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Binary diffractive optics have been extensively studied to date as tools for arbitrary laser beam shaping and
experimentally implemented with etched transparent optics and spatial light modulators. Here we demonstrate
that a simple one-step binary optic is able to enhance the intensity of a focused beam, displaying some counter-
intuitive focusing anomalies. We explain these effects by considering the optical aberrations in binary diffractive
optics and outline how this may be exploited for further improvements in refractive/diffractive combinations for
super-resolution microscopy. © 2017 Optical Society of America

OCIS codes: (260.1960) Diffraction theory; (090.1970) Diffractive optics; (090.1000) Aberration compensation; (220.3620) Lens

system design.

https://doi.org/10.1364/AO.56.009735

1. INTRODUCTION

Binary diffractive optical elements (DOEs) have found many
applications, from diffractive lens and gratings through to gen-
eral laser beam shaping, and have been extensively reviewed
[1,2]. One of the simplest binary DOEs that one can conceive
of is a circular phase-aperture (CPA) with a simple step profile
in phase, as illustrated in Fig. 1(a). Such elements were first
made as simple but tuneable Gaussian to flat-top beam convert-
ers [3] and were later found to have unique propagation effects
on the transformed beam, e.g., producing optical bottle
beams [4]. The advantage of combining refractive and diffrac-
tive optics has been understood for some time, particularly for
dispersion control [5], compactness [6], and anti-reflection
coating with a structured surface [7]. In particular, diffractive
and refractive lenses have been combined to produce lower
spherical aberration and chromatic aberration in control of
white light fields [8].

Here we revisit this venerable subject and demonstrate a
counterintuitive example that a simple CPA can enhance the
focusing properties of a conventional lens, producing a higher
on-axis intensity, even when the overall transmission through
the lens is lower. We achieve this by combining a CPA with a
variable aperture, exploiting simultaneous diffraction by phase
and amplitude, and explain the effects by providing a general-
ized approach to the study of the optical aberrations of binary

diffractive optical elements. These results will be of interest to
optical systems engineers who exploit diffractive/refractive con-
trol of light in the presence of limiting apertures, as well as to
the imaging and microscopy community, where localized fields
are known to enhance resolution.

2. CONCEPT

In this paper, we will consider the diffraction properties of a
simple binary DOE, illustrated in Fig. 1(a), and characterized
by the following complex transmittance:

τ�ρ� �
��1 for ρ < ρ0

−1 for ρ ≥ ρ0
; (1)

where ρ is the radial coordinate, and ρ0 is the radius of the
phase step.

With a priori knowledge of the outcome, we are able to
consider the scenario in Fig. 1(b): rather than focussing with
a simple lens, we combine refraction with amplitude (variable
aperture) and phase (CPA) diffraction effects, and illustrate
some propagation anomalies, including an enhancement in
focussing properties, namely, an increase in the maximum of
on-axis intensity after the lens as compared to only a lens
present.

In the configuration shown in Fig. 1(b) the CPA and aper-
ture (of diameter 2ρD) are assumed to be placed arbitrarily close

Research Article Vol. 56, No. 35 / December 10 2017 / Applied Optics 9735

1559-128X/17/359735-07 Journal © 2017 Optical Society of America

mailto:kamel.aitameur@ensicaen.fr
mailto:kamel.aitameur@ensicaen.fr
mailto:kamel.aitameur@ensicaen.fr
https://doi.org/10.1364/AO.56.009735
https://crossmark.crossref.org/dialog/?doi=10.1364/AO.56.009735&domain=pdf&date_stamp=2017-12-06


to the lens (of focal length f ). Intuitively, one might expect that
the focal spot resulting from the focussing of an incoming
Gaussian beam (of width W 0) would exhibit a decrease in
on-axis intensity as the aperture is closed. In contrast, we
demonstrate that for a judicious choice of the relative scale
parameters Y D � ρD∕W 0 and Y � ρ0∕W 0, the maximum of
on-axis intensity can in fact be increased. We explain and inter-
pret this counterintuitive behavior in terms of diffractive aberra-
tions (defocus and spherical aberration) generated by the CPA.

