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A Dynamic Frictionless Elastic-Viscoplastic
Problem with Normal Damped Response
and Damage
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Abstract. We consider a mathematical model for the process of a fric-
tionless contact between an elastic-viscoplastic body and a reactive foun-
dation. The material is elastic-viscoplastic with internal state variable
which may describe the damage of the system caused by plastic defor-
mations. We establish a variational formulation for the model and prove
the existence and uniqueness result of the weak solution. The proof is
based on arguments of nonlinear equations with monotone operators,
on parabolic type inequalities and fixed point.
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1. Introduction

In this paper we study a frictionless contact problem with normal damped
response for elastic-viscoplastic materials with a general constitutive law of
the form

σ (t) = Aε( .
u(t))+Eε(u(t))+

∫ t

0

G(σ(s)−Aε( .
u(s)), ε(u(s)), β(s)) ds, (1.1)

where u denotes the displacement field and σ, ε(u) represent the stress and
the linearized strain tensor, respectively. Here A and E are nonlinear opera-
tors describing the purely viscous and the elastic properties of the material,
respectively, and G is a nonlinear constitutive function which describes the
viscoplastic behaviour of the material. We also consider that the function G
depends on the internal state variable β describing the damage of the mate-
rial caused by plastic deformations. In (1.1) and everywhere in this paper the
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dot above a variable represents derivative with respect to the time variable
t. It follows from (1.1) that, at each time moment t, the stress tensor σ(t) is
split into two parts: σ(t) = σV (t) + σR(t), where σV (t) = Aε( .

u(t)) repre-
sents the purely viscous part of the stress whereas σR(t) satisfies a rate-type
elastic-viscoplastic relation with damage,

σR(t) = Eε(u(t)) +
∫ t

0

G(σR(s), ε(u(s)), β(s))ds. (1.2)

When G = 0 the constitutive law (1.1) reduces to the Kelvin-Voigt viscoelastic
constitutive relation given by

σ(t) = Aε( .
u(t)) + Eε(u(t)). (1.3)

Examples and mechanical interpretation of elastic-viscoplastic materials of
the form (1.2) in which the function G does not depend on the damage pa-
rameter β were considered by many authors, see for instance [3, 14] and the
references therein. Contact problems for materials of the form (1.1), (1.2)
without damage parameter and (1.3) are the topic of numerous papers, e.g.
[6, 11, 12, 15, 19, 20] and the recent references [1, 13]. Contact problems for
elastic-viscoplastic materials of the form (1.2) are studied in [2, 5, 18, 20]. The
damage subject is extremely important in design engineering, since it directly
affects the useful life of the designed structure or component. There exists a
very large engineering literature on it. Models taking into account the influ-
ence of the internal damage of the material on the contact process have been
investigated mathematically. General models for damage were derived in [7, 8]
from the virtual power principle. Mathematical analysis of one-dimensional
problems can be found in [9]. The damage function β is restricted to have
values between zero and one. When β = 1 there is no damage in the material,
when β = 0 the material is completely damaged, when 0 < β < 1 there is
partial damage and the system has a reduced load carrying capacity. Con-
tact problems with damage have been investigated in [10, 16, 17, 18, 20]. In
this paper the inclusion used for the evolution of the damage field is

.

β − k� β + ∂ϕK(β) � φ(σ −Aε( .
u), ε(u), β),

where K denotes the set of admissible damage functions defined by

K = {ξ ∈ H1(Ω) / 0 ≤ ξ ≤ 1 a.e. in Ω},
k is a positive coefficient, ∂ϕK represents the subdifferential of the indicator
function of the set K and φ is a given constitutive function which describes
the sources of the damage in the system.

In the present paper we consider a mathematical model for the process
of a frictionless contact between an elastic-viscoplastic body and a reactive
foundation. The contact is modelled with the normal damped response condi-
tion, see, e.g., [15] . We derive the variational formulation and prove existence
and uniqueness of the weak solution of the model.

