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Abstract 

 

In this work, we introduce a new general procedure of finding operational 

matrices of integration P , differentiation D , and product Ĉ for the 

orthonormal Bernstein polynomials (OBPs) in the same way as in [12], S. A. 

Yousefi, M. Behroozifar, Operational matrices of Bernstein polynomials and 
their applications, Int. J. Syst. Sci.41, 709-716, 2010. As an application, these 

matrices can be used to solve integral and integro-differential equations, 

differential equations, and in some problems in the calculus of variations and 

optimal control. The efficiency of this approach is shown by applying this 

procedure on some illustrative examples. 
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1. Introduction 
In the last three decades, approximations by orthonormal family of functions have 

played a vital role in the development of physical sciences, engineering and 

technology in general and mathematical analysis. They have been playing an 

important part in the evaluation of new techniques to solve problems such as 

identification, analysis and optimal control. The aim of these techniques is to obtain 

effective algorithms that are suitable for the digital computers. The motivation and 

philosophy behind this approach is that it transforms the underlying differential 

equation of the problem to an algebraic equation, thus simplifying the solution 

process of the problem to a great extent. The Bernstein polynomials are not 
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orthonormal so their use in the least square approximation are limited. Also, to the 

best of our knowledge, the operational matrix for orthonormal Bernstein polynomials 

(OBPs for short) was not investigated. To overcome this difficulty, Gram-Schmidt 

orthonormalization process can be used to construct the orthonormal Bernstein 

polynomials. In this paper, a general procedure of forming the operational matrices of 

integration P . differentiation D , and product Ĉ  for the orthonormal Bernstein 

polynomials are given 
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where  Tm xOBxOBxOBxOB )(),..,(),()( 10 and c  is an arbitrary vector and the 

matrices P , D , and 


C are of order    11  mm . 

 

Special attention has been given to applications of Walsh functions [6], block-pulse 

functions (see [2], [16], and [3]), Laguerre polynomials [5], Legendre polynomials 

[4],[9], Chebyshev polynomials [10], [14], Taylor series [13], and Fourier series [7], 

[11]. This paper is structured as follows. In Sections 2 and 3, we describe the basic 

formulation of orthonormal Bernstein polynomials and expansion of OBPs in terms of 

Taylor basis. In Sections 4 to 6, we explain general procedure of operational matrices 

of integration, differentiation and product, respectively. In Section 7, we demonstrate 

the validity, the accuracy, and the applicability of these operational matrices by 

considering some numerical examples. In Section 8, we conclude. 

 

 

2. Orthonormal Bernstein polynomials (OBPs) 
The explicit representation of the orthonormal Bernstein polynomials of mth degree 

are defined on the interval [0, 1] in [8] by 
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In addition, (1) can be written in a simpler form in terms of original non-orthonormal 

Bernstein basis functions as in [8] 
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These polynomials satisfy the following orthogonality relation 
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where ji ,  is the Kronecker delta function. For example with 5m  we have 
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Figure 1 : Orthonormal Bernstein polynomials with n=8 

 

A function )(xy  belongs to the space  1,02L  may be expanded by Bernstein 

orthonormal polynomials as follows [1], [16] 
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here if  < : >  be the standard inner product on  1,02L   then 

)(),( ,, xOBxyc mjmj                                                     (5)   

By truncating the series (4) up to (m + 1)th term we can obtain an approximation for 

)(xy as follows
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Where  Tmmmm cccc ,,1,0 ,..,, and   .)(),..,(),()( ,,1,0

T
mmmm xOBxOBxOBxOB   It can be 

easily seen that the elements of )(xOB  in the  [0. 1]  are orthogonal. 

