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Abstract: 

This thesis deals with application of artificial intelligence techniques for the diagnosis, 

detection and classification of defects in photovoltaic systems. These latter like all electrical 

and electronic systems, can break down and degrade during the operating period. This 

requires a diagnostic whose main objective is to provide an automatic tool that can early 

detect defects to protect the persons and installations, and in addition can classify these 

defects. At the end of 2016, 303 GW of photovoltaic energy was installed around the world. 

About 75 GW installed only in the year of 2016, and this comes from the fact that new 

solutions have encouraged government to rely more and more on this kind of energy. For the 

development of fault classification algorithms in photovoltaic systems, at the beginning, a 

database is collected using real time emulator. Then, classifiers based on artificial intelligence 

were built, such as the fuzzy classifier, neuronal and the neuro-fuzzy classifier. Finally, the 

diagnostic task was sophisticated with the introduction of a new classifier "multi-class neuro-

fuzzy classifier (MC-NFC)". This latter has been implemented on a DSPACE platform 

"DS1104" to demonstrate its ability to detect and classify faults in real time. 

Keywords: Artificial Intelligence; neuro-fuzzy classifier; diagnostic; faults classification; 

photovoltaic systems; real time simulation. 
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CHAPTER 1 

 

Introduction 
 

1.1. Background and Motivation 

Photovoltaic systems’ reliability is defined in terms of maximizing the electricity 

production, and minimizing the factors that cause the power losses of the photovoltaic array 

(PVA), which is related to the implemented strategies for Maximum Power Point Tracking 

(MPPT) algorithms [1.1-1.3] and protection devices avoiding both energy and material losses 

[1.4]. At the end of 2016, 303 GW of photovoltaic energy was installed around the world. 

About 75 GW installed only in the year of 2016 [1.5], and this is comes from the fact that new 

solutions have encouraged government to rely more and more on this kind of energy. PVS 

like all electrical and electronic systems can break down and degrade during the operating 

period. This requires a diagnostic whose main objective is to provide an automatic tool that 

can early detect defects to protect peoples and installations, and in addition classifying these 

defects. 

To stop unexpected events in solar photovoltaic (PV) systems, fault detection and 

protection are essential. Solar PV systems are subject to various faults along the PV arrays, 

power conditioning units, battery banc, cabling, and utility interconnections [1.1, 1.2]. It is 

difficult to shut down PV array completely during faults, since they are energized by sunlight. 

In a large PV array, it may become difficult to properly detect or identify a fault, which can 

remain hidden in the PV system until the whole system breaks down. In addition, 

conventional series-parallel PV configurations increase voltage and current ratings, leading to 

higher risk of large fault currents or dc arcs. 
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Due to faults occurring within PV arrays, several fires have been reported in PV systems 

[1.6-1.9]. Figure 1.1 shows a fire case in a 383 kW PV array in Bakersfield, California in 2009 

[1.6, 1.7]. Another fire is illustrated in Figure 1.2, which occurred in a 1 MW PV power plant 

in Mount Holly, North Carolina, in 2011 [1.9]. In these cases, the fault remained undetected 

in the PV installation until the catastrophic fire is initiated. These fire cases not only show the 

failing in conventional fault detection and protection designs in PV arrays, but also disclose 

the urgent need of a better way to stop such issues. 

 

Figure 1.1: Fire hazards in a 1,208kW PV array, in Mount Holly, North Carolina, in 2011 

[1.9]. 

Due to the large usage of real time simulators in PV systems, there has been a possibility of 

PVA faults creation, repeating and changing easily. As a result, excessive PV data can be 

collected (both for faulty and healthy PVA). For example, as shown in Figure 1.3 a typical 

grid-connected PV system, various PV data can be collected. These PV data are mainly used 

to train and test classifiers and thus evaluate the PV system performance and calculate the 

energy losses. Hence, it is possible to develop more responsive fault-detection classifiers that 

can make better use of these readily available PV data. 
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Figure 1.2: Fire hazards in a 383kW PV array, in Bakersfield, California, in 2009 [1.6]. 

The existing fault detection and classification algorithms are built using fixed classifier’s 

inputs and fault scenarios that do not cover all possible real cases. Constructed features 

(classifier’s inputs) are applied without prior information on their effect on the classifier 

performance. Moreover, what it is known certainly, is that the constructed features have not 

the same effect on the classifier decision (output), some of them have the same effect, and 

some others have no effect on the classifier output at all. These reasons conduct us to reduce 

the classifiers’ inputs space. This leads, to avoid redundant information, in the case where 

some collinear features exist, and also eliminating features that have no effect on output of the 

decision function. Thus, optimized architectures are designed. 

1.2. Problem statement 

Figure 1.3 shows a typical grid-connected PV system including a PV array, a PV inverter, 

protection devices (OCPD, GFDI). Many fault types could occur within PV arrays, such as 

increased series resistance, ground faults, open-circuit faults, and bypass diode fault. 

Conventional fault detection and protection methods usually use OCPD (e.g., fuses) and 

GFDI with PV components [1.10] to protect PV components from large fault current. 
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However, certain faults in PV arrays may not be cleared by OCPD or GFDI due to non-linear 

output characteristics of PV arrays, PV current-limiting nature, high fault impedances, low 

irradiance conditions, PV grounding schemes, or MPPT of PV inverters [1.11]. These 

drawbacks fetch what is known under the name of “blind spots” in the readily protection 

solutions, leading to more power losses in PV system, accelerates system aging. DC arcs and 

similar fire hazards are reported in [1.9, 1.11]. 

 

 

 

 

 

  

 

 

 

 

 

Figure 1.3: Schematic diagram of a grid-connected PV system, together with 

different types of faults in the PV array. 

1.3. Thisis Organization 

Motivated by the previously discussed research problems, this thesis aims to analyze and 

elucidate the restrictions of existing methods and to recommend new fault detection and 

classification method. Thus, fault detection gap in solar PV arrays are limited. Specifically, 

the thesis is organized as follows: 

 Fault #1: Partial Shading (F1). 

 Fault #2: Increased Series Resistance (F2). 

 Fault #3: Bypass Diode Short Circuited (F3). 

 Fault #4: Bypass Diode Impedance (F4). 

 Fault #5: PV module short-circuited (F5). 

Utility grid 

+ 

- 

Overcurrent protection devices 

String 1 String 2 String n 

Ground 

Fault 

Detection 

Device 

 

Centralized 

Inverter 

Vpv 

F1 

F2 

F4 

F5 

F3 
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The state of the art is presented in Chapter 2. Chapter 3 explains how to collect data from 

PVA emulator for detection and classification algorithms development purpose. Chapter 4 

focuses on classifier inputs (features) reduction techniques. Chapter 5 develops the multiclass 

neuro-fuzzy classifiers that detect and also classify faults in PVA. In Chapter 6, a brief 

summary of the research results is presented and future research works are addressed. 

In chapter 2: State of the Art of fault detection and classification methods in Photovoltaic 

Array will be presented. 

 Faults that can occur in PVA will be presented. 

 The existing fault detection and classification methodologies will be presented. 

In chapter 3: A Real Time Emulator will be development and Data sets for classifiers training 

and testing will be collected. 

A real time emulator for PVA is developed for data collection. Thus, detection and 

classification algorithms development. 

 The model of PVA is implemented in a DS1104 platform, where is able to create faults 

and record data for faulty and healthy cases. 

 Control algorithms for MPPT are tested successfully with changing irradiance and then 

with changing temperature. Diagnosis algorithms was also tested and implemented. 

 An interface human/machine was created in ControlDesk software of ds1104 platform for 

facility of manipulation. 

 A sufficient number of data was recorded in Matlab workspace for further processing. In 

fact, a total of 2860 couples of current-voltage characteristics combined with its 

corresponding values of irradiance and temperature. 

In chapter 4: classifier’s features will be constructed and reduced. 

 Features are constructed using mathematics formulas, new features are introduced. 

 A Matlab program is developed in order to reduce the classifier input dimensionality. 

Features are selected for each classifier. 
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A standard algorithm was implemented in Matlab to choose the best set of features for 

each classifier. 

In chapter 5: Fault Classification Using Artificial Intelligence Algorithms 

 The limitations of existing methods for PV fault detection and classification are explained. 

 The building blocks for Multiclass Neuro-Fuzzy Classifier (MC-NFC) classifier are 

presented (fuzzy classifier and neural network classifier). 

 A Multi-Class Neuro-Fuzzy Classifier is developed for fault detection and classification in 

PVA. The developed classifier is compared to the artificial neural network (ANN) 

classifier. 

 The proposed classifier is implemented and tested with experimental PVA data. 

In chapter 6: Conclusions and Future Research 

 The conclusions and future research are presented. 

1.4 Contributions 

This thesis shows some key research contributions and scientific improvements over the 

existing solutions. 

1- First, new features have been introduced into the classifier input. Namely, I-V curve area 

and slopes at different points of the I-V curve. 

2- A new way for classifier inputs’ is presented, starting by using many features and then 

reducing their number by using features dimensionality reduction techniques. This 

alternative solution saves a lot of time for classifiers development. 

3- Third, in the proposed method some patterns of faults are used, but it can detect all 

possible real patterns for the concerned fault. 

4- Finally, a MC-NFC is developed to discriminate between five different types of faults in a 

PVA. 
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CHAPTER 2 

 

State of the Art 
 

 

2.1 Introduction 

Photovoltaic Arrays are subject to many failures, mainly due to the external operating 

conditions. Faults in photovoltaic system (PVS) are caused by: shading effects, module 

soiling, inverter failure, and mismatch due to variation in manufacturing or aging of PV 

modules (PVM). The main catastrophic failures in PV arrays (PVA) are: the line-to-line fault 

(LLF), ground fault (GF) and arc fault (AF) [2.1]. 

Fault detection and classification (FDC) for PVA, is an essential task to protect this latter 

from damage and fire risks [2.2, 2.3]. The main task of fault detection (FD), in PVA, consists 

of comparing the difference between the measured and calculated parameters with reference 

values, in order to verify the occurrence of any fault, while the fault classification (FC) 

identifies the type of faults [2.4]. Fault localization remains a big challenge, particularly in 

large scale PV plants [2.5].  A review on the application of non-electrical methods (e.g. 

infrared, thermal imagining) for FDC of PVA is presented in [2.6, 2.7]. The most common 

techniques on image analysis can detect and localize faults, but they have been applied and 

verified only for SS-PVP. A brief review on fault detection and monitoring systems was 

published recently in [2.8], in which the authors addressed the major PVS failures. 

This chapter presents the state of the art of fault detection and classification (FDC) 

techniques for PVA. Different fault types are reported in this chapter. 
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2.2. Types of faults in PVA 

Any fault occurring in PVA causes efficiency reduction, output power reduction, and 

safety hazards. Different types of fault in PVM are detailed in [2.9]. These include 

discoloration, cracking, antireflection coating damage, bubbles, soiling, busbar oxidation and 

corrosion, back sheet adhesion loss, etc. Some failure modes detection methods are presented 

in [2.10]. The faults consist of: bypass and blocking diodes faults, faults in a junction box, 

hotspot, faults in a PVM, PVA, arc, line-to-line faults and ground fault. 

2.2.1 Bypass Diode fault and Blocking Diode fault (DF) 

The electrical faults associated to these diodes are: short circuited diode, open circuited 

diode and impedance. The common reason of these faults may occur when shading in PV 

module/array for a long period of time [2.11, 2.12] is occurred. Bypass diode (BpD) is a key 

element for safe system operation [2.13]. However, blocking diode (BkD) in series with PVM 

will stop Over Current Protection Devices (OCPD) to operate correctly [2.14]. The reverse 

current under LLF will be cut off by BkD and the system fails. 

               

                               (a)                                                                 (b) 

Figure 2.1: (a) good bypass diode and blocking diode, (b) damaged diode. 

2.2.2 Junction box fault (JBF) 

Corrosion occurred in junction box (JB) may lead to a quick increase in contact resistance 

[2.15]. An electric arc between the contact leads to wearing out and melting of the JB. This 

would finally damage the modules and the whole array, causing the PVS owner further 

damages due to loss of energy production. 



Chapter 2. State of the Art of FDC methods in PV Array 

 

 
10 

         

                                    (a)                                                                     (b) 

Figure 2.2: (a) good junction box; (b) damaged junction box. 

2.2.3 PV module fault (PVMF) 

The faults on the PVM can occur when the array is isolated from the ground, due to 

corrosion, delamination of the PVM, leakage currents within a module and manufacturing 

defects which may lead to shunted module and short circuit within a module [2.16]. 

Generally, faults in PVM may cause electrical shock hazard and fire risk. 

2.2.4 Hot spot (HS) fault 

Hot Spot (HS) can be caused when some cells in a PV string/array have different I-V 

curves [2.17], i.e., there are variations in I-V characteristics of PVMs, high resistance or cold 

solder points due to manufacturing processes [2.17]. In addition, such characteristic may be 

affected by soiling and dust accumulation [2.18], degradation of the cells, incomplete edge 

isolation [2.19] by transparent module materials or by the manufacture's tolerance and the 

non-uniform insolation. The partial shadow effect can be considered as a particular case of the 

mismatch fault. The HS phenomenon can result when the bypass diode of the shaded cells is 

damaged/disconnected, thus its current decreases and its voltage becomes negative, so the 

shaded cells consumes power from other non-shaded cells instead of generating it [2.20], and 

if this phenomenon persists the affected solar cells will be damaged [2.21]. Some methods for 

detecting HS are reported in [2.22], but many techniques for quick detection of HS in a PVM 

are based on infrared measurements. 
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                                (a)                                                                        (b) 

                

                                 (c)                                                                           (d) 

Figure 2.3: Hot Spot fault: causes (a) Shading, (b) Hot Spot phenomena in PVM, (c) Soiling 

and dust accumulation, (d) Hot Spot damage in PVM 

2.2.5 Arc faults (AF) 

An Arc Fault (AF) is the unintended flow of current through air or another dielectric. AFs 

are generally divided into two categories [2.23]: 

 Series AF: arc from discontinuity in electrical conductor 

 Parallel AF: electrical discharge between conductors with different potentials. 

An AF Detector (AFD) should be included in each system. There are two approaches to 

detect an AF; the first one is based on the measured value of the DC current in a conductor, it 

consists of adding small impedance in series with the circuit and measures the resultant 

voltage. While, the second is based on the measured value of the AC current in a conductor, 

this approach is relatively easy, due to the oscillatory nature of an AC current; a transformer 
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may be used as the sensing element. More details about both approaches can be found in 

[2.24]. Parallel and series AF must be de-energized to protect PVS from fires [2.23]. With 

reference to NEC 2011, Article 690.11 [2.24] a PV system higher than 80 V penetrating a 

local or a utility network is suggested to integrate an AF circuit interrupter (AFCI) device as a 

protection measure. 

2.2.6 Line-to-Line fault (LLF) 

A line to line fault (LLF) is an unintended low-resistance connection between two points of 

different potential in an electrical network or system. In PVS, a LLF is usually defined as a 

short-circuit fault among PVM or array cables with different potential [2.25]. LLF in PVA 

may be caused by: insulation failure of cables, incidental short circuit between current 

carrying conductors, low insulation between string connectors in DC string box and 

mechanical damage. To protect the PVA from LL incidents, many companies have developed 

protecting devices. 

