Identification: Security and Privacy Issues 2011, pp. 48–60.

[15] M. Hutter, J.M. Schmidt, T. Plos, Contact-based fault injections and power analysis on
RFID tags, European Conference on Circuit Theory and Design, ECCTD 2009,
pp. 409–412.
[16] O. Abdelmalek, D. Hely, V. Beroulle, Emulation based fault injection on UHF RFID
transponder, 17th International Symposium on Design and Diagnostics of Electronic
Circuits & Systems 2014, pp. 254–257.

[17] O. Abdelmalek, D. Hely, V. Beroulle, I. Mezzah, An UHF RFID emulation platformwith
fault injection and real time monitoring capabilities, 8th International Design and
Test Symposium (IDT), IEEE 2013, pp. 1–2.

[18] I. Mezzah, O. Kermia, H. Chemali, O. Abdelmalek, V. Beroulle, D. Hely, Assertion
Based On-line Fault Detection Applied on UHF RFID Tag, 8th International Design
and Test Symposium (IDT), IEEE, 2013 1–5.

[19] T. Plos, M. Aigner, T. Baier, M. Feldhofer, M. Hutter, T. Korak, E. Wenger, Semi-pas-
sive RFID development platform for implementing and attacking security tags, Int.
J. RFID Secur. Cryptogr. 1 (2012) 16–24.

[20] I. Mezzah, H. Chemali, S. Mezzah, O. Kermia, O. Abdelmalek, MCIP: high configurable
8-bit microcontroller IP-core, Science and Information Conference (SAI), IEEE 2015,
pp. 1387–1390.

[21] MCIP_open, Hyperlink: http://opencores.org/project, mcip_open.
[22] E. Jenn, J. Arlat, M. Rimen, J. Ohlsson, J. Karlsson, Fault injection into VHDL models:

the MEFISTO tool, 24th International Symposium on Fault-Tolerant Computing,
IEEE 1994, pp. 66–75.

[23] P.K. Lala, Transient and Permanent Fault Injection in VHDL Description of Digital Cir-
cuits, Circuits and Systems, 3, 2012 192–199.

[24] P. Civera, L. Macchiarulo, M. Rebaudengo, M.S. Reorda, M. Violante, Exploiting FPGA-
based techniques for fault injection campaigns on VLSI circuits, IEEE International
Symposium on Defect and Fault Tolerance in VLSI Systems 2001, pp. 250–258.

[25] M. García Valderas, M. Portela García, C. López, L. Entrena, S.E.U. Extensive, Impact
analysis of a PIC microprocessor for selective hardening, IEEE Trans. Nucl. Sci. 57
(2010) 1986–1991.

[26] M. Ebrahimi, A.Mohammadi, A. Ejlali, S.G. Miremadi, A fast, flexible, and easy-to-de-
velop fpga-based fault injection technique, Microelectron. Reliab. 54 (5) (2014)
1000–1008.

