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A nonlinear parabolic problem with a nonlocal boundary condition is studied. We prove
the existence of a solution for a monotonically increasing and Lipschitz continuous
nonlinearity. The approximation method is based on Rothe’s method. The solution on each
time step is obtained by iterations, convergence of which is shown using a fixed-point
argument. The space discretization relies on FEM. Theoretical results are supported by
numerical experiments.
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1. Introduction

Let us consider an open bounded domainΩ ⊂ Rd, d ≥ 1 (with a Lipschitz boundary Γ ) and a finite time interval [0, T ].
Let ν be the outer unit normal vector to Γ .
This paper deals with the solvability of the following nonlinear evolution equation with a nonlocal Robin-type boundary

condition (BC)

∂tg(u)−∆u = f (u) in (0, T )×Ω

−∇u · ν = αu+ β +
∫
Ω

Ku on Γ

u(0) = u0 inΩ,

(1)

where α, β, g, K and f are given functions. We adopt the following conditions on the data:

g(0) = 0, 0 < γ ≤ g ′ ≤ L
0 ≤ α, |α′| ≤ C
|f (x)− f (y)| ≤ C |x− y|, ∀x, y
β ′ ∈ L2 ((0, T ), L2(Γ )) , K ∈ L2(Ω), u0 ∈ H1(Ω).

(2)

Linear parabolic problems with a nonlocal BC have been studied in the last decades. Dirichlet BC in 1D arises in the
theory of linear thermoelasticity; cf. [1,2]. The well-posedness of this linear problem has been discussed in [3–5] under the
additional condition∫

Ω

|K(x)| dx < 1.

∗ Corresponding author.
E-mail addresses:marian.slodicka@ugent.be (M. Slodička), sofiane.dehilis@ugent.be (S. Dehilis).
URL: http://cage.ugent.be/∼ms/ (M. Slodička).

1 The author is also associated with the Larbi Ben M’hidi University Center, P.O.Box 358, Oum El Bouaghi, 04000, Algeria.

0377-0427/$ – see front matter© 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.cam.2009.07.059

http://www.elsevier.com/locate/cam
http://www.elsevier.com/locate/cam
mailto:marian.slodicka@ugent.be
mailto:sofiane.dehilis@ugent.be
http://cage.ugent.be/~ms/
http://cage.ugent.be/~ms/
http://cage.ugent.be/~ms/
http://cage.ugent.be/~ms/
http://cage.ugent.be/~ms/
http://dx.doi.org/10.1016/j.cam.2009.07.059


Author's Personal Copy
M. Slodička, S. Dehilis / Journal of Computational and Applied Mathematics 233 (2010) 3130–3138 3131

Stronger conditions on K were needed in numerical studies — cf. [6–9]. The stability of various numerical algorithms has
been addressed in [10].
Solvability subject to a nonlocal Robin BC has been studied in [11–13]. Numerical study based on monotonicity methods

has been performed in [14].
The paper is organized as follows. First we perform the time discretization based on Rothe’s method. The nonlinear

problem on each time point is solved using a relaxation technique. In this way a solution to the nonlinear problem is
approached by a sequence of linear BVPs with a nonlocal BC. The well-posedness of these linear problems is based on the
superposition principle - cf. [13]. We show the convergence of the relaxation iterations. Further we perform the stability
analysis and finally we prove the existence of a solution to the original nonlinear parabolic problem. The last section is
devoted to some numerical experiments.
Finally, as it is usual in papers of this sort, C, ε and Cε will denote generic positive constants depending only on a priori

known quantities, where ε is small and Cε is large.

2. Time discretization

First, we denote by (w, z)M the standard L2-scalar product of the functionsw and z on a setM , i.e.,

(w, z)M =
∫
M
wz

and the corresponding norm

‖w‖2M = (w,w)M .

The subscript will be suppressed ifM = Ω .
We divide the time interval [0, T ] into n ∈ N equidistant subintervals (ti−1, ti) for ti = iτ , where τ = T

n . We introduce
the following notation

zi = z(ti), δzi =
zi − zi−1
τ

for any function z.
The Rothe method is an efficient tool for solving evolution problems. Replacing the time derivative by the backward

difference, a time-dependent problem is approximated by a sequence of nonlinear elliptic problems with a nonlocal BC,
which have to be solved successively with increasing time step ti for i = 1, . . . , n. More exactly,

δg(ui)−∆ui = f (ui−1) inΩ
−∇ui · ν = αiui + βi + (K , ui) on Γ
u0 = u0 inΩ.

