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Abstract

We prove that the realization Ap in Lp(RN), 1 < p < ∞, of the elliptic operator A = (1 + |x|α)� +
b|x|α−1 x

|x| · ∇ − c|x|β with domain D(Ap) = {u ∈ W2,p(RN) | Au ∈ Lp(RN)} generates a strongly con-
tinuous analytic semigroup T (·) provided that α > 2, β > α − 2 and any constants b ∈ R and c > 0. This 
generalizes the recent results in [4] and in [16]. Moreover we show that T (·) is consistent, immediately 
compact and ultracontractive.
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1. Introduction

Starting from the 1950’s, the theory of linear second order elliptic operators with bounded 
coefficients has widely been studied. In recent years there has been a surge of activity focused on 
the case of unbounded coefficients. Let us recall some recent results concerning elliptic operators 
having polynomial coefficients.

In this paper, we are interested in studying quantitative and qualitative properties in 
Lp(RN), 1 < p < ∞, of the elliptic operator

Au(x) = q(x)�u(x) + F(x) · ∇u − V (x)u(x), x ∈R
N, (1)

where q(x) = (1 + |x|α), F(x) = b|x|α−2x, V (x) = c|x|β, b ∈ R and c > 0, in the case α > 2
and β > α − 2.

Let us denote by L the operator A with c = 0 and illustrate the difference between the case 
α ∈ [0, 2] and α > 2.

If α ∈ [0, 2] (after a modification of the drift term F near the origin, when α < 2), it is proved 
in [8] that the Lp-realization Lp of L generates an analytic semigroup in Lp(RN), 1 ≤ p ≤ ∞. 
Moreover, if 1 < p < ∞, then

D(Lp) = {u ∈ Lp(RN) ∩ W
2,p
loc (RN) : (1 + |x|α)1/2|∇u|, (1 + |x|α)|D2u| ∈ Lp(RN)}.

The proof of the above result is essentially based on the a-priori estimates

‖(1 + |x|α)1/2∇u‖p ≤ C(‖Lu‖p + ‖u‖p)

‖(1 + |x|α)D2u‖p ≤ C(‖Lu‖p + ‖u‖p)

for u ∈ C∞
c (RN).

The picture changes drastically when α > 2. In this case G. Metafune et al. in [16] showed, if 
N

N−2+b
< p < ∞, the generation of an analytic semigroup in Lp(RN) which is contractive if and 

only if p ≥ N+α−2
N−2+b

. Domain characterization and spectral properties as well as kernel estimates 
have been also proved.

Here the techniques are based on proving some bounds on the Green function associated to 
the operator L.

In [11] (resp. [4]) the generation of an analytic semigroup of the Lp-realization of the 
Schrödinger-type operators (1 + |x|α)� − |x|β in Lp(RN) for α ∈ [0, 2] and β > 2 (resp. α > 2, 
β > α − 2) is obtained. In [11,5] some estimates for the associated heat kernel are provided. 
Also in this case the methods for α ∈ [0, 2] and α > 2 are completely different. This is related 
essentially to the fact that generation of a semigroup in Lp(RN) in the case α > 2 of the operator 
(1 + |x|α)� depends upon N , see [14], [15] and does not depend if α ≤ 2, see [17]

More recently in [12] the authors showed that the operator L = |x|α� + b|x|α−2x · ∇ −
c|x|α−2 generates a strongly continuous semigroup in Lp(RN) if and only if s1 +min{0, 2 −α} <
N
p

< s2 +max{0, 2 −α}, where si are the roots of the equation c+s(N −2 +b−s) = 0. Moreover 
the domain of the generator is also characterized.

At this point it is important to note that the techniques used in [12] are completely different 
from ours and lead to results which are not comparable with our case (β > α − 2).
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Moreover, since, in the case α > 2, the generation of a semigroup of the operator Lp depends 
upon N , the Lp-realization of the operator A cannot be seen as a perturbation of Lp as one of 
our main results in this paper shows, see Theorem 3.

In this paper we denote by Ap the realization of A in Lp(RN) endowed with the maximal 
domain

Dp,max(A) = {u ∈ Lp(RN) ∩ W
2,p
loc (RN) : Au ∈ Lp(RN)}, (2)

and assume that α > 2, β > α − 2. We note that with the assumption on β and α the operator A
has unbounded coefficients at infinity and no local singularities occur.

After proving a priori estimates, we deduce that the maximal domain Dp,max(A) of the oper-
ator A coincides with

Dp(A) := {u ∈ W 2,p(RN) : V u, (1 + |x|α−1)∇u, (1 + |x|α)D2u ∈ Lp(RN)}.

So, we show in the main result of this paper that, for any 1 < p < ∞, the realization Ap of A in 
Lp(RN), with domain Dp(A) generates a positive strongly continuous and analytic semigroup 
(Tp(t))t≥0 for p ∈ (1, ∞). This semigroup is also consistent, irreducible, immediately compact 
and ultracontractive.

The paper is divided as follows. In section 2 we recall the solvability of the elliptic and 
parabolic problems in spaces of continuous functions. In Section 3 we introduce the definition of 
the reverse Hölder class and recall some results given in [20] and in [4] to study the solvability of 
the elliptic problem in Lp(RN). In section 4 we prove that the maximal domain of the operator 
A coincides with the weighted Sobolev space Dp(A), and we state and prove the main result of 
this paper.

Notation. In general we use standard notations for function spaces. We denote by Lp(RN) and 
W 2,p(RN) the standard Lp and Sobolev spaces, respectively. For any k ∈ N ∪ {∞} we denote 
by Ck

c (RN) the set of all functions f : RN → R that are continuously differentiable in RN up to 
k-th order and have compact support (say supp(f )). The space Cb(R

N) is the set of all bounded 
and continuous functions f : RN → R, and we denote by ‖f ‖∞ its sup-norm, i.e., ‖f ‖∞ =
supx∈RN |f (x)|. We use also the space C0(R

N) := {f ∈ Cb(R
N) : lim|x|→∞ f (x) = 0}. If f is 

smooth enough we set

|∇f (x)|2 =
N∑

i=1

|Dif (x)|2, |D2f (x)|2 =
N∑

i,j=1

|Dijf (x)|2.

For any x0 ∈ R
N and any r > 0 we denote by B(x0, r) ⊂ R

N the open ball, centered at x0
with radius r . We simply write B(r) when x0 = 0. The function χE denotes the characteristic 
function of the set E, i.e., χE(x) = 1 if x ∈ E, χE(x) = 0 otherwise. Finally, by x · y we denote 
the Euclidean scalar product of the vectors x, y ∈R

N .

