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A B S T R A C T

We report a detailed first-principles density functional calculations to understand the systematic trends for
crystal structure, elastic and lattice dynamical properties of the anti-fluorite alkali metal tellurides M2Te
depending from the type of the M cations (M are Li, Na, K and Rb). The calculated equilibrium lattice
parameters are in very good agreement with the available experimental data. Single-crystal and polycrystalline
elastic moduli and their related properties of the title compounds were calculated via the stress-strain method.
The relatively weak values of the calculated elastic moduli demonstrate the weak resistance of these compounds
to applied external forces. Phonon dispersion curves throughout the Brillouin zone and corresponding density of
states were calculated using the linear response approach. No imaginary phonon modes were found, which
indicate the dynamical stability of the examined materials. The atomic displacements at Γ point were
determined. Low-frequency dielectric properties and infrared response were investigated.

1. Introduction

The alkali metal chalcogenides M2Ch [M: Li, Na, K and Rb; Ch: O,
S, Se and Te], which crystallize in the face-centered cubic antifluorite
(anti-CaF2-type) structure at ambient conditions [1], possess some
interesting physical properties, such as high-temperature properties,
fast ionic conduction and wide band gap [2–17]. Owing to these
aforementioned properties, the M2Ch materials are potential candi-
dates for several interesting technological applications, such as solid-
state batteries [18–20], fuel cells, solid-state gas detectors [21,22] and
photo-emissive ultraviolet light materials [23–25]. Among these inter-
esting family members, the alkali metal telluride M2Te series [M: Li,
Na, K and Rb] – the considered compounds – have been the subject of
numerous theoretical studies exploring some of their fundamental
physical properties. Kikuchiy and co-workers [13] carried out first-
principles density-functional calculations on the electronic properties
of Li2Te, Na2Te and K2Te using the full-potential linearized augmen-
ted-plane-wave (FP-LAPW) method. Seifert-Lorentz and Hafner [26]
investigated the structural and electronic properties of K2Te employing
a first-principles pseudopotential plane wave (PP-PW) approach.
Eithiraj et al. [4] studied the electronic structure of Li2Te, Na2Te and
K2Te using the tight-binding linear muffin-tin orbitals (TB-LMTO)

method. Kalarasse and Bennecer [9] explored the elastic properties and
lattice dynamics of Na2Te using the PP-PW method. Alay-E-Abbas and
co-workers [2,12] studied the structural, electronic and optical proper-
ties of the M2Te [M: Li, Na, K, Rb] series using the FP-LAPW method.
Zhang and co-workers [5] investigated the lattice dynamic, thermo-
dynamic and elastic properties of Na2Te using the PP-PW approach.
Bahloul and co-workers [7] studied the structural, electronic and
elastic properties of Li2Te employing the PP-PW approach. Zhang
and Shi [10] investigated the lattice dynamics, thermodynamics and
elastic properties of Li2Te through the PP-PW formalism. In spite of
these numerous already performed theoretical studies on the alkali
metal tellurides M2Te [M: Li, Na, K, Rb], one can note that a lack of
information on some of their physical properties still exists up to now.
On one hand, as far as we know, there are no theoretical or
experimental investigations of the lattice dynamical, elastic and
thermodynamic properties of the K2Te and Rb2Te systems. On the
other hand, no study was performed to investigate the systematic
trends for the structural, elastic, lattice dynamical and thermodynamic
properties of the M2Te family depending from the type of M elements
(M are Li, Na, K and Rb). Recently, first-principles investigations of the
lattice dynamical and thermodynamic properties of materials have
provided some quite satisfactory results [27–33]. In view of these
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circumstances, in the present paper a systematic first-principles study
of the structural, elastic and lattice dynamical properties for the M2Te
[M: Li, Na, K and Rb] series was performed using the pseudopotential
plane wave method within the generalized gradient approximation.

2. Computational details

All our first-principles calculations were performed within the
framework of the density functional theory (DFT) and density func-
tional perturbation theory (DFPT) using the pseudopotential plane-
wave (PP-PW) method as implemented in the CASTEP (Cambridge
Total Energy Package) code [33]. The electronic exchange and correla-
tion potentials were described using the generalized gradient approx-
imation GGA-PBEsol [34] (it is termed also GGA08), which has been
specially developed to improve the description of the exchange-
correlation potential in solids. Norm-conserving pseudopotentials
[33] were used to describe the interaction potential between the
valence electrons and the nucleus and frozen electrons. A plane-wave
basis set cut-off of 800 eV and a 15 × 15 × 15 Monkhorst–Pack scheme
k-points grid [35] for the integration over the Brillouin zone (BZ) were
applied to ensure sufficiently accurate total energy calculations. The
optimized lattice parameters were calculated by using the
Broyden˗Fletcher˗Goldfarb˗Shanno (BFGS) minimization algorithm
[36]. The optimized geometry was performed with the following
convergence criteria: (i) the total energy difference between two
consecutive iterations were smaller than 5.0 × 10−6 eV/atom and (ii)
the stress was smaller than 0.02 GPa. The single-crystal elastic
constants Cijs were determined from first-principles calculations by
applying a set of given homogeneous deformations with a finite value ε
and calculating the resulting stress with respect to optimizing the
internal atomic freedoms. The Cijs were obtained via linear fittings of
the stress-strain curves computed from accurate ab initio calculations
[33]; the elastic stiffness tensor is related to the stress tensor and the
strain tensor by Hooke's law. To determine the three independent
elastic constants Cijs of a cubic system, namely C11, C44 and C12, one
strain pattern with nonzero ε11 and ε23 was used. The maximum strain
amplitude was set at 0.003. The lattice vibrational properties, namely
the phonon dispersion curves, density of phonon states, dielectric
tensors and thermodynamic properties were calculated using the linear
response method within the density functional perturbation theory
(DFPT) [37]. The dielectric tensor and the longitudinal-optical/trans-
verse-optical (LO-TO) splitting are used to calculate the frequency-
dependent optical properties in the infrared region (low-frequency
region). The phonon frequencies were computed on a 10 × 10 × 10 q-
points mesh in the BZ.