 

3. Expansion of OBPs in terms of Taylor basis 
By using (1) and (2) we have : 
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Equation  (7) can be displayed in the following matrix form 
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and     m
m xxxxT ,...,,,1 2 .  For example with m = 5 we have 
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4. OBPs operational matrix of integration 

Let P  be an    11  mm  operational matrix of integration, then 
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By (10) we have 
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where   is    11  mm  matrix: 
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Now, we approximate the elements of vector X  in terms of    m
jmj xOB
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and then, ).(
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and therefore we have the operational matrix of integration as BMP   

For m = 5, the matrix 5P  is denoted by P  and is given as follows: 
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5. OBPs operational matrix of Derivative 

In this section, we want to derive an explicit formula for orthonormal Bernstein 

polynomials of m-th-degree operational matrix of differentiation. Suppose that D  is 

an    11  mm operational matrix of differentiation, then 
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where   is   mm 1  matrix  
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Now, we expand vector X   in terms of    m
jmj xOB

0, 
 

By using (13), we can write ),(xOBBX   where 





























1

1

3

1

1

mM

M
M

B


  

 

Thus 

)()( xOBXMxOB
dx
d

                                                    (17) 

and therefore we have the operational matrix of differentiation as XMD   
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6. OBPs operational matrix of product 
 

In this section, we want to derive an explicit formula for orthonormal Bernstein 

polynomials of mth degree operational matrix of product. Suppose that c  is an 

arbitrary   11 m  matrix, then  
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7.  Applications of the operational matrix of OBPs 
7.1 Application to the Emden-Fowler equation 

Consider the Emden-Fowler equation given in Wazwaz, [15] by 
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where ĥ  is operational matrix of product. We can express the functions x  and 1rx as 

)(),( 1 xOBkxxOBex TrT  
                                              (26) 

 

Substituting (23) and (26) in (21) we obtain 

0ˆ)()()(2)()( 1   hhxOBxOBkxOBPccxOBxOBe nTTTTT
                  (27) 

 

Using (18) we have 

ExOBxOBxOBe TTT ˆ)()()(                                                  (28) 

and 

KxOBxOBxOBk TTT ˆ)()()(                                                           (29) 

 

Substituting (29) and (28) in (27) we get 

0ˆˆ)()()(2ˆ)( 1   hhKxOBxOBcPxOBcExOB nTTTT
 

or 

0ˆˆ2ˆ 1   hhKcPcE nT
                                                       (30) 

 

Equation (30) is a set of algebraic equations which can be solved for c. 

Now, we apply the above presented method with 3m  and 5m  for solving 

Equation (21) with 0r and 1n which has the exact solution 
x

xxy )sin(
)(  . 
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In Table 1, a comparison is made between the approximate values using the present 

approach together with the exact solution. 

 

We found the approximated solution for m = 3 and m = 5 as follows: 

1.0000 +100 618 4.-21 0.164-

104 317 5.- 108 414 1.102 2.721)(

96 0.999 +108 942 1. +15 0.176-108 562 1.)(

42

334253

3

3232

3

xx
xxxxy

xxxxy













 

 

 

Table 1. Estimated and exact values 

 

x
 

Present method with
 Exact solution

 m=3 m=5 
0.1 0.99837 0.998 31 0:9983341664682815 

0.2 0.99340 0.993 32 0:9933466539753061 

0.3 0.98509 0.985 05 0:9850673555377986 

0.4 0.97352 0.973 54 0:9735458557716263 

0.5 0.95881 0.958 85 0:958851077208406 

0.6 0.94104 0.941 08 0:9410707889917257 

0.7 0.92031 0.920 33 0:9203109817681301 

0.8 0.89672 0.896 72 0:8966951136244035 

0.9 0.87037 0.870 37 0:8703632329194261 

1.0 0.84136 0.841 44 0:8414709848078965 

 

  

Figure 2: Graph of exact solution 

and approximate solution at m=5 

Figure 3: Graph of absolute errors 

for m=5 
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7.2 Application to the Linear Fredholm Integro-Differential Equation 

We consider the following linear Fredholm integro-differential equation 










 