2. Solvability in C0(RRR
N)

In this short section we briefly recall some properties of the elliptic and parabolic problems 
associated with A in spaces of continuous functions.
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Let us first consider the operator A on Cb(R
N) with its maximal domain

Dmax(A) = {u ∈ Cb(R
N) ∩ W

2,p
loc (RN) for all 1 ≤ p < ∞ : Au ∈ Cb(R

N)}.
It is known, cf. [2, Chapter 2, Section 2], that to the associated parabolic problem{

ut (t, x) = Au(t, x) x ∈ R
N, t > 0,

u(0, x) = f (x) x ∈ R
N ,

(3)

where f ∈ Cb(R
N), one can associate a semigroup (T (t))t≥0 of bounded operators in Cb(R

N)

such that u(t, x) = T (t)f (x) is a solution of (3) in the following sense:

u ∈ C([0,+∞) ×R
N) ∩ C

1+ σ
2 ,2+σ

loc ((0,+∞) ×R
N)

and u solves (3) for any f ∈ Cb(R
N) and some σ ∈ (0, 1). Moreover, in our case the solution is 

unique. This can be seen by proving the existence of a Lyapunov function for A, i.e., a positive 
function ϕ(x) ∈ C2(RN) such that lim|x|→∞ ϕ(x) = +∞ and Aϕ − λϕ ≤ 0 for some λ > 0.

Proposition 1. Assume that α ≥ 0 and β > max{0, α − 2}. Let ψ = 1 + |x|γ where γ > 2 then 
there exists a constant C > 0 such that

Aψ ≤ Cψ.

Proof. An easy computation gives

Aψ = γ (N + γ − 2)(1 + |x|α)|x|γ−2 + bγ |x|α|x|γ−2 − c(1 + |x|γ )|x|β
≤ {γ (N + γ − 2) + |b|γ }(1 + |x|α)|x|γ−2 − c(1 + |x|γ )|x|β.

Since β > α − 2, it follows that there exists C > 0 such that

{γ (N + γ − 2) + |b|γ }(1 + |x|α)|x|γ−2 ≤ c(1 + |x|γ )|x|β + C(1 + |x|γ ).

Thus, ψ is a Lyapunov function for A. �
As in [4] one can prove the following result.

Proposition 2. Assume that N > 2, α > 2 and β > α−2. Then the semigroup (T (t)) is generated 
by (A, Dmax(A)) ∩ C0(R

N) and maps C0(R
N) into C0(R

N).

Proof. Let f ∈ C0(R
N). Since C∞

c (RN) is dense in C0(R
N), there is a sequence (fn) ⊂

C∞
c (RN) such that limn→∞ ‖fn − f ‖∞ = 0.

On the other hand, it follows from Theorem 3 that the operator Ap with domain Dp,max(A)

generates an analytic semigroup Tp(t) in Lp(RN), and Dp(A) is continuously embedded into 
W 2,p(RN). Hence, by Theorem 2 and Sobolev’s embedding theorem, T (t)fn = Tp(t)fn ∈
Dp(A) ⊂ W 2,p(RN) ↪→ C0(R

N) for p > N
2 . Since fn → f uniformly, it follows that T (t)fn →

T (t)f uniformly. Hence T (t)f ∈ C0(R
N). �
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Remark 1. If b > 2 − N , then the semigroup (T (t)) generated by (A, Dmax(A)) ∩ C0(R
N) is 

compact. To prove this we recall that, by [16, Proposition 2.2 (ii)], the resolvent and the min-
imal semigroup (S(t)) generated by (L, Dmax(L)) ∩ C0(R

N) map Cb(R
N) into C0(R

N) and 
are compact, where L := q(x)� + F(x) · ∇ . Set v(t, x) = S(t)f (x) and u(t, x) = T (t)f (x) for 
t > 0, x ∈ R

N and 0 ≤ f ∈ Cb(R
N). Then the function w(t, x) = v(t, x) − u(t, x) solves{

wt(x, t) = Lw(t, x) + V (x)u(t, x), t > 0,

w(0, x) = 0 x ∈R
N.

So, applying [2, Theorem 4.1.3], we have w ≥ 0 and hence T (t) ≤ S(t). Thus, T (t)1 ∈ C0(R
N), 

for any t > 0 (see [14, Proposition 2.2 (iii)]). Therefore T (t) is compact for all t > 0 (cf. [2, 
Theorem 5.1.11]).

3. Solvability of λu − Au = f in Lp(RN)

In the previous section we have proved the existence and uniqueness of the elliptic and 
parabolic problems in C0(R

N). In this section we study the solvability of the equation λu −
Apu = f for λ > λ0, where λ0 is a suitable positive constant.

Let f ∈ Lp(RN) and consider the equation

λu − Au = f. (4)

Let φ = (1 + |x|α)b/α , where b ∈ R is the coefficient of the drift term of A given by (1), and set 
u = v√

φ
. We note that the function φ is the function for which we have

1

φ
div (φ∇u) = �u + b

|x|α−2

1 + |x|α x · ∇u, u ∈ C∞
c (RN).

A simple computation gives

λu − Au = (1 + |x|α)√
φ

[
−�v + Uv + V + λ

1 + |x|α v

]
, (5)

where

U = −1

4

∣∣∣∣∇φ

φ

∣∣∣∣2 + 1

2

�φ

φ
.

Then solving (4) is equivalent to solve

−Hv =
√

φ

1 + |x|α f, (6)

where H is the Schrödinger operator defined by

H = � − U − V + λ

α
.

1 + |x|
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If we denote by G(x, y) the Green function of H , a solution of (6) is given by

v(x) =
∫
RN

G(x, y)

√
φ(y)

1 + |y|α f (y)dy,

and hence a solution of (4) should be

u(x) = Lf (x) := 1√
φ(x)

∫
RN

G(x, y)

√
φ(y)

1 + |y|α f (y)dy. (7)

First, we have to show that L is a bounded operator in Lp(RN). For this purpose we need to 
estimate G.

We focus our attention to the operator H . Evaluating the potential V = U + V +λ
1+|x|α , it follows 

that

V = |x|2α−2

(1 + |x|α)2

(
b2

4
− bα

2

)
+ |x|α−2

1 + |x|α
b

2
(N + α − 2) + c|x|β + λ

1 + |x|α

=
(

1

1 + |x|α − 1

(1 + |x|α)2

)
|x|α−2

(
b2

4
− bα

2

)
+ |x|α−2

1 + |x|α
b

2
(N + α − 2) + c|x|β + λ

1 + |x|α

= |x|α−2

1 + |x|α
(

b2

4
+ b

(
N − 2

2

))
+ |x|α−2

(1 + |x|α)2

(
−1

4
b2 + 1

2
bα

)
+ c|x|β

1 + |x|α + λ

1 + |x|α .

