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Abstract  

In the present work, we report the results of an ab initio study of some physical properties of two ternary phosphides: 

LiAeP (Ae = Sr, Ba), and two newly synthesized Zintl-phases: Ae3AlAs3 (Ae = Sr, Ba). 

The structural, elastic electronic, optical and thermodynamic properties of the LiBaP and LiSrP compounds were 

performed using the pseudopotential plane-wave method within the framework of density functional theory with the GGA-

PBEsol. Calculated equilibrium lattice constants are in good agreement with the available experimental data. Calculated cohesive 

energy confirms the thermodynamically stability of the considered materials. Single-crystal elastic constants Cij and related 

properties were predicted using the static finite strain technique. Polycrystalline elastic moduli and related properties were 

estimated from the Cij via the Voigt-Reuss-Hill approximations. Energy band dispersions along some high symmetry directions 

in the k-space and the density of states diagrams were computed and analysed. Obtained energy band structures show that both 

considered crystals are indirect band gap compounds. The band gap is approximately equal to 1.16 eV for LiSrP and 0.80 eV for 

LiBaP. The chemical bonding character was discussed through the electron density map plots. In order to understand the optical 

properties of LiSrP and LiBaP, the complex dielectric function, refractive index, extinction coefficient, reflectivity, absorption 

coefficient, electron energy-loss function and complex conductivity function were predicted for an incident radiation with an 

energy range up to 15 eV. The origin of the main peaks in the optical spectra was discussed in terms of the calculated electronic 

structure. We have predicted temperature and pressure dependence of the relative unit-cell volume, volume thermal expansion 

coefficient, heat capacities, Debye temperature and Grüneisen parameter via the quasi-harmonic Debye model. 

The structural, elastic, electronic, optical and thermoelectric properties of the Zintl-phases Ae3AlAs3 (Ae = Sr, Ba) were 

investigated using two complementary approaches based on density functional theory. The pseudopotential plane-wave method 

was used to explore the structural and elastic properties whereas the full-potential linearized augmented plane wave approach 

was used to study the structural, electronic, optical and thermoelectric properties. Calculated structural parameters are in good 

consistency with the corresponding measured ones. Single-crystal and polycrystalline elastic constants and related properties 

were examined in details. Electronic properties, including energy band dispersions, density of states and charge-carrier effective 

masses, were computed using Tran-Blaha modified Becke-Johnson functional for the exchange-correlation potential. It is found 

that Sr3AlAs3 has a direct band gap semiconductor while Ba3AlAs3 has an indirect band gap semiconductor. Frequency-

dependence of the linear optical functions were predicted for a wide photon energy range up to 15 eV. Charge carrier 

concentration and temperature dependences of the basic parameters of the thermoelectric properties were explored using the 

semi-classical Boltzmann transport model. Our calculations unveil that the studied compounds are characterised by a high 

thermopower for both carriers, especially the p-type conduction is more favourable. 

 ملخص
ى، بدراسة بعض الخصائص الفیزیائیة لاثنتین من المركبات الفوسفوریة الثلاثیة: من المبادئ الأول في ھذا العمل، قمنا عن طریق مقاربة حسابیة

L���P (�� = Sr , Ba)  و لاثنتین من مركبات زنتل حدیثتا التركیب���AlAs�(�� = ��, ��)  

باستخدام طریقة الامواج المستویة مع نظریة الكمونات LiSrP و LiBaPتمت دراسة الخصائص البنیویة، المرونیة، الضوئیة والثرمودینامیكیة لمركبات 

). النتائج المتحصل علیھا تمت EXCالارتباط (-لطاقة التبادل GGA-PBEsol باستعمال تقریب التدرج المعمم DFTالكاذبة، في إطار نظریة دالیة الكثافة الإلكترونیة 

ازن متوافقة بشكل جید مع البیانات التجریبیة المتاحة وان طاقة التماسك لتواعند البنیة البلوریة المحسوبة  بتواثوقد تبین ان مقارنتھا مع النتائج التجریبیة المتوفرة. 

والخصائص ذات الصلة باستخدام لأحادي البلورة  Cijمعاملات المرونة المحسوبة تؤكد استقرار الدینامیكیات الحراریة للمواد.  بالنسبة للخواص المرونیة تم التنبؤ بقیم 

عبر تقریب فویت، رویس وھییل. فیما یخص  Cijمعاملات المرونة لمتعددة البلورات والخصائص ذات الصلة من معاملات المرونة قنیة التشوه المحدود. كما تم تقدیر ت

لحالات ان المركبات عبارة عن وكثافة ا kرفي الفضاء لتناظاعالیة الخواص الالكترونیة تبین من خلال حساب وتحلیل مستویات الطاقة على طول بعض اتجاھات 

 . خواص الترابط الكیمیائيLiBaPالكتروفولط لـ  0.80و LiSrPالكتروفولط لـ  1.16انصاف نواقل ذات فاصل طاقي اساسي غیر مباشر. فاصل الطاقة یساوي تقریباً 

الضوئیة تم حساب دالة العزل الكھربائیة، معامل الانكسار، معامل كذلك تمت مناقشتھا بواسطة مخططات التوزیع الإلكترونیة. لدراسة الخواص   LiBaPو LiSrPلـ 

الخواص الضوئیة. بالنسبة  الاخماد، الانعكاسیة، معامل الامتصاص، معامل فقدان الطاقة ومعامل الناقلیة البصریة. وتم تعین اصول الانتقالات الالكترونیة من خلال

تنبؤ بتأثیر درجة الحرارة والضغط على حجم خلیة الوحدة، عن طریق حساب معامل التمدد الحراري للحجم، السعة للمركبات المدروس تم الینامیكیة دلترموللخواص ا

 ن باستخدام تقریب شبھ التوافقي.معامل قرینزالحراریة، ودرجة حرارة دیباي، 

��)����AlAsكبي زنتللمرالخواص التركیبیة، المرونیة، الإلكترونیة، البصریة والكھروحراریة  = ��, تمت دراستھا، باستخدام منھجین متكاملین  (��

طریقة الامواج مع نظریة الكمونات الكاذبة تم استخدامھا في استكشاف الخصائص البنیویة و المرونیة بینما طریقة  DFT .یعتمدان على نظریة دالیة الكثافة الإلكترونیة

لكمونات الكاملة تم استخدمھا في دراسة الخواص الإلكترونیة والبصریة والكھروحراریة. المعاملات البنیویة المحسوبة في الامواج المستویة المتزایدة خطیا مع نظریة ا

: ولمتعددة البلورات والخصائص ذات الصلة تم فحصھا بالتفصیل. الخصائص الإلكترونیةلأحادي البلورة جید مع البیانات التجریبیة المتوفرة. ثوابت المرونة  اتفاق

. وقد وجدنا أن كلا المركبین عبارة عن نصف (EXC)الارتباط-لطاقة التبادل TB-mBJمستویات الطاقة، كثافة الحالات، والكتل الفعالة تم حسابھا باستعمال تقریب 

صریة تم التنبؤ بھا بالاعتماد على تعلق المعاملات مباشر. الخواص الب غیر فاصل طاقي اساسي وذ ����AlAsبنما فاصل طاقي اساسي مباشر وذ ����AlAsناقل 

الكتروفولط. تعلق المعاملات الأساسیة للخواص الكھروحراریة بدرجة الحرارة وبتركیز  15البصریة بالترددات الضوئیة من أجل نطاق واسع من طاقة الفوتون یصل إلى

و حراریة عالیة لكل أنوع حاملات كھرالنتائج ان كلا من المركبین یتمیز بقدرة  یكي. وقد اظھرتحاملات الشحن تم دراستھ باستخدام نموذج نقل بولتزمان شبھ الكلاس

.فھو الاّكثر تفضیلاً  pالشحن خاصةً بالنسبة لنوع 
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Frequently used abbreviations: 

DFT  Density Functional Theory 

H   Hartree. 

HF   Hartree-Fock. 

xc   Exchange Correlation. 

KS   Kohn-Sham. 

LDA   Local Density Approximation. 

LSDA  Local Spin Density Approximation. 

GGA   Generalized Gradient Approximation. 

PBEsol  Perdew-Burke-Ernzerhof functional for Solids. 

TB-mBJ  Tran-Blaha modified Becke-Johnson potential. 

PP-PW  Pseudopotential-Plane Wave. 

ZB   Brillouin Zone. 

AE   All Electrons. 

NC   Norm-Conserving. 

BHS   Bachelet, Hamann, Schlüter procedure for constructing norm-conserving PP.  

KB   Kleinman and Bylander. 

US-PP  Ultrasoft pseudopotential. 

APW   Augmented Plane Wave. 

LAPW  Linearized Augmented Plane Wave. 

FP   Full Potential. 

MT   Muffin-Tin region. 

I   Interstitial region. 

LO   Local Orbitals. 

EOS   Equation Of State. 

BM   Birch Murnaghan. 

V-R-H  Voigt-Reuss-Hill. 

Eg   Energy band gap. 

VB   Valence Band. 

CB   Conduction Band. 

TDOS  Total Density Of States. 

PDOS  Partial Density Of States. 
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I.1 Background 

From the dawn of human existence, material and material development have been 

fundamental to the development of civilisation. The different rates of progression towards more 

flowered civilizations is inextricably tied to the local availability of materials and innovation of 

new materials that satisfy human needs from the Stone Age, to the Iron Age, to today’s Silicon 

Age, and continue to be one of the most important factor and objectives of industrial 

development, thereby contributing in solving some emerging societal needs and to increase the 

quality of life. The demands of tomorrow’s technology translate has greatly exceeded the 

capabilities of today’s materials and chemical processes and new materials are constantly 

needed. The identification of new classes of materials with tailored properties can profoundly 

deliver greater performance, improved cost effectiveness, superior reliability and better safety, 

while also minimizing environmental impact. 

The most inspiring developments in materials have emerged from scientific research on 

the structure of matter and its interaction with mechanical, electrical, magnetic and nuclear 

force fields, with radiation of all kinds and with chemically different species. New materials 

often provide opportunities for rapid technological progress, but to seize these opportunities, 

materials need to be adapted and integrated into economically viable products. It has not been 

easy; studies show that it often takes 20 years or more for a new material to create significant 

market penetration. Many challenges will have to be overcome to take full advantage of new 

materials; indispensable for a dynamic, safe and environmentally friendly economy. 

One of the most advantageous and easiest ways of predicting new materials is ab initio 

calculations (i.e. the first principles). The term ab initio is Latin for "from the beginning". This 

name is given to calculations derived directly from theoretical principles without the inclusion 

of experimental data. The materials are composed of atoms as building units. The atoms 

themselves are made up of electrons. The idea behind the first principles is to apply the 

fundamental laws of physics to identify the behavior of a material by performing electronic 

structure calculations. 

The so-called ab initio methods for electronic structure calculations are widely used in 

modern science. They allow us to simulate and sometimes even predict the properties of actual 

materials without using adjustable parameters. These methods require practically no 

information about the system; it is necessary to use only atomic numbers and coordinates as 

input to start the calculation. Then, all the properties of materials such as cohesive energy, 

equilibrium crystalline structure, phase transitions, transport properties, magnetism, 
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ferroelectricity, optical properties and others can be extracted from the calculation and 

sometimes directly compared to experimental data. 

The ab initio study was only relatively recently possible with the development of reliable 

computer algorithms and the availability of high performance parallel computing facilities. Ab 

initio calculations can be done now on systems that only a few years ago could only be 

processed with semi-empirical or empirical methods. 

The advantage of theoretical studies over experimental studies is that the systems 

studied are well defined. Therefore, the results are not obscured by undesirable effects such as 

those related to impurities, inhomogeneities ... Etc. In addition, theoretical studies often allow 

the study of properties that escape experience. The ab initio study explaining material 

phenomena has led to the concept of "materials by design” the idea that, for all given properties, 

we can predict new materials. However, Ab initio calculations are very demanding for 

computing resources and therefore limited in relation to small number of atoms (in the order of 

hundreds). On the other hand, the theoretical methods describe a real system using a similar but 

simpler structure, the disadvantage of these studies is that we have almost in all cases studied 

idealized systems, which can have only very few connections with reality. Moreover, in some 

situations, the neglected effects are exactly the ones of interest, but because of their complexity, 

they are not treated by the electronic theoretical methods. Therefore, an interaction between 

theoretical and experimental studies is very important and, very often, the combination of the 

two is greater than the sum of each study separately. 

The ab initio methods for approaching the electronic structure can be classified into two 

classes. The simplest type of ab initio electronic structure calculation is the Hartree-Fock (HF) 

[1, 2] scheme, based on a wave function in the form of a Slater determinant. The Hartree-Fock 

(HF) program, including full exchange but no correlation, the major disadvantage is that they 

are intensely computational. Wave-based methods are often used to process the smallest 

systems. Extending HF methods to solid-state systems is difficult or impossible. 

The second class of methods is density-based methods (DFTs). In these methods, the system is 

described by its particle density; the wave function is not taken into account. As a result, the 

system is reduced to fewer coordinates via its particle density. Due to its simplicity, most 

calculations of the electronic structure on materials are done using DFT [3, 4], and this has had 

a significant impact in the understanding of atoms, molecules, and solid. A number of codes 

implementing these methods now exist and have been used to perform simulations of several 

thousand atoms, such as  VASP, CP-PAW, PWPAW, NWChem, EStCoMPP, Ablnit, DFT + + 

and SFHIngX…. 
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I.2  Statement of the problem and research objectives  

I.2.1 The ternary phosphides LiAeP (Ae =Sr, Ba) 

Ternary compounds with a simple 1:1:1 composition—so-called 111 phase —

crystallize in more than 30 structure types [5]. In recent years, these ternary compounds, 

especially the half Heusler structure (archetype MgAgAs), the LiGaGe structure, the ZrBeSi 

structure and the TiNiSi structure, have drawn increasing attention due to their interesting 

physical properties, which make them candidates for many technological applications. For 

example, the half Heusler compounds are known to be good thermoelectrics [6–8] and have 

been proposed as topological insulators [9, 10]. The LiGaGe structure type systems have been 

proposed as ferroelectrics [11]. The ZrBeSi type compounds have been proposed as Dirac 

semimetals [12]; three-dimensional (3D) topological Dirac semimetals (TDSs) are a recently 

proposed state of quantum matter [13–18] that has attracted increasing attention in physics and 

materials science. Generally, the 111 phases are semiconductor materials. The interest in the 

ternary semiconductor 111 phases is due to the attractive chemistry encountered in this class of 

inorganic compounds and to their excellent physical properties that are not possessed by the 

simple and binary semiconductors owing to the presence of three different chemical elements 

[19]. 

Recently, Dong et al. [20] synthesized several ternary phosphide single crystals, 

including the LiSrP and LiBaP systems. The considered LiSrP and LiBaP compounds are 

initially discovered in syntheses designed to explore the existence of a new class of materials 

containing both nitrogen and phosphorus as anions. Their crystalline structures are determined 

using the single-crystal X-ray diffraction. Both compounds adopt a centrosymmetric hexagonal 

structure, space group P63/mmc (ZrBeSi structure), with two formula units by unit-cell (Z = 2) 

[21]. 

Apart from the experimental results regarding the synthesis and structural parameters 

reported by Dong and co-authors [20], no theoretical or experimental data are available in the 

scientific literature for the considered systems to the best of our knowledge. Therefore, from a 

fundamental standpoint and in terms of eventual technological applications, we have performed 

the present work to obtain some of the lacking data. 

Ab initio methods based on the density functional theory (DFT) have become a very 

powerful tool for exploring the properties of materials without requiring any experimental 

measurement. Thus, ab initio calculations using the pseudopotential plane-wave in the DFT 
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framework have been performed to investigate the electronic, optical and thermodynamic 

properties of the LiAeP (Ae = Sr and Ba) compounds. 

I.2.2 The Zintl-phase Ae3AlAs3 (Ae = Sr, Ba) 

Thermoelectric (TE) materials play an important role in global sustainable energy 

solution. These materials are investigated not only owing to their high potential of converting 

directly waste thermal energy to useful electrical energy but also to their capability to reduce 

effectively the environmental pollution. The ability of a TE material to convert heat directly 

into electricity is controlled by the dimension less parameter ZT [22, 23], the so-called figure 

of merit. A promising TE material should have a large ZT value. However, obtaining a TE 

material with a high ZT value is a challenging task. 

Currently, many kinds of thermoelectric materials have been widely studied, such as 

Zintl-phases, nanostructured compounds, zinc antimonides, oxides, half-Heusler compounds, 

clathrates and skutterudites [24-32]. Zintl-phases, a broad class of intermetallic compounds 

characterised by cations that donate their electrons to support the formation of covalency 

bonded anionic substrates, have emerged as a promising class of materials for thermoelectric 

applications due to their complex crystal structures, interesting electronic, chemical and 

physical properties [24,33]. The structural requirements of Zintl-phases are explained by 

assuming the presence of both anionic networks and electropositive cations [24]. The anionic 

networks are covalent and the cationic part is ionic in nature. The resulting mix of ionic and 

covalent bonds frequently leads to complex crystal structures with large unit cells; such a 

complex crystal can enable them to have low thermal conductivity [34-36]. Additionally, the 

Zintl-phase chemistry suggests that the fundamental transport parameters can be modified by 

doping to achieve a good balance between S and σ, consequently thus can lead to a high power 

factor [22, 37].Therefore, Zintl-phases provide desired characteristics for high ZT and 

improved thermoelectric performance since their thermal conductivities are intrinsically low. 

This has been demonstrated in several previous studies, including Ca3AlSb3 [38],  Ca5Al2Sb6 

[39] and Ca5Ga2As6 [40] . This further actuates us to search for other possible new Zintl-phase 

materials for suitable TE candidates. In the current study, we are interested in investigating the 

Ae3AlAs3 (Ae = Sr, Ba) compounds that were recently synthesised [41]. These compounds 

crystallise in the Ba3AlSb3 structure type with the space group Cmce. The structural properties 

of the title compounds, including the lattice parameters and atomic position coordinates, have 

been investigated using single-crystal X-ray diffraction.  The band structure and density of 
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states of Ba3AlAs3 have been carried out using the tight-binding linear muffin-tin orbital (TB-

LMTO) method [41]. To the best of our knowledge, some basic physical properties, such as 

elastic, optical and thermoelectric properties of these newly synthesised compounds are not 

studied. Therefore, the main object of the present study is the investigation of the structural, 

elastic, electronic, optical and thermoelectric properties of the Ae3AlAs3 (Ae = Sr, Ba) 

compounds.  

I.3  Organization of the thesis 

The thesis is organized as follows: 

In the second chapter, we present the main characteristics of the ab-initio calculations. Single-

particle self-consistent field methods (Hartree and Hartree-Fock) are discussed as 

approximations of the multi-body Schrödinger equation. The Hohenberg-Kohn-Sham 

formulation of the functional theory of density is introduced. The third chapter explains the role 

of pseudopotential methods of the plane wave in solving Kohn-Sham equations for periodic 

systems. In addition, a refresher of basic solid-state physics (crystal lattices, reciprocal space, 

Bloch theorem . . .) is given. The fourth Chapter is devoted to the description of the Full 

Potential Linearized Augmented Plane Wave method. The detailed theory for investigated 

properties will be given in chapter five. Chapter six will focus on the computational tools used 

in present study. In the seventh chapter, the results of the calculations determining the properties 

of the LiAeP (Ae = Sr, Ba) phosphide ternary are presented. In the eighth chapter, we present 

and discuss the predicted physical properties of the Zintl-phase Ae3AlAs3 (Ae = Sr, Ba) 

Finally, the work is summarized in the Conclusion chapter ,the results of the calculations 

determining the elastic, electronic, optical and thermodynamic structural properties of the 

LiAeP phosphide ternary (Ae = Sr, Ba) are presented. 
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II.1  Introduction 

In this chapter, we briefly present the basic concepts such as the Born-Oppenheimer 

approximation that can be used to the separation of electronic and nuclear motions, the 

Variational Principle and Hartree-Fock (HF) that are used in all ab initio methods and which 

allow a considerable simplification of the solution of the Schrödinger equation. This naturally 

leads to the introduction of the functional theory of density, one of the most popular methods 

for the solution of the many-body problem. 

II.2 Solving the Schrödinger equation 

All materials are composed of atomic nuclei and electrons which determine the physical 

properties of materials and molecules: whether, for example, they are hard or soft, reactive or 

inert, conducting or insulating, superconducting or magnetic, good at converting solar radiation 

to more useful forms of energy or not. In non-relativistic quantum mechanics, the ground state 

of a system of atomic nuclei surrounded by electrons can be described by solving the time-

independent Schrödinger equation, which has the form [1, 2]: 

��({��}, {��}) = ��({��}, {��}) (II. 1) 

Where E is the total energy of the system, Ψ is the many-body wave function , {��}  is the set   

of nuclear coordinates and {��}  those describing the 'electrons and H is the Hamiltonian of the 

system composed of n electrons and N nuclei with charges ��. This Hamiltonian is given by 

�� = ��� + ��
� + ���

� + ���
� + ���

�  (II. 2) 

In equations (II.2): 

The first term ��� = −
ℏ�

���
∑ ∇��

��
���    represent the kinetic energy operator for the electrons 

The second term ��
� = −

ℏ�

���
∑ ∇��

��
���  represent the kinetic energy operator for the nuclei, 

The third term ���
� = − ∑ ∑

�

����

����

|�����|
�
�

�
�   is the coulombic interaction between electrons and 

nuclei, 

The fourth term ���
� =

�

�
∑

�

����

��

�������

�
�����  is the electron-electron Coulomb repulsion energy, 

And the last term ���
� =

�

�
∑

�

����

������

�������
�
�����  is the nucleus-nucleus Coulomb repulsion energy.  

Where i and I are the indices of electrons and nuclei, respectively, �� and �� are the coordinates 

of electrons and nuclei, respectively, � and � are  the mass of the electron and  the charge of 

the electron , respectively, ��  and ��   are the mass and the charge of the I-th nucleus, 
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respectively, and ℏ is the Planck constant, ��represents the permittivity of the vacuum, ��� − ��� 

represents the distance between the electrons i and j, |�� − ��| represents the distance between 

the i-th electron and the I-th nucleus / ion and  ��� − ��� is the distance between the I-th and the 

J-th nucleus / ions. 

Throughout this thesis, we shall use the so-called Hartree atomic units in which mass is 

reckoned in units of the electron mass (me = 9.1093826 × 10−31 kg) and distance in terms of the 

Bohr radius (a0=5.299175×10−2nm), such that(ℏ =  � =  �� = 4��� =  1 ), the Hamiltonian 

is written in the most convenient form: 

�� = −
�

�
∑ ∇��

��
��� −

ℏ�

���
∑ ∇��

��
��� − ∑ ∑

����

|�����|
�
�

�
� +

�

�
∑

��

�������

�
����� +

�

�
∑

������

�������
 �

�����  (II. 3) 

In principle, Solving Equation (II.1) is the perfect way to determine any physical property of a 

system of many particles. However, in practice, it is virtually impossible to solve such a 

complex equation, either analytically or numerically. This is due to the complexity of the above 

Schrödinger equation and the extremely large number of variables involved in the problem. 

Only for a few cases, such as hydrogen-like ions or the H2
+ molecule, a complete analytic 

solution is available. The challenge posed by the many-body problem in quantum physics 

originates from the difficulty of describing the non-trivial correlations encoded in the 

exponential complexity of the many-body wave function. The many-body wave function must 

not only reflect the Coulomb interactions between the particles, but must also obey 

antisymmetry with respect to the exchange of two particles. Hence, the quantum many-body 

problem is centred upon finding intelligent approximations for the Hamiltonian (II.3) and the 

many-body wavefunction �  ,that render the Schrodinger equation tractable to numerical 

solution, while retaining as much of the key physics as is possible. The first approximation is 

to separate degrees of freedom from nuclear and electronic movements by using the Born-

Oppenheimer approximation [3] 

II.2.1 The Born-Oppenheimer approximation  

The concept behind the Born-Oppenheimer approximation, also called adiabatic 

approximation [3], comes from the huge difference of mass between ions and electrons, the 

masses of the nuclei, being approximately two thousand times greater than those of the 

electrons. Typically, the ions can be considered as moving slowly in space and the electrons 

responding instantaneously to any ionic motion so that electrons can immediately find their 

ground state while the nuclei move. Hence, it seems plausible to neglect the kinetic energy of 
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the nuclei in zeroth order, and we take into account their kinetic energy as a classic contribution. 

This considerably reduces the complexity of the calculations because the presence of the kinetic 

term associated with the nuclear motion makes the study of the hypothetical many-body system 

into a very complex problem. It should be mentioned that the electronic properties always 

depend on the position of the nuclei, but not on their dynamics, such that the electronic 

properties depend parametrically on the position of the nuclei. The Coulomb potential 

describing the interaction between electrons and nuclei is therefore considered as an external 

potential.  

Under the Born-Oppenheimer approximation, the total wave function Ψ({��}, {��}) can 

be approximated as the product of a nuclear wavefunction and an electronic wavefunction: 

Ψ({��}, {��}) = Ψ���({��})Ψ��({��}, {��}) (II. 4) 

Where Ψ���({��} is the nuclear wavefunction, and Ψ��({��}, {��})is the many-electron wave 

function that depend on the simultaneous coordinates of all the electrons .After some 

manipulation, we can write the Schrödinger equation only for the electrons at a given nuclear 

coordinates as: 

��Ψ��({��}, {��}) = ��Ψ��({��}, {��}) (II. 5) 

 With   

�� = −
�

�
∑ ∇��

��
��� − ∑ ∑

��

|�����|
�
���

�
��� +

�

�
∑

�

�������

�
�����  (II. 6) 

For all given nuclear coordinates (��), the obtained electronic wave function Ψ��({��}, {��})  

depends parametrically on (��), and it will change when the nuclei are moved.  

The total energy of the system (electrons- nuclei) at any (static) set of (��) is a sum of electronic 

energies �� and nuclear energies due to nucleus-nucleus interaction: 

����({��}) = ⟨Ψ��|��|Ψ��⟩ + ��� (II. 7) 

The last ���term enter only as a constant in each considered geometry. 

If we know ���� for many sets of nuclear coordinates, the nuclei movement can be described 

by the nuclear Hamiltonian �� : 

�� = �� + ����({��}) = �� + ⟨Ψ��|��|Ψ��⟩ + ��� (II. 8) 

The Schrödinger equation for nuclei is given 

�−
ℏ�

���
∑ ∇��

��
��� + ����({��})� Ψ���({��}) = ���Ψ���({��}) (II. 9) 

Note that Hamiltonian eigenvalues for nuclear motion are total energies for the system because 

they contain the electronic energy in their potential parts, therefore: 

���� = ���� (II. 10) 
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 Under the Born-Oppenheimer approximation, the dimension of the problem is reduced 

and the calculation is associated only with electronic degrees of freedom. However, the spatial 

dimension is still too important for real compounds. For a system of N electrons, the wave 

function ���  ({�� })  ≡  ���  (�� , . . . ,  ��) depends on 3N spatial variables. This causes a rapid 

increase in the complexity of the problem with the size of the system. Already for the small 

systems, which consist only of dozens of electrons, the calculation becomes unfeasible. 

Moreover, the equation above contains a two-particle interaction in the form of the electron-

electron potential. Therefore, under the Born-Oppenheimer approach, the solution of Equation 

(II.5) for electrons is still a problem of many-body. We need to do more, before simulations are 

done. For weak interaction systems, a perturbative approach might be the best solution, but if 

we want good results in general, we need another method. 

II.2.2 The Hartree approximation 

The first approach to the problem of many electrons can be considered as that proposed 

by Hartree (1928) [4]. The basic assumption of this approximation is that the many-electron 

wave function can be written as a simple product of N monoelectronic wave functions, even 

when the electron-electron interactions are not neglected. 

Ψ(��, �� … , ��) = �(��)�(��) … �(��) (II. 11) 

The �(��) are the N independent electronic wave functions. This approximation defines the 

potential by separating it into an electron potential (Velec) and an ion potential ����. During the 

interaction, a given electron is no longer subject to a potential depending on the instantaneous 

positions of all other electrons, but rather to a potential corresponding to the average electron 

distribution, so that the remaining electrons are treated as a regular distribution of the negative 

charge with their charge density. We can say that the electron moves in an average electrostatic 

potential VH(r) from the set of neighboring electrons, so that eventually we would be able to 

process a non-interacting particle system instead of processing particles in interaction. With 

this approximation, the energy of the system can be written as [5]: 

�� = �Ψ����Ψ�  

=  ∑ ��(��)�
�

�
∇��

� + ����(�)��(��)��
� +

�

�
∑ ��(��)������

�

�������
��(��)�������

�,�(���)  (II. 12) 

Applying the Variational principle, we obtain the Hartree equation to a single particle: 

�
�

�
∇��

� + ����(�) + ∑ �������
�

�������
��������

�,�(���) � �(��) = ���(��) (II. 13) 
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Where Vion(r) represents the Coulomb potential resulting from the interaction of the electron at 

the position ri with all nuclei and ∑ �������
�

�������
��������

�,�(���)   represents the Coulomb 

potential resulting from the interaction of this electron with all other electrons, this term is 

commonly referred to as Hartree potential. 

By introducing the concept of the atomic density of electrons �����  ,Hartree defined the 

potential that an electron experience by using the following relation: 

��(��) = 〈∑
�

�������

�
��� 〉 = ∫

�(��)

�������
���� (II. 14) 

Where the density of probability � at the position �� is given by the absolute square of the wave 

function ��(�), and the integration is carried out over the coordinates of all the electrons except 

over the coordinate �� of the electron �: 

����� = ∑ ���(�)�
����

���  (II. 15) 

The Hartree potential can be obtained also from the Poisson equation: 

∇²�� = −4��²�(�) (II. 16) 

The Hartree equation is written as 

H��(��) = ���(��) (II. 17) 

With  

H� =
�

�
∇��

� + ����(��) (II. 18) 

Where  

   ����(��) = ����(��) + ��(��) (II. 19) 

Solving the equation (II.17) yields all �� and  �(��)  . 

The total Hamiltonian is simply a sum of one-electron operators,  H�. 

�� = ∑ ��
�
�   (II. 20) 

This implies that the total energy of the electronic system �� is the sum of the energies of the 

separated electrons: 

�� = ∑ ��
�
�  (II. 21) 

Equation (II.17) has a very familiar form and it is similar to the Schrödinger equation for a 

single electron moving in an effective potential ����(��). However, there is a big difference: in 

the Hartree equation, the potential depends on the solution itself, in order to solve the equation 

(II.17) for each wave function � (��), all the other functions �(��) must be known, that requires 

a self-consistent method. First, a set of approximate wave functions �(��) is chosen as a test set 

from which the N one-electron functions and the ��  potential are calculated. By inserting the 
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potentials ��in equation (II.17), one can obtain the solutions of the Hartree equation. Then, 

using these solutions, we recalculate the potentials ��  and the equation is solved again and the 

potential is calculated. This procedure is repeated until the input and the output potentials are 

very close, within a certain tolerance. 

The disadvantage of Hartree approach is that he does not take into account the Pauli Exclusion 

Principle [6], which requires that two electrons cannot be in the same quantum state.  

 The introduction of this principle (the inclusion of exchange) transforms the Hartree approach 

into the Hartree-Fock approximation [7]. 

II.2.3 The Hartree-Fock approximation 

The Hartree-Fock approximation [7] follows directly from what was done for the 

Hartree approximation, only taking into account the need for the antisymmetric character of the 

wave functions with respect to electron exchange, as required by the principle of exclusion of 

Pauli [6].This could be achieved by adding and subtracting all possible permutations of the 

Hartree product. The wave function becomes the function of the 4N variables (the three 

coordinates and the spin of the electron). 

In the framework of the Hartree Fock approximation [7], the many-body wave function is 

assumed to be a single Slater determinant of single-particle orbitals [8]: 

 

Ψ�� =
�

√�!
�

��(��) ��(��) … ��(��)

��(��) ��(��) … ��(��)
⋮ ⋮ ⋮ ⋮

��(��) ��(��) … ��(��)

� (II. 22) 

 

Where �� in the wave functions represents all the coordinates (space and spin) of particle i, 

The total energy with the Hartree-Fock wave function is obtained by: 

 �� = �Ψ����Ψ� = ∑ ��
�
��� +

�

�
∑ ���� − �����

�,���  (II. 23) 

Where  

��� = ∫ ��
∗(��) �

�

�
∇��

� + ����(�)� ��(��) ��                    

��� = ∬ ��(��)��
∗(��)

�

���
��

∗(��)��(��) ������   (II.24)                                                        

��� = ∬ ��
∗(��)��(��)

�

���
��(��)��

∗(��) ������  
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Where the���  are called Coulomb term and ���  is the exchange term. We have significant 

equality: ��� = ��� .The exchange term is similar to the direct Coulomb term, but for the 

exchanged indices 

Hartree-Fock equations with a single particle are obtained by a Variational calculus [9]: 

����(�) = ����(�) (II. 25) 

Where  

�� = ℎ�� + ∑ (��̂ − ���) �
���  (II. 26) 

Where ℎ��contains the kinetic energy of the electron i and its interaction with all the nuclei. 

The second term in equation (II.26) is the Coulomb operator ��̂ and it represents the potential 

that an electron in position �� experiences due to the average charge distribution of another 

electron in the orbital of spin ��and it is defined by its effect when it operates on a spin orbit 

by: 

����(��) = �∫
���(��)�

�

���
 ���� ��(��) (II. 27) 

The last term ��is the exchange operator. It stems from Pauli's exclusion principle and acts to 

separate electrons in the same spin state. This term has no classical analogue and is a purely 

quantum mechanical effect, caused by the anti-symmetric ansatz of the wave function when 

interchanging any two electrons, it is best represented by showing how it acts on a single 

particle wave function 

����(��) = �∫
��

∗(��)��(��) 

���
 ���� ��(��) (II. 28) 

By multiplying the equation (II.23) by ��
∗  and integrating, we obtain for the Hartree-Fock spin-

orbital energies the following expression: 

�� = ���������� = ��� + ∑ ���� − �����
���  (II. 29) 

The approximate electronic energy of the electronic ground state is then calculated as: 

��� = ∑ �� −
�

�
∑ ∑ (��� − ���)�

���
�
���

�
���  (II. 30) 

And for total energy, including nuclear-nuclear repulsion [9] we obtained: 

���� = ∑ �� −
�

�
∑ ∑ (��� − ���)�

���
�
���

�
��� + ��� (II. 31) 

           The Hartree-Fock approach is widely used by quantum chemists today. However, it has 

limitations, the Hartree-Fock equation is difficult to apply in extended systems because of its 

exchange term, which is non-local. The computational complexity of the Hartree-Fock method 

grows rapidly with the number of atomic electrons, so the corresponding calculated time for 

heavy atoms is found to be too long even when using modern computers. For this reason, there 
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has been relatively few applications to solids [10]. In addition, the Hartree-Fock approximation 

sometimes gives unsatisfactory results because the approximation of an electron no longer takes 

into account the quantum effects on the electron distributions because the effect of other 

electrons in the system on an electron of interest is processed according to their average 

location. It does not consider instant Coulomb interactions between electrons. The Hartree-

Fock equations neglect more detailed correlations due to many-body interactions. Much of the 

modern work in the field of calculating the electronic structure is designed to take electronic 

correlation into account. 

II.3 The theory of the density functional 

The alternative of HF methods is the density functional theory (DFT), which is 

becoming increasingly popular in condensed matter physics, quantum chemistry and materials 

science. The main idea of the density functional methods is that the problem is solved directly 

for the charge density, �(r) rather than for the wave function Ψ of several particles [11]. This 

leads to a remarkable reduction in the difficulty because it is enough to treat a function of three 

variables x, y and z, rather than a problem of 3N variable.  

Density functional theory (DFT) not only had a major impact on structural-electronic 

calculations, but it also makes it possible to treat properties of rather complex materials. This 

involves the determination of magnetic and electrical susceptibilities, spin-polarized 

fundamental states, superconductivity, etc. [11]. On the other hand, density functional theory 

(DFT) is a good compromise between the qualitative description of the electronic structure and 

the computational efficiency required to produce the result. 

The density functional theory has its roots in Thomas and Fermi's publications in the 

1920s. Thomas and Fermi [12, 13] have attempted to formulate such an approach much earlier; 

however, their work, suffered from inaccuracies in the processing of kinetic energy and 

exchange-correlation effects. Nevertheless, the method served as a starting point for the 

development of more advanced publications in the early 1960s [14, 15]. 

In their 1964 article, Hohenberg and Kohn formulated the basics of density functional theory 

for any system of N electrons moving in an external potential Vext (r) and whose fundamental 

state is nondegenerate. The Hamiltonian operator for such a system can be written as: 

�� = �� + ����� (II. 32)  

Where  

�� = −
�

�
∑ ∇�

� +�
��� ∑

�

�������

�
���  (II. 33) 
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and 

����� = ∑ ����(��) = − ∑ ∑
��

�������

�
���

�
���

�
���  (II. 34) 

Hohenberg and Kohn outlined DFT in terms of two theorems, proving the existence of a one-

to-one mapping between the potential V (r) and the density n (r).  

II.3.1 Hohenberg-Kohn's theorem 

II.3.1.1 Hohenberg-Kohn's first theorem 

The first theorem of Hohenberg and Kohn states the following: [14] 

The ground state density ρ (r) of a system of interacting electrons in an external potential Vext 

(r) uniquely defines this potential.  

In the term "unique" we must understand "unique to an additive constant". Indeed, the charge 

density is not modified if a constant is added to the external potential [16]. 

Hohenberg and Kohn have been able to prove that there is a relation of uniqueness 

between ρ (r) and the external potential: two external potentials could not give the same ρ (r). 

This tells us that we can derive the potential External Vext (r) applied to an interacting N electron 

system from the electronic density of this system. In addition, all the properties of a system can 

be determined also via the electronic density of the system. This formulation can be applied to 

any particle system interacting in an external potential, including fixed-core problems and 

electrons. Originally, this theorem has been demonstrated for nondegenerate states, then it has 

been extended to a vast class of systems including degenerate state systems [17, 18], spin-

polarized systems [19, 20]. This theorem has also been extended to finite temperature by 

Mermin [21], thus proving that entropy, specific heat, etc. are functionals of the equilibrium 

density [22]. 

II.3.1.2 Second theorem of Hohenberg-Kohn 

The second theorem of Hohenberg-Kohn is directly related to the first and indicates 

that: There exists a universal functional F [�(r)] of the density, valid for any external potential 

Vext(r), such that the global minimum value of the energy functional  ����[�] = ���[�] +

∫ ������� �(�)  is the exact ground state energy of the system and the density n(r) that minimizes 

this functional is the exact ground state density ��(r). Thus, the exact ground state energy and 

density are fully determined by the functional E[� (r)]. 



19 

Chapter II              Fundamental of the Density Functional Theory 

    

���[�] is a universal functional valid for any number of electrons having an external potential, 

in the sense that ���[�]does not depend on the external potential felt by the electrons (not 

including any information on the nuclei or on their positions). 

���[�] contains the kinetic term of the interacting particles  ���and the energy of the interaction 

between the electrons, ���� 

���[�] = ��� + ���� (II. 35) 

 If the form of the "true" functional was known, we could vary the electron density until the 

energy functional is minimized. The electronic density that minimizes the total energy 

functional is the true density (the ground-state density) corresponding to the energy of the 

ground state of the system. This means that we can think of solving the Schrödinger equation 

by finding the electronic density, which is a function of three spatial variables, rather than the 

wave function, which is a function of 3N variables. 

The Hohenberg-Kohn theorem does not tell us the form of the functional of energy as a 

function of density: it only proves that such a functional exists.  

The next major step in the development of DFT came with the derivation of a set of one-

electron equations from which the electron density ρ (r) can be obtained [15]. 

