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Abstract

In this work, we introduce a new general procedure of finding operational

matrices of integration P, differentiation D, and product Cfor the
orthonormal Bernstein polynomials (OBPs) in the same way as in [12], S. A.
Yousefi, M. Behroozifar, Operational matrices of Bernstein polynomials and
their applications, Int. J. Syst. Sci.41, 709-716, 2010. As an application, these
matrices can be used to solve integral and integro-differential equations,
differential equations, and in some problems in the calculus of variations and
optimal control. The efficiency of this approach is shown by applying this
procedure on some illustrative examples.
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1. Introduction

In the last three decades, approximations by orthonormal family of functions have
played a vital role in the development of physical sciences, engineering and
technology in general and mathematical analysis. They have been playing an
important part in the evaluation of new techniques to solve problems such as
identification, analysis and optimal control. The aim of these techniques is to obtain
effective algorithms that are suitable for the digital computers. The motivation and
philosophy behind this approach is that it transforms the underlying differential
equation of the problem to an algebraic equation, thus simplifying the solution
process of the problem to a great extent. The Bernstein polynomials are not
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orthonormal so their use in the least square approximation are limited. Also, to the
best of our knowledge, the operational matrix for orthonormal Bernstein polynomials
(OBPs for short) was not investigated. To overcome this difficulty, Gram-Schmidt
orthonormalization process can be used to construct the orthonormal Bernstein
polynomials. In this paper, a general procedure of forming the operational matrices of

integration P . differentiation D, and product C for the orthonormal Bernstein
polynomials are given

IOB(t)dt ~ Px OB(x)

4 OB(x) ~ Dx OB(x)
dx

¢"OB(x)OB(x)" ~ OB(x)xC
where OB(x) = [OBO(x),OBl(x),..,OBm (x)]T and ¢ is an arbitrary vector and the

matrices P, D, and C are of order (m+1)x(m+1).

Special attention has been given to applications of Walsh functions [6], block-pulse
functions (see [2], [16], and [3]), Laguerre polynomials [5], Legendre polynomials
[4].[9], Chebyshev polynomials [10], [14], Taylor series [13], and Fourier series [7],
[11]. This paper is structured as follows. In Sections 2 and 3, we describe the basic
formulation of orthonormal Bernstein polynomials and expansion of OBPs in terms of
Taylor basis. In Sections 4 to 6, we explain general procedure of operational matrices
of integration, differentiation and product, respectively. In Section 7, we demonstrate
the validity, the accuracy, and the applicability of these operational matrices by
considering some numerical examples. In Section 8, we conclude.

2. Orthonormal Bernstein polynomials (OBPs)
The explicit representation of the orthonormal Bernstein polynomials of m" degree
are defined on the interval [0, 1] in [8] by

& w(2mal=kY ) .
0B, (x)= y2(m—-1)+1(1+x)" -’;(—1)( '”]Jr_k ](Qxf =0y

In addition, (1) can be written in a simpler form in terms of original non-orthonormal
Bernstein basis functions as in [8]

[2m+1—kj(j]
08,, )=V 10e S0 A g ()70
k=0
5o

These polynomials satisfy the following orthogonality relation

()
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1
JOBi,m (t)OB],m (t)dt = 51"1" l,] = 0,...,m (3)
0

where &, ; is the Kronecker delta function. For example with m =35 we have
OB, 5 (x) =J11(1—x)’
OB, 5(x) =3(11x-1)1-x)*
OB, ;(x) = \/7(55)62 —20x +1X1— x)3
OB, 5(x) = /5(165x° ~135x7 + 27x ~ L)1 x)’
OB, ;(x) = /3(330x* — 480x° + 216x% — 32x + 11— x)
OB, 4(x) = 462x° —1050x" +840x> — 280x* + 35x —1

10

Figure 1 : Orthonormal Bernstein polynomials with n=8

A function y(x) belongs to the space Lz[O,l] may be expanded by Bernstein
orthonormal polynomials as follows [1], [16]

Y(0)=Y¢,,08,,(x) @

here if <:> be the standard inner product on LZ[O,l] then

¢ =(7(x).08,,,(x)) ©)
By truncating the series (4) up to (m + 1) term we can obtain an approximation for
y(x) as follows

v(x)=2¢;,0B,,(x) =" OB(x) ©)
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Where c=[c0’m,cllm,..,cm'm]7and OB(x):[OBoym(x),OBllm(x),..,OB (x)]’. It can be

m,m

easily seen that the elements of OB(x) inthe [0. 1] are orthogonal.

