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a b s t r a c t

We investigate the concept of the pseudo-parity–time (pseudo-
PT ) symmetry in periodic quantum systems. This pseudo par-
ity–time symmetry manifests itself dynamically in the framework
of the non-unitary evolution (Floquet) operator U(τ ) = e−iLτ , over
a period τ , which shows that the stability of the dynamics occurs
when thePT -symmetry (or pseudo-PT ) of the time-independent
non-Hermitian Hamiltonian L is unbroken i.e. its quasienergies
En are real. Nevertheless, when the PT -symmetry of the non-
Hermitian Hamiltonian L is broken, which corresponds to the com-
plex conjugate quasienergies En, an instable dynamics arises. We
investigate in greater detail a harmonic oscillator with imaginary
time-dependent periodic driving term linear in x. The Floquet op-
erator for the modulated system is pseudo-PT symmetric if the
relative phase φ of the applied mode is not 0 or π .

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Parity–time (PT ) symmetry, the invariance under simultaneous parity and time reversal trans-
formation, play an important role in non-Hermitian (NH) quantum mechanics and optics [1–3]. The
physical condition of PT symmetry can be placed in a more general mathematical context known
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as pseudo-Hermiticity [4–9]. A Hamiltonian is said to be pseudo-Hermitian with respect to an in-
vertible Hermitian operator η if it satisfies HĎ

= ηHη−1. There is an intimate relation between the
PT -symmetric and the pseudo-Hermitian Hamiltonians, i.e., an exact antilinear symmetric system
can be transformed into its corresponding Hermitian system through a similarity transformation; this
similarity transformation can be realized bymeans of a positive definitemetric operator η [8]. Specifi-
cally, aPT -symmetric Hamiltonian can correspond to a Hermitian one. In the case ofPT -symmetric
Hamiltonians, the role of η is played by PC where C is the charge conjugation operator.

While research on PT -symmetry has focused on time-independent Hamiltonians [1–3,10–
12], several recent works have studied time-dependent Hamiltonians [13–19], e.g., those with a
time-dependent PT -symmetric Hamiltonian and with a time-dependent metric. Motivated by this
progress, the periodical systems with non-Hermitian Hamiltonians have been explored [20–27]. It is
well known that the dynamics of a periodically driven system is dictated by its Floquet spectrum.
This led some authors [25,26,28] to study the Floquet operator in a time evolution of a system with a
time-dependent non-Hermitian Hamiltonian.

Most often, in nonrelativistic quantum mechanics and in relativistic quantum field theory, one
finds the T -operator employed as complex conjugation because the time coordinate t is a parameter
and thus the time-reversal operator T does not actually reverse the sign of t [29]. There are however
cases where T is not used as complex conjugation.

More recently, in a discussion of how to employ biharmonic modulations to manipulate PT
symmetry, a new concept of pseudo-parity–time (pseudo-PT ) symmetry has been introduced in [22]
for periodically modulated optical systems with balanced gain and loss. The time-reversal operator T
has been defined by its action on the position operator, the momentum operator, the sign of i and the
time t as

T : p → −p, x → x, i → −i and t → −t. (1)

This definition of time-reversal operator T has been used in many papers related to time-dependent
systems [20–23].

However, with a more careful examination of the quasi-energies obtained in [22], an important
remark can bemade. The reality of the spectrum and consequently thePT symmetry or ‘‘pseudo-PT
symmetry’’ appears in the effective system corresponding to an averaged non-Hermitian Hamiltonian
and not on the original periodic non-Hermitian Hamiltonian which does not predict the information
on its spectrum. Moreover with the high-frequency approximation they used, they obtained a time-
independent system. However in this case, one cannot go back to the original system, contrary to our
work. Generally, the dynamics of a periodic time dependent non-Hermitian system is dictated by its
Floquet spectrum which may become real and the PT symmetry can be associated to the Floquet
Hamiltonian.