(3)

The solution ui on any time step ti will be approached in the following relaxation process with running index k

Lui,k − τ∆ui,k = τ f (ui−1)+ g(ui−1)+ Lui,k−1 − g(ui,k−1) inΩ
−∇ui,k · ν = αiui,k + βi +

(
K , ui,k

)
on Γ

ui,0 = ui−1 inΩ.
(4)

This is a linear BVP with a nonlocal BC for any fixed i and k. Its solvability is addressed in the following lemma.

Lemma 2.1. Assume (2). Then there exists 0 < τo such that the problem (4) is well-posed for all i and k and 0 < τ < τ0 and
there exists a unique weak solution ui,k ∈ H1(Ω) to (4).

Proof. First we introduce a function h as

h(s) = Ls− g(s).

Clearly

0 ≤ h′(s) = L− g ′(s) ≤ L− γ .

The variational formulation of (4) reads as

L
(
ui,k, ϕ

)
+ τ

(
∇ui,k,∇ϕ

)
+ ταi

(
ui,k, ϕ

)
Γ
+ τ

(
K , ui,k

)
(1, ϕ)Γ

=
(
τ f (ui−1)+ g(ui−1)+ h(ui,k−1), ϕ

)
− τ (βi, ϕ)Γ (5)

for any ϕ ∈ H1(Ω). The left-hand side

a(ui,k, ϕ) := L
(
ui,k, ϕ

)
+ τ

(
∇ui,k,∇ϕ

)
+ ταi

(
ui,k, ϕ

)
Γ
+ τ

(
K , ui,k

)
(1, ϕ)Γ

represents a continuous bilinear form in H1(Ω).
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Using the Cauchy inequality, trace theorem and the Young inequality we can write that(
K , ui,k

) (
1, ui,k

)
Γ
≤ ‖K‖

∥∥ui,k∥∥√|Γ | ∥∥ui,k∥∥Γ
≤ C

∥∥ui,k∥∥ (∥∥ui,k∥∥+ ∥∥∇ui,k∥∥)
≤ C

∥∥ui,k∥∥2 + 12 ∥∥∇ui,k∥∥2 .
Therefore

a(ui,k, ui,k) ≥ (L− Cτ)
∥∥ui,k∥∥2 + τ2 ∥∥∇ui,k∥∥2 ,

which implies the coercivity of a in H1(Ω) if τ < τ0 (τ0 is a sufficiently small positive number). The right-hand side of (5) is
a liner bounded functional on H1(Ω). The rest of the proof is a consequence of the Lax–Milgram lemma. �

Convergence of the relaxation process is discussed in the following lemma.

Lemma 2.2. Suppose (2). Then for sufficiently small τ0 and τ < τ0 we have limk→∞ ui,k → ui in H1(Ω), where ui solves (3).

Proof. We replace k by k− 1 in (5) and subtract this relation from (5). Then we set ϕ = ui,k − ui,k−1 and we get

L
∥∥ui,k − ui,k−1∥∥2 + τ ∥∥∇[ui,k − ui,k−1]∥∥2 + ταi ∥∥ui,k − ui,k−1∥∥2Γ
=
(
h(ui,k−1)− h(ui,k−2), ui,k − ui,k−1

)
− τ

(
K , ui,k − ui,k−1

) (
1, ui,k − ui,k−1

)
Γ
.