2.2.7 Ground fault (GF) 

A ground fault (GF) in PVA can be considered as an unintended electrical short circuit 

connecting ground and one or more normally designated current-carrying conductors [2.26]. 

GF in PVA often represent people's safety issues because they may generate DC arcs at the 

fault point on the GF path. If the fault is not removed properly, the DC arcs could maintain 

and cause a fire hazard [2.14, 2.26]. Identifying ground faults is a significant problem in 

ungrounded PVS because such earth faults do not provide sufficient fault currents for their 

detection and location during system operation [2.27]. GF is the most common fault in PVS 

and may be caused by the following reasons [2.26]: secondary short circuit between normal 

conductor and ground, insulation failure of cables, and GF within PVM. 

Figures 2.4 and figure 2.5 are taken from [2.28]; in figure 2.4 the fault remains undetected, 

unless the fault shown in figure 2.5 is detected and cleared. 
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Figure 2.4: The first undetected ground fault between a grounded current-carrying conductor 

(i.e., the negative conductor) and the equipment-grounding conductor. 

 

Figure 2.5: The second ground fault between an ungrounded current-carrying conductor (i.e., 

the positive conductor) and the equipment-grounding conductor. 
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2.3 Existing Fault detection and classification methods 

Many systems have been recently proposed intending to perform a real-time monitoring of 

PV array (PVA); in this context all methods should respond to the standard IEC 61724 

requirements [2.29], and the guidelines of the European Joint Research Centre (JSC) in Ispra, 

Italy [2.30, 2.31]. 

Several FDC methods have been proposed in literature, the main features that can 

characterize such methods are: detecting the defect quickly, the input data required (climatic 

and electrical data), and selectivity (i.e., ability to distinguish between different faults). They 

can be classified into two main groups: 

 Visual & thermal methods [2.7], which can be used for detecting discoloration, 

browning, surface soiling, hot spot, breaking, and delamination, and; 

 Electrical methods that can be used for detecting and diagnosing faulty PVM, strings 

and arrays including arc fault, grounding fault, diodes fault, etc. 

Most electrical-based FDC methods rely on some type of PVA model to detect various 

types of faults. 

Electrical methods can be classified into five groups [2.32]: 

 statistical and signal processing approaches (SSPA); 

 I-V characteristics analysis (I-VCA); 

 power losses analysis (PLA); 

 voltage and current measurement (VCM); 

 Artificial intelligence techniques (AIT). 

Some FDC methods based on electrical techniques are recently reported in [2.33]. 

In this chapter, we did not present Visual & thermal based methods, the readers can be 

reported to [2.7] for more information. 
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2. 3.1 Methods based on statistical signal and processing approaches (SSPA) 

Signal processing methods are mainly based on the analysis of the signals. In [2.34], time-

domain reflectometery (TDR) technique is used to find the position of the failed PVM in a 

PVA. The authors underlined that the method can be employed for fault detection and 

localization, however the method is dependent on the installation conditions such as modules 

mounting, wiring, or PVA components materials. 

An electrical method [2.35] is based on the Earth Capacitance Measurement (ECM) and 

TDR to detect which PVM in a string is disconnected. According to the authors, the ECM can 

be used to detect the disconnection positions between the PVM in the string without the 

effects of the irradiance change, and the TDR could detect the position of the degradation, 

such as the increase in the Rs between the PVs. The work done by Takashim et al. [2.35] 

showed that the ECM method could be applied not only to a PV string consisting of 

crystalline Si PVM, but also to a string consisting of amorphous –Silicon (a-Si) PVM. The 

TDR technique [2.36] was used to detect breaks of the circuit, insulation defects, wiring 

anomalies in strings including open circuit and inversed polarity. A 1 MW PV plant (PVP) 

was tested for a couple of days. The method is basically based on the analysis of the 

waveform of the output voltage. 

An AF circuit protection technique is proposed in [2.37]. This technique can be used to 

detect and interrupt arcing faults resulting from a failure in the intended continuity of a 

conductor, connection, module, or other system components in the direct current PV source 

and output circuits. In [2.38], the authors developed a fault detection method (FDM) for a 

grid-connected PV system (GCPVS) using wavelet transform (WT). The advantage of the 

method is the simple calculation and precise diagnostic capabilities of the fault diagnosis. A 

monitoring system (MS) which provides real-time measurements of each PVM's voltage and 

current is considered in [2.39]. The presented method employs a classical approach to outlier 

detection, employing more recent work in robust statistics to overcome the problem of 

multiple clustered anomalous observations. It has been examined only for two types of faults, 

AF and GF [2.39]. As reported in [2.40], it is possible to detect AF using Fast Fourier 

Transform (FFT), but it is not as significant as using WT, particularly when it comes to the 

problem for a threshold setting for AF determination. The proposed method is validated 

experimentally with good results. 
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Recently, a statistical method named exponentially weighted moving average (EWMA) 

chart is developed in [2.41], the method is used to investigate the following faults: short-

circuit, open circuit and shading in PVS. The method has been tested for a GCPV system and 

the results are very promising. 

2. 3.2 Methods based on the I-V characteristic analysis (I-VCA) 

Fault diagnosis of PVA based on the I-V characteristic is firstly introduced in [2.16], in 

which a procedure for the detection of PVA faults is proposed. It consists of comparing the 

actual to expected electrical parameters from I-V characteristics. Faulty disconnection in PVA 

is investigated. Experimental testing has demonstrated the ability of the method to detect 

some PVA faults. The analysis of the shape of the I-V characteristic of PVA cannot always 

detect faults. For this reason, Miwa et al. [2.42] have proposed a method based on the analysis 

of the (dI/dV)-V characteristic in order to evaluate automatically the output drop of PVS 

caused by different loss factors. It was demonstrated that an appearance of a peak of the (-

dI/dV)-V characteristic is effective to diagnose the power output drop of a PVS. 

Five common types of faults (mismatch, DF, connectivity, PVMF and GF) in PVA were 

investigated in [2.43]. A Matlab/Simulink based model is developed for this study. Simulation 

results show that the designed model can simulate the different faults investigated. Daliento et 

al. [2.44] developed a novel method to detect failures based on simple electrical 

measurements. The authors analyzed the first and the second derivation of I-V curve in order 

to detect possible faults in RS and BpD. The method is simulated and validated 

experimentally, although the applicability of the method is limited.  

2. 3.3 Methods based on the power losses analysis (PLA) 

An automatic supervision and FD procedure, based on the PLA is proposed in [2.45], 

which permits to identify three groups of faults and a false alarm: faulty modules in a string, 

faulty string, and a group of different faults such as partial shadow, ageing, and MPPT error. 

The automatic supervision method is based on the analysis of the power losses present in the 

DC side of the PVA and capture losses. Two kinds of capture losses have been introduced: 

thermal capture losses and miscellaneous capture losses. A procedure for fault diagnosis in 

PVS with distributed MPPT at module level, power optimizers DC-DC or micro-inverters 

DC-AC, is proposed in [2.46]. It has been shown that the designed procedure can diagnose a 

large scope of failures including: fixed object shading, possible HSs, small localized dirt, 
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module degradation, generalized dirt and cable losses. The method was experimentally 

verified. 

Shimakage et al. [2.47] developed a fault detection system by comparing the present and 

past conditions in a faulty PVA, and the proposed method was evaluated at specific fault 

conditions based on the assumption that some modules are bypassed by the behavior of a BpD 

because of a module fault or a partial shadow on modules in a string. Multiple faults can be 

detected in the algorithm proposed in [2.48], in which they have used two indicators PR and 

VR in order to determine the fault type, time and the location where this fault occurred in the 

PV system. The method is based on a statistical analysis of data and theoretical thresholds. 

The method is not able to detect any fault occurred in AC side of the system. 

2. 3.4 Method based on voltage and current measurements (VCM) 

In [2.49] the authors developed a graph-based semi-supervised learning model for fault 

detection and classification in PVA. A graph-based semi-supervised learning has been 

proposed for possible detection of hidden faults in PVA. Experiments demonstrated that the 

proposed method can correctly detect and classify specific normal conditions, LLFs, and 

overcurrent (OC) faults in real-working conditions. 

In [2.50] the authors define new current and voltage indicators (named: NRc and NRv) as 

well as the thresholds for both parameters to identify PV string and inverter failures. 

Investigated faults are: faulty string (one string in open circuit) and bypassed module (one 

PVM bypassed in one string). With respect to the authors, the proposed method is simple but 

effective while considering the minimum number of sensors and minimizes the monitoring 

and supervision system, which can be included in the inverter. Moreover, the supervision of 

the PVS could be carried out in real time by the inverter itself. 

A hardware realization based on Arduino device has been realized for mismatch 

identification of solar cells [2.51]. Three parameters have been measured: voltage, 

temperature and resistance of the module. The method can detect easily the mismatch fault. A 

method for detecting the number of open and short circuit faults, and discriminate between 

them and partial shading condition is proposed in [2.52]. The method is based on the 

measurement of the operating voltage of PV string and ambient temperature. A case study for 

a PVA formed by 8 × 3 PVM was also presented and results showed that the algorithm is able 

to identify the actual fault of the system with high probability. 
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2. 3.5 Methods based on artificial intelligence techniques (AIT) 

In the last decade artificial intelligence techniques (AIT) have proven their capability for 

modeling, control, prediction and forecasting in PVS [2.53]. 

A matter element model is combined with an ANN to build an intelligent fault diagnosis 

system as shown in [2.54]. According to the authors, the proposed fault diagnosis method was 

adopted to identify the faulty types of a 3.15 kW PVS. The simulation results indicate that the 

proposed fault diagnosis method can detect the fault types of PVS rapidly and accurately with 

lower time and memory consumption. 

In [2.55] the authors presented a method on ANN-based Genetic Algorithm (GA) to 

diagnose and repair the PVS dynamically. They have shown that, the proposed method proved 

how good it is for the practical applications. The designed approach can be used for detecting 

the following faults: short-circuit (SC), open-circuit (OC) and degradation in PVM faults. 

A fault diagnosis meter based on a ZigBee Wireless Sensor Network (WSN) for PV power 

generation systems is proposed in [2.56]. An Extension Neural Network (ENN) fault 

diagnosis method is used to identify whether the PV power generation system is operating 

normally or a fault has occurred. The method includes as inputs the solar irradiation and 

module temperature of the PVM and then using this information together with the 

characteristics captured from the PV power generation system, provide fault diagnosis, 

including Pm, Im, Vm and Voc of the PVA during operation. 

A novel fault diagnostic technique for PVA based on ANN was proposed recently in [2.32, 

2.57]. The analysis is performed using two different Algorithms: 

 Algorithm 1, implements a signal threshold approach and isolates the faults that have a 

different combination of attributes; 

 Algorithm 2, consists of an ANN based approach and detects the faults that are 

characterized by the same combination of attributes. 

It has been demonstrated that the designed technique is able to detect and identify 

accurately the investigated fault categories in the PV string, using only the parameters of the 

I-V characteristic as well as the irradiance level and cell temperature. 
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A fault detection method for photovoltaic module under partially shaded conditions is 

introduced in [2.58]. It uses an ANN in order to estimate the output photovoltaic current and 

voltage under variable working conditions. The results confirm the ability of the technique to 

correctly localize and identify the different types of faults. The designed diagnostic method is 

cheap because it requires as input only the following parameters: solar irradiance, PV 

module's temperature, and PV array's current and voltage [2.58]. In [2.59] the authors 

developed a fuzzy logic technique for fault detection in a PVA. The designed algorithm is 

able to discriminate between the most frequently occurring PVM module faults, such as 

increased series losses, BpD and BkD with good accuracy (90–98%). 

A method to detect line-to-line and line-to-ground fault, mainly based on the application of 

a multi-resolution signal decomposition (MSD) technique on fuzzy inference system is 

developed in [2.60]. Results show that the method is able to detect faults in a PV array, and it 

was demonstrated experimentally for a Small-Scale PV Array (SS-PVA). In [2.27] a fault 

detection method based on WT and ANN is developed for an ungrounded PV system. The 

designed method is able to detect and localize GF and LL faults in a PVA. Finally, the 

effectiveness of the designed fault locator is tested with a variety of system parameters. The 

results demonstrate that the proposed approach has accurate and robust performance even 

with noisy measurements and changes in operating conditions. A method based on the 

theoretical I-V curves analysis and FL classification system for fault detection in DC-side of a 

1.1 kWp grid-connected PV system (GCPVS) is developed in [2.61, 2.62]. The investigated 

fault is partial shading effect in PV modules. The classification rate is more than 98%. 

Recently, the authors in [2.63] developed a novel fault diagnosis approach to detect and 

classify the following faults: degradation, open circuit, short circuit and partial shading effect 

on a PVA. The approach is based on the use of I-V curves and the emerging kernel based 

extreme learning machine. With reference to the authors, both the simulation and 

experimental results show that the designed approach can achieve high accuracy. 

2.4 Existing Fault Protection Solutions 

Once the fault is detected, a fault signal can activate interruption devices to clear the fault, 

in order to protect PV components from damage. The fundamental objective of system 

protection is to provide isolation of fault in the power system rapidly, so that the damage to 

the rest of the PV system is minimized [2.64]. 
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In PV applications, the fault area in the solar PV arrays should be isolated so that the 

impact to the rest of the PV system is minimized. Passive methods use ground fault detection 

interrupters (GFDI), overcurrent protection devices (OCPD) or blocking diodes [2.65, 2.66]. 

On the other hand, active methods use more complex sensing circuitry to detect the fault, and 

rely on circuit breakers, contactors, or semiconductors switches to de-energize and isolate the 

affected PV components [2.67, 2.68]. 

Passive protection devices have obvious limitations. Furthermore, blocking diodes are not 

a substitute of OCPD and they can prevent OCPD from normal operation [2.65]. To improve 

fault protection, active fault protection devices have been developed and shown the 

advantages over passive ones. But, they greatly dependent on the fault detection methods (i.e., 

decision-making algorithms). Therefore, there is still a great need of fault detection methods 

that can provide responsive and reliable tripping signal to active protection devices. 

For a thorough presentation of the existing methods for fault detection and classification 

the reader can be reported to [2.33, 2.69 and 2.70]. 

2.5 Conclusion 

In this chapter, we present the state of the art of existing fault detection, classification, 

location and protection solutions for solar photovoltaic (PV) arrays (dc side). Required by the 

National Electrical Code (NEC), ground-fault detection interrupters (GFDI) and overcurrent 

protection devices (OCPD) are widely used for fault protection in PV installations. However, 

their weakness and limitations have been discovered, which may lead to the fire hazards. 

To address this issue, a new method has been proposed using artificial intelligence 

techniques. Therefore, there is an urgent need of better fault detection methods to prevent PV 

systems from fault hazards. 
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CHAPTER 3 

 

Real Time Emulator Development 
 

3.1 Introduction 

Data sets have been collected by using a real time emulator [3.1] developed in power 

electronics and industrial control laboratory (LEPCI) at Sétif-1- University, Algeria (See 

Figure 3.1 and Figure 3.2). The advantage of using a real time emulator is that we cannot 

create faults in a real PVA and we cannot also change the operation conditions. Therefore, in 

the emulator these constraints can be avoided, and it allows also repeating the same results (I-

V curves) and introducing more testing conditions that are not feasible on real PV modules ( 

such as PV cell cracking). 