We can choose λ0 > 0 such that for every λ ≥ λ0 the potential V is positive. Indeed, since 
β > α − 2 the function

|x|2α−2

(1 + |x|α)

(
b2

4
− bα

2

)
+ |x|α−2 b

2
(N + α − 2) + c|x|β

has a nonpositive minimum μ in RN . So, one takes λ0 > −μ.
On the other hand, since V(0) = λ > 0 and V behaves like |x|β−α as |x| → ∞ we have the 

following estimates

C1(1 + |x|β−α) ≤ V ≤ C2(1 + |x|β−α) if β ≥ α, (8)

C3
1

1 + |x|α−β
≤ V ≤ C4

1

1 + |x|α−β
if α − 2 < β < α

for some positive constants C1, C2, C3, C4.
At this point we can use bounds of G obtained by [20] in the case of positive potentials 

belonging to the reverse Hölder class Bq for some q ≥ N/2.
We recall that a nonnegative locally Lq-integrable function V on RN is said to be in Bq, 1 <

q < ∞, if there exists C > 0 such that the reverse Hölder inequality⎛⎝ 1

|B|
∫

V q(x)dx

⎞⎠1/q

≤ C

⎛⎝ 1

|B|
∫

V (x)dx

⎞⎠

B B
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holds for every ball B in RN . A nonnegative function V ∈ L∞
loc(R

N) is in B∞ if

‖V ‖L∞(B) ≤ C

⎛⎝ 1

|B|
∫
B

V (x)dx

⎞⎠
for every ball B in RN .

As regards the potential V we can see that it belongs to BN/2. Indeed, using (8), one has 
V ∈ B∞ and hence V ∈ BN/2 if β ≥ α. If β < α, then V ∈ Bq whenever β − α > −N

q
, and since 

β − α > −2, we have that V ∈ BN/2. For more details on reverse Hölder classes we refer to [21, 
Chapter XI], [10, Chapter 9]. So, it follows from [20, Theorem 2.7] that for any k ∈ N there is a 
constant Ck > 0 such that

|G(x,y)| ≤ Ck

(1 + m(x)|x − y|)k · 1

|x − y|N−2 , x, y ∈ R
N, (9)

where the auxiliary function m is defined by

1

m(x)
:= sup

r>0

⎧⎪⎨⎪⎩r : 1

rN−2

∫
B(x,r)

V(y)dy ≤ 1

⎫⎪⎬⎪⎭ , x ∈R
N. (10)

In [4] a lower bound for the auxiliary function associated to the potential Ṽ = |x|β
1+|x|α was 

obtained. Since V ≥ C1Ṽ for some positive constant C1, we have m(x) ≥ m̃(x), where 1
m̃(x)

:=
supr>0

{
r : 1

rN−2

∫
B(x,r)

C1Ṽ (y)dy ≤ 1
}

. Replacing Ṽ with C1Ṽ in [4, Lemma 3.1, Lemma 3.2]

we obtain m̃(x) ≥ C2 (1 + |x|) β−α
2 . So we have

Lemma 1. Let α − 2 < β . There exists C = C(α, β, N) such that

m(x) ≥ C (1 + |x|) β−α
2 . (11)

Finally by (9) and the previous lemma we can estimate the Green function G

Lemma 2. Let G(x, y) denote the Green function of the Schrödinger operator H and assume 
that β > α − 2. Then

G(x,y) ≤ Ck

1

1 + |x − y|k (1 + |x|) β−α
2 k

1

|x − y|N−2 , x, y ∈ R
N (12)

for any k > 0 and some constant Ck > 0 depending on k.

We can prove now the boundedness in Lp(RN) of the operator L given by (7)
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Lemma 3. Assume that α > 2, N > 2 and β > α − 2. Then there exists a positive constant 
C = C(λ) such that for every 0 ≤ γ ≤ β and f ∈ Lp(RN)

‖|x|γ Lf ‖p ≤ C‖f ‖p. (13)

Proof. Recall the function φ(x) = (1 + |x|α)b/α . Let 
(x, y) =
√

φ(y)
φ(x)

G(x,y)
1+|y|α , f ∈ Lp(RN) and

u(x) =
∫
RN


(x, y)f (y)dy, x ∈R
N.

We have to show that

‖|x|γ u‖p ≤ C‖f ‖p.

By setting 
0 = G(x,y)
1+|y|α , we have 
(x, y) =

(
1+|y|α
1+|x|α

)b/(2α)


0(x, y). Moreover if we set 

L0f (x) := ∫
RN 
0(x, y)f (y)dy, x ∈ R

N , then [4, Lemma 3.4] gives

‖|x|γ L0f ‖p ≤ C‖f ‖p. (14)

For x ∈ R
N let us consider the regions E1 := {|x − y| ≤ 1

2 (1 + |y|)} and E2 := {|x − y| >
1
2 (1 + |y|)} and write

u(x) =
∫
E1


(x, y)f (y)dy +
∫
E2


(x, y)f (y)dy =: u1(x) + u2(x) .

In E1 we have 1 + |y| ≤ 1 + |x| + |x − y| ≤ 1 + |x| + 1
2 (1 + |y|) and hence 1

2 (1 + |y|) ≤ 1 + |x|. 
Thus,

1 + |x|
1 + |y| ≤ 1 + |x − y| + |y|

1 + |y| ≤ 3

2
and

1 + |y|
1 + |x| ≤ 2 .

Therefore there are constants C, C̃ > 0 such that 
(

1+|y|α
1+|x|α

)b/(2α) ≤ C̃
(

1+|y|
1+|x|

)b/2 ≤ C2|b|/2 and 

(x, y) ≤ C
0(x, y) in E1. So, we have

|u1(x)| ≤ C

∫
RN


0(x, y)|f (y)|dy = CL0(|f |)(x).

By (14) it follows that ‖|x|γ u1‖p ≤ C‖f ‖p .
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As regards the region E2, we have, by Hölder’s inequality,

∣∣|x|γ u2(x)
∣∣≤ |x|γ

∫
E2


(x, y)|f (y)|dy =
∫
E2

(|x|γ 
(x, y)
) 1

p′ (|x|γ 
(x, y)
) 1

p |f (y)|dy

≤
⎛⎜⎝∫

E2

|x|γ 
(x, y)dy

⎞⎟⎠
1
p′ ⎛⎜⎝∫

E2

|x|γ 
(x, y)|f (y)|pdy

⎞⎟⎠
1
p

. (15)

We propose to estimate first 
∫
E2

|x|γ 
(x, y)dy. In E2 we have 1 + |y| ≤ 2|x − y| and 1 + |x| ≤
1 + |y| + |x − y| ≤ 3|x − y|, then

(
1 + |y|α
1 + |x|α

)b/(2α)

≤ C̃

(
1 + |y|
1 + |x|

)b/2

≤ C|x − y||b|/2.