The first term on the RHS can be estimated as(
h(ui,k−1)− h(ui,k−2), ui,k − ui,k−1

)
≤ (L− γ )

∥∥ui,k − ui,k−1∥∥ ∥∥ui,k−1 − ui,k−2∥∥ .
For the second term on the RHS we involve the following inequality — see [15]

‖z‖2Γ ≤ ε ‖∇z‖
2
+ Cε ‖z‖2 , ∀z ∈ H1(Ω), 0 < ε < ε0. (6)

We can write(
K , ui,k − ui,k−1

) (
1, ui,k − ui,k−1

)
Γ
≤ C

∥∥ui,k − ui,k−1∥∥ ∥∥ui,k − ui,k−1∥∥Γ
≤ C

∥∥ui,k − ui,k−1∥∥2 + C ∥∥ui,k − ui,k−1∥∥2Γ
≤ ε

∥∥∇[ui,k − ui,k−1]∥∥2 + Cε ∥∥ui,k − ui,k−1∥∥2 .
Collecting the estimates we arrive at

(L− Cετ)
∥∥ui,k − ui,k−1∥∥2 + τ(1− ε) ∥∥∇[ui,k − ui,k−1]∥∥2 + ταi ∥∥ui,k − ui,k−1∥∥2Γ

≤ (L− γ )
∥∥ui,k − ui,k−1∥∥ ∥∥ui,k−1 − ui,k−2∥∥ . (7)

Fixing a sufficiently small ε we get for τ ≤ τ0 that∥∥ui,k − ui,k−1∥∥ ≤ L− γ
L− Cετ

∥∥ui,k−1 − ui,k−2∥∥ .
If τ0 is sufficiently small then

L−γ
L−Cετ

< 1 and due to the Banach fixed-point theorem we get

lim
k→∞

ui,k = ui, in L2(Ω).

Using this fact in (5) we can analogously see that the sequence of gradients is a Cauchy sequence, which implies that

lim
k→∞

ui,k = ui, in H1(Ω)

and

lim
k→∞

ui,k = ui a.e. inΩ.

Now, we may pass to the limit for k→∞ in (5) and we see that ui is a weak solution to (3). �

3. Solvability

In this section we derive the existence of a weak solution to (1), which is given as
(∂tg(u), ϕ)+ (∇u,∇ϕ)+ α (u, ϕ)Γ + (K , u) (1, ϕ)Γ = (f (u), ϕ)− (β, ϕ)Γ (8)

for any ϕ ∈ H1(Ω) and a.e. in (0, T ).
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The variational formulation of (3) reads as

(δg(ui), ϕ)+ (∇ui,∇ϕ)+ αi (ui, ϕ)Γ + (K , ui) (1, ϕ)Γ = (f (ui−1), ϕ)− (βi, ϕ)Γ (9)

for any ϕ ∈ H1(Ω). The stability estimates for ui can be obtained using the standard technique for Rothe’s method.

Lemma 3.1. Assume (2). Then there exists a positive constant C such that

∥∥uj∥∥2 + j∑
i=1

‖∇ui‖2 τ +
j∑
i=1

αi ‖ui‖2Γ τ ≤ C

for j = 1, . . . , n.

Proof. We introduce the following notation

Φβ(z) =
∫ z

0
β(s) ds ∀z ∈ R

for any function β . If β is a monotonically increasing function with the Lipschitz coefficient Lβ and β(0) = 0, then Φβ is
convex and

β2(z)
2Lβ

≤ Φβ(z) ≤
Lβz2

2
,

which follows from the following simple considerations.
The continuous function ξ(z) := Φβ(z)−

β2(z)
2Lβ
fulfills ξ(0) = 0 and ξ ′(z) = β(z)

(
1− β ′(z)

Lβ

)
. Therefore ξ(z) ≥ 0.

Assume 0 ≤ s ≤ z. Applying the mean value theorem we get β(s) = β ′(θs)s ≤ Lβs. An integration over (0, z) implies

Φβ(z) ≤
Lβ z2

2 .

Assume z ≤ s ≤ 0. Then β(s) = β ′(θs)s ≥ Lβs. An integration over (z, 0) impliesΦβ(z) ≤
Lβ z2

2 .
Moreover one can easily verify that

β(z1)(z2 − z1) ≤ Φβ(z2)− Φβ(z1) ≤ β(z2)(z2 − z1)

for any z1, z2 ∈ R, which follows from the monotone character of β .
Put ϕ = uiτ in (9) and sum it up for i = 1, . . . , j. We get

j∑
i=1

(g(ui)− g(ui−1), ui)+
j∑
i=1

‖∇ui‖2 τ +
j∑
i=1

αi ‖ui‖2Γ τ

=

j∑
i=1

(f (ui−1), ui) τ −
j∑
i=1

(βi, ui)Γ τ −
j∑
i=1

(K , ui) (1, ui)Γ τ . (10)

The first term on the LHS can be estimated as follows
j∑
i=1

( g(ui)− g(ui−1), ui) ≥
j∑
i=1

∫
Ω

[
Φg−1(g(ui))− Φg−1(g(ui−1))

]
=

∫
Ω

[
Φg−1(g(uj))− Φg−1(g(u0))

]
≥
γ
∥∥uj∥∥2
2
− C ‖u0‖2 .