3. Results and discussion

3.1. Structural properties

At ambient conditions, the M2Te [M: Li, Na, K, Rb] compounds
crystallize in the anti-CaF2-type structure, space group mFm3 (no. 225),
with four formula units (Z = 4) per unit-cell [1]. Fig. 1 depicts one unit-
cell of the K2Te compound as a representative of the M2Te (M: Li, Na,
K, Rb) series. The Te atom occupy the Wyckoff position 4a (0, 0, 0); the
corner and face-centered positions, and the alkali metal atom M are
located at the Wyckoff position 8c (0.25, 0.25, 0.25), filling the
octahedral holes. Therefore, each Te atom is surrounded by eight M
atoms and each M atom is attached to four Te atoms as it is shown in
Fig. 1 by polyhedrons. Before performing calculations to obtain the
elastic constants and lattice vibrational properties of the considered
compounds, their equilibrium lattice parameters (a0) were determined
using the above-mentioned settings. Table 1 presents the obtained
results along with the available theoretical and experimental data in the
scientific literature. Our obtained values for all considered alkali metal
tellurides are in excellent accord with the measured ones. Our

calculated values differ from the corresponding measured ones
[1,2,26,38] by less than 0.4%, 0.6%, 1.0% and 0.7% for Li2Te, Li2Na,
Li2K and Li2Rb, respectively. Table 1 shows also a good agreement
between our results and those from earlier calculations
[2,4,5,7,9,10,26]. The lattice parameter a0 increases with increasing
atomic number Z of the alkali metal atoms,
i.e.,a a a a< < <Li Te Na Te K Te Rb Te

0 0 0 0
2 2 2 2 . This trend can be attributed to

the increase of the atomic radius (R) of the alkali metal atom M in
the M2Te series (M: Li, Na, K, Rb) with the increase of their atomic
number Z, i.e.,R Li R Na R K R Rb( ) < ( ) < ( ) < ( ). In order to obtain the
bulk modulus B and its pressure derivative B’ values, the calculated
primitive-cell volumes (V) as a function of pressure for each considered
compound are fitted to the Murnaghan equation of state (EOS) [39].
The obtained values for B and B’, listed in Table 1, are in good
agreement with the reported data in the scientific literature. The bulk
modulus value decreases when going in the following sequence
Li Te Na Te K Te Rb Te→ → →2 2 2 2 , which is in accordance with the
Cohen's approximation B~V k− [40].

3.2. Elastic constants and related properties

The single-crystal elastic constants Cijs are among the most
important parameters that characterize the physical properties of
crystals. From a practical point, the elastic constants measure the
resistance of a solid to an external applied macroscopic stress and their
abilities to recover and regain their original shape after stress ceases.
Thus, they provide important information regarding the strength,
ductility and hardness of materials. In addition, some macroscopic
elastic moduli such as the bulk, Young and shear moduli and Poisson's
ratio, which characterize the mechanical properties of solids, can be
obtained from the Cijs. From a fundamental viewpoint, the elastic
constants are the second derivative of the total energy with respect to
strain. Therefore, from the elastic constants, one can derived valuable
information on the mechanical stability and the stiffness of the binding
between adjacent atomic planes, sound wave velocities, anisotropic
character of the bonding, Debye temperature and so on. The computed
single-crystal elastic constants C11, C12 and C44 for the examined
systems are quoted in Table 2 as well as available values from other
theoretical reports [5,7,9,10] for comparison. The obtained data allow
us to make the following conclusions:

(i) No experiments have been conducted out to measure the single-
crystal elastic constants Cijs to be compared with our obtained

Fig. 1. The centered-faced cubic anti-fluorite Ca2T-type conventional unit-cell for the
K2Te crystal as representative for the M2Te [M: Li, Na, K and Rb] series.
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results. However, we can state that there is an acceptable
agreement with the available theoretical data for Li2Te [10] and
Na2Te [5,9] if we take into account that different exchange-
correlation potential functionals were used in these different
works, which may explain the slight differences between the
results.

(ii) For a cubic structure, the mechanical stability of a crystal can be
judged via the Born stability criteria [41]:

C C C C C+ 2 > 0, − > 0, > 011 12 11 12 44 (1)

According to the listed data in Table 2, the Born stability
criteria (1) are satisfied, implying that these alkali metal tellurides
are mechanically stable.

(iii) The Cij values decreases when the alkali metal M atom in the
M2Te series is replaced in the sequence Li Na K Rb→ → → ,
indicating the decrease of the stiffness of the M2Te compounds
in the same sequence.