II.3.2 Kohn and Sham's approach 

Based on the fact that Hohenberg and Kohn's theorems are valid for any electronic 

system, whether interacting or not, Kohn and Sham (1965) [15] introduced an elegant method 

that became the most practical implementation of the density functional theory. Their idea is to 

replace formally the "real" electrons of a system by an auxiliary system of non-interacting 

electrons (Vee = 0) evolving as independent particles in an effective potential so that the charge 

density in this auxiliary system is exactly the same as in the full interacting system [22].  

The important achievement of Kohn and Sham was to write the energy functional for the real 

system as: 

���[�] = �Ψ���� + ���� + ������Ψ� 

             = ��
�� + ��������[�]|Ψ⟩ + ∫ �(�)������ + ���[�] (II. 36) 

The first term  ��
�� is the functional of the kinetic energy for a set of N non-interacting electrons 

with the same ground-state density � (r) as the interacting one. But  ��
��  is not equal to the true 

kinetic energy of the interacting electron system. The interest of the introduction of this 

fictitious system is that we can now express the functional kinetic energy as a function of the 

orbitals ��. 
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If each effective electron is described by a single particle wave function  ��, the kinetic energy 

of all effective electrons is given by: 

��
��[�(�)] =

�

�
∑ |∇��(�)|��

���  (II. 37) 

Where the sum is on all occupied orbitals of Kohn-Sham (KS). 

The second term is the functional of the electrostatic energy, commonly known as the Hartree 

contribution; it is purely classical and contains the electrostatic energy arising from the 

repulsion between all electronic charges,  

��(�) = ∫
�(��)�(��)

�������
��� ��� (II. 38)  

The third term is the classical electron-nuclei Coulomb interaction with the potential �����(�) 

due to the nuclei i.e. 

����[�] = ∫ �����(�)�� (II. 39) 

����(�) = − ∑
��

������

�
���  (II. 40) 

Where ��  is the positive charge of the nucleus in ��.The fourth term is a universal functional, 

termed: the exchange–correlation functional. It groups all remaining complicated electronic 

contributions to make the functional in Eq. (II.36) exact, however, its exact form is not known. 

It contains the difference between the exact kinetic energy T[�(r)] and non-interacting kinetic 

energies  ��
��as well as the non-classical part of ���[�(�)]: 

���[�] = �[�(�)] − ��
��[�(�)] + ���[�(�)] − ��[�(�)] (II. 41) 

As the name suggests, ���[�] arises from a combination of two quantum mechanical effects: 

electron exchange and correlation. The most important of these contributions is the exchange 

term. Briefly, electron exchange arises because a many-body wave function must be 

antisymmetric under exchange of any two electrons since electrons are fermions and obey the 

Pauli Exclusion Principle. In real space, Pauli's principle implies that in the neighbourhood of 

every electron with a given spin, all other electrons with the same spin tend to avoid that 

electron, just as it has been postulated the existence of a (Fermi) exchange hole excluding the 

electrons of parallel spins in the same region of space. Consequently, the exchange term reduces 

the Coulomb repulsion of the electronic system by increasing the spatial separation between 

electrons and cancels out this unwanted interaction in a sense. Likewise, a correlation hole must 

be "imagined" for opposite spin electrons because the motion of each individual electron is 

correlated with the motion of all others and electrons with opposite spins also avoid each other, 

helping also to keep electrons of unlike spin spatially separated. The additional many- body 

interaction terms between electrons of opposite spin are called correlation energy.  
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II.3.3  The Kohn-Sham equations 

The minimization of the total energy (equation (II.36)) with respect to density, for a 

fixed number of electrons, produces a set of equations: 

�−
�

�
∇� + ����� ��(�) = ����(�) (II. 42) 

Here, the one-electron orbitals ��(�) are called the Kohn-Sham orbitals and the above 

eigenvalue equations are called the Kohn-Sham equations. 

Where � refers to the ��ℎ electron, ��(�) is the single particle wave function of this electron. 

and �����(�) is the effective potential given by: 

�����(�) = ���(�) + �����(�) + ���� (II. 43) 

Where  

  ����(�) =
����[�(�)]

��(�)
�
����

   (II. 44) 

And  

 ���(�) =
���[�(�)]

��(�)
= ∫

�(��)

������
���  (II. 45) 

The Hartree potential ���(�)  namely contains a Coulomb repulsion between an electron and 

itself in the sense that it interacts with a charge density constructed from its own wave function. 

This is clearly visible in the case of one electron where the Hartree energy is non-zero.  The 

self-interaction of the Hartree potential is exactly cancelled by exchange-correlation hole. 

The set of Kohn-Sham equations is to be solved self-consistently (see subsection III.7), under 

the constraint that the number of particles is conserved.  

Due to the dependence of the effective potential on the density via the Hartree potential. 

The total energy of the system is not simply equal to the sum of the eigenvalues of the Kohn-

Sham equations, but it is calculated by adding the different energy contributions with 

corrections for double counting: 

� = ∑ �� + ���[�] − ∫ ���(�)�(�)�� −
�

�
�
� ∬

�(�)�(��)

������
����� (II. 46) 

Where the sum over the values of a single particle is often called band structure energy. The 

electron density is expressed according to the orbitals 

ρ(�) = ∑ |��(�)|�
���  (II. 47) 

Where ��(�) are the KS orbitals that are the lowest energy solutions of the equations (II. 42). 
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The full wavefunction of non-interacting is far less complicated that of the true interacting 

system and it must still satisfy exchange anti-symmetry and this can be achieved by placing 

single-particle wavefunctions in a Slater determinant [8]. 

Slater Determinant constructed from a set of KS orbitals is the exact wave function for the 

fictional non-interacting system having the same density as the real system. 

The Kohn-Sham equations seem formally very similar to the Hartree-Fock equations. 

They have identical contributions to the kinetic energy and from the external potential as well 

as from the Coulomb energy of the electrons; the only difference is the presence of exchange-

correlation potential. The Kohn-Sham equations contains both parts (the exchange and the 

correlation), and they are treated via an approximate treatment, whereas in the Hartree–Fock 

equation only exchange interactions are included and it treated exactly [23]. The Kohn-Sham 

equations are much easier to be solve than the Hartree-Fock equations, in which the potential 

depends on the orbit [24]. In the Kohn-Sham equations, the effective potential is the same for 

each orbit in the sense that occupied and unoccupied orbitals all feel the same effective potential 

�����(�). 

II.3.4 The exchange–correlation potential 

Kohn and Sham (KS) reformulated the problem in a more familiar form and opened the 

way to practical applications of DFT, but the precise dependency of the exchange–correlation 

potential ���  on the density ρ(r)   is not known. Nevertheless, this exchange–correlation 

potential can be approached and many approximations have been proposed and tested on 

different types of systems. The most common approximations in solid-state physics are the local 

density approximation (LDA), the generalized gradient approximation (GGA) and the modified 

Becke–Johnson (MBJ) potential. 

II.3.4.1  Local density approximation (LDA) 

The simplest physical way of approaching the exchange-correlation energy is Local 

Density Approximation (LDA) proposed by Kohn and Sham themselves [15]. The idea behind 

the LDA is very simple; it simply ignores the non-local aspects of the functional dependence 

of Vxc and assumes that Vxc only depends on the local density �. So that at each point in the 

system, the exchange and correlation energy per particle has the value that would be given by 

a homogeneous electronic gas that had the same electron density � at this point. Note that the 

LDA does not assume that the electron density in a molecule is homogeneous (uniform); this 
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drastic situation would be true for a "Thomas-Fermi molecule", which cannot exist. The total 

exchange correlation energy E��  is then given by the sum of the contributions of each point in 

space,  

���[�] = ∫ �� �(�)�����(�)� (II. 48) 

Where�����(�)� is the exchange-correlation energy per particle. 

The quantity �����(�)�can be divided into exchange and correlation contributions represented 

by the energies per particle �� and ��. 

���(��(�)� = ����(�)� + ����(�)� (II. 49) 

Both terms are negative. The exchange portion is generally larger than the correlation portion, 

typically by a factor of 3 to 10 in the crystallographic systems. 

The exchange contribution can be evaluated analytically [22], while the correlation part is 

obtained by parameterizing of precise quantum Monte Carlo simulations of the homogeneous 

electron gas as proposed by Ceperly and Alder [25]. Depending on the analytic forms used for 

����(�)�, several local density approximations were have been generated, the most widely used 

LDA functional is that parametrized by Perdew-Zunger (PZ81) [26]. 

The LDA approximation is only strictly valid for interacting electron systems within 

the limits of a slowly varying density and very high densities. Nevertheless, experience has 

shown that accurate results can be obtained well beyond this expected range of validity [27]; it 

is surprisingly successful and even works reasonably well in systems where the electron density 

is rapidly varying. Typically, the LDA has proven to be a remarkable fruitful approximation in 

reproducing excellent numerical results for strongly bound system, which share some properties 

with the HEG, especially for vibrational and structural properties. 

However, LDA has many short-comings mostly due to the tendency to overbind atoms (has a 

tendency to make chemical bindings much too strong). This leads to cell parameters being 

underestimated by several percent for solids. Therefore, the bulk modulus is overestimated. The 

main deficiency of the LDA was the large errors in predicting the energy gaps of some semi-

conductors and insulators [28]. 

The limitations of The LDA led to the subsequent level of approximation to the 

exchange-correlation energy, a natural way to improve LDA is to make the exchange-

correlation functional not only dependent on the local density, but also the on gradient of the 

density. 
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II.3.4.2  The generalized gradient approximation (GGA) 

LDA is expected to perform well for systems with a slowly varying density. Practically, 

such a condition is rarely satisfied. The first logical step to go beyond LDA is the use of more 

sophisticated exchange-correlation potentials where the exchange-correlation energy not only 

depends on the charge density at a particular point  � , but also of the spatial variation of this 

electronic density at this point in order to take into account the non-homogeneity of the true 

electron density [29]. This can be done by adding gradient terms of the electron density to the 

exchange-correlation energy and its corresponding potential. 

This has led to the generalized gradient approximation (GGA) which can be put in the general 

form: 

���
���[�] = ∫�(�, �)| ���(�)

��∇�(�)

��� (II. 50) 

Where g (ρ, g) is a function of the local density and density gradient. Function g is not unique 

and many different forms have been suggested because the electronic density gradient 

information can be included in many ways in GGA functional. The four most widely used 

GGAs are the forms proposed by Becke [30] (B88), Perdew et al. [31], Perdew, Burke and 

Enzerhof [32] (PBE) and that suggested by Perdew et al (PBESOL) [33]. 

Large number of test calculations showed that GGA functionals a noticeable 

improvement upon LDA in the description of atoms and solids [32]. Especially in systems 

where charge density varies rapidly, because GGA functional include more physical ingredients 

than the LDA functional but computationally it is more time consuming than LDA [34].It 

underestimates the bulk modulus and zone center transverse optical phonon frequency of the 

solid [35,36], corrects the binding energy [37,36] and corrects or overcorrects the lattice 

constants compared to LDA [35,38-40].However, the GGA approximation does not necessarily 

lead to better results than the LDA. There are several cases in which GGA gives worse results 

than LDA - for example, GGA sometimes overcorrects the results of LDA in ionic crystals 

where the lattice constants from LDA calculations agree well with the experimental data, but 

GGA will overestimate it. Nevertheless, LDA and GGA behave badly in materials where 

electrons tend to be localized and highly correlated such as transition metal oxides and rare 

earth elements and compounds.  

In general, GGA shares the same problems with LDA in modelling a certain class of 

materials where electrons tend to be localized and highly correlated, so-called “strongly 
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correlated” systems and also like LDA, it does not give correct band gaps for semiconductors, 

this disadvantage leads to approximations beyond LDA and GGA. 

II.3.4.3 The modified Becke–Johnson (MBJ) potential 

Recently, Tran and Blaha have introduced a newly semi-local exchange-correlation 

functional called the modified Becke–Johnson (MBJ) potential [41], by using information from 

kinetic energy density in addition to the charge density as employed in standard GGA. The TB-

mBJ approach can be regarded as a pragmatic approach to address the LDA/GGA band gap 

problem in the DFT framework. The mBJ scheme addresses only the exchange potential; the 

effect of correlations can be treated within the local or semi-local density approximation but 

according to Tran and Blaha [41, 42] has only small effect. 

In this method, the exchange term is formulated by modifying the Becke-Johnson potential 

[43], which was proposed to model the exact exchange potential in atoms. The Becke-Johnson 

potential depends mainly on the total density and the kinetic-energy density (t) as given by Eq. 

(II.51) 

��
��(�) = ��

�� +
�

�
�

�

��
�

��(�)

�(�)
 (II.51) 

Where  �(�) = ∑ |��|²
�
���  is the electron density, 

�(�)is the KS kinetic energy density: 

�(�) =
�

�
∑ ∇��

∗�
��� (r)∇��(�) (II.52) 

, and ��
��(�) is the Becke and Roussel (BR) exchange potential [44]: 

��
��(�) = −

�

�(�)
(1 − ���(�) −

�

�
�(�)���(�)) (II.53) 

The Becke and Roussel (BR) exchange potential was proposed to model the Coulomb potential 

created by the exchange hole, with �(�) is determined from a nonlinear equation involving �, 

∇�, ∇� and �. The � is calculated with � = �
�����

(���)
�

�

�
. 

Tran and Blaha have introduced a variable prefactor ‘c’ (depending on the average value of 

|∇ρ|/ρ) that affects the relative weights of the two terms in the BJ potential. 

The TB-mBJ exchange potential is defined as: 

��
������

= ���
��(�) + (3� − 2)

�

�
�

�

�
�

�(�)

�(�)
 (II.53) 

The c parameter value showed in Eq. (II.53) is computed with 
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� = � + �(
1

�����
�

|∇�(��)|

�(��)
����) 

Where ����� is the unit cell volume and α and β are two free parameters whose values are � =

 −0.012 and � =  1.023 ��ℎ��/� according to a fit to experimental results [42]. For c= 1 the 

original BJ potential is recovered. The c values greater than one lead to a less negative (i.e. less 

attractive) potential, in particular, in low-density regions. 

The TB-mBJ functionals yield remarkably accurate band gaps in a wide variety of 

materials [42,45-47] with a computational effort that is in general comparable to that of 

LDA/GGA although its self-consistency cycle converges slower and therefore requires more 

iterations (a factor of 2-3). It is important to point out that TB-mBJ is a potential-only 

functional, i.e., there is no associated TB-mBJ exchange-correlation energy. This means The 

TB-mBJ functionals can not be used to compute Hellmann-Feynman forces and to compare 

total energies, which in turn means MBJ calculations should be used only for quantities, which   

do not involve the total energy. 
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III.1 Introduction 

In order to solve the Kohn-Sham equations, it is necessary to choose an appropriate base 

adapted to the studied system in order to develop the eigenstates of Kohn Sham and to express 

the different parts of the Hamiltonian. For the description of crystals, the set of plane wave is a 

good choice, because crystal lattices have periodic symmetry, which can be used to reduce the 

amount of atoms that must be accounted in the calculation. However, the plane wave become 

fast oscillation functions near the atomic nuclei, and therefore a large number of functions are 

needed to describe such oscillations. Nevertheless, using the pseudopotential approximation, 

we can reduce the size of the base set and thus reduce computational costs. The use of the plane 

wave basis with the pseudopotential constitutes the pseudopotential plane wave method. 

In this chapter, we describe the expression of the Kohn-Sham equations in the plane wave basis, 

then, we will represent the pseudopotential approximation, followed by a practical methodology 

to solve the Kohn-Sham equations. 

III.1 Crystal symmetry and Bloch's theorem 

III.1.1 Periodic systems 

A crystal is an ordered state of matter in which the positions of the nuclei (and 

consequently all properties) are repeated periodically in space. It is completely described in real 

space in terms of non-coplanar basis vectors ��⃗ �, ��⃗ � , ��⃗ � and the positions of atoms inside a 

primitive unit cell (PUC). The lattice vectors R are formed by all the possible combinations of 

primitive lattice vectors, multiplied by integers: 

��⃗ = ����⃗ �, +����⃗ � + ����⃗ �  (III. 1) 

Where ��, �� and  ��are integers. 

A lattice formed by such a translational operation is called the simple Bravais lattice, and the 

parallelepiped defined by the three basis vectors ��⃗ �, ��⃗ � , ��⃗ � is the unit cell of the Bravais lattice 

(or primitive cell); its volume is: 

 ��⃗ = ��⃗ � × ���⃗ �  × ��⃗ �� (III. 2)  

There are infinite possible choices for the unit cell, the cell which is the most symmetric and 

compact is called the Wigner-Seitz unit cell. 

Since the motion of electrons in a crystal is usually described in both real space and 

momentum space (or k-space), it is important to introduce the concepts of reciprocal lattice, 
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which is the inverse of the real lattice. In a reciprocal lattice a set of reciprocal basis vectors 

b ���⃗
�
∗ , b�⃗ �

∗  , b�⃗ �
∗  can be defined in terms of the basis vectors b�⃗ �, b�⃗ � , b�⃗ � of a direct lattice. This is 

given by [1]: 

� ���⃗
�
∗ =

��(��⃗ �×��⃗ �)

��⃗ �.(��⃗ �×��⃗ �)
 ,  � ���⃗

�
∗ =

��(��⃗ �×��⃗ �)

��⃗ �.(��⃗ �×��⃗ �)
 , � ���⃗

�
∗ =

��(��⃗ �×��⃗ �)

��⃗ �.(��⃗ �×��⃗ �)
 (III. 3) 

The primitive cell of the reciprocal space does not need to be a parallelepiped, in fact 

we can define the Wigner-Seitz cell of the reciprocal lattice, which is also known as the first 

Brillouin zone in reciprocal space. 

In a perfect crystal, the Hamiltonian H of the Schrödinger equation of a system of 

particles is invariant under any translation operation T (n), as the effective potential has the 

same periodicity of the lattice and the derivative operator is invariant under the effect of 

translation operations [2]. 

III.1.2  Bloch’s theorem 

If we solve the Schrödinger equation for the periodic system, the solution must satisfy 

a fundamental property known as Bloch's theorem [3], which indicates that the eigenfunctions 

can be expressed by plane waves modulated by functions that have the same periodicity of the 

lattice. Using Bloch’s theorem, the solutions of the Schrodinger equation for a periodic potential 

reads: 

��,�(�) = exp(���) ��,�(�)  (III. 4) 

where ��,�(�)  is a periodic wavefunction with ��,�(�) = ��,�(� + �) ,R is any vector 

connecting equivalent Bravais lattice points, k is a reciprocal vector used to label the states and 

it can be always translated back to the first Brillouin zone, the subscript n is denoted as band 

index and distinguishes different eigen energy ��,� for the same momentum k. The eigenvalues 

are also periodic functions in the reciprocal space, i.e. 

 ��,� = ��,���  (III. 5) 

This means that the Bloch’s theorem reduces the number of electrons required for the 

calculation to those in the unit lattice, if the Hamiltonian of system is invariant under translation. 

The periodicity of ��,�(�) means that it can be expanded in terms of a special set of plane 

waves: 

��,�(�) = ∑ ���� exp(���) (III. 6) 

Where the summation is over all vectors defined by G: 

�⃗ = ����⃗ �
∗ + ����⃗ �

∗ + ����⃗ �
∗  (III. 7) 
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Where ��, ��,  ��are integers, and ��⃗ �
∗, ��⃗ �

∗, ��⃗ �
∗ are the reciprocal lattice vectors, and ���  are the 

coefficients of expansion. 

By combining the equations. (III.4) and (III.6), we can find that the single-particle wave 

functions ��,�(�) ,at each point k in the BZ of a given crystal, can be developed in a discrete 

set of plane waves: 

��,�(�) = exp(���) ��,�(�) = ∑ ���(�)� exp[ �(� + �). �] (III. 8) 

III.2 Expression of Kohn-Sham equations in the plane wave basis 

Expansion of the electron wave functions in terms of plane waves allow the Kohn-Sham 

equations to take a particularly simple formulation in a reciprocal space [4, 5]. Substituting the 

electronic wavefunction expressed in terms of all plane waves equation (II.42) into the Kohn 

Sham equation (II.45) and integrating over r, gives the matrix eigenvalue equation: 

�∑
�

�
|� + �|����� + ����(� − ��) + ���(� − ��) + ��(� − ��)�� � = ������ (III.9) 

In equation (III.9), the kinetic energy is diagonal, the other three terms on the left are the Fourier 

components of the external potentials, exchanges correlation and Hartree term respectively. 

III.3 The cut-off energy 

 In principle, to describe exactly the electron wave function, the dimension of the plane-

wave basis set should be infinite. However, the functions appearing in the equation. (III.8) have 

a simple interpretation as solutions of the Schrödinger equation: they are solutions with kinetic 

energy: 

� =
�²

��
|� + �| (III. 10) 

Typically, the plane wave functions with higher | G | have a higher kinetic energy and thus 

contribute less to the expansion of the wave function, because the coefficients ���(�)associated 

with a plane wave of high kinetic energy are negligible compared to those associated with a 

plane wave of low kinetic energy [6]. 

Therefore, the size of the set of reciprocal lattice vectors can be truncated by placing an upper 

limit for the kinetic energy of the plane waves. This limit is called the cut-off energy such that 

only plane waves with a kinetic energy lower than Ecut are included in the expansion of Kohn-

Sham functions. The infinite sum is then reduced to: 

��,�(�) = ∑ ���(�)|���|�����
exp[ �(� + �). �] (III. 11) 
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 Obviously, the value Ecut affects the accuracy of the calculations and depends strongly on the 

elements, which are present in the system under investigation. Simple convergence tests should 

be carefully performed in each case by varying the cut-off energy and establishing at what 

energy convergence is achieved. (i.e. increasing the cut-off energy does not affect the calculated 

energy of the system). 

III.4 Sampling the Brillouin Zone 

The computation of many physical quantities such as the total energy of a solid requires 

the knowledge of Bloch functions over infinite k points in BZ, because for each of k values  

exists a discrete spectrum of eigenvalues of the Kohn-Sham equation. Therefore, a finite 

selection of k points must be used in practice for the calculation. The electronic wave functions 

at k points that are very close together will be almost identical (it will not change much with 

small variations in k) [7]. Hence, it is possible to represent the electronic wavefunctions over a 

region of k space by the wavefunctions at a single k point. Thus removes the need for an infinite 

number of electrons and allows one to make calculations at the finite number of k points. By 

using the additional symmetries of the crystal, such as the rotations or reflections of the mirror, 

the number of points k required can be reduced, so that ψ can only be calculated at special 

points in the Brillouin zone and the integration can be conveniently confined in a smaller region 

of the BZ. The smallest possible part, that by employed all symmetries operations can be 

unfolded into the whole Brillouin zone is called the irreducible Brillouin zone (IBZ).  

There are different methods for choosing special points in the BZ [8, 9, 10]. However, 

the Monkhorst-Pack approach is the most widely used [11]. The Monkhorst-Pack method is 

based on a representation of the integration on the BZ by a weighted sum over a number of 

special k-points. The error that appears in the calculations can be reduced by choosing a heavier 

set of k-points in the Brillouin zone. 

III.5 Pseudopotential 

III.5.1 The frozen core approximation 

It is a well-known fact in chemistry that the core electrons, by opposition to the valence 

electrons, are tightly bounds to the nuclei and do not participate in the chemical bonding 

between atoms [12, 13]. When the atoms are transferred from one chemical environment to 

another, the wave functions of the core electrons do not change significantly with the 
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environment of the parent atom, because their wave functions overlap only very slightly with 

the core electron wave functions from neighboring nucleus. For this reason, they do not 

determine most of the electronic and optical properties of materials. [14]. It is thus justified to 

consider the configuration of the core electrons within the solid to be “frozen” and equal to its 

form of the isolated atom. Therefore, it is possible to combine the potential due to the core 

electrons with the Coulomb potential of the nucleus to an ionic core potential. In this way, core 

electrons are removed from the problem and one can focus only on the valence electrons in the 

calculation, this is known as the frozen core approximation [15]. The error introduced by such 

an approximation is quite small but savings in the computational cost is enormous.  

III.5.2 Concept of pseudopotentials 

The atomic wave functions are eigenstates of the atomic Hamiltonian, they must all be 

mutually orthogonal, so that the valence wave function must oscillate rapidly and must has 

some nodes in the vicinity of the nucleus in order to maintain orthogonal to the core state. But 

,it is difficult to develop the rapidly oscillating wavefunction with all of its radial nodes in a 

given basis set (e.g., Gaussian, plane waves, etc.), because an extremely large number of waves 

would be necessary to perform an all-electron calculation -a computationally demanding task, 

therefore, a further reduction of the basis set size is essential.  

As the valence wave function is associated with bonding properties, a good description 

of valence wave function in core region is not necessary. It is therefore appropriate to attempt 

to replace the true potential, which includes the effects of the nucleus and the core electrons, by 

an effective pseudopotential acting only on valence electrons. As such, the rapid oscillations of 

the wave functions near the nuclei is replaced with a pseudo wave function. Pseudopotentials 

should be transferable between different chemical environments; ideally, a pseudopotential is 

constructed from an isolated atom of one element, but the resulting pseudopotential can be used 

for the same atomic species in another environment without further adjustment of the 

pseudopotential. This suggests that the pseudo-wave functions must be identical to the true 

valence wave functions in the region of the chemical bond (outside the ionic core region) where 

they overlap with other atoms [15] (see Figure III.1). An additional requirement for 

pseudopotentials is to be as smooth as possible in the core region [13, 16]. This is necessary to 

maintain the basis for the expansion of the wave functions as small as possible.  

The use of pseudopotential method can reduce the size of the basis set necessary for 

calculations involving many atoms, therefore reduce the computational expense.  
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Pseudopotentials requiring high cut-off energies are called to be hard, while more 

computationally efficient pseudopotentials with low cut-off energies are soft.  

 

 

 

Figure III.1 Schematic diagram of the relationship between all-electron and pseudopotentials 

and wave functions.  

III.5.3 Ab initio Pseudopotentials  

There is no single way to build a pseudopotential for a particular chemical element; 

there is an enormous freedom in constructing pseudopotentials [17-19].  

 In past, empirical pseudopotentials (they do not come from the first principles) 

constructed by fitting to the experimental data have been adopted [20, 21]. Although, these 

empirical pseudopotentials are simple to use, they lack a very important property, the 

transferability. They can be used for some specific environment but not in a different 

environment.  

At present, there are many pseudopotentials that are constructed with non-empirical 

approaches. Pseudopotentials generated by calculations on atoms and are not fitted to 

experiments are called ab initio pseudopotentials. The ab initio pseudopotential method is now 
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a well-established tool in condensed matter physics, computational chemistry and material 

science.  

The use of pseudopotentials dates back to Fermi’s work in the 1930s to study high-lying 

atomic levels [22]. However, the most elegant way to present a non-empirical pseudopotential 

is due to Phillips and Kleinman [23, 24] who developed a rigorous formulation of the 

pseudopotential approach. 

III.5.3.1  Method of Philips and Kleinman 

To illustrate the pseudopotential idea suggested by Phillips and Kleinman, we 

distinguish between the states of the valence electrons |��⟩ and the states of the core 

electrons|��⟩ of a given Hamiltonian (for example the Fock operator in the Hartree-Fock theory 

or the Kohn-Sham operator in density-functional theory.) 

The core electrons wave functions are defined by: 

��|��⟩ = ��|��⟩       (� = 1, ��) (III. 12) 

The valence electron wave functions for this same Hamiltonian is given by, 

��|��⟩ = ��|��⟩       (� = 1, ��) (III. 13) 

|��⟩ has a number of radial nodes because it must be orthogonal to the core orbitals. 

Philips and Kleinman showed that one can construct a smooth valence wave function ����� , 

that is not orthogonal to the core state (�������� ≠ 0 ), by combining the core wave functions 

|��⟩ and the function of the real valence wave function |��⟩ in the following way : 

����� = |��⟩ + ∑ ��|��⟩��
���  (III. 14) 

�� is some (yet) unknown constants, and |��⟩ is the core wavefunctions.The constants ��  can 

be determined by using that the core wave functions are orthonormal, and that|��⟩ is orthogonal 

to the core wavefunctions. We multiply Eq. (III. 14) by any of the core wavefunctions, |���⟩, 

and integrate, we obtain :  

⟨�������� = ⟨���|��⟩ + ∑ ��� ⟨���|��⟩ (III. 15) 

Where  

⟨�������� = ��� (III. 16) 

By using the fact that |��⟩  and |��⟩ are solutions of the Schrodinger equation with eigenvalues 

�� and ��, respectively, one easily obtains the following equation for�����: 

��� + ∑ (�� − ��)|��⟩⟨��|��
��� ������ = ������� (III. 17) 
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��� + �� + ∑ (�� − ��)|��⟩⟨��|��
��� ������ = ������� (III. 18) 

The above result suggests to construct a pseudo-Hamiltonian: 

���� = �� + ���� (III. 19) 

With a pseudopotential 

��� = � + ∑ (�� − ��)|��⟩⟨��|��
���  (III. 20) 

So, 

��������� = ������� (III. 21) 

This equation indicates that states ����� satisfy a Schrodinger-like equation with an additional 

contribution, ���� to the Hamiltonian. 

Since  ���� is not a usual potential, it is called pseudopotential. i.e., a function depending on a 

position r, .It is important to note that the operator ����is energy-dependent because it depends 

on ��, and it is nonlocal because it depends|��⟩ .  

Since valence electron energies always lie above the core energies (i.e., �� > ��), the 

second term in Equation (III. 20)is always positive. Since �(�) is attractive, the first term will 

be negative, which will be partially cancelled by the second term. 

The pseudopotential acts differently on wave functions of different angular momentum, 

thereby expressing its energy dependence. The most general form of a pseudopotential of this 

kind is:  

���(�) = ∑ ∑ �ℓ
��(�)|ℓ�⟩ℓ

���ℓ ⟨ℓ�| =�
ℓ�� ∑ �ℓ

��(�)�
ℓ�� ��ℓ (III. 22) 

Where |ℓ�⟩  are the spherical harmonics ⟨�|ℓ�⟩ = �ℓ�(�, �)  , �ℓ
��  is the pseudopotential 

corresponding to the angular component � , and the operator ��� = ∑ |ℓ�⟩⟨ℓ�|�
����  is a 

projection operator onto the � th angular momentum subspace.  

 The meaning of the expression for �ℓ
�� in Eq. (III. 22) is that when �ℓ

�� operator acts on 

the electronic wave function, the projection operator ��� selects the different angular momentum 

components of the wave function, which are then multiplied by the corresponding 

pseudopotential �ℓ
��. Next, the contributions of all the angular momentums are added up to 

form the total pseudopotential contribution to the Hamiltonian matrix elements that enter 

Schrödinger equation. 

 Since �ℓ
��acts as a local operator in the radial coordinate that depends on ℓ, it can be 

called a angular-dependent or semi local pseudopotential. A local pseudopotential is a function 

only of the distance from the nucleus [25]. 

 The work of Phillips and Kleinman first established the theoretical basis of the 
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pseudopotential method which can broadly be assigned into two categories: norm-conserving 

pseudopotentials and the ultra-soft pseudopotential. 

III.5.3.2 Norm conserving pseudopotentials  

III.5.3.2.1 Concept of Norm conserving pseudopotentials  

A major step forward in the attempts to produce transferable first principles 

pseudopotentials came with the advent of norm conserving pseudopotentials by Hamann, 

Schlüter and Chiang [26] in 1979 and developed by Kleinman and Bylander [27]. 

Within this approximation, the all–electron and the pseudo wave function must have the same 

norm in the ionic core region delimited by a certain radius chosen called cut-off radius rc  to 

guarantee that both wave functions generate identical electron densities in the outside region. 

The pseudo and all-electron wave functions are identical outside the core radius but they are 

different inside the region of the ionic core delimited by the cut-off radius rc. The charge 

conservation property of norm-conserving pseudopotentials simplifies the application of the 

pseudopotentials and makes them more accurate and transferable, they can be used to predict 

the physicochemical properties of an atom in a wide range of situations (volume, surface, etc.). 

However, the use of norm-conserving pseudopotentials is very expensive, due to the 

requirement of conservation of the norm below the rc. They require large plane-wave basis sets 

or a large energy cut-off for elements with strongly localized orbitals such as the case of 

transition metals and rare earths, thus requiring much more computational effort. 

III.5.3.2.2 The construction of the norm-conserving pseudopotential 

The construction of a pseudopotential ('ab initio') is an inverse problem. However, there 

are important rules that help to solve the problem. We present here briefly the main stages of 

construction formulated first by Hamann et al [26] and exploited by Bachelet, Hamann and 

Schlüter (BHS) [28] who applied this methodology to all atoms from hydrogen to plutonium. 

The following is the process of constructing the norm-conserving pseudopotential: 

First, the real radial wave function ��ℓ(�) of the atom is obtained by solving the radial equation 

of Kohn-Sham 

�−
�

��

ℏ�

��

��

��� � +
ℏ�

���

ℓ(ℓ��)

�� + �(�)� ��ℓ(�) = ��ℓ��ℓ(�) (III. 23) 

Where 

�(�) = −
�

�
+ ��(�) + ���(�) (III. 24) 
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Here, ���(�) is the exchange correlation potential and ��(�) is given by: 

��(�) = ∫
�����

|����|
���� (III. 25) 

Where �(��)is the total electron density. 

Once the true radial wave function ��ℓ(�) is obtained, we choose a cut-off radius rc (generally 

between the outermost node and the outermost extremum of the all-electron radial 

wavefunction) to construct a pseudo radial function ��ℓ
��(�)satisfying five general criteria: 

 The pseudowave function must be identical to the true valence wave function 

beyond the chosen cut-off radius: 

��ℓ
��(�) = ��ℓ(�) pour        � ≥ �� ) (III. 26) 

 The pseudowave function ��ℓ
��(�) must not contain no nodes and be continuous 

at re, as well as its first and second derivatives. Since the pseudowave function 

is constructed only for valence electrons, we omit the principal quantum number 

n. 

 The normalized atomic radial pseudowave function ��ℓ
��(�) and normalized 

radial true wave function �ℓ(�) must be equal beyond a suitably chosen cut-off 

radius rc 

 ���ℓ
��(�)�² = |��ℓ(�)|²  pour  � ≥ �� (III. 27) 

 The eigenvalues of pseudowave function must be equal to the true eigenvalues. 

 The charge enclosed within ��  for the pseudowave function and true wave 

function must be equal, that is 

∫ ���ℓ
��(�)�

���

�
���� = ∫ |��ℓ(�)|

��

�

�
���� (III. 28) 

The last condition is commonly referred to as the norm-conservation condition and if a 

pseudopotential meets this condition, it is called a “norm-conserving pseudopotential” (NCPP).  

Note that a pseudowave function fulfilling these conditions can be constructed arbitrarily in 

many ways. This freedom is further exploited to produce a smooth pseudopotential. Once a 

particular pseudo-wavefunction is created, the screened pseudopotential can be recovered by 

inverting the radial Schrodinger equation (III.24): 

Vℓ��
�� (r) = e�ℓ −

ℓ(ℓ��)

��� +
�

���ℓ
��

�²

��²
�rRℓ

��(r)� (III. 29) 

We call the resulting pseudopotential �ℓ��
�� (�) screened, because it still includes the potential 

due to the nucleus and all electrons, not just the core electrons. The screened pseudopotential 

�ℓ��
�� (�)thus obtained lacks transferability as the screening from the valence electrons depends 
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strongly on the environment in which they are placed. To improve the transferability and 

generate a pseudopotential "ionic" (not screened) independent of the chemical environment, the 

interaction among the valence electrons (and their self-interaction) is removed from the 

screened PP by the so-called unscreening procedure. This is achieved by subtracting the 

screening Hartree and exchange–correlation potential, calculated solely by the pseudo valence 

orbitals (or rather their densities), from the screened pseudopotential.  

By subtracting the effect of the valence electrons, one obtains an (unscreened) ‘ionic’ 

pseudopotential that does not depend on the chemical environment and, it should be transferable 

from the atom to a molecular state or to a solid state or liquid state. The ionic pseudopotential 

we are looking for is given by: 

�ℓ
��(�) = �ℓ,��

�� (�) − ∫ ��� ��
������

|����|
− ���[��

��(�)] (III. 30) 

With 

��
��(�) = ∑ ���ℓ

��(�)�²���
ℓ�  (III. 31) 

When such ionic potential is placed in a different environment, ��(�)  and Vxc(r) are 

recalculated for that environment and again added to the potential. Note that this does not 

guarantee that the pseudopotential is transferable to any environment. It can be used only in an 

environment in which eigenvalues do not change significantly from the eigenvalues used in its 

construction. The property that makes this energy range wider is loosely called smoothness, 

that is, the smoother the pseudopotential, the weaker the energy dependence. 

The norm-conserving pseudopotentials, constructed from equation (III.30), have a general 

semi-local form, because although the potentials are local in r, they depend in a non-local way 

on the angular variables. Through the orbital moment, each component of the angular 

momentum of the wave function sees a different potential [29]. The ionic pseudopotential can 

be expressed as follows [30]: 

��� = ∑ �ℓ
����ℓ

�
ℓ��  (III. 32) 

 ��ℓ is the operator defined in equation (III.21). 

In general, we can express the non-local pseudopotential in semi-local form [25]: 

 

���(�) = ∑ ����
��(�)��ℓ

�
ℓ�� + ∑ ��ℓ

��(�) − ����
��(�)���ℓ

ℓ���
ℓ��   

              = ∑ ����
��(�)��ℓ

�
ℓ�� + ∑ � ∆�ℓ

��(�)���ℓ
ℓ���
ℓ��  (III. 33) 

With  

 ∆�ℓ
��(�) = �ℓ

��(�) − ����
��(�) (III. 34) 
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Here ����
��(�)and ∆�ℓ

��(�) are the local and semi-local potentials respectively. The semi-local 

potential in equation (III.34) can be transformed into a completely non-local form using a 

general form suggested by Kleinman-Bylander (KB) [27] as: 

���
�� = ����

�� + ∑
�∆�ℓ

�����
�������

��∆�ℓ
���

����
��

�∆�ℓ
��

����
��

�
�,�  (III. 35) 

 Where ���
��is a proper state of the atomic pseudo-Hamiltonian. The operator ���

��acts on the 

reference state identically to the original semi-local operator ���(�),so that it is conceptually 

well justified, but now the number of projections that must be made varies only linearly with 

the number of basic states, whereas for semi-local forms, this number varies quadratically. This 

separable form can be seen as a "correction" to the local pseudopotential in the core region. 

III.5.3.3 Vanderbilt Pseudopotential (Ultrasoft) 

III.5.3.3.1 Concept of Vanderbilt Pseudopotential (Ultrasoft)  

The " norm conserving pseudopotentials " approach has been extended by David 

Vanderbilt [31] , by creating ultra-soft pseudopotentials. In this approximation, Vanderbilt [31] 

showed that then much smoother, but still highly transferable, non-norm-conserving 

pseudopotentials can be obtained by relaxing the norm-conserving constraint, which is the main 

factor responsible for the hardness of the norm conserving pseudopotentials. The only 

restriction remaining is, then, the matching of the pseudo and the all-electron functions for r ≥ 

rc, and this gives the possibility to choose a much larger value for rc. Consequently, the kinetic 

energy is reduced, the valence electrons experience a smoother potential and the number of 

plane waves required for its description decreases. It is for this reason that Vanderbilt ultra-soft 

pseudopotentials are amongst the most widely used in the condensed matter community. 

