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Abstract. We propose a real-to-real image encryption method. It is a double random amplitude encryption
method based on the parametric discrete Fourier transform coupled with chaotic maps to perform the scram-
bling. The main idea behind this method is the introduction of a complex-to-real conversion by exploiting the
inherent symmetry property of the transform in the case of real-valued sequences. This conversion allows
the encrypted image to be real-valued instead of being a complex-valued image as in all existing double random
phase encryption methods. The advantage is to store or transmit only one image instead of two images (real and
imaginary parts). Computer simulation results and comparisons with the existing double random amplitude
encryption methods are provided for peak signal-to-noise ratio, correlation coefficient, histogram analysis,
and key sensitivity. © 2018 SPIE and IS&T [DOI: 10.1117/1.JEI.27.2.023033]
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1 Introduction
Communication networks are widely used for the exchange
of information, such as audio, image, video, etc. The security
of the exchanged information has become a major necessity
in many civilian and military applications to ensure the con-
fidentiality and prevent any modification or unauthorized
duplication of such data. One of the known methods for
effectively achieving this goal is the encryption that makes
the exchanged information completely or partially unread-
able and incomprehensible.

Several encryption techniques have been proposed and
can be classified into two categories: temporal (or spatial)
and frequency techniques. Traditional encryption algorithms
such as data encryption standard, advanced encryption stan-
dard and Ronald Rivest, Adi Shamir Adleman and Leonard,1

where the encryption is done in the spatial domain, are not
adequate for image encryption, because these algorithms
require a large number of operations, which substantially
increases the calculation time. To provide better solutions
for images, techniques have been proposed in Refs. 2–8,
where the encryption is done in the frequency domain to
exploit the fast algorithms of the discrete transforms. These
techniques are the well-known double random phase encryp-
tion based on the discrete Fourier transform (DFT)2,3 and the
double random amplitude encryption based on the discrete
Hartley transform.4–8 To develop encryption techniques
more robust and suitable for applications of recent commu-
nication services, parametric transforms have been used to
exploit their independent parameters as additional secret
keys for encryption.9–18 However, all the existing image
encryption techniques that are based on complex-valued
transforms suffer from the fact that the resulting encrypted

image is complex-valued, which requires the storage or
transmission of two images (real and imaginary parts).

In this paper, we show that the above problem can effi-
ciently be solved by exploiting the symmetry property of the
considered complex-valued transform and introducing a
complex-to-real (C2R) conversion. This new approach is
applied here to develop a real-to-real image encryption
method based on the parametric DFT reported in Ref. 19,
which is a complex-valued transform. The method is a dou-
ble random amplitude encryption technique coupled with a
chaotic scrambling. It is designed to exploit the independent
parameters of the parametric DFTs as an additional secret
key for encryption and ensure that the resulting encrypted
image is real-valued. The chaotic maps are used to reinforce
the secret key. The rest of the paper is organized as follows.
In Sec. 2, we recall the definitions of the parametric DFT and
review its properties, specifically the symmetry property. We
also elaborate the C2R conversion in one-dimensional (1-D)
and two-dimensional (2-D) cases and present the chaos map
used for scrambling. The proposed image encryption method
is described in Sec. 3. Section 4 presents simulation results
for the proposed and existing double random amplitude
image encryption methods. Finally, some concluding
remarks are given in Sec. 5.

2 Preliminaries

2.1 Parametric Discrete Fourier Transform
In this section, we review the parametric DFTand some of its
pertinent properties, which are subsequently exploited in this
paper for developing a new image encryption technique.
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2.1.1 Definitions

Let us first define the forward DFT XðnÞ of a real sequence
xðkÞ of length N as follows:

EQ-TARGET;temp:intralink-;e001;63;715XðnÞ ¼
XN−1

k¼0

xðkÞWnk
N ; 0 ≤ n ≤ N − 1 (1)

and its inverse can then be obtained as follows:

EQ-TARGET;temp:intralink-;e002;63;658xðkÞ ¼ 1

N

XN−1

n¼0

XðnÞW−nk
N ; 0 ≤ k ≤ N − 1; (2)

where WN ¼ expð−j 2π
N Þ with j ¼ ffiffiffiffiffiffi

−1
p

. Based on the DFT,
Bouguezel et al.19 introduced a three-parameter DFT of
length N, where N is an integral power of 2, i.e., N ¼ 2r,
with r being a positive integer. Its forward version is defined
as follows:

EQ-TARGET;temp:intralink-;e003;326;752Xa;b;cðnÞ ¼
XN−1

k¼0

xðkÞvFa;b;cðnkmodNÞ; 0 ≤ n ≤ N − 1;

(3)

whereas its inverse is given by

EQ-TARGET;temp:intralink-;e004;326;687xðkÞ ¼ 1

N

XN−1

n¼0

Xa;b;cðnÞ 1

vFa;b;cðnkmodNÞ ; 0 ≤ k ≤ N − 1;

(4)

where vFa;b;cðiÞ, 0 ≤ i ≤ N − 1, denote the entries of the
kernel vector given by

EQ-TARGET;temp:intralink-;e005;326;607VFa;b;c ¼ ½ 1 V c −jV −1 −V −c jV � (5)

with

EQ-TARGET;temp:intralink-;e006;63;549V ¼
h
W1

N : : : W
N
16
−1

N a W
N
16
þ1

N : : : W
N
8
−1

N b W
N
8
þ1

N : : : W
3N
16
−1

N −ja� W
3N
16
þ1

N : : : W
N
4
−1

N

i
; (6)

and a, b, c being three nonzero parameters that can be chosen
arbitrarily from the complex plane.

One of the most interesting special cases of the three-
parameter DFT can be obtained when a ¼ ejα, with
α being a parameter that can be chosen arbitrarily from
the interval ½−2π; 0�, b ¼ WN∕8

N , and c ¼ WN∕4
N . This case

leads to a one-parameter DFT denoted by DFTα, which is
used in the subsequent sections and simply called parametric
DFT.

2.1.2 Properties

Among the most interesting properties of the parametric
DFT, we cite the symmetry between the coefficients in
the frequency domain. Let sðkÞ be a real-valued sequence
of length N. Its parametric DFT FαðnÞ is a complex-valued
sequence of lengthN having the symmetry property given by

EQ-TARGET;temp:intralink-;e007;63;324sðkÞ ↔DFT
α

FαðnÞ ¼ ½FαðN − nÞ��; (7)

where ð:Þ� denotes the complex-conjugate operation.
This property leads to real½FαðnÞ� ¼ real½FαðN − nÞ� and

imag½FαðnÞ� ¼ −imag½FαðN − nÞ�. Moreover, Fαð0Þ and
FαðN∕2Þ are always pure real values.

By examining the above symmetry property of the para-
metric Fourier transform of a real sequence, it can be seen
that the first and second halves of its real part are redundant
in an inverted order and similar observation for its imaginary
part except that the redundancy is in an inverted order with
an opposite sign. Based on this symmetry property, we con-
vert the parametric Fourier transform from its complex form
to a purely real form by concatenating the first halves of its
real and imaginary parts. With this new real form of the trans-
form, which is reversible, we are able to process only half of
the data compared to the use of the complex form. The math-
ematical analysis of this new real form is further clarified by
the two illustrations given below. We first study the sym-
metry property given by Eq. (7) in the 1-D case and then
in the 2-D case.

1-D case:

To illustrate the importance of the symmetry property
given by Eq. (7), we consider a real-valued vector:

EQ-TARGET;temp:intralink-;sec2.1.2;63;255s ¼ ½ 208 231 32 233 161 25 71 139 244 246 40 248 244 124 204 36 �

of length 16. The value of the parameter α is chosen from the interval ½−2π; 0� and set in this example to be α ¼ −0.4π.
Then, the DFT−0.4π of the vector s is a complex-valued vector given by
EQ-TARGET;temp:intralink-;sec2.1.2;63;202

F−0.4π ¼ ½2486 95.8þ 134.2i 62.6 − 245.3i − 262.6 − 118.9i 510þ 30i 13.8 − 152.3i 31.4 − 651.3i 9 − 231.2i

−78 9þ 231.2i 31.4þ 651.3i 13.8þ 152.3i 510 − 30i −262.6þ 118.9i 62.6þ 245.3i 95.8 − 134.2i�:

It can easily be verified that the relationship F−0.4πðnÞ ¼ ½F−0.4πð16 − nÞ�� holds for the elements F−0.4πðnÞ, 1 ≤ n ≤ 15,
of the transformed vector F−0.4π. Moreover, the elements F−0.4πð0Þ and F−0.4πð8Þ of F−0.4π are pure real values. In order to
efficiently exploit the above relationship, we separate the real and imaginary parts of F−0.4π, respectively, as