In this paper we adopt the following properties of the space reflection (parity) operator P and the
time-reflection operator T . The parity operator P is linear and has the effect

P : p → −p and x → −x. (2)

The time-reversal operator T is antilinear and has the effect

T : p → −p, x → x and i → −i. (3)

Therefore, it is shown that if an energy eigenstate of a non-Hermitian Hamiltonian H is simultane-
ously an eigenstate ofPT then the energy eigenvalues are real. The regime inwhich this requirement
holds is referred to as ‘unbroken’PT -symmetry; within this regimewe see that the first requirement
for the PT formulation of quantummechanics is satisfied. However, the remaining required proper-
ties of the states, namely that they are orthonormal and evolve in time in such a way as to preserve
the inner product, are not satisfied if we consider these properties with respect to the standard inner
product [1]. The purpose of Bender et al. [2] is to identify a new symmetry, denoted C, having proper-
ties very similar to the charge conjugation operator, inherent in all PT -symmetric Hamiltonians that
possess an unbroken PT symmetry. This has allowed the introduction of an inner-product structure
associated with CPT conjugation for which the norms of quantum states are positive definite and



152 M. Maamache et al. / Annals of Physics 378 (2017) 150–161

unitary-invariant. In particular, CPT symmetry is shown to generalize the conventional Hermitic-
ity requirement by replacing it with a dynamically determined inner product (one that is defined by
the Hamiltonian itself). When an eigenstate of the Hamiltonian is not simultaneously an eigenstate of
PT , the symmetry is broken and the eigenvalues come in complex conjugate pairs.

However, PT symmetry and the PT -symmetric operator have not yet been directly identified
from the time-evolution operator itself, since the definition of PT symmetry on the time-evolution
operator has not been established so far. In the present work, we study PT symmetry of the
time-evolution operator after a period (or Floquet operator) of non-unitary quantum periodic
evolution [26,28].

In light of the above discussion, one important question motivates our work here: How could one
treat a periodic time-dependent quantum non-Hermitian problem and investigate the possibility of
finding a PT -symmetric or ‘‘pseudo-PT symmetric ’’ non-Hermitian Hamiltonian Floquet operator
and its associated real eigenvalues, without making use of reversing the sign of t under the time-
reversal operator T which is a complex conjugation operator? In this paper we answer this question
from a new perspective by studying the time-dependent periodic non-Hermitian Hamiltonian
systems using a time-dependent non-unitary transformation. In Section 2, we introduce the Floquet
theory of periodic time-dependent non-Hermitian quantum Hamiltonian H(t) = H(t + τ) and we
analyze the dynamics of time-periodic PT -symmetric Hamiltonians. To this end, we perform a non-
unitary transformation on the state that corresponds to a change of the reference frame. It works
such that the dynamics, as seen from the new reference frame, are governed by a time-independent
non-HermitianHamiltonian (non-Hermitian FloquetHamiltonian). In fact, this is the guiding principle
behind the construction of the Floquet solutions to some integrable periodically time-dependent
problems. Therefore, the quantity of main importance in the study of the periodic non-Hermitian
Hamiltonian and cyclic states and the accompanying phases is the one-cycle evolution operator
U(τ ) = e−iLτ , which is also known as the Floquet operator. The time-independent operator L plays
here the role of the Hamiltonian for the transformed states. We show the connection between the
existence of the stable dynamics and the unbroken PT -symmetry of the time-independent operator
L. For the purpose of illustration, we study in detail in Section 3, the periodic driven non-Hermitian
harmonic oscillator. This allows us to introduce and discuss, at an elementary level several facets
of the Floquet picture. More importantly, the PT symmetry can appear in the effective system
corresponding to a non-PT -symmetric and non-Hermitian Hamiltonian Floquet operator. Therefore,
we call the induced symmetry associated with Floquet systems as the ‘‘pseudo-PT symmetry’’.
Note that for this concrete example, we can obtain explicit form of the non-unitary transformation
which converts a time-periodic non-Hermitian system to time-independent non-Hermitian problem;
however for more general case (time-dependent problem), it is hard to find the explicit form for such
transformation. The paper ends with concluding remarks.