3.1.1 Reasons bihind Real Time Solution 

One of the major problems encountered to develop control and diagnosis algorithms for 

PVG is the instantaneous variation of temperature and irradiance in real conditions. So the 

traditional solution (using real PV modules) is avoided due to the following drawbacks: 

 Climatic changing (irradiance and temperature) prevent researchers from testing their 

control and diagnosis algorithms efficiently. 

 In real PVS, it is difficult to have a desired configuration. 

 Experimenting with different PV module technologies is not possible with a fixed 

installation. 

 It’s not easy to have a desired PV plant power. 
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 Time and energy consuming for researchers and development engineers. 

The Photovoltaic emulator (PVE) is an efficient alternative to the real PVS, thanks to these 

advantages: 

 Setting the exact couple of (temperature, irradiance). 

 Implementation of any PV module technology, characteristics and parameters. 

 Choosing any type of configuration, series, parallel, series-parallel modules to get the 

desired output current, voltage and power. 

 Adjusting the PV plant power to our needs. 

 Saving time and energy for researchers and engineers developing control and diagnosis 

algorithms. 

 Saving space, money and material used to make installations. 

One of the main disadvantages of the PVE is that the maximum power of the programmable 

DC/AC power source cannot be exceeded. 

3.1.2 Review of Real Time Emulators 

Some PVE based on five parameters PV cell model are presented in [3.2-3.7] and they did 

not consider any type of faults in their discussion. In [3.2] a novel real time PVE based on 

Field-Programmable Gate Array (FPGA) was developed, a buck DC/DC power converter is 

controlled by a FPGAs based unit. In [3.3] a PVE is presented. A switch of buck DC/DC 

converter is controlled via PWM block receiving a reference signal coming from an external 

controller to avoid computation time delay, a two-stage LC output Filter is used to make the 

resonance frequency higher. In [3.4] a PVE is developed using as the basic power unit a 

flyback converter which is controlled by a reference signal coming from a ‘low end’ dsPIC 

microcontroller. In [3.5], a numerical solution approach was developed to start with a well-

suited initial value improve computational time cost. In [3.6] authors have developed portable 

solar PV module emulator using a buck converter.  In [3.7] authors have implemented a PVE 

model in DS1104 platform to generate a reference signal feeding a programmable DC power 

supply. 
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Only partial shading was considered in [3.8-3.14], and a five parameters PV cell model also 

used in this case. In [3.8] a partial shading effect was simulated using multi-small-scale PV 

module simulators units. In [3.9] a laboratory emulator of a PV module is presented, and 

controllable insolation was realized by keeping good dynamic performance. In [3.10] to 

construct solar PV panel emulation model, a behavioral model is implemented by integrating 

PV cell degradation and partial shading effect. In [3.11] a tool for researchers and engineers to 

test control algorithms is presented. The authors developed wind and solar power emulators. 

The programmable DC power supply is used to simulate solar panel I-V characteristics. A DC 

motor is used to emulate the three blade wind turbine. In [3.12] a simple hardware based PVE 

for power electronics testing was presented, the particular behavior due to the partial shading is 

pointed out. In [3.13] the proposed PVE is based on DC/DC step down converter topology. A 

pole placement technique is used. In [3.14] a PVE was developed for testing grid-connected 

inverters. A PI controller produces a reference signal to DC/DC converter via PWM bloc. 

 

Figure 3.1: Schematic of the photovoltaic emulator with an APS61102A Programmable 

Power Source. 

In the above mentioned methods the PV cell model used for PVE model building was the 

one diode model. In [3.15] the author takes into account the effect of the avalanche effect of 

the faulty PV cell by using the Bishop model. The major PVA faults were also considered in 
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this thesis. A controllable DC power supply was fed by a control signal coming from  DS-

1104 platform. 

The real time emulator can switch between two modes: control and diagnosis modes. In the 

first one, the emulator uses only a five parameters PV cell model. And, in the second one, the 

model used for the emulator is the Bishop model. The advantages of using two models, is that 

in the first mode we do not need to represent the PV cell in the negative side (non faulty PV 

cell). As a result, we can minimize the computational time of the implemented model. In the 

second mode, representing the negative side of the PV cell is mandatory, and a full and 

accurate model should be used. This emulator constitutes an efficient tool for developing, and 

testing control and diagnosis algorithms. 

3.2 PV Array Implementation in DS1104 Platform 

The schematic representation of the developed real time emulator is shown in Figure 3.1. It 

consists basically of two parts. A software part: Matlab/simulink, and ControlDesk. And a 

hardware part: the DS1104 platform which is connected to the PC via PCI slot, and to the 

programmable DC/AC power source via PLC1104 module. Current sensor is used to provide a 

feedback signal to the implemented PVA model.  The control voltage in the external input of 

the programmable power comes from the controller board. Duty cycle changes regularly from 

0 to 1 with a constant slope, then controlling the I-V plotter switch. A resistive load of 5 ohms 

/8 A is used. 

3.2.1 Typical PVA Emulator 

The model of PVA was developed under Matlab software, and then implemented into a 

DS1104 control board.  The PVA consists of a connection in series and parallel of several 

modules and a module is a connection in series of many solar cells (the PV cell model used is 

a Bishop model [3.16, 3.17 and 3.18]). The computation of its parameters is done by the 

method described in [3.19]. The electrical characteristics of the PV module that will be used 

in next sections are given in Table 3.1. 
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TABLE 3.1: PV module’s electrical characteristics and temperature coefficients (JW-50P) 

JW-50P PV module’s electrical characteristics 

Number of series cells 36 

Open-circuit voltage (Voc) 21.9 V 

Voltage at maximum power (Vm) 17.4 V 

Short-circuit current (Isc) 3.13 A 

Current at maximum power (Im) 2.87 A 

Maximum power at. STC  (Pm) 50 Wp 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Photograph of the emulator used for data collection: 1) buck converters, 2) load, 

3) programmable power source, 4) scope, 5) ControlDesk, 6) ds1104 platform. 

3.2.2 PV Array Parameters  

In order to fulfill the main task of this emulator two different PV cell models should be 

used. The former, is the single diode model that is used for control algorithms test purpose 

(See Figure 3.3). The later, is the Bishop model that is used for diagnostic algorithms test 

purpose (See Figure 3.4). 
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       Figure 3.3: single diode model.                       Figure 3.4: Bishop model.  
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Where: 

Iph: is the photo-current in STC. I0: is the dark saturation current in STC. Rs: is the module 

series resistance. Rsh: is the module shunt resistance. And VT: is the thermal junction voltage. A 

is the diode ideality factor, k is the Boltzmann constant; q is the electron charge, and Tstc (K) is 

a temperature in STC. 

In the Bishop model [3.17], three parameters are added, breakdown voltage Vbr, Bishop 

tuning parameters m and a, to get a new vector of eight parameters: 
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By adding the breakdown voltage term to the second side of the equation (2) we get a new 

one: 
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Since the photovoltaic module is a connection in series of PV cells with the same electrical 

characteristics, the PV module current is the same, and the PV module voltage, is the PV cell 

voltage multiplied by the number of cells. We can get the desired PVA voltage and current by 

connecting modules in series and parallel. 

3.2.3 Model Implementation in DS1104 Platform 

Model implementation in the DS1104 R&D Controller Board starts first by PVA model 

development in Matlab/Simulink. The electrical parameters of the PV module are adjusted 

according to the PV module used in experimentation. A simple Build procedure in model 

windows creates files with different extensions (.SDF, .PPC …etc). These files are then 

transferred automatically to the controller board. The file with extension (.SDF) appears in 

ControlDesk, containing all model parameters. Here we can experiment easily (visualizing I-V 

curve, adjusting PV model parameters, weather condition changing, record any parameter or 

curve…, and many other flexible manipulations. 

3.2.4 PV Characteristic Plotter 

A DC/DC buck converter allows getting full I-V characteristics, by controlling the switch S, 

(See Figure 3.5). 

 

     

 

 

 

 

Figure 3.5: DC/DC buck converter used as current-voltage characteristics plotter. 

Changing duty cycle D (from 0 to 1) leads to change the converter output voltage in the 

range (0-Voc) volts. Thus, the output current changes from Isc to 0 Amps. 
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3.2.5 Programmable AC/DC Power Source (APS-1102A) 

The programmable power source used in the proposed real time emulator is an APS-1102A 

model. It provides an AC/DC electrical power at its output. The rated voltage is 200 Vrms, with 

maximum output capacity of 1KVA. 

It can be controlled remotely via the External Signal Input connector, and provides the same 

power as in a real PVA implemented in the platform via the Output outlet. 

3.2.6 Fault Diagnosis using I-V Characteristics 

I-V characteristics of the faulty and healthy PV array are plotted in Figure 3.6. 

First, fault detection should be performed for personnel and material protection purpose. 

Fault classification will be performed ones the fault is detected by analyzing the maximum 

PVA current and maximum PVA voltage. These latter are mainly determined by weather 

conditions (module temperature and irradiance). 

 

Figure 3.6: I-V curves of different PV array faults. 
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3.3 PVA Emulator Validation 

The test and validation of the proposed PV real time emulator has been performed in two 

stages. The first consists of control algorithms test. And, the second one consists of diagnosis 

algorithms test. In order to realize this task, a Semikron 3-phase Inverter (AN-8005) has been 

used. This later can be configured to operate as a buck converter to plot the I-V characteristic, 

and as a boost converter to track the maximum power point. The electrical characteristics of 

the used PV module (JW-50P) are given in Table 3.1. Two type of PVA configuration will be 

used, to show the generalization ability of the proposed emulator. 

3.3.1 Control Algorithms Testing 

This section shows the test results using an MPPT (Maximum Power Point Tracking) 

algorithm based on Perturb and Observe (P&O) technique developed in LEPCI laboratory. 

The results are shown by changing firstly irradiance, and, then secondly temperature. In this 

part of study, the PVA is a connection of two PV string in parallel, where the string is a 

connection of three PV modules in series, and this configuration is named configuration-1. 

3.3.1.1 MPPT with Changing Irradiance 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7: Voltage, Current, and Power curves measured by changing irradiance, where 

configuration-1 is used. 

Vmpp = 51 V 

Impp = 4.42 A 

Pmpp = 240 W 
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Figure 3.7 shows voltage, current, and power curves for the maximum power point chosen 

by MPPT algorithm and by changing irradiance. 

The power curves shown in Figure 3.7 were generated at the output of the inverter by the 

implemented MPPT algorithm, with different irradiance levels. The solar irradiance profile is 

fixed initially at 400 W/m2, and then after 20 seconds begins to rise constantly to 800 W/m2 

during an interval of 20 seconds, and then stays at this level during the same period of time, 

and finally returns to 400 W/m2 in 20 seconds, and so on. In all this experiment the temperature 

is kept constant at 25 C° and no fault is introduced. 

3.3.1.2 MPPT with Changing Temperature 

This section shows test results when temperature is changing. The temperature profile is a 

trapezoidal signal starting initially from 5 C°, and stays at this value during 20 seconds, then 

keeps rising constantly to 75 C° during 20 seconds (by working with an emulator, the 

temperature changing has been accelerated), and stays at this level for the same period of time, 

and, then backward to 5 C° in 20 seconds, and so on. In all this experiment the irradiance is 

kept constant at 800 W/m2 and no fault is introduced. 

 

 

 

 

 

 

 

Figure 3.8: Voltage, Current, and Power curves measured by changing temperature, where 

configuration-1 is used. 

Figure 3.8 shows current, voltage, and power curves at the maximum power point chosen by 

MPPT algorithm and by changing temperature. 

Vmpp = 55.3 V 

Impp = 4.40 A 

Pmpp = 246 W 
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3.3.2 Diagnostic Algorithm Testing 

The algorithm used for testing the PVE is given in Figure 3.9. For more details on it refer to 

[3.20] and [3.22]. In how to build such algorithm (decision making part in the same figure), a 

neuro-fuzzy classifier is proposed in [3.16]. Here, two single faults are considered; shading 

fault (F1) and increased series resistance (F2). In this part of study, the PVA is a connection of 

six PV modules in series, and this configuration is named configuration-2. 

 

Figure 3.9: Flowchart of the diagnostic algorithm 

Yes 

No 

Measurement of: V = (V0M… VNM), I = (I0M … 

INM), TM, & GM. 

-  ISCM, PMAXM, & VOCM computation 

- ISCE, PMAXE, & VOCE computation 

(S1, S2, S3) ≠ (0, 0, 0) 

Computation of: 

- S1 = ISCE - ICCM 

- S2 = PMAXE - PMAXM 

- S3 = VOCE – VOCM 

 

Decision making 

Start 

  End 

No fault Fault display  
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Figure 3.10: ControlDesk interface showing Shading fault condition, where configuration-2 is used. 

Figure 3.11: ControlDesk interface showing Increased Series Resistance condition, where 
configuration-2 is used. 



Chapter 3. Real Time Emulator Development 

 

 
41 

In the algorithm given by Figure 3.9: 

 V and I are respectively the measured voltage and measured current vectors, allowing the I-

V characteristic plotting. 

 ISCM, VOCM, PMAXM are respectively the measured short-circuit current, open-circuit 

voltage, and maximum power of the PV array. 

 ISCE, VOCE, PMAXE are respectively the expected short-circuit current, open-circuit 

voltage, and maximum power of the PV array. 

The diagnostic algorithm computes three symptoms (S1, S2, and S3) from the measured and 

the expected quantities. Decision is made by a simple threshold based approach [16, 19-20]. 

This algorithm is an improved version of the algorithm presented in [21]. 

In Figure 3.10 and Figure 3.11 the interfaces contain four different parts: fault creation, 

model selection, current-voltage characteristics, and, finely fault display. The first part is used 

to create a fault in PVG. The second one is used to select the PV cell model. The third one 

consists of current-voltage characteristic curve. Finally, the situation of the PVA is shown in 

the fault display part (healthy or faulty PVA). 

In Figure 3.10 a shading fault is introduced. One PV module is shaded at 40 %, and another 

is shaded at 70%. Here, it can be seen clearly that the fault is detected by the diagnostic 

algorithm, and in the fault display part the shading LED is red, and the remaining LEDs are 

green. 

In Figure 3.11 series resistance is increased. The series resistance of the whole string is 

increased by 3 ohms. Here, it can be seen clearly that the diagnostic algorithm has detected the 

fault, and in the fault display part the series resistance increasing LED is red, and the remaining 

LEDs are green. 

In the above tests the irradiance was kept to 1000 W/m2, and the temperature, 25 C°. 

A useful remark should be joined to the above results is that this section do not showing the 

significance of the implemented algorithms, but rather shows the ability of the proposed 

emulator to handle both test and control algorithms. 
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3.4 Data Collection for Classifier Building 

As mentioned in section 3.2.1, the model of PVA was developed under Matlab software, 

and then implemented into a DS1104 control board.  The PVA consists of six PV modules 

connected in series and each module is a connection in series of 36 solar cells (this new 

configuration is used for data collection that will be used in chapter 4 and 5). 

As a real time emulator is used, the data collection period was accelerated by implementing 

a loop that changes the type of the fault and its severity by considering all possible 

combinations of solar irradiance and module temperature. The whole dataset was collected 

within about 6 hours divided into two days. In fact, the whole dataset cannot be stored at ones, 

because of memory limitation of the existing system. 