(iv) The relatively weak values of the elastic constants Cijs suggest the
weak resistance of these compounds against compressions and
shear deformations.

(v) The elastic constant C11, which represents the stiffness against
compressional strain, is significantly higher than the C44 and C12,
which represent the resistance against transverse strain, suggest-
ing that the shear deformation is easier to take place than
compression along the principle crystallographic directions.

(vi) The sound wave propagations in a crystal are related to some
physical properties such as thermal conductivity. Acoustic wave
velocities in a crystal can be obtained from the elastic constants
through the resolution of Christoffel equation [42]. In a cubic
crystal, the velocities of sound wave propagating in the [100,110]
and [111] crystallographic directions are given by the following
relationships:

V C ρ V V C ρ= / , = = /L T T
[100]

11 1
[100]

2
[100]

44 (2)

V C C C ρ

V C C ρ V C ρ

= ( + + 2 )/2 ,

= ( − )/2 , = /
L

T T

[110]
11 12 44

1
[110]

11 12 2
[110]

44 (3)

V C C C ρ

V V C C C ρ

= ( + + 4 )/3 ,

= = ( − + )/3
L

T T

[111]
11 12 44

1
[111]

2
[111]

11 12 44 (4)

The subscripts L and T stand to the longitudinal and trans-
versal polarizations of the propagating sound wave. The computed
sound velocities for the considered systems are listed in Table 3.

Table 1
The calculated lattice parameter a0 (in Å), bulk modulus B (in GPa, derived from the EOS) and the pressure derivative of the bulk modulus B ′ (dimensionless) compared to available
theoretical and experimental data in the scientific literature.

Li2Te Na2Te K2Te Rb2Te

a0

Present work 6.491 7.269 8.068 8.442
Expt. 6.517a 7.314a, 7.329d 8.152a, 8.148e 8.490b

8.168d

Others 6.559c, 6.478d 6.532d, 6.37d, 6.483f, 6.518g, 6.347g,
6.518j,

7.246c, 7.285d, 7.383d, 7.107d, 7.210h,
7.209k

8.220c,8.114d, 8.237d, 7.919d, 8.233e,
8.152e

8.460d, 8.627d

8.258d, 8.233f

B (EOS)
Present work 28.22 20.12 14.83 13.09
Others 26.18c, 26.84d, 25.78d, 33.86d, 27.18f,26.03g, 29.76g 21.47c, 19.72d, 19.24d, 22.82d 13.99c,12.90e 12.08d, 12.21d

13.78d, 14.16d 14.69d,
23.61h, 23.59k 17.33d

B'
Present work 3.22 3.91 3.70 3.85
Others 4.68f, 3.89g 4.41h, 4.84k 4.3e

3.93g,

a Ref. [1].
b Ref. [38].
c Ref. [4].
d Ref. [2,12].
e Ref. [25].
f Ref. [10].
g Ref. [7].
h Ref. [9].
k Ref. [5].

Table 2
The calculated elastic constants (Cij, in GPa), bulk, shear and Young's moduli (B, G, E,
respectively, in GPa, derived from the Cijs), Poisson's ratio (σ, dimensionless), anisotropy
factor A, universal anisotropy index AU and anisotropy shear Ashear for the Li2Te, Na2Te,
K2T and Rb2Te compounds.

Property Li2Te Na2Te K2Te Rb2Te

C11 44.60a 30.06a, 24.58a 18.40a

46.3b 38.14c, 38.06d

C12 16.93a 11.20a, 9.71a 7.09a

17.62b 16.50c, 16.17d

C44 20.57a 14.38a 8.27a 5.81a

16.42b 13.15c, 13.21d

B (Cij) 26.15a 17.49a 14.67a 10.86a

27.01b 23.71c, 23.46d

G 17.55a 12.14a 7.92a 5.74a

15.55b, 12.25d

16.92e, 25.58e

E 43.02a, 39.19b 29.58 a 20.15a 14.66a

39.73e, 61.04e 38.14b, 20.46d

σ 0.2258a, 0.26b 0.2180a, 0.2711a 0.2750a

0.174e, 0.193e 0.275d

B/G 1.49a,1.74b 1.44a, 1.85a 1.88 a

1.20e, 1.30e 1.91d

A 1.48 a 1.52a, 1.11a 1.02a

1.145b 1.21d

AU 0.19a 0.21a 0.013a 0.0009a

Ashear 0.018 a 0.021a 0.0013a 0.00009a

a Present work.
b Ref. [10].
c Ref. [9].
d Ref. [5].
e Ref. [7].
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One can appreciate that the longitudinal wave velocity is larger
than the transverse ones and both longitudinal and transverse
waves decrease in the same trend as the single-crystal elastic
constants because the sound wave velocities are proportional to
the square root of the corresponding elastic constants and
inversely proportional to the mass density.