3. Expansion of OBPs in terms of Taylor basis
By using (1) and (2) we have :

j=0 k:max{0,1—m+z} (7)
xe[01}i=0,.,m
where
m—i
a, = )(F j r=0..m ®)
o (2m+1—-i+ i
o=(-1)" : =0,...,1
B, =(-1) L. j(i_ jJ =00 (©)
Equation (7) can be displayed in the following matrix form
OB(x)=MT,(x),x €[0]] (10)
where
min{i,j}
Mi,j = 2 m_l +1 iai,j—kﬁi,k’ ilj:Ol""m (11)

k=max {0, j—m-+i}

and 7, (x)=[Lx,x°,...x"]. For example with m = 5 we have

Ji1 511 10411 10411 511 11 |

-3 45 ~150 210 ~135 33
M =| VT 237 1187 -226V7 185J7  -55/7

5 295  -190/5 462./5 —465/5 1655

J3

1

—33.J3 2483 —-69643 81043  —33043
35 —280 840 ~1050 462
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4. OBPs operational matrix of integration
Let P bean (m +1)><(m +1) operational matrix of integration, then

IOB(t)dtszOB(x), xe[0]] (12)
0
By (10) we have
1 0 0 .. 0 X
TOB(t)dt=M? :1/2 :0 ? | ax
° 00 0 . Ymed]em
1 0 0 .. O X
where A is (m+1)x(m+1) matrix:A:? :1/2 O O and X = :xz
00 0 . Ymel

Now, we approximate the elements of vector X in terms of {OB,, (x)}’;‘zo
by (10), we have T,(x)= M "OB(x) then for k=0,...,m.

x* = M, ,0B(x) (13)
M*

: : M,
Where M}, is (k + 1)" row of M *for k=0,...,m, thatis M~ =| 2

-1
_Mk+1_

So, we just need to approximate x" by using (5), we have x"" =c! OB(x)
Where

1
Cpa = ["OB()d (14)
0
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_Mgl _
M
and then, X =|:
M,

T
C

L~ m+l |

IOB(t)dt ~ MAB x OB(x), Xe [0,1]

OB(x). Let B=|:

_Mz’l -

M

-1

M k+1
T

C

m+l |
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, we have

(15)

and therefore we have the operational matrix of integration as P ~ MAB
For m =5, the matrix £, is denoted by P and is given as follows:

11 2 g 109
= =~ =
72 264 3960
s oV
Lt m i !
| 3960 120 72
- I I
11880 360 216
Lt om lp L
23760 720 432
m 55
| 33264 1008 3024

5. OBPs operational matrix of Derivative
In this section, we want to derive an explicit formula for orthonormal Bernstein
polynomials of m-th-degree operational matrix of differentiation. Suppose that D is

an (m +1)><(m +1)0perationa| matrix of differentiation, then

diOB(x) ~ DxOB(x) , where x <[0/]
X

B g 699 925
= 55 =33 ==
11880 23760 33264
29 61 8
360 720 1008
T Mp 8
216 432 3024

5 5 23

= = 15 = 5
72 144 1008
g L ¥
144 2 504
25 1A 1
1008 504 7.

(16)

From (10) we have, OB(x) =MT, (x) and then

00
1 0
d 0 2
—OB(x)=M
dx o
100

0
0

0

=MA'X'
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000 ..0 0
1 00 0
1
_ _ 2 0 0
where A’ is (m+1)xm matrix A'= and X'=|x
000 .. m X"
Now, we expand vector X interms of {OB, , (x)}’;“zo
3]
; te X' B | M
By using (13), we can write X' = B'OB(x), where B’ =|
M*l

Thus
di OB(x) ~ MA'X' x OB(x) a7
x

and therefore we have the operational matrix of differentiation as D =MA'X’
For example with m = 5 we have