EQ-TARGET;temp:intralink-;sec2.1.2;63;112realðF−0.4πÞ ¼ ½2486 95.8 62.6 − 262.6 510 13.8 31.4 9 − 78 9 31.4 13.8 510 − 262.6 62.6 95.8�

and
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EQ-TARGET;temp:intralink-;sec2.1.2;63;752

imagðF−0.4πÞ ¼ ½0 134.2 − 245.3 − 118.9 30 − 152.3 − 651.3

− 231.2 0 231.2 651.3 152.3 − 30 118.9 245.3 − 134.2�:

It is also clear that the relationships real½F−0.4πðnÞ� ¼
real½F−0.4πð16 − nÞ� and imag½F−0.4πðnÞ� ¼
−imag½F−0.4πð16 − nÞ� are valid for the two parts of the
vector F−0.4π, respectively. These two relationships show
that only N∕2þ 1 ¼ 9 entries, namely real½F−0.4πðnÞ�, n ¼
0; 1; : : : ; N∕2, of realðF−0.4πÞ and N∕2 − 1 ¼ 7 entries, namely

imag½F−0.4πðnÞ�, n ¼ 1; 2; : : : ; N∕2 − 1, of imagðF−0.4πÞ are
sufficient to represent the transformed vector F−0.4π. This
reduced representation is called complex-to-real (C2R) conver-
sion by which a transformed real-valued vector of length N ¼
16 representing the transformed complex-valued vector F−0.4π

can be obtained as follows:

EQ-TARGET;temp:intralink-;sec2.1.2;63;627R¼ ½2486 95.8 62.6 − 262.6 510 13.8 31.4 9 − 78 134.2 − 245.3 − 118.9 30 − 152.3 − 651.3 − 231.2�:

The above C2R conversion is illustrated graphically in
Fig. 1. Now, by applying the real-to-complex conversion
(R2C), the transformed complex-valued vector F−0.4π can
easily be obtained from the transformed real-valued vector
R using the above relationships and the corresponding con-
cept is also illustrated graphically in Fig. 2.

2-D case:

The application of the DFTα to transform 2-D sequences
or matrices can be performed in different ways. In order to

exploit the above symmetry property in the case of real-val-
ued matrices, we apply the DFTα on the rows and then per-
form on each transformed row the C2R conversion discussed
in the 1-D case. Therefore, a straightforward graphical illus-
tration of this concept is given in Fig. 3, which shows that
the resulting transformed matrix is also real-valued with the
same size as the input. Figure 4 shows graphically how to
obtain the original real-valued matrix from the transformed
real-valued matrix. The application of the DFTα on columns
can be achieved by only transposing the original and trans-
formed real-valued matrices in Figs. 3 and 4.

N original  
real-valued vector 

N/2+1 elements 

N/2-1 elements 

N transformed 
real-valued vector 

Real part 
Imaginary part 

Fig. 1 C2R conversion of the DFTα of a real-valued vector.

N/2-1 elements 

N original 
real-valued vector 

Inverse

0 0

Real part 

Imaginary part 

N/2-1 elements 
One element 

One element 

Reverse order and sign 

Reverse order 

N transformed 
real-valued vector 

Fig. 2 Inverse DFTα after R2C conversion of the transformed real-valued vector.

0

Real part 
Imaginary part 

M N original  
real-valued matrix on rows 

N/2+1 columns 

N/2-1 columns 

M N transformed 
real-valued matrix 

Fig. 3 C2R conversion of the DFTα of the rows of a real-valued matrix.
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2.2 Chaos Maps
Chaos maps are known to have attractive cryptographic
properties, such as high sensitivity to their control parame-
ters, ergodicity, and pseudo-randomness, and a wider range
of image encryption applications.20,21 Therefore, we adopt
such maps for the scrambling required in the following pro-
posed image encryption method. Specifically, we consider
the piecewise linear chaotic map (PLCM) proposed in
Ref. 20 as follows:
EQ-TARGET;temp:intralink-;e008;63;455

zkþ1 ¼ Fðzk; λÞ ¼

8>><
>>:

zk
λ ; 0 ≤ zk < λ
zk−λ
0.5−λ ; λ ≤ zk < 0.5

Fð1 − zk; λÞ; 0.5 ≤ zk < 1

; (8)

where z0 is the initial condition parameter and λ ∈ ð0; 0.5Þ is
the control parameter.