For the following situations, the I-V curves have been measured by changing solar 

irradiance and PV module temperature in order to cover all possible real operating conditions, 

and then the fault is introduced with different discrete values. 

3.4.1 PVA without fault (NF) 

PVA without fault, normal operation (NO): the normal operation condition is in the range 

of [100 W/m2, 1000 W/m2] for the solar irradiance, with step of 100 W/m2. The module 

temperature is arranged [0°C, 60°C], with step of 5°C. The same conditions will be applied in 

the following situations, but degrees of the fault severity will be added. 

Figure 3.12: I-V curves for normal operation (see figure 1 in the appendix) 

3.4.2 Partial shading fault (F1) 

Partial shading fault (F1): Nine different partial shading patterns have been considered. 

25%, 50% and 75% of nine PV cell in one PV module, 25%, 50% and 75% of nine PV cell in 

two PV modules. Finally 25%, 50% and 75% of nine PV cell in three PV modules. 

(For all these figures see figure from 2 to 10 in the appendix) 

Figure 3.13.a: I-V curves for shading pattern-1 (25% of nine PV cell in one PV module) 

Figure 3.13.b: I-V curves for shading pattern-2 (50% of nine PV cell in one PV module) 
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Figure 3.13.c: I-V curves for shading pattern-3 (75% of nine PV cell in one PV module) 

Figure 3.13.d: I-V curves for shading pattern-4 (25% of nine PV cell in two PV modules) 

Figure 3.13.e:  I-V curves for shading pattern-5 (50% of nine PV cell in two PV modules). 

Figure 3.13.f: I-V curves for shading pattern-6 (75% of nine PV cell in two PV modules). 

Figure 3.13.g: I-V curves for shading pattern-7 (25% of nine PV cell in three PV modules) 

Figure 3.13.h: I-V curves for shading pattern-8 (50% of nine PV cell in three PV modules) 

Figure 3.13.i: I-V curves for shading pattern-9 (75% of nine PV cell in three PV modules) 

3.4.3 Increased series resistance (F2) 

Increased series resistance (F2): The Rs of one PV module is increased by 1 Ω, 5 Ω, 10 Ω, 

15 Ω and 20 Ω. 

(For all these figures see figure from 11 to 15 in the appendix) 

Figure 3.14.a: ISR pattern-1 (the series resistance of one module is increased by 1 Ω). 

Figure 3.14.b: ISR pattern-2 (the series resistance of one module is increased by 5 Ω). 

Figure 3.14.c: ISR pattern-3 (the series resistance of one module is increased by 10 Ω). 

Figure 3.14.d: ISR pattern-4 (the series resistance of one module is increased by 15 Ω). 

Figure 3.14.e: ISR pattern-5 (the series resistance of one module is increased by 20 Ω). 

3.4.4 By-pass diode short-circuited (F3) 

By-pass diode short-circuited (F3): One by-pass diode in the whole PVA short-circuited. 

Figure 3.15: By-pass diode short-circuited (1 BPD in the whole PVA short-circuited). 

(See figure 16 in the appendix) 

3.4.5 By-pass diode impedance (F4) 

By-pass diode impedance (F4): By-pass diode is assimilated to resistors with different 

values, 1 Ω, 5 Ω, 10 Ω, 15 Ω and 20 Ω. 

(For all these figures see figure from 17 to 21 in the appendix) 

Figure 3.16.a: By-pass diode impedance (BPD is assimilated to a resistor of 1 Ω). 
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Figure 3.16.b: By-pass diode impedance (BPD is assimilated to a resistor of 5 Ω). 

Figure 3.16.c: By-pass diode impedance (BPD is assimilated to a resistor of 10 Ω). 

Figure 3.16.d: By-pass diode impedance (BPD is assimilated to a resistor of 15 Ω). 

Figure 3.16.e: By-pass diode impedance (BPD is assimilated to a resistor of 20 Ω). 

3.4.6 PV module short-circuited (F5) 

PV module short-circuited (F5): The contribution of one PV module in the energy of PVA 

was eliminated by making it short-circuit. 

Figure 3.17: One PV module is short-circuited. 

(See figure 22 in the appendix) 

By changing the operation conditions (module temperature and solar irradiance), and 

introducing faults in the plant (single faults), we get more I-V characteristics. These 

characteristics are recorded in workspace of Matlab software. Then, we obtain two matrices 

(one for the current, and the other one for the voltage). Accordingly, the real time simulation 

is finished. 

Five datasets are considered, each of them corresponds to one type of fault, and the normal 

operation dataset (See Table 3.2). The whole database was split into two equal sets. The first 

one contains a training data for model construction, and the second one contains a test data for 

the accuracy estimation of the classifier. 

TABLE 3.2: Datasets for normal and faulty cases of the investigated PVA 

# of Dataset Fault type # of samples 

0 Normal operation (NF) 130 

1 Shading (F1) 1170 

2 Increased series resistance (F2) 650 

3 By-pass diode short-circuited (F3) 130 

4 By-pass diode impedance (F4) 650 

5 PV module short-circuited (F5) 130 

 

From the Table 3.2, it can be seen that 2730 I-V curves (faulty PVA), and 130 I-V curves 

(healthy PVA) have been collected and stored into two distinct matrices, the first one is the 
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current matrix (2860x200), and the second one is the voltage matrix (2860x200). The number 

200 comes from the number of points in each I and V vectors. 

3.5 Conclusion 

In this chapter, a real time PVE has been developed using Programmable Power Source. 

Test results shows that the developed emulator can handle both control and diagnostic 

algorithms. The real time interfacing with ControlDesk makes it an easy tool to change PV 

module parameters, operation point, as well as to introduce faults, change their severity, 

visualize current-voltage characteristics and fault signalization. Database that will be used in 

the next chapters for multiclass neuro-fuzzy classifier building is collected. 
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CHAPTER 4 

 

Construction and Reduction of 

Classifier’s Features (Inputs) 
 

 

4.1 Introduction 

Huge data can be collected and processed due to the available technical means nowadays. 

However, the data is only valuable if it is powerfully processed and useful information is 

extracted from it. It is now common to find applications that require data with thousands of 

features (inputs to the classifiers). Problem with processing such datasets is that they require 

huge amount of resources. To conquer this difficulty, research and scientific communities 

have introduced effective algorithms called feature reduction techniques. Feature reduction 

allows only selecting relevant features that we can use instead of using the entire features 

space. 

4.1.1 Reasons behind Features Reduction Techniques 

The main objective of feature selection is to select a subset of features from the entire 

feature space. The selected features could provide the same information provided by the entire 

feature set. However, different researchers explain feature selection from different points of 

view. Some of these are: 

1) Faster and more cost-effective models: Feature selection tends to provide minimum 

number of features to subsequent processes, so that these processes don’t need to process 
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the entire set of features. The reduced number of features means the minimum execution 

time for the model. 

2) Avoid overfitting and improve performance: By selecting the best features that provide 

most of the information and by removing noisy, redundant and irrelevant features, the 

accuracy and effectiveness of model can be enhanced. It reduces the number of dimensions 

and thus improves the performance of the classifier. 

3) Deeply understand the process that generated data: Feature selection also provides 

opportunity to understand the relationships between attributes to better understand the 

principal process. It helps understand the relationship between the features and about the 

process that generated data. 

4.1.2 Review of Feature selection techniques 

Feature selection is one of the solutions to the problem of curse of dimensionality. It is the 

process of selecting a subset of features from original feature space that provides most 

valuable information [4.1]. The selected features can then be used instead of the original 

feature space. So, a good feature selection algorithm should choose features that tend to 

provide complete or most of the information as presented in the entire feature space and omit 

the irrelevant and redundant features. Dimensionality reduction techniques can be categorized 

into two groups, “feature selection” and “feature extraction”. Feature extraction techniques 

[4.2–4.14] project original feature space to a new feature space with lesser number of 

dimensions. The new feature space is normally constructed by combining the original feature 

in some way. The problem with these approaches is that the original semantics of data are 

lost. Feature selection techniques [4.15–4.28] on the other hand tend to select features from 

the original features to represent the original concept. Based on the nature of available data, 

feature selection can be categorized either as supervised feature selection or unsupervised 

feature selection. In supervised feature selection, the class labels are already provided and the 

feature selection algorithm selects the features on the basis of classification accuracy. In 

unsupervised feature selection, the class labels are missing and the feature selection 

algorithms have to select feature subset without label information. On the other hand, when 

class labels for some instances are given and missing for some, semi-supervised feature 

selection algorithms are used. 
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Because of the nature of data used in this study, a supervised feature selection technique 

will be used. 

4.1.3 Research Contribution Obtained in this Chapter 

Unlike in [4.29-4.32], where authors start by some features, and in the case where they 

found it insufficient to discriminate the total chosen faults, they add new ones. Others like in 

[4.33] used some indicators, and when they found them not meaningful they omit them and 

seek for new significant parameters. This seems to be done visually by looking to data and 

using some performance criteria, without using any based-automatic methods for features 

selection. This chapter presents an inverse method, starting by using many features, and then 

reducing their number by using variable dimensionality reduction techniques. This alternative 

solution saves a lot of time for classifiers development. 

4.2 Features construction 

Feature construction is a process which makes a map from raw data to the classifier input. 

The aim is to build more efficient features for fault detection and classification task. Voltage 

and current matrices collected from the PVA, are stored in Matlab workspace for further 

processing are: 

V = �
V�� ⋯ V��
⋮ ⋱ ⋮

V�� ⋯ V��

�                                                                                                    (1)       

I = �
I�� ⋯ I��
⋮ ⋱ ⋮

I�� ⋯ I��

�                                                                                                            (2) 

Let us introduce some useful notations for the two matrices. For the i-th I-V characteristic, 

such as i runs over 1 to m, there are n points (in our thesis, n = 200 points) of index j for each 

characteristic (these notations are common for both voltage and current matrices). 

From the raw data (I and V matrices) we extract features Sf (f =1…12) for both healthy and 

faulty PVA using the following formulas: 

4.2.1 Feature 1: I-V curve area (S1). 

The area under the I-V curve is calculated by the integral: 
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
ocV

dIIVS
0

1 )(                                                                     (3) 

Since the voltage and current vectors (for I-V characteristic) have non-uniform spaced 

discrete values, one can use the following approximation for numerical implementation of the 

area of the i-th I-V curve: 
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                                                      (4) 

This method is known as the trapezoidal rule. 

4.2.2 Feature 2: short-circuit current (S2). 

This feature can be obtained by the following simple formula: 

scV II  02S
                                                         (5) 

From Eq. 5 short-circuit current is the current provided by the PV array where its voltage is 

equal to zero. 

4.2.3 Feature 3: open-circuit voltage (S3). 

The open-circuit voltage can be calculated as: 

ocI VV  03S
                                               (6) 

From Eq. 6 open-circuit voltage is the voltage provided by the PV array where its current 

is equal to zero. 

4.2.4 Feature 4: maximum power point (S4). 

The maximum power of the I-V curve is given as: 

 IV maxS4                                                           (7) 

4.2.5 Feature 5: voltage at the maximum power point (S5). 

If the index of the voltage V for the i-th I-V curve at the maximum power point (MPP) is P, 

then: 
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ipVV5S
                                                                     (8) 

4.2.6 Feature 6: current at the maximum power point (S6). 

Vip is defined in Feature 5. 

ipVI6S
                                                           (9) 

4.2.7 Feature 7: I-V curve slope at the vicinity of Voc (S7). 

ocV
dV

dI
7S

                                                         (10) 

4.2.8 Feature 8: I-V curve slope at the midpoint between MPP and open-circuit voltage 

point (S8). 

We denote by md1 this first midpoint, so: 

18S md
dV

dI


                                                         (11) 

4.2.9 Feature 9: I-V curve slope at the MPP (S9). 

iPV
dV

dI
9S

                                                         (12) 

4.2.10 Feature 10: I-V curve slope at short-circuit current Isc (S10). 

scI
dV

dI
10S

                                                         (13) 

4.2.11 Feature 11: I-V curve slope at the midpoint between short-circuit current point 

and MPP (S11). 

We denote by md2 the second midpoint, so: 

211S md
dV

dI


.                                                        (14) 
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4.2.12 Feature 12: filling factor (S12). 

 

32

65
12S

SS

SS






                                             (15) 

Features for faulty PVA have been compared to those of normal PVA, and then the results 

are normalized. In fact, all features for abnormal operation are compared to those for normal 

operation by using the following formula to get normalized features: 

feature =
�������(������)��������(��������)

�������(������)
                   (16) 

The obtained values for all features are normalized by using Eq (16), and the final product 

is a matrix of dimension (2860x12). This latter will be used in this chapter and the next 

chapter for MC-NFC model construction. 

By changing solar irradiance, and module temperature in the way to sweep all possible 

combinations of the operating conditions, we get 130 I-V curves (healthy case). The same 

conditions have been applied for faulty condition, but degrees of fault severity have been 

involved. For more clearness, we take the case of Increased series resistance (F2): repeating 

130 possible combination of couple (G, T) five times (the number of Increased Series 

Resistance scenarios), the number of normalized features using eq (16) is 130×5 = 650 

samples. Thus, the 130 I-V curves for healthy case are used for generating samples by eq (16) 

for all scenarios of different fault types, the raison why we get only 2730 samples at the end. 

Once the classifier built, the unknown samples will be normalized using the same equation 

(Eq. (16)). Where feature (normal) is computed from the implemented model in ds1104 

platform, and feature (abnormal) is computed from the real PVA, according to the flowchart 

presented in figure 4.1: 

If unknown samples are presented to the neuro-fuzzy classifier, the decision at the 

classifier output will be “other fault”, indicating that PVA is subject to another fault type that 

is not considered in this study. 
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Figure 4.1: Overview of the proposed method for real

classification 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: The structure of the fault detection and cl

classifiers decision outputs fusion.

Features computation (S

Pre-process 
I-V curve 

Normal operation 

If FD = D1 then partial shading is occurring.
If FD = D2 then increased series resistance losses.
If FD = D3 then one by-pass diode is court
If FD = D4 then by-pass diode impedance.
If FD = D5 then one PV module short
If FD = 0 then no fault in PVA.
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Overview of the proposed method for real-time fault detection and 

classification phase of unknown samples. 

 

structure of the fault detection and classification algorithm based on 

classifiers decision outputs fusion. 

YES 
Switch 

 

Vector of 12 ZEROS 

Features computation (S1, S1… S12) 

I-V curve, G and T 
measurement 

Features normalization

Threshold detection  
Sth1< S1 & Sth2< S2 

NO 

S2     S3 

(S1… S12) 

then partial shading is occurring. 
then increased series resistance losses. 

pass diode is court-circuited. 
pass diode impedance. 

then one PV module short-circuited. 
If FD = 0 then no fault in PVA. 
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Figure 4.2 shows the detection and classification algorithm basic tasks. First, I-V curve is 

preprocessed for noise elimination. Second, features extracted from I-V curve by Eqs. 4.3-

4.15 have been normalized by using Eq. 3.16. Then, switch is positioned on normalized 

features only if thresholds Sth2 and Sth3 are reached, otherwise classifiers will be fed by a zero 

values for all its inputs components (which means that no fault occurring in the PVA). 

Finally classifier output decisions have been compared to decide which one is the biggest 

for final decision. 

