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Abstract This paper addresses the QoS-aware cloud ser-
vice composition problem, which is known as a NP-hard
problem, and proposes a hybrid genetic algorithm (HGA)
to solve it. The proposed algorithm combines two phases to
perform the evolutionary process search, including genetic
algorithm phase and fruit fly optimization phase. In genetic
algorithm phase, a novel roulette wheel selection operator
is proposed to enhance the efficiency and the exploration
search. To reduce the computation time and to maintain a
balance between the exploration and exploitation abilities
of the proposed HGA, the fruit fly optimization phase is
incorporated as a local search strategy. In order to speed-
up the convergence of the proposed algorithm, the initial
population of HGA 1is created on the basis of a heuristic
local selection method, and the elitism strategy is applied in
each generation to prevent the loss of the best solutions dur-
ing the evolutionary process. The parameter settings of our
HGA were tuned and calibrated using the taguchi method of
design of experiment, and we suggested the optimal values of
these parameters. The experimental results show that the pro-
posed algorithm outperforms the simple genetic algorithm,
simple fruit fly optimization algorithm, and another recently
proposed algorithm (DGABC) in terms of optimality, com-
putation time, convergence speed and feasibility rate.
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Introduction

With the proliferation of the cloud computing, more and more
cloud services providing similar functionalities but offering
different quality of service (QoS), such as execution time,
price and availability ... etc., will be offered on the web.
Therefore, selecting the optimal simple cloud services to
build an optimal composite service that meets the global
end-to-end QoS constraints, is one of the most important
problems in service composition, which is called QoS-aware
cloud service composition problem (Julaetal. 2014; Tao et al.
2008).

The QoS-aware cloud service composition (QoS-CSC) is
a combinatorial optimization problem, which is also a strong
NP-hard optimization one (Tao et al. 2008, 2013). Many
studies including exact and meta-heuristic methods have
been proposed to resolve the QoS-CSC. Due to the large scale
of the QoS-CSC problem, the application of exact approaches
such as linear programming (Zeng et al. 2004; Alrifai and
Risse 2009) and mixed integer programming (Ardagna and
Pernici 2007, Alrifai et al. 2010) are restricted. Other kind of
approaches, optimization methods based on bio-inspired and
meta-heuristic algorithms have shown better performance in
solving the QoS-CSC problem. These include genetic algo-
rithm (GA) (Canfora et al. 2005; Yue and Chengwen 2008;
Zhi-peng et al. 2009; Maolin and feng 2010; Wu et al. 2014;
Jinetal. 2015; Ding et al. 2015), particle swarm optimization
(PSO) (Tao et al. 2008; Liao et al. 2014; Wang et al. 2013),
ant colony optimization (AC) (Wu and Zhu 2013), artificial
bee colony (ABC) (Huo et al. 2015; Xue et al. 2016) and so
on. Optimization approaches can obtain near-optimal solu-
tions within a short period of time; thus, it has attracted the
attention of academia in the last years.

Very recently, a novel global evolutionary optimization:
fruit fly optimization algorithm (FOA) is proposed by Pan
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(2012), who is inspired by the food finding behavior of the
fruit fly. Compared with other evolutionary algorithms, such
as GA, PSO, and AC . .. etc.; it has few parameters to adjust,
easy to implement and it has proven to be more effective to
solve different kinds of discrete and continuous optimiza-
tion problems such as multidimensional knapsack problems
(Wangetal.2013; Zhang et al. 2015), financial distress model
(Pan 2012), semiconductor final testing scheduling prob-
lem (Zheng et al. 2014), homogeneous fuzzy series-parallel
redundancy allocation problem (Mousavi et al. 2015a), a
location allocation-inventory problem in a two-echelon sup-
ply chain network (Mousavi et al. 2015b), steelmaking
casting problem (Li et al. 2014) and stand-alone hybrid
photovoltaic (PV)-wind-diesel-battery system (Jingyi and
Xiaofang 2015). To the best of our knowledge, there are few
works about FOA for solving the QoS-CSC. In Zhang et al.
(2015), propose an improved optimization algorithm based
on FOA for service composition (WS_FOA), in which each
parameter of FOA is described according to the service com-
position model; the experimental results show that WS_FOA
has higher operational efficiency than PSO. However, the
traditional FOA algorithm lacks the ability to explore the
solution search, which is easy to fall into local optima (Wang
et al. 2015). In view of these, and in order to benefit from
the higher exploitation ability of FOA (Zhang et al. 2015)
and the exploration ability of the GA, in this paper, the FOA
process is integrated in the GA as a local search strategy.