2. PT -symmetry and stable dynamics

Wenow put some elements which are required for the description of quantum systems possessing
a discrete translational invariance in time. We start with the time-dependent Schrödinger equation
governed by a periodic time-dependent non-Hermitian Hamiltonian H(t) = H(t + τ):

i
∂

∂t
|Φ(t)⟩ = H(t) |Φ(t)⟩ , (4)

where τ = 2π/ω is a period and we assume (h̄ = 1). The time evolution operator U(t) for the period
of [0, t] satisfies

i
∂

∂t
U(t) = H(t)U(t), (5)

with the initial condition U(0) = 1. The dynamics yielded by Eq. (5) with a time-dependent and
non-Hermitian H(t) is non unitary in general [17].
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By using Floquet’s theorem [30–34], the time-evolution operator U(t) of a τ -periodically time
dependent quantum system has the form [26,28,35]

U(t) = Z(t)e−iLt , (6)

where the non-unitary operator Z(t) = Z(t + τ) is τ -periodic, and the time-independent operator
L is non-Hermitian. The initial condition U(0) = 1 implies Z(0) = Z(τ ) = 1. With the help of this
exponential we now define a further non unitary operator

Z(t) = U(t)eiLt (7)

and perform the non unitary transformation

|Φ(t)⟩ = Z(t) |ψ(t)⟩ . (8)

Now the definition of Z(t) (Eq. (7)) implies

iŻ = HZ − ZL, (9)

this gives

i
∂

∂t
|Φ(t)⟩ = (HZ − ZL) |ψ(t)⟩ + Zi

∂

∂t
|ψ(t)⟩ . (10)

Next, Eq. (4) readily yields

i
∂

∂t
|Φ(t)⟩ = HZ |ψ(t)⟩ , (11)

and, leaving us with

i
∂

∂t
|ψ(t)⟩ = L |ψ(t)⟩ . (12)

The time-independent non-Hermitian operator L plays here the role of the Hamiltonian for the trans-
formed states |ψ(t)⟩. In fact, this is the strategy for the construction of the Floquet solutions to some
integrable periodically time-dependent problems. Thus, when the wavefunctions are simultaneous
eigenstates of the Hamiltonian L and the PT -operator one can easily argue that the spectrum has to
be real. However, despite the fact that [PT ,H] = 0, onemay also encounter conjugate pairs of eigen-
values for brokenPT -symmetry [1–3]. It should be stressed thatPT symmetry cannot be regarded as
the fundamental property, which always explains the reality of the spectrum for the non-Hermitian
Hamiltonian; there are also examples with real spectra for which not even the Hamiltonian is PT
symmetric. This induced symmetry is called the ‘‘pseudo-PT symmetry ’’ [22].

Since, the operator L plays a very important role in studying the notion of PT (or pseudo PT )-
symmetry, the decomposition (6) is strongly linked to the stability of the dynamics of the system and
depends on the nature of the PT -symmetry of the operator L (broken or unbroken). Writing the set of
eigenvalues of the Floquet propagator U(τ ) = e−iLτ as {e−iτEn}, and its eigenstates as {|φn(0)⟩}

U(τ ) |φn(0)⟩ = e−iϵnτ |φn(0)⟩ , (13)

we have

e−iLt
|φn(0)⟩ = e−iEnt |φn(0)⟩ . (14)

Nowwe are in a position to monitor the time-evolution of an arbitrary initial state |Φ(0)⟩. Expanding
with respect to the eigenstates |φn(0)⟩ of U(τ ),

|Φ(0)⟩ =


n

an |φn(0)⟩ (15)
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and applying U(t) (6), we then find

|Φ(t)⟩ = U(t) |Φ(0)⟩ =


n

anZ(t)e−iLt
|φn(0)⟩

=


n

ane−iEnt |φn(t)⟩ . (16)