Pseudopotentials can be made softer by moving the cut-off radius outward, however, there is 

an upper bound to the cut-off radius, if it is increased beyond this bound, the transferability of 

the pseudopotential reduces. The relaxation of the norm-conservation constraint causes a 

charge-density deficit between the pseudo wavefunction and the exact one that should be taken 

into account in the generation of the ultrasoft pseudopotential. This can be done by dividing the 

pseudo wave functions into two parts: Ultrasoft valence wave function that do not fulfil the 

norm conservation criteria plus, a core augmentation charge functions which are defined as the 

charge density difference between the all-electron and pseudo wave functions and are strictly 

localized in the core region. 

Q��(r) = ψ�
∗ (r)ψ�(r) − ψ�

��∗
ψ�

��
 (III. 36) 
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Therefore, the norm-conservation will be satisfied when the Q��(r) = 0. 

III.5.3.3.2 The construction of ultrasoft pseudopotential 

The generation of ultrasoft pseudopotential start out in the same way as norm-conserving 

pseudopotentials. For a given species, the atomic Kohn-Sham system is solved self-

consistently, resulting the screened all-electron potential, VAE. Then for each angular 

momentum channel, a few energy values, � are chosen (� =number of such energies, usually 

max 3). For the ��� already obtained, the Schrödinger equation is found 

[� + ���]|��⟩ = ��|��⟩ (III. 37 ) 

Here n is a composite index holding � for the angular momentum quantum number, m for the 

projection and �. � = {�ℓ�}. 

Next, we choose three cut-off radii: 

1. A smooth local (ℓ-independent) potential is created which matches ��� after the radius ��
���. 

2. A second cut-off radius ��� , is chosen for each angular momentum channel and a 

pseudofunction, ψ�
��

 is constructed which matches the real wave function |��⟩ at ���. 

3. Finally a diagnostic radius ��. is chosen such that it is slightly greater than the maximum of 

all radius ��
��� and ���, so that all the quantities of PS and AE agree beyond ��. 

Then a smooth pseudofunction wave is determined for each angular momentum only with the 

constraint that it corresponds to the real wave functions outside the chosen cut-off radius ���. 

The Kohn-Sham equations are then inverted to obtain the total effective ���
�� pseudopotential 

satisfying the following equations: 

��� + ����
��

���
��

= ����
��

 (III. 38) 

The total effective pseudopotential is then separated into a local and non-local contribution, 

���
�� = �� + ��� (III. 39) 

The local potential �� is chosen to be smooth, this potential agrees with the all-electron potential 

beyond cut-off radii chosen rc. By inserting the equation (III.40) in the equation (III.39), we 

can construct for each wave pseudofunction the following orbital [32]: 

���⟩ = ��� − � − �������
��(�)� (III. 40) 

The orbitals |��⟩  are local and disappear beyond R where ��� = ��� and  ��
�� = ��Then, an 

auxiliary matrix of interior products is determined 

(���)�� = ���
��

���� (III. 41) 

The projectors needed to define the non-local part of the potential are defined by: 

|��⟩ = ∑ |��⟩⟨��|��
��

� = ∑ (���)��|��⟩��  (III. 42) 
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The total non-local operator is then rewritten as: 

���� = ∑ ���|��⟩⟨��|�,�  (III. 43) 

Provided that the norm-conserving constraint of the pseudo-wave function is respected. The 

norm-conservation will be satisfied when: 

Q��(r) = ψ�
∗ (r)ψ�(r) − ψ�

��∗
ψ�

��
= 0 (III. 44) 

We note that for the particular case where a single reference energy is chosen by angular 

momentum, the equation (III.42) simply returns to the Kleinman-Bylander form of the 

separable non-local potential [32]. Vanderbilt has shown that the norm-conserving constraint 

of equation (III.44) can be abandoned by introducing a generalized Hermitian overlap operator 

S: 

� = 1 + ∑ ����� |��⟩⟨��| (III. 45) 

So that the orthonormality condition to satisfy in the solution of the KS equations is: 

⟨��|�|��⟩ = ��� (III. 46) 

In the expression (III.45) ��� is the integral of the augmentation function ���(�) over the 

sphere defined by rc: 

��� = ∫ �� ���(�) (III. 47) 

The new non-local operator ��� becomes: 

��� = ∑ ���|��⟩�� ⟨��| (III. 49) 

Where the new coefficients are: 

��� = B�� + ����� (III. 50) 

With all these descriptions, we can verify that the pseudo functions obey the equation 

��� + ���� + ∑ ���|��⟩�� ⟨��|����
��

� = ��(1 + ∑ ����� |��⟩⟨��|)���
��

�) 

��� + ���� + ∑ ���|��⟩�� ⟨��|����
��

� = ������
��

� (III. 51) 

It can be verified that the pseudopotentials ultrasoft generated with the above steps have 

excellent transferability; this means that the pseudo-wave functions and their logarithmic 

derivatives correspond to each reference energy and for small variations around it. 

To compensate for the charge deficit, the valence charge density is defined as 

�(�) = ∑ ����
��(�)�

�
+ ∑ ���(�)���

��
�����,� ������

��
���  (III. 52) 
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III.6 Resolution of Kohn-Sham equations  

In order to set up and solve the Kohn–Sham equations, we need to define both the 

Hartree operator VH and the exchange-correlation operator Vxc which depend on the density 

�(�) .But to construct the electron density, we must know the single-electron wave functions, 

and to find these wave functions we must solve the Kohn–Sham equations .Thus means the 

estimated solution of the Kohn-Sham problem must be known before it can be solved, so an 

iterative procedure is needed to escape from this paradox (See Figure III.2) . The Kohn-Sham 

equations of the system can be constructed for a trial electron density and for a given set of 

atomic coordinates. The geometries of the system for density functional calculation are 

constructed using experimental data such as bulk lattice constants, previous first principle 

calculations or semi-empirical methods, or from intuition. Once trial electron density and is 

defined, the Poisson’s equation is constructed and solved in order to obtain the electrostatic 

Coulomb potential. Subsequently explicit form of the exchange-correlation potential is used 

and the exchange correlation operator is constructed. All these terms are added together to give 

the full Hamiltonian of equation (II.42) 

Following standard mathematical techniques for solving eigenvalue problems, one can 

expand the unknown solutions ��(�) of the equation ((II.42)) for each k-point in a set of known 

functions, ��(�), with unknown linear coefficients, ���, 

��(�) = ∑ �����(�)�  (III. 53) 

There are many possible choices that could be made for the basis set, although 

Gaussians25 have dominated the molecular community while plane waves have been the de 

facto standard for solid-state physics. In principle, ��(�) has an infinite dimension, i.e., but in 

practice one works with a limited set of basis functions that can generate a function that is 

‘close’ to ��(�)by using the technique discussed in section (III.4). 

The coefficients that determine how much these functions contribute to the 

development of the Kohn-Sham function are found by constructing the energy functional (i.e. 

the expectation value of the Hamiltonian) and applying the Variational principle This 

transforms the partial differential equation to a discrete matrix problem that can then be solved: 

������������� − ����������������� = 0 

∑���� − ��� ���� ���� = 0  (III. 54) 

where  

 ��� = �����������  (III. 55) 
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And  

 ��� = ��������� (III. 56) 

Where ��� is the matrix elements of the Kohn-Sham Hamiltonian in the basis states, and ��� is 

the overlap matrix elements.  

The diagonalization of the matrix (III. 54) at each k point produces a set of eigenvalues 

of a particle and the variational coefficients of expansion corresponding to each eigenvalue. 

The initial wave functions at each k-point in the irreducible wedge of the Brillouin zone could 

in principle be obtained by using the expansion coefficients. The occupation of each state is 

obtained by using Fermi-Dirac statistics. This indicates that the eigenvalues are generated with 

increasing energy and all states are filled until the total number of electrons of the system is 

exhausted. 

The electron density at a specific point k is thus: 

��(�) = ∑ ���
��²�

���  (III. 57) 

Therefore, the new total electron density ("output") can be calculated via the summation of the 

densities at the sampled k-points, 

�(�) =
�

(��)�
∑ ��(�)������

� ∆� (III. 58) 

Where k is the k-point sampling spacing which could be manually determined. It is easy to 

see that the smaller k is selected, the more accurate the calculation of ρ (r) would be, , but as 

the number of electrons in the system increases, the computational cost will also increase, 

making almost impossible to solve systems with more than a few electrons. The constructed 

electron density is called the output electron density. If the output electron density is not equal 

to the input one, it will be used as an input and this process is repeated several times until the 

new-evaluated electron density can be equated to the old density. This is known as the self-

consistent field cycle SCF. In practice, one iterates sufficiently long until the residual difference 

between the input and output densities does not cause any significant errors in the total energy 

or other properties of interest. The found electron density also corresponds to the ground state 

density, since this is the only density that can be correctly solved from the Kohn-Sham equation. 
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Figure III.2 : A flow chart of a typical DFT calculation within the Kohn Sham method. 
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IV.1 Introduction  

One of the most accurate methods for solving the KS equations, when aiming to 

maintain a full-potential description, is the separation of real space into regions close to the 

nuclei and in between them in the sense that all the charge inside the solid is taken into account 

not only that of the valence states. This method is well known to enable most accurate 

calculations of the electronic structure and magnetic properties of crystals and surfaces. In this 

chapter, the augmented plane waves (APW), the linearized augmented plane waves (LAPW) 

method and the effect of local orbitals on the efficiency of the basis set will be introduced. 

IV.2 The augmented plane wave (APW) 

The augmented plane wave (APW) method was developed by Slater (1937) as possible 

basis functions to solve one-electron equations [1- 3]. The basic assumption of this method is 

the partitioning of real space into two regions: near the nuclei and away from them, so-called 

muffin-tin or atomic spheres, and interstitial region as shown in Figure. IV.1.  

 

 

Figure IV.1 :Division of the unit cell into two parts: The Muffin-Tin spheres, with radius R, 

around the nucleus and an interstitial region. 

The potential is assumed to be spherically symmetric in the muffin tin region and 

constant away from the atom in the interstitial region. 

The potential in the whole space can be defined as  

�(�) = �
�(�)                 ( � ∈ ��)
��������              (� ∈ �)

 (IV. 1) 

The advantage of this partitioning is that the problem can be solved using a divide-and-conquer 

strategy and allows for dramatic simplifications. Inside the atomic spheres electrons behave 

almost as if they were in a free atom and therefore we can describe theirs behavior by atomic-

like wavefunctions evaluated at a predefined energy �ℓ. Outside the muffin tin spheres between 
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atoms, electrons are almost free and, as we know, the plane waves are efficient to describe the 

behavior of the electrons in this region. The boundary conditions are set by requiring continuity 

of the wavefunctions and their first and second derivatives at the muffin tin borders. The wave 

function for the wave vector k is now taken to be: 

����(�, �ℓ) = �

�

√�
e�(���).�,                                    r ∈ I

∑ Aℓ�
����ℓ(�, �ℓ)Yℓ�(r�)ℓ,� , r ∈ MT

 (IV. 2) 

Here, Ω  is the unit cell volume, Yℓ� are spherical harmonics with the azimuthal quantum 

number ℓ and magnetic quantum number m , k and G are vectors belonging to the reciprocal 

space, α the muffin tin labelling index and uℓ is the numerical solution to the radial wave 

equation of a free atom and it is a function of the energy parameter �ℓ: 

�−
��

��� +
ℓ(ℓ��)

�� + V(r) − �ℓ� ruℓ(r) = 0 (IV. 3) 

The coefficients Aℓ�
�,��� are determined from the requirement that the wave function in the MT 

must match smoothly with the plane-wave solution at the surface of the muffin-tin sphere. 

In order to realize this requirement, we use the expansion of plane waves into spherical 

harmonics  ���  about the origin of the sphere of atom α and equating the basis functions inside 

and outside the sphere for each value of k: 

�

√�
e�(���).� =

��

√�
e�(���).� ∑ iℓ

ℓ� jℓ(|k + G|R)Yℓ�
∗ (k + G� )Yℓ�(r�) (IV. 4) 

Where jℓ are the ℓ th-order Bessel functions.  

The coefficient of each (ℓ, m) component is then matched at the sphere boundary. Thus, after 

some algebra, it yields: 

Aℓ�
�,��� =

���ℓ��(���).��⃗

�
�
��ℓ

�
jℓ(|k + G|R)Yℓ�

∗ (k + G� ) (IV. 5) 

Which uniquely defines Aℓ�
�,���coefficients. Thus, we are now left with the only undetermined 

parameter being the energy �ℓ. 

Thus, each plane wave is augmented by an atomic-like function in every atomic sphere and 

constitutes thus the basis set used to expand the Kohn- Sham wave function (ψ), 

The sum appearing in Eq. (IV.4) contains, in principle, an infinite number of terms, which 

would force us to use an infinite number of  Aℓ�
��� in order to have the matching between the 

two functions. In practice, one cut the sum in Eq. (IV.4) at a finite value ℓ���. This cut-off can 

be calculated following the reasoning of Cottenier [4]. 

The APW functions are not exact solutions to the Schrodinger equation, but they are appropriate 

basis functions for expanding the Kohn-Sham eigenstates: 
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��(�) = ∑ ��
�

� ��(�) (IV. 6) 

Where the sum is over the reciprocal lattice vectors, which has the proper form. 

The wave function (IV.6) is used as a trial wave function and the expansion coefficients��
� , can 

be determined variationally [3]. This requires a Variational expression for energy with respect 

into the linear combination of APW basis set: 

����������

���
� = 0 (IV. 7)  

The final result has a very interesting form, very much similar to the one we got for the plane 

wave expansion method, the main disadvantage of the APW method that it cannot get the 

eigenvalues from a single diagonalization because the basis functions are energy dependent, as 

apparent in the definition of the radial functions(IV. 3). Since this energy depends on the 

function �ℓ(r, �ℓ) , the resulting eigenvalue problem is non-linear in energy .Instead of 

performing a single diagonalization to solve the KS equation, it is necessary to find the secular 

determinant as a function of � and then find its roots. One repeatedly needs to obtain (for many 

trial energies) the APW basis, set up the matrix elements, and compute the determinant of the 

secular equation in order to find its zeros and thus the single particle eigenvalues �� , this makes 

the APW method very demanding and numerically even unstable. 

The number of augmented plane waves is commonly determined by the parameter RMT Kmax, 

where RMT is the smallest muffin-tin (MT) radius, and Kmax is the maximal value of the plane 

wave vector. 

IV.3 The linearized augmented plane wave method (LAPW) 

In order to overcome the problem of the energy dependence of the Hamiltonian matrix 

in the APW method, Andersen [5] and Koelling and Arbman [6] in two different works 

developed the linearized augmented plane wave method (LAPW) .Within LAPW approach, 

,the basis functions are defined as the linear combination of the radial solutions �ℓ(inside each 

atomic sphere and for azimuthal quantum number ℓ  )of the KS equation and its energy 

derivative and both of them are evaluated at fixed energy  �ℓ. 

This formulation is achieved by calculating an energy independent radial solution �ℓ at some 

energy �ℓ and then performing a Taylor expansion in the neighbourhood of a fixed energy �ℓ
�. 

Such a Taylor expansion of �ℓ around fixed energy value �ℓ
� is given by: 

�ℓ(�, �ℓ) = �ℓ(�, �ℓ
�) + (�ℓ−�ℓ

�)
��ℓ(�,�ℓ)

��ℓ
+ �((�ℓ − �ℓ

�)�) (IV. 7) 
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The additional term �((�ℓ − �ℓ
�)�) denotes the errors. It turns out that the resulting 

wavefunctions are affected by an error of second order in (�ℓ − �ℓ
�)  as a result of the 

linearization. Taking into account the Variational principle, this leads to an error of fourth 

order,(�ℓ − �ℓ
�)�, in the band energy. 

The energy derivatives of the radial solution within the muffin tins satisfies the equation (in 

atomic units). 

�
�

�
�−

��

��� +
ℓ(ℓ��)

�²
� + �(�) − �ℓ

�� ��̇ℓ(�, �ℓ
�) = ��ℓ(�, �ℓ

�) (IV. 8) 

Where �ℓ(�, �ℓ
�)satisfies equation (IV. 3), same as in the APW method. 

Substituting Eq. (IV. 8) into Eq.(IV. 2), we get the formulation of the LAPW basis set: 

����(�, �ℓ
�) = �

∑ ��ℓ�
����ℓ(�, �ℓ

�) + �ℓ�
����̇ℓ(�, �ℓ

�)��ℓ�(�̂)ℓ�            (r ∈ ��)
�

√�
��(���).�                                                                                (� ∈ �)

 (IV. 9) 

the two parameters, �ℓ�
��� and �ℓ�

��� are determined by requiring that this basis function inside 

the sphere matches the plane waves both in value and in slope at the sphere boundary.  

In the interstitial region, the basis set is the same as in the APW method but in the Muffin-Tin 

spheres, the basis functions have more Variational freedom compared to the APWs. This is 

because if �ℓ
� differs slightly from the band energy ,�ℓ, a linear combination will reproduce the 

APW radial function constructed at the band energy. 

The big advantage of LAPW method is that the radial functions �ℓ(�, �ℓ
�) and �̇�(�, ��

�) and the 

respective overlap and Hamilton matrix elements need to be evaluated only for energies in some 

range around the pivot energy. Moreover, one can get all KS energies at each k-point by a single 

diagonalization, thus saving much computational cost compared to the APW method. 

IV.4 Local Orbitals  

In the LAPW method, there is only one linearization energy �ℓ
� for every ℓ quantum 

number. This leads to a problem, which occurs mainly for systems with so-called semi-core 

states. The semi-core states have usually the same angular quantum number ℓ as the valence 

states and a different principal quantum number of another higher valence state. They are too 

delocalized to be described as core states and too deep in energy to be described as valence or 

conduction states. When applying LAPW on these states, it is thus hard to use single set of 

reference energies �ℓ
� to determine the two same ℓ in Eq. (IV. 9). The dilemma is solved by 

introducing local orbitals (LO) inside of the augmentation sphere. Local Orbitals are called 

local, since they are completely localized inside the muffin-tin spheres under consideration and 
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thus zero in the interstitial. They are not connected to plane waves in the interstitial region, 

hence they have no k- or G~ dependence. 

Inside the muffin-tin spheres, local orbitals consists of adding to the linear combination of 

�ℓ(�, �ℓ
�) and �̇�(�, ��

�) an additional orbital �ℓ(�, �ℓ
�) evaluated at a new reference energies 

.This new radial function is constructed in the same way as �ℓ(�, �ℓ
�) , but with different energy 

parameter ��
�. A Local Orbital for a given ℓ and m and for a particular atom α is defined as [7, 

8]: 

 

�����
�� (�) = �

∑ �
�ℓ�

����ℓ(�, �ℓ
�) + �ℓ�

����̇ℓ(�, �ℓ
�) +

�ℓ,�
�� �ℓ(�, �ℓ

�)
� �ℓ�(�̂)��     ( � ∈ ��)

0                                                                                               (� ∈ �)

 (IV. 11) 

The three parameters �ℓ,�
�� , �ℓ,�

�� , and �ℓ,�
��  are evaluated by requiring that the LO is normalized, 

and has zero value and zero slope at the augmentation sphere radius . 

Local Orbitals can treat two principle quantum numbers per ℓ channel. This way, semi-core and 

valence states with same ℓ value, but different n value can be treated more adequately. 

The resulting LAPW+LO basis set can be used to describe both the valence region and the 

already quite localized semi-core states appropriately. 

IV.5 The APW+ local orbitals 

An alternative method to linearize the APW method is the APW+ local orbitals method 

developed by Sjostedt et al [9-11]. In this method, the basis functions belong to two 

complementary basis sets: 

The principal basis set consists of the original APW basis functions but with the crucial 

difference that each radial function is evaluated at a fixed energy in order to remove the energy 

dependence of the original APW basis functions: 

ψ���(r, E) = �

�

√�
e�(���).�,                                   r ∈ I

∑ Aℓ�
����ℓ(r, �ℓ)Yℓ�(r�)ℓ,� , r ∈ ��

 (IV. 12) 

The APW basis set is therefore augmented with a new set to gain enough Variational flexibility 

in the radial basis functions and to recover the effect of the missing derivative of the radial wave 

functions. The new energy-independent basis set called” local orbitals”, which is different from 

the LOs used to describe semicore states. Here, we shall label these local orbitals as “lo”.  

Local orbitals are completely confined within the MT sphere and expressed in the following 

form: 
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���
ℓ�(�, �) = �

∑ ��ℓ�
�� �ℓ(�, �ℓ

�) + �ℓ�
�� �̇ℓ(�, �ℓ

�)��ℓ�(�̂)ℓ�            ( � ∈ ��)

0                                                                                       (� ∈ �)
 (IV. 13) 

The same set of energies �ℓ
� is used as for the corresponding APW’s (although this is not strictly 

needed). By choosing the same linearization energies for the lo as for the principal APW basis 

functions, the number of energy parameters will be limited to one �ℓ
� per ℓ quantum number. 

The coefficients �ℓ�
��  and �ℓ�

��  are determined by the requirement that the lo is zero on the 

muffin-tin sphere and normalized but not zero slope. Hence, both the APW and the local orbital 

are continuous at the sphere boundary, but their first derivative is discontinuous for both of 

them. 

The advantage of the APW+lo method is that it has the same small basis set size as the original 

APW method, they (the local orbitals), neither impose extera boundary condition of the APW 

basis set, and the number of plane waves in the interstitial is therefore unaffected.  

The APW+lo method has also the same accuracy compared to the LAPW method, since it 

removes the energy dependence of the original APW basis functions (which is the characteristic 

of LAPW functions).The new APW+lo basis set includes the radial solutions of the Schrodinger 

equation in their original APW form, which efficiently describes the eigenfunctions at energies 

close to �ℓ
� , but also a (less restricted) linear combination of �ℓ(�, �ℓ

�) and �̇ℓ(�, �ℓ
�), which 

improves the description of states away from �ℓ
� . 

In this case the problem with semi-core states when different states with the same ℓ (semicore 

states) have to be treated. The solution is, once more, to use a second set of local orbitals as 

described above, which now (i.e., for the APW+lo basis set) reads: 

��,��
ℓ� (�) = �

∑ �
�ℓ,�

�� �ℓ(�, �ℓ
�) +

�ℓ,�
�� �ℓ(�, �ℓ

�)
� �ℓ�(�̂)��                                 ( � ∈ ��)

0                                                                                       (� ∈ �)

 (IV. 14) 

That is, it is the same LO as the one used for LAPW, but without the term representing the 

derivative energy of �ℓ . 

IV.6 The Full Potential (L)APW+lo Method 

The accuracy of the (L)APW+lo method can be further improved by using the full 

potential (FP), i.e. developed by Hamann and Wimmer in [12, 13]. In the full-potential LAPW 

method (FLAPW), any shape approximations in the interstitial region and inside the muffin-

tins spheres are dropped, in the sense that all the charge inside the solid is taken into account 

not only that of the valence states. In FP-LAPW approach. The potential and charge density, 
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are expanded into plane waves in the interstitial region and as radial functions times spherical 

harmonics inside each atomic sphere (in the same manner than the wave function in the MT -

zone and I-region). For the two regions, the electron potential V(r⃗) is expanded as : 

V(r⃗) = �
∑ V��(r)Y��(r�),              r < R��

∑ V���⃗ e����⃗ .��⃗
���⃗ ,                           r > R

 (IV.15) 

The charge density is represented in the same way as the potential: 

�(�) = �
∑ ��

�����
�                          (� ∈ �)

∑ ���
� (�)��(�̂)�            (� ∈ ��)

 (IV.16) 

These corrections are also called non-muffin-tin corrections. The choice of basis functions in 

the interstitial is not effected by the non-muffin-tin corrections. 
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V.1  Introduction  

The objective of the present chapter is to present an overview of the theory applied to 

study the different properties of LiAeP (Ae=Sr, Ba) and Ae3AlAS3 (Ae=Sr, Ba) compounds. In 

the present work, the aim is fixed to calculate the ground state crystal energy and from this the 

equilibrium lattice parameters, unit cell volume, bulk modulus, elastic constants, band structure, 

total and partial density of states are evaluated. The optical properties (such as dielectric 

function, refractive index, extinction coefficient, absorption spectrum, energy loss function, 

reflectivity and photoconductivity), thermodynamic properties (such as bulk modulus, Debye 

temperature, specific heats and volumetric thermal expansion coefficient) and thermoelectric 

properties (such as Seebeck coefficient, electric conductivity, and thermal conductivity) are 

also calculated.  

V.2 Ground State Energy  

For structure optimization one searches for the equilibrium positions corresponding to the 

lowest energy. This is done by performing an iterative process in which the coordinates of the 

atoms and possibly the parameters of the cell are adjusted so that the total energy of the structure 

is minimized with respect to the positions of the nuclei. This total minimum energy is the energy 

of the ground state of the system. The structure optimization makes it possible to obtain a stable 

structure. Virtually all effective minimization techniques based on knowledge of the forces 

applied to each nucleus, since the equilibrium position is found when all the forces disappear. 

The physical force acting on an ion is simply the classical electrostatic force due to electrons 

and other nuclei. The force acting on an ion can be given using the Hellman-Feynman theorem 

[1] which states that the ionic forces can be directly calculated taking the partial derivative of 

the total energy of the system with respect to the positions of ions: 

�� = −
��

���
  (V. 1) 

For numerical reasons, the knowledge of the forces helps significantly, since finding the 

equilibrium position of an atom, for which the forces vanish, often can be easier than looking 

for the total energy minimum. 

V.3  Elastic constants 

Elastic constants of a material describe its response to an externally applied stress and 

play an important role in providing valuable information on the bonding characteristic between 
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adjacent atomic planes, anisotropy and hardness, and so on. [2]. If a crystal is subjected to a 

very small mechanical stress, the balance of the inter-particle forces gets disturbed and as a 

result, lattice spacing changes. Macroscopic changes in lattice spacing manifest themselves as 

elastic deformations described by a strain tensor. 

In the theory of linear elasticity, the studied material is supposed to be homogeneous. 

Likewise, the applied stress as well as resultant strain are also assumed to be uniform. 

Elastic deformation involves a temporary change in an object's shape or size, which self-

reverses after force is no longer exerted on it (the elastic deformation is a reversible 

deformation) 

An elastic material regains its original shape and size when the deforming force (stress 

tensors) is no longer exerted up to a specific limit, called the 'elastic limit' of the solid. If a 

material is loaded beyond it elastic limit, the material will remain in a deformed condition after 

the deforming force is removed. At larger deformations, elasticity becomes non-linear for some 

materials. 

  The most general linear relationship, which connects stress to strain, is provided by the 

generalized version of the well-known Hooke's law [3]. 

��� = �������� (V. 2) 

Where ���  is the strain tensor, ���  the stress tensor, the �����  are the elastic moduli (usually 

called "elastic constants", although in fact variable according to the conditions to which the 

studied solid is subjected [4]) 

By reversing equation (V.2), the strain can be expressed in terms of the stress as follows: 

of the stress components 

��� = �������� (V. 3) 

Where �����are the deformability coefficients. 

The tensor ����� contains 81 elastic constants; the number of independent coefficients is 

reduced to 21 because of the symmetry [5]. Taking into account additional symmetry arguments 

imposed by the crystal lattice, the number of elastic constants decreases further. 

Generally, there are two approaches for calculating monocrystalline elastic constants from ab-

initio methods [6, 7]: the energy-strain approach and the stress-strain approach. The stress-

based method is more efficient than the energy-based method. 
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V.4 Diagram of band structure and density of states 

V.4.1 Electronic band structure 

In solid-state physics, the electronic band structure of a material describes the range of 

energy that an electron is forbidden or allowed to have. In principle, the number of bands is 

large, generally infinite, but only the lowest are occupied by electrons. The filling of the energy 

levels at T = 0 follows Pauli's principle, starting with the lowest energy states which, according 

to the Fermi-Dirac statistics. The lower filled bands are called the valence band and they are 

occupied with certainty. The upper empty bands represent the conduction band. The different 

bands are well separated from each other and each band comes from a well-determined atomic 

level. The two permitted energy bands are separated by a band of forbidden energy (the gap) 

that appears at the edges of the Brillouin zone.  

A complete knowledge of the band structure requires the solution of the Kohn-Sham 

equations for each vector k of the primitive cell of the reciprocal lattice (or the Brillouin zone) 

and must be represented in the different directions of the wave vector k in the reciprocal space. 

In practice, we represent the energies of the valence band and the conduction band between 

points of high symmetry in the different directions of the wave vector k in the Brillouin zone.  

From the structure of the band and the number of electrons filling the bands, one can 

predict the type of material that one has: 

 If the valence band is completely filled, the conduction band is empty, and the 

width of the forbidden band is of the order of several eV, one has an insulator. 

Semiconductors translate in the same way, except that the forbidden band is 

smaller. Insulators and semiconductors having their Fermi level in a forbidden 

band. 

 If the Fermi level is in a permissible band but in a region of low density of states, 

one has semi-metals. The properties of these conductors are quite special; this is 

the case, for example, of bismuth (Bi). 

 We have a metal, if the width of the forbidden band is zero, then, there is an 

overlap between the conduction band and the valence band. Thus, the 

conduction band is partially filled with free electrons that come from the valence 

band. In this case, the Fermi level is within a permitted band. 

 The fundamental band gap (the gap of an interacting system) is defined as the difference 

between the ionization energy and electron affinity [8]. The ionization potential is the energy 
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necessary to transfer an electron from the top of the valence band to the vacuum level energy. 

Similarly, the electron affinity is introduced as the energy difference between the vacuum 

energy level and the bottom of the conduction band. In the calculation DFT, the energy gap is 

defined as the difference between the highest occupied state and the lowest unoccupied state: 

����
��� = [���(�)]��� − [���(�)]���  (V. 4) 

However, the eigenvalues obtained from Kohn-Sham equation do not have the physical 

meaning with the exception of the last occupied level, which coincides with the exact 

ionization-energy of the system as shown by Janak’s theorem [9]. The density functional theory 

(DFT) calculations provide the structure of the band without account for electron-electron 

interactions. Sham and Schlüter [10] and Perdew and Levy [11] have shown that the gap 

obtained by a DFT calculation (which is commonly known as the gap energy of the DFT) does 

not coincide with the gap of an interacting system. It is often a bad approximation of the 

electronic band structure observed in the experiments. Generally, a DFT calculation 

systematically underestimates the band gap in semiconductors. An extreme case is germanium; 

whose experimental bandgap is 0.7 eV [12] whereas the LDA predicts that it is metallic [13]. 

In the case of diamond, the LDA gives a direct band gap of 5.5 eV [14] against 7.3 eV 

experimentally [15, 16]. Other problems, for example with Mott-Hubbard insulators and 

magnetic materials, reduce the range of systems for which the LDA can make useful 

predictions. Typically, the DFT calculation underestimates the energy gaps of the solids from 

30% to 100% compared to the experiment [13, 17, 18]. This comes from the use of formula 

(V.4) to calculate the gap. The energy of the forbidden band calculated from the eigenvalues 

obtained from Kohn-Sham equation differs from the real gap energy by a term Δ called 

"discontinuity of the exchange-correlation potential"[19, 20] .Moreover, the calculated energy 

dispersions ε (k) within the BV and the BC are often found to be in good agreement with the 

experimental. 

V.4.2 Density of electronic states 

In the physics of the solid state and condensed matter, the electronic density of the states 

of a system is defined the number of electronic states per unit volume of the solid, per unit 

energy in the range [E, E + dE] [21].The DOS shows both the occupied and unoccupied 

available states, a high DOS at a specific energy level means that there are many states available 

for occupation. A DOS of zero means that no state can be occupied at this energy level. 

The density of the states for a given band n, ��(�), is given in three dimensions by: 
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��(�) = 2 ∫
���

(��/�)� ��� − ��(�)�  (V. 5) 

Where  (2�/�)� is the volume of space k for a state. Factor 2 concerns the spin degeneracy, 

��(�) describes the dispersion of the given band and the integral is carried on the first Brillouin 

zone and selects only the states that are at E. 

The total energy density of the states, N (E), is obtained by summation over all bands 

�(�) = ∑ ��(�) = ∑ ∫
���

��� ��� − ��(�)� (V. 6) 

DOS is often used for a quick visual analysis of the electronic structure. Characteristics 

such as the width of the valence band, the energy gap and the number and intensity of the main 

features are helpful in qualitatively interpreting experimental spectroscopic data. The 

importance of the density of states can be found also in the calculation of the speed of any 

process in a solid, from the diffusion of an electron to the absorption and emission of light. 

The contributions of the individual orbitals can be calculated (partial DOS) to reveal 

information on which the orbitals are occupied or involved in in bonding. This also gives the 

Fermi level (EF) at 0 K, or the electrochemical potential, which is defined at the thermodynamic 

equilibrium as the energy level with a 50% probability of being filled (i.e. halfway between the 

conduction and valence bands). PDOS calculations are based on Mulliken population analysis, 

which allows the contribution from each energy band to a given atomic orbital to be calculated. 

The summation of these contributions over all bands produces a weighted DOS. But, only the 

valence band and lower part of the conduction band are meaningful in the PDOS plot. 

V.5 Optical properties 

The optical properties of solids relate to the interaction of solids with electromagnetic 

radiation whose wavelength is in the infrared to the ultraviolet. When electromagnetic radiation 

interacts with matter, it affects, with its oscillating electromagnetic field, the charges in the 

material, exchanging energy with that material. From a macroscopic point of view, when light 

impinges on matter, it can be scattered (elastically or inelastically), absorbed, or transmitted. 

The interaction depends on the physical, chemical and structural properties of the matter, as 

well as the intensity and energy of the photons.  The optical properties of solids are an important 

tool to understand the main fundamental physical properties such as electronic structure, 

recombination mechanisms, impurity levels, excitons, localized defects, lattice vibrations and 

certain magnetic excitations. 
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In the linear response range, the optical properties of a matter can be characterized by 

an understanding of response functions such as the complex dielectric coefficient  ε(ω) =

ε�(ω) + iε�(ω)   [22], with  ε�(ω)  is the imaginary component of the complex dielectric 

coefficient, it relate to absorption and describes the energy losses that occur in a medium due 

to electronic transitions. The imaginary component of the complex dielectric coefficient can be 

calculated with the momentum matrix elements between the occupied and unoccupied wave 

functions within the selection rules [23]: 

��(�) =
��²�

���
∑ |⟨��

� |�. �|��
�⟩|�,�,�

�
�(��

� − ��
� − �) (V. 7) 

Where ω is the light frequency, e is the electronic charge, u is the vector defining the 

polarization of the incident electric field,  ⟨��
� |  and |��

�⟩  are the conduction and valence band 

wave functions at k, respectively.  

ε�(ω)  is the real part of the dielectric function and it can be calculated by Kramer-Kroning 

relations [24].  

ε�(ω) = 1 +
�

�
p ∫

����(��)

���
���

dω′
�

�
 (V. 8) 

Where P represents the main integral.  

All other optical constants on the energy dependence of the absorption spectrum can be derived 

from ε�(ω)  and ε�(ω)  .This includes the refractive index, the extinction coefficient, the 

energy-loss spectrum, and the reflectivity.  

The complex refractive index is related to the complex dielectric function via: 

�(�) = ��(�) (V. 9) 

Given that �(�) is written as: 

�(�) = �(�) + ��(�) (V. 10) 

Where n (ω) is the refractive index, and k (ω) the extinction coefficient. 

The real and imaginary components of both the refractive index and the dielectric function are 

therefore related by: 

n(ω) =
�

√�
�(ε�

�(ω) + ε�
�(ω))�/� + ε�(ω)�

�/�
 (V. 11) 

k(ω) =
�

√�
��ε�

�(ω) + ε�
�(ω)�

�

� − ε�(ω)� (V. 12) 

The remaining optical properties, such as optical absorption α(ω), the energy loss function L 

(ω), the real part of the optical conductivity σ (ω) and the reflectivity R(ω)are calculated from 

ε1(ω) and ε2(ω) as follows: 

α(ω) = √2ω�(ε�
�(ω) + ε�

�(ω))�/� + ε�(ω)�
�/�

 (V. 13) 
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L(ω) =
��(�)

�(��
�(�)���

�(�)�
 (V. 14) 

�(�) =
���

��
 (V. 15) 

R(ω) = �
(��(�)����(�))�/���

(��(�)����(�))�/���
�

�

 (V. 16) 

V.6 The Thermodynamic properties 

Thermodynamic properties are observable characteristics of the thermodynamic system. 

Pressure, temperature, volume, viscosity, modulus of elasticity etc. are the examples of 

property. All thermodynamic quantities of a crystal can be obtained from the vibrational density 

of states, g (w). This function gives the number of normal modes of vibration between w and 

w + dw. In equilibrium, at finite temperatures, the atoms are not exactly at their equilibrium 

positions, they oscillate around their position. The energy of a vibration is quantized and the 

quantum of vibration is called a phonon (in analogy with the photon). As the temperature is 

increased, more and more thermal energy is injected into the crystal, the kinetic energy of atoms 

increases and the atoms vibrate with greater and greater amplitude. As the amplitude of atomic 

oscillations increases, so does the average separation between the atoms and thus thermal 

expansion, i.e., the vibrational origin of thermal expansion. 

 Theoretically, to understand this situation, one can take a potential that is a function of 

atomic positions. If we take the harmonic potential model where the vibrations of the atoms are 

represented as a set of harmonic oscillator, we can expand the potential energy of interaction 

between the atoms to give an expression, which is quadratic in the atomic displacements from 

their equilibrium positions. In this case, the lattice vibrations will be independent of the 

interatomic distance and there will be no lattice expansion due to the symmetrical displacements 

of the atoms around their equilibrium positions. Thus means that the vibrational energy does 

not depend on the volume and that there is therefore no relation between the temperature and 

the geometry of the system (volume). Currently, nothing depends on temperature, since 

temperature is not at all included in the harmonic approximation. 

 To overcome this deficiency, one must introduce an interdependence between T and V 

in the model, this can be obtained only from the anharmonic lattice potential models, but this is 

not a reasonable task. A simple way to take some anharmonic effects into account for 

calculations of the free energy is the Quasiharmonic Approximation, which has been 

successfully applied to study the thermodynamic properties of several materials [25-27] . The 

Quasiharmonic approximation assumes harmonic vibrations, at positions different from the 



66 

Chapter V                                  Theory of The Investigated Proprieties 

    

equilibrium positions and it uses the harmonic partition function but it assumes that the 

frequencies depend on a global static constraint X, usually the volume. 

This model allows us to obtain all the thermodynamics quantities from the calculated 

energy-volume points, in which the non-equilibrium Gibbs function G* (V; P; T) is expressed 

as follows [28]:  

�∗(�; �, �) = �(�) + �� + ����(Θ(�); �) (V. 17) 

where E (V) is the total energy per unit cell, PV is the constant hydrostatic pressure condition, 

���� is the vibrational Helmholtz free energy, and Θ (V) is the Debye temperature. 

According to the quasi-harmonic Debye model of the phonon density of states, one can write 

[29, 30]:  

����(Θ(�); �) = ��� �
�

�

��

�
+ 3 ln �1 − exp �−

��

�
�� − � �

��

�
�� (V. 18) 

Where ��  is the Debye temperature, n is the number of atoms per formula unit, � �
��

�
� 

represents the Debye integral, which is defined as: 

� �
��

�
� =

�

(��/�)� ∫
��

����

��
�

�
 ��  (V. 19) 

For an isotropic solid with a Poisson ratio σ, the characteristic Debye temperature �� can be 

expressed as: 

�� =
ℏ

�
�6���

�
���

�

�

�(�)�
��

�
  (V. 20) 

Where M is the molecular mass per unit of formula, �� is the adiabatic bulk modulus measuring 

the compressibility of the crystal for fixed quantum state populations and can be approximated 

by the static compressibility: 

�� ≈ �(�) = � �
���(�)

��� � (V. 21) 

and the f (σ) is defined as [25, 26]:  

�(�) = �3 �2 �
�
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 (V. 22) 

Consequently, the non-equilibrium Gibbs function �∗(�; �, �) as a function of (V ;P,T) can be 

minimized with respect to volume V as: 

�
��∗(�;�,�)

��
�

�,�
= 0 (V. 23) 

By solving equation (IV.23), one can obtain the thermal equation of the state (EOS) V (P, T). 