—1—21 —%\/ﬁ 0 0 0 0
Vg 2 Vg 0 0 0
6 2 21
i Baoo I JZps 0
Ds = ot o7 2 ° 16
J511 345 %\/ﬁ -5 _E‘/E 0
_BIL 3B -2t f_;ﬁ _g _3_65@
J11 -3 J7 ~J5 %1\/5 3—;

6. OBPs operational matrix of product
In this section, we want to derive an explicit formula for orthonormal Bernstein
polynomials of m™ degree operational matrix of product. Suppose that ¢ is an

arbitrary (m-+1)x1 matrix, then Cis an (m+1)><(m+1) operational matrix of
product whenever

" OB(x)OB(x)" ~ OB(x)x C (18)
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By (10) and since ¢"OB(x) = i“c_jOBLm (x), we have

c¢"OB(x)OB(x)" ~ OB(x) ><=Tm (x)"M”
= [CTOB(X),X(CTOB(X)),XZ(CTOB()C)),..., x" (CTOB(x))]MT

:{ch()Bﬁm (x),chxOBk]m(x),chszBk'm (x),...,chx’” Bk]m(x)}MT (19)
k=0 k=0 k=0 k=0

Now, we approximate all functions x’OB, , (x), j =0....,m, in terms of
{OBjm (x)}j:o '

Let

T _ | jk _jk. j,k]
ejvk—[eo €1 e €,

by (5), we have
x’OB,,,(x) = e_;kOB(x),j,k =0,...m

Thus, we obtain

ick.ijBk,m (x) = ick (i elTkOBi,m (X)]
k=0 k=0 \i=0
= i 0B, (x)(i Ckei].-k ]

i=0 k=0

= OB(X)T [ej,O y ej,l""’ ejymk
=0B(x)'E,., (20)

where EN = [ejvo,ejyl,...,ej]m]c
By defining matrix £ = [E](m+1)x(m+1) = [El,EZ,..,Enl] and inserting (19) into (20) we
have
cTOB(x)OB(x)" ~ OB(x) x EM"
So
C=EM'

7. Applications of the operational matrix of OBPs
7.1 Application to the Emden-Fowler equation
Consider the Emden-Fowler equation given in Wazwaz, [15] by
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y'(x)+ éy'(x) +x"y"(x)=00<x<lnelNu {O}
X

with initial conditions
y(0) =1, Y'(0)=0

We assume that the unknown function y"(x) is approximated by
y'(x) =c"OB(x)

Using (15) and the initial conditions (22) we have
V' (x) =" PxOB(x), y(x) = " P* xOB(x) +d" OB(x) = h" OB(x)

Where d"OB(x) =1and h = (PT)Zc +d , by (24) and (18) we have
Y2(x) = k" OB(x)OB(x)" h = OB(x)hh
and
Y3 (x) = k" OB(x)OB(x)" hh = OB(x)h2h

So, by induction we
y'(x) = OB(x)ThA"_lh, nelN

(21)

(22)

(23)

(24)

(25)

where 7 is operational matrix of product. We can express the functions x and x"*'as

x=e"OB(x),x"" = k" OB(x)

Substituting (23) and (26) in (21) we obtain
¢’ OB(x)OB(x) ¢+ 2¢" Px OB(x) + kT OB(x)OB(x)" " *h =0

Using (18) we have

¢’ OB(x)OB(x)" = OB(x)"E
and

k"OB(x)OB(x)" = OB(x)" K

Substituting (29) and (28) in (27) we get
OB(x)" Ec +20B(x)" P"cx OB(x) + OB(x)" Kh"*h =0
or
Ec+2P c+Kh"h=0

Equation (30) is a set of algebraic equations which can be solved for c.

(26)

(27)

(28)

(29)

(30)

Now, we apply the above presented method with m =3 and m=5 for solving

Equation (21) with » =0and » =1which has the exact solution y(x) =

sin(x)
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In Table 1, a comparison is made between the approximate values using the present
approach together with the exact solution.