(vii) In general, the majority of the synthesized compounds are not
single-crystal samples but they are in the form of aggregated
mixtures of microcrystallites with random orientations. In these
cases, it is not possible to measure the single-crystal elastic
constants Cijs but instead of that, isotropic macroscopic mechan-
ical parameters, namely the bulk modulus (B) and shear modulus
(G), may be measured. Since polycrystalline elastic moduli are
more attractive in technological characterizations of materials, we
calculated them from the obtained Cijs. Theoretically, the bulk
and shear moduli can be calculated from the Cijs via the Voigt-
Reuss-Hill averaging method [43–45]. For a cubic system, the
bulk modulus is given by the same formula in both Voigt (BV) and
Reuss (BR) approximations:

C 2CB = B = ( + )/3V R 11 12 (5)

The Voigt shear modulus (GV) and Reuss shear modulus (GR) are
defined by the following relationships:

G = (C − C +3C )/5V 11 12 44 (6)

C CG = 5C ( − )/(4C + 3(C − C ))R 44 11 12 44 11 12 (7)

Voigt and Reuss approximations result in the theoretical maximum
and minimum values of these two moduli, respectively. According to
Hill [45] approximation, the effective B and G moduli are approxi-
mated by the arithmetic mean of the two mentioned limits –Voigt and
Reuss:

B B B G G G= 1
2

( + ); = 1
2

( + )V R V R (8)

The Young's modulus E and Poisson's ratio σ for an isotropic
material can be calculated from B and G via the following relationships:

E BG
B G

σ B G
B G

= 9
3 +

; = 3 − 2
2(3 + ) (9)

From Table 2, which lists the calculated values of the isotropic
moduli: B, G, E and σ, one can make the following conclusions:

a) There is a reasonable agreement between the bulk modulus value
calculated from the single-crystal elastic constants Cijs and its
corresponding value derived from the EOS fit. This may be a proof
of the reliability of our predictions for the elastic constants.

b) The relatively weak values of B, which represents the resistance to

volume change, G, which represents the resistance to shear
deformation, and E, which is defined as the ratio of the tensile
stress to the tensile strain, suggest that these compounds are
characterized by a weak resistance to applied external stress. The
decrease of the values of B, G and E in going from Li2Te to Rb2Te is
probably due to the increase of the unit-cell volume in the same
sequence.

c) Poisson's ratio σ can provide important information regarding the
characteristics of the bonding nature. The typical value of σ for ionic
crystals is 0.25 [46]. The Poisson's ratio values of the studied
materials are close to 0.25, which suggests that the interatomic
interactions in these compounds are central and consequently a
higher ionic contribution in the interatomic bonding should be
assumed.

d) By considering the shear modulus as representing of the resistance
to plastic deformation and the bulk modulus as representing of the
resistance to fracture, Pugh [47] introduced the B/G ratio as
criterion to distinguish between the brittle and ductile character
of solids. A low (high) B/G value is associated with brittleness
(ductility). According to Pugh's criterion, the critical value of the B/
G ratio that separates brittleness and ductility is approximately 1.75
(it corresponds to σ = 0.6). The B/G ratio values presented in
Table 2 suggest that Li2Te and Na2Te are brittle while K2Te and
Rb2Te are ductile. On other hand, Frantsevich et al. [48] proposed
another criterion, which suggests to classify a compounds as ductile
if σ > 1/3(σ = 1/3 corresponds to B G/ ≈ 2.67) and brittle if σ < 1/3.
According to this criterion, all the herein considered compounds
can be classified as brittle materials, which is in discrepancy with
the Pugh criterion for the case of Li2Te and Na2Te, illustrating the
uncertainty of the concept.

(a) Elastic anisotropy of crystals reflects the anisotropy of their chemical
bonding in different crystallographic directions. It is necessary and
significant to estimate the elastic anisotropy of materials because it is
highly correlated with the possibility to induce microcracks in the
materials [49,50] and it has a significant influence on the nanoscale
precursor textures in alloys [51]. Therefore, some approaches were
developed in order to evaluate the elastic anisotropy in crystals. Three
different indicators were used in this work to evaluate the elastic
anisotropy of the considered compounds.

1) A usually used anisotropy factor; labelled Ziner's anisotropy index
AZ, is given by the following expression [52]:

A C C C= 2 /( − )Z 44 11 12 (10)

For a completely isotropic crystal, AZ is equal to the unity; any
deviation of AZ from the unity is an indication of the presence of a
certain elastic anisotropy. The magnitude of the deviation of AZ

from the unity is a measure of the degree of the elastic anisotropy in
the considered crystal. From Table 2 data, one can note that Li2Te,
Na2Te and K2Te have a certain degree of elastic anisotropy while
Rb2Te is practically an isotropic crystal.

2) A measurement of the elastic anisotropy in shearing ─ so-called
percentage of elastic anisotropy in shearing AG ─ is given by the
following expression [53]:

A G G G G= ( − )/( + )G V R V R (11)

The subscript R and V stand to the Voigt and Reuss approxima-
tions. AG is null for the isotropic crystals. The percentages of shear
anisotropy of the studied materials are listed in Table 2. Li2Te
(A = 1.8%G ) and Na2Te (A = 2.8%G ) show a weak anisotropy while
K2Te (A = 0.1%G ) and Rb2Te (A = 0.0%G ) are very close to the
isotropic limit.

3) A measure of the elastic anisotropy accounting for both bulk and
shear contributions is quantified by a universal index AU, defined as
follows [54]:

Table 3
Acoustic wave velocities for different propagating directions (in m/s), isotropic
longitudinal, transverse and average sound velocities (Vl, Vt and Vm, respectively, in
m/s) and the Debye temperature (ѲD, in K) for the Li2Te, Na2Te, K2T and Rb2Te
compounds.