3 Proposed Method

3.1 Encryption Scheme
The proposed encryption scheme, as shown in Fig. 5, can be
achieved by the following steps:

Step 1: The original image, which is generally a real-valued
image of size M × N, is multiplied element-by-
element by the first random intensity mask K1.

Step 2: Apply the DFTα on the rows of the real-valued
image obtained in step 1.

Step 3: Apply the C2R conversion on the complex-valued
image obtained in step 2.

Step 4: Reshape the transformed real-valued image obtained
in step 3 to a vector and scramble the result using the

first PLCM chaotic map with ðz0; λ0Þ. The resulting
vector is then reshaped to an image.

Step 5: Apply the DFTβ on the columns of the real-valued
image obtained in step 4.

Step 6: Apply the C2R conversion on the complex-valued
image obtained in step 5.

Step 7: Reshape the transformed real-valued image obtained
in step 6 to a vector and scramble the result using the
second PLCM chaotic map with ðz1; λ1Þ. The result-
ing vector is then reshaped to an image.

Step 8: Multiply the real-valued image obtained in step 7
element by element by the second random intensity
mask K2.

Step 9: Apply the DFTγ on the rows of the real-valued
image obtained in step 8.

Step 10: Apply the C2R conversion on the complex-valued
image obtained in step 9.

Step 11: Reshape the transformed real-valued image
obtained in step 10 to a vector and scramble
the result using the third PLCM chaotic map
with ðz2; λ2Þ. The resulting vector is then
reshaped to an image.

Step 12: Apply the DFTζ on the columns of the real-valued
image obtained in step 11.

Step 13: Apply the C2R conversion on the complex-valued
image obtained in step 12.

Step 14: Reshape the transformed real-valued image
obtained in step 13 to a vector and scramble
the result using the fourth PLCM chaotic map
with ðz3; λ3Þ. The resulting vector is then reshaped
to an image.

Step 15: The encrypted image is the real-valued image
obtained in step 14.

0

Real part 
Imaginary part 

M N transformed  
real-valued matrix 

N/2-1 columns 

M N original    
real-valued matrix 

N/2-1 columns 
One column 

One column 

on rows 

Inverse

0 0 Reverse order and sign 

Reverse order 

Fig. 4 Inverse DFTα after R2C conversion of the transformed real-valued matrix.

 on rows 
C2R 

conversion on columns

C2R 
conversion 

PLCM with 
λ

PLCM with 
λ

 on rows 
C 2R 

conversion on columns 
C2R 

conversion 
PLCM with 

λ
PLCM with 

λ

Encrypted 
 image  

Original
 image  

Fig. 5 Proposed image encryption scheme.
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3.2 Decryption Scheme
The decryption process, as shown in Fig. 6, takes the steps of
the encryption process in an inverse manner to obtain the
decrypted image. The encryption secret key in the proposed
encryption scheme is composed of the two random intensity
masks K1 and K2, the parameters fz0; λ0g, fz1; λ1g, fz2; λ2g,
and fz3; λ3g of the four chaotic maps, and the parameters
ðα; β; γ; ζÞ used for the parametric Fourier transforms.

In order to further reinforce the secret key, we introduce
some dependencies between the independent parameters
ðα; β; γ; ζÞ of the parametric Fourier transforms and the
parameters fz0; λ0g, fz1; λ1g, fz2; λ2g, and fz3; λ3g of the
chaotic maps. For instance, we replace in the encryption
and decryption processes the initial condition parameters
z0, z1, z2, and z3 by z0 þ 0.01αþ 0.01γ, z1 þ 0.01β þ 0.01ζ,
z2 þ 0.01αþ 0.01γ, and z3 þ 0.01β þ 0.01ζ, respectively.