The paper is organized as follows. In section 2 we present the notation
and some preliminaries. In section 3 we present the mechanical problem, we
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list the assumptions on the data and give the variational formulation of the
problem. In section 4 we state our main existence and uniqueness result.
It is based on arguments of nonlinear equations with monotone operators,
parabolic type inequalities and fixed point.

2. Notation and preliminaries

In this section we present the notation we shall use and some preliminary
material. For further details, we refer the reader to [4]. We denote by Sd

the space of second order symmetric tensors on R
d (d = 2, 3), while ”.” and

| . | will represent the inner product and the Euclidean norm on Sd and R
d.

Let Ω ⊂ R
d be a bounded domain with a Lipschitz boundary Γ and let ν

denote the unit outer normal on Γ. Everywhere in the sequel the index i
and j run from 1 to d, summation over repeated indices is implied and the
index that follows a comma represents the partial derivative with respect to
the corresponding component of the independent spatial variable. We use the
standard notation for Lebesgue and Sobolev spaces associated to Ω and Γ
and introduce the spaces

H = L2(Ω)d =
{
u = (ui) / ui ∈ L2(Ω)

}
,

H =
{
σ = (σij) / σij = σji ∈ L2(Ω)

}
,

H1 = {u = (ui) / ε(u) ∈ H } ,
H1 = {σ ∈ H / Div σ ∈ H} .

Here ε and Div are the deformation and divergence operators, respectively,
defined by

ε(u) = (εij(u)), εij(u) =
1

2
(ui,j + uj,i), Divσ = (σij, j).

The spaces H, H, H1 and H1 are real Hilbert spaces endowed with the canon-
ical inner products given by

(u,v)H =

∫
Ω

uivi dx ∀u,v ∈ H,

(σ, τ )H =

∫
Ω

σijτij dx ∀σ, τ ∈ H,

(u,v)H1 = (u,v)H + (ε(u), ε(v))H ∀u,v ∈ H1,

(σ, τ )H1 = (σ, τ )H + (Div σ, Div τ )H ∀ σ, τ ∈ H1.

The associated norms on the spaces H, H, H1 and H1 are denoted by
| . |H , | . |H, | . |H1

and | . |H1
, respectively. For every element v ∈ H1 we

also use the notation v for the trace of v on Γ and we denote by vν and vτ

the normal and the tangential components of v on Γ given by

vν = v.ν, vτ = v − vνν. (2.1)
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We also denote by σν and στ the normal and the tangential traces of a
function σ ∈ H1, and we recall that when σ is a regular function then

σν = (σν).ν, στ = σν − σνν, (2.2)

and the following Green’s formula holds:

(σ, ε(v))H + (Div σ,v)H =

∫
Γ

σν.v da ∀v ∈ H1. (2.3)

Let T > 0. For every real Banach spaceX we use the notation C(0, T ;X)
and C1(0, T ;X) for the space of continuous and continuously differentiable
functions from [0, T ] to X, respectively; C(0, T ;X) is a real Banach space
with the norm

| f |C(0,T ;X)= max
t∈[0,T ]

| f(t) |X
while C1(0, T ;X) is a real Banach space with the norm

| f |C1(0,T ;X)= max
t∈[0,T ]

| f(t) |X + max
t∈[0,T ]

|
.

f(t) |X .

Finally, for k ∈ N and p ∈ [1,∞], we use the standard notation for
the Lebesgue spaces Lp(0, T ;X) and for the Sobolev spaces W k,p(0, T ;X).
Moreover, if X1 and X2 are real Hilbert spaces then X1 × X2 denotes the
product Hilbert space endowed with the canonical inner product (., .)X1×X2

.

3. Mechanical and variational formulations

The physical setting is the following. An elastic-viscoplastic body occupies
a bounded domain Ω ⊂ R

d (d = 2, 3) with a Lipschitz surface Γ that is
divided into three disjoint measurable parts Γ1, Γ2 and Γ3 such that meas
(Γ1) > 0. Let T > 0 and let [0, T ] be the time interval of interest. The body
is clamped on Γ1 × (0, T ), and, therefore, the displacement field vanishes
there. Surface tractions of density f2 act on Γ2 × (0, T ) and a body force
of density f0 is applied in Ω × (0, T ). The body is in frictionless contact
with a reactive foundation over the potential contact surface Γ3 × (0, T ).
Moreover, the process is dynamic, and thus the inertial terms are included
in the equation of motion. Then, the classical formulation of the mechanical
contact problem of an elastic-viscoplastic material with damage is as follows.