Consider a collimated Gaussian beam of widthW 0 incident
on the optical setup of Fig. 1(b), whose amplitude distribution
is given by

E in�ρ� � E0 exp�−ρ2∕W 2
0�: (2)

Note that the incoming wavefront described by Eq. (2) is
flat, but at the lens entrance it has a discontinuity due to
the phase profile of the CPA. The diffracted field distribution
Ed �r; Z � in any plane Z ≫ λ beyond the lens is given by the
Fresnel–Kirchhoff integral,

Ed �r;Z ��
2π

λZ

Z
ρD

0

τ�ρ�E in�ρ�

×exp
�
iπρ2

λ

�
1

Z
−
1

f

��
J0

�
2π

λZ
rρ
�
ρdρ; (3)

where r is the radial coordinate in the plane observation Z , k �
2π∕λ is the wave number, and J0 is the zero-order Bessel func-
tion of first kind. In the following, we will consider the on-axis
intensity distribution Id �0; Z � � jEd �0; Z �j2. One can show
that the on-axis electrical field Ed �0; Z � may be expressed as

Ed �0; Z � �
2πW 2

0E0

λZ

�Z
Y

0

exp�−X 2� exp�iaX 2�X dX

−

Z
Y D

Y
exp�−X 2� exp�iaX 2�X dX

�
; (4)

where the reduced transverse coordinate X is defined
X � ρ∕W 0, and the Z dependent parameter a is given by

a � πW 2
0

λ

�
1

Z
−
1

f

�
: (5)

Finally, one easily finds the following expression for the dif-
fracted on-axis intensity at any plane after the lens:
I d �0; Z �

�
�
πW 2

0E0

λZ

�
2

·
1

1� a2
f1� 4e−2Y 2

− 4e−Y 2
cos�aY 2�

� 2e−Y 2
D cos�aY 2

D�� e−2Y 2
D − 4e−�Y 2�Y 2

D� cos a�Y 2
D − Y 2�g:

(6)

Another quantity of importance is the transmission through
the aperture as a power ratio, given by

TD � 1 − exp�−2Y 2
D�: (7)

The variation of the maximum value of the on-axis intensity
I d �0; Z � versus the parameter Y D is shown in Fig. 2. For more
clarity, Figs. 2(b) and 2(c) display the variations of the maxi-
mum value of I d �0; Z � versus the diaphragm parameter Y D for
two values of Y. For Y � 0.2, we find the expected result that
the maximum intensity on the optical axis reduces as the aper-
ture is closed, i.e., as Y D decreases. In contrast, we can clearly
recognize that one observes a stronger focus when closing the
aperture over a certain range of Y D values (1.7 to 1.8).
Comparing the peak on-axis intensity for Y D∼1.7 and Y D > 3
(i.e., without aperture) shows that the maximum intensity has
been enhanced by just more than 10% while still maintaining a
good energy transmission of TD > 99%. It is observed that for
Y < 0.5 and Y > 1.9, the peak value of the on-axis intensity
decreases as the aperture is closed. While the increase of the
peak of on-axis intensity is a modest advance, it does illustrate
an interesting optical phenomenon that appears at first counter-
intuitive, and which we will address in the next section.

Another characteristic of the focused beam is the axial posi-
tion of the focus point. It is known that when a Gaussian beam
is focused by a hard-apertured lens that the point of the maxi-
mum on-axis intensity is not at the geometric focus Z � f but
is shifted toward the apertured lens. This effect is referred to as
the focal shift and has been thoroughly studied in the 1980s
[9–13] but is less known for hybrid systems such as that
investigated here. It is convenient to describe this effect
by the relative focal shift (RFS) expressed by the quantity
�Zmax − f �∕f , where Zmax is the axial distance between the
lens and the position of the maximum on-axis intensity.
The variation of this shift is shown in Fig. 3(a) as a function
of Y for the limiting case Y D → ∞ (without the diaphragm)
and as a function of Y D (without the CPA). The relative focal
shift is in both cases always negative and tends to vanish for
high values of Y and Y D. For small values of Y and Y D,
the behavior is very different, since it vanishes for Y → 0 while
it is maximum in absolute value when Y D becomes very small.

(a) 

(b) 
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Fig. 1. (a) Schematic layout showing the circular phase aperture (CPA)
made of a transparent plate with a relief of depth e � λ�2�n − 1� where n
denotes the refractive index of the plate. (b) Schematic layout showing the
CPA, the aperture, and the focusing lens.
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Figure 3(b) shows the variation of the focal shift when both
the diaphragm and CPA are present, using parameters of
Y � 0.2 and 1.6 as examples. The plot suggests that the hard-
aperture effect dominates the process.