Then, the isothermal bulk modulus ��, the constant-volume heat capacity �� , the constant-

pressure heat capacity ��, and the volumetric thermal expansion ��, can be derived as 
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��(�, �) = � �
�²�∗(�;�,�)

��²
� ( V. 24) 

�� = 3�� �4�(θ�/�) −
���/�

���(��/�)��
� (V. 25) 

�� = ��(1 + ���) (V. 26) 

�� =
���

���
  (V. 27) 

Where γ is the Grüneisen parameter, which is defined as: 

� = −
� �� �(�)

� �� �
 (V. 28) 

V.7 Thermoelectric proprieties 

V.7.1 The Seebeck effect 

The Seebeck effect, is the rise of an electromotive force in a thermocouple, under zero 

electric current, on other words, it is the conversion of a temperature difference into an electric 

current. The Seebeck effect was discovered in 1821 by Thomas Johann Seebeck who found that 

when two dissimilar materials are joined together via two junctions in an open circuit and these 

junctions between the materials are held at the same time at different temperatures ΔT, an 

electrical potential difference could be generated across the junctions between them [31, 32], 

as shown in Figure V.1. The generated voltage ΔV is directly related to the temperature 

difference ΔT by a proportionality coefficient, which is best known as Seebeck coefficient: 

� = ���∆� (V.29) 

Where ��� is the relative Seebeck coefficient which is given by the difference between the 

absolute Seebeck coefficients �� and �� of the individual materials A and B by [33] : 

��� = �� − �� (V.30) 

 The Seebeck coefficient has units of V. ���  and its magnitude varies with material and 

temperature of operation. In materials where dominant charge carriers are holes (p-type), the 

Seebeck coefficient has a positive sign, whereas a negative Seebeck coefficient results in 

electrons being the dominant charge carriers (n-type). 
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Figure V.1: An open circuit that displays the Seebeck effect; A and B are two dissimilar 

conductors. The terminals C and D are assumed to be at the same temperature, J1 and J2 are 

junctions held at two different temperatures, T1 and T2, resulting in the formation of a voltage 

across points C and D. (Figure adopted from [34]) 

V.7.2 The Peltier effect 

In 1834, the second thermoelectric effect was discovered by Jean-Charles Peltier; it is 

called the Peltier effect [34, 35]. This effect is the conversion of electricity into heat transfer, 

which can be regarded as the reverse phenomenon of the Seebeck effect. Jean Peltier discovered 

that when current flows across a junction connecting two dissimilar materials maintained at the 

same temperature, a certain amount of heat could be emitted at one junction and absorbed at 

the other junction, depending on the direction of the current (If the direction of the current is 

reversed, the heat output and input occur at the opposite junctions). This is because an 

isothermal electric current in a metal is accompanied by a thermal current. 

Peltier effects occur only at junctions between dissimilar conductors, it is quite different 

from Joule heating, where electrons energy is loss through scattering with the lattice. In contrast 

to Peltier effect, Joule heat occurs along the length of the conductor and does not require a 

junction of dissimilar materials. 

The rate of heat liberated or absorbed is proportional to the electric current induced in a 

sample by a weak electric field with the proportionality coefficient that was subsequently named 

after J. Peltier.  

For a circuit made up of two dissimilar materials A and B the heat liberated or absorbed at the 

junction is given by  [36]: 

� = Π��� (V.31) 
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Where �  is the electrical current and ���  is the relative Peltier coefficient of the junction 

between two conductors. The relative Peltier coefficient is given by the difference between the 

absolute Peltier coefficients Π� and Π� of the individual materials A and B by 

Π�� = (Π� − Π�) (V.32) 

The Peltier coefficient is related with the Seebeck coefficient or the thermopower by the 

first Thomson (Kelvin) relation  

Π = ST (V.33) 

Where T denotes the absolute temperature. The origin of the Peltier effect resides in the 

transport of heat by an electric current as is shown in Figure. V.2. 

 

 

Figure V.2 Schematic representation of the Peltier effect; A and B are two dissimilar materials. 

Under the conditions of no temperature gradient (∇T = 0), A current � passes through materials 

A and B causing the absorption and release of heat Q. The rate of cooling –q occurs at J1 while 

heating q occurs at J2. (Figure adopted from [34]). 

V.7.3 The Thomson effect 

The third thermoelectric effect was predicted in 1854 and found experimentally in 1856 

by Thomson [37]. By applying the first and second laws of thermodynamics to a reversible 

thermoelectric circuit Thomson could establish a relationship between the Seebeck and Peltier 

effects and predicting a third thermoelectric effect which is called the Thomson effect. In the 

Thomson effect, heat is absorbed or produced in a wire of single homogeneous material having 

a temperature gradient along its length and exposed to a difference in voltage. The main 

difference with the Peltier and Seebeck effects is that the Thomson effect involves only one 

material and no junction is required. The Thomson effect can occur even in the same solid if 

the Seebeck coefficient depends on temperature, balancing for the flowing Peltier heat. The 

generation or absorption of heat depending on the direction of current and on the nature of the 
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material; if the direction of current is reversed, the Thomson effect also changes sign (contrary 

to the Joule heating effect). 

The heat generated by the Thomson effect is called the Thomson heat. It was found that 

the Thomson heat in the material is proportional to the electrical current and the temperature 

gradient through a proportionality coefficient (Thomson coefficient): 

�� = ��Δ� (V. 34) 

Where β is the Thomson coefficient of material in units (V.K−1),� is the current, which passes 

through the materials, and ΔT is change in temperature. 

V.7.4  The Boltzmann transport Equation 

The classical theory of transport processes is based on the Boltzmann transport 

Equation, which arises from considering what can happen to a collection of particles as they 

flow through a volume of phase space. A single particle is identified by its three spatial 

coordinates and three momentum values.  

The Boltzmann theory introduces the so-called transport distribution function, which describes 

the carrier density at a point r, with a particular momentum � = ℏ� and at a certain time t. 

In absence of any external force at equilibrium, the electrons (Fermions) adopt the Fermi-Dirac 

distribution (Equation V.35): 

��(�, �) =
�

���(����)/���
 (V. 35) 

Where �� is the quasi-particle energy, µ is the chemical potential, k� is the Boltzmann constant 

and T is the temperature. 

For our transport problem, we want to describe a non-equilibrium distribution function since 

transport is an inherently non-equilibrium problem. 

 The distribution function f (r, k, t) of electrons with a wave vector k at the position r at time t 

can vary due to the following three distinct physical processes namely, 

(a)Due to Diffusion associated with temperature gradients or concentration gradients, carriers 

can move from one region of space to another. 

(b) Due to the influence of external fields, carriers are accelerated and their wave vector is 

affected, according to  ℏ��/�� = ���� 

(c) Due to scattering processes, electrons will change their momentum states from one k-state 

to another, this motion is not included in the Fermi-Dirac function. 

The variation in time of the total distribution can be expressed as the sum of these three 

contributions: 
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 In order to find an explicit form of the Boltzmann equation, we shall consider these processes 

separately by evaluating the partial time derivative of the function �(�, �, �) due to each source. 

i. Diffusion-Induced Evolution of �(�, �, �) 

First of all, one can consider an electron is not subject to scattering but experiences an 

external perturbation (concentration gradient, temperature gradients). In the presence of a 

temperature or concentration gradient, diffusion takes place in the conductor, therefore the 

carriers will be moving into and out of any volume element around r. 

If ��  is the velocity of a carrier in the state �, in a time interval Δ� , the electron moves a 

distance Δ� = �(�)Δ� . In accordance with the Liouville theorem on the invariance of the 

volume occupied in phase space [38- 42], the number of carriers in the region of the point � at 

time t must equal to their number in the region of the point � + �(�)Δ� at time � + Δ�, i.e., 

�(�, �, �) = �(� + Δ�, �, � + Δ�) (V. 37) 

By taking the Taylor expansion up to first order of the right-hand side close to r, inserting 

  Δ� = �(�)Δ�  and making  Δ� → 0 we obtain: 

�
��

��
�

����
= −�(�)

��

��
= −�(�)∇�� (V. 38) 

ii. External Field-Induced Evolution of �(�, �, �) 

When external force �  are applied to the sample, the crystal momentum �  of the 

electron evolves under the action of external forces, according to the semiclassical dynamics of 

carriers, their momentum is expressed as: 

  � = ℏ
��

��
. (V. 39) 

If the same considerations as for the diffusion term are used for the k-space, we can argue that 

particles at time t with momentum k will have momentum � + Δ� at time � +  Δ�  . 

�(�, �, �) = �(�, � + Δ�, � + Δ�) (V. 40) 

Which leads to 

�
��

��
�

�����
= −

��

��
.

��

��
= −ℏ���∇�� (V. 41) 

 

iii. Scattering-Induced Evolution of �(�, �, �)  

In the absence of collisions, the probability to find the particle in such trajectory remains 

constant with time. It is therefore can be written [41]:  

�(�, �, �) = �(� + Δ�, � + Δ�, � + Δ�) (V. 42) 
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However, collisions cannot be neglected because they significantly change the population of 

carriers. During the motion, electrons may also be scattered to or from r and k in time dt. Under 

steady-state conditions, there will be no net change in the distribution function because the 

changes due to diffusion and acceleration have to be in equilibrium with the changes of the 

distribution function through scattering,  

According to the Liouville theorem on the invariance of the phase space volume, an additional 

term must be added to the equation (V.42). If we express the change in f due to scattering by 

the term �
��

��
�

����
,it can be found that [41]  : 

� �� + ���, � +
�

ℏ
��, � + ��� ≡ �(�, �, �) + �

��

��
�

����
�� (V. 43) 

The left member of Eq. (V.43) can be expanded in Taylor series up to first order, and we obtain 

the Boltzmann equation 

���. � + ���
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��
= �

��

��
�

����
 (V. 44) 

V.7.5  The relaxation time 

In its most general form, the Boltzmann equation (V. 44) is a complicated equation for 

determining the non-equilibrium distribution �(�, �, �). In particular, it requires the evaluation 

of scattering mechanisms, which are rendering the equation a non-linear integro-differential 

equation of a complicated kind [38,  34 ]. A simple approach to the solution is that of using the 

relaxation time approximation, which is a plausible postulate for many problems. The central 

assumption of this approximation is the existence of a relaxation time τ governed the relaxation 

of the system to equilibrium when the external fields or thermal gradients are switched off. The 

relaxation time characterizes the velocity of recovery of the equilibrium state: for a short 

relaxation time, many scatterings help the system to relax toward equilibrium and conversely 

for a long relaxation time. 

Within the relaxation time approximation, it is assumed that the scattering term, which 

will bring the system to equilibrium, is proportional to the deviation of the distribution function 

from its equilibrium value 

�
��

��
�

�
= −

�(�)���(�)

�(�)
 (V. 45) 

Where ��(�) is the equilibrium distribution, �(�) is the non-equilibrium distribution before the 

collision. 

Integrating (V.45) gives: 
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� − �� = ����/� (V. 46) 

Which simply says that in the absence of external perturbations, any system will reach its 

equilibrium value when � becomes infinite. The relaxation time approximation is valid only for 

the elastic-scattering case, which requires that the change of electron energy before and after 

each scattering process must be small compared to the energy of electrons. Moreover, the 

scattering is considered to occur instantaneously. In other words, upon scattering electrons 

change their state k but not their position r. 

By the combination of equations (V.44) and (V.45), we get the Boltzmann transport equation 

with the collision term within the relaxation time approximation: 

���. � + ���
�

ℏ
+

��

��
= −

����

�
 (V. 47) 

We obtain the following simple form of the stationary Boltzmann equation in the absence of a 

magnetic field, 

���. � − ���
��

ℏ
+

��

��
= −

����

�
 (V. 48) 

Thus, by using the notion of relaxation time the integro-differential Equation (V.44)   can be 

formally reduced to the differential Equation (V.48) for the nonequilibrium distribution 

function �(�, �). 

Further considerable simplification of the transport problem is achieved by linearized 

Boltzmann equation, which is done simply by replacing the steady-state carrier distribution in 

the gradient ���(�, �, �) and ���(�, �, �) to the equilibrium distribution function as ����(�, �) 

and ����(�, �)  [41]:  

�(�) = ��(��) + �−
���

��
� ��� ��� +

���

�
(−∇�)� (V. 49) 

V.7.6  The transport coefficients 

The various transport coefficients that govern the thermopower, electric and thermal 

conductivity can be expressed in terms the electrical current � or thermal current JQ . These " 

currents " arise due to external fields such as an electric field and temperature gradient which 

are referred to as "forces". At macroscopic level and within the linear response regime, the 

electric current density components J and the thermal current components �� are related to the 

electric field components E and the temperature gradient components Δ� in the following way 

[44]:  

� = �� − ��Δ� (V. 50) 
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�� = ��� − �Δ� (V. 51) 

Where σ is the electrical conductivity, S is the Seebeck coefficient and κ is the thermal 

conductivity. 

To evaluate these transport coefficients, it is customary to introduce both the electrical current 

�� and the thermal current density �� in terms of microscopic variables.  

At microscopic level, the electric current density and the thermal current density are written as: 

�� =
��

��� ∫ ���� �� (V. 52) 

�� =
�

��� ∫ ��(�� − �)�� �� (V. 53) 

where e is the charge of the carriers, �� is the group velocity associated with state �, which can 

be found from the slope of the dispersion relation �(�) at � :�� =
�

ℏ

���

��
 , � is the chemical 

potential and �� it is the population of the quantum state labeled with k . The analytical 

expression of the distribution function is given by the solution of the Boltzmann transport 

theory.  

Substituting the perturbed distribution function in Eq. (V.49) into Equations (V.52) and (V.53) 

causes the integral containing the equilibrium distribution to vanish because there can be no 

flow of charge or heat when f = f0. The remaining terms are: 

�� =
��

��� ∫ ����� �−
���
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� ��� +
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(−∇�)� �� (V. 54) 

�� =
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��� ∫ ����� �−
���
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�
(−∇�)� (� − �) �� (V. 55) 

Defining now the integral: 

�� =
�

��� ∫ ����� �−
���

��
� (� − �)� �� (V. 56) 

we can express Equations. (V.54) and (V.55) in terms of �� as: 

�� = ����� +
�

�
��(−∇�) (V. 57) 

�� = ���� −
�

�
��Δ� (V. 58) 

The above equations serve to define transport coefficients in zero magnetic, let us begin with 

the conductivity tensor. 

V.7.6.1 Electrical conductivity 

In general terms, the electrical conductivity, σ, is a measure of how well a system 

conducts electrons due to an applied electric field. In absence of magnetic field and temperature 
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gradients, the distribution function is given by just the field streaming term and the scattering 

term as: 

�(�) = ��(��) + � �−
���

��
� ����� (V. 59) 

Then, the equation (V. 57) become: 

�� =
��

��� ∫ ����� �−
���

��
� ���� = ����� (V. 60) 

From equation (V.50), it is easy to see that in the absence of a gradient of temperature, the 

macroscopic expression of the electrical current is reduced to its electric field contribution 

 � = � �, therefore, the electrical conductivity can then be expressed as [41]: 

� = ���� =
�²

��� ∫ ����� �−
���

��
� �� (V. 61) 

V.7.6.2  Seebeck coefficient 

The Seebeck coefficient is one of the key quantities of thermoelectric materials. The 

Seebeck coefficient of a material is a measure of the magnitude of an induced thermoelectric 

voltage in response to a temperature difference across that material, as induced by the Seebeck 

effect. Under conditions of zero current flow through the sample (j= 0), we can found[41] :  

 

� =
�

��

��

��
=

�

��

∫ ��
����

���
��

�(���)��

∫ ��
����

���
��

���
 (V. 62) 

V.7.6.3  The thermal conductivity 

The thermal conductivity κ is a measure of the rate at which heat flows through a sample 

when its two ends are held at different temperatures and it has two contributions. 

� = �� + �� (V. 63) 

Here, �� is called the electron thermal conductivity and �� is called the lattice thermal 

conductivity. �� is due to a charge carrier flux and �� is due to a phonon flux through the lattice. 

In order to estimate the electronic contribution to the thermal conductivity, we now consider 

that the sample is electrically insulated to prevent any electric current flowing through it and a 

thermal gradient ∇T is maintained. Thus, we set the current �� =  0 in Eq. (V.57) and express 

an electric field in terms of a thermal gradient:  

� =
��

����

��
∇� (V. 64) 

Substituting Eq. (V.64) into Eq. (V.58) yields 
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�� =
�

�
[�� − ����

����](−∇�) (V. 65) 

Macroscopically, heat conduction in a solid is governed by the Fourier law: 

�� = −�∇� (V. 66) 

So, that from Eq. (V.65) and (V.66) one gets 

� =
�

�
[�� − ����

����] (V. 67) 

The second term in (V.67) is often negligible as compared to the first one and in this case, the 

thermal conductivity is therefore [41]:  

� =
��

�
=

�

����
∫ ����� �−
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��
� (� − �)� �� (V. 68) 

V.7.6.4  The Figure of merit 

In principle, the thermoelectric effect is present in all materials, but only few are suitable 

and only those comprise the material group of thermoelectric. The efficiency of a thermoelectric 

depends on the transport coefficients of the material. Already in 1909 and 1911, Altenkirch was 

showed that good thermoelectric materials must have a high electrical conductivity, to ensure 

high carrier mobility, a low thermal conductivity to retain heat at the junctions and maintain a 

large temperature gradient, which helps to generate a large voltage and a high Seebeck 

coefficient for maximum conversion of heat to electrical power (or electrical power to cooling 

performance) [45, 46]. These requirements are summarized in what is called the Figure of merit 

(FOM) ZT [47]:  

�� =
�²�

�����
� (V. 69) 

Where T is the temperature, S the Seebeck coefficient, σ the electrical conductivity, ��  the 

lattice thermal conductivity and ��the electronic part of the thermal conductivity. The larger 

the figure of merit, the better the efficiency of the thermoelectric cooler or power generator. 

It is obvious that a higher ZT is obtained by decreasing the denominator or by increasing the 

numerator, the latter being called the power factor PF = σS2. Unfortunately, it is difficult in 

practical systems to improve the thermoelectric figure of merit because the transport 

coefficients are interdependent and the optimization of each coefficient individually is limited, 

increasing the electrical conductivity results in a decrease of Seebeck coefficient and an 

increase in σ leads to a comparable increase in the electronic contribution to κ because of the 

Wiedemann–Franz law [48] , so that the resulting ZT does not vary significantly, this limits the 

enhancement of the thermoelectric performances of materials. 
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There are several attempts, which are currently done by researches in order to enhance 

the ZT value of thermoelectric materials [49-53] . The main strategy for improving the figure 

of merit has been based on the reduction of lattice thermal conductivity. They include the 

rattling atom approach in clathrates [54] and skutterudites [55, 56], introducing atomic disorder 

at transition metal sites in half-Heusler alloys [57], structural complexity in Zintl phases [58, 

59]. 
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VI.1 Introduction  

The aim of this chapter is to provide an overview of the different computational tools 

used in present investigation. We have carried out the first-principles calculations of structural, 

elastic, electronic and optical properties of LiAeP (Ae=Sr, Ba) using CASTEP code. The 

thermodynamic properties are investigated by implementation of Gibbs program. First-

principles calculations for Ae3AlAs3(Ae=Sr, Ba) were performed by employing two code. The 

elastic properties were evaluated using the pseudopotential plane wave (PP-PW) method as 

implemented in the CASTEP code, while the electronic and optical properties were carried out 

using the WIEN2 k suite of programs. The thermoelectric properties of are investigated by 

using Bozltrap program.  

VI.2 Cambridge serial total energy package (CASTEP) 

The Castep code is a modern implementation of density-functional theory; it can be used 

to simulate a wide range of materials, including crystalline solids, surfaces, molecules, liquids 

and amorphous materials; the properties of any material that can be considered as an assembly 

of cores and electrons can be calculated with the only limitation being the finite speed and the 

memory of the computers used. CASTEP [1] uses the pseudopotential plane wave method 

where ionic potentials are replaced by effective potentials that act only on the valence electrons 

in the system. The electronic wave functions are developed by a set of plane waves and the 

exchange-correlation effects in the electron-electron interactions can be included in the local 

density (LDA) [2], or generalized gradient (GGA) approximations [3], CASTEP takes the 

number and type of atoms in a system and predicts properties such as lattice constants, 

molecular geometry, elastic constants, band structures, state density, charge densities, and 

lattice functions. waves and optical properties. Flowchart of a CASTEP calculation is shown in 

Figure VI.1. 
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Figure VI.1 :Flowchart of a CASTEP calculation (Adopted from [4]) 

VI.3 The WIEN2k code 

The WIEN2k [5], code is developed by P. Blaha and K. Schwarz et al. It allows an 

accurate estimation of the ground state properties for a given system with periodic boundary 

conditions and therefore mainly it is used for crystal calculations. 
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The code is based on KS formalism of the DFT using the full-potential (linearized) 

augmented plane-wave ((L) APW) + local orbitals (lo) method. There are two distinct parts in 

the program, the initialization and the self-consistent field [(SCF)] cycle. Each part again is 

composed of several separated subroutines, which are linked together via C-shell scripts. 

The initialization part works starting from a structure file containing information on the 

atomic configuration of the system: lattice parameters, atomic species, atomic positions, muffin-

tin radii, etc. Based on this file, the SGROUP and SYMMETRY routine checks for overlap 

between the different muffin-tin spheres and determines through different steps respectively the 

symmetries of the unit cell. In the next step, LSTART generate from the input files the atomic 

densities for all atoms in the unit cell, generates the suitable k-mesh, i.e. the sample of point k 

in the irreducible Brillouin zone (IBZ). Finally, the DSTART routine superimpose the atomic 

densities to obtain the input trial density ρ (r), for the SCf cycle. Once the input procedure has 

been performed, one can proceed with the self-consistent (SCF) calculation. 

In the self-consistent calculation, there are five major subroutines, namely LAPW0 

LAPW1, LAPW2, LCORE and MIXER. The first one, LAPW0 generate the Coulomb and the 

exchange-correlation potential for the calculation from the charge density. The second, LAPW1 

solves the secular equation for all the k-values in the k-mesh and gives rise to the eigenvectors 

and eigenvalues for the valence band by diagonalization of the Kohn-Sham equation. The third, 

LAPW2 integrates all valence states and constructs the valence electron density (ρval). 

Separately, LCORE solves the atomic calculation and gets the core state eigenvalues, 

eigenstates and consequently the core charge density for a spherical symmetric potential (ρcore). 

Finally, the MIXER subroutine mixes the two electron densities with the old total electron 

density (ρold) and gets the input for the next cycle and checks the convergence criteria. 

Flowchart of a Wien2K calculation is shown in Figure VI.2. 
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Figure VI.2 :Flowchart of a Wien2k calculation 
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VI.4  Gibbs program 

Gibbs is a program for calculating the thermodynamic properties of solids as a function 

of pressure and temperature from ab initio data [6]. This program requires only a set of data 

(Volume, Energy) and the basic properties of the crystal to generate automatically the 

thermodynamic properties of any selected pressure and temperature. Taking into account the 

energy of a solid (E) as a function of the molecular volume (V), the Gibbs program uses a quasi-

harmonic Debye model to generate the Debye Θ (V) temperature, obtains the Gibbs function 

out of equilibrium G * (V; p, T) and minimizes G * to derive the thermal equation of the state 

(EOS) V (p, T) and the chemical potential G (p, T) of the corresponding phase. The other 

macroscopic properties are also derived as a function of p and T from standard thermodynamic 

relationships. Three EOS are incorporated in the Gibbs program to determine the 

thermodynamic properties of solids: Vinet et al. EOS [7], Birch-Murnaghan EOS [8, 9], and 

the spinodal EOS [10]. In this study, third-order EOS Birch- Murnaghan is used to calculate the 

thermodynamic properties. 

VI.5 The BoltzTrap 

The BoltzTrap [11] is an open-source program for computing the semi-classical transport 

coefficients based on solving the Boltzmann equation in the relaxation time approximation. The 

relaxation time τe, in principle, is dependent on both the band index and the κ direction. To 

facilitate the computation of the transport coefficients, the relaxation time is by default assumed 

as constant in BoltzTraP, so, BoltzTraP can only output the electrical conductivities time the 

inverse of the relaxation time τ, whereas we have direct access to the Seebeck coefficient. For 

use of an energy and temperature dependent relaxation times, one needs to modify the code 

(subroutine FERMIINTEGRALS). 

To calculate the TE transport coefficients by use of the BTE, the group velocity of 

electrons should be known. It is therefore essential that the band energies are exactly computed 

before using BoltzTraP. This code expands the band energies in a Fourier series such that it 

reproduces a smooth analytical representation of the bands; therefore, the group velocities are 

calculated as derivatives of this interpolated band structure straightforwardly for evaluating 

transport properties. The code of BoltzTraP is interfaced to the band-structure code WIEN2k, 

but can also be easily interfaced to any other band-structure codes. 
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VII.1 Computational details 

All calculations were carried out using the pseudopotential plane-wave method based 

on the DFT, as implemented in the CASTEP (Cambridge Serial Total Energy Package) code 

[1]. The exchange–correlation potential was modelled using the generalized gradient 

approximation of Perdew et al. (so-called GGA-PBEsol) [2]. The interactions between the 

valence electrons and the ion cores were described by means of the Vanderbilt ultrasoft 

pseudopotentials [3]. The Li 1s22s1, P 3s23p3, Ba 4d105s25p66s2 and Sr 3d104s24p65s2 states are 

treated as valence electrons. The cut-off energy, which determines the size of the plane-wave 

basis set, was 400 eV. The integration over the Brillouin zone (BZ) was carried out using the 

Monkhorst–Pack sampling method [4] with a 9×9×6 k-points grid. The self-consistent field was 

considered to be converged when the change in total energy was less than 1×10-6 eV/ atom.  

The structural optimizations were performed using the Broyden–Fletcher–Goldfarb–

Shanno (BFGS) minimization scheme [5], which minimizes the enthalpy of unit cell by 

minimizing the force on the nuclei and the stress on the unit cell simultaneously. In principle, 

the total energy is obtained from a charge density according to the assumed shape of the unit 

cell and the atomic positions, we then calculate the force on each atom and the stress on the unit 

cell, which will move the atoms and cell parameters to a certain new geometry. The new 

geometry can then be used to recalculate the electronic structure. The procedure is repeated 

until the total force acting on the atoms and the stress is below the required thresholds, which 

indicates that the optimization has been achieved. The tolerances were set as the difference in 

total energy being within 5×10-6eV/ atom, the maximum ionic Hellmann–Feynman force within 

0.01eV/A˚, the maximum ionic displacement within 5×10-4A˚, and the maximum stress within 

0.02 GPa.  

The elastic stiffness constants of LiBaP and LiSrP systems were obtained using the 

stress-strain method according to Hooke's law [1, 6]. The stress-strain approach implemented 

in the CASTEP code is based on the construction of a set of linear equations for several 

deformations of the unit cell. During the simulation, each stress-strain curve was determined 

by uniformly increasing the amount of strain and allowing the relaxations of all the internal 

atomic coordinates, then the resulting stresses are calculated. Applying a given homogeneous 

deformation (strain) and calculating the resulting stress requires far less computational effort, 

since the unit cell is fixed and does not require optimization. The strain amplitude is 

appropriately selected so that its value is not too high or low. If the value is too high, the material 

cannot remain in the linear elasticity regime, i.e. in the approximation of the harmonic 
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oscillator. On the other hand, a low value does not produce enough distortion to generate 

dissimilar structures. The convergence tolerances were selected as follows: difference on total 

energy within 1×10-6 eV/atom, maximum ionic displacement within  

1 ×10-4 Å and maximum ionic force within 0.002 eV/.  

VII.2 Results and discussion 

VII.2.1 Structural parameters 

The examined LiSrP and LiBaP systems crystallize in a hexagonal crystal structure, 

space group P63/mmc (No.194) with two formula units per unit-cell. The Wyckoff positions of 

atoms are as follows: Li: 2c (1/3, 2/3, 1/4), Sr, Ba: 2a (0, 0, 0) and P: 2d (1/3, 2/3, 3/4) [7]. The 

unit-cell crystalline structure of the LiSrP compound is depicted in FigureVII.1 as 

representative.  So, the crystalline structure of these systems is characterized by two lattice 

parameters, a and c, which are not fixed by the symmetry. The equilibrium lattice parameters, 

a0 and c0, for LiSrP and LiBaP are tabulated in Table VII.1 together with the available 

experimental data for comparison. One can appreciate that the relative deviations of the 

calculated equilibrium lattice parameters a0 and c0 from the measured ones do not exceed 0.26 

and 0.96 %, respectively, in LiSrP and 0.12 and 0.65 %, respectively, in LiBaP. This good 

consistency proves the reliability of the calculation method. The lattice parameters (a0 and c0) 

of LiBaP are larger than those of LiSrP. This trend can be explained by considering the atomic 

radii of Ba and Sr atoms as follows: (Ba) 215 (Sr) 200R pm R pm   . 

In order to determine the pressure dependence of the lattice parameters of the considered 

materials, their geometries were optimized at different ascending pressure from 0 to 20 GPa 

with a step of 3 GPa. Variations of the normalized lattice parameters a/a0 and c/c0 versus applied 

hydrostatic pressure P (in GPa) are depicted in Figure VII. 2 (a) (symbols). It is clearly seen 

that these data are well fitted to the following second order polynomials:  
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 (VII.1) 
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The compressibility of both examined materials along c-axis is larger than that along a-

axis, indicating that the chemical bonding along the c-axis is weaker than that along the a-axis.  

The relationship between normalized volume V/V0 and pressure P is shown in Figure VII .2(b). 

It is found that the volume–pressure data are well fitted to the following second order 

polynomials: 

�
�

�

��
�

�����

= 1 − 0.0174P + 3.10915 × 10��P�

�
�

��
�

�����

= 1 − 0.01858P + 3.44909 × 10��P�
 (VII.2) 

To calculate the bulk modulus B and its pressure derivative B’, the calculated pressure-

volume (P-V) and total energy-volume (E-V) data were fitted to the following P(V) and E(V) 

Murnaghan equations of states (EOS) [8]: 
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 (VII.4) 

Here, V0 is the unit-cell volume at zero pressure, E 0 is the equilibrium total energy and B and 

B’ are the bulk modulus and its pressure derivative, respectively. Figure.VII.3 shows the 

calculated P-V and E-V data (symbols) and their fits to the corresponding Murnaghan EOSs. 

The obtained bulk modulus B and its pressure derivative B’ for the title compounds are listed 

in Table VII.1. The calculated bulk modulus at the theoretical equilibrium volume does not find 

experimental or theoretical findings in the scientific literature for comparison. The bulk 

modulus of LiSrP is slightly larger than that of LiBaP, which is in agreement with the known 

relation: B~1/Vunit-cell ; the unit-cell volume of LiSrP is smaller than that of LiBaP. 
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Figure VII.1 :Crystal structure of the LiSrP hexagonal compound 

 

Table VII.1 :Calculated optimized structural parameters for the LiBaP and LiSrP compounds 

at zero pressure: lattice parameters (a0 and c0, in Å), equilibrium unit-cell volume (V0, in Å3), 

bulk modulus (B, in GPa) its pressure derivative B’ and cohesive energy (Ecoh, in eV/atom). B 

and B’ are derived from the Birch EOS fit. Available experimental results are reported for 

comparison. 

 

a from Murnaghan V(P) EOS 

b from Murnaghan E(V) EOS 

 

 a0 c0 (c/a)0 V0 B B’ Ecoh 

LiSrP        

  Present work 4.3557 7.9031 1.81 129.85 48.29a 3.34a -2.798 

44.64b 4.07b 

  Expt. [7] 4.3674 7.9802 1.83 131.82    

LiBaP       

    Present work 4.4945 8.5483 1.90 149.54 44.32a 3.37a -3.170 

41.23b 3.91b 

    Expt.  [7] 4.5003 8.6049 1.91 150.92    
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Figure VII.2 : Pressure dependence of the normalized lattice parameters (a/a0 and c/c0) and 

unit-cell volume (V/V0) for the LiBaP and LiSrP materials. The ‘‘0’’ subscript denotes the 

parameter value at zero pressure. The calculated values are shown by symbols and solid lines 

show the quadratic approximations. 
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Figure VII.3 :(a) Computed pressure versus primitive-cell volume data for the LiSrP and LiBaP 

materials. The symbols are the calculated results and the continuous lines are Murnaghan EOS 

fits. (b) Unit-cell dependence of the total energy for the LiSrP and LiBaP materials. The 

calculated values are shown by symbols and Murnaghan EOS fits are shown by solid line.  

 

The chemical stability of crystal is determined by its cohesive energy, which can be 

defined as the energy needed to form the crystal from free atoms or the work needed to 

decompose the crystal into isolated atoms. Lower the cohesive energy is; better the stability is. 

The cohesive energy ����  of LiSrP and LiBaP per atom were calculated using the following 

expression [9]: 

( ) ( )( 2 2 )

6

2LiAeP Li atom Ae atom P
Tot Tot Tot Tot

Coh

E E E E
E

  
  (VII.5)

  

Here, 
LiAeP
TotE  is the total energy corresponding to the unit-cell of the considered material, 

( )Li atom
TotE , 

( )Ae atom
TotE  and 

P
TotE  are the total energies of the isolated Li, Ae and P atoms in the free 

state, respectively. The calculated cohesive energies of LiSrP and LiBaP are listed in Table 

VII.1. The negative cohesive energies of LiSrP and LiBaP show their energetic stabilization.  
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Finally, to fully characterize the pressure-induced structural changes, we turn our 

attention to the analysis of the interionic distances. The bond-lengths at zero pressure of the 

considered bonds are listed in Table VII.2 along with the existing experimental data [7]. Our 

results are in good agreement with the reported experimental results. Pressure dependence of 

some normalized bond-lengths for the investigated materials are plotted in FigureVII.4 

(symbols). Pressure dependence of the examined normalized bond-lengths are fitted to the 

following second-order polynomials: 

 

�����

⎩
⎪⎪
⎨

⎪⎪
⎧ (

�

��
)����

����� = 1 − 0.00484P + 9.76321 × 10��P�

(
�

��
)����

����� = (
�

��
)�����

����� = 1 − 0.00616P + 9.87577 × 10��P�

�
�

��
�

�����

�����

= 1 − 0.0083P + 9.62413 × 10��P�

(
�

��
)���

����� = 1 − 0.0073P + 9.8145 × 10��P�

 (VII.6) 

 

�����

⎩
⎪⎪
⎨

⎪⎪
⎧ (

�

��
)����

����� = 1 − 0.0059P + 1.28421 × 10��P�

(
�

��
)����

����� = (
�

��
)�����

����� = 1 − 0.00655P + 1.05374 × 10��P�

�
�

��
�

�����

�����

= 1 − 0.00747P + 6.75254 × 10��P�

(
�

��
)���

����� = 1 − 0.00706P + 8.52373 × 10��P�

 (VII.7) 

 

From Figure VII.4, it is clearly that the Li-P and Li-Sr (Li-Ba) bonds are less compressible than 

the others bonds in both crystals. Whereas the Sr-Sr (Ba-Ba) bonds along the c-axis are the 

most easily compressible, which explains why the c-axis is more compressible than the a-axis. 
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Figure VII.4 :Pressure dependence of the normalized bond-lengths for the LiSrP and 

LiBaP materials. The calculated values are shown by symbols and the quadratic 

approximations are shown by solid line. ‘‘d’’ stands for the interatomic distance at a 

pressure P, whereas ‘‘d0’’ is the same distance at zero pressure. 

 

Table VII.2 : Selected bond lengths (in Å) for the LiAeP (Ae=Sr, Ba) systems. 

 

 

 

 

 

 

Bonds                         LiSrP                         LiBaP 

Present work                 expt.  [7] Present work               expt. [7] 

Li–P   2.5148                       2.5215   2.5949                   2.5983 

Li–Ae  3.1981                       3.2153   3.3617                    3.3732 

Ae –P   3.1981                       3.2153   3.3617                    3.3732 
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VII.2.2 Elastic properties  

VII.2.2.1 Elastic constants and related properties  

Five independent elastic constants, namely C11, C12, C13, C33 and C44, for the hexagonal 

LiSrP and LiBaP were calculated using the strain-stress method [1] at the equilibrium lattice 

parameters.  The obtained data are listed in Table VII.3; no experimental or theoretical data for 

the elastic constants of LiBaP and LiSrP are available in the scientific literature to be compared 

with our results. From Table VII. 3 data, one can make the following conclusions: 

1. To be mechanically stable, a hexagonal crystal should satisfy the known mechanical stability 

criteria [10]: 

���� > 0, ���� − ������ > 0, ����� + ��������� − 2����
� > 0 (VII.8) 

Here, ���� = ��� − � ,  ���� = ��� + � and P is the applied hydrostatic pressure 

The calculated Cij at zero pressure for both considered materials (Table VII.3) verify these 

required criteria, implying their mechanical stability. 

2. One can appreciate that the C11, which represents the unidirectional resistance to the 

compressional deformation along the [100] crystallographic direction, is larger than the C33, 

which measures the resistance to the compressional deformation along the [001] direction. 

These results are in concordance with the pressure dependence of the lattice parameters 

discussed in Section VII.2.1.  

3. The Cii (i =1, 3) are larger than the Cij (i, j = 4, 4; 1, 2; 1, 3), indicating that the resistance to 

the compressional deformation is larger than that to shear deformation. 

4. The Cij of LiSrP are larger than those of LiBaP, which confirm that the LiSrP is more resistant 

to the applied deformation than LiBaP. 

5. For a hexagonal crystal, the parameter, the ratio between the linear compressibilities of the 

c- and a-axis (kc and ka, respectively) is given by the following relationship [11]: 

 
��

��
=

������������

�������
  (VII.9) 

 This ratio is found to be equal 1.69 for LiSrP and 1.44 for LiBaP. These results confirm the 

results obtained from the pressure dependence of the lattice parameters indicating that the linear 

compressibility along c-axis is greater than along a-axis for both examined crystals. 
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Table VII.3 Calculated elastic constant (Cij, in GPa) for the LiAeP (Ae = Sr, Ba) compounds. 

 

6. It is important to evaluate the sound velocity in a crystal because they are related to some 

physical properties of the material such as its thermal conductivity. The sound wave velocities 

of pure transverse and longitudinal modes of crystals can be calculated from the Cristoffel 

equation [12]. The calculated sound wave velocities propagating in the [100], [001] and [120] 

crystallographic directions for the examined crystals reproduced from the calculated elastic 

constants ��� at zero pressure are listed in Table VII.4. One can note that the longitudinal sound 

velocities and the first transverse sound velocities are quite different along [100] and [001] 

directions for each structures. The anisotropic properties of sound velocities indicate the elastic 

anisotropy in these crystals. The longitudinal  sound wave  along  the  [100]  direction  travels  

faster  than shear sound wave since the square root of ��� is larger than ��� and ���. 

 

Table VII.4 Acoustic wave velocities (in m/s) for some propagating directions in the LiAeP 

(Ae = Ba, Sr) hexagonal compounds. ρ is the mass density of material ; T and L stand to the 

transverse and longitudinal wave polarizations. 