Li2Te Na2Te K2Te Rb2Te

VL[100] 3603.05 3164.49 3073.38 2363.36

VT[100] 2447.15 2189.23 1782.56 1328.08

VL[110] 3865.70 3415.64 3125.15 2373.31

VT1[110] 3603.051 2189.23 1782.56 1328.08

VT 2[110] 2006.70 1930.74 1690.09 1310.16

VL[111] 3949.37 3571.04 3142.23 2376.62

VT[111] 2315.37 2057.90 1721.46 1316.14

Vl 3797.81 3349.79 3113.98 2371.28
Vt 2261.78 2011.34 1744.97 1320.84
Vm 2502.16 2224.87 1942.13 1470.79
ѲD 262.78 208.66 164.11 118.76
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A G
G

B
B

= 5 + − 6,U V

R

V

R (12)

For an isotropic crystal, AU is equal to zero and any deviation of AU

from zero defines the extent of elastic anisotropy. The numerical
estimations of AU from the calculated values of GV and GR for the
considered materials are given in Table 2. The obtained results via AU

confirm the already obtained results using other indexes; Li2Te and

Na2Te show a weak anisotropy while K2Te and Rb2Te are very close to
the isotropic limit.

(i) Debye temperature θD is a fundamental parameter that is closely
related to many physical properties of solids, such as specific heat,
melting temperature, thermal expansion coefficient, elastic con-
stants and heat conductivity. One of the standard methods to
calculate the Debye temperature (θD) is from the elastic constants

Fig. 2. Calculated phonon dispersion curves and the corresponding total (TDOS) and partial (PDOS) densities of states spectra for the Li2Te, Na2Te, K2Te and Rb2Te compounds.
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via the following equation [55]:

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥θ h

k
n
π

ρ
M

V= 3
4D

B
m

1
3

(13)

In Eq. (13), Vm is the averaged sound velocity, h is the Plank's
constant, kB is the Boltzmann's constant, ρ is the mass density, n is the
number of atoms in the unit-cell and M is the mass of atoms contained
in the unit-cell. Vm is given by the following expression:

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥V

V V
= 1

3
2 + 1

m
t
3

1
3

−1
3

(14)

Here, Vl and Vt are the longitudinal and transverse elastic wave
velocities defined by the following expressions [56]:

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟V B G

ρ
V G

ρ
= 3 + 4

3
; =l t

1
2

1
2

(15)

The calculated Debye temperature θD and the isotropic sound
velocities of the investigated compounds are listed in Table 2. The
progressive decreasing of the average sound velocities in the M2Te
series in the sequence: Li2Te→Na2Te→K2Te→Rb2Te explains the low-
ering of the Debye temperatures in the same sequential order.

3.3. Dynamical properties

3.3.1. Phonon dispersions and density of states
Phonons are the elementary excitations that influence some physi-

cal properties especially the thermodynamic behavior. Therefore, a
systematic characterization of the phonon density of states and the
dispersion relations for the alkali metal tellurides is highly desirable.
The calculated phonon dispersion curves along several high symmetry
directions in the Brillouin zone (BZ) and the corresponding total and
projected atomic phonon densities of states (TDOS and PDOS) spectra
for the Li2Te, Na2Te, K2Te and Rb2Te compounds at the optimized
lattice parameters are displayed in Fig. 2. The primitive-cell of the
cubic anti-Ca2F-type structure contains three atoms that give rise to
nine phonon modes for a given wave vector q; three are acoustic modes
and six are optical ones. Analysis of the calculated phonon dispersion
curves and the DOS spectra allows us to make the following conclu-
sions:

(i) No imaginary phonon frequency is observed in the entire BZ,
demonstrating that the investigated four alkali metal tellurides
are dynamically stable.

Table 4
Phonon frequencies at high symmetry points X and L (in cm−1) for the Li2Te, Na2Te,
K2Te and Rb2Te compounds.

Li2Te Na2Te K2Te Rb2Te

LTA 53.52a, 50.93b 45.72a, 46.29c 39.73a 31.95a

LLA 102.80a, 103.28b 94.30a, 94.83c 83.92a 64.94a

LTO1 250.62a, 284.57b 141.32a, 153.12c 100.50a 68.26a

LLO1 252.04a, 287.56b 143.14a, 154.10c 103.94a 77.30a

LTO2 260.78a, 295.62b 148.29a, 162.60c 111.57a 80.00a

LLO2 334.25a, 356.65b 171.73a, 179.38c 118.77a 82.66a

XTA 75.34a, 71.91b 66.43a, 66.93c 57.65a 47.60a

XLA 101.47a, 105.52b 93.78a, 96.30c 74.46a 48.16a

XTO1 217.35a, 253.77b 108.37a, 124.95c 78.78a 50.87a

XLO1 220.52a, 251.72b 112.65a, 120.74c 83.25a 80.78a

XTO2 270.86a, 308.98b 164.23a, 177.94c 122.89a 86.35a

XLO2 381.47a, 407.17b 201.29a, 209.89c 139.79a 90.24a

a Present work (PP-PW, GGA08).
b Ref. [10] (PP-PW, LDA).
c Ref. [9] (PP-PW, LDA).

Table 5
The assignment of the vibrational modes, their frequencies (in cm−1) and their activities
at the Brillouin zone center for the Li2Te, Na2Te, K2T and Rb2Te along with available
theoretical results.