In the last step made here we use the special decomposition of Moore and Stedman’s formalism to
define the Floquet functions

|φn(t)⟩ = Z(t) |φn(0)⟩ . (17)

which are τ -periodic i.e. |φn(t + τ)⟩ = |φn(t)⟩. We will refer to the states

|Φn(t)⟩ = e−iEnt |φn(t)⟩ , (18)

as Floquet states. Note that these states, in contrast to the τ -periodic Floquet functions |φn(t)⟩, are
solutions of the time-dependent Schrödinger equation (4). Substituting (18) into the time-dependent
Schrödinger equation (4) we get

K(t) |φn(t)⟩ = En |φn(t)⟩ , (19)

where the operator

K(t) = H(t)− i
∂

∂t
, (20)

is the non-Hermitian Floquet Hamiltonian. In the physics literature En is often called a quasi-energy
and |φn(t)⟩ a quasienergy state [36]. Thus, the analysis of systems with periodic non-Hermitian
Hamiltonians H(t) can be reduced to an equivalent ‘‘time-independent’’ form by using the non-
Hermitian Floquet Hamiltonian K(t) = H(t)− i ∂

∂t .
Now, we engage in the study of the stability of the dynamics. For (arbitrary) N periods, the time

evolution operator U(Nτ) = e−iNLτ has the eigenvalues e−iNϵnτ . This means that the knowledge of the
time evolution operator U(τ ) = e−iLτ over a full period τ yields a stroboscopic view of the dynamics
over long multiples of the fundamental period,

|φn(Nτ)⟩ = U(Nτ) |φn(0)⟩ = e−iNϵnτ |φn(0)⟩ . (21)

From this important feature, one can deduce the nature of the evolution (stable or unstable). As we
have said above, if the operator L is PT -symmetric, then the situation of particular interest is when
the PT -symmetry is in an unbroken phase. This means that the quasienergies ϵn of L are real. Thus
the phase factor e−iNϵnτ of U(Nτ) contains only real factors Nϵnτ . The dynamics is therefore stable
over an arbitrary number of driving periods N because there are no complex factors in e−iNϵnτ which
generate exponential growth or decaywithN . For the brokenPT -symmetry phase, the quasienergies
ϵn become complex conjugates and the dynamics is hence unstable. Thereby, the stability of the
dynamics depends on the unbroken PT -symmetry phase of the operator L, and does not depend on
the unbroken PT -symmetry phase of the Hamiltonian H(t). Also an interesting situation is when the
quasienergies are real, the operator L is not PT -symmetric (but PT pseudo-symmetric), in this case
the dynamics is stable. We discuss all these situations in a concrete example in the next section.

3. Driven non Hermitian harmonic oscillator: pseudo PT -symmetric Floquet operator

This section considers one of the simplest Floquet problems: harmonic oscillator with a non-
Hermitian time-dependent periodic driving term linear in x. Although the Floquet eigenenergies and
eigenfunctions for the Hermitian system have been previously given in the literature [37,38], we will
showhow toderive, for the non-Hermitian system, the pseudo PT-symmetric Floquet operator and the
associated real eigenenergies. We first consider a harmonic oscillator interacting with an imaginary
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time-dependent periodic driving term linear in x. In a semiclassical approach where the electric field
is written f (t) = λ cos(ωt + φ) the non-Hermitian Hamiltonian is a periodic function of time

H(t) =
1
2m

p2 +
mω2

0

2
x2 − if (t)x. (22)

Now we begin to use an algebraic transformation method to solve the time-dependent Schrödinger
equation (5). Usually, a solution of the time-dependent system is resorted to a time-dependent
transformation as

|Φ(t)⟩ = D(t) |χ(t)⟩ (23)

then an initial Schrödinger equation will be changed into

i
∂

∂t
|χ(t)⟩ = h(t) |χ(t)⟩

with h(t) = D−1(t)H(t)D(t)− iD−1(t)
∂

∂t
D(t). (24)