3.3 Feature Reduction for MC-NFC Building 

The importance of feature dimensionality reduction techniques and the advantage of MC-

NFC over traditional ones will be shown. First, in the section 3.3.1, the proposed method for 

feature dimensionality reduction has been applied to five classifiers: Partial shading fault 

classifier (F1 classifier), increased series resistance classifier (F2 classifier), By-pass diode 

short-circuited classifier (F3 classifier), By-pass diode impedance classifier (F4 classifier), and 

PV module short-circuited classifier (F5 classifier). Then, in next chapter, the proposed MC-

NFC trained and tested with the reduced entire original feature space, which is defined by a 

vector of 12 features. Finally, in the same chapter the MC-NFC will be compared to an ANN 

classifier. 

3.3.1 Feature selection for each neuro-fuzzy classifier 

First, constructed features have been created without prior information on their effect on 

the classifier that will be designed. However, what it is known certainly, is that the 

constructed features will not have the same effect on the classifier decision (output), some of 

them have the same effect, and some others have no effect on the classifier output at all. 

These reasons conduct us to reduce the feature space dimensionality. This leads, to avoid 

redundant information, in the case where some collinear features exist, and also eliminating 

features that have no effect on output of the decision function. 

A standard way to pick a best set of features is via feature space dimensionality reduction 

techniques. A Matlab program (See Figure 4.3) has been developed in order to reduce the 

classifier input dimensionality. Let us consider n the total number of features, and k the 

number of selected features, and then the number of trained classifier is given by the 

following formula (known as combination without repetition): 
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The following flowchart explains the algorithm used for inputs (features) classifier 

reduction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure .4.3: Overview of the pro

As indicated in Figure 4.3

(described in section 4.2) and train and test the classifier using these latter. Then, the built 

model will be stored with its performance for further us

features combinations are used. At the end, all classifier performances will be compared,

the features will be retained for a given fault type detection and classification.

An ANFIS classifier was built for each combination, and in order to reduce the 

computation time, the classifier was trained for only one epoch. After that, obtained cla

must be classified according to their RMSE, and the most relevant combination predicting the 

output is retained. 

As we have five classifiers, the best combination of features is selected for each one of 

them. In the following, � is always equal t

from 1 to 12(the number of features selected for each combination).

Chapter 4. Construction and Reduction of Classifier’s Features (Inputs)

57 

                                                                                                             

The following flowchart explains the algorithm used for inputs (features) classifier 

Overview of the proposed method used for inputs (features) classifier reduction.

 

4.3, the algorithm chooses automatically a subset of

) and train and test the classifier using these latter. Then, the built 

its performance for further use. The procedure is repeated until all 

features combinations are used. At the end, all classifier performances will be compared,

the features will be retained for a given fault type detection and classification.

An ANFIS classifier was built for each combination, and in order to reduce the 

computation time, the classifier was trained for only one epoch. After that, obtained cla

must be classified according to their RMSE, and the most relevant combination predicting the 

As we have five classifiers, the best combination of features is selected for each one of 

is always equal to 12 (the total number of features), and 

from 1 to 12(the number of features selected for each combination). 
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The following flowchart explains the algorithm used for inputs (features) classifier 

posed method used for inputs (features) classifier reduction. 

oses automatically a subset of 12 features 

) and train and test the classifier using these latter. Then, the built 

e. The procedure is repeated until all 

features combinations are used. At the end, all classifier performances will be compared, and 

the features will be retained for a given fault type detection and classification. 

An ANFIS classifier was built for each combination, and in order to reduce the 

computation time, the classifier was trained for only one epoch. After that, obtained classifiers 

must be classified according to their RMSE, and the most relevant combination predicting the 

As we have five classifiers, the best combination of features is selected for each one of 

(the total number of features), and k varies 
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- F1 classifier features reduction 

Table 4.1 demonstrates the result of selecting classifier inputs from one to four, and the 

best combination of features has been hold. It can be seen clearly that the minimal training 

(and checking) error are reduced by increasing the number of the selected features. Therefore 

we will stick to the four-feature classifier for further investigation. 

TABLE 4.1: Features (inputs) selection for F1 classifier 
� 12 12 12 12 

� 1 2 3 4 

RMSE for training 0.6277 0.4183 0.2342 0.1660 

RMSE for testing 0.6041 0.4271 0.2046 0.1740 

Best combination of features S3 S3 S11 S4 S8 S12 S1 S3 S6 S12 

 

- F2 classifier features reduction 

Concerning F2 classifier (See Table 4.2) increasing the number of features from 3 to 4 does 

not minimize significantly the training (checking error), which indicates clearly that the newly 

added feature does not improve the classification accuracy much. For better generalization, 

we always prefer a model with fewer inputs. Therefore we will stick to the three-feature 

classifier for further investigation. 

TABLE 4.2: Features (inputs) selection for F2  classifier 
� 12 12 12 12 

� 1 2 3 4 

RMSE (Training) 0.7600 0.6298 0.5758 0.5500 

RMSE (Testing) 0.7572 0.6319 0.5539 0.5200 

Best combination of features S3 S4 S12 S4 S11 S12 S2 S8 S11 S12 

 

- F3 classifier features reduction 

For the same raisons as in F2 classifier, only two features have been selected for F3 

classifier (See Table 4.3). 

TABLE 4.3: Features (inputs) selection for F3 classifier 
� 12 12 12 12 

� 1 2 3 4 

RMSE (Training) 0.1073 0.0626 0.0356 0.0231 
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RMSE (Testing) 0.0428 0.0352 0.0331 0.0400 

Best combination of features S3 S3 S4 S1 S3 S12 S1 S3 S8 S12 

 

- F4 classifier features reduction 

For the same raisons as in F2 classifier, only two features are selected for F4 classifier (See 

Table 4.4). 

TABLE 4.4: Features (inputs) selection for F4 classifier 
� 12 12 12 12 

� 1 2 3 4 

RMSE (Training) 0.7290 0.5940 0.5521 0.5250 

RMSE (Testing) 0.7252 0.5662 0.5301 0.5100 

Best combination of features S4 S1 S4 S1 S4 S8 S1 S2 S4 S11 

 

- F5 classifier features reduction 

For the same raisons as in F2 classifier, only two features are selected for F5 classifier (See 

Table 4.5). 

TABLE 4.5: Features (inputs) selection for F5 classifier 
� 12 12 12 12 

� 1 2 3 4 

RMSE(Training) 0.3428 0.0027 0.0012 0.0005 

RMSE(Testing) 0.3420 0.0014 0.0011 0.0004 

Best combination of features S1 S3 S4 S1 S3 S4 S1 S3 S4 S12 

The results from the above Tables (4-1 to 4-5) indicate that the combinations (S1, S3, S6, 

S12), (S4, S11, S12), (S3, S4), (S1, S4) and (S3, S4) are the most influential features with respect to 

the decision function output the F1 classifier, F2 classifier, F3 classifier, F4 classifier and F5 

classifier, respectively. Consequently, the whole space dimensionality has been reduced from 

12 features to only 5 features, namely S1, S3, S4, S11 and S12. 

3.4 Conclusion 

From the experiments presented in this chapter, it can be strongly recommended the use of 

the space dimensionality reduction techniques for classification of photovoltaic array faults, 

owing to its capability to speed up the process of classifiers building, not only for the 
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classifier that will be constructed, but also for any other type of classifier. This provides for 

the classifiers a clean manner to select their inputs. Furthermore, it provides high 

classification accuracy and lower features (inputs) space dimensionality. 
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CHAPTER 5 

 

Fault Classification Using Artificial 

Intelligence Algorithms 
 

 

5.1 Introduction 

Fault detection is used for protecting the PV installation and the personal from any 

dangers. Moreover, fault classification is used to identify the fault type, and, then help 

maintenance team to take a right and quick decision. Based on data collected from the 

systems, artificial intelligence algorithms are usually used to achieve automatic fault 

classification. This chapter studies fault classification methods and focuses on multiclass 

neuro-fuzzy classifier (MC-NFC) for PV fault detection and classifications (FDC). 

5.1.1 Existing Detection and Classification Methods and their Limitations 

Fault diagnosis techniques (FDT) play an important role to reduce the energy and material 

losses. Fault diagnosis in DC-side of a PVA can be classified into three categories, according 

to the used detection and classification methods, the type of fault to be discriminated, and the 

chosen features feeding the classifier input: 

1) Different types of detection and classification methods were proposed in literature.  For 

example, in [5.1] the authors proposed a Neuro-Fuzzy classifier (NFC), by first, 

constructing an initial Fuzzy Classifier (FC), and then upgrading it with learning 

algorithms. A database obtained by exhaustive simulation with Matlab/Simulink software. 

A total of 5790 I-V curves have been stored for features extraction, and further treatment. 
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A FD technique based on artificial neural network (ANN) technique was proposed in 

[5.2]. Two different algorithms have been used; the first one is based on threshold 

detection and isolates six types of fault, while the second one is based on an ANN 

algorithm. Radial Basis Function (RBF) and Multilayer Perceptron (MLP) architectures 

have been compared. This later detects and isolates four types of fault [5.2]. In [5.3] a 

wavelet transform approach has been developed, this method uses also two algorithms, the 

first one was developed to detect switch open and over harmonic fault using 3-level Multi 

Level Decomposition (MLD) algorithm, and the second one detects the islanding 

condition using wavelet coefficients energies. A combination of three FCs, and a 

sensitivity of the indicators to different type of factors was analyzed in [5.4], such as solar 

irradiance and PV module temperature conditions. In [5.5] the authors proposed a Graph-

Based Semi-Supervised (GBSS) learning algorithm, the model developed has the ability 

of self-leaning in real-time conditions. Accordingly, it is a low cost model in terms of 

training. Many other methods can be found in the literature [5.6-5.10]. 

2) The fault types to be detected and classified are varying from one author to other. For 

example in [5.1] the authors proposed a method to detect and then classify three types of 

faults: increased series resistance, by-pass diode fault, and blocking diode fault. Eight 

PVA fault types have been detected and classified [5.2]: PV cells, PV module, PV string 

and by-pass diode faults. The switch open fault and any over harmonic, and islanding 

condition were detected and classified in [5.3]. These faults occur in a Power 

Conditioning System (PCS), and it manifests as current-distortion at the output of the 

PCS. In [5.4], partial shading, increased series resistance (ISR) losses and Potential-

Induced Degradation (PID) in string PV systems where detected and classified by 

measurements and extraction of the indicators value of the full PV string I-V 

characteristic. Ref [5.5] focuses on two groups of frequently occurring faults in PVAs that 

cannot be cleared by conventional protection schemes: the line-to-line fault and open-

circuit fault. The authors in [5.11] have constructed a three state Markov model to 

represent the state transition relationship of no faults, intermittent faults, and permanent 

faults for not only PVA, but for all PV components. 

3) Selection of classifier input plays an important role to get a high classifier performance for 

both detection and classification phases. In [5.1] the authors have used two features: 

Maximum Power Point (MPP), and open-circuit voltage (Voc), and when they found it 
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insufficient to discriminate the considered PV module faults, they add a new ones, namely 

short-circuit current and filling factor. Five features have been used in [5.2]: a reduction in 

the short circuit current (C1), A reduction in the open circuit voltage (V1), a reduction or 

an increase in the output current (C2), a reduction or an increase in the output voltage 

(V2) and number of peaks in the current-voltage characteristics. The contribution of the 

previous attributes is analyzed and the most influencing are retained for each type of fault. 

In [5.3] the employed features are: Multi-level Decomposition (MLD) of the wavelet 

transform, and wavelet coefficients energies are extracted from the grid current and the 

grid voltage. In [5.4] the authors used as inputs classifier: the equivalent thermal voltage 

(Vte), I-V curve flexing factor (IVf), Maximum power point factor (MPPf), Equivalent 

series resistance (Rse) and Fill factor (FF). 

In the above three categories, the methods have been used for detection and classification 

of the PV string/array faults, which are mainly based on I-V curves to extract features and run 

their algorithms. There are many other methods based on visual inspection, and infrared 

imaging, in which surface soiling, dust accumulation, and hot spot phenomena in PV modules 

can be detected and removed [5.12-5.15]. 

5.1.2 Research Contributions Obtained in this Chapter 

An outline of the main contributions of this chapter is as follow: 

 First, new features have been introduced into the classifier input. Namely, I-V curve area 

and slopes at different points of the I-V curve. 

 Second, in the developed method some patterns of faults are used, but it can detect all 

possible real patterns for the concerned fault, unlike in [5.16], where they used some 

discrete real situation and these patterns could not be exist in real conditions. 

 Finally, a MC-NFC has been developed to discriminate between five different types of 

faults in a PVA. 

 

 



Capter 5. Fault Classification Using Artificial Intelligence Algorithms

 

 

5.2 Basics of Artificial Intelligence Based

5.2.1 Steps Toward Multiclass Neuro

For an efficient and organized manner, six basic steps are necessary in the process of 

classifier development (See Figure .5.1

1) Implement the PVA model;

2)  Datasets collection covering the most possible scenario for each fault, and the normal 

operation; 

3)  Features extraction; 

4)  Threshold adjustment for faults detection;

5)  Classifiers training and testing;

6) Classifiers’ decisions fusion for final decision.

 

 

Figure .5.1: Process of classifier building for fault detection and classification in a PVA

5.2.2 Basics of Artificial Intelligence Techniques

Scientists have long dreamed of building machines that think 

programmable computers were first designed, people wondered whether such machines might 

become smart, more than a hundred years before one was 

intelligence (AI) is a flourishing

area. We look to intelligent software to 

diagnosis in medicine and faults detection and classification in electrical systems. At the 

beginning of artificial intelligence, the fiel

seriously difficult for human beings but rather simple for computers

Figure .5.2 shows the relation between AI and ML. Accordingly, ML is a branch of AI. A 

Venn diagram showing how a deep learning is kind of representation learning, which is in 
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Artificial Intelligence Based Classifiers 

Steps Toward Multiclass Neuro-Fuzzy Classifier Development 

For an efficient and organized manner, six basic steps are necessary in the process of 

See Figure .5.1):  

Implement the PVA model; 

Datasets collection covering the most possible scenario for each fault, and the normal 

Threshold adjustment for faults detection; 

ifiers training and testing; 

fusion for final decision. 

 

 

 

 

Process of classifier building for fault detection and classification in a PVA

5.2.2 Basics of Artificial Intelligence Techniques 

Scientists have long dreamed of building machines that think [

programmable computers were first designed, people wondered whether such machines might 

become smart, more than a hundred years before one was constructed [5.20]. Today

flourishing area with many realistic applications and dynamic research 

area. We look to intelligent software to computerize tasks, recognize speech or images, make 

diagnosis in medicine and faults detection and classification in electrical systems. At the 

beginning of artificial intelligence, the field rapidly undertaken and solved problems that are 

seriously difficult for human beings but rather simple for computers [5.21].

shows the relation between AI and ML. Accordingly, ML is a branch of AI. A 

Venn diagram showing how a deep learning is kind of representation learning, which is in 
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turn a kind of machine learning. Each section of the Venn diagram includes an example of an 

AI technology [5.21]. 

The branch of machine learning is a subset of Artificial Intelligence, and it can be divided 

into three main kinds of learning: supervised learning, unsupervised learning, and 

reinforcement learning. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure .5.2: simplified flowchart of Artificial Intelligence techniques: Artificial Intelligence 

(AI), Machine learning (ML), Representation learning and deep learning. 