4 Numerical Results and Comparison
In order to demonstrate the efficiency of the proposed image
encryption method, we present in this section some numeri-
cal results by considering standard test images Lena
ð256 × 256Þ, Barbara ð256 × 256Þ, and Clown image of size
ð512 × 512Þ. The two random intensity masks K1 and K2 are
generated randomly from the interval [0,1], and the indepen-
dent parameters ðα; β; γ; ζÞ of the parametric Fourier trans-
forms are randomly chosen from the interval ½−2π; 0�.
The four PLCM chaotic maps are preselected as fz0; λ0g ¼
f0.1428 þ 0.01αþ 0.01γ; 0.2567g, fz1; λ1g ¼ f0.2857þ
0.01β þ 0.01ζ; 0.9856g, fz2;λ2g¼f0.2428þ0.01αþ0.01γ;
0.1567g, and fz3;λ3g¼f0.1857þ0.01βþ0.01ζ;0.8856g.
For the evaluation, we use different metrics.

The peak signal-to-noise ratio (PSNR) is used to measure
the damage degree to the original image caused by applying
an encryption method. It is defined for gray scale images as
follows:

EQ-TARGET;temp:intralink-;e009;63;231PSNR ¼ 10 log10

�
2552

MSE

�
ðdBÞ; (9)

where MSE is the mean square error between the encrypted
image E and the corresponding original image I. It is defined
as follows:

EQ-TARGET;temp:intralink-;e010;63;155MSE ¼
�

1

M × N

XM
m¼1

XN
n¼1

jim;n − em;nj2
�
; (10)

where im;n and em;n denote the pixel values at the position
ðm; nÞ of the original and encrypted images, respectively,
and M × N denotes the size of the image. For computer
simulations, we consider square input images, i.e., M ¼ N.

Inverse

 on rows

R2C 
conversion 

Inverse

on columns 

R2C 
conversion 

Inverse PLCM 
with λ

Inverse PLCM 
with λ

Inverse

on rows 

R2C 
conversion 

Inverse

on columns 

R2C 
conversion 

Encrypted 
Image 

Inverse PLCM 
with λ

Inverse PLCM 
with λDecrypted 

 Image

Fig. 6 Proposed image decryption scheme.

Fig. 7 Image encryption: (a1) and (a2) original test images, (b1) and
(b2) the corresponding encrypted images using the proposed encryp-
tion method, (c1) and (c2) the corresponding encrypted images using
the method in Ref. 5, (d1) and (d2) the corresponding encrypted
images using the second method in Ref. 6.
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The standard correlation coefficient is used to measure
the similarity between the encrypted and original images.
It can be defined as follows:

EQ-TARGET;temp:intralink-;e011;63;719corrðI;EÞ¼
P

m

P
nðim;n−IÞðem;n−EÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

m

P
n ðim;n− IÞ2Pm

P
n ðem;n−EÞ2

q ; (11)

where I ¼ meanðIÞ and E ¼ meanðEÞ are the mean values of
the original and encrypted images, respectively.

We also use the base 10 logarithm of mean square error
(LMSE) given by

EQ-TARGET;temp:intralink-;e012;63;624LMSE ¼ log10

�
1

M × N

XM
m¼1

XN
n¼1

jim;n − em;nj2
�
: (12)

The encrypted versions of different standard test images
obtained using the proposed image encryption method
described in Sec. 3, the method reported in Ref. 5, which
is based on the random Hartley transform, and the second
method reported in Ref. 6, which is based on the Hartley
transform, jigsaw transform, and logistic map, are presented
in Fig. 7. It can be seen from this figure that the encrypted
images provided by the three methods do not contain any
visual information of the corresponding original images.
Concerning the implementation of the transforms in the
three methods, we have adopted the expressions X ¼
T × x∕

ffiffiffiffi
N

p
and x ¼ Q × X∕

ffiffiffiffi
N

p
or E ¼ T × I ×Q∕N and

I ¼ Q × I × T∕N, where x is a column vector of length N
to be transformed, T is a transform matrix of size N × N,
Q is the hermitian of T when T is unitary (e.g., DFT)
and Q ¼ T when T is involutory (e.g., discrete Hartley

Table 1 PSNR and correlation coefficient obtained by the proposed and existing5,6 methods for different test images.

Image encrypted

PSNR, dB Correlation

Proposed method Ref. 5 Ref. 6 Proposed method Ref. 5 Ref. 6

Lena 256 × 256 5.6086 7.3581 5.4939 0.0029 0.041 -0.0041

Barbara 256 × 256 6.0188 7.7063 5.9322 −0.0056 −0.0094 0.0057

Clown 512 × 512 6.8340 8.3326 0.7683 −0.0031 −0.0068 0.0051

Fig. 8 Histograms of Lena and Barbara: (a1) and (a2) of original images, (b1) and (b2) of encrypted
images using the proposed method.
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transform), and I is an image of sizeN × N to be transformed
in a row–column fashion.