In the above transformation, the time-dependent operators D(t) should have its inverse operator and
it can be properly chosen in order to obtain the new Hamiltonian h(t) into a solvable form, we can
choose

D(t) = ei(xPc (t)−pXc (t)) = e−
i
2Xc (t)Pc (t)eixPc (t)e−ipXc (t) (25)

and its reverse operator is

D−1(t) = e+
i
2Xc (t)Pc (t)eipXc (t)e−ixPc (t) (26)

where

Xc(t) = xc(t)− xc(0)
Pc(t) = pc(t)− pc(0) (27)

xc(t) et pc(t) are classical complex solutions associated with the system ruled by the classical non-
Hermitian Hamiltonian H(t)

ẋc =
1
m

pc

ṗc = −mω2
0xc + if (t)

ẍc + mω2
0xc = if (t) (28)

whose classical solutions will be

xc(t) = i
λ cos(ωt + φ)

m

ω2

0 − ω2
 , ẋc = −i

λω sin(ωt + φ)

m

ω2

0 − ω2
 (29)

and xc(0), pc(0) are the classical initial conditions. It can easily be shown that under the transforma-
tion D(t) the coordinate and momentum operators change according to

D−1(t)xD(t) = x + Xc(t)

D−1(t)pD(t) = p + Pc(t). (30)

An important property of the transformation D(t) which, when it acts on a wavefunction in the
x-representation, gives

D(t)G(x) = exp

−

i
2Xc(t)Pc(t)


exp [ixPc(t)]G(x − Xc(t)). (31)

Substituting Eq. (30) into Eq. (24) one can show that

h(t) = hOQL
d + hOC

f (t)+
1
2
(ṗcxc − pc ẋc)+

1
2
(ṗcxc(0)− pc(0)ẋc) (32)
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where

hOQL
d =

1
2m

(p − pc(0))2 +
mω2

0

2
(x − xc(0))2 (33)

represents the time-independent quantum displaced harmonic oscillator and

hOC
f (t) =

1
2m

(pc)2 +
mω2

0

2
(xc)2 − if (t)xc . (34)

Then, the transformed Hamiltonian determined by Eq. (32) can be written as

h(t) = hOQL
d + L(t), (35)

where

L(t) = hOC
f (t)+

1
2
(ṗcxc − pc ẋc)+

1
2
(ṗcxc(0)− pc(0)ẋc)

=
1
4

λ2

m

ω2

0 − ω2
 +

1
4

λ2

m

ω2

0 − ω2
 cos 2(ωt + φ)+

1
2

λ2ω2

m

ω2

0 − ω2
2 cosωt (36)

can be removed from the Hamiltonian of Eq. (35) by performing the transformation

|χ(t)⟩ = exp


−i
 t

0
dt́


1
4

λ2

m

ω2

0 − ω2
 + L(t́)


|ψ(t)⟩ . (37)

Thus, the Schrödinger equation associated with h(t) reduces to a time-independent Schrödinger
equation of a displaced harmonic oscillator

i
∂

∂t
|ψ(t)⟩ =


hOQL
d +

1
4

λ2

m

ω2

0 − ω2
 |ψ(t)⟩

= L |ψ(t)⟩ . (38)

The solutions are well-known, with the quantum real quasienergy,

En = ω0(n + 1/2)+
1
4

λ2

m

ω2

0 − ω2
 . (39)

With definition of the parity operator as P : p → −p and x → −x and the time operator as
T : p → −p, x → x, i → −i, it may be checked that