From (12) and by the symmetry of G it follows that

|x|γ 
(x, y) = |x|γ
(

1 + |y|α
1 + |x|α

)b/(2α)
G(x, y)

1 + |y|α
≤ C|x|γ G(x, y)|x − y||b|/2

≤ C
1 + |x|β

|x − y|k (1 + |y|)k β−α
2

1

|x − y|N−2−|b|/2

≤ C
1

|x − y|k−β+N−2−|b|/2

1

(1 + |y|)k β−α
2

, y ∈ E2.

For every k > β − N + 2 + |b|/2, taking into account that 1
|x−y| ≤ 2 1

1+|y| , we get

|x|γ 
(x, y) ≤ C
1

(1 + |y|)k β−α+2
2 +N−2−β−|b|/2

.

Since β − α + 2 > 0 we can choose k such that k
2 (β − α + 2) + N − 2 − β − |b|/2 > N , then 

there is a constant C1 > 0 such that∫
E2

|x|γ 
(x, y)dy ≤ C

∫
RN

1

(1 + |y|) k
2 (2+β−α)+N−2−β−|b|/2

dy ≤ C1.

Moreover by (12) as above we have

|x|γ 
(x, y) ≤ C|x|γ G(x, y)|x − y||b|/2

≤ C
1 + |x|β
k k

β−α

1

|x − y|N−2−|b|/2
|x − y| (1 + |x|) 2
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≤ C
1

|x − y|k−β+N−2−|b|/2

1

(1 + |x|)k β−α
2

.

Taking into account that 1
|x−y| ≤ 3 1

1+|x| , arguing as above we obtain

∫
E2

|x|γ 
(x, y)dx ≤ C2 (16)

for some constant C2 > 0. Hence (15) implies

∣∣|x|γ u2(x)
∣∣p ≤ C

p−1
1

∫
E2

|x|γ 
(x, y)|f (y)|pdy. (17)

Thus, by (17) and (16), we have

‖|x|γ u2‖p
p ≤ C

p−1
1

∫
RN

∫
RN

|x|γ 
(x, y)χ{|x−y|> 1
2 (1+|y|)}(x, y)|f (y)|pdydx

= C
p−1
1

∫
RN

|f (y)|p
⎛⎜⎝∫

E2

|x|γ 
(x, y)dx

⎞⎟⎠dy ≤ C
p−1
1 C2‖f ‖p

p . �

Here and in Section 4 we will need the following covering result, see [6, Proposition 6.1].

Proposition 3. Given a covering F = {B(x, ρ(x))}x∈RN of RN , where ρ : RN → R+ is a Lips-
chitz continuous function with Lipschitz constant k < 1/2, there exists a countable subcovering 
{B(xn, ρ(xn))}n∈N of RN and ζ = ζ(N, k) ∈ N such that at most ζ among the double balls 
{B(xn, 2ρ(xn))}n∈N overlap.

We propose now to characterize the domain Dp,max(A).

Proposition 4. Assume that N > 2, α > 2 and β > α − 2. For 1 < p < ∞ the following holds

Dp,max(A) = {u ∈ W 2,p(RN) : Au ∈ Lp(RN)}.

Proof. It suffices to prove that Dp,max(A) ⊂ {u ∈ W 2,p(RN) : Au ∈ Lp(RN)}. Let u ∈
Dp,max(A). Then f := Au ∈ Lp(RN). This implies that

Ãu := �u + b
|x|α−2

1 + |x|α x · ∇u − c|x|β
1 + |x|α u = f

1 + |x|α ∈ Lp(RN).

If β ≤ α then the potential Ṽ (x) := c|x|β
1+|x|α is bounded and by standard regularity results for 

uniformly elliptic operators with bounded coefficients we deduce that u ∈ W 2,p(RN).
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Let us assume now that β > α. Then Ṽ ∈ Bq for all q ∈ (1, ∞). So, by [1, Theorem 1.1 
and Corollary 1.3], we have that Dp,max(� − Ṽ ) = W 2,p(RN) ∩ Dp,max(Ṽ ) and the following 
estimate holds

‖Ṽ f ‖p + ‖�f ‖p ≤ C‖�f − Ṽ f ‖p (18)

for all f ∈ Dp,max(� − Ṽ ) with a constant C independent of f .
Fix now x0 ∈ R

N and R ≥ 1. We propose to prove the following interior estimate

‖�u‖
Lp(B(x0,

R
2 ))

≤ C
(‖Ãu‖Lp(B(x0,R)) + ‖u‖Lp(B(x0,R))

)
(19)

with a constant C independent of u and R. To this purpose take σ ∈ (0, 1) and set σ ′ := σ+1
2 . 

Consider a cutoff function ϑ ∈ C∞
c (RN) such that 0 ≤ ϑ ≤ 1, ϑ(x) = 1 for x ∈ B(x0, σR), 

ϑ(x) = 0 for x ∈ Bc(x0, σ ′R), ‖∇ϑ‖∞ ≤ C
R(1−σ ′) and ‖�ϑ‖∞ ≤ C

R2(1−σ ′)2 with a constant C
independent of R.

In order to simplify the notation we write ‖ · ‖p,r instead of ‖ · ‖Lp(B(x0,r)). The function 
v = uϑ belongs to Dp,max(� − Ṽ ) and so by (18) we have

‖�u‖p,σR ≤ ‖�v‖p,σ ′R ≤ C‖�v − Ṽ v‖p,σ ′R

≤ C
(‖�v + F · ∇v − Ṽ v‖p,σ ′R + ‖F · ∇v‖p,σ ′R

)
≤ C

(‖Ãu‖p,σ ′R + 2‖∇ϑ‖∞‖∇u‖p,σ ′R + ‖�ϑ‖∞‖u‖p,σ ′R + ‖F‖∞‖∇ϑ‖∞‖u‖p,σ ′R

+‖F‖∞‖∇u‖p,σ ′R + ‖F‖∞‖∇ϑ‖∞‖u‖p,σ ′R
)

≤ C
(‖Ãu‖p,σ ′R + (‖∇ϑ‖∞ + ‖F‖∞)‖∇u‖p,σ ′R + (‖�ϑ‖∞ + ‖∇ϑ‖∞)‖u‖p,σ ′R

)
≤ C

(
‖Ãu‖p,σ ′R + 1

R(1 − σ ′)
‖∇u‖p,σ ′R + 1

R2(1 − σ ′)2 ‖u‖p,σ ′R

)
,

where F(x) := b
|x|α−2

1+|x|α x and C a positive constant independent of u and R, which may change 

from line to line. Multiplying the above estimate by R2(1 − σ ′)2 and taking into account that 
1 − σ = 2(1 − σ ′) we obtain

R2(1 − σ)2‖�u‖p,σR ≤ C
(
R2‖Ãu‖p,R + R(1 − σ ′)‖∇u‖p,σ ′R + ‖u‖p,R

)
.