This paper proposes an optimal optimization algorithm
for QoS-CSC problem (HGA) based on GA and FOA algo-
rithms. First, we present a heuristic local selection method
for generating an improved initial population to speed-up the
convergence of our proposed algorithm. Next, the genetic
phase, which contains a novel roulette wheel selection oper-
ator, a probabilistic one/two point crossover operator and
mutation operator. The latters are employed in the HGA to
enhance the exploration search process. After that, and in
order to improve the exploitation based search of HGA, the
FOA phase is used as local search process. Moreover, the
elitism strategy is applied in each generation of HGA to pre-
vent the loss of the best solutions during the evolutionary
process. Finally, a design of experiment (DOE) via Taguchi
method is used to optimize the HGA’s parameter settings;
the experimental results show that the proposed algorithm
is more effective than the simple genetic algorithm used in
Canfora et al. (2005), simple fruit fly optimization algorithm
(Pan 2012) and the one stated in Huo et al. (2015), which can
obtain an accurate and optimal global solution in a reasonable
computation time.

The remainder of this paper is organized as follows: Sect.
“Related work™ discusses the related literature. In Sect. “GA,
FOA and problem description” the QoS-CSC problem is
described after introducing the canonical algorithms GA and
FOA briefly. In Sect. “The proposed approach”, the proposed
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algorithm is presented in details, including the encoding
solution schema and its fitness evaluation, population ini-
tialization process, the applied genetic operators, and the
FOA phase; we end this very section with presenting the
framework of the proposed HGA. In Sect. “Experiments”, the
parameter settings of HGA are investigated and our exper-
imental results are shown. Finally, we conclude this paper
with a conclusion and the future work in Sect. “Conclusion
and future work”™.

Related work

Many approaches have been proposed for QoS-CSC problem
in the web service and cloud computing contexts, which can
be classified into two categories: (a) exact algorithms such as
linear programming and mixed integer linear programming
(Zeng et al. 2004; Ardagna and Pernici 2007; Alrifai and
Risse 2009; Alrifai et al. 2010). (b) Optimization methods
based on bio-inspired and meta-heuristic algorithms (Can-
fora et al. 2005; Yue and Chengwen 2008; Zhi-peng et al.
2009; Maolin and feng 2010; Wu et al. 2014; Jin et al. 2015;
Liao et al. 2014; Wang et al. 2013; Wu and Zhu 2013; El
Haddad et al. 2010; Ding et al. 2015; Huo et al. 2015; Xue
et al. 2016).

Exact algorithms

InZeng et al. (2004), formulated the QoS-driven web service
selection problem as a linear integer programming and they
proposed two approaches to tackle it: local selection method
and global optimization method. The former is more effi-
cient than the latter method in computation time, because the
local selection approach’s execution time is polynomial, and
it cannot guarantee the global QoS or satisfy the global QoS
constraints. The global method overcomes these shortcom-
ings, but with an expansive computation cost. In Ardagna and
Pernici (2007), the web service selection is formalized as a
mixed integer linear programming (MILP), which is solved
using the linear CPLEX solver. Negotiations techniques for
QoS parameters are performed unless there are feasible solu-
tions to the problem. In Alrifai and Risse (2009), combined
the local and global selection methods to benefit from the
advantages of those techniques, and then proposed a hybrid
approach to solve the QoS web service selection problem.
The integer linear programming model is used to decompose
the global QoS constraints into local ones; the distributed
local selection finds the near-optimal solution that meet these
local constraints unlike the optimal solution, which is with
a high computation cost. To deal with the scalability issues
of linear integer programming techniques, in Alrifai et al.
(2010), an offline skyline operator is used to reduce the
number of candidate services (i.e. eliminate the dominated
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services) from the research space prior the application of the
MILP selection algorithm. The linear programming meth-
ods are very efficient and can obtain an optimal solution.
However, the poor scalability of these methods due to their
computation complexity time, and moreover, their objective
functions and global constraints must be linear, which limits
these methods to some extent.