PT hOQL
d T P = PT


1
2m

(p − pc(0))2 +
mω2

0

2
(x − xc(0))2


T P

= PT

 1
2m


p + i

λω sinφ
ω2

0 − ω2
2

+
mω2

0

2


x − i

λ cosφ
m

ω2

0 − ω2
2

 T P

=


1
2m

(p + pc(0))2 +
mω2

0

2
(x − xc(0))2


≠ hOQL

d (40)

therefore the non-Hermitian Hamiltonian hOQL
d (33) is not invariant under the PT -symmetric

transformation but pseudo-Hermitian with respect to an invertible Hermitian operator η = D(0) =

e−i(xpc (0)−pxc (0)). The non-Hermitian Hamiltonian hOQL
d (33) becomes PT -symmetric if φ = 0 or π .

Consequently, L =


hOQL
d +

1
4

λ2

m

ω2
0−ω2

 isPT -symmetric forφ = 0 orφ = π . Otherwise, L becomes

pseudo-PT -symmetric.



M. Maamache et al. / Annals of Physics 378 (2017) 150–161 157

We now derive the time-evolution operator associated to Hamiltonian H(t) (22). The solution
|Φ(t)⟩ of the Schrödinger equation associated with the non-Hermitian Hamiltonian H(t) is written
as

|Φ(t)⟩ = exp


−i
 t

0
dt́


L(t́)−

1
4

λ2

m

ω2

0 − ω2
D(t) |ψ(t)⟩

where

|ψ(t)⟩ = exp


−i


hOQL
d +

1
4

λ2

m

ω2

0 − ω2
 t


|ψ(0)⟩ . (41)

Using (36) and evaluating the following integral t

0
dt́L(t́) =

1
4

λ2t
m

ω2

0 − ω2
 +

λ2

8mω

ω2

0 − ω2
 (sin 2(ωt + φ)− sin 2φ)

+
λ2ω

2m

ω2

0 − ω2
2 sinωt

allows one to identify the desired non unitary time-evolution operator for the periodic non-Hermitian
Hamiltonian (22) as

U(t) = exp


−i


λ2

8mω

ω2

0 − ω2
 (sin 2(ωt + φ)− sin 2φ)+

λ2ω

2m

ω2

0 − ω2
2 sinωt



×D(t) exp


−i


hOQL
d +

1
4

λ2

m

ω2

0 − ω2
 t


. (42)

Note that the time evolution operator U(t) (42) is written as the product

U(t) = Z(t)e−iLt (43)

Z(t) is constrained to be periodic

Z(t) = exp


−i


λ2

8mω

ω2

0 − ω2
 (sin 2(ωt + φ)− sin 2φ)

+
λ2ω

2m

ω2

0 − ω2
2 sinωt


D(t) (44)

while L is constant and not self-adjoint and eventually reads

L = hOQL
d +

1
4

λ2

m

ω2

0 − ω2
 . (45)

Its eigenvalues En (39), called quasienergies, are illustrated in Fig. 1.



158 M. Maamache et al. / Annals of Physics 378 (2017) 150–161

Fig. 1. Quasienergies with respect to ω. We have used ω0 = n = m = λ = 1. At resonance ω = ω0 , the quasienergies are no
longer correct. Instead, the spectrum assumes an absolutely continuous form.

Thus our original wave function assumes

Φn(x, t) =
1

√
2nn!

mω0

π

1/4
exp


−i
ω

m


λ sin(ωt + φ)

2(ω2
0 − ω2)

2


× exp


i


(n + 1/2)ω0 +

1
4

λ2

m

ω2

0 − ω2
 t



× exp


−i


λ2

8mω

ω2

0 − ω2
 (sin 2(ωt + φ)− sin 2φ)

+
λ2ω

2m

ω2

0 − ω2
2 sinωt



× exp [ipc(x − xc)] exp

−

mω0

2
(x − xc)2


Hn(

√
ω0m(x − xc)) (46)

corresponding to time-periodic Floquet modes proportional to the Hermite functions Hn.
When n = 0, the corresponding quasienergy is E0 = ω0/2 + λ2/4m


ω2

0 − ω2

, the ground state

wave function is

Φ0(x, t) =
1

√
2nn!

mω0

π

1/4
exp


−i
ω

m


λ sin(ωt + φ)

2(ω2
0 − ω2)

2


× exp


i


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Fig. 2a. Occupation probability P t
n=0 with respect to time t . We have used ω = 3, φ = π,ω0 = m = λ = 1.