 

 

 

 

 

Figure .5.3: Types of machine learning 
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1. Principals of supervised learning are as follow: 

 The training dataset contains classifier inputs data (features) and the output (the class 

you want to predict). In this type of learning you have a target, a value or a class to 

predict, the reason why it named supervised. 

 The model uses the training data to learn a map from input to outputs. The basic idea 

is that the trained model can be generalized and then used on new data of the same 

system. 

2. In opposition, unsupervised learning does not have output data. Most of the time 

unsupervised learning algorithms are used to pre-train supervised learning algorithms or to 

pre-process the data, during the exploratory analysis. 

3. Reinforcement learning algorithms try to find the best ways to get the best reward. Given 

the states of both the environment and the agent, this latter will pick at the action that will 

capitalize on its reward or will explore a new state. By executing this loop several times, 

the agent’s behavior will be better. 

This chapter focuses on supervised learning (See Figure .5.3) since the data and its labels 

can be obtained easily from the PV system using real time emulator solution. 

5.2.3 Artificial Intelligence Techniques in PV Arrays 

The schematic of the studied PV system is shown in (Figure 5.4). Typically includes the 

grid-connected PV system and the detection and classification method. 

 

 

 

 

         

 

 

Figure .5.4: Schematic of the proposed FDC model for PVA. 
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 A simplified grid connected PV system consists of a PV array that it connected to the 

grid via a suitable PV inverter, utility grid and protection devices as AC breakers and 

fuses. The PV inverter extracts as much as possible the power from the PV array using 

the optimization algorithms (MPPTs) at the specific voltage and frequency and then 

feeding it into the utility grid. Current-voltage (I-V) characteristics can provide useful 

information to use for the proposed MC-NFC classifier. 

 The proposed MC-NFC classifier uses only available PV sensors. Therefore, the 

proposed method can take advantage of available PV sensors without additional costs. 

The MC-NFC classifier receives the instantaneous maximum current (Impp) and the 

maximum voltage (Vmpp) of the PV array from the inverter. When a fault is detected, a 

trigger (See Figure .5.4) will initiate I-V curve acquisition and then passing it into the 

MC-NFC classifier for fault classification. 

 Power conditioning unit in Figure .5.4 does not rely on any particular additional power 

modules. One more advantages of the proposed MC-NFC classifier is that it can be 

integrated into PV inverters using only readily available data from existing sensors. 

5.3 Multi-Class neuro-fuzzy Classifier (MC-NFC) Development 

5.3.1 The Building blocks for MC-NFC Classifier 

5.3.1.1 Fuzzy Classifier 

Generally, fuzzy logic is used in designing controllers [5.22], but it can be used to design 

classifiers [5.23]. Fuzzy classifier (See Figure .5.5) is a universal approximator, which can 

approximate any function. 

     The use of fuzzy classifier is justified by: 

1. Universal approximation: the exact match of classification boundaries. Many proofs 

demonstrate that exist a type of fuzzy if-then classifier, that can approximate any 

continuous function �� → � on a compact domain to an arbitrary precision (universal 

approximation propriety) 

2. Uncertainty and vagueness: real measurements and modeling uncertainty. 

 Designing a fuzzy classifier needs three steps, fuzzification, inference and then 

defuzzification. 
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Figure .5.5: Fault Fuzzy classifier implementation concept. 

A fuzzy classifier uses rule of the type: 

��: �� ���� ��,�(�,�) ��� …  ���  ���� ��,�(�,�)  

����  ��,� = ��,���� …  ���  ��,� = ��,�                                                                         (5.1) 

Where ��,� is the discriminant function �� associated with rule ��. The subscript i(j, k) is 

an input index function showing which linguistic label is used for feature  ��  in the rule ��. 

The values z�,� ∈ ℜ can be interpreted as “support” for class w � given by rule R� if the 

antecedent part is completely satisfied.  

     The TSK1 fuzzy classifier has the following characteristics [5.23]: 

1) The rule-base is a general type of the if-then rules. 

2) The conjunction (AND connective): At. 

The firing strength of the rule is 

τ�(X) =  ��{µ�,�(�,�)(x�),… ,µ�,�(�,�)(x�)}.                                                                          (5.2) 

3) The computation of the consequents. 

K = 1,…,M  is the index  of the rules, i = 1,…,c is the index for the classes, and j  = 1,…,n is 

the index for features.  

 ��,� ∈ {0,1} ,∑ ��,�
�
��� = 1; (crisp labels) 

 �� is minimum; 

 The ith TSK1 output is 

��
��� �(�)= max

��� �� �
���,�.��(�)�  

Fuzzification 
of Features 

(inputs) 

Feature 1 

Feature 2 
Fault diagnosis 

Rules-base 

Defuzzification 
of output 

Fault 

Classification 
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                        =   max
��� �� �

���,�.min��� �� � �µ
�,�(�,�)�X����                                                   (5.3) 

5.3.1.2 Artificial Neural Network (ANN) Classifier 

Artificial neural network (ANN) is inspired from a biological neural network; it is an 

intelligent method that processes information in the human brain manner. It can be used to 

create models for control and diagnosis purposes. ANN doesn’t need detail mathematical 

formulas for describing the relationship between the input and the output of the system. 

Instead, it uses an architecture that is formed by an input layer, output layer, and one or more 

hidden layers. Each layer has a small number of parameters that are tuned by using some 

known algorithms like back propagation algorithm. ANN model development needs data sets 

for training, validation and testing. 

Figure .5.6 shows the schematic of a multi-layered neural network. Each neuron input is a 

multiplication of the input of the previous neurons and its connection weights. At the output a 

linear or non-linear activation function is applied. 

 

 

 

 

 

 

 

 

 

Figure .5.6: Multi-layer neural network concept. 

More details about neural networks can be found in [5.24, 5.25, and 5.26]. 

The objective of the ANN-classifier is to detect and classify faults in the photovoltaic array 

using experimental data collected from the real time emulator (See chapter 3). 

 

 

Input layer 
Hidden layer 

Output layer 
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5.3.2 Detailed MC-NFC for FDC

5.3.2.1 Threshold Detection 

To avoid false alarm and the problem of non

features, by taking into account measurement errors. For normal operation conditions, the 

features vector should be inside the hyperbox determined by the 

��� = [����,����,… �����]  

Each of the ���  vector components corresponds to one feature threshold.

Since the error of measurement is coming mainly from current and voltage sensors, one 

can compute the error just for these quantities. The remaining threshold components are 

derived from the current and voltage thresholds.

The IEC 61724-1998 standard [

measurements. The errors for computation of 

tolerance previously mentioned. Accordingly, 

detection. 

In the detection phase we focus only on the presence and the absence of the fault in PVA 

without looking for the type of the fault. In this section, a study of the detection accuracy in 

terms of precision and recall is conducted (this is a sort of binary classification, healthy or 

faulty PVA). 

The following scheme is used to compute precision and recall percentages:

 

 

 

 

 

 

 

 

Figure .5.7: Scheme used for precision and recall computation in the detection phase.

Capter 5. Fault Classification Using Artificial Intelligence Algorithms

73 

NFC for FDC 

 

To avoid false alarm and the problem of non-detection, a threshold should be chosen for all 

features, by taking into account measurement errors. For normal operation conditions, the 

features vector should be inside the hyperbox determined by the following threshold vector:

]        

vector components corresponds to one feature threshold.

Since the error of measurement is coming mainly from current and voltage sensors, one 

the error just for these quantities. The remaining threshold components are 

derived from the current and voltage thresholds. 

1998 standard [5.27] tolerates 1% for the current and voltage 

measurements. The errors for computation of ����(Ith) and ����(Vth) are the same as the 

tolerance previously mentioned. Accordingly, ���� (Ith) and ����(Vth) are used for fault 

In the detection phase we focus only on the presence and the absence of the fault in PVA 

ype of the fault. In this section, a study of the detection accuracy in 

terms of precision and recall is conducted (this is a sort of binary classification, healthy or 

The following scheme is used to compute precision and recall percentages:

Scheme used for precision and recall computation in the detection phase.
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detection, a threshold should be chosen for all 

features, by taking into account measurement errors. For normal operation conditions, the 

following threshold vector: 

              (5.4) 

vector components corresponds to one feature threshold. 

Since the error of measurement is coming mainly from current and voltage sensors, one 

the error just for these quantities. The remaining threshold components are 

27] tolerates 1% for the current and voltage 

) are the same as the 

) are used for fault 

In the detection phase we focus only on the presence and the absence of the fault in PVA 

ype of the fault. In this section, a study of the detection accuracy in 

terms of precision and recall is conducted (this is a sort of binary classification, healthy or 

The following scheme is used to compute precision and recall percentages: 

Scheme used for precision and recall computation in the detection phase. 
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Where Vh, Vf, Ih and Vf are the voltage and the current for the healthy and faulty cases. As 

reported in table 3.2 the number of instances for normal operation is 130 I-V curves, and for 

the faulty case, the number of instances is 2730 I-V curves. Using these data, the precision and 

recall percentages are given in the following: 

The above scheme for recognizing faulty case in dataset identifies 2703 faulty instances in 

a dataset containing 2730 faulty instances. Of the 2703 faulty instances identified, 2680 

actually are faulty (true positives), while the rest are healthy (false positives). Thus, the 

detection's precision is 99.15% (2680/2703) while its recall is 98.17 % (2680/2730). 

5.3.2.2 Binary Adaptive Neuro-Fuzzy Classifier Concept 

Fuzzy systems have the ability to handle uncertain and imprecise information, but cannot 

update and fine tune their parameters automatically. To overcome this drawback, some 

supervised learning algorithms were applied in [5.28], based on training data set. In this study, 

a well-known Sugeno Fuzzy Inference System (FIS) is used, where its consequent is a linear 

function, this FIS is known as “first-order Sugeno type” [5.29]. 

Before model development, we present a simple architecture that illustrates the procedure 

of the neuro-fuzzy. Assume we have two inputs; short-circuit current (S2) and open-circuit 

voltage (S3), and one output, increased series resistance. According to the first-order Sugeno 

type classifier and in the case where only two rules exist, the output Rs is computed by the 

summation of the following two functions (�� ,��): 

 ��: is computed by the rule: 

If �� is �� and ��is ��, then �� = ��� × �� + ��� × �� + ��                                           (5.5) 

 ��is computed by the rule: 

If �� is �� and ��is ��, then �� = ��� × �� + ��� × �� + ��                                          (5.6) 

Where ��� and ��  (� = � = 1,2), are the consequent parameters. Figure .5.8 shows a typical 

ANFIS architecture of such model. Note that in this architecture, squares represent adaptive 

nodes, whereas circles are fixed nodes. 

The word ‘adaptive’ is specific to the neuro-fuzzy architecture itself. The adaptive-

networks-based fuzzy inference system is a fuzzy inference system implemented in the 

structure of adaptive network. The output of an adaptive networks depends on the parameter 
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(not features) relevant to the adaptive nodes that is changed to minimize a given error measure 

using supervised learning procedure [29].

 

 

 

 

 

 

 

Figure .5.8: ANFIS architecture with two inputs, two membership function

A brief description of the different layers is as follows:

a) Features layer 

The output of the node � in this layer is calculated by eq.:

��
� = ���(��)for   � = 1,2;                                                                                                   (5.7)

Or 

��
� = ����(��)for     � = 1,2,                                                                                               (5.8)

Where, �� and �� are the crisp features feeding the input of the node 

linguistic terms associated with their 

for linguistic terms can be any suitable parameterized membership function. Trapezoidal 

membership function is one of the membership functions that will be used in this study.

���
=

⎩
⎪⎪
⎨

⎪⎪
⎧

0,                       �� ≤ �
�����

�����
,       �� ≤ �� ≤ �

1,               �� ≤ �� ≤ �
�����

�����
,      �� ≤ �� ≤ ��

0,                       �� ≤ ��
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res) relevant to the adaptive nodes that is changed to minimize a given error measure 

using supervised learning procedure [29]. 

 

ANFIS architecture with two inputs, two membership function

different layers is as follows: 

in this layer is calculated by eq.: 

;                                                                                                   (5.7)

,                                                                                               (5.8)

are the crisp features feeding the input of the node 

linguistic terms associated with their appropriate membership functions. Membership function 

for linguistic terms can be any suitable parameterized membership function. Trapezoidal 

membership function is one of the membership functions that will be used in this study.

��

��

��

�

�

�                                                                                             
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res) relevant to the adaptive nodes that is changed to minimize a given error measure 

ANFIS architecture with two inputs, two membership functions and one output. 

;                                                                                                   (5.7) 

,                                                                                               (5.8) 

are the crisp features feeding the input of the node i. �� and �� are 

appropriate membership functions. Membership function 

for linguistic terms can be any suitable parameterized membership function. Trapezoidal 

membership function is one of the membership functions that will be used in this study. 

                                                                                             (5.9) 
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���
=

⎩
⎪⎪
⎨

⎪⎪
⎧

0,                       �� ≤ ��
�����

�����
,       �� ≤ �� ≤ ��

1,               �� ≤ �� ≤ ��
�����

�����
,     �� ≤ �� ≤ ��

0,                       �� ≤ ��

�                                                                                           (5.10) 

 

Where ai, bi, ci and di are the parameters to be changed by the training algorithm to deal 

with training data set. Hence, the trapezoidal function varies consequently. 

b) Rules layer 

The nodes in this layer provide what is known by firing strength ��
�, and it is the product 

of all outputs coming from layer one. It can be seen that no parameter to be adjusted, so it is a 

fixed node. 

��
� = �� = ���

(��)��(��),       � = 1,2                                                                               (5.11) 

c) Normalization layer 

The node � of this layer takes the ratio of the �th rule’s firing strength to the sum of all 

rule’s firing strengths. For that reason, outputs of this layer are called normalized firing 

strength. 

��
� = ����� =

��

∑ ���
,       � = 1,2                   (5.12) 

d) Consequent layer 

The output of the node � of this layer is computed by the following node function: 

��
� = �������       � = 1,2                    (5.13) 

Where, ����� is a normalized firing strength from the previous layer, and the formula that 

computes ��is given in eq.5.4 and eq.5.5. 

e) Output layer 

The single fixed node in this layer computes the overall output by summing all coming 

signals from the previous layer. Consequently, the process of Defuzzification is achieved by 

getting a crisp overall output. 
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∑ ���
,

(N.B: in figure 5.8, f = ISR). 

We note that, the above described ANFIS classifier is just an example. In the following we 

will use more inputs. More rules will be also generated using learning algorithms. For more 

explanations on the ANFIS architecture the reader can refer to [

5.3.2.3 Extension to multiclass classification problem

For a multiclass problem, instead of using one binary classifier we can use a group of them 

[5.30]. We can then take their decision and compare it by using “winner

diagram block of the MC-NFC concept is illustrated in 

 

 

 

 

 

 

 

 

Figure .5.9: Diagram block of the MC

Each classifier feed this rule by a crisp class label which is assigned to 

label of S is the one that have the biggest crisp value at the outputs of the classifiers pool. If 

the decision at the output of the classifier 

mentioned rule is given by: 

�

5.3.2.4 Classifier performance evaluation criterions

Any constructed classifier should be evaluated 

compare it to other type of classifier

statistical criterions: sum squared error, correlation coefficient, mean percent relative error, 

root mean squared error and standard deviation.
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,       � = 1,2      

that, the above described ANFIS classifier is just an example. In the following we 

will use more inputs. More rules will be also generated using learning algorithms. For more 

explanations on the ANFIS architecture the reader can refer to [5.29]. 

xtension to multiclass classification problem 

For a multiclass problem, instead of using one binary classifier we can use a group of them 

30]. We can then take their decision and compare it by using “winner-

NFC concept is illustrated in Figure 5.9. 