Optimization methods

Inrecent decades some evolutionary and meta-heuristic algo-
rithms have been employed to solve the QoS-CSC problem.
These methods are faster than MIP for large-scale prob-
lems, and allow the consideration of non-linear composition
rules (Ardagna and Pernici 2007; Alrifai and Risse 2009),
and thus, they are suitable to tackle the QoS-CSC problem.
In Canfora et al. (2005), has proposed a method based on
a simple genetic algorithm, where the genome is encoded
as an integer array to represent the composite service, and
its penalized fitness function is used to drive the evolution
process towards a constraint satisfaction (i.e. two types of
penalties: static and dynamic are proposed for chromosomes
that violate constraints). In Yue and Chengwen (2008), an
improved genetic algorithm named (CoDiGA) is proposed
for web service composition; a relation matrix coding scheme
is introduced to express all paths of a composite service at
the same time, an enhanced initial population and evolution
policy are proposed based on population diversity in order to
quick the convergence of CoDiGA. In Zhi-peng et al. (2009),
a simulated-annealing-based genetic algorithm (QQDSGA)
is provided to tackle the QoS-aware web services selection
problem, the presented simulations show that QQDSGA is
better than GA and simulated annealing (SA) in terms of
efficiency. Differently from the above GA’s approaches, a
hybrid genetic algorithm (HGA) is proposed by Maolin and
feng (2010), where both, QoS proprieties and dependency
and conflict constraints among web services are taken in con-
sideration to tackle the constrained web service composition
problem. The research by Wu et al. (2014) uses the fitness
sharing method to more exploit areas of the search space
in the proposed genetic algorithm approach, which takes
account business correlations among candidate services. In
Jin et al. (2015), a genetic algorithm approach is proposed
using ranking method to calculate the fitness of individuals
preventing premature convergence, where the correlations
among cloud services are also considered. In Tao et al. (2008),
PSO algorithm with an array integer encoding scheme is
applied to find out a good solution to multi-objective MGrid
resource service composition and optimal-selection (MO-
MRSCOS) problem, the experimental results show that the
proposed methods are sound on both efficiency and effec-
tiveness for solving MO-MRSCOS. The PSO algorithm for

service composition problem is also improved by some other
authors (Liao et al. 2014; Wang et al. 2013).

In Wu and Zhu (2013), model the problem of QoS-aware
dynamic service composition as directed acyclic graph,
where both non-functional properties (QoS) and transac-
tional behavior among web services are considered, and
they proposed an ant-colony algorithm to solve this prob-
lem. Their experimental results show that the proposed AC
approach outperforms the local Transactional-QoS optimiza-
tion method proposed by El Haddad et al. (2010). The trans-
actional and QoS-aware web service selection problemis also
investigated by Ding et al. (2015), where they proposed an
approach based on GA. The ABC algortihm is used by many
authors to tackle the QoS-CSC problem. In Huo et al. (2015),
a discrete gbest-guided artificial bee colony (DGABC) is
proposed as it simulates the search for the optimal service
composition solution via the exploration of bees for food.
In Xue et al. (2016), proposed an improved ABC algorithm,
which is brought into the framework of genetic algorithm, to
construct the complete service composition method.

Meta-heuristic approaches can obtain near-optimal solu-
tions within a short period of time; thus, it has attracted the
attention of academia in last years. However, this kind of
methods presents some drawbacks, for instance premature or
local optimum stagnation and the slow convergence to find
near-optimal solutions. Moreover, the large space search of
the QoS-CSC is a critical problem related to the accuracy
of the solution, and thus, our motivation in this very study
will focus on designing an effective algorithm to solve the
problem.

GA, FOA and problem description
Genetic algorithm (GA)

GA is a probabilistic search for an algorithm that mimics
the process of biological evolution in a naturel environment
Goldberg (1989), which has been widely applied to solve
several optimization problems, such as combinatorial opti-
mization, production scheduling, and other fields. The basic
GA flowchart is shown in Fig. 1. At the beginning of the algo-
rithm, an initial population of individuals (chromosomes)
is randomly generated, after that, each chromosome which
encodes a single possible solution to the problem in the form
of encoded string is evaluated according to its defined fitness
function. Next, a new population (generation) is produced
by using three genetic operators: selection, crossover and
mutation. The generated solutions (offspring) are taken to
replace the old population (parents) for the next iteration
(evolution) depending on their fitness. This process of evolu-
tion is repeated for each generation until the stopping criteria
of the algorithm is reached.
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Fig. 1 Flowchart of simple genetic algorithm

Fruit fly optimization algorithm (FOA)

Very recently, a new global optimization algorithm, called
Fruit fly Optimization Algorithm (FOA), has been presented
by Pan (2012), which was inspired by the food finding behav-
ior of the fruit fly. The fruit fly itself is superior to other
species in sensing and perceiving, especially in osphresis and
vision (Pan 2012). FOA uses two main foraging processes
to achieve an optimal global optimization. The first forag-
ing process is to locate the food source through smelling
by using osphresis organ and fly towards the corresponding
location (i.e. smell-based search process), the second forag-
ing process is to use the foraging sensitive vision to find the
best food source location and fly towards it (i.e. vision-based
search process). The following steps summarize the behavior
of FOA (Pan 2012; Zheng et al. 2014; Li et al. 2014).