The results obtained for the PSNR and correlation coef-
ficient are summarized in Table 1 for different methods and
test images. It is clear from this table that the proposed
method outperforms the methods presented in Refs. 5 and
6 in terms of the correlation coefficient, whereas the second
method in Ref. 6 provides better PSNR.

4.1 Histogram Analysis
To show the robustness of the proposed encryption method
against histogram analysis, we encrypt two different standard
test images, namely Lena and Barbara, and compute their
histograms before and after encryption. The results are
presented in Fig. 8, which shows that even though the
histograms of the original images are completely different,
the histograms of the corresponding encrypted images
are very similar and hence no useful information can be
extracted from the encrypted images. This demonstrates
that the proposed method is effectively robust against histo-
gram analysis.

4.2 Key Sensitivity
As mentioned in Sec. 3, the encryption secret key for the
proposed encryption scheme is composed of the two random
intensity masks K1 and K2, the parameters fz0; λ0g, fz1; λ1g,
fz2; λ2g, and fz3; λ3g of the four chaotic maps, and the
parameters ðα; β; γ; ζÞ used for the parametric Fourier trans-
forms. In order to verify the sensitivity of the proposed
encryption method to errors in the parameters of the four
PLCM chaotic maps, we assume for the decryption process
that all the parameters of the four PLCM chaotic maps, the
two random intensity masks, and the parameters of paramet-
ric DFTare correct and only one of the parameters of the four
PLCM chaotic maps is slightly different from the one used in
the encryption process.

The decrypted Lena image is presented in Fig. 9 for differ-
ent cases. The result for the cases of z3 and λ3 is similar to
those shown for z2 and λ2, respectively. This figure confirms
that the decrypted image remains totally encrypted and the
proposed method is very sensitive to any small error in any
parameter of the PLCMs.

Similarly, to show the robustness of the proposed encryp-
tion method against brute force attacks, we assume for
the decryption process that all the parameters of the four
PLCM chaotic maps and the two random intensity masks
are correct, and only some parameters of the parametric
Fourier transforms are slightly different from the ones
used in the encryption process. The decrypted Lena image
is shown in Fig. 10 for different cases. This figure again con-
firms that the decrypted image remains totally encrypted and
the proposed method is very sensitive to any error in any
parameter of the parametric transforms.

Moreover, to verify the key sensitivity of the proposed
method to the two random intensity masks K1 and K2, let
us consider that all the parameters that constitute the secret
key are correct except K1 (or K2). In this case, the encrypted
image is decrypted by introducing a small error δ1 (or δ2)
in the random intensity mask as K 0

1 ¼ K1þδ1 (or
K 0

2 ¼ K2 þ δ2), where the error δ1 (or δ2) is independent
and uniformly distributed on the set f−δ; δg. We then com-
pute the LMSE between the original and decrypted images.

The LMSEs obtained by the proposed and existing5 method
are plotted in terms of the deviation error δ in Figs. 11 and 12
for the first and second random intensity masks, respectively.

These figures show that the two methods have similar
sensitivities to the random intensity masks. Due to this
result, we do not take into consideration the influence of
the two random intensity masks K1 and K2 in the following
analysis and comparison, and we consider that the
encryption secret key is constituted only of the parameters
fz0; λ0; z1; λ1; z2; λ2; z3; λ3; α; β; γ; ζg. The corresponding
decryption key is fz 00; λ 0

0; z
0
1; λ

0
1; z

0
2; λ

0
2; z

0
3; λ

0
3; α

0; β 0; γ 0; ζ 0g.
We now compute the LMSE between the original image
and the image decrypted using {z 00 ¼ z0, λ 0