Diagram block of the MC-NFC concept [31, 32

Each classifier feed this rule by a crisp class label which is assigned to 

is the one that have the biggest crisp value at the outputs of the classifiers pool. If 

the decision at the output of the classifier i, is di, then the label L at the output of the above 

� = max (��)                                                                       

5.3.2.4 Classifier performance evaluation criterions 

Any constructed classifier should be evaluated at the end of its design, and this allows us to 

compare it to other type of classifiers. Classifier performance will be evaluated by using some 

statistical criterions: sum squared error, correlation coefficient, mean percent relative error, 

ed error and standard deviation. 
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            (5.14) 

that, the above described ANFIS classifier is just an example. In the following we 

will use more inputs. More rules will be also generated using learning algorithms. For more 

For a multiclass problem, instead of using one binary classifier we can use a group of them 

-takes-all” rule. The 

, 32]. 

Each classifier feed this rule by a crisp class label which is assigned to S. The final class 

is the one that have the biggest crisp value at the outputs of the classifiers pool. If 

at the output of the above 

                                                                       (5.15) 

at the end of its design, and this allows us to 

. Classifier performance will be evaluated by using some 

statistical criterions: sum squared error, correlation coefficient, mean percent relative error, 
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 Sum squared error (���), that is given by the following expression: 

��� = �(�� − ��)
�

�

���

 

 Correlation coefficients (��), that is given by the following expression: 

   �� = 1 −
���

∑ ��
��

���

 

 Mean percent relative error (����), that is given by the following expression: 

���� =
100%

�
�

�� − ��

��

�

���

 

 Root mean squared error (����), that is given by the following expression: 

���� = �
∑ (�� − ��)��

���

�
 

 Standard deviation (���), that is given by the following expression: 

��� = �
∑ (�� − ��)��

���

� − 1
 

 

Where im  is the actual value, ip  is the predicted output of the classifier, and n  is the 

number of the input data. 

5.4 FDC Experiments in PV Systems 

5.4.1 Experimental Setup 

A simple grid-connected PV system is built to collect data for both normal and faulty cases 

under real-working conditions (such as irradiance and temperature). As mentioned in section 

3.2.1 the PV array consists of 6 PV modules in series forming one string. 

The detailed parameters of the PVA are given in Table 3.1. Note that all the PV modules 

have the same electrical parameters and environmental conditions in case of normal working 

conditions. In the experiments, no filter is used to reduce the measurement noise. 

Five types of faults have been created in the PV array: 1) Partial shading fault (F1): Nine 

different partial shading patterns have been considered. 25%, 50% and 75% of nine PV cell in 

one PV module, 25%, 50% and 75% of nine PV cell in two PV modules. Finally 25%, 50% 
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and 75% of nine PV cell in three PV modules; 2) Increased series resistance (F2): The Rs of 

one PV module is increased by 1 Ω, 5 Ω, 10 Ω, 15 Ω and 20 Ω. 3) By-pass diode short-

circuited (F3): One by-pass diode in the whole PVA short-circuited. 4) By-pass diode 

impedance (F4): By-pass diode is assimilated to resistors with different values, 1 Ω, 5 Ω, 10 

Ω, 15 Ω and 20 Ω. 5) PV module short-circuited (F5): The contribution of one PV module in 

the energy of PVA was eliminated by making it short-circuit. During the experiment, the solar 

irradiance is ranging between 100 W/m2 and 1000 W/m2, and the solar cell temperature is 

changing between 0°C and 60°C. 

The photograph of the experiment bench is given in Figure 3.2, and the flowchart of the 

MC-NFC model for FDC is given in Figure .5.10. 

5.4.2 Experimental Results 

5.4.2.1 Experiment 1: Feature selection for each neuro-fuzzy classifier 

The importance of feature dimensionality reduction techniques and the advantage of MC-

NFC over traditional ones will be shown. First, in the experiment 1, the proposed method for 

feature dimensionality reduction has been applied to five classifiers: Partial shading fault 

classifier (F1 classifier), increased series resistance classifier (F2 classifier), By-pass diode 

short-circuited classifier (F3 classifier), By-pass diode impedance classifier (F4 classifier), and 

PV module short-circuited classifier (F5 classifier). Then, in the experiment 2, the proposed 

MC-NFC trained and tested with the reduced entire original feature space, which is defined by 

a vector of 12 features. Finally, in the experiment 3 the MC-NFC will be compared to an 

ANN classifier. 

Finally classifier output decisions have been compared to decide which one is the biggest 

for final decision. 
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Figure .5.10: The structure of the fault detection and classification algorithm based on 

classifiers decision outputs fusion

5.4.2.2 Experiment 2: MC-NFC building with reduced feature 

In this experiment, the MC

feature space, which is defined by a vector of 12 features. During the training phase, the 

ANFIS parameters have been tuned by a hybrid learning algorithm, whi

combination of the least-squares method and the back

and one versus all strategy was applied for all classifiers. 

considering the data of the fault to be discriminated as one set,
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The structure of the fault detection and classification algorithm based on 

classifiers decision outputs fusion [31]. 

NFC building with reduced feature space 

In this experiment, the MC-NFC will be trained and tested with the reduced entire original 

feature space, which is defined by a vector of 12 features. During the training phase, the 

ANFIS parameters have been tuned by a hybrid learning algorithm, whi

squares method and the back-propagation gradient descent method, 

versus all strategy was applied for all classifiers. The MC-

considering the data of the fault to be discriminated as one set, and the remaining data of other 
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The structure of the fault detection and classification algorithm based on 

NFC will be trained and tested with the reduced entire original 

feature space, which is defined by a vector of 12 features. During the training phase, the 

ANFIS parameters have been tuned by a hybrid learning algorithm, which consists of a 

propagation gradient descent method, 

-NFC is based on 

and the remaining data of other 
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faults are forming the other set. Accordingly the problem of multiclass is reduced to a binary 

classification problem. 

An efficient methodology has been adopted to find the best ANFIS model based on the 

idea of decreasing RMSE and increasing the accuracy of the designed architecture. The main 

parts of the MC-NFC that will be designed consists on the type of membership functions 

(Gaussian, triangular, pi-shaped curve, generalized bell-shaped, trapezoidal and differential of 

two sigmoidal), the number of MFs, output MFs types (constant, linear), the learning process 

that changes the parameters associated with the MFs and the number of epochs to avoid the 

problem of over fitting. 

A grid partitioning method was applied to generate a rule base relationship between the 

input and the output of the classifier. The classifier output is a linear combination of its inputs 

(Sugeno fuzzy inference system). 

During the optimization process different built-in membership functions (MFs) types has 

been involved to choose the most appropriate one for MC-NFC model development. Tables 

5.1-5.5 demonstrate the errors of MFs during the optimization process. Moreover, the number 

of MF for each feature has been chosen according to the classifier output. 

TABLE 5.1: Errors of F1 classifier membership functions types during the optimization 

process 

MF-MFN Membership function type description MPRE RMSE  R2 

Gaussmf-2 Gaussian curve -2.5478 0.16617 0.9724 

Trimf-2 Triangular curve -4.6026 0.18866 0.9644 

Pimf-2 Pi-shaped curve 2.0421 0.16169 0.9738 

Gbellmf-2 Generalized bell-shaped curve -1.0257 0.17528 0.9693 

Trapmf-2 Trapezoidal curve 2.3275 0.15921 0.9746 

Dsigmf-2 difference of two sigmoidal membership functions 1.0529 0.15022 0.9774 

 

TABLE 5.2: Errors of F2 classifier membership functions types during the optimization 

process 

MF-MFN Membership function type description MPRE  RMSE  R2 

Gaussmf-2 Gaussian curve -5.1359 0.5406 0.7077 

Trimf-2 Triangular curve -8.4089 0.6119 0.6255 

Pimf-2 Pi-shaped curve -3.0729 0.5480 0.6997 

Gbellmf-2 Generalized bell-shaped curve -4.2902 0.5387 0.7098 
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Trapmf-2 Trapezoidal curve -1.3245 0.5453 0.7027 

Dsigmf-2 difference of two sigmoidal membership functions -3.2864 0.5378 0.7107 

 

TABLE 5.3: Errors of F3 classifier membership functions types during the optimization 

process 

MF-MFN Membership function type description MPRE  RMSE  R2 

Gaussmf-2 Gaussian curve -0.2958 0.0093 0.9999 

Trimf-2 Triangular curve -0.1207 0.0073 0.9999 

Pimf-2 Pi-shaped curve 0.0157 0.0020 0.9999 

Gbellmf-2 Generalized bell-shaped curve -0.5259 0.0112 0.9999 

Trapmf-2 Trapezoidal curve 0.0054 0.0018 0.9999 

Dsigmf-2 difference of two sigmoidal membership functions -0.1370 0.0031 0.9999 

 

TABLE 5.4: Errors of F4 classifier membership functions types during the optimization 

process 

MF-MFN Membership function type description MPRE  RMSE  R2 

Gaussmf-2 Gaussian curve -0.6987 0.5272 0.7221 

Trimf-2 Triangular curve -4.6295 0.7077 0.4992 

Pimf-2 Pi-shaped curve -1.5422 0.5308 0.7183 

Gbellmf-2 Generalized bell-shaped curve -2.4022 0.5256 0.7237 

Trapmf-2 Trapezoidal curve -1.4081 0.5339 0.7150 

Dsigmf-2 difference of two sigmoidal membership functions -0.7887 0.5278 -0.7887 

 

TABLE 5.5: Errors of F5 classifier membership functions types during the optimization 

process. 

MF-MFN Membership function type description MPRE  RMSE  R2 

Gaussmf-2 Gaussian curve 0.0021 0.00016 0.9999 

Trimf-2 Triangular curve -0.3748 0.00670 0.9999 

Pimf-2 Pi-shaped curve -0.0019 0.00009 0.9999 

Gbellmf-2 Generalized bell-shaped curve -0.0059 0.00018 0.9999 

Trapmf-2 Trapezoidal curve -0.0001 0.00003 0.9999 

Dsigmf-2 difference of two sigmoidal membership functions -0.0024 0.00010 0.9999 

 

With reference to the above Tables (5.1-5.5), it can be summarized that the best 

membership functions for each classifier is as follows: 
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About F1 classifier the best membership function is the differential of two sigmoidal 

membership function (dsigmf). For F2 classifier the best membership function is also the 

differential of two sigmoidal membership function (dsigmf).Concerning F3 classifier the best 

membership function is the trapezoidal membership function (trapmf). The best membership 

function is the generalized bell-shaped membership function (gbellmf) in the case of F4 

classifier. About the F5 classifier the best membership function is the pi-shaped membership 

function (pimf). 

TABLE 5.6:  Errors of all classifiers membership functions number during the optimization 

process 

 F1-dsigmf  F2-dsigmf  F3-trapmf  F4-gbellmf  F5-pimf 
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2 MFs 0.235 0.945  0.737 0.456  0.000 1.000  0.526 0.724  0.000 1.000 

3 MFs 0.248 0.938  0.626 0.607  0.000 1.000  0.514 0.736  0.000 1.000 

4 MFs 0.244 0.940  0.592 0.648  0.000 1.000  0.515 0.734  0.000 1.000 

5 MFs 0.30 0.91  0.61 0.63  0.00 1.00  0.52 0.73  0.00 1.00 

 

With respect to Table 5.6, it can be reported that the best number of membership function 

for each classifier is as follows: 

- F1 classifier:  the number of differential of two sigmoidal membership functions is two. 

- F2 classifier: the number of differential of two sigmoidal membership functions is four. 

- F3 classifier: the number of trapezoidal membership functions is two. 

- F4 classifier: the number of generalized bell-shaped membership function is three. 

- And finally, F5 classifier the number of pi-shaped membership function is two. 

Input membership functions for each classifier (classifier 1, 2, 3, 4, and 5) before and after 

training process is as follows: 
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 Figure .5.11: FIS Membership functions for initial and trained classifier (classifier’s 

1 Inputs). 
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Figure .5.12: FIS Membership functions for initial and trained classifier (classifier’s 2 

Inputs). 
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Figure .5.13: FIS Membership functions for initial and trained classifier (classifier’s 3 

Inputs). 

 

 

Figure .5.14: FIS Membership functions for initial and trained classifier (classifier’s 4 

Inputs). 
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Figure .5.15: FIS Membership functions for initial and trained classifier (classifier’s 5 

Inputs). 

TABLE 5.7: Summary of the ANFIS models structures and optimal parameters. 

 Classifier F1 Classifier F2 Classifier F3 Classifier F4 Classifier F5 

Type T-S T-S T-S T-S T-S 

Number of inputs 4 3 2 2 2 

Number of outputs 1 1 1 1 1 

Number of fuzzy rules 2 4 4 9 4 

Input membership function 

type 
dsigmf dsigmf trapmf gbellmf pimf 

Output membership function 

type 
Linear Linear Linear Linear Linear 

Number of epochs 100 100 100 100 100 

Total number of data pairs 2860 2860 2860 2860 2860 

Number of input/output 

membership function 
2-2 4-4 2-4 3-9 2-4 

 

The MC-NFC models are now available. The optimal parameters allowing the 

reproduction of these models are given in Table 5.7. We can see clearly that the models are 

very light in terms of structure parameters. In fact, we have tasted them and the results in 
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terms of fault classification rapidity were very satisfactory. N.B: For fault detection phase, we 

need just to know thresholds of the second and third features (maximum current and 

maximum voltage at the MPP). Thus, fault detection was very quick and avoiding fire hazards 

in PV systems. 

5.4.2.3 Experiment 3: Classification with artificial neural network (ANN) classifier 

For comparisons purpose, the designed MC-NFC has been compared to ANN classifier 

(See Table 5.7). This later is a multilayer feed-forward perceptron (MLP) with one hidden 

layer. For fast optimization of the network, a Levenberg-Marquardt (LM) back-propagation 

algorithm has been applied. 

TABLE 5.8: Comparison between MC-NFC and ANN-classifier 

 F1  F2   F3   F4   F5  

 M
C
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F
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RMSE 0.23 0.55  0.59 0.65  0.00 0.31  0.51 0.58  0.00 0.00 

R2  0.95 0.56  0.65 0.66  1.00 0.91  0.74 0.66  1.00 1.00 

 

This experiment shows clearly the superiority of the MC-NFC [31] over traditional ANN-

classifier with respect to the reduced feature space dimensionality. Moreover, the proposed 

MC-NFC can be used to further improve these important results. 