Problem P. Find a displacement field u : Ω× [0, T ]→ R
d, a stress field

σ : Ω× [0, T ]→ Sd and a damage field β : Ω× [0, T ]→ R such that

σ(t) = Aε( .
u(t)) + Eε(u(t))

+

∫ t

0

G(σ(s)−Aε( .
u(s)), ε(u(s)), β(s))ds in Ω× (0, T ) , (3.1)

.

β − k� β + ∂ϕK(β) � φ(σ −Aε( .
u), ε(u), β) in Ω× (0, T ) , (3.2)

ρ
..
u = Div σ + f0 in Ω× (0, T ) , (3.3)

u = 0 on Γ1 × (0, T ) , (3.4)

σν = f2 on Γ2 × (0, T ) , (3.5)
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σν = −α | .
uν |, στ = 0 on Γ3 × (0, T ) , (3.6)

∂β

∂ν
= 0 on Γ× (0, T ) , (3.7)

u(0) = u0,
.
u(0) = v0, β(0) = β0 in Ω. (3.8)

Here (3.1) is the elastic-viscoplastic constitutive law with damage in-
troduced in section I. (3.2) represents the inclusion used for the evolution
of the damage field. (3.3) represents the equation of motion where ρ is the
mass density. (3.4)-(3.5) are the displacement-traction conditions. The first
equality in (3.6) represents the normal damped response condition (see [15])
while the second relation in (3.6) indicates that the contact is frictionless,
i.e., the tangential stress vanishes on the contact surface during the process.
(3.7) represents a homogeneous Neumann boundary condition where ∂β

∂ν is
the normal derivative of β. In (3.8) u0 is the initial displacement, v0 is the
initial velocity and β0 is the initial material damage.

To simplify the notation, we do not indicate explicitely the dependence
of various functions on the variables x ∈ Ω ∪ Γ and t ∈ [0, T ]. To obtain a
variational formulation of the problem (3.1)-(3.8) we need additional nota-
tion.

Let V be the closed subspace of H1 given by

V = {v ∈ H1 / v = 0 on Γ1} .
Then, the following Korn’s inequality holds:

| ε(v) |H≥ Ck | v |H1
∀v ∈ V,

where Ck > 0 is a constant depending only on Ω and Γ1. On the space V we
consider the inner product given by

(u,v)V = (ε(u), ε(v))H (3.9)

and let | . |V be the associated norm. It follows from Korn’s inequality that
| . |H1

and | . |V are equivalent norms on V. Therefore (V, | . |V ) is a real
Hilbert space. Moreover, by the Sobolev trace theorem there exists a positive
constant C0 which depends only on Ω, Γ1 and Γ3 such that

| v |L2(Γ3)d≤ C0 | v |V ∀v ∈ V. (3.10)

In the study of the mechanical problem (3.1)-(3.8) we assume that
The viscosity operator A : Ω× Sd → Sd satisfies⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a) There exists a constant LA > 0 such that
| A(x, ε1)−A(x, ε2) |≤ LA | ε1 − ε2 | ∀ε1, ε2 ∈ Sd, a.e. x ∈ Ω.
(b) There exists mA > 0 such that
(A(x, ε1)−A(x, ε2)).(ε1 − ε2) ≥ mA | ε1 − ε2 |2 ∀ε1, ε2 ∈ Sd,
a.e. x ∈ Ω.
(c) x→ A(x, ε) is Lebesgue measurable on Ω.
(d) The mapping x→ A(x,0) ∈ H.