0 ¼ λ0, z 01 ¼ z1,
λ 0
1 ¼ λ1, z 02 ¼ z2, λ 0

2 ¼ λ2, z 03 ¼ z3, λ 0
3 ¼ λ3, α 0 ¼ αþ δ1,

β 0 ¼ β þ δ2, γ 0 ¼ γ, ζ 0 ¼ ζ}, where the errors δ1 and
δ2 are independent and uniformly distributed on the set
f−δ; δg. For different values of δ, the LMSE obtained by
the proposed method is plotted in Fig. 13 and compared with
the corresponding LMSE obtained by the existing method
reported in Ref. 5 for which the employed decryption key
is fs 00 ¼ s0 þ δ; s 01 ¼ s1 þ δg, where s0 and s1 are two ran-
dom N × N matrices chosen arbitrarily from the interval
[0 1]. It is clear from this figure that the proposed method is
better than the method in Ref. 5. Other LMSEs are shown in

Fig. 9 Decrypted Lena image using (a) z 0
0 ¼ z0 þ 10−16;

(b) λ 00 ¼ λ0 þ 10−16; (c) z 0
1 ¼ z1 þ 10−16; (d) λ 0

1 ¼ λ1 þ 10−16;
(e) z 0

2 ¼ z2 þ 10−16; and (f) λ 02 ¼ λ2 þ 10−16.
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Fig. 14 for the proposed method with {z 00 ¼ z0, λ 0
0 ¼ λ0,

z 01 ¼ z1, λ 0
1 ¼ λ1, z 02 ¼ z2, λ 0

2 ¼ λ2, z 03 ¼ z3, λ 0
3 ¼ λ3,

α 0 ¼ α, β 0 ¼ β, γ 0 ¼ γ þ δ1, ζ 0 ¼ γ þ δ2}, and for the
method in Ref. 5 with fs 02 ¼ s2 þ δ; s 03 ¼ s3 þ δg, where

s2 and s3 are two random N × N matrix chosen arbitrarily
from the interval [0 1]. This figure also shows that the pro-
posed method is better than the method in Ref. 5.

In order to further confirm the efficiency of the proposed
method, we perform a comparison with the second method in
Ref. 6, which is better than the first method in Ref. 6 and
based on the Hartley transform, jigsaw transform, and logis-
tic map. For different values of δ, the LMSE obtained by
the proposed method using fz 00 ¼ z0 þ δ; z 01 ¼ z1 þ δg is
plotted in Fig. 15 and compared with the corresponding
LMSE obtained by the method reported in Ref. 6 for
which fx 0

0 ¼ x0 þ δ; g, where x0 is the seed value of chaotic
random intensity mask generated by the logistic map.
Figure 15 shows clearly the superiority of the proposed
method.

4.3 Key Space Analysis
As mentioned in the previous section, the secret key of
the proposed encryption method is constituted of the
parameters of the four PLCM chaotic maps and the four

Fig. 12 LMSE in terms of the deviation error δ for K 0
2.

Fig. 13 LMSE in terms of the deviation error δ for α 0 and β 0 (proposed
method) and for s 0

0 and s 0
1 (method in Ref. 5).

Fig. 11 LMSE in terms of the deviation error δ for K 0
1.

Fig. 10 Decrypted Lena image using (a) wrong α; (b) wrong β;
(c) wrong γ; (d) wrong ζ; (e) wrong α, β, γ, and ζ; and (f) correct param-
eters α 0 ¼ α, β 0 ¼ β, γ 0 ¼ γ, and ζ 0 ¼ ζ.
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parameters of the parametric Fourier transforms, i.e.,
fz0; λ0; z1; λ1; z2; λ2; z3; λ3; α; β; γ; ζg. According to the
results presented in Fig. 9, each of the parameters of the
PLCM chaotic maps have a sensitivity of 10−16, so its pre-
cision is 10þ16. On the other hand, as shown in Figs. 13 and
14, the precision of the parameters α, β, γ, and ζ is evaluated
approximately by 1

Δd1
¼ 1

0.4×0.005 ≅ 28. Therefore, the key

space is approximatively equal to 1016×8 × 4 × 28 ≅ 2435,
which is greater than 2100 reclaimed for a cryptosystem.21

5 Conclusion
In this paper, we have proposed a double random amplitude
encryption method based on the parametric DFT coupled
with chaotic maps. The main idea behind this method is
the introduction of a complex-to-real conversion by exploit-
ing the symmetry property of the transform in the case of
real-valued sequences. This conversion allows the encrypted
image to be real-valued instead of being a complex-valued

image as in all existing double random phase encryption
methods. The advantage is to store or transmit only one
image instead of two images (real and imaginary parts).
Computer simulation results demonstrate that the proposed
method outperforms the existing double random amplitude
encryption methods.
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