So,

sup
σ∈(0,1)

{
R2(1 − σ)2‖�u‖p,σR

}

≤ C

(
sup

σ∈(0,1)

{
R(1 − σ)‖∇u‖p,σR

}+ R2‖Ãu‖p,R + ‖u‖p,R

)
. (20)

Thus, by [9, Theorem 7.28], for every γ > 0 there exists σγ ∈ (0, 1) such that
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sup
σ∈(0,1)

{
R(1 − σ)‖∇u‖p,σR

}≤ R(1 − σγ )‖∇u‖p,σγ R + γ

≤ εR2(1 − σγ )2‖�u‖p,σγ R + C

ε
‖u‖p,R + γ

≤ ε sup
σ∈(0,1)

{
R2(1 − σ)2‖�u‖p,σR

}
+ C

ε
‖u‖p,R + γ.

Letting γ → 0 we deduce that

sup
σ∈(0,1)

{
R(1 − σ)‖∇u‖p,σR

}≤ ε sup
σ∈(0,1)

{
R2(1 − σ)2‖�u‖p,σR

}
+ C

ε
‖u‖p,R. (21)

Putting (21) into (20) with a suitable choice of ε we obtain

sup
σ∈(0,1)

{
R2(1 − σ)2‖�u‖p,σR

}
≤ C

(
R2‖Ãu‖p,R + ‖u‖p,R

)
.

Hence (19) follows since (1 − 1
2 )2R2‖�u‖

p, R
2

≤ supσ∈(0,1)

{
R2(1 − σ)2‖�u‖p,σR

}
.

To prove that u ∈ W 2,p(RN) we consider a covering {B(xn, R/2) : n ∈N} of RN such that at 
most ζ among the doubled balls {B(xn, R) : n ∈N} overlap for some ζ(N) ∈ N, by Proposition 3. 
Applying (19) with the ball B(xn, R/2) we obtain

‖�u‖p ≤
∑
n∈N

‖�u‖Lp(B(xn,R/2))

≤ C
∑
n∈N

(‖Ãu‖Lp(B(xn,R)) + ‖u‖Lp(B(xn,R))

)
≤ Cζ

(‖Ãu‖p + ‖u‖p

)
.

This ends the proof. �
We show now the invertibility of λ − Ap in Dp,max(A) for all λ ≥ λ0, where λ0 > 0 is such 

that V ≥ 0 for all λ ≥ λ0.

Theorem 1. Assume that N > 2, α > 2 and β > α−2. Then [λ0, ∞) ⊂ ρ(Ap) and (λ −Ap)−1 =
L for all λ ≥ λ0. Moreover there exists C = C(λ) > 0 such that, for every 0 ≤ γ ≤ β and λ ≥ λ0, 
the following holds

‖| · |γ u‖p ≤ C‖λu − Apu‖p, ∀u ∈ Dp,max(A) . (22)

Proof. First we prove the injectivity of λ − Ap for λ ≥ λ0. Let u ∈ Dp,max(A) such that λu −
Apu = 0. We have to distinguish two cases. The first one is when b ≤ 0. In this case, by (5) we 
have Hv = �v − Vv = 0 with v = u

√
φ ∈ Dp,max(H) = W 2,p(RN) ∩ Dp,max (V), (see [18]

or [1]). Then multiplying Hv by v|v|p−2 and integrating by part (see [13]) over RN , we have
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0 =
∫
RN

v|v|p−2�v dx −
∫
RN

V|v|pdx

= −(p − 1)

∫
RN

|v|p−2|∇v|2dx −
∫
RN

V|v|pdx.

Then we have v ≡ 0 and hence u ≡ 0.
The second case is when b > 0. For this we multiply 1

1+|x|α (λu − Apu) by u|u|p−2 and using 

the fact that u ∈ W 2,p(RN), by Proposition 4, we have

0 =
∫
RN

1

1 + |x|α (λu − Apu)u|u|p−2 dx

=
∫
RN

(
λ + c|x|β
1 + |x|α + b(N + α − 2)|x|α−2 + b(N − 2)|x|2α−2

p(1 + |x|α)2

)
|u|p dx

+(p − 1)

∫
RN

|∇u|2|u|p−2 dx.

Hence, u ≡ 0.
Let now f ∈ Lp(RN) and u(x) = Lf (x) defined by (7). Applying Lemma 3 with γ = 0, 

we have u ∈ Lp(RN). Moreover un := Lfn satisfies λun − Apun = fn for any fn ∈ C∞
c (RN)

approximating f in Lp(RN). Thus, limn→∞ ‖un − u‖p = 0. Since, by local elliptic regularity, 
Ap on Dp,max(A) is closed, it follows that u ∈ Dp,max(A) and λu − Apu = f . Thus λ − Ap is 
invertible and (λ − Ap)−1 ∈ L(Lp(RN)) for all λ ≥ λ0.

Finally, (22) follows from (13). �
The following result shows that the resolvent in Lp(RN) and C0(R

N) coincides.

Theorem 2. Assume that N > 2, β > α − 2 and α > 2. Then, for all λ ≥ λ0, (λ − Ap)−1 is 
a positive operator on Lp(RN). Moreover, if f ∈ Lp(RN) ∩ C0(R

N), then (λ − Ap)−1f =
(λ − A)−1f .

Proof. The positivity of (λ − Ap)−1 follows from Theorem 1 and the positivity of L.
For the second assertion take f ∈ C∞

c (RN) and set u := (λ − Ap)−1f . Since the coefficients 
of A are Hölder continuous, by local elliptic regularity (cf. [9, Theorem 9.19]), we know u ∈
C2+σ

loc (RN) for some 0 < σ < 1. On the other hand, u ∈ W 2,p(RN) by Proposition 4.
If p ≥ N

2 then, by Sobolev’s inequality, u ∈ Lq(RN) for all q ∈ [p, +∞). In particular, u ∈
Lq(RN) for some q > N

2 (cf. [3, Corollary 9.13]) and hence Au = −f + λu ∈ Lq(RN). More-

over, since u ∈ C2+σ
loc (RN) it follows that u ∈ W

2,q
loc (RN). So, u ∈ Dq,max(A) ⊂ W 2,q(RN) ⊂

C0(R
N) by Proposition 4 and Sobolev’s embedding theorem (cf. [3, Corollary 9.13]).