Applying the Cauchy and Young inequalities together with (6) to the RHS of (10) we easily arrive at

∥∥uj∥∥2 + j∑
i=1

‖∇ui‖2 τ +
j∑
i=1

αi ‖ui‖2Γ τ ≤ ε
j∑
i=1

‖∇ui‖2 τ + Cε + Cε
j∑
i=1

‖ui‖2 τ .

Fixing a sufficiently small ε and using the Gronwall lemma we conclude the proof. �

Let {ai}∞i=0 and {bi}
∞

i=0 be any sequences of real numbers such that all bi are nonnegative. We start with an obvious identity

ai(ai − ai−1) =
1
2

[
a2i − a

2
i−1 + (ai − ai−1)

2] ,
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which after summation gives
j∑
i=1

biai(ai − ai−1) =
1
2

j∑
i=1

bi
[
a2i − a

2
i−1 + (ai − ai−1)

2]
=
1
2

j∑
i=1

bi(ai − ai−1)2 +
1
2

j∑
i=1

bi(a2i − a
2
i−1)

=
1
2

j∑
i=1

bi(ai − ai−1)2 +
1
2

[
bja2j − b0a

2
0 −

j∑
i=1

δbi a2i−1τ

]

≥
1
2

[
bja2j − b0a

2
0 −

j∑
i=1

δbi a2i−1τ

]
. (11)

We will use this relation in the following lemma.

Lemma 3.2. Suppose (2). Then there exists a positive constant C such that
j∑
i=1

‖δui‖2 τ +
j∑
i=1

‖∇ui −∇ui−1‖2 +
∥∥∇uj∥∥2 + αj ∥∥uj∥∥2Γ ≤ C

for j = 1, . . . , n.
Proof. ϕ = ui − ui−1 in (9) and sum it up for i = 1, . . . , j. Using Abel’s summation

2
j∑
i=1

ai(ai − ai−1) = a2j − a
2
0 +

j∑
i=1

(ai − ai−1)2

we get
j∑
i=1

(δg(ui), δui) τ +
1
2

[∥∥∇uj∥∥2 − ‖∇u0‖2 + j∑
i=1

‖∇ui −∇ui−1‖2
]
+

j∑
i=1

∫
Γ

αiuiδuiτ

=

j∑
i=1

(f (ui−1), δui) τ −
j∑
i=1

(βi, δui)Γ τ −
j∑
i=1

(K , ui) (1, δui)Γ τ . (12)

The last term on the left can be estimated using (11) and Lemma 3.1 as follows
j∑
i=1

∫
Γ

αiuiδuiτ ≥
1
2

[
αj
∥∥uj∥∥2Γ − α0 ‖u0‖2Γ − C j∑

i=0

‖ui‖2Γ τ

]
≥
1
2
αj
∥∥uj∥∥2Γ − C .

For the terms on the RHS of (12) we successively deduce that
j∑
i=1

(f (ui−1), δui) τ ≤ ε
j∑
i=1

‖δui‖2 τ + Cε

and ∣∣∣∣∣ j∑
i=1

(βi, δui)Γ τ

∣∣∣∣∣ =
∣∣∣∣∣(βj, uj)Γ − (β0, u0)Γ − j∑

i=1

(δβi, ui−1)Γ τ

∣∣∣∣∣ ≤ ε ∥∥∇uj∥∥2 + Cε
and ∣∣∣∣∣ j∑

i=1

(K , ui) (1, δui)Γ τ

∣∣∣∣∣ =
∣∣∣∣∣(K , uj) (1, uj)Γ − (K , u0) (1, u0)Γ − j∑

i=1

(K , δui) (1, ui−1)Γ τ

∣∣∣∣∣
≤ ε

∥∥∇uj∥∥2 + Cε + ε j∑
i=1

‖δui‖2 τ .