http://refhub.elsevier.com/S0026-2714(16)30445-0/rf0025
http://refhub.elsevier.com/S0026-2714(16)30445-0/rf0025
http://refhub.elsevier.com/S0026-2714(16)30445-0/rf0025
http://refhub.elsevier.com/S0026-2714(16)30445-0/rf0030
http://refhub.elsevier.com/S0026-2714(16)30445-0/rf0030
http://refhub.elsevier.com/S0026-2714(16)30445-0/rf0030
http://refhub.elsevier.com/S0026-2714(16)30445-0/rf0035
http://refhub.elsevier.com/S0026-2714(16)30445-0/rf0035
http://refhub.elsevier.com/S0026-2714(16)30445-0/rf0035
http://gs1.org
http://gs1.org
http://refhub.elsevier.com/S0026-2714(16)30445-0/rf0045
http://refhub.elsevier.com/S0026-2714(16)30445-0/rf0045
http://refhub.elsevier.com/S0026-2714(16)30445-0/rf0050
http://refhub.elsevier.com/S0026-2714(16)30445-0/rf0050
http://refhub.elsevier.com/S0026-2714(16)30445-0/rf0055
http://refhub.elsevier.com/S0026-2714(16)30445-0/rf0055
http://refhub.elsevier.com/S0026-2714(16)30445-0/rf0055
http://refhub.elsevier.com/S0026-2714(16)30445-0/rf0060
http://refhub.elsevier.com/S0026-2714(16)30445-0/rf0060
http://refhub.elsevier.com/S0026-2714(16)30445-0/rf0065
http://refhub.elsevier.com/S0026-2714(16)30445-0/rf0065
http://refhub.elsevier.com/S0026-2714(16)30445-0/rf0065
http://refhub.elsevier.com/S0026-2714(16)30445-0/rf0070
http://refhub.elsevier.com/S0026-2714(16)30445-0/rf0070
http://refhub.elsevier.com/S0026-2714(16)30445-0/rf0070
http://refhub.elsevier.com/S0026-2714(16)30445-0/rf0070
http://refhub.elsevier.com/S0026-2714(16)30445-0/rf0075
http://refhub.elsevier.com/S0026-2714(16)30445-0/rf0075
http://refhub.elsevier.com/S0026-2714(16)30445-0/rf0075
http://refhub.elsevier.com/S0026-2714(16)30445-0/rf0080
http://refhub.elsevier.com/S0026-2714(16)30445-0/rf0080
http://refhub.elsevier.com/S0026-2714(16)30445-0/rf0080
http://refhub.elsevier.com/S0026-2714(16)30445-0/rf0085
http://refhub.elsevier.com/S0026-2714(16)30445-0/rf0085
http://refhub.elsevier.com/S0026-2714(16)30445-0/rf0085
http://refhub.elsevier.com/S0026-2714(16)30445-0/rf0090
http://refhub.elsevier.com/S0026-2714(16)30445-0/rf0090
http://refhub.elsevier.com/S0026-2714(16)30445-0/rf0090
http://refhub.elsevier.com/S0026-2714(16)30445-0/rf0095
http://refhub.elsevier.com/S0026-2714(16)30445-0/rf0095
http://refhub.elsevier.com/S0026-2714(16)30445-0/rf0095
http://refhub.elsevier.com/S0026-2714(16)30445-0/rf0100
http://refhub.elsevier.com/S0026-2714(16)30445-0/rf0100
http://refhub.elsevier.com/S0026-2714(16)30445-0/rf0100
http://opencores.org/project
http://refhub.elsevier.com/S0026-2714(16)30445-0/rf0110
http://refhub.elsevier.com/S0026-2714(16)30445-0/rf0110
http://refhub.elsevier.com/S0026-2714(16)30445-0/rf0110
http://refhub.elsevier.com/S0026-2714(16)30445-0/rf0115
http://refhub.elsevier.com/S0026-2714(16)30445-0/rf0115
http://refhub.elsevier.com/S0026-2714(16)30445-0/rf0120
http://refhub.elsevier.com/S0026-2714(16)30445-0/rf0120
http://refhub.elsevier.com/S0026-2714(16)30445-0/rf0120
http://refhub.elsevier.com/S0026-2714(16)30445-0/rf0125
http://refhub.elsevier.com/S0026-2714(16)30445-0/rf0125
http://refhub.elsevier.com/S0026-2714(16)30445-0/rf0125
http://refhub.elsevier.com/S0026-2714(16)30445-0/rf0130
http://refhub.elsevier.com/S0026-2714(16)30445-0/rf0130
http://refhub.elsevier.com/S0026-2714(16)30445-0/rf0130

	Emulation-�based fault analysis on RFID tags for robustness and security evaluation
	1. Introduction
	2. Related work
	3. A configurable RFID fault emulation
	3.1. Experimented tag
	3.2. RFID reader
	3.3. Fault injection module
	3.4. Emulation control unit (ECU)

	4. Fault emulation process
	5. Experimentation
	6. Experimental results and discussion
	6.1. SEUs emulation results
	6.2. SETs emulation results
	6.3. Errors analysis

	7. Conclusion
	References