Let us now suppose that p < N
2 . Take the sequence (rn), defined by rn = 1/p − 2n/N and set 

qn = 1/rn for n ∈N. Let n0 be the smallest integer such that rn0 ≤ 2/N noting that rn0 > 0. Then, 
u ∈ Dp,max(A) ⊂ Lq1(RN) ∩ Lp(RN), by the Sobolev embedding theorem. As above we obtain 
that u ∈ Dq ,max(A) ⊂ Lq2(RN). Iterating this argument, we deduce that u ∈ Dqn ,max(A). So we 
1 0



S.E. Boutiah et al. / J. Differential Equations 264 (2018) 2184–2204 2197
can conclude that u ∈ C0(R
N) arguing as in the previous case. Thus, Au = −f + λu ∈ Cb(R

N). 
Again, since u ∈ C2+σ

loc (RN), it follows that u ∈ W
2,q
loc (RN) for any q ∈ (1, +∞). Hence, u ∈

Dmax(A). So, by the uniqueness of the solution of the elliptic problem, we have (λ −Ap)−1f =
(λ − A)−1f for every f ∈ C∞

c (RN). Thus the assertion follows by density. �
4. Characterization of the domain and generation of semigroups

The aim of this section is to prove that the operator Ap generates an analytic semigroup on 
Lp(RN), for any p ∈ (1, ∞), provided that N > 2, α > 2 and β > α − 2.

We characterize first the domain of the operator Ap. More precisely we prove that the maximal 
domain Dp,max(A) coincides with the weighted Sobolev space Dp(A) defined by

Dp(A) := {u ∈ W 2,p(RN) : V u, (1 + |x|α−1)∇u, (1 + |x|α)D2u ∈ Lp(RN)}.
In the following lemma we give a complete proof of the weighted gradient and second deriva-

tive estimates.

Lemma 4. Suppose that N > 2, α > 2 and β > α − 2. Then there exists a constant C > 0 such 
that for every u ∈ Dp(A) we have

‖(1 + |x|α−1)∇u‖p ≤ C(‖Apu‖p + ‖u‖p) , (23)

‖(1 + |x|α)D2u‖p ≤ C(‖Apu‖p + ‖u‖p) . (24)

Proof. Let u ∈ Dp(A). We fix x0 ∈R
N and choose ϑ ∈ C∞

c (RN) such that 0 ≤ ϑ ≤ 1, ϑ(x) = 1

for x ∈ B(1) and ϑ(x) = 0 for x ∈ R
N \ B(2). Moreover, we set ϑρ(x) = ϑ

(
x−x0

ρ

)
, where 

ρ = 1
4 (1 + |x0|). We apply the well-known interpolation inequality (cf. [9, Theorem 7.27])

‖∇v‖Lp(B(R)) ≤ C‖v‖1/2
Lp(B(R))‖�v‖1/2

Lp(B(R)), v ∈ W 2,p(B(R)) ∩ W
1,p
0 (B(R)), R > 0, (25)

to the function ϑρu and obtain for every ε > 0,

‖(1 + |x0|)α−1∇u‖Lp(B(x0,ρ)) ≤ ‖(1 + |x0|)α−1∇(ϑρu)‖Lp(B(x0,2ρ))

≤ C‖(1 + |x0|)α�(ϑρu)‖
1
2
Lp(B(x0,2ρ))‖(1 + |x0|)α−2ϑρu‖

1
2
Lp(B(x0,2ρ))

≤ C

(
ε‖(1 + |x0|)α�(ϑρu)‖Lp(B(x0,2ρ)) + 1

4ε
‖(1 + |x0|)α−2ϑρu‖Lp(B(x0,2ρ))

)
≤ C

(
ε‖(1 + |x0|)α�u‖Lp(B(x0,2ρ)) + 2M

ρ
ε‖(1 + |x0|)α∇u‖Lp(B(x0,2ρ))

+ εM

ρ2 ‖(1 + |x0|)αu‖Lp(B(x0,2ρ)) + 1

4ε
‖(1 + |x0|)α−2u‖Lp(B(x0,2ρ))

)
≤ C

(
ε‖(1 + |x0|)α�u‖Lp(B(x0,2ρ)) + 8Mε‖(1 + |x0|)α−1∇u‖Lp(B(x0,2ρ))

+
(

16εM + 1
)

‖(1 + |x0|)α−2u‖Lp(B(x0,2ρ))

)

4ε
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≤ C(M)
(
ε‖(1 + |x0|)α�u‖Lp(B(x0,2ρ)) + ε‖(1 + |x0|)α−1∇u‖Lp(B(x0,2ρ))

+ 1

ε
‖(1 + |x0|)α−2u‖Lp(B(x0,2ρ))

)
,

where M = ‖∇ϑ‖∞ + ‖�ϑ‖∞. Since 2ρ = 1
2 (1 + |x0|) we get

1

2
(1 + |x0|) ≤ 1 + |x| ≤ 3

2
(1 + |x0|), x ∈ B(x0,2ρ).

Thus,

‖(1 + |x|)α−1∇u‖Lp(B(x0,ρ)) ≤
(

3

2

)α−1

‖(1 + |x0|)α−1∇u‖Lp(B(x0,ρ))

≤ C
(
ε‖(1 + |x0|)α�u‖Lp(B(x0,2ρ)) + ε‖(1 + |x0|)α−1∇u‖Lp(B(x0,2ρ))

+ 1

ε
‖(1 + |x0|)α−2u‖Lp(B(x0,2ρ))

)
≤ C

(
2αε‖(1 + |x|)α�u‖Lp(B(x0,2ρ)) + 2α−1ε‖(1 + |x|)α−1∇u‖Lp(B(x0,2ρ))

+ 2α−2

ε
‖(1 + |x|)α−2u‖Lp(B(x0,2ρ))

)
. (26)

Let {B(xn, ρ(xn))} be a countable covering of RN as in Proposition 3 such that at most ζ among 
the double balls {B(xn, 2ρ(xn))} overlap.

We write (26) with x0 replaced by xn and sum over n, we obtain

‖(1 + |x|)α−1∇u‖p

≤ Cζ
(
ε‖(1 + |x|)α�u‖p + ε‖(1 + |x|)α−1∇u‖p + 1

ε
‖(1 + |x|)α−2u‖p

)
.

≤ Cε‖Apu‖p + Cε(1 + |b|)‖(1 + |x|)α−1∇u‖p + C(
1

ε
+ ε)‖(1 + |x|β)u‖p.

Choosing ε such that εCζ < 1
2(1+|b|) we have

‖(1 + |x|)α−1∇u‖p ≤ C
(‖Apu‖p + ‖(1 + |x|β)u‖p

)
for some constant C > 0. Furthermore, by (22), we know that ‖(1 + |x|β)u‖p ≤ C(‖Apu‖p +
‖u‖p) for every u ∈ Dp(A) ⊂ Dp,max(A) and some C > 0. Hence,

‖(1 + |x|)α−1∇u‖p ≤ C(‖Apu‖p + ‖u‖p).