5.4.3 Discussion 

A Multiclass Adaptive Neuro-Fuzzy Classifier (MC-NFC) for fault detection and 

classification in photovoltaic (PV) array has been developed. Firstly, Fuzzy Logic (FL) 

classifiers have been built based on experimental datasets to show the generalization 

capability in the automatic faults classification of a PV array (PVA). Subsequently, a novel 

classification system based on Adaptive Neuro-fuzzy Inference System (ANFIS) has been 

proposed to improve the generalization performance of the FL classifiers. The experiments 

have been conducted on the basis of collected data from a PV array (PVA) to classify five 

kinds of faults in the PVA, and the normal operation. Results showed the advantages of using 

the fuzzy approach with reduced features over using the entire original chosen features. The 

designed MC-NFC has been compared with an Artificial Neural Networks (ANN) classifier. 
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Results demonstrated the superiority of the MC-NFC over the ANN-classifier and suggest 

that further improvements in terms of classification accuracy can be achieved by the proposed 

classification algorithm; furthermore faults can be also considered for discrimination. 

5.5 Conclusion 

In this chapter, a MC-NFC has been developed for fault detection and classification in 

photovoltaic arrays. From the conducted experiments, it can be strongly recommended the use 

of the MC-NFC classifier. 

The selection of the architecture of the MC-NFC has an important role, input membership 

function type, number of membership function for each input leads to an optimized model. 

The built MC-NFC can discriminate between five types of fault occurring in a PV array. 

Furthermore, the developed algorithm is implemented in a DS1104 platform to show its 

ability to detect and classify PV array faults in real time applications. Classifiers have been 

built based on the best combination of the original feature space for each case. Then, the 

constructed MC-NFC was compared to an ANN classifier, and the results show the 

importance of using the MC-NFC over the traditional ones. 
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CHAPTER 6 

 

Conclusions and Future Work 
 

 

The research presented in this thesis has presented the existing fault detection and 

protection methods and their limitations, discovered the shortcomings in conventional 

protection devices in PV systems, and developed new fault detection and classification 

method to eliminate the fault gap of the existing methods. The major contributions are 

presented below as well as the suggestion for forthcoming work. 

6.1 Conclusions 

The accomplished results and major research contributions of this thesis consist of: 

 In Chapter 3, real time emulator for PV Arrays is constructed, and data for 

classifier building is collected. 

This chapter focuses on real time emulator development and data collection for 

classifier building. The implemented model in ds1104 platform can be manipulated easily, 

Setting the exact couple (temperature, irradiance), implementation of any PV module 

technology, characteristics and parameters, choosing any type of configuration, series, 

parallel, series-parallel modules to get the desired output current, voltage and power. And 

finally, create different fault scenarios inside PV arrays. 

The real time emulator consists basically of two parts: 

 A software part: Matlab/Simulink and ControlDesk. 
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 A hardware part: the DS1104 platform which is connected to the PC via PCI slot, and 

to the APS-1102A programmable DC/AC power source via PLC1104 module.  

Current sensor is used to provide a feedback signal to the implemented SPVA model. The 

control voltage in the external input of the programmable power comes from the controller 

board. Duty cycle changes regularly from 0 to 1 with a constant slope, then controlling the I-

V plotter switch. A resistive load of 5 (ohms) /8 (A) is used. 

As a real time emulator has been used, and the data collection period was accelerated by 

implementing a loop that changed the type of the fault and its severity by considering all 

possible combinations of solar irradiance and module temperature. The whole dataset was 

collected within about 6 hours divided into two days. In fact, the whole dataset cannot be 

stored at once, because of memory limitation in our system. 

 In Chapter 4, features reduction technique is proposed in solar PV Arrays 

diagnosis leading to optimized classifier’s architectures. 

In this chapter, the importance of feature dimensionality reduction techniques has been 

shown. First, Feature is constructed using raw data which is a couple of current-voltage 

characteristics by making a map from raw data to the classifier input. The aim of this latter 

is to build more efficient features for fault detection and classification task. The obtained 

values for all features are normalized by using Eq (16), and the final product is a matrix of 

dimension (2860x12). This latter has been used for MC-NFC model construction. Then, 

the proposed method for feature dimensionality reduction has been applied to five 

classifiers: Partial shading fault classifier (F1 classifier), increased series resistance 

classifier (F2 classifier), By-pass diode short-circuited classifier (F3 classifier), By-pass 

diode impedance classifier (F4 classifier), and PV module short-circuited classifier (F5 

classifier). 

 In Chapter 5, multiclass neuro-fuzzy classifier (MC-NFC) is proposed for fault 

detection and classification in solar PV arrays. 

In addition to fault detection, this thesis proposes fault classification which main 

objective is to indicate the fault type and further help eliminate fault effectively and 

quickly. 
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Chapter 3 has shown that the I-V output characteristics of a PV array can widely change 

as temperature and solar irradiance vary. As a result, it is possible that the faulted PV array 

has similar and even overlapping operating points as the normal PV array, making fault 

detection difficult. To solve this issue, new parameters are firstly introduced, and then 

normalized. Taking weather information into consideration, the new parameters tend to 

remain constant for each condition. That is PV data with same condition tend to cluster 

together. 

For the first time, MC-NFC is proposed for fault detection and classification (FDC) in 

solar PV arrays. The proposed MC-NFC is a supervised learning algorithm, which exhibits 

ability to learn from data. By spreading the information from measured data to the 

classifier output, fault classification can be achieved. Also, the proposed method is 

utilizing readily available PV measurements in PV systems (i.e., MPPT voltage and 

current, and weather information) so that it saves the hardware upgrades and related labor 

costs. 

 

 

 

 

 

 

 

 

 

 

Figure 6.1: Schematic diagram of a typical grid-connected PV system, including 

conventional protection devices. 
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The proposed MC-NFC can discriminate between five types of fault occurring in a PV 

array. Furthermore, the developed algorithm is implemented in a DS1104 platform to show its 

ability to detect and classify PV array faults in real time applications. First, the original space 

features was reduced according to their effect on the classifier output. Second, classifiers have 

been built based on the best combination of the original feature space for each case. Finally, 

the constructed MC-NFC was compared to an ANN classifier, and the results show the 

importance of using the MC-NFC over the traditional ones. 

6.2 Future Work 

As shown in Fig. 6.1, conventional fault detection and protection methods use overcurrent 

protection devices (OCPD) and ground fault detection interrupters (GFDI) in solar PV arrays. 

However, this thesis has shown that OCPD may fail in fault protection when the fault current 

is not high enough. This is caused by the irradiance-dependent and current-limit feature of PV 

arrays. Since OCPD (e.g., fuses or circuit breakers) are passive components that can only be 

blown or tripped at certain current/energy level, their limitations can be found in the solar PV 

arrays, leaving faults undetected and not eliminated. 

In this thesis, we have proposed a new decision-making algorithm to detect and classify 

faults using artificial intelligence techniques, such fuzzy classifier, neural network classifier 

and finally a multiclass neuro-fuzzy classifier. Their performance has been validated in 

experimental platform, making it a promising choice for fault detection and classification. To 

continue this research, future work may explore new active fault protection solutions, such as 

how to clear the fault actively, responsively and safely. Based on the tripping signal generated 

from the proposed methods, the active fault protection solution should increase the system 

efficiency, reliability, safety and fault immunity. Therefore, an integration of active fault 

protection approaches with the proposed methods would be a nice future research topic. 

As the PV penetration level becomes more widespread, PV inverters take more and more 

responsibilities, not only in power conversions and maximum power point tracking, but also 

in fault detection and protection. As the most intelligent component in the PV system, PV 

inverters have the potential to provide more safety features. For example, recent PV inverters 

are featured with several different fault detection solutions, such as ground fault detection, dc 

arc fault detection, insulation detection in ungrounded PV arrays, and residual current 

detection. However, the existing fault detection solutions of PV inverters are usually based on 
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signal-processing, merely relying on the instantaneous measurement. For this reason, fault 

classification is still not available for PV inverters. To make good use of readily available 

historical data, future research may be focused on how to integrate the proposed fault 

classification methods to the PV inverters. This would provide better fault detection features 

and potentially increase the PV system reliability and safety. 
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Appendix 

These figures represent I-V curves for normal and faulty cases. 

 

 Figure 1: I-V curves for normal operation 

 

 Figure 2: I-V curves for shading pattern-1 (25% of nine PV cell in one PV module) 
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 Figure 3: I-V curves for shading pattern-2 (50% of nine PV cell in one PV module) 

 

Figure 4: I-V curves for shading pattern-3 (75% of nine PV cell in one PV module) 
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Figure 5: I-V curves for shading pattern-4 (25% of nine PV cell in two PV modules) 

 

Figure 6:  I-V curves for shading pattern-5 (50% of nine PV cell in two PV modules). 
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Figure 7: I-V curves for shading pattern-6 (75% of nine PV cell in two PV modules). 

 

Figure 8: I-V curves for shading pattern-7 (25% of nine PV cell in three PV modules) 
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Figure 9.h: I-V curves for shading pattern-8 (50% of nine PV cell in three PV modules) 

 

Figure 10: I-V curves for shading pattern-9 (75% of nine PV cell in three PV modules) 

0 20 40 60 80 100 120 140 160

Voltage (Volts)

0

0.5

1

1.5

2

2.5

3

3.5
F1-P8

0 20 40 60 80 100 120 140 160

Voltage (Volts)

0

0.5

1

1.5

2

2.5

3

3.5
F1-P9



Appendix 
 

 
105 

  

Figure 11: ISR pattern-1 (the series resistance of one module is increased by 1 Ω). 

 

Figure 12: ISR pattern-2 (the series resistance of one module is increased by 5 Ω). 
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Figure 13: ISR pattern-3 (the series resistance of one module is increased by 10 Ω). 

 

Figure 14: ISR pattern-4 (the series resistance of one module is increased by 15 Ω). 
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Figure 15: ISR pattern-5 (the series resistance of one module is increased by 20 Ω). 

 

Figure 16: By-pass diode short-circuited (1 BPD in the whole PVA short-circuited). 
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Figure 17: By-pass diode impedance (BPD is assimilated to a resistor of 1 Ω). 

 

Figure 18: By-pass diode impedance (BPD is assimilated to a resistor of 5 Ω). 
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Figure 19: By-pass diode impedance (BPD is assimilated to a resistor of 10 Ω). 

 

Figure 20: By-pass diode impedance (BPD is assimilated to a resistor of 15 Ω). 
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Figure 21: By-pass diode impedance (BPD is assimilated to a resistor of 20 Ω). 

 

Figure 22: One PV module is short-circuited. 
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Artificial Intelligence Techniques Application in Photovoltaic Systems for Faults Diagnosis 

Abstract: 

This thesis deals with the application of artificial intelligence techniques for the diagnosis, detection and 

classification of defects in photovoltaic systems. These latter like all electrical and electronic systems, can break 

down and degrade during the operating period. This requires a diagnostic whose main objective is to provide an 

automatic tool that can early detect defects to protect the persons and installations, and in addition can classify 

this defects. At the end of 2016, 303 GW of photovoltaic energy was installed around the world. About 75 GW 

installed only in the year of 2016, and this comes from the fact that new solutions have encouraged government 

to rely more and more on this kind of energy. For the development of fault classification algorithms in 

photovoltaic systems, at the beginning, a database is collected using real time emulator. Then, classifiers based 

on artificial intelligence were built, such as the fuzzy classifier, neuronal and the neuro-fuzzy classifier. Finally, 

the diagnostic task was sophisticated with the introduction of a new classifier "multi-class neuro-fuzzy classifier 

(MC-NFC)". This latter has been implemented on a DSPACE platform "DS1104" to demonstrate its ability to 

detect and classify faults in real time. 

Keywords: Artificial Intelligence; neuro-fuzzy classifier; diagnostic; faults classification; photovoltaic systems; 

real time simulation. 

 

Application des Techniques d’Intelligence Artificielle dans les Systèmes Photovoltaïques en 

vue de Diagnostic des Défauts 

Résumé:  

Cette thèse porte sur l’application des techniques d’intelligence artificielle au diagnostic, la détection et la 

classification des défauts dans les systèmes photovoltaïques. Ces derniers comme tous les systèmes électriques et 

électroniques, peuvent tomber en panne et se dégradent pendant la durée de fonctionnement. Ce qui nécessite un 

diagnostic dont l'objectif principal est de fournir un outil  automatique qui permet la détection précoce des 

défauts pour protéger l’installation et les personnes, et de classifier le défaut en plus. A la fin de l’année 2016, 

303 GW d’énergie photovoltaïque ont été installés mondialement. Plus de 75 GW ont été installés durant 

seulement l’année 2016, et ceci est due à des nouvelles solutions qui ont encouragé les gouvernements à faire de 

plus en plus confiance à ce type d’énergie. Pour le développement des algorithmes de classification de défauts 

dans les systèmes photovoltaïques, au début, une base de données est collectée en utilisant un émulateur temps 

réel. Ensuite, des classificateurs à base d’intelligence artificielle ont été construits, tels que les classificateurs 

flou, neuronal et neuro-flou. Finalement, le diagnostic a été amélioré par l’introduction d’un nouveau 

classificateur "classificateur neuro-flou multi-classe (MC-NFC) ". Ce dernier a été implémenté sur une 

plateforme DSPACE " DS1104 " pour montrer sa capacité à détecter et classifier les défauts en temps réel. 

Mots clés : Intelligence Artificielle ; classificateur neuro-flou ; diagnostic ; classification des défauts ; systèmes 

photovoltaïques ; simulation temps réel. 

الاصطناعي لتشخیص الأعطال في الأنظمة الكھروضوئیةتطبیق تقنیات الذكاء   

  :ملخص

ھذه الأخیرة مثلھا مثل الأنظمة . اكتشاف وتصنیف الأعطال في الأنظمة الكھروضوئیة, ھذه الأطروحة تتفق مع تطبیق تقنیات الذكاء الاصطناعي لتشخیص

ً إلى توفیر الوسیلة الآلیة التي تسمح , الأمر الذي یتطلب التشخیص. ایمكنھا أن تتعطل وتتلف خلال مدة عملھ, الكھربائیة والإلكترونیة الأخرى الذي یرمي أساسا

جیقاواط من الطاقة الكھروضوئیة قد تم  303, 2016في نھایة سنة . وزیادة على ذلك تصنیف ھذه الأعطال, بالاكتشاف المبكر للأعطال لحمایة الأشخاص و العتاد

وھذا راجع إلى حلول جدیدة شجعت الحكومات على الثقة أكثر فأكثر في , جیقاواط 75وحدھا تم تركیة ما یزید عن  2016في سنة . تركیبھا في جمیع أنحاء المعمورة

ن یتم جمع قاعدة بیانیة باستعمال محاكاة ھذا الأخیر في الزم, في البدایة, لتطویر خوارزمیات تصنیف الأعطال في الأنظمة الكھروضوئیة. ھذا النوع من الطاقة

كانت مھمة  و أخیرًا،. الغامضوالمصنف العصبي  والعصبي، الغامض،مثل المصنف  الاصطناعي،تم بناء المصنّفات المبنیة على الذكاء  ذلك،بعد . الحقیقي

" "DSPACE DS1104وقد تم تنفیذ ھذا الأخیر على منصة )". MC-NFC(متعدد الطبقات  غامض مصنف عصبي"التشخیص متطورة مع إدخال مصنّف جدید 

  .لإثبات قدرتھ على اكتشاف وتصنیف الأعطال في الوقت الحقیقي

  .المحاكاة في الزمن الحقیقي ;الأنظمة الكھروضوئیة ;تصنیف الأعطال ;التشخیص ;المصنف العصبي الغامض ;الذكاء الاصطناعي :المفتاحیة  الكلمات