With this in mind, we can now return to the previously dis-
cussed effect of the maximum on-axis intensity increasing when
introducing a decreasing aperture diameter. We can speculate
about the origin of this effect by considering the aberrations

resulting from the wavefront distortion due to the CPA.
Indeed, it is well known that focusing a laser beam by a lens
with spherical aberration leads to a lower intensity in the focal
point compared to aberration-free focusing [14,15]. However,
when the lens is hard apertured, it can result in a stronger focus
[16]. This is not the only argument that suggests interest in the
aberrations induced by the circular phase aperture. Indeed, the
typical laser Gaussian beam reshaping achieved by a CPA,
namely the flat-top and the optical bottle beam, are also observ-
able with the spherical aberration [17–19]. Moreover, the RFS
effect discussed above could be connected to the diffractive
lensing effect [20,21] attached to the CPA, which could be
described in term of defocus as it will be seen hereafter.
Thus it is pertinent to consider the effective aberrations of
the CPA, which we will describe in terms of Zernike polyno-
mials in the section to follow.

3. DIFFRACTIVE ABERRATIONS

As pointed out in Section 1, the incident Gaussian beam pass-
ing through the CPA will have its wavefront degraded by the
phase discontinuity described by Eq. (1). As a consequence,
one can expect that the CPA induces optical aberrations.

(a) 

(b) 

(c) 

Fig. 2. (a) Variation in the maximum value of the on-axis intensity as
a function of the aperture and CPA normalized diameters. Note that the
maximum does not occur at the same distance after the lens. (b) and
(c) show two cross sections for Y � 0.2 and Y � 1.6, respectively.
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Fig. 3. (a) Variations of the relative focal shift �Zmax − f �∕f
as a function of the aperture and CPA normalized diameters.
(b) Variations of the relative focal shift �Zmax − f �∕f as a function
of Y D for two values of Y (solid line: Y � 0.2, dashed line: Y � 1.6).
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For determining the latter, we will assume an incident plane
wavefront beam on the CPA so that the transmission function
of the CPA is exp�ikW �ρ; θ��. The evolution of the phase kW
versus the radial coordinate ρ is shown in Fig. 4 for the CPA.

As usual, the phase is expanded as a linear combination of
Zernike polynomials, Z j, as follows:

W �ρ̄; θ� �
X∞
j�1

ajZ j�ρ̄; θ�; (8)

where the index j is a polynomial-ordering number, and aj are
the expansion or aberration coefficients. The normalized radial
coordinate ρ̄ is defined as ρ̄ � ρ∕�2W 0�. Note that the circle of
radius 2W 0 contains 99.96% of the incident power as we use
this to define the unit circle for the Zernike polynomials
Z j�ρ̄; θ� to ensure their orthogonality, i.e., (0 ≤ ρ̄ ≤ 1).
With this approach, one can view the situation as follows:
the aperture, which may be of any size, truncates the incoming
Gaussian beam. This truncated beam is then influenced by the
aberrations defined using the original beam diameter as the unit
circle. Note that this definition does not affect the physics of
the situation, and so while rescaling would affect the values of
the aberrations it would not affect the trends nor the outcomes.
Moreover, this approach allows us to separate the beam profile
from the aberration definition. If so desired, the reader may
alter this to renormalize the aberration coefficients by taking
into account the profile of the truncated beam [22–25].
Thus we can compute the coefficients aj as the projections
(i.e., inner product) of the wave aberration function on each
basis function as follows:

aj �
1

π

Z
1

0

Z
2π

0

W �ρ̄; θ�Z j�ρ̄; θ�ρ̄dρ̄dθ: (9)

We use the dimensionless coefficients

Aj �
aj
λ
; (10)

in order to have an efficient description of the wavefront aberra-
tion in terms of the number of wavelengths. In principle, the
sum in Eq. (8) is infinite, but it is usually truncated after a finite
number of terms accurately describe the field. Here we work
with polynomials up to index j � 37. Some example polyno-
mials are given in Table 1, with full details found elsewhere [22].

Because of the rotational symmetry of the CPA, most of the
coefficients aj are equal to zero except for five of them: A1, A4,
A11, A22, and A37. Table 1 gives the corresponding Zernike
polynomials and the associated aberration. Note that the

aberration term for j � 4 corresponds to defocus, i.e., a pure
lensing effect, which gives rise to the focal shift.