As regards the second order derivatives we recall the classical Calderón–Zygmund inequality on 
B(1)

‖D2v‖Lp(B(1)) ≤ C‖�v‖Lp(B(1)), v ∈ W 2,p(B(1)) ∩ W
1,p

(B(1)).
0
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By rescaling and translating we obtain

‖D2v‖Lp(B(x0,R)) ≤ C‖�v‖Lp(B(x0,R)) (27)

for every x0 ∈ R
N , R > 0 and v ∈ W 2,p(B(x0, R)) ∩ W

1,p

0 (B(x0, R)). We observe that the con-
stant C does not depend on R and x0.

Then we fix x0 ∈R
N and choose ρ and ϑρ ∈ C∞

c (RN) as above. Applying (27) to the function 
ϑρu in B(x0, 2ρ), we obtain

‖(1 + |x0|)αD2u‖Lp(B(x0,ρ)) ≤ ‖(1 + |x0|)αD2(ϑρu)‖Lp(B(x0,2ρ))

≤ C‖(1 + |x0|)α�(ϑρu)‖Lp(B(x0,2ρ)).

Arguing as above we obtain

‖(1 + |x|)αD2u‖p ≤ C
(
‖(1 + |x|)α�u‖p + ‖(1 + |x|)α−1∇u‖p + ‖(1 + |x|)α−2u‖p

)
.

The lemma follows from (22) and (23). �
The following result shows that C∞

c (RN) is a core for Ap , since by Lemma 4 the norm (29)
is equivalent to the graph norm of Ap. The proof is based on Theorem 1 and Lemma 4 and it is 
similar to the one given in [4, Lemma 4.3].

Lemma 5. The space C∞
c (RN) is dense in

Dp(A) = {u ∈ W 2,p(RN),V u, (1 + |x|α)D2u, (1 + |x|α−1)∇u ∈ Lp(RN)} (28)

endowed with the norm

‖u‖Dp(A) := ‖u‖p +‖V u‖p +‖(1+|x|α−1)|∇u|‖p +‖(1+|x|α)|D2u|‖p, u ∈ Dp(A). (29)

Now, we are ready to show the main result of this section:

Theorem 3. Suppose that N > 2, α > 2 and β > α − 2. Then the operator Ap with domain 
Dp,max(A) generates an analytic semigroup in Lp(RN).

Proof. Let f ∈ Lp(RN), ρ > 0. Consider the operator Âp := Ap − ω, where ω is a constant 
which will be chosen later. It is known that the elliptic problem in Lp(B(ρ)){

λu − Âpu = f in B(ρ),

u = 0 on ∂B(ρ)
(30)

admits a unique solution uρ in W 2,p(B(ρ)) ∩ W
1,p
0 (B(ρ)) for λ > 0, (cf. [9, Theorem 9.15]).

Let us prove that e±iθ Âp is dissipative in B(ρ) for 0 ≤ θ ≤ θα with suitable θα ∈ (0, π2 ]. To 
this purpose observe that
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Âpuρ = div((1 + |x|α)∇uρ) + (b − α)|x|α−1 x

|x| · ∇uρ − c|x|βuρ − ωuρ.

Set u∗ = ūρ |uρ |p−2 and recall that q(x) = 1 + |x|α . Multiplying Âpuρ by u∗ and integrating 
over B(ρ), we obtain∫

B(ρ)

Âpuρu∗dx = −
∫

B(ρ)

q(x)|uρ |p−4|Re(ūρ∇uρ)|2dx −
∫

B(ρ)

q(x)|uρ |p−4|Im(ūρ∇uρ)|2dx

−
∫

B(ρ)

ūρ |uρ |p−2∇q(x)∇uρdx − (p − 2)

∫
B(ρ)

q(x)|uρ |p−4ūρ∇uρ |Re(ūρ∇uρ)|2dx

+ b

∫
B(ρ)

ūρ |uρ |p−2|x|α−1 x

|x|∇uρdx −
∫

B(ρ)

(
c|x|β + ω

) |uρ |pdx.

We note here that the integration by part in the singular case 1 < p < 2 is allowed thanks to [13]. 
By taking the real part of the left and the right hand side, we have

Re

⎛⎜⎝ ∫
B(ρ)

Âpuρu∗dx

⎞⎟⎠
= − (p − 1)

∫
B(ρ)

q(x)|uρ |p−4|Re(ūρ∇uρ)|2dx −
∫

B(ρ)

q(x)|uρ |p−4|Im(ūρ∇uρ)|2dx

−
∫

B(ρ)

|uρ |p−2∇q(x)Re(ūρ∇uρ)dx + b

∫
B(ρ)

|uρ |p−2|x|α−1 x

|x|Re(ūρ∇uρ)dx

−
∫

B(ρ)

(
c|x|β + ω

) |uρ |pdx.

= −(p − 1)

∫
B(ρ)

q(x)|uρ |p−4|Re(ūρ∇uρ)|2dx −
∫

B(ρ)

q(x)|uρ |p−4|Im(ūρ∇uρ)|2dx

+
∫

B(ρ)

(
(α − b)(N − 2 + α)

p
|x|α−2 − c|x|β − ω

)
|uρ |pdx.

Taking now the imaginary part of the left and the right hand side, we obtain

Im

⎛⎜⎝ ∫
B(ρ)

Âpuρu∗dx

⎞⎟⎠
= − (p − 2)

∫
q(x)|uρ |p−4Im(ūρ∇uρ)Re(ūρ∇uρ)dx
B(ρ)
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−
∫

B(ρ)

|uρ |p−2∇q(x)Im(ūρ∇uρ)dx + b

∫
B(ρ)

|uρ |p−2|x|α−1 x

|x|Im(ūρ∇uρ)dx.

We can choose ω > 0 such that

(α − b)(N − 2 + α)

p
|x|α−2 − c|x|β − ω ≤ −|α − b|(N − 2 + α)

p
|x|α−2.