We found the approximated solution for m = 3 and m = 5 as follows:
V5(x) =1.5628x107°x"-0.176 15x° +1.9428x10°x + 0.999 96

P5(x) =—2.7212x107°x° +1.4148x10 *x* -5.317 4x10°x°
-0.164 21x? - 4.6180x10*x +1.0000

Table 1. Estimated and exact values

Present method with ]
X Exact solution
m=3 m=5

0.1 0.99837 0.998 31 0:9983341664682815
0.2 0.99340 0.993 32 0:9933466539753061
0.3 0.98509 0.985 05 0:9850673555377986
0.4 0.97352 0.973 54 0:9735458557716263
0.5 0.95881 0.958 85 0:958851077208406
0.6 0.94104 0.941 08 0:9410707889917257
0.7 0.92031 0.920 33 0:9203109817681301
0.8 0.89672 0.896 72 0:8966951136244035
0.9 0.87037 0.870 37 0:8703632329194261
1.0 0.84136 0.841 44 0:8414709848078965

098}

Exact solutin |-
& m=5

.04 F oo 0 . S—

096

2 092}
>

Absolute Error

09
086

0 02 04 06 038 1 0 02 04 06 08 1

Figure 2: Graph of exact solution Figure 3: Graph of absolute errors
and approximate solution at m=5 for m=5
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7.2 Application to the Linear Fredholm Integro-Differential Equation
We consider the following linear Fredholm integro-differential equation

{y'(x) = f(x)+y(x)+ ij(x, $)y(s)ds, 0<x<1
¥(0) = y,
where the function 7'(x) € I2[0,1] , the kernel k(x, s) e £2([01]x[0,1])

Y (x)=Y"0B(x) y(0)=Y,OB(x) ,f(x)=F"OB(x)
then k(x,s) = OB(x)" KOB(s), where k., =<OB,, (x)",<k(x,s),0B,,(s) >>
Then

(31)

Y+ = [y (s)ds + y(0) =[ Y7 OB(s)ds + Y, OB(x)

—(r" P+, JoB(x)
Substituting into (31) we have
OB(x)"Y' = OB(x)" F + OB(x)" (P"Y'+,)

+ [ OB(x)" KOB(s)OB(x)' (P"Y"+Y, s
= OB(x)" F + OB(x)" (P"Y' +Y, )+ OB(x) K(P"Y' +Y,)
Y'=F+(P'Y' +%,)+ K(P'Y'+Y,)
=Y =(I-KP" = P"J(KY, + Y, +F)
By solving the above linear system we can find the vector Y’, so
Y'=Y"P+Y] or y(x)=Y"OB(x)
Now, We consider the following linear Fredholm integro-differential equation
1
{y'(x) =xe" +e* —x+ny(s)ds

»(0)=0
with exact solution y(x) = xe”
We found the approximated solution for m=3and m =5 as follows
v,(x) =0.98090x> +0.683 26x° +1.0651x - 2.8258x10°°

v5(x) =6.3423x10°x" + 0.15568x" + 0.495 34x°
+1.004 8x* +0.99897x +5.587 6 x10™°

Table 2. Approximate and exact solutions for example 2.

X Present method with Exact solution
m=3 m=5

0.1 0.11150 0.11051 0.110517091807565

0.2 0.24537 0.24427 0.244280551632034
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0.3 0.40468 0.40497 0.404957642272801
0.4 0.59531 0.59675 0.596739879056508
0.5 0.82315 0.82437 0.824360635350064
0.6 1. 0941 1. 0933 1. 093271280234305
0.7 1. 4140 1. 4096 1. 409626895229334
0.8 1. 7888 1. 7805 1.780432742793974
0.9 2. 2243 2. 2137 2. 213642800041255
1.0 2. 7264 2.7183 2.718281828459046

B3
S,

Exact solution :
PG & m=5

05

(X
o
Absolute Error
o =S N w S w o~ £

0l

h i i
02 04 06 08 1

i i i i
0.2 04 06 08 1

o

Figure 4: Graph of exact solution Figure 5: Graph of absolute errors
and approximate solution at m=5 for m=5
Conclusion

n this paper, we have first constructed orthonrmal polynomials OB(x) of degree n by
applying Gram-Schmidt orthonormalization process on the Bernstein polynomials
B(x). Then, we have used another different numerical procedure to derive the OBPs