Symmetry Li2Te Na2Te K2Te Rb2Te Activity

Tg 282.16a 157.31a 111.60a 82.37a Raman
317.27b 169c, 168d

Eu (TO) 234.05a 138.10a 106.36a 71.94a Infrared
270.47b 152c,d

A2u (LO) 321.24a 185.09a 140.17a 110.42a Infrared
335.84b 190c,d

ω ω−LO TO 87.19 46.99 34.81 28.05

a Present work (using PP-PW with GGA08).
b Ref. [10].
c Ref. [9].
d Ref. [5] (using PP-PW with LDA).

Fig. 3. Schematic representation of Eu (234.05 cm−1) and Tg (282.16 cm−1) optical
phonon modes in Li2Te, with atomic displacements at the Γ point (arrows).
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(ii) The main features of the obtained phonon dispersion curves are
very close to those previously reported for Li2Te [10] and Ca2Te
[5,9], which were obtained using the PP-PW method with the

local density approximation (LDA). We note here that the phonon
dispersion curves are available in the scientific literature only for
the Li2Te and Na2Te compounds. Therefore, this study is the first
theoretical prediction of the lattice dynamical properties for the
K2Te and Rb2Te systems.

(iii) The curves of the longitudinal acoustic (LA) and transverse
acoustic (TA) modes have a linear behavior in the neighbouring
of the Γ point.

(iv) From Fig. 2, one can observe that the gap between the acoustic
and optical branches decreases when going from Li2Te to Na2Te
to K2Te to Rb2Te in the M2Te series. There is a clear gap between
the acoustic and optical branches in the phonon dispersion curves
of the Li2Te and Na2Te compounds, which merely reflects the
large mass difference between the anion Te and the cations Li and
Na. The Li2Te and Na2Te phonon dispersion spectra exhibit great
similarities; the main differences are in the magnitudes of
frequencies and the gap separating the optical branches from
the acoustic ones. This mentioned gap does not appear at all in
the K2Te and Rb2Te compounds. Besides, in the Rb2Te phonon
dispersion spectrum, there is an overlapping between the acoustic
and optical branches.

(v) The longitudinal optical branch (LO) exhibit an upward disper-
sion in Li2Te and Na2Te, a flat dispersion in K2Te and a down-
ward dispersion in Rb2Te along the Γ-X direction while it shows
an upward dispersion along the L-Γ direction in the four
considered compounds and this dispersion increases from Li2Te
to Rb2Te.

(vi) The calculated phonon frequencies for the considered compounds
at the high symmetry points X, L, W and Γ are summarized in
Tables 3, 4. By comparing the phonon frequencies at these
mentioned k-points, one can appreciate that the substitutions of
the alkali metal in the M2Te series in the sequence:
Li Na K Rb→ → → causes a downshift of all the phonon frequen-
cies. The width of the phonon band frequencies is approximately
381 cm−1 in Li2Te, 201 cm−1 in Na2Te, 140 cm−1 in K2Te and
110 cm−1 in Rb2Te. The 1/ mre , where mre is the reduced mass of
all the atoms involved in the vibration, is equal to approximately
0.3897 in Li2Te, 0.2266 in Na2Te, 0.1828 in K2Te and 0.1398 in
Rb2Te. These results indicate that the width of the phonon band
frequencies is proportional to 1/ mre . This trend may be attrib-
uted to the fact that the frequency of a harmonic oscillator can be

calculated from the expression ω = k
m
, where k is the force

constant of the bond.
(vii) The total and projected atomic phonon densities (TDOS and

PDOS) are depicted in the right panels of Fig. 2. The obtained
DOS spectra are in good agreement with the available ones in the
scientific literature for the Li2Te [10] and Na2Te [5,9] com-
pounds. It is known that the character of the lattice vibrational
spectra of solids is governed by both the masses of the constituent
atoms and the chemical bonding strengths. One can easily
observe that the phonon spectra of the Li2Te and Na2Te com-
pounds are divided in two intervals of allowed frequencies
separated by an obvious gap. The lower frequency interval,
containing only acoustic modes, is attributed to the vibrations
of the Te atom while the higher frequency, interval containing
only optical modes, is due to the motions of the M (M: Li, Na)
atom. The lighter atoms, i.e., Li and Na, move with higher
frequencies and the heavier atom, i.e., Te, move with lower
frequencies. In the case of K2Te, one can observe that the low
lying optical phonon modes have interaction with the acoustic
phonon modes but it is still that the contribution of the Te (K)
atom motion is mostly in the acoustic branches (optical branches)
and its contribution to the optical branches (acoustic branches) is
rather small. In the case of Rb2Te, these two frequency intervals
practically merge and both Rb and Te atom vibrations contribute

Fig. 4. Schematic representation of Eu (71.94 cm−1) and Tg (82.37 cm−1) optical phonon
modes in Li2Te, with atomic displacements at the Γ point (arrows).