(3.11)
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The elasticity operator E : Ω× Sd → Sd satisfies⎧⎪⎪⎨
⎪⎪⎩

(a) There exists a constant LE > 0 such that
| E(x, ε1)− E(x, ε2) |≤ LE | ε1 − ε2 | ∀ε1, ε2 ∈ Sd, a.e. x ∈ Ω.
(b) For any ε ∈ Sd, x→ E(x, ε) is Lebesgue measurable on Ω.
(c) The mapping x→ E(x,0) ∈ H.

(3.12)
The visco-plasticity operator G : Ω× Sd × Sd × R→ Sd satisfies⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a) There exists a constant LG > 0 such that
| G(x,σ1, ε1, β1)− G(x,σ2, ε2, β2) |
≤ LG(| σ1 − σ2 | + | ε1 − ε2 | + | β1 − β2 |)
∀σ1,σ2, ε1, ε2 ∈ Sd and β1, β2 ∈ R, a.e. x ∈ Ω.
(b) For any σ, ε ∈ Sd and β ∈ R, x→ G(x, σ, ε,β) is Lebesgue
measurable on Ω.
(c) The mapping x→ G(x,0,0,0) ∈ H.

(3.13)

The damage source function φ : Ω× Sd × Sd × R→ R satisfies⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a) There exists a constant Lφ > 0 such that
| φ(x,σ1, ε1, β1)− φ(x,σ2, ε2, β2) |
≤ Lφ(| σ1 − σ2 | + | ε1 − ε2 | + | β1 − β2 |)
∀σ1,σ2, ε1, ε2 ∈ Sd and β1, β2 ∈ R, a.e. x ∈ Ω.

(b) For any σ, ε ∈ Sd and β ∈ R, x→ φ(x,σ, ε,β) is Lebesgue
measurable on Ω.
(c) The mapping x→ φ(x,0,0, 0) ∈ H.

(3.14)
The mass density satisfies

ρ ∈ L∞(Ω), there exists ρ∗ > 0 such that ρ(x) ≥ ρ∗ a.e. x ∈ Ω. (3.15)

The function α satisfies

α ∈ L∞(Γ3), α(x) ≥ α∗ > 0 a.e. on Γ3. (3.16)

The body forces and surface tractions have the regularity

f0 ∈ L2(0, T ;H), f2 ∈ L2(0, T ;L2(Γ2)
d). (3.17)

Finally, we assume that the initial data satisfy

u0 ∈ V, v0 ∈ H, β0 ∈ K. (3.18)

We define the bilinear form a : H1(Ω)×H1(Ω)→ R by

a(ξ, ϕ) = k

∫
Ω

∇ξ.∇ϕ dx. (3.19)

We will use a modified inner product on the Hilbert space H = L2(Ω)d given
by

((u,v))H = (ρu,v)H ∀u,v ∈ H,

that is, it is weighted with ρ, and we let ‖ . ‖H be the associated norm, i.e.,

‖ v ‖H= (ρv,v)
1
2

H ∀v ∈ H.
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It follows from assumptions (3.15) that ‖ . ‖H and | . |H are equivalent
norms on H, and also the inclusion mapping of (V, | . |V ) into (H, ‖ . ‖H) is

continuous and dense. We denote by V
′
the dual space of V . Identifying H

with its own dual, we can write the Gelfand triple

V ⊂ H ⊂ V
′
.

We use the notation (., .)V ′×V to represent the duality pairing between V
′

and V and recall that

(u,v)V ′×V = ((u,v))H ∀u ∈ H, ∀v ∈ V.

Assumptions (3.17) allow us, for a.e. t ∈ (0, T ), to define f(t) ∈ V
′
by

(f(t),v)V ′×V =

∫
Ω

f0(t).v dx+

∫
Γ2

f2(t).v da ∀v ∈ V, (3.20)

and note that

f ∈ L2(0, T ;V
′
). (3.21)

Finally, we consider the functional j : V × V → R defined by

j(u,v) =

∫
Γ3

α | uν | vν ds. (3.22)

Using standard arguments we obtain the following variational formulation of
the mechanical problem (3.1)–(3.8).