It is straightforward to obtain the occupation probability P t
n=0 for the ground state wave functionwith

respect to time:

P t
n=0 =


+∞

−∞

dxΦ∗

0 (x, t)Φ0(x, t) = exp


λ2ω2

mω0

ω2

0 − ω2
2

exp


λ2 cos2(ωt + φ)

mω0

ω2

0 − ω2
  . (48)

The above expression shows that the occupation probability P t
n=0 becomes nonconservative. The

variation of P t
n=0 with t and φ is shown in Figs. 2 and 3.

4. Concluding remarks

In summary, the study of the dynamics of time-dependent periodic non-Hermitian Hamiltonians
possesses certain delicacy because of their specific properties. This is due to the non-unitarity of the
evolution operators, the dynamics of such systems is not stable in general. To solve the dynamics
of such systems, we take advantage of its periodicity by applying Floquet theory [30,31,35]. This
method is based on a factorization of the non-unitary evolution operator [26,28] and is in the spirit
of the theory of systems of linear differential equations with periodic coefficients [30]. The use of this
approach in practical situations is greatly facilitated by exploiting the Fourier decomposition of the
Hamiltonian. This converts the problem into an equivalent time-independent form. The solution to
the problem is then expressible in terms of the eigenvectors and eigenvalues of a certain operator
called the Floquet Hamiltonian. The PT -symmetry is well implemented for time-periodic quantum
systems because the behavior of the time is like that of space for spatially periodic Hamiltonians. This
is due to the fact that the Floquetmodes are the time equivalents of the Bloch functionswhich arise for
spatially periodic Hamiltonians [32–34].We have established that the stability of the dynamics occurs
when the PT -symmetry of the time-independent operator L which defines the Floquet operator
U(τ ) = e−iLτ is unbroken and correspond to the real quasienergies En. Nevertheless, when the
PT -symmetry of L is broken, which corresponds to the complex conjugates quasienergies En, an
instable dynamics arises. We have also shown that the stability of the dynamics depends on the
unbroken PT -symmetry phase of the operator L, and not on the unbroken PT -symmetry phase
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Fig. 2b. Occupation probability P t
n=0 with respect to angle φ. We have used ω = 3, t = 2, ω0 = m = λ = 1.

Fig. 3. Occupation probability P t
n=0 with respect to angle φ and time. We have used ω = 3, ω0 = m = λ = 1.

of the Hamiltonian H(t). More importantly, the ‘‘pseudo-PT symmetry’’ can appear in the system
corresponding to a non-Hermitian Floquet Hamiltonian.

Then, we convert the properties of PT -symmetry for the Hamiltonian into those for the time-
evolution Floquet operator in Eq. (6). Assuming the operator L to be invariant under simultaneous
parity transform P and time-reversal T and using the relation between the time-evolution operator
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and PT -symmetric non-Hermitian Hamiltonian L: U(τ ) = e−iLτ , we derive the relation between
U(τ ) and its inverse as

PT U(τ )PT = PT e−iLτPT = eiPT LPT τ
= eiLτ = U−1(τ ). (49)

This shows that the PT transformed of Floquet operator PT U(τ )PT is just the inverse of U(τ ).
This relation, obtained also in the context of quantum walks [39], replaces the well known standard
PT -symmetry relation in the context of non-Hermitian quantum mechanics. Then, we considered
a simple model, the driven periodic non-Hermitian oscillator, allowing us to introduce and discuss
at an elementary level several facets of the Floquet picture which also govern the evolution operator
obtained in closed form.
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