The calculation of Eq. (9) involves the function F j�ρ̄�, for
j � 1, 4, 11, 22, and 37, defined as

F j�ρ̄� �
Z

Z j�ρ̄�ρ̄dρ̄; (11)

F 1�ρ̄� � ρ̄2∕2; (12)

F 4�ρ̄� �
ffiffiffi
3

p

2
�ρ̄4 − ρ̄2�; (13)

F 11�ρ̄� �
ffiffiffi
5

p
�ρ̄6 − 1.5ρ̄4 � 0.5ρ̄2�; (14)

F 22�ρ̄� �
ffiffiffi
7

p �2.5ρ̄8 − 5ρ̄6 � 3ρ̄4 − 0.5ρ̄2�; (15)

F 37�ρ̄� � 3�7ρ̄10 − 17.5ρ̄8 � 15ρ̄6 − 5ρ̄4 � 0.5ρ̄2�: (16)

Note that the phase term kW �ρ� has two possible values:
0 (for 0 ≤ ρ̄ < ρ̄0) and π (for ρ̄0 ≤ ρ̄ ≤ 1). This results in a
reduced aberration coefficient, Aj, following

Aj � fF j�1� − F j�ρ̄0�g � −F j�ρ̄0�; (17)

where ρ̄0 � ρ0∕�2W 0�. The plots in Fig. 5 display the varia-
tions of the coefficients Aj excluding the piston coefficient, A1,
as this does not constitute an aberration [23] and therefore has a
little interest in this study. It is seen that the different orders of
spherical aberration (A11, A22, A37) oscillate with about the
same amplitude as the radius of the CPA is varied.

Before proceeding, it is important to note that the plots dis-
played in Fig. 5 cannot be directly confirmed experimentally
by using the usual Shack–Hartman sensor, as this device is in-
trinsically insensitive to phase discontinuities. However, the

ρ 

kW/π 

ρ0 

1 

0 

Fig. 4. Transverse profile of the wave aberration function associated
with the CPA.

Table 1. Some Example Zernike Polynomials

j Z j Type of Aberration

1 1 Piston
4

ffiffiffi
3

p �2ρ̄2 − 1� Defocus
11

ffiffiffi
5

p �6ρ̄4 − 6ρ̄2 � 1� Primary spherical
22

ffiffiffi
7

p �20ρ̄6 − 30ρ̄4 � 12ρ̄2 − 1� Secondary spherical
37 3�70ρ̄8 − 140ρ̄6 � 90ρ̄4 − 20ρ̄2 � 1� Tertiary spherical
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Fig. 5. Variations of the aberration coefficients Aj versus the CPA
normalized radius.
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reconstruction of the wavefront is possible using a method
based on modal decomposition by computer-generated holo-
grams [26].

Let us now focus on the focal length, f eq, which character-
izes the diffractive lensing associated with the CPA but without
the aperture effect. For that, let us first discuss the equivalent
focal length of a pure defocus. It is worth pointing out the phase
of a collimated laser beam having passed through a thin lens of
focal length f may be written as

WL �
ρ2

2f
� R2ρ̄2

2f
; (18)

where R � 2W 0 is the radius of the Zernike circle. The only
non-zero aberration coefficient a4 can be obtained by resolving
the following integral given by Eq. (9),

a4 �
1

π

Z
1

0

Z
2π

0

WL�ρ̄; θ�Z 4�ρ̄; θ�ρ̄dρ̄dθ;

a4 �
1

π

Z
2π

0

dθ

Z
1

0

R2ρ̄2

2f
ρ̄

ffiffiffi
3

p
�2ρ̄2 − 1�dρ̄;

finally reducing to

a4 �
ffiffiffi
3

p
R2

12f
: (19)

Consequently, if we are dealing with a pure defocus aberra-
tion characterized by the normalized coefficient A4 � a4∕λ,
then, taking into account Eq. (19), it is equivalent to a pure
lens having the focal length f eq given by

f eq �
ffiffiffi
3

p
R2

12λA4

: (20)

The position zm of the new focus is given by
1

zm
� 1

f
� 1

f eq

; (21)

which leads to the relative focal shift �zm − f �∕f given
in Fig. 6.

It is worth noting that in Fig. 6 the CPA effect is described
in terms of a pure lens. The comparison between the relative
focal shift in Fig. 3 without the aperture and that in Fig. 6
shows that the agreement is only qualitative. This can be under-
stood since besides its diffractive lensing effect, the CPA also
has an effect on the beam shaping [2,3], as is shown in

Fig. 7. This reshaping action has, for instance, a tendency
to move energy from the axis to off-axis regions, thus also
affecting the position of the maximum on-axis intensity.