Problem PV . Find a displacement field u : [0, T ] → V , a stress field
σ : [0, T ]→ H and a damage field β : [0, T ]→ H1(Ω) such that

σ(t) = Aε( .
u(t)) + Eε(u(t))

+

∫ t

0

G(σ(s)−Aε( .
u(s)), ε(u(s)), β(s))ds a.e. t ∈ (0, T ) , (3.23)

(
..
u(t),v)V ′×V + (σ(t), ε(v))H + j(

.
u(t),v)

= (f(t),v)V ′×V ∀v ∈ V a.e. t ∈ (0, T ) , (3.24)

β(t) ∈ K, (
.

β(t), ξ − β(t))L2(Ω) + a(β(t), ξ − β(t))

≥ (φ(σ(t)−Aε( .
u(t)), ε(u(t)), β(t)), ξ − β(t))L2(Ω)

∀ξ ∈ K, a.e. t ∈ (0, T ) , (3.25)

u(0) = u0,
.
u(0) = v0, β(0) = β0. (3.26)

4. An existence and uniqueness result

Our main existence and uniqueness result is the following.
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Theorem 4.1 (Main Theorem). Assume (3.11)–(3.18). Then there exists a
constant α0 > 0 which depends only on Ω, Γ1, Γ3 and A such that if |
α |L∞(Γ3) < α0, then problem PV has a unique solution {u,σ, β} with the
regularity

u ∈ H1(0, T ;V )) ∩ C1(0, T ;H),
..
u ∈ L2(0, T ;V

′
), (4.1)

σ ∈ L2(0, T ;H), Div σ ∈ L2(0, T ;V
′
), (4.2)

β ∈W 1,2(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)). (4.3)

We conclude that under the assumptions (3.11)-(3.18) the mechanical
problem (3.1)-(3.8) has a unique weak solution with the regularity (4.1)-(4.3),
provided α is sufficiently small. The proof of this theorem will be carried
out in several steps. It is based on arguments of nonlinear equations with
monotone operators, a classical existence and uniqueness result on parabolic
inequalities ([20]) and a fixed point.

In the first step we let η ∈ L2(0, T ;V
′
) be given, then there exists a

constant α0 which depends only on Ω, Γ1, Γ3 and A such that if | α |L∞(Γ3)

< α0, there exists a unique solution uη of the following intermediate problem.
Problem PVη. Find a displacement field uη : [0, T ]→ V such that

(
..
uη(t),v)V ′×V + (Aε( .

uη(t)), ε(v))H + j(
.
uη(t),v) + (η(t),v)V ′×V

= (f(t),v)V ′×V ∀v ∈ V a.e. t ∈ (0, T ) , (4.4)

uη(0) = u0,
.
uη(0) = v0. (4.5)

In the study of the problem PVη we have the following result.

Lemma 4.2. There exists a unique solution to problem PVη satisfying the
regularity expressed in (4.1).

Proof. We use an abstract existence and uniqueness result which may be
found in [20, p.48] and proceed like in [20, p.105] with another choice of the
operator. �

In the second step we let θ ∈ L2(0, T ;L2(Ω)) be given and consider the
following variational problem for the damage field.

Problem PVθ. Find a damage field βθ : [0, T ]→ H1(Ω) such that

βθ(t) ∈ K, (
.

βθ(t), ξ − βθ(t))L2(Ω) + a(βθ(t), ξ − βθ(t))

≥ (θ(t), ξ − βθ(t))L2(Ω) ∀ξ ∈ K a.e. t ∈ (0, T ) , (4.6)

βθ(0) = β0. (4.7)

In the study of the problem PVθ we have the following result.

Lemma 4.3. Problem PVθ has a unique solution βθ satisfying

βθ ∈ H1(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)). (4.8)

Proof. We use a classical existence and uniqueness result on parabolic in-
equalities (see, e.g., [20, p.47]). �
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In the third step we use the displacement field uη obtained in Lemma
4.2 and βθ obtained in lemma 4.3 to construct the following Cauchy problem
for the stress field.

Problem PVηθ. Find a stress field σηθ : [0, T ]→ H such that

σ ηθ(t) = Eε(uη(t)) +

∫ t

0

G(σ ηθ(s), ε(uη(s)), βθ(s))ds ∀t ∈ [0, T ] . (4.9)

In the study of problem PVηθ we have the following result.