Further we can write
j∑
i=1

(δg(ui), δui) τ ≥ γ
j∑
i=1

‖δui‖2 τ .

Collecting the estimates above and fixing a sufficiently small ε we obtain the desired result. �
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Now, let us introduce the following piecewise linear in time functions

Gn(0) = g(u0)
Gn(t) = g(ui−1)+ (t − ti−1)δg(ui) for t ∈ (ti−1, ti],

and
un(0) = u0
un(t) = ui−1 + (t − ti−1)δui for t ∈ (ti−1, ti].

We also introduce a step function un

un(0) = u0, un(t) = ui, for t ∈ (ti−1, ti].

Similarly we define αn, βn. The variational formulation (9) can be rewritten as

(∂tGn, ϕ)+ (∇un,∇ϕ)+ (αnun, ϕ)Γ + (K , un) (1, ϕ)Γ =
(
f (un(t − τ)), ϕ

)
−
(
βn, ϕ

)
Γ

(13)

for any ϕ ∈ H1(Ω).
Now, we are in a position to show the solvability of (8).

Theorem 3.1. Suppose (2). Then there exists a solution to (8).

Proof. A priori estimates fulfill the conditions of [16, Lemma 1.3.13]. This directly gives the existence of a function u ∈
C ([0, T ], L2(Ω)) ∩ L∞

(
(0, T ),H1(Ω)

)
obeying ∂tu ∈ L2 ((0, T ), L2(Ω)) and the existence a subsequence of {un} (denoted

by the same symbol again), for which

un → u in C ([0, T ], L2(Ω))
∂tun ⇀ ∂tu in L2 ((0, T ), L2(Ω))
un(t) ⇀ u(t) in H1(Ω) for all t ∈ [0, T ].

(14)

Using the stability results and (6) we deduce (an analogous deduction is valid for un)∫ T

0
‖un − u‖2Γ ≤ ε

∫ T

0
‖un − u‖2H1(Ω) + Cε

∫ T

0
‖un − u‖2

≤ Cε + Cε

∫ T

0
‖un − u‖2 .

Passing to the limit for n→∞ and using (14) we get

lim
n→∞

∫ T

0
‖un − u‖2Γ ≤ Cε,

which for ε→ 0 implies

un, un → u in L2 ((0, T ), L2(Γ )) . (15)

Lipschitz continuity of g together with (14) give

g(un)→ g(u) in C ([0, T ], L2(Ω)) .

Integrating (13) over (0, t), passing to the limit for n→∞ and differentiating the result with respect to the time variable,
we get the existence of a weak solution to (8). We show only a short hint for the nonlinear term in (13), which is the most
complicated one. The reasoning for other terms is standard.
Assume that t ∈ (tj−1, tj].∫ t

0
(∂tGn, ϕ) =

∫ tj

0
(∂tGn, ϕ)−

∫ tj

t
(∂tGn, ϕ)

= (g(un(t))− g(u0), ϕ)−
∫ tj

t
(∂tGn, ϕ)

= (g(un(t))− g(u0), ϕ)−
∫ tj

t

(
g(un(tj))− g(un(tj−1))

τ
, ϕ

)
. (16)

According to Lemma 3.2 we have for s < t

‖g(un(t))− g(un(s))‖ ≤ C ‖un(t)− un(s)‖ ≤ C
∫ t

s
‖∂tun‖ ≤ C

√
|t − s|.



Author's Personal Copy
3136 M. Slodička, S. Dehilis / Journal of Computational and Applied Mathematics 233 (2010) 3130–3138

Table 1
Numerical solution of (17) with L = 1+ 2e0.5 .

xi u∗ uwith τ = 0.001 uwith τ = 0.0001
d = 2 d = 3 d = 2 d = 3
maxnit = 11 maxnit = 29 maxnit = 17 maxnit = 45

0.0 1.6487213 1.6477674 1.6477819 1.6486307 1.6486314
0.62831855 1.3338435 1.3330053 1.3330726 1.3337659 1.3337696
1.2566371 0.50948284 0.50903394 0.50917884 0.50944467 0.50945361
1.8849556 −0.50948297 −0.50903584 −0.5091806 −0.50944493 −0.50945387
2.5132742 −1.3338436 −1.3330282 −1.3330948 −1.3337679 −1.3337716
3.1415927 −1.6487213 −1.6480338 −1.6480411 −1.6486553 −1.6486556