Furthermore,

−Re

⎛⎜⎝ ∫
B(ρ)

Âpuρ u�dx

⎞⎟⎠≥ (p − 1)

∫
B(ρ)

q(x)|uρ |p−4|Re(ūρ∇uρ)|2dx

+
∫

B(ρ)

q(x)|uρ |p−4|Im(ūρ∇uρ)|2dx + c̃

∫
B(ρ)

|uρ |p|x|α−2dx

= (p − 1)B2 + C2 + c̃D2,

where c̃ = |α−b|(N−2+α)
p

is a positive constant.
Moreover,∣∣∣∣∣∣∣Im

⎛⎜⎝ ∫
B(ρ)

Âpuρ u�dx

⎞⎟⎠
∣∣∣∣∣∣∣

≤ |p − 2|
⎛⎜⎝ ∫

B(ρ)

|uρ |p−4q(x)|Re(ūρ∇uρ)|2dx

⎞⎟⎠
1
2
⎛⎜⎝ ∫

B(ρ)

|uρ |p−4q(x)|Im(ūρ∇uρ)|2dx

⎞⎟⎠
1
2

+|α − b|
⎛⎜⎝ ∫

B(ρ)

|uρ |p−4|x|α|Im(ūρ∇uρ)|2 dx

⎞⎟⎠
1
2
⎛⎜⎝ ∫

B(ρ)

|uρ |p|x|α−2 dx

⎞⎟⎠
1
2

= |p − 2|BC + |α − b|CD,

where we have set

B2 =
∫

B(ρ)

q(x)|uρ |p−4|Re(ūρ∇uρ)|2dx

C2 =
∫

B(ρ)

q(x)|uρ |p−4|Im(ūρ∇uρ)|2dx

D2 =
∫

B(ρ)

|x|α−2|uρ |pdx.
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As a result of the above estimates, we conclude

∣∣∣∣∣∣∣Im

⎛⎜⎝ ∫
B(ρ)

Âpuρu∗dx

⎞⎟⎠
∣∣∣∣∣∣∣≤ l−1

α

⎡⎢⎣−Re

⎛⎜⎝ ∫
B(ρ)

Âpuρu∗dx

⎞⎟⎠
⎤⎥⎦ .

If tan θα = lα , then e±iθ Âp is dissipative in B(ρ) for 0 ≤ θ ≤ θα . From [19, Theorem I.3.9], 
see also [7, Theorem II.4.6], it follows that the problem (30) has a unique solution uρ for every 
λ ∈ �θ, 0 ≤ θ < θα where

�θ = {λ ∈C \ {0} : |arg λ| < π/2 + θ}.

Moreover, there exists a constant Cθ which is independent of ρ, such that

‖uρ‖Lp(B(ρ)) ≤ Cθ

|λ| ‖f ‖Lp , λ ∈ �θ . (31)

Let us now fix λ ∈ �θ , with 0 < θ < θα and a radius r > 0. We apply the interior Lp estimates 
(cf. [9, Theorem 9.11]) to the functions uρ with ρ > r + 1. So, by (31), we have

‖uρ‖W 2,p(B(r)) ≤ C1
(‖λuρ − Âpuρ‖Lp(B(r+1)) + ‖uρ‖Lp(B(r+1))

)≤ C2‖f ‖p. (32)

Using a weak compactness and a diagonal argument, we can construct a sequence (ρn) → ∞
such that the functions (uρn) converge weakly in W 2,p

loc (RN) to a function u which satisfies λu −
Âpu = f and

‖u‖p ≤ Cθ

|λ| ‖f ‖p, λ ∈ �θ . (33)

Moreover, u ∈ Dp,max(A). We have now only to show that λ − Âp is invertible on Dp,max(A)

for λ0 < λ ∈ �θ . Consider the set

E = {r > 0 : �θ ∩ C(r) ⊂ ρ(Âp)},

where C(r) := {λ ∈ C : |λ| < r}. Since, by Theorem 1, λ0 is in the resolvent set of Âp , then 
R = supE > 0. On the other hand, the norm of the resolvent is bounded by Cθ/|λ| in C(R) ∩�θ . 
Consequently it cannot explode on the boundary of C(R). Then R = ∞ and this ends the proof 
of the theorem. �

Let us show that Dp,max(A) and Dp(A) coincide.

Theorem 4. Assume that N > 2, α > 2 and β > α − 2. Then maximal domain Dp,max(A) coin-
cides with Dp(A).
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Proof. We have to prove only the inclusion Dp,max(A) ⊂ Dp(A).
Let ũ ∈ Dp,max(A) and set f = λ ũ − Apũ. The operator A in B(ρ), ρ > 0, is an uniformly 

elliptic operator with bounded coefficients. Then the Dirichlet problem{
λu − Au = f in B(ρ)

u = 0 on ∂B(ρ) ,
(34)

admits a unique solution uρ in W 2,p(B(ρ)) ∩ W
1,p
0 (B(ρ)) (cf. [9, Theorem 9.15]). So, ũρ , the 

zero extension of uρ to the complement B(ρ)c, belongs to Dp(A). Thus, by Lemma 4 and (22), 
we have

‖(1 + |x|α−2)ũρ‖p + ‖(1 + |x|α−1)∇ũρ‖p

+ ‖(1 + |x|α)D2ũρ‖p + ‖V ũρ‖p ≤ C(‖Aũρ‖p + ‖ũρ‖p)

with C independent of ρ.
We observe that uρ is the solution of (30) with λ replaced with λ − ω. Then arguing as in 

the proof of Theorem 3, by (31) and (32) for λ > ω, we have ‖uρ‖Lp(B(ρ)) ≤ C1
λ−ω

‖f ‖Lp and 
‖uρ‖W 2,p(B(r)) ≤ C2‖f ‖Lp where r < ρ − 1 and C1, C2 are positive constants which do not 
depend on ρ.

Using a standard weak compactness argument we can construct a sequence ũρn which con-

verges to a function u in W 2,p
loc (RN) ∩Lp(RN) such that λ u −Au = f . Since the estimates above 

are independent of ρ, also u ∈ Dp(A). Then λũ−Aũ = λu −Au and since Dp(A) ⊂ Dp,max(A)

and λ − A is invertible on Dp,max(A) by Theorem 1, we have ũ = u. �
Proposition 5. For any f ∈ Lp(RN), 1 < p < ∞, and any 0 < ν < 1 and for all t > 0, the func-
tion Tp(t)f belongs to C1+ν

b (RN). In particular, the semigroup (Tp(t))t≥0 is ultracontractive.

Proof. In Theorem 3 we have proved that Ap generates an analytic semigroup Tp(·) on Lp(RN)

and in Theorem 2 we have obtained that for f ∈ Lp(RN) ∩C0(R
N), (λ −Ap)−1f = (λ −A)−1f . 

Hence this shows the coherence of the resolvents on Lp(RN) ∩Lq(RN) by using a density argu-
ment. This will yield immediately that the semigroups are coherent in different Lp-spaces. One 
can deduce the result by using the same arguments as in the proof of [11, Proposition 2.6]. �

To end this section we study the spectrum of Ap.

Proposition 6. Assume N > 2, α > 2, β > α − 2. Then, for p ∈ (1, ∞), the resolvent operator 
R(λ, Ap) is compact in Lp(RN) for all ω0 < λ ∈ ρ(Ap), where ω0 is a suitable positive constant, 
and the spectrum of Ap consists of a sequence of negative real eigenvalues which accumulates 
at −∞. Moreover, σ(Ap) is independent of p.

Proof. The proof is similar to the one given in [11,16]. �
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