0

1

0

)0(

10,)(),()()()(

yy

xdssysxkxyxfxy
                            (31) 

where the function   1,0)( 2Lxf   , the kernel     1,01,0),( 2 Lsxk  

)()(,)()0()()( 0 xOBFxfxOBYyxOBYxy TTT 
   

 

then ),()(),( sKOBxOBsxk T
 
where   )(),,(,)( ,,, sOBsxkxOBk mj

T
miji  

Then 

 

Substituting into (31) we have 

 

 

   
   

   FYKYPKPIY

YYPKYYPFY
YYPKxOBYYPxOBFxOB

dsYYPxOBsKOBxOB

YYPxOBFxOBYxOB

TT

TT

TTTTT

x TTT

TTTT















00

1

00

00

0
0

0

)()()(

)()()(

)()()(

 

By solving the above linear system we can find the vector Y  ,  so  
TTT YPYY 0

 
or )()( xOBYxy T  

Now, We consider the following linear Fredholm integro-differential equation 










 
0)0(

)()(
1

0

y

dssxyxexexy xx

 

with exact solution
xxexy )(  

We found the approximated solution for  m = 3 and  m = 5  as follows 

52

3453

3

323

3

106 5.587 +97 0.9988 1.004

34 0.495 68 0.155103 342 6.)(

108 2.825 -1 065 1. +26 0.683 +90 0.980)(













xx
xxxxy

xxxxy

 

 

 

Table 2. Approximate and exact solutions for example 2. 

 

x
 

Present method with
 

Exact solution
 

m=3 m=5 
0.1 0.11150 0.11051 0.110517091807565 

0.2 0.24537 0.24427 0.244280551632034 

  )(

)()()0()()(

0

1

0
0

1

0

xOBYPY

xOBYdssOBYydssyxy
TT

TT



 
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0.3 0.40468 0.40497 0.404957642272801 

0.4 0.59531 0.59675 0.596739879056508 

0.5 0.82315 0.82437 0.824360635350064 

0.6 1. 0941 1. 0933 1. 093271280234305 

0.7 1. 4140 1. 4096 1. 409626895229334 

0.8 1. 7888 1. 7805 1. 780432742793974 

0.9 2. 2243 2. 2137 2. 213642800041255 

1.0 2. 7264 2. 7183 2.718281828459046 

 

  
Figure 4: Graph of exact solution 

and approximate solution at m=5 

Figure 5: Graph of absolute errors 

for m=5 

 

 

Conclusion 
n this paper, we have first constructed orthonrmal polynomials OB(x) of degree n by 

applying Gram-Schmidt orthonormalization process on the Bernstein polynomials 

B(x). Then, we have used another different numerical procedure to derive the OBPs 

operational matrices of integration P , differentiation D  and product Ĉ . A general 

procedure of forming these matrices is given. These matrices can be used to solve 

problems such as the calculus of variations, integro-differential equation, differential 

equations, optimal control and integral equations, like that of other basis. The method 

is general, easy to implement, and yields very accurate results. Moreover, only a small 

number of bases are needed to obtain a satisfactory result. Numerical treatment is 

included to demonstrate the validity and applicability of these operational matrices. 

What is new in this work, besides its difficulty compared to Bernstein polynomials 

B(x), is that we can write OB(x) in terms of Taylor basis. Here, the advantage in the 

form of OB(x) is the easier computation of the coefficients c compared to that of B(x). 

We have estabilished the general form of P, and computed the operational matrix of 

derivation D, and we have given the general form of the matrix derived from the 

product. The efficiency of this method is shown on examples such as the Lane-Fowler 

equations and on some integro-differential equations. The first example shows the 

efficient use of theses matrices by transforming the problem to a set of algebraic 

equations which are easy to solve. The results obtained are very precise compared to 
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those obtained in [12]. Example 2 shows how it is easier to solve integral and integro-

differential equations. 
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