 

 

 

  

Compounds C11 C33 C44 C12 C13  

LiSrP 109.2 72.12 40.12 20.5 25.02  

LiBaP 89.2 65.02 34.62 18.2 24.22  

Acoustic wave velocities LiSrP LiBaP 

��
[���]

= ��
[���]

= ���� �⁄  5832.6 4787.2 

���
[���]

= ���
[���]

= �(��� − ���) 2�⁄  3717.7 3020.32 

���
[���]

= ���
[���]

= ���� �⁄  3535.92 2982.22 

��
[���]

= ���� �⁄  4740.5 4087.75 

���
[���]

= ���
[���]

= ���� �⁄  3535.95 2982.25 
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7). From the single-crystal independent elastic constants Cij of solids it is possible to calculate 

useful elastic moduli characterizing the mechanical properties for their polycrystalline phases, 

such as the bulk modulus B and shear modulus G. The bulk modulus B, which depicts the 

contraction of an object when a pressure is imposed and the shear modulus G, which reflects 

the resistance of an object to the shear deformation, for polycrystals can be computed from the 

Cij via the Voigt-Reuss bounds [13,14]. According to Voigt approximation, the bulk (BV) and 

shear (GV) moduli for a hexagonal structure can be calculated from the Cij through the following 

relationships [13]: 

B� =
�

�
�C�� + C�� + C�� + 2C�� +

�

�
C��� (VII.10) 

G� =
�

��
(7C�� − 5C�� + 12C�� + 2C�� − 4C��) (VII.11) 

In the Reuss approximations, the bulk (BR) and shear (GR) moduli for a hexagonal lattice can 

be evaluated from the Cij via the following expressions [14]: 

B� = C(C�� + C�� + 2C�� − 4C��)�� (VII.12) 

G� =
�

�
({CC��C��}){3B�C��C�� + C(C��+C��)}�� (VII.13) 

C = (C�� + C��)C�� − 2C��
�;  C�� =

�������

�
. (VII.14) 

The Voigt and Reuss yield the limits of the values that can take B and G. Hill [15] suggested 

that the effective BH and GH for polycrystals are approximated by the arithmetic mean of these 

mentioned limits –Voigt and Reuss-:  

B� = (B� + B�)/2 (VII.15) 

G� = (G� + G�)/2 (VII.16) 

Other elastic moduli characterizing the mechanical properties of solids, such as the Young’s 

modulus and Poisson’s ratio, can be derived from the B and G using the well-known 

relationships [16]: 

E =
���

����
 (VII.17) 

σ =
�����

�(����)
 (VII.18) 

The calculated aforementioned elastic moduli are presented in Table VII.5. These findings 

allow us to make the following conclusions: 

7.1). The calculated bulk modulus from the elastic constants via the Voigt-Reuss-Hill 

approximations (Table VII.5) is in agreement with that obtained from the fit to Murnaghan’s 

EOS (TableVII.1). This might be an estimate of the reliability and accuracy of our calculated 

elastic constants for LiBaP and LiSrP.  
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7.2). The isotropic Young’s modulus E, defined as the ratio of linear stress to linear strain 

averaged over all directions, is an important elastic parameter that can provide useful 

information about the stiffness of solids. The moderate values of the isotropic Young’s modulus 

of the studied materials (E≈77-92 GPa) suggest that they will show a rather moderate stiffness. 

From the present results of E, we can state that LiSrP is stiffer than LiBaP. 

7.3). Poisson’s ratio σ provides more information about the chemical bonding than any other 

elastic constant. Poisson’s rations of covalent systems are known to be small (σ ~0.1), while 

those of ionic solids are σ ~0.25 [17], From the data presented in Table VII.5, one can conclude 

that the chemical bonding in the studied materials shows a mixed ionic-covalent character. 

7.4). According to Pugh’s empirical criterion [18], the ratio of the shear modulus to bulk 

modulus (G/B) can predict the brittle/ductile behaviour of materials. The critical value 

separating ductility from Brittleness is about 0.57. If the G /B ratio is over 0.57 the material 

behaves as a ductile material, otherwise, it will demonstrate brittleness.  The obtained B and G 

values (Table VII. 5) yield G/B =0.82 for LiSrP and 0.78 for LiBaP. According to this indicator, 

LiAeP (Ae=Ba, Sr) must behave as a plastic material. 

 

Table VII.5 :Calculated polycrystalline elastic moduli: Reuss, Voigt and Hill bulk modulus 

(BR, BV and BH, in GPa), Reuss, Voigt and Hill shear modulus (GR, GV and GH, in GPa), 

Young’s modulus (E, in GPa) and Poisson’s ratio (σ, dimensionless) for isotropic 

polycrystalline LiAeP (Ae = Sr, Ba) aggregates. 

 

7.5). From computed bulk and shear moduli, we can evaluate the longitudinal (υl) and transverse 

(υt) and the average (υm) velocities of the sound wave in polycrystals in terms of the following 

relationships [19]: 

�� = �(�� + 4��/3)/�  ;   �� = ���/� ;  �� = [(2/��
� + 1/��

�)/3]��/� (VII.19) 

Then the Debye temperature, a suitable parameter to describe phenomena of solid-state physics 

that are associated with lattice vibration, elastic constants, specific heat and melting point, can 

be predicated by using the following common relation [19]: 

System BV GV BR GR BH GH       Ej E  �  

Ex Ez 

LiSrP 47.95 39.60 46.60 38.35 47.28 38.97 99.16 62.50 91.72 0.176 

LiBaP 41.85 32.73 41.33 31.78 41.59 32.26 79.12 54.11 76.887 0.191 
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�� =
�

��
�

��

��
�

���

�
��

�

�
�� (VII.20) 

Here, ℎ is the Planck’s constant, �� is the Boltzmann’s constant, n is the number of atoms per 

one formula unit, NA is the Avogadro’s number, ρ is the mass density, M is the molecular mass. 

The calculated values of   υl, υt, υm and ��  for the LiAeP (Ae=Sr, Ba) compounds at zero 

pressure and temperature are given in Table VII. 6. It can be seen that LiSrP has a larger Debye 

temperature than LiBaP which can explain by the higher elastic constant of LiSrP compared to 

those of LiBaP. Up to now, there are no available data for these parameters in the scientific 

literature to be compared with our present findings. 

 

Table VII.6 : Calculated mass density (ρ), longitudinal, transverse and average sound velocities 

(��, �� ��� ��, ������������) and Debye temperatures (θD) for LiAeP (Ae = Sr, Ba). 

 

The required semiconductors for technical applications are generally thin monolayers or 

multilayers grown on substrates. The lattice mismatch and difference in the thermal expansion 

coefficients between the epitaxial layers and substrates can cause large stresses in the epitaxial 

layers. Hence, in this context, it is of more than fundamental interest to estimate the numerical 

values of the elastic constants of these materials, which describe their responses to externally 

applied strains and their evolution with pressure. Therefore, in the present work, we evaluated 

the pressure dependence of the elastic constants in the range from 0 GPa to 15 GPa with a step 

of 3 GPa and the obtained results are depicted in Figure VII.5. The elastic constant C11 and C33 

reflect the elasticity in length; a longitudinal stain produces a change in C11 and C33. The elastic 

constants C12, C13 and C44 are associated with the elasticity in shape; they are shear constants. 

A transverse strain causes a change in shape, but no change in volume. All elastic constants of 

both considered materials increase monotonically with the increasing pressure.  From 

Figure.VII.5, one can observe that the C11 is more sensitive to the pressure variation compared 

to C33, C12, C13 and C44. The variations of the Cij with pressure are well fitted to second-order 

polynomials as follows: 

 

System �(
�

���
) ��(

�

�
) ��(

�

�
) ��(

�

�
) ��(K) 

LiSrP 3.21 5559.8 3484.2 3837.1 410.0 

LiBaP 3.89 4662.3 2878.9 3175.5 323.7 
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LiSrP

⎩
⎪
⎪
⎨

⎪
⎪
⎧

C�� = 109.65073 + 7.31957P − 0.08358P�

C�� = 72.56983 + 3.60684P − 0.06493P�

C�� = 40.21167 + 2.67115P − 0.0197P�

C�� = 20.26029 + 2.37587P + 0.00336P�

C�� = 25.02782 + 3.77388P−0.02159P�

C�� = 44.69522 + 2.47185P − 0.04347P²

B = 46.72509 + 4.07335P − 0.04447P²

 (VII.21) 

 

LiBaP

⎩
⎪
⎪
⎨

⎪
⎪
⎧

C�� = 89.36627 + 6.09836P − 0.07386P�

C�� = 63.56769 + 4.14229P − 0.09602P�

C�� = 34.66454 + 2.40093P − 0.02466P�

C�� = 18.10315 + 2.40808P + 0.01444P�

C�� = 23.21626 + 4.39061P − 0.03079P�

C�� = 35.63156 + 1.84514P − 0.04415P²

B = 40.51837 + 4.36429P − 0.05052P²

 (VII.22) 
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Figure VII.5: Calculated pressure dependence of the elastic constants ��� and bulk modulus B 

for LiSrP and LiBaP materials. The symbols are the calculated results and the continuous lines 

are the second-order polynomial fits to the results. 

VII.2.2.2  Elastic anisotropy 

The elastic anisotropy of crystals is an important mechanical parameter, which is highly 

correlated with the possibility to induce microcracks in the materials [20]. Furthermore, recent 

study [21] has reported that the elastic anisotropy has a significant influence on the nanoscale 

precursor textures in alloys. Owing to these, it becomes necessary and significant to estimate 

the elastic anisotropy of crystals for a better understanding of this property and hopefully find 

mechanisms that will help to improve its durability and resistivity to microcracks. Thus, 

different indicators have been developed to estimate the elastic anisotropy in solids. Four 

different indexes were used in the present work to explore the elastic anisotropy of the LiAeP 

phosphides. 

1. The degree of anisotropy in bonding between atoms in different crystallographic planes can 

be estimated from the calculated independent elastic constants Cij via the shear anisotropic 

factors A1, A2 and A3. For hexagonal crystals, the shear factors A1, A2 and A3 are given by the 

following expressions [22]: 
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44
1 2

11 33 13

4C

C C 2C
A A 

 
 for the {100} and {010} planes (VII.23) 

11 12
3

11 22 12

2(C C )

C C 2C
A




 
 for the {001} plane (VII.24) 

For an isotropic crystal A1-3 are equal to unity and any value either smaller or greater than unity 

indicates presence of a certain degree of elastic anisotropy; the degree of elastic anisotropy 

possessed by a crystal is estimated in terms of the magnitude of deviations of the shear factors 

A1, A2 and A3 from unity. The calculated shear anisotropic factors for the considered crystals 

are given in Table VII.7. The obtained results reveal that A3 is equal to 1 for both studied 

crystals, indicating that bonding in the {001} plane is isotropic. Both systems exhibit 

anisotropic bonding in the {100} and {010} planes. We can see also that the deviation of A1 

(A2) from the unity in LiBaP is larger than that in LiSrP indicating that the degree of elastic 

anisotropy in LiBaP is larger than in LiSrP. 

 

Table VII.7: Calculated anisotropy in compression (AB), anisotropy in shear (AG), anisotropy 

factors (A1 = A2 and A3) and the anisotropy universal index �� for the LiAeP (Ae = Sr, Ba) 

compounds. 

 

2. The so-called percentage of elastic anisotropy in compression AB and shear AG, usually used 

to estimate the elastic anisotropy of crystals, are defined the following formulas [23] 

�� =
�����

�����
× 100 (VII.25) 

�� =
�����

�����
× 100 (VII.26) 

Zero value for AB and AG corresponds to elastic isotropy, while a value of 100% is associated 

with the largest possible anisotropy. According to Table VII.7 data, both materials exhibit a 

small anisotropy in shear and compression. 

3. A truest representative of the elastic anisotropy is the so-called universal anisotropic index 

AU. It is defined by the following expression [24]: 

�� = 5
��

��
+

��

��
− 6 (VII.27) 

System �� �� �� ��% ��% �� 

LiSrP 1.222 1.222 1 1.613 1.429 0.193 

LiBaP 1.308 1.308 1 0.624 1.476 0.162 
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  �� is  zero  for    isotropic  crystals; deviations of �� from zero define  the  extent  of  crystal  

anisotropy.  In our case, according to this indicator, both LiSrP and LiBaP will exhibit a certain 

elastic anisotropy (Table VII. 7). 

4. The degree of elastic anisotropy of crystals can be beastly visualized by plotting a three 

dimensional (3-D) representation of its crystallographic direction dependence of the Young’s 

modulus E. The Young’s modulus � in an arbitrary direction for a hexagonal crystal can be 

determined by the following equation [25]: 

    2 2 2 2
11 3 11 33 11 13 44 1 2 3

1
E

S S S 2S 2S Sl l l l


      
 

 (VII.28) 

l1, l2 and l3 are the cosines directors and Sij are the elastic compliance. The distance from the 

origin of the coordinate system to this surface is equal to the Young’s modulus in a given 

direction. For elastic isotropy, the 3D-surface representation of the Young’s modulus exhibits 

a spherical shape, while the magnitude of deviation of its shape from a sphere indicates the 

degree of elastic anisotropy in the considered crystal. The obtained 3D direction dependence of 

Young’s modulus for LiAeP (Ae=Sr, Ba) is given in Figure. VII.6, which shows that the shape 

of the 3D-resurface representation show a certain deviation from the spherical shape, indicating 

that these crystals possess a certain degree of elastic anisotropy. For more visualizing the elastic 

anisotropy, the cross-section of the 3D-surface representation in the (010) and (001) planes are 

also depicted in Figure VII. 6. For isotropic materials, the cross-section curve is circular. From 

the 2D-plane projection, we can see that the Young’s modulus in the ab-plane ((001)-plane) is 

isotropic in both considered compounds but there is a clear deviation of the cross-section in the 

ac-plane ((010)-plane) from the circular form, indicating the anisotropic of the Young’s 

modulus in this plane. The difference between the maximal value of the Young’s modulus Emax 

=99.72 GPa (79.12GPa) for LiSrP (LiBaP) in the ac-plane and its minimal value Emin =62.50 

GPa (54.11GPa) is about 37.22 GPa (25.01 GPa); i.e. Emax=159%Emin, indicates a consistent 

elastic anisotropy. 
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Figure VII.6 :3D-directional dependence of the Young’s modulus (E, in GPa) and its projection 

on the ab- {(001)} and ac- {(010)} planes for the LiSrP and LiBaP materials. 
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VII.2.3 Electronic structure and chemical bonding  

Investigation of the electronic energy bands of the LiBaP and LiSrP ternary compounds 

would be very useful to better understand their electronic and optical properties. The electronic 

energy band dispersions along the high symmetry lines in the first Brillouin zone of both 

examined crystals are depicted in Figure. VII.7 The topmost of the valence bands (VB) is 

located at the Γ -point in the Brillouin zone and the bottommost of the conduction bands (CB) 

is positioned at the M-point. Hence, both investigated systems are indirect band gap (Γ–M) 

semiconductors. The fundamental band gap of LiSrP (LiBaP) is equal to 1.16 eV (0.80 eV). No 

experimental or theoretical data are available in the scientific literature for the band gaps of 

LiSrP and LiBaP for comparison with our findings. Bearing in mind that the DFT within the 

common GGA underestimates the band gaps of semiconductors and isolators, the predicted 

values in the present work can serve as minimum estimates of the true band gaps of the 

considered crystals. The band gap calculated using the DFT with the common GGA is likely to 

be approximately 30-50 % smaller than the experimental values [26]. Therefore, the real 

fundamental band gap of LiSrP (LiBaP) is expected to be in the range 1.50–1.73 eV (1.04–1.20 

eV). The replacement of Sr with Ba in the LiAeP series (Ae: Sr, Ba) leads to the narrowing of 

the band gap by approximately 31 %. 
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Figure VII.7 : Calculated electronic energy band dispersion curves along the high symmetry 

directions in the Brillouin zone for the LiAeP (Ae = Sr, Ba) compounds. Eg gives the value of 

the fundamental energy band gap Γ –M. The Fermi level is given at 0.0 eV. 

Figure VII.8 shows the pressure dependencies of the fundamental band gap Γ –M 

(��
� –�(�))and the first direct band gap Γ – Γ (��

� – � (�)) of LiSrP and LiBaP in a pressure range 

between 0 and 15 GPa. First, the fundamental band gap remains between the topmost of the 

valence bands at the Γ -point and the bottommost of the conduction bands at the M-point for 

both examined compounds in the considered pressure range. Second, both considered gaps, i.e. 

Γ -M and Γ-Γ, are characterized by a quadratic decrease with increasing pressure in both 

compounds ; the CB bottommost moves down with increasing pressure. When the pressure 

increases from 0 to 15 GPa, the fundamental band gap Γ -M decreases from 1.16 to 0.44 eV in 

LiSrP and from 0.80 eV to 0.13 eV in LiBaP. The first direct band gap, Γ-Γ, decreases from 

1.35 to 0.82 eV in LiSrP and from 0.83 to 0.27 eV in LiBaP. 

Pressure dependences of the studied gaps induced are given by the following quadratic 

relationships: 

����� �
��

� –�(�) = 1.153 − 0.04969� + 1.19048 × 10���²

��
� –�(�) = 1.3539 − 0.02736� − 5.49028 × 10���²

  (VII.29) 
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����� �
��

� –�(�) = 0.799 − 0.04738� + 2.04365 × 10���²

��
� –�(�) = 0.83146 − 0.033� + −3.17679 × 10���²

 (VII.30) 

 

 

 

Figure VII.8 :Pressure dependence of the fundamental indirect band gap Γ-M and the first 

direct band gap Γ-Γ for the LiAeP (Ae = Ba, Sr) compounds. The calculated values are indicated 

by symbols and the fits by solid lines. 

VII.2.4 The effective mass 

 In general, the theoretical effective mass is a tensor with nine components. However, for 

the very idealized simple case in which the energy E(k) data are represented by a parabola 

curve, such as at the valence band maximum (VBMa) and the conduction band minimum 

(CBMi), the effective mass becomes a scalar that can be evaluated from the E(k) curve around 

the VBMa and CBMi by fitting the E(k) data to the following well-known equation: � =
ℏ�²

��∗E 

is the band-edge energy as a function of the wave vector k and m*is the effective mass. The 

calculated effective masses of the holes at the VBMa along the Γ -K and Γ -M directions and 

those of the electrons at the CBMi along the M-Γ and M- Λ directions are tabulated in Table. 

VII 8. The results indicate that the electron effective mass has a relevant dependence on the k 
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direction in both compounds, indicating its anisotropy, while the hole effective mass is quite 

isotropic. In addition, the hole effective mass value is close to that of the electron, suggesting 

that their mobilities will be fairly similar. 

  

Table VII.8 :Calculated electron and hole effective masses (me and mh, respectively; in unit of 

free electron mass) for the LiSrP and LiBaP compounds. 

 

VII.2.5 Densities of states 

 The total and atomic-resolved l-projected densities of states (TDOS and PDOS) 

corresponding to the energy bands of the LiSrP and LiBaP compounds are calculated to obtain 

information regarding the orbital character of the electronic states and the chemical bonding. 

The obtained DOS diagrams are depicted in Figure. VII.9. For the LiSrP compound, the lowest 

valence band group, located between approximately -10.0 and -8.0 eV, is essentially dominated 

by the P-3s orbitals with a small contribution from the Li-1s, Sr-4s and Sr-3d states. The lower 

part of the valence band group, ranging from -3.13 eV up to the Fermi level, consists mainly of 

the Sr-3d-4p and P-3p states, whereas the upper part is due to the hybridized Li-1s, Sr-3d and 

P-3p states. The conduction bands ranging from 0 to 10 eV are composed principally of the Li-

2s, Sr-3d and Sr-5s states, with a minor contribution from the P-3s states. For the LiBaP 

compound, the lowest valence band group, located between approximately -10.0 and -7.4 eV, 

is essentially dominated by the P-3s orbitals, with a small presence of the Ba-5s and Ba-4d 

states. The lower part of the upper valence band group, ranging from -2.98 eV up to the Fermi 

level, is formed mainly from the Ba-4d-5p and P-3p states, whereas the upper part is due to the 

hybridized Li-1s, Ba-d and P-3p states. The conduction bands ranging from 0 to 10 eV are 

composed primarily of the Ba-4d and Li-2s states with a small contribution from the Ba-6s and 

P-3p states. 

 

System �� 
∗ (Γ → M) �� 

∗ (M → Λ) �� 
∗ (Κ → Γ) �� 

∗ (Γ → M) 

LiSrP 0.0668 0.0492 0.0437 0.0438 

LiBaP 0.0579 0.0390 0.0337 0.0337 
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Figure VII.9 :Total (TDOS) and partial (PDOS) densities of states diagrams for the LiAeP (Ae 

= Sr, Ba) compounds. T1 (T1⸜), T2 (T2⸜), T3 (T3⸜) and T4 (T4⸜) represent the electronic 

transitions from the valence bands to the conduction bands. 

 To visualize the character of the chemical bonding between the constituent atoms, the 

valence charge density distribution maps of the investigated systems in the (110) plane are 

plotted in Figure. VII.10. the figure shows that a certain accumulation of electrons occurs 

between the P and Sr/Ba and between the P and Li atoms, indicating that the chemical bonding 

between those atoms is mostly covalent. The covalent bonding between P and Sr/Ba is due to 

the hybridization between the P-3p and Sr-3d/Ba-4d states, and the covalent bonding between 

P and Li is due to the hybridization between the P-3p and Li-2 s states. 
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Figure VII.10 :Charge density distribution maps in the (110) plane for the LiSrP (a) and LiSrP 

(b) systems 

VII.2.6 Optical properties 

 Calculations of the optical properties require more k-points than ordinary self-consistent 

field calculations; a 20×20×20 k-points grid is used in the present work. The LiSrP and LiBaP 

compounds have a hexagonal structure and are thus optically biaxial systems. For this reason, 

the optical functions of the considered crystals are calculated for polarized incident radiation 

with electric field vector ��⃗  parallel to the principal crystallographic axes, i.e., ��⃗ //� (��⃗ //[100]) 

and ��⃗ //� (��⃗ //[001]). Because some of the synthetized samples are polycrystalline, the optical 

spectra are also predicted for the polycrystalline phase. 

 

VII.2.6.1 The dielectric function 

 The absorptive ��(�) and dispersive ��(�) parts of the dielectric function for both LiSrP 

and LiBaP are shown in Figure VII.11. The figure displays noticeable differences between the 

magnitudes, shapes and locations of the main features and peaks in the ��(�) and ��(�) spectra 

corresponding to, ��⃗ //� and ��⃗ //�, demonstrating a strong anisotropy of the dielectric response 

of these materials to the incident radiation. The absorption edge is slightly shifted toward lower 

energies for the ��⃗ //� polarization in both compounds; the absorption edge starts at 1.003 eV 

(0.510 eV) for ��⃗ //� and at 0.960 eV (0.4680 eV) for ��⃗ //� in LiSrP (LiBaP). Now we try to 

determine the origin of the occupied and unoccupied states involved in the direct interband 

transitions that caused the main peaks in the ��(�)  spectra based on the calculated electronic 

structure discussed in Sect. VII.2.4. The absorptive part ��(�)of the dielectric function �(�)  

of LiSrP exhibits four structures labeled A, B, C and D. The lowest energy peak, A, centred at 
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approximately 2.77 eV for ��⃗ //� and 2.72 eV for ��⃗ //�, is caused by the interband transition 

T1 (see Figure.VII.9 ), which is due mostly to the electronic transitions from the Sr-3d and P-

3p valence states to the Sr-3d conduction states. Structure B, centred at approximately 4.37 eV 

for ��⃗ //� and 4.19 eV for ��⃗ //�,is due to the direct interband transition T2. Peak C, centred at 

approximately 5.23 eV for ��⃗ //� and 6.68 eV for ��⃗ //�, is attributable to the direct interband 

transition T3,which is due mostly to the electronic transitions from the Sr-3d, P-3p and Li-2s 

valence states to the Sr-3d and Li-2s conduction states. The fourth peak, D, centred at 

approximately 5.66 eV for ��⃗ //�  and absent for ��⃗ //� , is caused by the direct interband 

transition T4.  

 The ��(�)  spectrum of LiBaP also exhibits four structures labeled A⸜, B⸜, B⸜ and D⸜. 

Peak A⸜, centered at approximately 2.23 eV for ��⃗ //� and 2.67 eV for ��⃗ //�, is caused by the 

direct interband transition T1⸜ (see Figure.VII.9) (mostly Ba-4d and P-3p →Ba-4d). Peak B⸜, 

centered at approximately 4.13 eV for ��⃗ //� and 3.97 eV for ��⃗ //�, is due to the direct inter-

band transition T2⸜. Peak B⸜, centred at approximately 4.92 eV for ��⃗ //� and 4.93 eV for ��⃗ //�, 

is attributable to the direct interband transition T3⸜ (mostly Ba-4d, P-3p and Li-2s → Ba-4d and 

Li-2s]). The fourth peak, D⸜, centered at approximately 9.28 eV for ��⃗ //� and absent for ��⃗ //�, 

is caused by the direct interband transition T4⸜.  

The zero frequency limit ��(0) = ��(� → 0), the electronic part of the static dielectric 

constant is the most important quantity in the ��(�) spectrum. The calculated value of ��(0) 

for LiSrP (LiBaP) is equal to 8.569 (11.530) for ��⃗ //� and 10.694 (13.498) for ��⃗ //� . The 

values of ��(0)  for both considered light polarizations in LiSrP are larger than their 

corresponding ones in LiBaP; i.e., ��(0) increases with decreasing band gap. This trend can be 

explained based on the Penn model [27]: p g
2(0) 1 ( / )h E   . 
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Figure VII.11 :Calculated (a) imaginary ��(�)  and (b) real parts ��(�)of the dielectric 

function for incident radiation polarized along the two principal crystallographic directions, i.e., 

��⃗ //� and ��⃗ //�, for the LiAeP (Ae = Sr, Ba) crystals. The obtained spectra for the LiAeP (Ae 

= Sr, Ba) polycrystals are also shown. 

 

VII.2.6.2 The absorption coefficient 

 The absorption coefficient α( ) is a basic way to measure how far light with a specific 

energy can penetrate a material before being absorbed. The absorption coefficient depends on 

the incident photon energy and expresses the ratio between the number of photons actually 

absorbed by the crystal per unit volume per second and the number of incident photons per unit 

area per second. From the point of view of the structure of electron bands, we are interested in 

the probability that, under the influence of the radiation field, an electron makes a transition 

between two energy levels. The absorption coefficient (α) is determined from: 

� = �����(−��) (�. 31) 

Where � is the intensity transmitted at a particular wavelength, � is the thickness of the material 

and �� is the maximum intensity transmitted (assumed to be 100%). 
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The calculated absorption coefficients for LiSrP and LiBaP for both considered light 

polarizations, i.e., ��⃗ //� and ��⃗ //�, are displayed in Figure VII.12 (a), in which the fundamental 

absorption edge starts approximately at 1.003 eV (0.510 eV) for ��⃗ //� and 0.960 eV (0.468 eV) 

for ��⃗ //� in LiSrP (LiBaP). The absorption coefficient increases with increasing photon energy, 

reaching a maximum and then decreasing to reach its minimum. The absorption spectrum shows 

some peaks that can be explained by the interband transitions using the band structure results. 

LiSrP has an absorptive energy region larger than that of LiBaP. The LiSrP compound can be 

used as an absorptive layer in the energy range from 1.37 to 12 eV, whereas LiBaP can be used 

in the energy range from 0.84 to 9 eV. 

VII.2.6.3 The reflectivity  

The reflectivity is the ratio of the energy of a wave reflected from a surface to the energy 

of the wave incident on it.The frequency-dependent reflectivity R( ) spectra of the considered 

systems for both polarizations of the incident radiation are depicted in Figure VII.12 (b). The 

zero frequency limit R (0) is equal to 24 % (30 %) for ��⃗ //� and 28 % (32 %) for ��⃗ //� in LiSrP 

(LiBaP). The reflectivity R( ) increases from R (0)  with increasing photon energy to attain a 

maximum, and then a rapid decrease of R( ) occurs at approximately 13.85 eV (5.88 eV) for 

��⃗ //� and 13.34 eV (5.41 eV) for ��⃗ //�. Figure VII.12 (b) shows that the maximum reflectivity 

in LiSrP (LiBaP) occurs at approximately 7.7 eV (1.62 eV) for ��⃗ //� and at approximately 2.85 

eV (2.44 eV) for ��⃗ //�. The maximum reflectivity is approximately 47 % (39 %) for ��⃗ //� and 

56 % (41 %) for ��⃗ //� in LiSrP (LiBaP). 

VII.2.6.4 The energy-loss function 

The energy-loss spectrum L( )  describes the energy loss of a fast electron passing 

through a material [28]. The main peak in the L( ) spectrum represents the characteristic 

associated with the plasma resonance; the corresponding frequency is called plasma frequency 

ωp, which occurs when ��(�) < 1 and ��(�) reaches a zero value [29]. From the energy-loss 

spectrum Figure VII.12 (c), the plasma frequency ωp for LiSrP (LiBaP) is equal to 

approximately 13.85 eV (7.43 eV) for ��⃗ //� and approximately 13.34 eV (6.05 eV) for ��⃗ //�. 

When the frequency of the incident light is higher than the plasma frequency, the material 
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becomes transparent and hence an abrupt reduction of the reflectivity R( ) occurs at the plasma 

frequency.   

VII.2.6.5 The refractive index 

The refractive index ( )n  of a substance is the ratio of the speed of an electromagnetic 

wave in a vacuum to its speed in the substance. Knowledge of the refractive index of an optical 

material is important because its use in optical devices, such as photonic crystals and 

waveguides. The calculated refractive index spectra of LiSrP and LiBaP are shown in Figure 

VII.12 (d). The static refractive index (0)n  (the refractive index at zero energy) of LiSrP 

(LiBaP) is equal to 2.94 (3.39) for ��⃗ //�  and 3.27 (3.67) for ��⃗ //� . In both considered 

compounds, the refractive index increases with increasing energy, shows some peaks for the 

two polarization directions of the incident radiation and then decreases at high energy. 

Moreover, the refractive index for LiSrP goes below unity in certain energy ranges. When the 

refractive index is lower than unity, it indicates that the group velocity /gV c n of the incident 

radiation is greater than the speed of light c, which means that the group velocity shifts to the 

negative domain and the nature of the medium changes from linear to non-linear. It is known 

that the refractive index has the same trend of variation with photon energy as the real part of 

the dielectric function, which means that all peaks appearing in the spectrum of the refractive 

index are related to the ones appearing in the real part of the dielectric function, whereas the 

extinction coefficient ( )k   [Figure VII.12 (e)] follows the imaginary part of the dielectric 

function. The polycrystalline sample optical behavior for both materials closely mimics the 

optical behavior observed for the [100] polarized incident light. 
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Figure VII.12 :Calculated optical function spectra: (a) Absorption α( ) , (b) Reflectivity 

R( ) , (c) Energy loss function L( )  , (d) Refractive index n( )  and (e) Extinction 

coefficient   k( ) for incident radiation polarized along the two principal crystallographic 

directions i.e., ��⃗ //� and ��⃗ //�, for the LiAeP (Ae = Sr, Ba) crystals. Obtained spectra for the 

LiAeP (Ae = Sr, Ba) polycrystals are also shown. 

VII.2.7 Thermodynamic properties 

 We have investigated the thermodynamic properties of the LiAeP (Ae = Sr, Ba) systems 

in the temperature range from 0 to 800 K and the pressure range from 0 to 15 GPa using the 

quasi-harmonic Debye model as implemented in the Gibbs program [30]. A detailed description 

of the quasi-harmonic Debye model can be found elsewhere [31–35].  
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VII.2.7.1 The lattice parameter under temperature 

The relationship between the normalized unit-cell volume and temperature at some fixed 

pressures for LiSrP and LiBaP is shown in Figure VII.13 (a), which shows that the normalized 

volume V/V0 is nearly constant at low temperature and that an abrupt change occurs with 

increasing temperature. The normalized volume increases more rapidly at a high temperature 

for both compounds; however, the rate becomes a little slower with increasing pressure; these 

materials become less expandable at 15 GPa than at 0 GPa.  

VII.2.7.2 The Bulk modulus 

 The variation of the Bulk modulus versus temperature at four fixed pressures (0, 5, 10 

and 15 GPa) is depicted in Figure VII.13 (b). It can be seen that the Bulk modulus remains 

nearly constant at a low temperature for both compounds and then decreases rapidly with 

increasing temperature; the increasing temperature causes a decrease in the hardness of 

materials due to the increase of the unit- cell volume. The bulk modulus values of LiSrP (LiBaP) 

at 0, 5, 10 and 15 GPa decrease by 29.43 % (32.70 %), 16.37 % (17.19 %), 10.75 % (10.86 %) 

and 7.92 % (7.62 %), respectively, when the temperature increases from 0 to 800 K. At zero 

pressure and zero temperature, our calculated bulk moduli for LiSrP and LiBaP are 45.12 GPa 

and 41.09 GPa, respectively. LiSrP is slightly more resistant to the compression of volume. 

. 
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Figure VII.13 (a) :The normalized primitive-cell volume V/V0 as a function of temperature for 

the LiSrP and LiBaP compounds at some fixed pressures; V is the primitive-cell volume at the 

considered temperature; V0 is the primitive-cell volume at zero temperature. (b) The normalized 

bulk modulus B/B0 as a function of temperature for the LiSrP and LiBaP compounds at some 

fixed pressures; B is the bulk modulus at the considered temperature and B0 is the bulk modulus 

at the zero temperature. 

VII.2.7.3 The Debye temperature 

The Debye temperature is a characteristic temperature of the behavior of the heat 

capacity and the hardness of the solids. It is the highest temperature that can be reached due to 

a single normal vibration .Figure VII.14 (a) illustrates the variation in the Debye temperature  

�� as a function of temperature at some fixed pressures for LiSrP and LiBaP. It can be seen that 

�� decreases slightly with increasing temperature in both considered compounds. When the 

temperature increases from 0 to 800 K, the Debye temperature �� is reduced by 12.04 % (13.82 

%) at 0 GPa, 6.11 % (6.24 %) at 5 GPa, 3.85 % (3.80 %) at 10 GPa and 2.82 % (2.65 %) at 15 

GPa in LiSrP (LiBaP). This indicates that the reduction rate of �� with temperature becomes 

small at higher pressure; the high pressure suppresses the temperature effect on the Debye 
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temperature. The calculated Debye temperatures �� at zero pressure and zero temperature are 

398.27 K for LiSrP and 320.47 K for LiBaP. 

VII.2.7.4 The Grüneisen parameter 

 The Grüneisen parameter describes the change in the vibrational properties of a crystal 

lattice due to the increase or decrease of its volume as a result of temperature change. 

The variation of the Grüneisen parameter γ as a function of temperature is shown in Figure 

VII.14 (b). At a given pressure, the Grüneisen parameter γ increases slowly with temperature. 

Moreover, the Grüneisen parameter γ increases more slowly at high pressure than at low 

pressure. At 300 K and zero pressure, our calculations yield a γ equal to 1.94 (2.073) for LiSrP 

(LiBaP). 

. 
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Figure VII.14: (a) Variations of the Debye temperature and (b) Grüneisen parameter versus 

temperature at some fixed pressures for the LiSrP and LiBaP compounds. 

VII.2.7.5 The heat capacity 

 The heat capacity of a solid quantifies the relationship between the temperature of a body 

and the energy supplied to it. If a large amount of heat (energy) supplied to a body produced 

only a slight increase in temperature, the solid would have a large heat capacity. The heat 

capacity of a solid usually increases with temperature. The measured value of the heat capacity 

depends on the measurement carried out at constant volume ��  , or at constant pressure 

�� .Figures VII.15 (a) and VII.15 (b) show the temperature dependencies of the constant 

pressure heat capacity �� and the constant volume heat capacity �� , respectively, at some fixed 

pressures. One can see that the constant volume heat capacity �� and the constant pressure 

capacity �� are very similar for the temperature range from 0 to approximately 300 K; �� and 

�� increase rapidly with temperature at a fixed pressure. When the temperature is higher than 

300 K, the anharmonic effect on the heat capacity �� is suppressed and increases slowly with 

increasing temperature to approach a constant value—the so-called Dulong–Pettit limit [36] 

which is common for all solids at high temperatures—whereas �� still increases monotonously 
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with increasing temperature. At high temperature, �� approaches approximately 147.71 J mol-

1 K-1 (148.77 J mol-1 K-1) in LiSrP (LiBaP). At zero pressure and ambient temperature, �� and 

�� of LiSrP (LiBaP) are 137.88 J mol-1 K-1 (141.94 J mol-1 K-1) and 144.37 J mol-1 K-1 (149.47 

J mol-1 K-1), respectively. 
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Figure VII.15 : (a) Variations of the heat capacity at constant volume ��  and (b) the heat 

capacity at constant pressure  �� versus temperature at some fixed pressures for the LiSrP and 

LiBaP compounds. 

. 

VII.2.7.6 The coefficient of thermal expansion 

 The coefficient of thermal expansion measures the relative increase in volume of a 

system when only one parameter is changed, usually pressure or temperature.Variations in the 

volume thermal expansion coefficient � of LiSrP and LiBaP as a function of temperature T at 

certain fixed pressures are shown in Figure VII.16. For T ≤ 250K, the thermal expansion 

coefficient α increases rapidly with increasing temperature at fixed pressure in both considered 

compounds. For T > 250K, the increase of �  with increasing temperature becomes more 

gradual and approaches a linear behavior. The rate of increase of � with increasing temperature 
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decreases with increasing pressure. Figure VII.16 shows that the pressure effect on � is small 

at low temperature and becomes substantial at high temperature. This means that there is a large 

volume thermal expansion coefficient at low pressure, which is in accordance with the variation 

of the unit-cell volume with pressure and temperature. At zero pressure and room temperature, 

� is approximately equal to 8.0672 K-1 for LiSrP and 8.5318 K-1 for LiBaP. 
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Figure VII.16 :Variation of the volume thermal expansion coefficient as a function of 

temperature at some fixed pressures for LiSrP and LiBaP. 
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VIII.1 Computational details 

First-principles calculations were performed by employing two complementary methods 

based on density functional theory. The elastic properties were evaluated using the 

pseudopotential plane wave (PP-PW) method as implemented in the CASTEP code [1], while 

the electronic and optical properties were carried out using the full potential linearised 

augmented plane wave method (FP-LAPW) as incorporated in the WIEN2 k suite of programs 

[2]. The structural properties were evaluated using both the aforementioned methods. The 

structural data from Ref. [3] were taken as initial input for our calculations. For the 

pseudopotential plane wave approach, Vanderbilt ultra-soft pseudo- potentials [4] were used to 

describe the interactions between core and valence electrons of each atom. The Ba: 5s25p66s2, 

Sr: 4s24p65s2, Al: 3s23p1 and As: 4s24p3 states were treated as valence electrons. The electronic 

exchange and correlation effects were treated through the generalised gradient approximation 

functional in the version of Perdew et al. [5], the so-called GGA-PBEsol. The plane-wave basis 

set energy cut-off was set at 350 eV. The Brillouin zone integration was replaced by a 

summation over a 6 × 6 × 3 k-point mesh generated according to Monkhorst-Pack scheme [6]. 

This set of parameters assures a total energy tolerance of 1 × 10−5 eV/atom, a maximum force 

tolerance of 0.01 eV/Å, a maximum stress of 0.02 GPa and a maximum displacement of 5.0 × 

10−4 Å . It is well known that the first-principles methods with the common generalised gradient 

approximation (GGA) yield good values for the ground state structures but they underestimate 

the band gaps of semiconductors and insulators typically by 30–50% [7-9] when compared to 

experiments. The underestimation of the band gaps of semiconductors and isolators when using 

GGA is because this approximation cannot describe exactly the exchange–correlation potential. 