Lemma 4.4. There exists a unique solution of problem PVηθ and it satis-
fies σηθ ∈ W 1,2(0, T,H). Moreover, if σi, ui and βi represent the solutions

of problem PVηiθi , PVηi
and PVθi , respectively, for (ηi, θi) ∈ L2(0, T ;V

′ ×
L2(Ω)), i = 1, 2, then there exists C > 0 such that

| σ1(t)− σ2(t) |2H≤ C(| u1(t)− u2(t) |2V
+

∫ t

0

| u1(s)− u2(s) |2V ds+

∫ t

0

| β1(s)− β2(s) |2L2(Ω) ds) ∀t∈ [0, T ] . (4.10)

Proof. Let Ληθ : L2(0, T,H)→ L2(0, T,H) be the operator given by

Ληθσ (t) = Eε(uη(t)) +

∫ t

0

G(σ (s), ε(uη(s)), βθ(s))ds, (4.11)

for all σ ∈ L2(0, T,H) and t ∈ [0, T ] . For σ1,σ2 ∈ L2(0, T,H) we use (4.11)
and (3.13) to obtain for all t ∈ [0, T ]

| Ληθσ1(t)− Ληθσ2(t) |H≤ LG
∫ t

0

| σ1(s)− σ2(s) |H ds.

It follows from this inequality that for p large enough, a power Λp
ηθ of the

operator Ληθ is a contraction on the Banach space L2(0, T ;H) and, therefore,
there exists a unique element σηθ ∈ L2(0, T ;H) such that Ληθσηθ = σηθ.
Moreover, σηθ is the unique solution of problem PVηθ and, using (4.9), the
regularity of uη, the regularity of βθ and the properties of the operators E
and G, it follows that σηθ ∈W 1,2(0, T,H).

Consider now (η1, θ1), (η2, θ2) ∈ L2(0, T ;V
′ × L2(Ω)) and, for i = 1, 2,

denote uηi
= ui,σηiθi = σi and βθi = βi. We have

σi(t) = Eε(ui(t)) +

∫ t

0

G(σi(s), ε(ui(s)), βi(s)) ds ∀t ∈ [0, T ] ,

and, using the properties (3.12) and (3.13) of E and G, we find

| σ1(t)− σ2(t) |2H≤ C(| u1(t)− u2(t) |2V +

∫ t

0

| u1(s)− u2(s) |2V ds

+

∫ t

0

| σ1(s)− σ2(s) |2H ds+

∫ t

0

| β1(s)− β2(s) |2L2(Ω) ds) ∀t ∈ [0, T ] .

(4.12)

Using now a Gronwall argument in the previous inequality we deduce
(4.10), which concludes the proof of Lemma 4.4. �
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Finally, as a consequence of these results and using the properties of the
operator G, the operator E and the function φ, for t ∈ [0, T ], we consider the
element

Λ(η, θ)(t) = (Λ1(η, θ)(t),Λ2(η, θ)(t)) ∈ V
′ × L2(Ω), (4.13)

defined by the equalities

(Λ1(η, θ)(t),v)V ′×V = (Eε(uη(t)), ε(v))H

+ (

∫ t

0

G(σ ηθ(s), ε(uη(s)), βθ(s))ds, ε(v))H ∀v ∈ V, (4.14)

Λ2(η, θ)(t) = φ(σηθ(t), ε(uη(t)), βθ(t)). (4.15)

Here, for every (η, θ) ∈ L2(0, T ;V
′ × L2(Ω)), uη, βθ and σηθ repre-

sent the displacement field, the damage field and the stress field obtained in
lemmas 4.2, 4.3 and 4.4 respectively. We have the following result.

Lemma 4.5. The operator Λ has a unique fixed point (η∗, θ∗) ∈ L2(0, T ;V
′×

L2(Ω)) such that Λ(η∗, θ∗) = (η∗, θ∗).