Table 6
Electronic and static dielectric constants (ε∞ and ε0, respectively), contribution to the
dielectric constant from the IR-active phonon modes (ε lat

0 ), Born effective charges for the
cations (Z *(M: Li, Na, K, Rb)) and the anions (Z*(Te)), static refractive index (n(0)) and
static reflectivity (R(0)) for the Li2Te, Na2Te, K2Te and Rb2Te compounds.

s ε∞ ε0 ε lat
0 n(0) Z* (M) Z* (Te) R(0)

Li2Te 4.97 9.36 4.39 3.06 1.023 −2.04 0.26
Na2Te 4.26 7.65 3.39 2.77 1.031 −2.06 0.22

4.45 a 0.954 a −1.908 a

K2Te 3.53 6.14 2.61 2.48 0.97 −1.95 0.18
Rb2Te 3.43 6.16 2.73 2.48 1.01 −2.03 0.18

b Ref. [9].
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with comparably intensities to the acoustic and optical branches.
From Fig. 2, one can see that the contributions of the M (M: Li,
Na, K, Rb) atom in the lower frequency interval and that of the Te
atom in the higher frequency interval increase when going from
Li2Te to Rb2Te. This indicates that the character of the lattice
vibrational spectra of the considered solids is governed by the
masses of the constituent atoms.

3.3.2. Zone center phonon and dielectric properties
The lattice vibration modes with q ≈ 0 play a dominant role in the

Raman scattering and infrared absorption. According to the group
theory analysis, the irreducible representations of the optical phonon

modes at the Brillouin center, Γ point, are:

Γ E IR T R A IR= ( ) + ( ) + ( )Optical u g u2 (16)

Here, (IR) stands for infrared-active and (R) for Raman-active, A2u

is a single degenerate mode; Eu is a doubly degenerated modes and Tg
are triply degenerated modes. The subscripts u and g represent the
symmetric mode and the anti-symmetric one in the anti-symmetric
center. The calculated phonon frequencies of these vibrational modes
are given in Table 5 together with their optical activities and along with
the available theoretical results in the scientific literature.
Unfortunately, no experimental findings are available in the scientific
literature to be compared with our results. The obtained results are in

Fig. 5. Calculated real (ε1) and imaginary (ε2) parts of the dielectric function dielectric spectra for the Li2Te, Na2Te, K2Te and Rb2Te compounds. The damping was chosen to be 3% of

the frequency.

Fig. 6. Calculated infrared refractive index n and extinction coefficient k spectra for the Li2Te, Na2Te, K2Te and Rb2Te compounds. The damping was chosen to be 3% of the frequency.
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reasonable agreement with the available theoretical data for the Li2Te
[10] and Na2Te [5,9] compounds. The triply degenerated phonon mode
T1g(without the LO-TO splitting) splits by the macroscopic Coulomb
field into E (TO)u and A (LO)2u phonon modes. The ω ω−LO TO splitting is
given in Table 5. One can observe that the ω ω−LO TO splitting
decreases when going from Li2Te to Rb2Te in the M2Te series,
indicating that the oscillator strength decreases in the same sequence.
Generally, there are two factors that may control the relative positions
of the LO and TO frequencies in materials: ionicity and mass ratio
between the anion and cation. The LO-TO splitting, which is equal to
approximately 87 cm−1 in Li2Te, 47 cm−1 in Na2Te, 34 cm−1 in K2Te
and 28 cm−1 in Rb2Te, shows a linear feature when it is plotted as a
function of m /mTe M , where mTe is the mass of the Te atom and mM is
the mass of the M atom (M: Li, Na, K, Rb). The m /mTe M is
approximately 4.29 in Li2Te, 2.35 in Na2Te, 1.80 in K2Te and 1.22 in
Rb2Te. Thus, we conclude that the LO-TO splitting is mainly influenced
by the mass ratio between the cation and anion. It is found that the
studied materials have 3 infrared-active optical modes and 3 Raman-
active optical modes. From Table 5, one can note that our obtained
values are slightly smaller than those reported in the scientific
literature. This slight difference may be attributed to the fact that the
GGA08 functional used in our work is different from the LDA used in
the other calculations; each exchange-correlation potential is known by
its own inherent defects. Fig. 3 shows a schematic representation of the
optical phonon Eu (234 cm−1) and Tg (282 cm−1) modes in Li2Te as
representative for the M2Te (M: Li, Na) compounds with the atomic
displacements at the Γ point. Fig. 4 shows a schematic representation
of the optical phonon Eu (69 cm−1) and Tg (79 cm−1) modes for Rb2Te
as a representative for the M2Te (M: K, Rb) with the atomic displace-
ments at the Γ point. Only the Li atom vibrations contribute to the
optical modes in Li2Te while both Rb and Te atoms contribute to the Tg
optical modes. In the Eu mode, the vibration directions of the
neighbouring Li atoms are opposite but in the Tg mode, they move in
the same direction.

The low-frequency electronic dielectric (ε (∞)α β, ) and the Born
effective charges (Z*α β, ) are defined by the following relationships:

ε π P
E

(∞) = 1 + 4 ∂
∂α β

α

β
,

(17)

Z k V
e

P
u k

* ( ) = ∂
∂ ( )αβ

α

β (18)

Here, P is the macroscopic electronic polarization by the screened
electric field E and u k( )β is the displacement of the k atom. Owing to the
cubic symmetry of the considered compounds, the dielectric polariza-
tion and Born effective charges are isotropic and consequently the
macroscopic electronic dielectric (ε (∞)α β, ) and Born effective charges
(Z*α β, ) tensors are diagonal with only one non-zero independent
component. The calculated values for the electronic dielectric function
ε∞ and Born effective charges Z* for anions and cations of the examined
systems are listed in Table 4 and compared to the available findings in
the scientific literature. There is a good agreement between our results
and the available data in the scientific literature [9]. Our obtained
values for the Born effective charges are very close to the nominal ionic
value of −2 for the Te atom and +1 for the M (M: Li, Na, K, Rb) alkali
atom. These results demonstrate the strong ionic character of the M-Te
bonds and the weakness of the covalent character contributions in
these bonds.