operational matrices of integration P, differentiation D and product C. A general
procedure of forming these matrices is given. These matrices can be used to solve
problems such as the calculus of variations, integro-differential equation, differential
equations, optimal control and integral equations, like that of other basis. The method
is general, easy to implement, and yields very accurate results. Moreover, only a small
number of bases are needed to obtain a satisfactory result. Numerical treatment is
included to demonstrate the validity and applicability of these operational matrices.
What is new in this work, besides its difficulty compared to Bernstein polynomials
B(x), is that we can write OB(x) in terms of Taylor basis. Here, the advantage in the
form of OB(X) is the easier computation of the coefficients c compared to that of B(x).
We have estabilished the general form of P, and computed the operational matrix of
derivation D, and we have given the general form of the matrix derived from the
product. The efficiency of this method is shown on examples such as the Lane-Fowler
equations and on some integro-differential equations. The first example shows the
efficient use of theses matrices by transforming the problem to a set of algebraic
equations which are easy to solve. The results obtained are very precise compared to
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those obtained in [12]. Example 2 shows how it is easier to solve integral and integro-
differential equations.

References

[1]
[2]
[3]
[4]
[5]

[6]

[7]

[8]

[9]

[10]

[11]
[12]

[13]

[14]

[15]

M. I. Bhatti, P. Bracken, Solutions of differential equations in a Bernstein
polynomial basis, J. Comput. Appl. Math. 205, 272-280.2007.

A. Deb, A. Dasgupta, G. Sarkar, A new set of orthogonal functions and its
application to the analysis of dynamic systems, J. Frank. Inst. 343, 1-26, 2006.
Z. H. Jiang, W. Schaufelberger, Block Pulse Functions and Their Applications
in Control Systems, Springer-Verlag, 1992.

F. Khellat, S. A. Yousefi, The linear Legendre wavelets operational matrix of
integration and its application, J. Frank. Inst. 343, 181-190, 2006.

F. C.Kung, and H. Lee, Solution and parameter estimation of linear time
invariant delay systems using Laguerre polynomial expansion, Journal on
Dynamic Systems, Measurement, and Control, 297-301, 1983.

I. Lazaro , J. Anzurez , M. Roman M, Parameter estimation of linear systems
based on walsh series, The Electronics, Robotics and Automotive Mechanics
Conference, 355-360, 2009.

M. H. Farahi, M. Dadkhah, Solving Nonlinear Time Delay Control Systems by
Fourier series, Int. Journal of Engineering Research and Applications, Vol. 4,
Issue 6, 217-226, 2014.

S. Javadi, E. Babolian, Z. Taheri, Solving generalized pantograph equations by
shifted orthonormal Bernstein polynomials, J. Comput. Appl. Math, 303
(2016)1-14

F. Marcellan, and W.V. Assche, Orthogonal Polynomials and Special
Functions (a Computation and Applications), Springer-Verlag Berlin
Heidelberg, 2006.

H. R. Marzban and M. Shahsiah, Solution of piecewise constant delay systems
using hybrid of block- pulse and Chebyshev polynomials, Optim. Contr. Appl.
Met., Vol. 32, pp.647-659, 2011.

A. Richard . A. Bernatz. Fourier series and numerical methods for partial
differential equations. John Wiley & Sons, Inc., New York, 2010.

S. A. Yousefi, M. Behroozifar, Operational matrices of Bernstein polynomials
and their applications, Int. J. Syst. Sci. 41, 709-716, 2010.

M. Sezer, and A. A. Dascioglu, Taylor polynomial solutions of general linear
differential-difference  equations  with  variable coefficients,  Appl.
Math.Comput.174, 1526-1538, 2006.

M. Shaban and S. Kazem and J. A. Rad, A modification of the homotopy
analysis method based on Chebyshev operational matrices, Math. Comput.
Model, in press. 2013.

A. M. Wazwaz, Adomian decomposition method for a reliable treatment of the
Emden-Fowler equation, Appl.Math.Comput.161 543-560.2005.



4232 Abdelkrim Bencheikh, Lakhdar Chiter and Abbassi Hocine

[16] X. T. Wang, Numerical solutions of optimal control for time delay systems by
hybrid of block-pulse functions and Legendre polynomials Applied
Mathematics and Computation, 184, 849-856, 2007.