Proof. Let now (η1,θ1), (η2,θ2) ∈ L2(0, T ;V
′ × L2(Ω)). We use the notation

uηi
= ui,

.
uηi

= vηi
= vi,σηiθi = σi, βθi = βi for i = 1, 2. Using (3.9), (3.12)

and (3.13), we have

| Λ1(η1,θ1)(t)− Λ1(η2,θ2)(t) |2V ′

≤| Eε(u1(t))− Eε(u2(t)) |2H
+

∫ t

0

| G(σ1(s), ε(u1(s)), β1(s))− G(σ2(s), ε(u2(s)), β2(s)) |2H ds

≤ C(| u1(t)− u2(t) |2V +

∫ t

0

| σ1(s)− σ2(s) |2H ds

+

∫ t

0

| u1(s)− u2(s) |2V ds+

∫ t

0

| β1(s)− β2(s) |2L2(Ω) ds). (4.16)

We use (4.10) to obtain

| Λ1(η1,θ1)(t)− Λ1(η2,θ2)(t) |2V ′

≤ C(| u1(t)− u2(t) |2V +

∫ t

0

| u1(s)− u2(s) |2V ds

+

∫ t

0

| β1(s)− β2(s) |2L2(Ω) ds). (4.17)

By a similar argument, from (4.15), (4.10) and (3.14) it follows that

| Λ2(η1,θ1)(t)− Λ2(η2,θ2)(t) |2L2(Ω)

≤ C(| σ1(t)− σ2(t) |2H + | u1(t)− u2(t) |2V + | β1(t)− β2(t) |2L2(Ω))

≤ C(| u1(t)− u2(t) |2V +

∫ t

0

| u1(s)− u2(s) |2V ds

+ | β1(t)− β2(t) |2L2(Ω) +

∫ t

0

| β1(s)− β2(s) |2L2(Ω) ds). (4.18)
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Therefore,

| Λ(η1,θ1)(t)− Λ(η2,θ2)(t) |2V ′×L2(Ω)
≤ C(| u1(t)− u2(t) |2V

+

∫ t

0

| u1(s)− u2(s) |2V ds+ | β1(t)− β2(t)) |2L2(Ω)

+

∫ t

0

| β1(s)− β2(s) |2L2(Ω) ds). (4.19)

Moreover, from (4.4) we obtain that

(
.
v1 − .

v2,v1 − v2)V ′×V + (Aε(v1)−Aε(v2), ε(v1 − v2))H

+j(v1,v1−v2)−j(v2,v1−v2)+(η1−η2,v1−v2)V ′×V = 0 a.e. t ∈ (0, T ) .

We integrate this equality with respect to time, we use the initial conditions
v1(0) = v2(0) = v0, condition (3.10), (3.11) and (3.22) to find

(mA − C2
0 | α |L∞(Γ3))

∫ t

0

| v1(s)− v2(s) |2V ds

≤ −
∫ t

0

(η1(s)− η2(s),v1(s)− v2(s))V ′×V ds,

for all t ∈ [0, T ]. Then, using the inequality 2ab ≤ a2

γ + γb2 we obtain

∫ t

0

| v1(s)− v2(s) |2V ds ≤ C

∫ t

0

| η1(s)− η2(s) |2V ′ ds ∀t ∈ [0, T ] . (4.20)

On the other hand, from (4.6) we have

(
.

β1 −
.

β2, β1 − β2)L2(Ω) + a(β1 − β2, β1 − β2)

≤ (θ1 − θ2, β1 − β2)L2(Ω) a.e. t ∈ (0, T ) .

Integrating the previous inequality on [0, t] , after some manipulations we
obtain

1

2
| β1(t)− β2(t) |2L2(Ω)≤ C

∫ t

0

< θ1(s)− θ2(s), β1(s)− β2(s) >L2(Ω) ds,

which implies that

| β1(t)−β2(t) |2L2(Ω)≤
∫ t

0

| θ
1
(s)−θ

2
(s) |2L2(Ω) ds+

∫ t

0

| β1(s)−β2(s) |2L2(Ω) ds.