Some sophisticated approaches, such as the weighted density approximation (WDA) [10], the 

GW approximation [11] and the Tran-Blaha modified Becke-Johnson (TB-mBJ) potential [12], 

have been developed in order to overcome this insufficiency and to obtain reliable band gap 

values for semiconductors and insulators compared to the measured ones. The TB-mBJ is 

computationally cheaper than the other aforementioned methods and produces energy band 

gaps almost comparable with the corresponding measured ones with a reasonable computation 

time. Therefore, in addition to the GGA-PBEsol, the electronic, optical and thermoelectric 

properties of the investigated compounds were calculated using the TB-mBJ functional as 

implemented in the WIEN2k package [2]. The WIEN2k code is an implementation of the full-

potential linearised augmented plane wave (FP-LAPW). In the FP-LAPW method, the unit cell  
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is divided into non-overlapping spheres centred at the atomic sites (labelled muffin-tin spheres 

(MTS)) and the space between the MTS (labelled interstitial region (IR)). A linear combination 

of radial atomic functions time spherical harmonics is used inside the MTS to expand the wave 

functions, whereas a plane wave basis set is used in the IR. In order to achieve the energy 

convergence of the eigenvalues, the wave functions in the interstitial regions were expanded in 

plane waves with a cut-off parameter KMax = 4 (a.u.) −1. The Brillouin zone integration was 

replaced by a 6 × 6 × 3 k-point mesh. The iteration process was repeated until the calculated 

total energy of the crystal converged to less than 10−5 Ry. The muffin-tin radii were selected as 

2.35 a.u. for Sr, 2.40 a.u. for Ba, 2.18 a.u. for Al and 2.44 a.u. for As.. 

VIII.2 Results and discussion  

VIII.2.1 Structural parameters 

Single-crystal X-ray diffraction technique reveals that the Ae3AlAs3 (Ae = Sr, Ba) 

compounds crystallise in the orthorhombic Ba3AlSb3-type structure, space group Cmce, with 

eight formula units in one-unit cell [3] (Figure VIII.1). There are two kinds of Ae (Ae1 and 

Ae2) and As (As1 and As2) atoms. The Wyckoff atomic positions in the Ae3AlAs3 unit cell are 

Ae1: 8f (0, yAe1, zAe1); Ae2: 16 g (xAe2, yAe2, zAe2); Al: 8d (xAl, 0, 0); As1: 8f (0, yAs1, zAs1) and 

As2: 16 g (xAs2, yAs2, zAs2). The fully optimised crystal structure, including lattice parameters 

and atomic positions, for the orthorhombic Sr3AlAs3 and Ba3AlAs3 crystals, using both the PP-

PW and FP-LAPW methods, are collected in TableVIII.1 and VIII.2 in comparison with 

experimental findings. The inspection of TableVIII.1 data indicates a good agreement between 

the calculated values for the lattice parameters (a, b and c) and the corresponding measured 

ones. Using the PP-PW (FP-LAPW) method, the deviations between the theoretical values of 

a, b and c and the corresponding experimental ones do not exceed +2.03% (−0.51%), −0.72% 

(−3.27) and +0.67% (−0.01%), respectively, in Sr3AlAs3, and −0.03% (−1.38%), −0.34% 

(−7.48%) and −0.107% (−0.51%), respectively, in Ba3AlAs3.  

Table VIII.2 data show also a very good agreement between the calculated atomic 

position coordinates (x, y, z) and the corresponding measured ones, indicating the reliability of 

the performed calculations. 

. 
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Figure VIII.1 :(colour online) one-unit cell of Sr3AlAs3. 

 

Table VIII.1: Calculated lattice parameters (a, b and c, in Å) and unit-cell volume (V, in Å3) 

for the Sr3AlAs3 and Ba3AlAs3 compounds, compared with the experimental data. 

 a b C V 

Sr3AlAs3     

Present work a 19.0503 6.3501 12.7002 1587.22 

Present work b 19.5368 6.5174 12.7729 1626.39 

Expt. [3] 19.149 6.5652 12.6871 1595.0 

Ba3AlAs3     

Present work a 19.5795 6.3501 13.2294 1737.92 

Present work b 19.8475 6.8406 13.2741 1802.22 

Expt. [3] 19.854 6.8636 13.2849 1810.3 

 

a using FP-LAPW method within GGA-PBEsol 

b using PP-PW method within GGA-PBEsol 
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Table VIII.2 : Atomic position coordinates for the Sr3AlAs3 and Ba3AlAs3 compounds, 

compared with the experimental data. 

 

a using FP-LAPW method within GGA-PBEsol 

b using PP-PW method within GGA-PBEsol. 

c Ref. [23].. 

VIII.2.2  Elastic constants and related properties 

Accurate calculations of the elastic constants Cij are very helpful to understand many 

physical properties of solids. The elastic constants Cij provide valuable information on the 

stability and stiffness of crystals against externally applied strain, bonding characteristics, 

specific heat, thermal expansion, Debye temperature, Grüneisen parameter and so on [13–15]. 

In general, the elastic behaviour of a completely asymmetric material is specified by 21 

independent elastic constants Cij but due to the presence of some symmetries, this number can 

be reduced. Only nine independent elastic constants, namely C�� , C�� , C�� , C�� , 

C��, C��, C�� , C�� and C��, are required to characterise the elastic properties of an orthorhombic 

crystal. The elastic constants Cij were evaluated via the calculation of three stress tensors 

Atom X Y Z 

Present 

work a 

Present 

work b 

Expt. c Present 

work a 

Present 

work b 

Expt. c Present 

work a 

Present 

work b 

Expt. c 

Sr3AlAs3          

Sr1 0 0 0 0.17601 0.17924 0.17463 0.34919 0.34707 0.34891 

Sr2 0.17701 0.17755 0.17691 0.31155 0.30838 0.31222 0.13114 0.13009 0.13126 

Al 0.08477 0.08377 0.08500 0 0 0 0 0 0 

As1 0 0 0 0.21042 0.21277 0.20879 0.10330 0.10079 0.10250 

As2 0.34107 0.34207 0.34135 0.29518 0.29326 0.29606 0.12081 0.11794 0.12022 

Ba3AlAs3          

Ba1 0 0 0 0.17027 0.17109 0.17015 0.34671 0.34766 0.34685 

Ba2 0.17572 0.17535 0.17563 0.31309 0.31201 0.31318 0.13024 0.12975 0.13014 

Al 0 0.08316 0.08294 0 0 0 0 0 0 

As1 0 0 0 0.20320 0.20566 0.20319 0.09628 0.09791 0.09613 

As2 0.34335 0.34294 0.34345 0.30899 0.30728 0.30905 0.11818 0.11954 0.11805 
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corresponding to three different deformation patterns applied to the equilibrium lattice. The 

calculated elastic constants Cij using the strain–stress method [1] for the title compounds are 

reported in Table VIII.3. There are no theoretical or experimental results for the elastic 

constants Cij in the scientific literature to be compared with the present results. Then, our results 

can serve as a prediction for future investigations. 

The elastic constants C�� , C�� and C�� reflect the resistance to the linear compression 

along the [100], [010] and [001] crystallographic directions, respectively. From Table VIII.3, 

one can note that the values of the three aforementioned elastic constants are not remarkably 

different, suggesting that the resistance to the compression deformation along the [100], [010] 

and [001] directions are approximately equal. The values of C�� , C�� and C�� are higher than 

those of the other elastic constants Cij, demonstrating that the resistance of the two studied 

compounds to the shear distortion is lower than their resistance against the compressional 

deformation. 

The mechanical stability of crystals leads to some restrictions on their elastic constants. For 

orthorhombic crystals, these mechanical stability criteria are [16]: 

 C�� + C�� − 2C�� > 0 ,  C�� + C�� − 2C�� > 0 ,    C�� + C�� − 2C�� > 0 , C�� > 0,C�� > 0, 

C�� > 0,C�� > 0,C�� > 0,C�� > 0,C�� + C�� + C�� + 2C�� + 2C�� + 2C�� > 0 (VIII.1) 

The calculated elastic constants of the two studied compounds (TableVIII.3) satisfy the 

aforementioned criteria. This indicates that these compounds are mechanically stable. 

 

Table VIII.3: Calculated elastic constant (Cij, in GPa) for the Ae3AlAs3 (Ae = Sr, Ba) 

compounds. 

 

It is not possible to measure the individual elastic constants Cij when single-crystal 

samples cannot be obtained. In this case, polycrystalline elastic moduli, such as the bulk 

modulus B and the shear modulus G, can be measured. Theoretically, we can deduce the 

polycrystalline (aggregates of single-crystals with random orientations) elastic moduli, which 

are more desirable for technological characterisation of materials, from the calculated single-

crystal elastic constants Cij. The isotropic shear and bulk moduli (G and B) can be calculated 

Compounds C11 C22 C33 C44 C55 C66 C12 C13 C23 

Sr3AlAs3 61.69 
 

74.61 
 

76.58 
 

32.37 
 

28.62 
 

30.29 
 

27.10 
 

22.58 
 

31.30 
 

Ba3AlAs3 80.24 71.14 
 

81.49 
 

17.07 
 

4.65 
 

14.05 
 

21.60 
 

15.32 
 

23.99 
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from the anisotropic single-crystal elastic constants Cij using the Hill approximation [17], 

which takes the arithmetic average of the Voigt [18] and Reuss [19] approximations. The Voigt 

approach determines the upper limit of the actual effective moduli, while the Reuss approach 

determines the lower limit of these parameters. The expression of the Voigt bulk and shear 

moduli (BV and GV) and the Reuss bulk and shear moduli (BR and GR) can be found in Ref. 

[20]. The Young’s modulus E and Poisson’s ratio σ can be obtained from B and G using the 

well-known relationships [21, 22]. The calculated values of the aforementioned elastic moduli 

are given in Table VIII.4. The obtained results allow us to make the following conclusions: 

(i) Due to the low value of the bulk modulus, which represents the resistance to volume 

change by external applied pressure, one can conclude that the considered materials 

are characterised by a weak resistance to the volume change; i.e. by a high 

compressibility. The lower value of the shear modulus, which characterises the 

resistance to shear deformation, demonstrates that Ba3AlAs3 and Sr3AlAs3 have 

also a weak resistance to shape change. Besides, the bulk modulus B is larger than 

the shear modulus G in both considered compounds, indicating a better capability 

of resistance to volume change than to shape change. 

(ii) The Young’s modulus E, defined as the ratio of linear stress to linear strain, can be 

used to provide a measure of the stiffness of a material. It is found that E of the two 

studied compounds is weak, indicating that these compounds will show a rather 

small stiffness. The results also demonstrate that Sr3AlAs3 is stiffer than Ba3AlAs3 

in terms of B, G and E moduli. 

(iii) The most widely used criterion to distinguish between ductile and brittle materials 

is the Pugh’s one (B/G ratio) [23]. According to this criterion, a material can be 

classified as ductile if the B/G ratio is greater than 1.75; otherwise, it demonstrates 

brittleness. The obtained data foretell that Sr3AlAs3 (B/G = 1.55) should behaves as 

brittle material, while Ba3AlAs3 should demonstrates ductility. The classical criteria 

of Cauchy pressure can also be used to examine the brittle/ductile character of 

materials [24]. Pettifor [25] indicated that Cauchy pressure can be adopted to 

capture the nature of the bonding. Materials with a positive Cauchy pressure possess 

metallic like bonds, thereby holding ductile characteristics. On the other hand, 

brittle materials would hold a negative Cauchy pressure. In orthorhombic materials, 

the Cauchy pressure in the three lattice directions can be expressed as follows [26]: 
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�

��
������

= ��� − ���

��
������

= ��� − ���

��
������

= ��� − ���

 (VIII.2) 

Based on calculated single-crystal ��� (TableVIII.3) : 

 ��
������

= −1.10���(6.90���) ,  ��
������

= −6.0���(10,60���)  and  ��
������

=

−3.0���(7.50���)  for Sr3AlAs3 (Ba3AlAs3). These results confirm the brittleness of 

Sr3AlAs3 and ductility of Ba3AlAs3. 

  

Table VIII.4 : Calculated polycrystalline elastic moduli: Reuss, Voigt and Hill bulk modulus 

(BR, BV and BH, in GPa), Reuss, Voigt and Hill shear modulus (GR, GV and GH, in GPa), 

Young’s modulus (E, in GPa) and Poisson’s ratio (dimensionless) for isotropic polycrystalline 

Ae3AlAs3 (Ae = Sr, Ba) aggregates. 

 

 

From the computed bulk and shear moduli, we can evaluate the longitudinal (��), transverse 

(��) and average (��) sound wave velocities in a polycrystalline material through the following 

relationships [27]:  

�� = �(�� + 4��/3)/�  , �� = ���/�  ��� �� = [(2/��
� + 1/��

�)/3]��/�  (VIII.3)  

Debye temperature ��, which is associated with the lattice vibration, elastic constants, specific 

heat and melting point, can be predicated via the following common relation [27]: 

�� =
�

��
�

��

��
�

���

�
��

�

�
�� (VIII.4) 

Here, h and �� are the constants of Planck and Boltzmann, respectively, n is the number of 

atoms per one formula unit, �� is Avogadro’s number, ρ denotes the mass density, M is the 

molecular mass. The calculated values of ρ, ��, ��, �� and �� for the Ae3AlAs3 (Ae = Sr, Ba) 

compounds are collected in TableVIII.5. Sr3AlAs3 has a larger Debye temperature than 

Ba3AlAs3; this is a predicted result because the bulk modulus of Sr3AlAs3 is somewhat larger 

System BV GV BR GR BH GH              Ej  E  �  

Ex Ex Ex 

Sr3AlAs3 41.65 

 

39.60 40.92 

 

26.15 

 

41.29 

 

26.60 

 

72.80 60.30 72.52  65.70 

 

0.23 

 

Ba3AlAs3 39.41 

 

32.73 39.39 

 

12.02 

 

39.40 

 

15.32 72.80 60.30 72.52 40.69 

 

0.32 
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than that of Ba3AlAs3. Up to now, there are no available data for these parameters in the 

scientific literature to be compared with our present findings. 

 

Table VIII.5 :Calculated mass density (ρ),longitudinal, transverse and average sound velocities 

(��, �� and ��, respectively) and Debye temperatures ((θD) for Ae3AlAs3 (Ae=Sr, Ba). 

 

An isotropic material displays the same physical properties irrespective of the direction 

in which those properties are measured. In general, the elastic response of a single-crystal is 

seldom isotropic; almost all the known crystals are elastically anisotropic, so their elastic 

moduli depend on the orientation of the applied force in respect of the crystallographic axes. 

The description of elastic anisotropy in materials is important because it influences various 

physical properties, such as unusual phonon modes, phase transformations, precipitation, 

dislocation dynamics, anisotropic plastic deformation, anomalous bcc slip, mechanical yield 

points, crack behaviour, elastic instability and internal friction [28]. The anisotropy in 

mechanical properties might be estimated using various anisotropy indexes and factors [29–

34]. An even detailed picture of the elastic anisotropy can be emerged by plotting a three-

dimensional surface representation showing the variation of the Young’s modulus with the 

crystallographic directions. This directional dependence of the Young’s modulus E for an 

orthorhombic crystal in an arbitrary direction is defined as [35]: 

 

� = [�����
� + 2�����

���
� + �����

� + 2�����
���

� + �����
� + 2�����

���
� + �����

���
� + �����

���
� +

�����
���

�]�� (VIII.5) 

 

Here, ��, ��and ��are the direction cosines, which determine the angles between the axes a, b 

and c, respectively, and a given direction, and Sij is the elastic compliance constants, which can 

be acquired from the inverse of the matrix of elastic constants. The distance from the origin of 

the coordinate system to this surface is equal to the Young’s modulus in a given direction. For 

a perfectly isotropic medium, this surface would be a sphere, while the deviation of this surface 

from the spherical shape indicates the presence of a certain degree of elastic anisotropy. Figure. 

System �(
�

���
) ��(

�

�
) ��(

�

�
) ��(

�

�
) ��(K) 

Sr3AlAs3 4.20332 4273.50 

 

2331.94 

 

2600.81 

 

251.95 

 

Ba3AlAs3 4.89248 3961.10 1769.79 1996.65 186.91 
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VIII. 2 illustrates the directional dependence of the Young’s modulus of the Sr3AlAs3 and 

Ba3AlAs3 compounds. Figure. VIII. 2 shows that the degree of elastic anisotropy of Ba3AlAs3 

is much more appreciable than that of Sr3AlAs3. A deeper look into the peculiar features of 

elastic anisotropy can be gauged by plotting the cross-section of the closed surface of E in the 

principal planes. For isotropic crystal, the plane projection curves are circular. From the cross 

sections plotted separately in Figure VIII.2, we can see that there is a clear deviation from 

circular shape. 

 

  

 

 

 

 

Figure VIII.2 :(colour online) 3D-directional dependence of the Young’s modulus (E, in GPa) 

and its projection on the ab- {(001)}, ac- {(010)} and cb- {(100)} planes for the Sr3alAs3 and 

Ba3AlAs3 compounds. 
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VIII.2.3 Electronic properties 

VIII.2.3.1 Band structure 

The electronic energy band dispersions along the high-symmetry directions in the 

Brillouin zone (BZ) for the Sr3AlAs3 and Ba3AlAs3 compounds, performed at the optimised 

structural parameters, using the FP-LAPW method with both the GGA-PBEsol and TP-mBJ 

approaches, are depicted in Figure VIII.3. The Γ, Z, T, Y, S and R letters indicate the high 

symmetry points in the BZ of the Ae3AlAs3 (Ae = Sr, Ba) compounds and their coordinates are 

respectively (0,0,0), (0,0,0.5), (−0.5,0.5,0.5), (−0.5, 0.5, 0), (0,0.5,0) and (0,0.5,0.5) in the unit 

vectors of the reciprocal lattice. From Figure VIII.3, one can note that Sr3AlAs3 has a direct 

band gap; the top of the valence band (VB) and the bottom of the conduction band (CB) are 

located at the Γ-point, while Ba3AlAs3 has an indirect band gap; the top of the VB is located at 

the Y-point and the bottom of the CB is at the Γ-point. The calculated band structures using the 

TB-mBJ and GGA-PBEsol functionals have practically same features except the band gap 

values that are disparate. The calculated Sr3AlAs3 (Ba3AlAs3) energy band gap is 1.51 eV (1.28 

eV) when using the TB-mBJ formalism, and is 0.90 eV (0.61 eV) when using the GGA-PBEsol. 

We note that the GGA and LDA functionals usually underestimate the energy band gap by 30–

50% [30–32]. Therefore, one can appreciate that the TB-mBJ considerably improves the band 

gap values. There are no experimental values for the gaps of the studied compounds. The GGA-

PBEsol band gap value for Ba3AlAs3 is in good agreement with the one predicted by Stanislav 

et al. [3] using the tight-binding linear muffin tin orbital (TB-LMTO) method within the LDA. 

. 
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Figure VIII.3 :( colour online) Electronic band dispersion curves along some high symmetry 

directions in the Brillouin zone for the Ae3AlAs3 (Ae = Sr, Ba) compounds using the GGA-

PBEsol (a) and the TB-mBJ (b) functionals. 

VIII.2.3.2 Density of states 

Assignment of the electronic states compositing the electronic energy bands of the 

considered systems can be made with the help of the total and atomic decomposed partial 

densities of states (TDOS and PDOS) diagrams, which are shown in Figure VIII.4. The 

Sr3AlAs3 and Ba3AlAs3 valence bands located in the energy range from −12 eV up to Fermi 

level (EF) can be separated into four groups that are labelled V1, V2, V3 and V4 in the Figure 

VIII.4. For Sr3AlAs3, the lowest energy group V1, which is stretched from approximately −10.6 

to −9.9 eV, is mainly formed of the As1-4s and As2-4s states. The second group V2, which 
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spreads approximately from −9.7 to −8.5 eV, is mainly due to the As1-4p and Al-3s states with 

a very small contribution from an admixture of the Al-3s, Al-3p, Sr1-4p and Sr2-4p orbitals. 

The third group V3, located in the energy range from −4.6 to −3.97 eV, is mainly due to the 

As1-4p and Al-3s states. The fourth valence band group V4, which lays approximately from 

−3.0 eV up to Fermi level (EF), is completely dominated by the As1-4p and As2-4p states with 

a small contribution from the Al-3p, Sr1-4s, Sr2-4s, Sr1-4p, Sr2-4p, Sr1-3d and Sr2-3d states. 

The bottom of the conduction band (C1) comes from the Sr1-3d and Sr2-3d states with a small 

contribution from the Al-3p and Al-3s states. For the Ba3AlAs3 compound, the V1 valence band 

group, from –10.7 to –9.97 eV, is mainly occupied by the As1-4s states with a small 

contribution from an admixture of the Ba1-5p, Ba2-5p, As2-4d and Al-3s states. The second 

group V2, from −9.7 to −8.5 eV, is mainly formed of the As1-4s states with a small contribution 

from an admixture of the Ba1-5p, Ba2-5p, As2-4d and Al-3sp states. The third group V3, from 

−4.7 to −3.82 eV, is mainly composed of the As2-4d and As1-4p states with a small contribution 

from the Ba1-4p, Ba1-4d, Ba2-4p and Ba2-4d. The upper valence band group V4, from −3.05 

eV up to Fermi level, is mainly due to the As1-4p and As2-4sd states with a small contribution 

from the Al-3p and Ba1-4pd orbitals. The bottom of the conduction band C1 is made up 

basically of the As2-4d, Ba1-4d and Ba2-4d states with a small contribution from the Al-3s and 

Al-3p states. 
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Figure VIII.4 :(colour online) Total and partial densities of states (TDOS and PDOS) diagrams 

for the Ae3AlAs3 (Ae = Sr, Ba) compounds. 

VIII.2.3.3 Effective mass 

The effective mass of charge-carrier provides an opposite contribution to the Seebeck 

coefficient and electrical conductivity. A large effective mass of charge-carrier is favourable to 

improve the Seebeck coefficient; however, the high charge-carrier mobility requires a lighter 

effective mass. To further understand the electrical behaviour of the Ae3AlAs3 (Ae = Sr, Ba) 

compounds, it is necessary to estimate their effective masses of the charge-carries in various 

electron and hole pockets at the band edges. For Ba3AlAs3, the effective masses of the holes 

(��
∗ ) at the VBMa were calculated along the Y → T and Y → Γ directions and those of the 

electrons ��
∗  at the CBMi were evaluated along the Γ → S and Γ → Y directions. For Sr3AlAs3, 

the effectives masses of holes and electrons are calculated along the Γ → S and Γ → Y 

directions. The obtained results are listed in Table VIII.6. From Table VIII.6, it is clear that the 

electrons and holes effective masses show a relevant dependence on the k-direction in the two 

considered compounds, implying the anisotropy of this physical property. It is found also that 
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the effective mass of electron at the conduction band minimum is small than that of the hole at 

the valence band maximum. Consequently, the p-type Ae3AlAs3 (Ae = Sr, Ba) compounds 

would have the highest Seebeck coefficient, while the n-type Ae3AlAs3 (Ae = Sr, Ba) 

compounds would have the largest electrical conductivity. In addition, we can predict that the 

charge-carrier mobility of the p-type Sr3AlAs3 (Ba3AlAs3) compound along the Γ → S (Γ → Y) 

direction should be larger than that in the Γ → Y (Y → T) direction. 

 

Table VIII.6 : Calculated electron and hole effective masses (�� and ��  in units of free 

electron mass m0) for the Sr3AlAs3 and Ba3AlAs3 compounds. 

 

VIII.2.4 Optical properties 

Since the investigated compounds belong to the orthorhombic system, space group 

Cmce, it is necessary to calculate the three non-zero components of the dielectric tensor that 

correspond to the three polarisations of the electric field ��⃗   of the incident electromagnetic 

radiation along the three principal crystallographic directions: a ([100]), b ([010]) and c ([001]). 

VIII.2.4.1 The dielectric functions 

The calculated imaginary parts of the Sr3AlAs3 and Ba3AlAs3 dielectric functions for 

the three different polarisations, i.e. ��⃗  ∕∕ [100], ��⃗  ∕∕ [010] and ��⃗  ∕∕ [001], are presented in Figure 

VIII. 5(a). It is clear from Figure VIII.5(a) that the optical properties of the considered 

compounds exhibit a noticeable anisotropy. To account for the features observed in the optical 

spectra, it is customary to consider transitions from occupied to unoccupied states in the 

electronic energy band structure, especially at the high symmetry points in the Brillouin zone. 

Our scrutiny of the ��(�)  curve of Sr3AlAs3 indicates that it rises speedily with 

practically the same rate for the three different polarisations of the incident radiation. The ��(�) 

spectrum exhibits two peaks centred at approximately 3.99 and 4.56 eV when the incident 

radiation is polarised parallel to the [100] crystallographic direction, at 4.01 and 4.91 eV for ��⃗  

System �� 
∗ (Γ →  S) �� 

∗ (Γ →  Y) �� 
∗ (Γ →  S) �� 

∗ (Γ →  Y) 

Sr3AlAs3 0.2007 0.2202 0.3225 4.0226 

 �� 
∗ (Γ → S) �� 

∗ (Γ → Y) �� 
∗ (Y → T) �� 

∗ (Y → Γ) 

Ba3AlAs3 0.2158 0.3738 0.6161 0.551399 
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∕∕ [010] and at 4.53 and 4.97 eV when ��⃗  ∕∕ [001]. Based on the calculated band structure and 

density of states diagrams, one can conclude that these peaks are mainly originated from the 

direct transitions between the Sr1-4p and Sr2-4p or As1-4p and As2-4p states in the valence 

band and the Sr-3d states in the conduction band. The absorptive part of the dielectric function 

of the single-crystal Ba3AlAs3 exhibits one peak centred at approximately 4.20 eV for ��⃗  ∕∕ [100], 

at 4.97 eV for ��⃗  ∕∕ [010] direction and at approximately 4.23 eV for ��⃗  ∕∕ [001]. This peak is 

mainly due to the electronic direct transitions from the occupied state As1-4p or As2-4s to the 

unoccupied states Ba1-3d or Ba2-3d. 

The dispersive parts ��(�) of the Sr3AlAs3 and Ba3AlAs3 dielectric functions are shown 

in Figure VIII.5 (b). The most important quantity in ��(�)spectrum is the static dielectric 

constant, which is defined as the zero-energy value of the real part of the complex dielectric 

function: ��(0) = ��(� → 0)  . The ��(0) is a parameter of fundamental importance in many 

aspects of material properties. Calculated ��(0) value for Sr3AlAs3 (Ba3AlAs3) is found to be 

equal 8.048 (8.683) when ��⃗  ∕∕ [100], 7.566 (8.255) when ��⃗  ∕∕ [010] and 7.810 (8.361) when ��⃗  ∕∕ 

[001]. One can note that the ��(0) values corresponding to the three different polarisation 

directions are larger than the corresponding ones for Ba3AlAs3. This demonstrates that ��(0) 

value is inversely proportional with the band gap; a smaller energy gap yields a larger ��(0) 

value. This is consistent with the Penn’s model [36] based on the expression ��(�) ≈ 1 +

(
���

��
)². 
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Figure VIII.5 :(colour online) calculated imaginary (��(�) ) and real (��(�) ) parts of the 

dielectric function (ε(ω)) as functions of photon energy for the Ae3AlAs3 (Ae = Sr, Ba) single-

crystals for three different polarisations: ��⃗ ∕∕ [100], ��⃗ ∕∕ [010]and ��⃗ ∕∕ [001]. 

VIII.2.4.2  The absorption coefficient 

The absorption coefficient α(ω) describes the relative decrease in the incident radiation intensity 

when it passes through a medium. The calculated Sr3AlAs3 and Ba3AlAs3 absorption 

coefficients in a wider spectral region up to 15 eV for three different polarisations of the incident 

radiation: ��⃗  ∕∕ [100], ��⃗  ∕∕ [010] and ��⃗  ∕∕ [001] are displayed in Figure VIII.6(a). The absorption 

edge in the Sr3AlAs3 compound starts at approximately 1.51 eV for the three different 

polarisations of the incident radiation. For the Ba3AlAs3 compound, the absorption edge begins 

approximately at 1.28 eV for the three different polarisations of the incident radiation. A wide 

absorption band, located between 2 and 12 eV, characterises the considered compounds 
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VIII.2.4.3 The reflectivity 

Figure VIII.6 (b) displays the calculated dependence of the reflectivity on the incident 

photon energy for three different polarisations for the Sr3AlAs3 and Ba3AlAs3 single-crystals. 

The zero frequency limit R (0) of the Sr3AlAs3 (Ba3AlAs3) compound is equal to 23% (24%) 

for ��⃗  ∕∕[100], 21% (23%) for ��⃗  ∕∕[010] and 22% (23%) for ��⃗  ∕∕[001]. The reflectivity R(ω) 

enhances from R (0) with increasing photon energy to acquire a maximum and then it decreases 

rapidly. From Figure VIII.6 (b), one can note that the maximum reflectivity in Sr3AlAs3 

(Ba3AlAs3) arises approximately at 6.27 eV (6.00 eV) for ��⃗  ∕∕ [100], 6.35 eV (5.75 eV) for ��⃗  ∕∕ 

[010] and 7.60 eV (6.35 eV) for ��⃗  ∕∕[001]. This maximum attains 46% (44%) for ��⃗  ∕∕ [100], 46% 

(46%) for ��⃗  ∕∕ [010] and 43% (42%) for ��⃗  ∕∕ [001] in Sr3AlAs3 (Ba3AlAs3). 

VIII.2.4.4 The energy-loss function 

The energy-loss function L(ω) describes the energy-loss of a fast electron passing 

through a material [37]. The main peak of the L(ω) spectrum is generally defined as the bulk 

plasma frequency (ωp), which occurs when ��(�)< 1 and ��(�) reaches the zero point [38]. 

The plasma frequency for Sr3AlAs3 (Ba3AlAs3) is approximately equal to 13.15 eV (11.68 eV) 

for ��⃗  ∕∕[100], 13.34 eV (11.87 eV) for ��⃗  ∕∕[010] and 12.77 eV (11.60 eV) for ��⃗  ∕∕[001] (Figure 

VIII.6 (c)). When the frequency of incident light is higher than the plasma frequency, the 

material becomes transparent, and hence an abrupt reduction of the reflectivity occurs at the 

corresponding energy. 

VIII.2.4.5 The refractive index 

The refractive index n(ω) of a material describes the difference between the propagation 

of an electromagnetic wave through vacuum and in a material. The knowledge of the refractive 

index of an optical compound is important for its use in optical devices, such as photonic 

crystals and waveguides. Figure VIII. 6(d) shows the refractive index of Sr3AlAs3 and Ba3AlAs3 

in relation with the energy of incident radiation. It is found that the static refractive index n (0) 

(the value of refraction index at zero energy) for Sr3AlAs3 (Ba3AlAs3) compound is 2.83 (2.94) 

for ��⃗  ∕∕[100], 2.75 (2.87) for ��⃗  ∕∕[010]and 2.79 (2.89) for ��⃗  ∕∕[100]. 

Static optical anisotropy for the title compounds can be quantified by an anisotropy rate, which 

can be expressed as follows [39,40]: 
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���� = �
��(�)[���������]

��(�)[���������������] −
�(�)[���������]

�(�)[���������������]� (VIII.6) 

 

A material is optically isotropic if ���� = 1; otherwise, it is optically anisotropic. The degree 

of deviation of AOPT from unity reveal the extent of the optical anisotropy. The calculated values 

of AOPT are shown in Table VIII.7. The calculated AOPT values reveal that the two studied 

compounds exhibit a certain optical anisotropy. The maximum optical anisotropy occurs along 

the [010] crystallographic direction. 

Table VIII.7 Calculated static dielectric constants ��(0) , static refractive indexes n(0)and 

optical anisotropy ���� for the Sr3AlAs3 and Ba3AlAs3 compounds in polycrystalline and along 

the principal optical axes:[100], [010] and [001]. 

 

 

System 
 

1( )0  n(0)      AOPT  

Sr3AlAs3 Polycristallines 7.808 2.79 
 

 

 [100] 8.048 2.82 [1.031,1.011]  

 [010] 7.566 2.75 [0.969,0.986]  

 [001] 7.810 2.79 [1.0,1.0]  

Ba3AlAs3 Polycristallines 8.433 2.90 
 

 

 [100] 8.683 2.94 [1.030,1.014]  

 [010] 8.255 2.87 [0.979,0.990]  

 [001] 8.361 2.89 [0.991,0.997]  
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Figure VIII.6:(colour online) calculated optical function spectra:  absorption coefficient α( )

, reflectivity R( ) , energy loss function L( ) ,refractive index n( ) and extinction coefficient 

k( ) for the Sr3AlAs3 and Ba3AlAs3 single-crystals for three different polarisations: ��⃗  ∕∕[100], 

��⃗  ∕∕[010]and ��⃗  ∕∕[001]. 

VIII.2.5 Thermoelectric properties 

In order to study the thermoelectric properties of the orthorhombic Ae3AlAs3 (Ae = Sr, 

Ba) compounds, we have calculated the basic transport parameters, e.g. Seebeck coefficient (S, 

in μVK−1), electrical conductivity scaled by relaxation time (σ/τ, in Ω−1m−1s−1), thermal 

conductivity scaled by relaxation time (κ/τ, in WK−1 m−1s−1), power-factor (�� = �²
�

�
, in 

WK−2m−1s−1) and factor of merit (�� =
��²

�
, dimensionless), as function of both charge-carrier 

concentration and temperature. The thermoelectric properties of the examined compounds were 

calculated for temperature between 300 and 900 K and for charge-carrier concentration between 
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1 × 1018 and 1 × 1021cm−3, which is an optimum charge-carrier concentration range for better 

thermoelectric performance, using the semi classical Boltzmann theory as implanted in the 

BoltzTraP computer package [41] with a dense k-mesh of 50 × 50 × 50. As the investigated 

compounds crystalise in an orthorhombic system, we have first investigated the directional 

dependence of the thermoelectrical parameters. We find that the two considered compounds 

exhibit almost isotropic behaviour in the TE parameters along the three principal 

crystallographic directions. Since there is no significant anisotropy observed in the TE 

parameters, we have presented only their average values. 

Figure VIII.7 shows the variation of the Seebeck coefficient S (thermopower), electrical 

conductivity scaled by relaxation time σ/τ, electronic thermal conductivity scaled by relaxation 

time κ/τ and power-factor PF with charge-carrier concentration for both n-type and p-type 

Sr3AlAs3 and Ba3AlAs3 compounds at 300, 600 and 900 K. Panel (a) of FigureVIII.7 

demonstrates that the absolute value (magnitude) of S decreases with an increasing charge-

carrier concentration for both n-type and p-type doping at a fixed temperature. The magnitude 

of S increases with an increasing temperature due to the increase of charge-carrier concentration 

for both charge-carrier types; this is a common trend in thermoelectric materials. One can note 

that the considered compounds possess larger thermopower for the holes compared with the 

electrons throughout the considered temperature range. For the same carrier concentration, the 

difference in Seebeck coefficient between electrons and holes is of the order of 200 µV/K. This 

result is consistent with the calculated charge-carrier masses; large Seebeck coefficient 

translates to large effective masses of charge-carries. The thermopower shows practically the 

same behaviour regarding the variation of charge-carrier concentration and temperature for the 

two title compounds. This comportment is might be due to the similarity of their band 

dispersions around the Fermi level and their effective masses, which are close to each other. 

For the same concentration and same type of charge-carrier, the two studied compounds have 

almost equal value for the thermopower at the same fixed temperature. To have an idea about 

the thermopower efficiency of the title compounds, we have compared their Seebeck coefficient 

S with a traditional thermoelectric material, Bi2Te3. It was reported that at 300 K and charge-

carrier concentration of 4 × 1018 cm−3, Bi2Te3 has a thermopower of 313 μVK−1 for p-doping 

and of 196 μVK−1 for n-doping [42, 43], while our investigated compound Sr3AlAs3 

(Ba3AlAs3), at the same conditions, has a Seebeck coefficient S equal to approximately 442 

(472) μVK−1 for p-doping and −327 (−404) μVK−1 for n-doping. From this, one can appreciate 

that the thermopower value of the examined materials is larger than that of the traditional 

thermoelectric compound. This allows us to claim that the Sr3AlAs3 and Ba3AlAs3 systems are 



147 

Chapter VIII                       Properties of Sr3ALAs3 and BA3AlAs3 

    

potential candidates for thermoelectric applications if one can more reduce their thermal 

conductivity by some techniques, such as alloying, nano-structuring or superlattice growth. 

Panels (b) and (c) of FigureVIII.7 demonstrate that the electrical and thermal 

conductivities scaled by relaxation time (σ/τ and κ/τ) increase with an increasing charge-carrier 

concentration in the two considered compounds for both n-type and p-type doping at a fixed 

temperature. It is found that the σ/τ value of the electrons is larger than that of the holes. 

Figure VIII. 8 depicts the variation of the figure of merit (ZT) as function of hole and 

electron concentrations at 300, 600 and 900 K for Sr3AlAs3 and Ba3AlAs3. One can note that at 

the same temperature and same charge-carrier concentration, the maximum figure of merit (ZT) 

is found in the hole-doped systems. At 900 K, the ZT is equal 1.02 (1.00) in the p-doped 

Sr3AlAs3 (Ba3AlAs3) and 0.93 (0.89) in the n-doped Sr3AlAs3 (Ba3AlAs3). 

 

 

 

Figure VIII.7:( colour online) Calculated average Seebeck coefficient (S; panel a), electrical 

conductivity scaled by relaxation time (σ/τ; panel b), thermal conductivity scaled by relaxation 

time (κ/τ; panel c) and power-factor (PF = S2σ/τ panel d) as functions of both electron and hole. 
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Figure VIII.8 :(colour online) Calculated figure of merit ZT as a function of charge-carrier 

concentration of both electron and hole concentrations at 300, 600 and 900 K for the Sr3AlAs3 

(solid lines) and Ba3AlAs3 (dotted lines) compounds. 
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In this chapter, we have reported the results of the computations of some physical 

properties for two groups of systems: the first group is related to the two novel ternary 

phosphides LiSrP and LiBaP, while the second group includes both the Zintl Phase Sr3AlAs3 

and Ba3AlAs3. The obtained results for each group are summarized separately as follows: 

IX.1 The ternary phosphides LiAeP (Ae =Sr, Ba) 

Ab initio calculations based on the DFT within the GGA-PBEsol are performed to 

investigate the systematic trends for the structural, electronic, optical and thermodynamic 

properties of the LiAeP family, depending on the type of the alkaline earth (Ae) elements (Ae 

are Sr and Ba). First, the optimized structural parameters are obtained and compared with the 

available data in the scientific literature. The good agreement between our calculated structural 

parameters and their corresponding measured ones confirms the reliability of the used 

calculation approaches. Calculated pressure dependence of the lattice parameters reveals that 

the [100] crystallographic direction is more resistant to compressional deformation than the 

[001] direction. After the geometry optimization, single-crystals and polycrystals elastic moduli 

and the related properties were predicted. It is found that the investigated materials are 

mechanically stable, with a ductile behaviour and exhibiting noticeable elastic anisotropy. 

Sound wave propagating velocities and Debye temperature were predicted. The good 

concordance between the bulk modulus calculated via two different methods constitutes a 

second proof for the reliability of the present reported results. The examined materials have an 

indirect band gap. The value of the fundamental energy gap decreases when the Ae atom in the 

isostructural LiAeP series is substituted in the sequence: Sr, Ba. Analysis of the bonding 

properties via the density of states and charge density maps reveals that the considered materials 

are rather covalent. Optical functions are predicted for two different polarizations of the 

incident radiations for an energy range up to 20 eV. The obtained optical spectra exhibit a strong 

optical anisotropy. LiSrP is more absorptive than LiBaP. The static dielectric function of LiBaP 

is larger than that of LiSrP, which can be explained on the basis of the Penn model. The obtained 

results through the quasi-harmonic Debye model show that at a fixed pressure the increase of 

temperature leads to an increase in the unit-cell volume, heat capacity and volume thermal 

expansion coefficient, but it leads to a decrease in the bulk modulus and Debye temperature. At 

a fixed temperature, the increase of pressure leads to the increase of the bulk modulus and 

Debye temperature whereas it leads to the decrease of the unit-cell volume, volume thermal 

expansion coefficient and heat capacity. There are no available experimental data for the 
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electronic, optical and thermodynamic properties of the examined materials; our results are 

therefore purely theoretical predictions and must be tested experimentally in the future. 