3.3.3. Infrared response
Usually, only the contribution of the electronic polarizations to the

dielectric function is taken into account when studying the optical
properties of materials. However, in the infrared region of the light
spectrum – i.e., low frequency electric field –, the ionic materials
absorb and reflect light strongly due to the interaction of the electrical
field with transverse optical infrared-active phonons [9,57]. Therefore,
in the condition of low-frequency electric field, we should take into
account both the electronic and ionic polarizations. In this case, the
dielectric function is given by the following relationship [57,58]:

∑ε ω ε ω jε ω ε ε
ω ω

ω ω jγω
( ) = ( ) + ( ) = +

−
− +m

LO m TO m

TO m
1 2 ∞ ∞

,
2

,
2

,
2 2 (19)

Here, ε ω( )1 and ε ω( )2 are the frequency-dependent real and
imaginary parts, respectively, of the dielectric function ε ω( ), ωTO m,
and ωLO m, are the transverse and longitudinal optical mode frequencies,
respectively, and γ is the damping coefficient. The calculated dielectric
spectra of the considered materials in the frequency range 0–350 cm−1

are depicted in Fig. 4. In the case of an electrostatic field, the static

Fig. 7. Calculated infrared reflectance spectra for the Li2Te, Na2Te, K2Te and Rb2Te compounds. The damping was chosen to be 3% of the frequency.
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dielectric constant ε0 ε ε( = (0))0 is given by the following expression:

∑ε ε ε
ω ω

ω
= +

−

m

LO m TO m

TO m
0 ∞ ∞

,
2

,
2

,
2

(20)

The static dielectric constant ε0 can be also calculated using the
Lyddane-Sachs-Teller relationship:

∏ε ε
ω
ω

=
m

LO m

TO m
0 ∞

,
2

,
2

(21)

The calculated static dielectric constants ε0 for the studied materials
and the contributions of the infrared-active phonon modes to ε0 ε( )lat

0
are listed in Table 6. From these obtained results, one can note that the
studied M2Te compounds have an electronic dielectric constant slightly
larger than that of the lattice contribution. From the dielectric function
dispersion (ε ω ε ω jε ω( ) = ( ) + ( )1 2 ), one can calculate the dispersion
relations for the refractive index n ω( ), extinction coefficient k ω( ) and
reflectivity coefficient R ω( ) using the following relationships:

ω ε ω ε ω ε ωn( ) = 1
2

( ( ) + ( ) + ( ) )1 1
2

2
2

(22)

k ω ε ω ε ω ε ω( ) = 1
2

(− ( ) + ( ) + ( ) )1 1
2

2
2

(23)

R ω
ε ω
ε ω

n ω k ω
n ω k ω

( ) =
( ) − 1
( ) + 1

= ( ( ) − 1) + ( )
( ( ) + 1) + ( )

2 2 2

2 2
(24)

The refractive index ωn( ) and extinction coefficient k ω( ) spectra of
the M2Te series are depicted in Fig. 5 and the reflectivity R ω( ) spectra
are shown in Fig. 6. The static refractive index n(0) and static
reflectivity R(0) are listed in Table 6. Fig. 6 shows that a strong
infrared reflection, higher than 40%, occurs in the range 138–320 cm−1

(between ωTO and ωLO) in Li2Te, 121–183 cm−1 in Na2Te, 97–139 cm−1

in K2Te and 76–110 cm−1 in Rb2Te because the infrared-active modes,
resulting in a poor transmission property in this range. The reflectivity
attains its maximum (between 85% and 90%) at 255 cm−1 in Li2Te,
150 cm−1 in Na2Te, 115 cm−1 in K2Te and at 89 cm−1 in Rb2Te (Fig. 7).

4. Conclusions

In summary, we investigated the structural, elastic and lattice
dynamical properties of a series of alkali metal tellurides with the
antifluorite structure, M2Te (M: Li, Na, K and Te), using the DFT and
DFPT with the GGA-PBEsol. The calculated equilibrium lattice para-
meters fit very well with the measured ones. The calculated single-
crystal and polycrystalline elastic constants and their related properties
reveal that the examined compounds are mechanically stable and
characterized by a weak resistance to external applied strains. The
phonon dispersion curves show that the investigated compounds are
dynamically stable. The calculated phonon densities reveal that the
acoustic modes are due principally to the Te atom vibration and the
optical modes are due to the M atom vibration in the Li2Te, Na2Te and
K2Te compounds. In Rb2Te, both atoms Rb and Te contribute
comparatively in both acoustic and optical modes. The Raman and
infrared frequencies were obtained and assigned using the irreducible
representation of the symmetry group at the center of Brillouin zone.
The electronic contribution to the dielectric constant is slightly larger
than the lattice vibration one. We have investigated the dielectric
properties and the infrared response spectra.
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