(4.21)
Applying Gronwall’s inequality to the previous inequality, we find

| β1(t)− β2(t) |2L2(Ω)≤ C

∫ t

0

| θ
1
(s)− θ

2
(s) |2L2(Ω) ds. (4.22)

Since u1(0) = u2(0) = u0, we have

|u1(t)− u2(t)|2V ≤ C

∫ t

0

| v1(s)− v2(s) |2V ds,
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we consider the previous inequality and (4.19) to obtain

| Λ(η1,θ1)(t)− Λ(η2,θ2)(t) |2V ′×L2(Ω)
≤ C(

∫ t

0

| v1(s)− v2(s) |2V ds

+ | β1(t)− β2(t) |2L2(Ω) +

∫ t

0

| β1(s)− β2(s) |2L2(Ω) ds).

It follows now from the previous inequality, the estimates (4.20) and (4.22)
that

| Λ(η1,θ1)(t)− Λ(η2,θ2)(t) |2V ′×L2(Ω)

≤ C

∫ t

0

| (η1, θ1)(s)− (η2, θ2)(s) |2V ′×L2(Ω)
ds.

Reiterating this inequality m times leads to

| Λm(η1,θ1)− Λm(η2,θ2) |2L2(0,T ;V ′×L2(Ω))

≤ CmTm

m!
| (η1, θ1)− (η2, θ2) |2L2(0,T ;V ′×L2(Ω))

.

Thus, for m sufficiently large, Λm is a contraction on the Banach space
L2(0, T ;V

′ × L2(Ω)), and so Λ has a unique fixed point. �

Now, we have all the ingredients to prove Theorem 4.1.

Proof. Let (η∗, θ∗) ∈ L2(0, T ;V
′×L2(Ω)) be the fixed point of Λ defined by

(4.13)-(4.15) and denote

u = uη∗ , β = βθ∗ ,

σ = Aε( .
u) + ση∗θ∗ . (4.24)

We prove that the triplet (u,σ,β) satisfies (3.23)-(3.26) and (4.1)-(4.3). In-
deed, we write (4.9) for η = η∗, θ = θ∗ and use (4.23)-(4.24) to obtain that
(3.23) is satisfied. Then we use (4.4) for η = η∗ and use the first equality in
(4.23) to find

(
..
u(t),v)V ′×V + (Aε( .

u(t)), ε(v))H + (η∗(t),v)V ′×V

+ j(
.
u(t),v) = (f(t),v)V ′×V ∀v ∈ V a.e. t ∈ (0, T ) . (4.25)

Equalities Λ1(η∗, θ∗) = η∗ and Λ2(η∗, θ∗) = θ∗ combined with (4.14), (4.15),
(4.23) and (4.24) show that

(η∗(t),v)V ′×V = (Eε(u(t)), ε(v))H
+ (

∫ t

0

G(σ (s)−Aε( .
u(s)), ε(u(s)), β(s))ds, ε(v))H ∀v ∈ V, (4.26)

θ∗(t) = φ(σ (t)−Aε( .
u(t)), ε(u(t)), β(t)). (4.27)

We now substitute (4.26) in (4.25) and use (3.23) to see that (u,σ,β) satisfies
(3.24). We write (4.6) for θ = θ∗ and use (4.27) to find that (u,σ,β) satisfies
(3.25). Next, (3.26) and the regularity (4.1) and (4.3) follow from Lemmas
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4.2 and 4.3. The regularity σ ∈ L2(0, T ;H) follows from Lemmas 4.2, 4.4,
assumption (3.11) and (4.24). Finally (3.24) implies that

ρ
..
u(t) = Div σ(t) + f0(t) in V

′
a.e. t ∈ (0, T ) ,

and therefore by (3.15) and (3.17) we obtain that Div σ ∈ L2(0, T ;V
′
). We

deduce that the regularity (4.2) holds which concludes the existence part of
Theorem 4.1. The uniqueness part of Theorem 4.1 is a consequence of the
uniqueness of the fixed point of the operator Λ defined by (4.13)-(4.15) and
the unique solvability of the problems PVη, PVθ and PVηθ. �
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