IX.2 The Zintl-phase Ae3AlAs3 (Ae = Sr, Ba) 

we have investigated structural, electronic, optical properties of new ternary arsenides:  

Ae3AlAs3 (Ae =Sr and Ba) by using The full potential linear augmented plane wave plus local 

orbitals method, within the GGA and mBJ approaches as implemented in WIEN2k code. We 

have additionally estimated the elastic constants using GGA-Pbsol as implanted in Castep. Our 

obtained lattice constants, free internal parameters are in good accordance with the available 

experimental data. To our knowledge, elastic constants, orthorhombic Ae3AlAs3 (Ae= Sr, Ba) 

are reported for the first time in this work and   the results satisfy all of the mechanical stability 

criteria. The aggregate elastic moduli (B, G, E) have been deduced using the Voigt–Reuss–Hill 

approximations and deduced computed Poisson’s and B/G ratios the B/G ratio indicates that 

Sr3AlAs3 is brittle in nature and Ba3AlAs3 as ductile manner. The elastic anisotropy was 

investigated by several different anisotropic indexes and it was illustrated by   plotting the three 

dimensional visualization of the Young’s modulus. Electronic band gap calculations reveal that 

Sr3AlAs3 is a direct band gap semiconductor with a gap of 0.89 eV with GGA-PbSol, whereas 

Ba3AlAs3 is an indirect band gap semiconductor with a GGA gap of 0.58 eV. In order to provide 

a more accurate description of the electronic structure, we have also used the mBJ 

approximation to the exchange-correlation potential. The value of the band gap with mBJ 

approximation in Sr3AlAs3 and Ba3AlAs3 is found to be 1.51 eV and 1.28 eV, respectively. We 

have determined the photon-energy dependent dielectric function and optical constant such as 

extinction coefficient, reflective index, reflectivity and energy-loss spectrum for the first time. 

Using the band structure, we have discussed the origin of the features that appear in the optical 

properties. Further, the static dielectric constants ε(0) and refractive index n(0) and the Plasmon 

energy   have been estimated, for the (100), (010) and (001) polarizations. Our study show that 

the compounds show weak optical anisotropy in in the photon energy range 0–15 eV for all the 

calculated optical properties. Based on the calculated band structure, the semi-classical 

Boltzmann theory as implemented in the BoltzTraP code was used to study the thermoelectric 

properties. The Seebeck coefficient of Sr3AlAs3  is higher at room temperature than that of 

Ba3AlAs3, while Ba3AlAs3 possess the largest thermal conductivity.
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Abstract: We report the results of an ab initio study of the electronic, optical and thermodynamic properties of the LiBaP

and LiSrP compounds using the pseudopotential plane-wave method within the framework of the density functional theory

with the GGA-PBEsol. The calculated equilibrium structural parameters are in good agreement with the available

experimental data. The energy band dispersions along the high symmetry directions in the k-space and the density of states

diagrams are computed and analyzed. The obtained energy bands show that both examined crystals are indirect band gap

semiconductors. The chemical bonding character is examined via electron density map plots. The optical properties are

predicted for an incident radiation in an energy range up to 15 eV, and the origins of the main peaks in the optical spectra

are discussed in terms of the calculated electronic band structure. We have also predicted the temperature and pressure

dependencies of the unit-cell volume, thermal expansion coefficient, heat capacity, Debye temperature and Grüneisen

parameter.

Keywords: Ternary phosphides; Ab initio calculations; Electronic structure; Optical properties; Thermal effect

PACS Nos.: 71.15.Mb; 71.20.Nr; 78.20.-e; 71.20.-b; 65.40.-b

1. Introduction

Ternary compounds with a simple 1:1:1 composition—so-

called 111 phase —crystallize in more than 30 structure

types [1]. In recent years, these ternary compounds, espe-

cially the half Heusler structure (archetype MgAgAs), the

LiGaGe structure, the ZrBeSi structure and the TiNiSi

structure, have drawn increasing attention due to their

interesting physical properties, which make them candi-

dates for many technological applications. For example,

the half Heusler compounds are known to be good ther-

moelectrics [2–4] and have been proposed as topological

insulators [5, 6]. The LiGaGe structure type systems have

been proposed as ferroelectrics [7]. The ZrBeSi type

compounds have been proposed as Dirac semimetals [8];

three-dimensional (3D) topological Dirac semimetals

(TDSs) are a recently proposed state of quantum matter

[9–14] that has attracted increasing attention in physics and

materials science. Generally, the 111 phases are semicon-

ductor materials. The interest in the ternary semiconductor

111 phases is due to the attractive chemistry encountered in

this class of inorganic compounds and to their excellent

physical properties that are not possessed by the simple and

binary semiconductors owing to the presence of three dif-

ferent chemical elements [15].

Recently, Dong et al. [16] synthesized several ternary

phosphide single crystals, including the LiSrP and LiBaP

systems. The considered LiSrP and LiBaP compounds are

initially discovered in syntheses designed to explore the

existence of a new class of materials containing both

nitrogen and phosphorus as anions. Their crystalline

structures are determined using the single-crystal X-ray

diffraction. Both compounds adopt a centrosymmetric

hexagonal structure, space group P63/mmc (ZrBeSi struc-

ture), with two formula units by unit-cell (Z = 2) [17].

Apart from the experimental results regarding the synthesis

and structural parameters reported by Dong and co-authors
*Corresponding author, E-mail: a_bouhemadou@yahoo.fr
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[16], no theoretical or experimental data are available in

the scientific literature for the considered systems to the

best of our knowledge. Therefore, from a fundamental

standpoint and in terms of eventual technological appli-

cations, we have performed the present work to obtain

some of the lacking data.

Ab initio methods based on the density functional theory

(DFT) have become a very powerful tool for exploring the

properties of materials without requiring any experimental

measurement. Thus, ab initio calculations using the pseu-

dopotential plane-wave in the DFT framework have been

performed to investigate the electronic, optical and ther-

modynamic properties of the LiAeP (Ae = Sr and Ba)

compounds.

2. Calculation details

All calculations were carried out using the pseudopotential

plane-wave method based on the DFT, as implemented in

the CASTEP (Cambridge Serial Total Energy Package)

code [18]. The exchange–correlation potential was mod-

eled using the generalized gradient approximation of Per-

dew et al. (so-called GGA-PBEsol) [19]. The interactions

between the valence electrons and the ion cores were

described by means of the Vanderbilt ultrasoft pseudopo-

tentials [20]. The Li: 1s22s1, P: 3s23p3, Ba: 4d105s25p66s2

and Sr: 3d104s24p65s2 states were treated as valence elec-

trons. The cut-off energy, which determines the size of the

plane-wave basis set, was 400 eV. The integration over the

Brillouin zone (BZ) was carried out using the Monkhorst–

Pack sampling method [21] with a 9 9 996k-points grid.

The self-consistent field was considered to be converged

when the change in total energy was less than 1 9 10-6

eV/atom. The structural optimizations were performed

using the Broyden–Fletcher–Goldfarb–Shanno (BFGS)

minimization scheme [22]. The tolerances were set as the

difference in total energy within 5 9 10-6 eV/atom, the

maximum ionic Hellmann–Feynman force within 0.01 eV/

Å, the maximum ionic displacement within 5 9 10-4 Å

and the maximum stress within 0.02 GPa.

3. Results and discussion

3.1. Structural parameters

The examined LiSrP and LiBaP systems crystallize in a

hexagonal crystal structure, space group P63/mmc (no.

194), with two formula units per unit-cell. The Wyckoff

positions of atoms are as follows: Li: 2c (1/3, 2/3, 1/4), Sr,

Ba: 2a (0, 0, 0) and P: 2d (1/3, 2/3, 3/4) [16]. The calcu-

lated equilibrium lattice parameters, a0 and c0, for LiSrP

and LiBaP are tabulated in Table 1, together with the

available experimental data for comparison. One can

appreciate that the relative deviations of the calculated

equilibrium lattice parameters a0 and c0 from the measured

ones do not exceed 0.26 and 0.96 %, respectively, in LiSrP

and 0.12 and 0.65 %, respectively, in LiBaP. This good

consistency proves the reliability of the calculation

method. The lattice parameters (a0 and c0) of LiBaP are

larger than those of LiSrP. This trend can be explained by

considering the atomic radii of Ba and Sr atoms as follows:

RðBaÞ ¼ 215pm[RðSrÞ ¼ 200pm.

3.2. Electronic band structure and chemical bonding

Investigation of the electronic energy bands of the LiBaP

and LiSrP ternary compounds would be very useful to

better understand their electronic and optical properties.

The electronic energy band dispersions along the high

symmetry lines in the first Brillouin zone of both examined

crystals are depicted in Fig. 1. The topmost of the valence

bands (VB) is located at the C-point in the Brillouin zone

and the bottommost of the conduction bands (CB) is

positioned at the M-point. Hence, both investigated sys-

tems are indirect band gap (C–M) semiconductors. The

fundamental band gap of LiSrP (LiBaP) is equal to 1.16 eV

(0.80 eV). No experimental or theoretical data are avail-

able in the scientific literature for the band gaps of LiSrP

and LiBaP for comparison with our findings. Bearing in

mind that the DFT within the common GGA underesti-

mates the band gaps of semiconductors and isolators, the

predicted values in the present work can serve as minimum

estimates of the true band gaps of the considered crystals.

The band gap calculated using the DFT with the common

GGA is likely to be approximately 30�50 % smaller than

the experimental values [23]. Therefore, the real funda-

mental band gap of LiSrP (LiBaP) is expected to be in the

range 1.50–1.73 eV (1.04–1.20 eV). The replacement of Sr

with Ba in the LiAeP series (Ae: Sr, Ba) leads to the nar-

rowing of the band gap by approximately 31 %.

Table 1 Calculated equilibrium lattice parameters (a0 and c0, in Å),

equilibrium unit-cell volume (V0, in Å3)

a0 c0 c0/a0 V0

LiSrP

Present work 4.3557 7.9031 1.81 129.85

Expt. [3] 4.3674 7.9802 1.83 131.82

LiBaP

Present work 4.4945 8.5483 1.90 149.54

Expt. [3] 4.5003 8.6049 1.91 150.92

Available experimental results are reported for comparison
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Figure 2 shows the pressure dependencies of the fun-

damental band gap C–M (EC�M
g ðPÞ) and the first direct

band gap C�C (EC�C
g ðPÞ) of LiSrP and LiBaP in a pressure

range between 0 and 15 GPa. First, the fundamental band

gap remains between the topmost of the valence bands at

the C-point and the bottommost of the conduction bands at

the M-point for both examined compounds in the consid-

ered pressure range. Second, both considered gaps, i.e.,

C-M and C�C, are characterized by a quadratic decrease

with increasing pressure in both compounds; the CB bot-

tommost moves down with increasing pressure. When the

pressure increases from 0 to 15 GPa, the fundamental band

gap C-M decreases from 1.16 to 0.44 eV in LiSrP and from

0.80 eV to 0.13 eV in LiBaP. The first direct band gap,

C�C, decreases from 1.35 to 0.82 eV in LiSrP and from

0.83 to 0.27 eV in LiBaP.

Knowledge of the effective mass values of the charge-

carriers is necessary to determine the transport properties

and electrical conductivity of materials; the conductivity is

inversely proportional to the effective mass. In general, the

theoretical effective mass is a tensor with nine components.

However, for the very idealized simple case in which the

energy E(k) data are represented by a parabola curve, such

as at the valence band maximum (VBMa) and the con-

duction band minimum (CBMi), the effective mass

becomes a scalar that can be evaluated from the E(k) curve

Fig. 1 Calculated electronic

energy band dispersion curves

along the high symmetry

directions in the Brillouin zone

for the LiAeP (Ae = Sr, Ba)

compounds. Eg gives the value

of the fundamental energy band

gap C–M. The Fermi level is

given at 0.0 eV

Fig. 2 Pressure dependence of

the fundamental indirect band

gap C-M and the first direct

band gap C–C for the LiAeP

(Ae = Ba, Sr) compounds. The

calculated values are indicated

by symbols and the fits by solid

lines
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around the VBMa and CBMi by fitting the E(k) data to the

following well-known equation: E ¼ �hk2

2m�, where ⁄ is

Planck’s constant, E is the band-edge energy as a function

of the wave vector k and m� is the effective mass. The

calculated effective masses of the holes at the VBMa along

the C-K and C�M directions and those of the electrons at

the CBMi along the M�C and M�C directions are tabu-

lated in Table 2. The results indicate that the electron

effective mass has a relevant dependence on the k direction

in both compounds, indicating its anisotropy, while the

hole effective mass is quite isotropic. In addition, the hole

effective mass value is close to that of the electron, sug-

gesting that their mobilities will be fairly similar.

The total and atomic-resolved l-projected densities of

states (TDOS and PDOS) corresponding to the energy

bands of the LiSrP and LiBaP compounds are calculated to

obtain information regarding the orbital character of the

electronic states and the chemical bonding. The obtained

DOS diagrams are depicted in Fig. 3. For the LiSrP com-

pound, the lowest valence band group, located between

approximately -10.0 and -8.0 eV, is essentially domi-

nated by the P-3s orbitals with a small contribution from

the Li-1s, Sr-4s and Sr-3d states. The lower part of the

valence band group, ranging from -3.13 eV up to the

Fermi level, consists mainly of the Sr-3d4p and P-3p states,

whereas the upper part is due to the hybridized Li-1s, Sr-

3d and P-3p states. The conduction bands ranging from 0 to

10 eV are composed principally of the Li-2s, Sr-3d and Sr-

5s states, with a minor contribution from the P-3s states.

For the LiBaP compound, the lowest valence band group,

located between approximately -10.0 and -7.4 eV, is

essentially dominated by the P-3s orbitals, with a small

presence of the Ba-5s and Ba-4d states. The lower part of

the upper valence band group, ranging from -2.98 eV up

to the Fermi level, is formed mainly from the Ba-4d5p and

P-3p states, whereas the upper part is due to the hybridized

Li-1s, Ba-d and P-3p states. The conduction bands ranging

from 0 to 10 eV are composed primarily of the Ba-4d and

Li-2s states with a small contribution from the Ba-6s and

P-3p states.

To visualize the character of the chemical bonding

between the constituent atoms, the valence charge density

distribution maps of the investigated systems in the (110)

plane are plotted in Fig. 4. The figure shows that a certain

accumulation of electrons occurs between the P and Sr/Ba

and between the P and Li atoms, indicating that the

chemical bonding between those atoms is mostly covalent.

The covalent bonding between P and Sr/Ba is due to the

hybridization between the P-3p and Sr-3d/Ba-4d states, and

the covalent bonding between P and Li is due to the

hybridization between the P-3p and Li-2 s states.

3.3. Optical properties

In the linear response range, the macroscopic optical

response functions of solids can usually be described by the

frequency-dependent dielectric function eðxÞ ¼ e1ðxÞ þ
ie2ðxÞ or by the frequency-dependent complex refractive

index ~nðxÞ ¼ nðxÞ þ ikðxÞ [24], which are related mainly

to the electronic structures. The optical functions reflect the

fine structure of the electron energy dispersions in the

valence and conduction bands. It is well-known that the

imaginary part, i.e., e2ðxÞ, of the dielectric function eðxÞ
constructs the bridge between the electronic structure and

the interband transitions. The imaginary part e2ðxÞ can be

calculated from the momentum matrix elements between

the occupied and unoccupied wave functions with respect

to the selection rules [25]. The real part e1ðxÞ can be

calculated from the imaginary part e2ðxÞ via the Kramer–

Kronig relationship [26]. Knowledge of the imaginary

(e2ðxÞ) and real (e1ðxÞ) parts of the dielectric function

allows one to calculate all the important optical charac-

teristics of materials, such as the refractive index nðxÞ,
optical reflectivity RðxÞ, extinction coefficient kðxÞ,
absorption coefficient aðxÞ and energy-loss function LðxÞ,
using the well-known relationships [27, 28]. Calculations

of the optical properties require more k-points than ordi-

nary self-consistent field calculations; a 20 9 20 9 20 k-

points grid is used in the present work. The LiSrP and

LiBaP compounds have a hexagonal structure and are thus

optically biaxial systems. For this reason, the optical

functions of the considered crystals are calculated for

polarized incident radiation with electric field vector E
!

parallel to the principal crystallographic axes, i.e., E~==a

(E~==½100�) and E~==c(E~==½001�). Because some of the

synthetized samples are polycrystalline, the optical spectra

are also predicted for the polycrystalline phase.

The absorptive e2ðxÞ and dispersive e1ðxÞ parts of the

dielectric function for both LiSrP and LiBaP are shown in

Fig. 5. The figure displays noticeable differences between

the magnitudes, shapes and locations of the main features

and peaks in the e2ðxÞ/e1ðxÞ spectra corresponding to

E~==a and E~==c, demonstrating a strong anisotropy of the

dielectric response of these materials to the incident radi-

ation. The absorption edge is slightly shifted toward lower

energies for the E~==c polarization in both compounds; the

absorption edge starts at 1.003 eV (0.510 eV) for E~==a and

at 0.960 eV (0.4680 eV) for E~==c in LiSrP (LiBaP). Now,

Table 2 Calculated electron and hole effective masses (m�
e and m�

h,

respectively; in units of free electron mass) for the LiSrP and LiBaP

compounds

System m�
eðM � CÞ m�

eðM � KÞ m�
hðC� K) m�

hðC� M)

LiSrP 0.0668 0.0492 0.0437 0.0438

LiBaP 0.0579 0.0390 0.0337 0.0337
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we try to determine the origin of the occupied and unoc-

cupied states involved in the direct interband transitions

that caused the main peaks in the e2ðxÞ spectra based on

the calculated electronic structure discussed in Sect. 3.2.

The absorptive part e2ðxÞ of the dielectric function eðxÞ of

LiSrP exhibits four structures labeled A, B, C and D. The

lowest energy peak, A, centered at approximately 2.77 eV

for E~==a and 2.72 eV for E~==c, is caused by the interband

transition T1 (see Fig. 3), which is due mostly to the

electronic transitions from the Sr-3d and P-3p valence

states to the Sr-3d conduction states. Structure B, centered

at approximately 4.37 eV for E~==a and 4.19 eV for E~==c,

is due to the direct interband transition T2. Peak C, cen-

tered at approximately 5.23 eV for E~==a and 6.68 eV for

E~==c, is attributable to the direct interband transition T3,

which is due mostly to the electronic transitions from the

Sr-3d, P-3p and Li-2s valence states to the Sr-3d and Li-2s

conduction states. The fourth peak, D, centered at

approximately 5.66 eV for E~==a and absent for E~==c, is

caused by the direct interband transition T4. The e2ðxÞ

Fig. 3 Total (TDOS) and partial (PDOS) densities of states diagrams for the LiAeP (Ae = Sr, Ba) compounds. T1 (T10), T2 (T20), T3 (T30) and

T4 (T40) represent the electronic transitions from the valence bands to the conduction bands

Fig. 4 Charge density distribution maps in the (110) plane for the LiSrP (a) and LiSrP (b) systems
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spectrum of LiBaP also exhibits four structures labeled A0,
B0, C0 and D0. Peak A0, centered at approximately 2.23 eV

for E~==a and 2.67 eV for E~==c, is caused by the direct

interband transition T1’ (see Fig. 3) (mostly Ba-4d and P-

3p ? Ba-4d). Peak B0, centered at approximately 4.13 eV

for E~==a and 3.97 eV for E~==c, is due to the direct inter-

band transition T20. Peak C0, centered at approximately

4.92 eV for E~==a and 4.93 eV for E~==c, is attributable to

the direct interband transition T30 (mostly Ba-4d, P-3p and

Li-2 s ? Ba-4d and Li-2s). The fourth peak, D0, centered

at approximately 9.28 eV for E~==a and absent for E~==c, is

caused by the direct interband transition T40. The zero

frequency limit e1ð0Þ ¼ e1ðx ! 0Þ—the electronic part of

the static dielectric constant—is the most important quan-

tity in the e1ðxÞ spectrum. The calculated value of e1ð0Þ for

LiSrP (LiBaP) is equal to 8.569 (11.530) for E~==a and

10.694 (13.498) for E~==c. The values of e1ð0Þ for both

considered light polarizations in LiSrP are larger than their

corresponding ones in LiBaP; i.e., e1ð0Þ increases with

decreasing band gap. This trend can be explained on the

basis of the Penn model [29]: eð0Þ � 1 þ ðhxp=EgÞ2
.

The absorption coefficient aðxÞ is a basic way to mea-

sure how far light with a specific energy can penetrate a

material before being absorbed. The calculated absorption

coefficients for LiSrP and LiBaP for both considered light

polarizations, i.e., E~==a and E~==c, are displayed in

Fig. 6(a), in which the fundamental absorption edge starts

approximately at 1.003 eV (0.510 eV) for E~==a and

0.960 eV (0.468 eV) for E~==c in LiSrP (LiBaP). The

absorption coefficient increases with increasing photon

energy, reaching a maximum and then decreasing to reach

its minimum. The absorption spectrum shows some peaks

that can be explained by the interband transitions using the

band structure results. LiSrP has an absorptive energy

region larger than that of LiBaP. The LiSrP compound can

be used as an absorptive layer in the energy range from

1.37 to 12 eV, whereas LiBaP can be used in the energy

range from 0.84 to 9 eV.

The frequency-dependent reflectivity R(xÞ spectra of

the considered systems for both polarizations of the inci-

dent radiation are depicted in Fig. 6(b). The zero frequency

limit R(0Þ is equal to 24 % (30 %) for E~==a and 28 %

(32 %) for E~==c in LiSrP (LiBaP). The reflectivity R(xÞ
increases from R(0Þ with increasing photon energy to attain

a maximum, and then a rapid decrease of R(xÞ occurs at

approximately 13.85 eV (5.88 eV) for E~==a and 13.34 eV

(5.41 eV) for E~==c. Fig. 6(b) shows that the maximum

reflectivity in LiSrP (LiBaP) occurs at approximately

7.7 eV (1.62 eV) for E~==a and at approximately 2.85 eV

(2.44 eV) for E~==c. The maximum reflectivity is approxi-

mately 47 % (39 %) for E~==a and 56 % (41 %) for E~==c in

LiSrP (LiBaP).

The energy-loss spectrum L(xÞ describes the energy

loss of a fast electron passing through a material [30]. The

main peak in the L(xÞ spectrum represents the character-

istic associated with the plasma resonance; the corre-

sponding frequency is called plasma frequency xP, which

occurs when e2ðxÞ\1 and e1ðxÞ reaches a zero value [31].

From the energy-loss spectrum [Fig. 6(c)], the plasma

frequency xp for LiSrP (LiBaP) is equal to approximately

13.85 eV (7.43 eV) for E~==a and approximately 13.34 eV

(6.05 eV) for E~==c. When the frequency of the incident

Fig. 5 Calculated (a)

imaginary (e2ðxÞ) and (b) real

(e1ðxÞ) parts of the dielectric

function for incident radiation

polarized along the two

principal crystallographic

directions, i.e., E~==a and E~==c,

for the LiAeP (Ae = Sr, Ba)

crystals. The obtained spectra

for the LiAeP (Ae = Sr, Ba)

polycrystals are also shown
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light is higher than the plasma frequency, the material

becomes transparent and hence an abrupt reduction of the

reflectivity R(xÞ occurs at the plasma frequency.

The refractive index nðxÞ of a substance is the ratio of

the speed of an electromagnetic wave in a vacuum to its

speed in the substance. Knowledge of the refractive index

of an optical material is important because its use in optical

devices, such as photonic crystals and waveguides. The

calculated refractive index spectra of LiSrP and LiBaP are

shown in Fig. 6(d). The static refractive index nð0Þ (the

refractive index at zero energy) of LiSrP (LiBaP) is equal

to 2.94 (3.39) for E~==a and 3.27 (3.67) for E~==c. In both

considered compounds, the refractive index increases with

increasing energy, shows some peaks for the two polar-

ization directions of the incident radiation and then

decreases at high energy. Moreover, the refractive index

for LiSrP goes below unity in certain energy ranges. When

the refractive index is lower than unity, it indicates that the

group velocity Vg ¼ c=n of the incident radiation is greater

than the speed of light c, which means that the group

velocity shifts to the negative domain and the nature of the

medium changes from linear to non-linear. It is known that

the refractive index has the same trend of variation with

photon energy as the real part of the dielectric function,

which means that all peaks appearing in the spectrum of the

refractive index are related to the ones appearing in the real

part of the dielectric function, whereas the extinction

coefficient kðxÞ [Fig. 6(e)] follows the imaginary part of

the dielectric function. The polycrystalline sample optical

behavior for both materials closely mimics the optical

behavior observed for the [100] polarized incident light.

3.4. Thermodynamic properties

We have investigated the thermodynamic properties of the

LiAeP (Ae = Sr, Ba) systems in the temperature range

from 0 to 800 K and the pressure range from 0 to 15 GPa

using the quasi-harmonic Debye model as implemented in

the Gibbs program [32]. A detailed description of the

quasi-harmonic Debye model can be found elsewhere

[32–36]. The relationship between the normalized unit-cell

volume and temperature at some fixed pressures for LiSrP

and LiBaP is shown in Fig. 7(a), which shows that the

normalized volume V/V0 is nearly constant at low

Fig. 6 Calculated optical function spectra: (a) absorption aðxÞ, (b)

reflectivity R(xÞ, (c) energy loss function L(xÞ, (d) refractive index

n(xÞ and (e) extinction coefficient k(xÞ for incident radiation

polarized along the two principal crystallographic directions, i.e.,

E~==a and E~==c, for the LiAeP (Ae = Sr, Ba) crystals. Obtained

spectra for the LiAeP (Ae = Sr, Ba) polycrystals are also shown

Ab initio study of the electronic, optical and thermodynamic properties 163

Author's personal copy



temperature and that an abrupt change occurs with

increasing temperature. The normalized volume increases

more rapidly at a high temperature for both compounds;

however, the rate becomes a little slower with increasing

pressure; these materials become less expandable at 15

GPa than at 0 GPa. The variation of the bulk modulus

versus temperature at four fixed pressures (0, 5, 10 and 15

GPa) is depicted in Fig. 7(b). It can be seen that the bulk

modulus remains nearly constant at a low temperature for

both compounds and then decreases rapidly with increasing

temperature; the increasing temperature causes a decrease

in the hardness of materials due to the increase of the unit-

cell volume. The bulk modulus values of LiSrP (LiBaP) at

0, 5, 10 and 15 GPa decrease by 29.43 % (32.70 %),

16.37 % (17.19 %), 10.75 % (10.86 %) and 7.92 %

(7.62 %), respectively, when the temperature increases

from 0 to 800 K. At zero pressure and temperature, our

calculated bulk moduli for LiSrP and LiBaP are 45.12 GPa

and 41.09 GPa, respectively. LiSrP is slightly more resis-

tant to the compression of volume.

Figure 8(a) illustrates the variation in the Debye

temperature hD as a function of temperature at some

fixed pressures for LiSrP and LiBaP. It can be seen that

hD decreases slightly with increasing temperature in both

considered compounds. When the temperature increases

from 0 to 800 K, the Debye temperature hD is reduced

by 12.04 % (13.82 %) at 0 GPa, 6.11 % (6.24 %) at 5

GPa, 3.85 % (3.80 %) at 10 GPa and 2.82 % (2.65 %) at

15 GPa in LiSrP (LiBaP). This indicates that the

reduction rate of hD with temperature becomes small at

higher pressure; the high pressure suppresses the tem-

perature effect on the Debye temperature. The calculated

Debye temperatures hD at zero pressure and zero tem-

perature are 398.27 K for LiSrP and 320.47 K for

LiBaP.

The Grüneisen parameter describes the change in the

vibrational properties of a crystal lattice due to the increase

or decrease of its volume as a result of temperature change.

The variation of the Grüneisen parameter as a function of

temperature is shown in Fig. 8(b). At a given pressure, the

Grüneisen parameter c increases slowly with temperature.

Moreover, the Grüneisen parameter c increases more

slowly at high pressure than at low pressure. At 300 K and

zero pressure, our calculations yield a c equal to 1.94

(2.073) for LiSrP (LiBaP).

Figures 9(a) and 9(b) show the temperature dependen-

cies of the constant pressure heat capacity CP and constant

volume heat capacity CV , respectively, at some fixed

pressures. One can see that the constant volume heat

capacity CV and the constant pressure capacity CP are very

similar for the temperature range from 0 to approximately

300 K; CV and CP increase rapidly with temperature at a

fixed pressure. When the temperature is higher than 300 K,

the anharmonic effect on the heat capacity CV is sup-

pressed and increases slowly with increasing temperature

to approach a constant value—the so-called Dulong–Pettit

limit [37] which is common for all solids at high temper-

atures—whereas CP still increases monotonously with

increasing temperature. At high temperature, CV approa-

ches approximately 147.71 J mol-1 K-1 (148.77 J mol-1

K-1) in LiSrP (LiBaP). At zero pressure and ambient

temperature, CV and CP of LiSrP (LiBaP) are

137.88 J mol-1 K-1 (141.94 J mol-1 K-1) and 144.37 J

mol-1 K-1 (149.47 J mol-1 K-1), respectively.

Fig. 7 (a) The normalized

primitive-cell volume V/V0 as a

function of temperature for the

LiSrP and LiBaP compounds at

some fixed pressures; V is the

primitive-cell volume at the

considered temperature; V0 is

the primitive-cell volume at

zero temperature. (b) The

normalized bulk modulus B/B0

as a function of temperature for

the LiSrP and LiBaP

compounds at some fixed

pressures; B is the bulk modulus

at the considered temperature

and B0 is the bulk modulus at

the zero temperature
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Variations in the volume thermal expansion coeffi-

cient a of LiSrP and LiBaP as a function of temperature

T at certain fixed pressures are shown in Fig. 10. For

T B 250 K, the thermal expansion coefficient a increa-

ses rapidly with increasing temperature at fixed pressure

in both considered compounds. For T[ 250 K, the

increase of a with increasing temperature becomes more

gradual and approaches a linear behavior. The rate of

increase of a with increasing temperature decreases with

increasing pressure. Figure 10 shows that the pressure

effect on a is small at low temperature and becomes

substantial at high temperature. This means that there is

a large volume thermal expansion coefficient at low

pressure, which is in accordance with the variation of

the unit-cell volume with pressure and temperature. At

zero pressure and room temperature, a is approximately

equal to 8.0672 K-1 for LiSrP and 8.5318 K-1 for

LiBaP.

Fig. 8 (a) Variations of the

Debye temperature and

(b) Grüneisen parameter versus

temperature at some fixed

pressures for the LiSrP and

LiBaP compounds

Fig. 9 (a) Variations of the

heat capacity at constant volume

CV and (b) the heat capacity at

constant pressure CP versus

temperature at some fixed

pressures for the LiSrP and

LiBaP compounds
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4. Conclusions

Ab initio calculations based on the DFT within the GGA-

PBEsol are performed to investigate the systematic trends

for the structural, electronic, optical and thermodynamic

properties of the LiAeP family, depending on the type of

the alkaline earth (Ae) elements (Ae are Sr and Ba). First,

the optimized structural parameters are obtained and

compared with the available data in the scientific literature.

The good agreement between our calculated structural

parameters and their corresponding measured ones con-

firms the reliability of the used calculation approaches. The

examined materials have an indirect band gap. The value of

the fundamental energy gap decreases when the Ae atom in

the isostructural LiAeP series is substituted in the sequence:

Sr ! Ba. Analysis of the bonding properties via the den-

sity of states and charge density maps reveals that the

considered materials are rather covalent. Optical functions

are predicted for two different polarizations of the incident

radiations for an energy range up to 20 eV. The obtained

optical spectra exhibit a strong optical anisotropy. LiSrP is

more absorptive than LiBaP. The static dielectric function

of LiBaP is larger than that of LiSrP, which can be

explained on the basis of the Penn model. The obtained

results through the quasi-harmonic Debye model show that

at a fixed pressure the increase of temperature leads to an

increase in the unit-cell volume, heat capacity and volume

thermal expansion coefficient, but it leads to a decrease in

the bulk modulus and Debye temperature. At a fixed

temperature, the increase of pressure leads to the increase

of the bulk modulus and Debye temperature whereas it

leads to the decrease of the unit-cell volume, volume

thermal expansion coefficient and heat capacity. There are

no available experimental data for the electronic, optical

and thermodynamic properties of the examined materials;

our results are therefore purely theoretical predictions and

must be tested experimentally in the future.
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ABSTRACT
First-principles calculations were performed to investigate 
the structural, elastic, electronic, optical and thermoelectric 
properties of the Zintl-phase Ae3AlAs3 (Ae = Sr, Ba) using two 
complementary approaches based on density functional 
theory. The pseudopotential plane-wave method was used 
to explore the structural and elastic properties whereas the 
full-potential linearised augmented plane wave approach 
was used to study the structural, electronic, optical and 
thermoelectric properties. The calculated structural 
parameters are in good consistency with the corresponding 
measured ones. The single-crystal and polycrystalline 
elastic constants and related properties were examined in 
details. The electronic properties, including energy band 
dispersions, density of states and charge-carrier effective 
masses, were computed using Tran-Blaha modified Becke-
Johnson functional for the exchange-correlation potential. It 
is found that both studied compounds are direct band gap 
semiconductors. Frequency-dependence of the linear optical 
functions were predicted for a wide photon energy range 
up to 15  eV. Charge carrier concentration and temperature 
dependences of the basic parameters of the thermoelectric 
properties were explored using the semi-classical Boltzmann 
transport model. Our calculations unveil that the studied 
compounds are characterised by a high thermopower for both 
carriers, especially the p-type conduction is more favourable.

1. Introduction

Thermoelectric (TE) materials play an important role in global sustainable energy 
solution. These materials are investigated not only owing to their high potential 
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of converting directly waste thermal energy to useful electrical energy but also to 
their capability to reduce effectively the environmental pollution. The ability of a 
TE material to convert heat directly into electricity is controlled by the dimension-
less parameter ZT [1,2], the so-called figure of merit, which is given by ZT =

S2�

�
T, 

where S is the Seebeck coefficient (thermopower), σ is the electrical conductivity, 
κ is the thermal conductivity and T is the absolute temperature. A promising TE 
material should have a large ZT value. From its expression, it is very clear that a 
high ZT, requires a large thermopower S, high electrical conductivity σ and a low 
thermal conductivity κ, i.e. an ideal thermoelectric material must strike a balance 
between these conflicting requirements. However, due to the strongly coupled 
nature between S, σ and the electronic component of the thermal conductivity 
κ, it is difficult for a material to have simultaneously high S, high σ and low κ. A 
high Seebeck coefficient is attained in a low charge-carrier concentration, while 
a large electrical conductivity is attained in a high charge-carrier concentration; S 
and σ have an opposite dependence on charge-carrier concentration, so a balance 
between S and σ must be achieved through a chemical doping [1,3]. Therefore, 
obtaining a TE material with a high ZT value is a challenging task.

Currently, many kinds of thermoelectric materials have been widely studied, 
such as Zintl-phases, nanostructured compounds, zinc antimonides, oxides, 
half-Heusler compounds, clathrates and skutterudites [4–12]. Zintl-phases, a 
broad class of intermetallic compounds characterised by cations that donate their 
electrons to support the formation of covalency bonded anionic substrates, have 
emerged as a promising class of materials for thermoelectric applications due to 
their complex crystal structures, interesting electronic, chemical and physical 
properties [13,14]. The structural requirements of Zintl-phases are explained by 
assuming the presence of both anionic networks and electropositive cations [13]. 
The anionic networks are covalent and the cationic part is ionic in nature. The 
resulting mix of ionic and covalent bonds frequently leads to complex crystal 
structures with large unit cells; such a complex crystal can enable them to have low 
thermal conductivity [15–17]. Additionally, the Zintl-phase chemistry suggests 
that the fundamental transport parameters can be modified by doping to achieve 
a good balance between S and σ, consequently thus can lead to a high power fac-
tor [18,19]. Therefore, Zintl-phases provide desired characteristics for high ZT 
and improved thermoelectric performance since their thermal conductivities are 
intrinsically low. This has been demonstrated in several previous studies, includ-
ing Ca3AlSb3 [20], Ca5Al2Sb6 [21] and Ca5Ga2As6 [22]. This further actuates us 
to search for other possible new Zintl-phase materials for suitable TE candidates. 
In the current study, we are interested in investigating the Ae3AlAs3 (Ae = Sr, Ba) 
compounds that were recently synthesised [23]. These compounds crystalise in 
the Ba3AlSb3 structure type with the space group Cmce. The structural proper-
ties of the title compounds, including the lattice parameters and atomic position 
coordinates, have been investigated using single-crystal X-ray diffraction. The 



PHILOSOPHICAL MAGAZINE   3

band structure and density of states of Ba3AlAs3 have been carried out using the 
tight-binding linear muffin-tin orbital (TB-LMTO) method [23]. To the best of 
our knowledge, some basic physical properties, such as elastic, optical and ther-
moelectric properties of these newly synthesised compounds are not studied. 
Therefore, the main object of the present study is the investigation of the struc-
tural, elastic, electronic, optical and thermoelectric properties of the Ae3AlAs3 
(Ae = Sr, Ba) compounds. The structure of the present paper is as follows: Section 
2 describes briefly the computation setting. Section 3 reports and discusses the 
obtained results, with subsections dedicated to structural, elastic, electronic, opti-
cal and thermoelectric properties. The paper is finished with a general conclusion.

2. Computational details

First-principles calculations were performed by employing two complementary 
methods based on density functional theory. The elastic properties were evaluated 
using the pseudopotential plane wave (PP-PW) method as implemented in the 
CASTEP code [24], while the electronic and optical properties were carried out 
using the full potential linearised augmented plane wave method (FP-LAPW) as 
incorporated in the WIEN2 k suite of programs [25]. The structural properties 
were evaluated using both the aforementioned methods. The structural data from 
Ref. [23] were taken as initial input for our calculations.

For the pseudopotential plane wave approach, Vanderbilt ultra-soft pseudo-
potentials [26] were used to describe the interactions between core and valence 
electrons of each atom. The Ba: 5s25p66s2, Sr: 4s24p65s2, Al: 3s23p1 and As: 4s24p3 
states were treated as valence electrons. The electronic exchange and correlation 
effects were treated through the generalised gradient approximation functional 
in the version of Perdew et al. [27], the so-called GGA-PBEsol. The plane-wave 
basis set energy cut-off was set at 350  eV. The Brillouin zone integration was 
replaced by a summation over a 6 × 6 × 3 k-point mesh generated according to 
Monkhorst-Pack scheme [28]. This set of parameters assures a total energy toler-
ance of 1 × 10−5 eV/atom, a maximum force tolerance of 0.01 eV/Å, a maximum 
stress of 0.02 GPa and a maximum displacement of 5.0 × 10−4 Å}.