Table 2
Numerical solution of (17) with L = 100.

xi u∗ uwith τ = 0.001 uwith τ = 0.0001
d = 2 d = 3 d = 2 d = 3
maxnit = 135 maxnit = 535 maxnit = 245 maxnit = 913

0.0 1.6487213 1.6382256 1.6477815 1.6482649 1.6486314
0.62831855 1.3338435 1.3205855 1.3330704 1.3337659 1.3337696
1.2566371 0.50948284 0.49888473 0.50917323 0.50841503 0.50945359
1.8849556 −0.50948297 −0.49890955 −0.50917508 −0.50841637 −0.50945384
2.5132742 −1.3338436 −1.3209115 −1.3330927 −1.3330338 −1.3337716
3.1415927 −1.6487213 −1.6415738 −1.6480409 −1.6484228 −1.6486556

Thus, passing to the limit for n→∞ in (16) we get

lim
n→∞

∫ t

0
(∂tGn, ϕ) = (g(u(t))− g(u0), ϕ) .

On the other hand,
∫ T
0 ‖∂tGn‖

2
≤ C

∫ T
0 ‖∂tun‖

2
≤ C and we may write (due to the reflexivity of L2((0, T ), L2(Ω))

lim
n→∞

∫ t

0
(∂tGn, ϕ) =

∫ t

0
(ζ , ϕ) .

This relation is valid for any t , thus ζ = ∂tg(u(t)) and one can differentiate the term (g(u(t))− g(u0), ϕ) with respect to
the time variable. �

4. Numerical experiment

In this section we will present the numerical results from the solution of the model problem (1) for testing the
performance of the presented algorithms. We consider a model problem in the form

∂tg(u)− uxx = f (u) x ∈ (0, π) , t ∈ (0, T )
ux (0, t) = 0;

−ux (π, t)− u (π, t) =
∫ π

0
K (x) u (x, t) dx+ β (t)

u (x, 0) = u0 (x) ,

(17)

where g and K are some functions to be chosen.
Let u∗ (x, t) = et cos (x) be the solution to (17). We choose K(x) = x

8 and g (s) = s + s|s| in our computations. Then
β (t) = 5

4 e
t , f (u) = ∂tg(u)− uxx = 2u(1+ |u|) and u0 (x) = cos (x).

The solution ui on any time step ti will be approached by the relaxation process (4). We recall that L is the Lipschitz
constant of the function g . The iteration process stops when the following condition is satisfied

‖ui,k − ui,k−1‖ ≤ τ d,

where d > 1 is a fixed constant and ‖.‖ stands for the usual L2(Ω)-norm.
After stopping the iterations at k = ki,last we denote ui := ui,ki,last . The results for u(t, xj) with h = π/500 at the time

point t = 0.5, using Rothe-finite element method developed in this article and the exact solution u∗, are shown in Table 1
for L = 1+2e0.5. Analogous results but for L = 100 are shown in Table 2. Here, the symbol ‘‘maxnit’’ denotes themaximum
number of iterations. Comparing the number of iterations in both tables we see that the relaxation process converges faster
for smaller L.
Fig. 1 shows the ‘‘maximum L2(Ω)-error’’ err = maxt∈[0,T ] ‖u∗(t)− u(t)‖, which is graphed against τ . We have taken

h = π
500 in our computations. We see that the rate of convergence is almost O (τ ).
Fig. 2 depicts the ‘‘maximum L2(Ω)-error’’, which is graphed against h. We have taken τ = 0.001 in our computations.
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Fig. 1. Relation between the maximum L2(Ω)-error and the discretization parameter τ .
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Fig. 2. Relation between the maximum L2(Ω)-error and the discretization parameter h.

Conclusions

We have studied a nonlinear parabolic problem with a nonlocal BC with applications in thermoelasticity. The nonlocal
term in the BC was modelled by a weighted average of a solution over the whole Ω . We have designed a very easy
implementable algorithm for computations, based on suitable linearization and an on the superposition principle. We have
proved the existence of a weak solution. The uniqueness of a solution remains still an open problem.
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