4. MULTI-RINGED STRUCTURES

We can wonder about the possibility to increase the generated
aberrations when the phase plate is made up of several concen-
tric phase discontinuities (0 − π − 0 − π −…). Note that such
devices are particularly useful for extending the depth of focus
of a laser beam [27–32]. This property, often called as axial
super-resolution, is useful in some applications such as optical
tweezers, optical data storage, fluorescent imaging, and har-
monic generation. Here we consider a binary concentric phase
mask made up of N zones of phase φ � π. The zones φ � π
and φ � 0 are assumed to all have the same width. The phase
of each ring is set alternately equal to 0 or π, and the number of
zones N varies from 1 to 6. Figure 8 shows an example
for N � 3.

The resulting aberration coefficients may easily be found by
applying Eq. (9), from which we find

Aj �
XN−1

i�1

F j�ρ̄2i� −
XN
i�1

F j�ρ̄2i−1�; (22)

where fρ̄2ig are the radii of the rings for which the phase change
is (π → 0), and fρ̄2i−1g are the radii of the rings for the phase
change (0 → π). Table 2 displays the defocus coefficient A4,

Fig. 6. Variations of the relative focal shift determined from the de-
focus term of the aberration associated with the circular phase aperture
of radius ρ0;W 0 is the radius of the collimated incident Gaussian beam.

Fig. 7. Normalized intensity distribution I d �r; f � in the focal plane
of the lens, showing the ability of the CPA to reshape an incident
Gaussian beam into a flat-top profile, a doughnut profile, or an
LG10-shaped profile.

Fig. 8. Variations of the normalized wave aberration function
kW∕π versus the normalized radial coordinate for a binary concentric
phase mask for N � 3.
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the primary spherical aberration coefficient A11, and the
higher-order spherical aberration coefficients A22 and A37.
Note that the caseN � 1 corresponds to the CPA already stud-
ied earlier. Contrary to what could be expected, we find (see
Table 2) that the aberration coefficients do not increase with
the number of dephasing zones; it is in fact exactly the contrary.

For the particular application given above, namely, the
extension of depth of focus, the sizes of the zones are deter-
mined using the standard optimization process [29] (genetic/
annealing). It is interesting to determine the aberration coeffi-
cients of the three -zones of the phase φ � π mask used in [25],
for which it has been observed that the depth of focus increased
by a factor of 16. Using the six values of the radius at which
the phase changes from 0 to π or π to 0 given in [29], we
obtain the following: A4�19.09×10−2, A11�−3.53×10−2,
A22 � 5.54 × 10−2, and A37 � 1.19 × 10−3. Note that in [29]
the zones have unequal widths, unlike the case considered in
Table 2. We can notice that the tertiary spherical aberration
coefficient A37 in Eq. (23) is ten times lower than A11 and
A22. This implies that it probably could be conceivable, at
the price of cumbersome calculations, to design a phase plate
taking the form of a binary concentric phase mask for the
generation of given primary, secondary, and tertiary spherical
aberrations by using standard optimization process (genetic/
annealing) for retrieving the optimal zone radii as well as their
number. If this could be possible, one could envisage the
fabrication of a pure-phase apodizer without resorting to a con-
tinuous surface-relief profile, the latter being more complicated
to fabricate and more expensive than a binary optic that requires
only one etching level. Note that the peculiarity of a binary con-
centric phase mask is to generate not only defocus and primary
spherical aberration, but also high-order spherical aberrations,
and this is probably the reason for why the depth of focus
can be increased by a large factor of 16 times [29]. Indeed, it
is known that focusing a Gaussian beam with a lens made
entirely of a quartic phase mask (primary spherical aberration)
only allows a moderate increase in the depth of focus of about
3 times [33,34].

5. CONCLUSION

In this paper, we have shown how a simple binary diffractive
optical element that, together with an aperture and lens, results
in enhanced focusing. We explain this by a careful analysis of
the aberrations (defocus, primary, and high-order spherical
aberration) generated by DOE. The peculiarity of this device
is that it generates spherical aberration (primary, secondary, and
tertiary) that oscillates with the circular phase aperture radius.

We have also characterized the aberrations’ coefficients of a
binary diffractive optical element made up of wrapped dephas-
ing zones (0 − π − 0 − π − 0 − π…). Globally, it is found that
the value of the aberration coefficients reduces as the number
of zones increases. This behavior can be exploited for extending
the depth of focus of a laser beam, creating thus super-resolution
fields. It is probably possible to design a phase plate with
wrapped dephasing zones of unequal widths for the generation
of a given primary, secondary, and tertiary spherical aberration.
If this could be carried out, one can envisage the fabrication of
a pure-phase apodizer without exploiting a continuous surface-
relief profile, which is more complicated and expensive than
a binary optics, requiring only one etching level.
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