It is well known that the first-principles methods with the common generalised 
gradient approximation (GGA) yield good values for the ground state structures 
but they underestimate the band gaps of semiconductors and insulators typi-
cally by 30–50% [29–31] when compared to experiments. The underestimation 
of the band gaps of semiconductors and isolators when using GGA is because this 
approximation cannot describe exactly the exchange–correlation potential. Some 
sophisticated approaches, such as the weighted density approximation (WDA) 
[32], the GW approximation [33] and the Tran-Blaha modified Becke-Johnson 
(TB-mBJ) potential [34], have been developed in order to overcome this insuffi-
ciency and to obtain reliable band gap values for semiconductors and insulators 
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compared to the measured ones. The TB-mBJ is computationally cheaper than 
the other aforementioned methods and produces energy band gaps almost com-
parable with the corresponding measured ones with a reasonable computation 
time. Therefore, in addition to the GGA-PBEsol, the electronic, optical and ther-
moelectric properties of the investigated compounds were calculated using the 
TB-mBJ functional as implemented in the WIEN2 k package [25]. The WIEN2 k 
code is an implementation of the full-potential linearised augmented plane wave 
(FP-LAPW). In the FP-LAPW method, the unit cell is divided into non-overlap-
ping spheres centred at the atomic sites (labelled muffin-tin spheres (MTS)) and 
the space between the MTS (labelled interstitial region (IR)). A linear combination 
of radial atomic functions time spherical harmonics is used inside the MTS to 
expand the wave functions, whereas a plane wave basis set is used in the IR. In 
order to achieve the energy convergence of the eigenvalues, the wave functions 
in the interstitial regions were expanded in plane waves with a cut-off parameter 
KMax = 4 (a.u.)−1. The Brillouin zone integration was replaced by a 6 × 6 × 3 k-point 
mesh. The iteration process was repeated until the calculated total energy of the 
crystal converged to less than 10−5 Ry. The muffin-tin radii were selected as 2.35 
a.u. for Sr, 2.40 a.u. for Ba, 2.18 a.u. for Al and 2.44 a.u. for As.

3. Results and discussion

3.1. Structural parameters

Single-crystal X-ray diffraction technique reveals that the Ae3AlAs3 (Ae = Sr, Ba) 
compounds crystallise in the orthorhombic Ba3AlSb3-type structure, space group 
Cmce, with eight formula units in one unit cell [23] (Figure 1). There are two kinds 
of Ae (Ae1 and Ae2) and As (As1 and As2) atoms. The Wyckoff atomic positions 
in the Ae3AlAs3 unit cell are Ae1: 8f (0, yAe1, zAe1); Ae2: 16 g (xAe2, yAe2, zAe2); Al: 8d 
(xAl, 0, 0); As1: 8f (0, yAs1, zAs1) and As2: 16 g (xAs2, yAs2, zAs2). The fully optimised 
crystal structure, including lattice parameters and atomic positions, for the ort-
horhombic Sr3AlAs3 and Ba3AlAs3 crystals, using both the PP-PW and FP-LAPW 
methods, are collected in Tables 1 and 2 in comparison with experimental findings. 
The inspection of Table 1 data indicates a good agreement between the calculated 
values for the lattice parameters (a, b and c) and the corresponding measured 
ones. Using the PP-PW (FP-LAPW) method, the deviations between the theoret-
ical values of a, b and c and the corresponding experimental ones do not exceed 
+2.03% (−0.51%), −0.72% (−3.27) and +0.67% (−0.01%), respectively, in Sr3AlAs3, 
and −0.03% (−1.38%), −0.34% (−7.48%) and −0.107% (−0.51%), respectively, in 
Ba3AlAs3. Table 2 data show also a very good agreement between the calculated 
atomic position coordinates (x, y, z) and the corresponding measured ones, indi-
cating the reliability of the performed calculations.
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Figure 1. (colour online) one unit cell of sr3alas3.

Table 1.  calculated lattice parameters (a, b and c, in Å) and unit-cell volume (V, in Å3) for the 
sr3alas3 and Ba3alas3 compounds, compared with the available experimental data.

aUsing FP-laPW method within gga-PBesol.
bUsing PP-PW method within gga-PBesol.

a b c V

Sr3AlAs3
Present worka 19.0503 6.3501 12.7002 1587.22
Present workb 19.5368 6.5174 12.7729 1626.39
expt. [23] 19.149 6.5652 12.6871 1595.0

Ba3AlAs3
Present worka 19.5795 6.3501 13.2294 1737.92
Present workb 19.8475 6.8406 13.2741 1802.22
expt. [23] 19.854 6.8636 13.3589 1810.3

Table 2. atomic position coordinates for the sr3alas3 and Ba3alas3 compounds, compared with 
the available experimental data.

aUsing the FP-laPW method within the gga-PBesol.
bUsing the PP-PW method within the gga-PBesol.
cRef. [23].

Atom

x y z

Pres-
ent a

Pres-
ent b Expt. c

Pres-
ent a

Pres-
ent b Expt. c

Pres-
ent a

Pres-
ent b Expt. c

Sr3AlAs3
sr1 0 0 0 0.17601 0.17924 0.17463 0.34919 0.34707 0.34891
sr2 0.17701 0.17755 0.17691 0.31155 0.30838 0.31222 0.13114 0.13009 0.13126
al 0.08477 0.08377 0.08500 0 0 0 0 0 0
as1 0 0 0 0.21042 0.21277 0.20879 0.10330 0.10079 0.10250
as2 0.34107 0.34207 0.34135 0.29518 0.29326 0.29606 0.12081 0.11794 0.12022

Ba3AlAs3
Ba1 0 0 0 0.17027 0.17109 0.17015 0.34671 0.34766 0.34685
Ba2 0.17572 0.17535 0.17563 0.31309 0.31201 0.31318 0.13024 0.12975 0.13014
al 0 0.08316 0.08294 0 0 0 0 0 0
as1 0 0 0 0.20320 0.20566 0.20319 0.09628 0.09791 0.09613
as2 0.34335 0.34294 0.34345 0.30899 0.30728 0.30905 0.11818 0.11954 0.11805
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3.2. Elastic constants and related properties

Accurate calculations of the elastic constants Cij are very helpful to understand 
many physical properties of solids. The elastic constants Cij provide valuable infor-
mation on the stability and stiffness of crystals against externally applied strain, 
bonding characteristics, specific heat, thermal expansion, Debye temperature, 
Grüneisen parameter and so on [35–37]. In general, the elastic behaviour of a 
completely asymmetric material is specified by 21 independent elastic constants 
Cij but due to the presence of some symmetries, this number can be reduced. 
Only nine independent elastic constants, namely C11, C22, C33, C44, C55, C66, C12, 
C13 and C23, are required to characterise the elastic properties of an orthorhombic 
crystal. The elastic constants Cij were evaluated via the calculation of three stress 
tensors corresponding to three different deformation patterns applied to the equi-
librium lattice. The calculated elastic constants Cij using the strain–stress method 
[24] for the title compounds are reported in Table 3. There are no theoretical or 
experimental results for the elastic constants Cij in the scientific literature to be 
compared with the present results. Then, our results can serve as a prediction for 
future investigations.

The elastic constants C11, C22 and C33 reflect the resistance to the linear com-
pression along the [100], [010] and [001] crystallographic directions, respectively. 
From Table 3, one can note that the values of the three aforementioned elastic con-
stants are not remarkably different, suggesting that the resistance to the compres-
sion deformation along the [100], [010] and [001] directions are approximately 
equal. The values of C11, C22 and C33 are higher than those of the other elastic 
constants Cij, demonstrating that the resistance of the two studied compounds 
to the shear distortion is lower than their resistance against the compressional 
deformation.

The mechanical stability of crystals leads to some restrictions on their elastic 
constants. For orthorhombic crystals, these mechanical stability criteria are [38]:

The calculated elastic constants of the two studied compounds (Table 3) satisfy 
the aforementioned criteria. This indicates that these compounds are mechani-
cally stable.

It is not possible to measure the individual elastic constants Cij when single-crys-
tal samples cannot be obtained. In this case, polycrystalline elastic moduli, such 
as the bulk modulus B and the shear modulus G, can be measured. Theoretically, 

C
11
+ C

22
− 2C

12
> 0, C

11
+ C

33
− 2C

13
> 0, C

22
+ C

33
− 2C

23
> 0, C

11
> 0, C

22
> 0,

C
33
> 0, C

44
> 0, C

55
> 0, C

66
> 0, C

11
+ C

22
+ C

33
+ 2C

12
+ 2C

13
+ 2C

23
> 0

Table 3. calculated elastic constants (Cij, in gPa) for the Ae3alas3 (Ae = sr, Ba) compounds.

System C11 C22 C33 C44 C55 C66 C12 C13 C23

sr3alas3 61.7 74.6 76.6 32.4 28.6 30.3 27.1 22.6 31.3
Ba3alas3 80.2 71.1 81.5 17.1 4.7 14.1 21.6 15.3 24.0
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we can deduce the polycrystalline (aggregates of single-crystals with random 
orientations) elastic moduli, which are more desirable for technological charac-
terisation of materials, from the calculated single-crystal elastic constants Cij. The 
isotropic shear and bulk moduli (G and B) can be calculated from the anisotropic 
single-crystal elastic constants Cij using the Hill approximation [39], which takes 
the arithmetic average of the Voigt [40] and Reuss [41] approximations. The Voigt 
approach determines the upper limit of the actual effective moduli, while the Reuss 
approach determines the lower limit of these parameters. The expression of the 
Voigt bulk and shear moduli (BV and GV) and the Reuss bulk and shear moduli 
(BR and GR) can be found in Ref. [42]. The Young’s modulus E and Poisson’s ratio 
σ can be obtained from B and G using the well-known relationships [43,44]. The 
calculated values of the aforementioned elastic moduli are given in Table 4. The 
obtained results allow us to make the following conclusions:

(i)  Due to the low value of the bulk modulus, which represents the resist-
ance to volume change by external applied pressure, one can conclude 
that the considered materials are characterised by a weak resistance to 
the volume change; i.e. by a high compressibility. The lower value of the 
shear modulus, which characterises the resistance to shear deformation, 
demonstrates that Ba3AlAs3 and Sr3AlAs3 have also a weak resistance to 
shape change. Besides, the bulk modulus B is larger than the shear mod-
ulus G in both considered compounds, indicating a better capability of 
resistance to volume change than to shape change.

(ii)  The Young’s modulus E, defined as the ratio of linear stress to linear 
strain, can be used to provide a measure of the stiffness of a material. It 
is found that E of the two studied compounds is weak, indicating that 
these compounds will show a rather small stiffness. The results also 
demonstrate that Sr3AlAs3 is stiffer than Ba3AlAs3 in terms of B, G and 
E moduli.

(iii)  The most widely used criterion to distinguish between ductile and brit-
tle materials is the Pugh’s one (B/G ratio) [45]. According to this cri-
terion, a material can be classified as ductile if the B/G ratio is greater 
than 1.75; otherwise, it demonstrates brittleness. The obtained data 
foretell that Sr3AlAs3 (B/G = 1.55) should behaves as brittle material, 
while Ba3AlAs3 should demonstrates ductility. The classical criteria 
of Cauchy pressure can also be used to examine the brittle/ductile 

Table 4. calculated Reuss, Voigt and hill bulk (BR, BV and Bh, in gPa) and shear (GR, GV and Gh, in 
gPa) moduli, Young’s modulus (E, in gPa) and Poisson’s ratio (σ, dimensionless) for isotropic poly-
crystalline ae3alas3 (Ae = sr, Ba) aggregates.

System BV GV BR GR BH GH

Ej

E σEx Ex Ex
sr3alas3 41.65 39.60 40.92 26.15 41.29 26.60 72.80 60.30 72.52 65.70 0.23
Ba3alas3 39.41 32.73 39.39 12.02 39.40 15.32 72.80 60.30 72.52 40.69 0.32
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character of materials [46]. Pettifor [47] indicated that Cauchy pres-
sure can be adopted to capture the nature of the bonding. Materials 
with a positive Cauchy pressure possess metallic like bonds, thereby 
holding ductile characteristics. On the other hand, brittle materi-
als would hold a negative Cauchy pressure. In orthorhombic mate-
rials, the Cauchy pressure in the three lattice directions can be 
expressed as follows [48]:PCauchy

a = C22 − C44, P
Cauchy

b
= C13 − C55 and 

P
Cauchy
c = C12 − C66. Based on the calculated single-crystal Cij (Table 3), 

P
Cauchy
a = −1.10GPa (6.90GPa), P

Cauchy

b
= −6.0GPa (10.60GPa) and 

P
Cauchy
c = −3.0GPa (7.50GPa) for Sr3AlAs3 (Ba3AlAs3). These results 

confirm the brittleness of Sr3AlAs3 and ductility of Ba3AlAs3.

From the computed bulk and shear moduli, we can evaluate the longitudinal 
(Vl), transverse (Vt) and average (Vm) sound wave velocities in a polycrystalline 
material through the following relationships [49]:

Debye temperature θD, which is associated with the lattice vibration, elastic con-
stants, specific heat and melting point, can be predicated via the following com-
mon relation [49]:

Here, h and kB are the constants of Planck and Boltzmann, respectively, n is the 
number of atoms per one formula unit, NA is Avogadro’s number, ρ denotes the 
mass density, M is the molecular mass. The calculated values of ρ, Vl, Vt, Vm and 
θD for the Ae3AlAs3 (Ae = Sr, Ba) compounds are collected in Table 5. Sr3AlAs3 
has a larger Debye temperature than Ba3AlAs3; this is a predicted result because 
the bulk modulus of Sr3AlAs3 is somewhat larger than that of Ba3AlAs3. Up to 
now, there are no available data for these parameters in the scientific literature to 
be compared with our present findings.

An isotropic material displays the same physical properties irrespective of the 
direction in which those properties are measured. In general, the elastic response 
of a single-crystal is seldom isotropic; almost all the known crystals are elastically 
anisotropic, so their elastic moduli depend on the orientation of the applied force 

Vl =

�

�

BH + 4GH∕3
�

∕�; Vt =
√

GH∕�; Vm =
��

2∕V 3
t + 1∕V 3

l

�

∕3
�−1∕3

�D =
h

kB

[

3n

4�

(

NA�

M

)]
1

3

Vm

Table 5. calculated mass density (ρ), longitudinal, transverse and average sound velocities (Vl, 
Vt and Vm, in m/s unit) and Debye temperatures (θD, in K unit) for the Ae3alas3 (Ae = sr, Ba) poly-
crystals.

System ρ Vl Vt Vm θD
sr3alas3 4.2033 4273.50 2331.94 2600.81 251.95
Ba3alas3 4.8925 3961.10 1769.79 1996.65 186.91
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in respect of the crystallographic axes. The description of elastic anisotropy in 
materials is important because it influences various physical properties, such as 
unusual phonon modes, phase transformations, precipitation, dislocation dynam-
ics, anisotropic plastic deformation, anomalous bcc slip, mechanical yield points, 
crack behaviour, elastic instability and internal friction [50]. The anisotropy in 
mechanical properties might be estimated using various anisotropy indexes and 
factors [51–56]. An even detailed picture of the elastic anisotropy can be emerged 
by plotting a three-dimensional surface representation showing the variation of 
the Young’s modulus with the crystallographic directions. This directional depend-
ence of the Young’s modulus E for an orthorhombic crystal in an arbitrary direc-
tion is defined as [57]:

Here, l1, l2 and l3 are the direction cosines, which determine the angles between 
the axes a, b and c, respectively, and a given direction, and Sij is the elastic com-
pliance constants, which can be acquired from the inverse of the matrix of elastic 
constants. The distance from the origin of the coordinate system to this surface 
is equal to the Young’s modulus in a given direction. For a perfectly isotropic 
medium, this surface would be a sphere, while the deviation of this surface from 
the spherical shape indicates the presence of a certain degree of elastic anisot-
ropy. Figure 2 illustrates the directional dependence of the Young’s modulus of 
the Sr3AlAs3 and Ba3AlAs3 compounds. Figure 1 shows that the degree of elastic 
anisotropy of Ba3AlAs3 is much more appreciable than that of Sr3AlAs3. A deeper 
look into the peculiar features of elastic anisotropy can be gauged by plotting 
the cross-section of the closed surface of E in the principal planes. For isotropic 
crystal, the plane projection curves are circular. From the cross sections plotted 
separately in Figure 1, we can see that there is a clear deviation from circular shape.

3.3. Electronic properties

3.3.1. Band structure
The electronic energy band dispersions along the high-symmetry directions in 
the Brillouin zone (BZ) for the Sr3AlAs3 and Ba3AlAs3 compounds, performed 
at the optimised structural parameters, using the FP-LAPW method with both 
the GGA-PBEsol and TP-mBJ approaches, are depicted in Figure 3. The Γ, Z, T, 
Y, S and R letters indicate the high symmetry points in the BZ of the Ae3AlAs3 
(Ae = Sr, Ba) compounds and their coordinates are respectively (0,0,0), (0,0,0.5), 
(−0.5,0.5,0.5), (−0.5, 0.5, 0), (0,0.5,0) and (0,0.5,0.5) in the unit vectors of the 
reciprocal lattice. From Figure 2, one can note that Sr3AlAs3 has a direct band 
gap; the top of the valence band (VB) and the bottom of the conduction band 
(CB) are located at the Γ-point, while Ba3AlAs3 has an indirect band gap; the top 
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of the VB is located at the Y-point and the bottom of the CB is at the Γ-point. 
The calculated band structures using the TB-mBJ and GGA-PBEsol functionals 
have practically same features except the band gap values that are disparate. The 
calculated Sr3AlAs3 (Ba3AlAs3) energy band gap is 1.51 eV (1.28 eV) when using 
the TB-mBJ formalism, and is 0.90 eV (0.61 eV) when using the GGA-PBEsol. We 
note that the GGA and LDA functionals usually underestimate the energy band 
gap by 30–50% [30–32]. Therefore, one can appreciate that the TB-mBJ considera-
bly improves the band gap values. There are no experimental values for the gaps of 
the studied compounds. The GGA-PBEsol band gap value for Ba3AlAs3 is in good 
agreement with the one predicted by Stanislav et al. [24] using the tight-binding 
linear muffin tin orbital (TB-LMTO) method within the LDA.

3.3.2. Density of states
Assignment of the electronic states compositing the electronic energy bands of the 
considered systems can be made with the help of the total and atomic decomposed 

Figure 2. (colour online) 3D-directional dependence of the Young’s modulus (E, in gPa) and its 
projection on the ab- {(001)}, ac- {(010)} and ab- {(100)} planes for the sr3alas3 and Ba3alas3 
compounds.
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partial densities of states (TDOS and PDOS) diagrams, which are shown in Figure 
4. The Sr3AlAs3 and Ba3AlAs3 valence bands located in the energy range from 
−12 eV up to Fermi level (EF) can be separated into four groups that are labelled 
V1, V2, V3 and V4 in the figure. For Sr3AlAs3, the lowest energy group V1, which 
is stretched from approximately −10.6 to −9.9 eV, is mainly formed of the As1-
4s and As2-4s states. The second group V2, which spreads approximately from 
−9.7 to −8.5 eV, is mainly due to the As1-4p and Al-3s states with a very small 
contribution from an admixture of the Al-3s, Al-3p, Sr1-4p and Sr2-4p orbitals. 
The third group V3, located in the energy range from −4.6 to −3.97 eV, is mainly 
due to the As1-4p and Al-3s states. The fourth valence band group V4, which lays 
approximately from −3.0 eV up to Fermi level (EF), is completely dominated by 
the As1-4p and As2-4p states with a small contribution from the Al-3p, Sr1-4s, 
Sr2-4s, Sr1-4p, Sr2-4p, Sr1-3d and Sr2-3d states. The bottom of the conduction 
band (C1) comes from the Sr1-3d and Sr2-3d states with a small contribution 
from the Al-3p and Al-3s states. For the Ba3AlAs3 compound, the V1 valence band 
group, from –10.7 to –9.97 eV, is mainly occupied by the As1-4s states with a small 

Figure 3. (colour online) electronic band dispersion curves along some high symmetry directions 
in the Brillouin zone for the Ae3alas3 (Ae = sr, Ba) compounds using the gga-PBesol (a) and the 
TB-mBJ (b) functionals.
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contribution from an admixture of the Ba1-5p, Ba2-5p, As2-4d and Al-3s states. 
The second group V2, from −9.7 to −8.5 eV, is mainly formed of the As1-4s states 
with a small contribution from an admixture of the Ba1-5p, Ba2-5p, As2-4d and 
Al-3sp states. The third group V3, from −4.7 to −3.82 eV, is mainly composed of 
the As2-4d and As1-4p states with a small contribution from the Ba1-4p, Ba1-4d, 
Ba2-4p and Ba2-4d. The upper valence band group V4, from −3.05 eV up to Fermi 
level, is mainly due to the As1-4p and As2-4sd states with a small contribution 
from the Al-3p and Ba1-4pd orbitals. The bottom of the conduction band C1 is 
made up basically of the As2-4d, Ba1-4d and Ba2-4d states with a small contri-
bution from the Al-3s and Al-3p states.

3.3.3. Effective mass
The effective mass of charge-carrier provides an opposite contribution to the 
Seebeck coefficient and electrical conductivity. A large effective mass of charge-car-
rier is favourable to improve the Seebeck coefficient; however, the high charge-car-
rier mobility requires a lighter effective mass. To further understand the electrical 
behaviour of the Ae3AlAs3 (Ae = Sr, Ba) compounds, it is necessary to estimate 
their effective masses of the charge-carries in various electron and hole pockets 
at the band edges. The effective mass of electrons (m∗

e) at the conduction band 
minimum (CBMi) and holes (m∗

h) at the valence band maximum (VBMa) can 
be evaluated through a simple parabolic fitting of the dispersion energy E(k)

Figure 4. (colour online) Total and partial densities of states (TDos and PDos) diagrams for the 
Ae3alas3 (Ae = sr, Ba) compounds.
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diagram: E =
ℏk2

2m∗
, where ℏ is the Planck’s constant, E is the band-edge energy as 

a function of the wave vector k and m* is the effective mass. For Ba3AlAs3, the 
effective masses of the holes at the VBMa were calculated along the Y → T and 
Y → �directions and those of the electrons at the CBMi were evaluated along 
the � → S and � → Ydirections. For Sr3AlAs3, the effectives masses of holes and 
electrons are calculated along the � → S and � → Y directions. The obtained 
results are listed in Table 6. From Table 6, it is clear that the electrons and holes 
effective masses show a relevant dependence on the k-direction in the two con-
sidered compounds, implying the anisotropy of this physical property. It is found 
also that the effective mass of electron at the conduction band minimum is small 
than that of the hole at the valence band maximum. Consequently, the p-type 
Ae3AlAs3 (Ae = Sr, Ba) compounds would have the highest Seebeck coefficient, 
while the n-type Ae3AlAs3 (Ae = Sr, Ba) compounds would have the largest elec-
trical conductivity. In addition, we can predict that the charge-carrier mobility 
of the p-type Sr3AlAs3 (Ba3AlAs3) compound along the� → S (� → Y) direction 
should be larger than that in the � → Y (Y → T) direction.

3.4. Optical properties

The fundamental features of the linear response of a medium to the effect of 
an incoming electromagnetic radiation can be accessed from the knowledge of 
its complex dielectric function ε(ω), which is directly related to the interaction 
of photons with electrons. The imaginary part of the dielectric function ε2(ω) 
(ε2(ω) = Im ε(ω); ε(ω) = ε1(ω) + jε2(ω)) is directly proportional to the intensity 
of optical absorption. In the framework of the linear-response theory, ε2(ω) is 
calculated from the matrix elements of the electric dipole operator between the 
occupied states in the valence band and unoccupied states in the conduction band 
within the respect of the selection rules [58]. The real part of the dielectric func-
tion ε1(ω) (ε1(ω) = Re ε(ω)) can be assessed from the imaginary part ε2(ω) via the 
Kramer–Kronig relationship [59]. All frequency dependent macroscopic optical 
functions, such as refractive index n(ω), absorption coefficient α(ω), reflectivity 
R(ω) and electron energy-loss function L(ω), can be deduced from ε2(ω) and 
ε1(ω) using the well-known relationships [60,61]. Since the investigated com-
pounds belong to the orthorhombic system, space group Cmce, it is necessary to 
calculate the three non-zero components of the dielectric tensor that correspond 
to the three polarisations of the electric field E⃗ of the incident electromagnetic 

Table 6. calculated electron and hole effective masses (m∗
e
 andm∗

e
, in units of free electron mass 

m0) for the sr3alas3 and Ba3alas3 compounds.

System m
∗
e
(� → S) m

∗
e
(� → Y) m

∗
h
(� → S) m

∗
h
(� → Y)

Sr3AlAs3 0.2007 0.2202 0.3225 4.0226
m

∗
e
(� → S) m

∗
e
(� → Y) m

∗
h
(Y → T) m

∗
h
(Y → � )

Ba3AlAs3 0.2158 0.3738 0.6161 0.5514
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radiation along the three principal crystallographic directions: a ([100]), b ([010]) 
and c ([001]).

The calculated imaginary parts of the Sr3AlAs3 and Ba3AlAs3 dielectric func-
tions for the three different polarisations, i.e. E⃗∕∕ [100], E⃗∕∕ [010] and E⃗∕∕ [001], 
are presented in Figure 5(a). It is clear from Figure 5(a) that the optical properties 
of the considered compounds exhibit a noticeable anisotropy. To account for the 
features observed in the optical spectra, it is customary to consider transitions 
from occupied to unoccupied states in the electronic energy band structure, espe-
cially at the high symmetry points in the Brillouin zone. Our scrutiny of the ε2(ω) 
curve of Sr3AlAs3 indicates that it rises speedily with practically the same rate for 
the three different polarisations of the incident radiation. The ε2(ω) spectrum 
exhibits two peaks centred at approximately 3.99 and 4.56 eV when the incident 
radiation is polarised parallel to the [100] crystallographic direction, at 4.01 and 
4.91 eV for E⃗∕∕ [010] and at 4.53 and 4.97 eV whenE⃗∕∕ [001]. Based on the calcu-
lated band structure and density of states diagrams, one can conclude that these 
peaks are mainly originated from the direct transitions between the Sr1-4p and 
Sr2-4p or As1-4p and As2-4p states in the valence band and the Sr-3d states in the 
conduction band. The absorptive part of the dielectric function of the single-crys-
tal Ba3AlAs3 exhibits one peak centred at approximately 4.20 eV for E⃗∕∕ [100], at 
4.97 eV for E⃗∕∕ [010]direction and at approximately 4.23 eV for E⃗∕∕ [001]. This 
peak is mainly due to the electronic direct transitions from the occupied state 
As1-4p or As2-4s to the unoccupied states Ba1-3d or Ba2-3d.

Figure 5.  (colour online) calculated imaginary (ε2(ω)) and real (ε1(ω)) parts of the dielectric 
function (ε(ω)) as functions of photon energy for the Ae3alas3 (Ae  =  sr, Ba) single-crystals for 
three different polarisations: E⃗∕∕[100], E⃗∕∕[010]and E⃗∕∕[001].
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The dispersive parts (ε1(ω) ) of the Sr3AlAs3 and Ba3AlAs3 dielectric functions 
are shown in Figure 5(b). The most important quantity in ε1(ω) spectrum is the 
static dielectric constant, which is defined as the zero-energy value of the real part 
of the complex dielectric function: ε1(0) = ε1(ω → 0). The ε1(0) is a parameter of 
fundamental importance in many aspects of material properties. Calculated ε1(0) 
value for Sr3AlAs3 (Ba3AlAs3) is found to be equal 8.048 (8.683) when E⃗∕∕ [100]
, 7.566 (8.255) when E⃗∕∕ [010] and 7.810 (8.361) when E⃗∕∕ [001]. One can note 
that the �1(0)values corresponding to the three different polarisation directions 
are larger than the corresponding ones for Ba3AlAs3. This demonstrates that ε1(0) 
value is inversely proportional with the band gap; a smaller energy gap yields 
a larger ε1(0)value. This is consistent with the Penn’s model [59] based on the 
expression �(0) ≈ 1 + (h�p∕Eg)

2.
The absorption coefficient α(ω) describes the relative decrease in the incident 

radiation intensity when it passes through a medium. The calculated Sr3AlAs3 
and Ba3AlAs3 absorption coefficients in a wider spectral region up to 15 eV for 
three different polarisations of the incident radiation: E⃗∕∕[100], E⃗∕∕[010] and 
E⃗∕∕[001]are displayed in Figure 6(a). The absorption edge in the Sr3AlAs3 com-
pound starts at approximately 1.51  eV for the three different polarisations of 
the incident radiation. For the Ba3AlAs3 compound, the absorption edge begins 
approximately at 1.28  eV for the three different polarisations of the incident 

Figure 6.  (colour online) calculated optical function spectra: absorption coefficient�(�), 
reflectivityR(�), energy loss functionL(�), refractive index n(�)and extinction coefficient k(�)for 
the sr3alas3 and Ba3alas3 single-crystals for three different polarisations: E⃗∕∕[100], E⃗∕∕[010]and 
E⃗∕∕[001].
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radiation. A wide absorption band, located between 2 and 12 eV, characterises 
the considered compounds.

Figure 6(b) displays the calculated dependence of the reflectivity on the incident 
photon energy for three different polarisations for the Sr3AlAs3 and Ba3AlAs3 sin-
gle-crystals. The zero frequency limit R(0 ) of the Sr3AlAs3 (Ba3AlAs3) compound 
is equal to 23% (24%) for E⃗∕∕[100], 21% (23%) for E⃗∕∕[010] and 22% (23%) for 
E⃗∕∕[001]. The reflectivity R(ω) enhances from R(0) with increasing photon energy 
to acquire a maximum and then it decreases rapidly. From Figure 5(b), one can 
note that the maximum reflectivity in Sr3AlAs3 (Ba3AlAs3) arises approximately 
at 6.27 eV (6.00 eV) for E⃗∕∕[100], 6.35 eV (5.75 eV) for E⃗∕∕[010] and 7.60 eV 
(6.35 eV) for E⃗∕∕[001]. This maximum attains 46% (44%) for E⃗∕∕[100], 46% (46%) 
for E⃗∕∕[010] and 43% (42%) for E⃗∕∕[001] in Sr3AlAs3 (Ba3AlAs3).

The energy-loss function L(ω) describes the energy-loss of a fast electron pass-
ing through a material [62]. The main peak of the L(ω) spectrum is generally 
defined as the bulk plasma frequency (ω)p, which occurs when 𝜀2(𝜔) < 1 and 
�1(�) reaches the zero point [63]. The plasma frequency for Sr3AlAs3 (Ba3AlAs3) 
is approximately equal to 13.15 eV (11.68 eV) forE⃗∕∕[100], 13.34 eV (11.87 eV) 
for E⃗∕∕[010]and 12.77 eV (11.60 eV) for E⃗∕∕[001] (Figure 6(c)). When the fre-
quency of incident light is higher than the plasma frequency, the material becomes 
transparent, and hence an abrupt reduction of the reflectivity occurs at the cor-
responding energy.

The refractive index n(ω) of a material describes the difference between the 
propagation of an electromagnetic wave through vacuum and in a material. The 
extinction coefficient directly describes the attenuation of the electromagnetic 
waves in a material, and it is also known as a damping constant attenuation coeffi-
cient. The knowledge of the refractive index of an optical compound is important 
for its use in optical devices, such as photonic crystals and waveguides. Figure 6(d) 
shows the refractive index of Sr3AlAs3 and Ba3AlAs3 in relation with the energy 
of incident radiation. It is found that the static refractive index n(0) (the value of 
refraction index at zero energy) for Sr3AlAs3 (Ba3AlAs3) compound is 2.83 (2.94) 
for E⃗∕∕[100], 2.75 (2.87) for E⃗∕∕[010]and 2.79 (2.89) for E⃗∕∕[100].

Static optical anisotropy for the title compounds can be quantified by an ani-
sotropy rate, which can be expressed as follows [64,65]:

Here, �1(0)
[direction] (n(0) [direction]) is the value of �1(0) (n(0)) along principal optical 

axes and �1(0)
[polycristalline](n(0) [polycristalline]) is its value in polycrystalline. A mate-

rial is optically isotropic if AOPT = 1; otherwise, it is optically anisotropic. The 
degree of deviation of AOPTfrom unity reveal the extent of the optical anisotropy. 
The calculated values of AOPT are shown in Table 7. The calculated AOPT values 

AOPT =

[

�1(0)
[direction]

�1(0)
[polycristalline]

,
n(0) [direction]

n(0) [polycristalline]

]



PHILOSOPHICAL MAGAZINE   17

reveal that the two studied compounds exhibit a certain optical anisotropy. The 
maximum optical anisotropy occurs along the [010] crystallographic direction.

3.5. Thermoelectric properties

When two dissimilar points of a thermoelectric material are held at different 
temperatures, a voltage of several microvolts per Kelvin between these two points 
arises. An efficient thermoelectric material should possess high Seebeck coefficient 
(S) (in order to convert maximum heat to electrical power) and high electrical 
conductivity σ while keeping the thermal conductivity κ low as much as possible. 
So, in order to study the thermoelectric properties of the orthorhombic Ae3AlAs3 
(Ae = Sr, Ba) compounds, we have calculated the basic transport parameters, 
e.g. Seebeck coefficient (S, in μVK−1), electrical conductivity scaled by relaxation 
time (σ/τ, in Ω−1m−1s−1), thermal conductivity scaled by relaxation time (κ/τ, 
in WK−1 m−1s−1), power-factor (PF = S2 s/τ, in WK−2m−1s−1) and factor of merit 
(ZT = �S2T∕�, dimensionless), as function of both charge-carrier concentration 
and temperature. The thermoelectric properties of the examined compounds were 
calculated for temperature between 300 and 900 K and for charge-carrier con-
centration between 1 × 1018 and 1 × 1021cm−3, which is an optimum charge-car-
rier concentration range for better thermoelectric performance, using the semi 
classical Boltzmann theory as implanted in the BoltzTraP computer package [66] 
with a dense k-mesh of 50 × 50 × 50. As the investigated compounds crystalise in 
an orthorhombic system, we have first investigated the directional dependence 
of the thermoelectrical parameters. We find that the two considered compounds 
exhibit almost isotropic behaviour in the TE parameters along the three principal 
crystallographic directions. Since there is no significant anisotropy observed in 
the TE parameters, we have presented only their average values.

Figure 7 shows the variation of the Seebeck coefficient S (thermopower), elec-
trical conductivity scaled by relaxation time σ/τ, electronic thermal conductivity 
scaled by relaxation time κ/τ and power-factor PF with charge-carrier concentra-
tion for both n-type and p-type Sr3AlAs3 and Ba3AlAs3 compounds at 300, 600 
and 900 K. Panel (a) of Figure 6 demonstrates that the absolute value (magnitude) 

Table 7. calculated static dielectric constants ε1(0), static refractive indexes n(0)and optical ani-
sotropy AoPT for the sr3alas3 and Ba3alas3 compounds in polycrystalline and along the principal 
optical axes:[100], [010] and [001].

System ε1(0) n(0) AOPT

Sr3AlAs3 Polycrystalline 7.808 2.79
[100] 8.048 2.82 [1.031, 1.011]
[010] 7.566 2.75 [0.969, 0.986]
[001] 7.810 2.79 [1.0, 1.0]

Ba3AlAs3 Polycrystalline 8.433 2.90
[100] 8.683 2.94 [1.030, 1.014]
[010] 8.255 2.87 [0.979, 0.990]
[001] 8.361 2.89 [0.991, 0.997]
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of S decreases with an increasing charge-carrier concentration for both n-type 
and p-type doping at a fixed temperature. The magnitude of S increases with an 
increasing temperature due to the increase of charge-carrier concentration for 
both charge-carrier types; this is a common trend in thermoelectric materials. 
One can note that the considered compounds possess larger thermopower for the 
holes compared with the electrons throughout the considered temperature range. 
For the same carrier concentration, the difference in Seebeck coefficient between 
electrons and holes is of the order of 200 µV/K. This result is consistent with 
the calculated charge-carrier masses; large Seebeck coefficient translates to large 
effective masses of charge-carries. The thermopower shows practically the same 
behaviour regarding the variation of charge-carrier concentration and temperature 
for the two title compounds. This comportment is might be due to the similarity of 
their band dispersions around the Fermi level and their effective masses, which are 
close to each other. For the same concentration and same type of charge-carrier, 
the two studied compounds have almost equal value for the thermopower at the 
same fixed temperature. To have an idea about the thermopower efficiency of the 
title compounds, we have compared their Seebeck coefficient S with a traditional 
thermoelectric material, Bi2Te3. It was reported that at 300 K and charge-carrier 
concentration of 4 × 1018 cm−3, Bi2Te3 has a thermopower of 313 μVK−1 for p-dop-
ing and of 196 μVK−1 for n-doping [67,68], while our investigated compound 
Sr3AlAs3 (Ba3AlAs3), at the same conditions, has a Seebeck coefficient S equal to 
approximately 442 (472) μVK−1 for p-doping and −327 (−404) μVK−1 for n-doping. 
From this, one can appreciate that the thermopower value of the examined mate-
rials is larger than that of the traditional thermoelectric compound. This allows 

Figure 7. (colour online) calculated average seebeck coefficient (S; panel a), electrical conductivity 
scaled by relaxation time (σ/τ; panel b), thermal conductivity scaled by relaxation time (κ/τ; panel 
c) and power-factor (PF = S2σ/τ panel d) as functions of both electron and hole concentrations at 
300, 600 and 900 K for the sr3alas3 (solid lines) and Ba3alas3 (dotted lines) compounds.
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us to claim that the Sr3AlAs3 and Ba3AlAs3 systems are potential candidates for 
thermoelectric applications if one can more reduce their thermal conductivity 
by some techniques, such as alloying, nano-structuring or superlattice growth.

Panels (b) and (c) of Figure 7 demonstrate that the electrical and thermal 
conductivities scaled by relaxation time (σ/τ and κ/τ) increase with an increasing 
charge-carrier concentration in the two considered compounds for both n-type 
and p-type doping at a fixed temperature. It is found that the σ/τ value of the 
electrons is larger than that of the holes.

Figure 8 depicts the variation of the figure of merit (ZT) as function of hole and 
electron concentrations at 300, 600 and 900 K for Sr3AlAs3 and Ba3AlAs3. One 
can note that at the same temperature and same charge-carrier concentration, the 
maximum figure of merit (ZT) is found in the hole-doped systems. At 900 K, the 
ZT is equal 1.02 (1.00) in the p-doped Sr3AlAs3 (Ba3AlAs3) and 0.93 (0.89) in the 
n-doped Sr3AlAs3 (Ba3AlAs3).

4. Conclusion

In summary, we have investigated in detail the structural, electronic, optical and 
thermoelectric properties of the new ternary arsenides Ae3AlAs3 (Ae = Sr, Ba) 
using first principles calculations.

Our main findings are as follows:

(i)  The calculated structural parameters agree very well with the available 
experimental findings.

Figure 8. (colour online) calculated figure of merit zT as a function of charge-carrier concentration 
of both electron and hole concentrations at 300, 600 and 900 K for the sr3alas3 (solid lines) and 
Ba3alas3 (dotted lines) compounds.
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(ii)  The two examined compounds are mechanically stable and exhibit a 
noticeable elastic anisotropy. Sr3AlAs3 (Ba3AlAs3) will behave as brittle 
(ductile) with rather moderate stiffness.

(iii)  The calculated band structures using the TB-mBJ potential reveal that 
Sr3AlAs3 and Ba3AlAs3 are semiconductors with band gaps equal to 1.51 
and 1.28 eV, respectively.

(iv)  The calculated dielectric function, extinction coefficient, reflective index, 
reflectivity and electron energy-loss function for polarised incident radi-
ation along the principal crystallographic directions show noticeable 
anisotropy. The origin of the features that appear in the optical spectra 
has discussed. The static dielectric constants ε(0), refractive index n(0) 
and plasmon energy were estimated.

(v)  We found that Sr3AlAs3 and Ba3AlAs3 are promising TE materials with a 
high Seebeck coefficient and electrical conductivity, but their figures of 
merit are limited by their large thermal conductivity.
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