Step 1. Initialization of parameters.

1. Initialize the fruit fly group location: generate ran-
domly the location of the fruit fly group in the search
space.

2. Initialize the maximum number of generations
(MAX_GEN) and population size (SN).

Step 2. Smell-based search process.

1. Foraging smell: generate randomly a population of
SN fruit flies around the current fruit fly group loca-
tion.

2. Evaluate the population: evaluate the fitness value
(smell concentration) for each fruit fly of the gener-
ated population.
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Step 3. Vision-based search process: find the best fruit
fly with the optimal fitness, and then let the fruit fly group
fly towards the best one (the current fruit fly group loca-
tion is updated with the position of the best one).

Step 4. Check the stopping criterion: if the maximum
number of generations M AX_GEN is reached stop the
algorithm; otherwise, go back to step 2.

Notation and problem description

Let consider the following descriptions:

- ACSC ={T,T»,...,T,}, denotes an abstract cloud ser-
that comprise it and their total number is (n). Each task
T; is related to the candidate cloud service set S; =(C Sl.1 ,

CSiz, e CS;"), where CSij is the jth candidate cloud
service, and m is the number of candidate cloud services
of each candidate set S;.

— The set QoS = {q1, g2, . . qr} of criteria for each cloud
service C S can be classified into two classes: positive and
negative QoS attributes (denoted as QoS™ and QoS
respectively), where r is the total number of concerned
QoS parameters, and for each positive criterion, larger
values indicate higher performance (e.g. reliability and
availability) while for negative criterion, smaller val-
ues indicate higher performance (e.g. price and response
time).

— The set GCst = {Csty, Csty, ..., Cst} indicates the
global constraints specified by the user, where Cst; with
t < kand k < r is the global QoS constraint over the
QoS attribute g;.

- W = {wy, ws ,..., wy}, denotes the user’s preferences
for each QoS attribute g, € QoS, and w; € [0, 1] is the
weight of the 7th QoS attribute with >/, w, = 1.

The conceptual overview of cloud service composition is
shown in Fig. 2. Two main processes are invoked using the
functional descriptions (i.e. inputs and outputs descriptions
of ACSC) and non-functional values (i.e. global QoS con-
straints and weights of user’s preferences of QoS attributes)
in order to resolve the user’s request. These processes are
the discovery process, and QoS-aware cloud service com-
position process. In the discovery process, sets of candidate
cloud services S;(;=1...n) that can perform tasks 7;(;=1. ) are
discovered through functional descriptions. The QoS-aware
cloud service composition process aims to find a compos-
ite of concrete cloud services CCS =(CSj', CSy, ...,
C S,{”) by binding each task 7; to a selected cloud service
C Sl'.’i (ji € [1,m]) from the related set of candidate cloud
services S;, where these selected services satisfy the non-
functional conditions of the global QoS constraints GCst
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Fig. 2 Conceptual overview of cloud service composition

and have the optimal value of global QoS on the basis of
user’s preferences W.

In order to calculate the score value of the global QoS
of each CCS, we evaluate this according to the QoS values
of its component cloud services, and composite models (i.e.
sequential, parallel, conditional and loop), which define the
interconnection structures among these component services.
The simple additive weighting (SAW) method is applied
(Zeleny 1982) to map the aggregated QoS values of CCS
into a single real value. SAW method contains two steps:
scaling and weighting. The former normalizes the various
measurement metrics of QoS attributes to the same scale
into real values between O and 1. (Egs. 1 and 2 show the
normalization step of each aggregate attribute g, for CCS).
The later multiplies each normalized value with a preference
weight w; and then aggregates them into score value of this
CCS, (Eq. 3 show the score value of each CCYS).

— normalization of aggregate negative attributes (i.e. g; €

QoS7):
Q(CCS); =

UL DU if agg(q) ™) # agg(g)"™)

agg(q/"™)—age(qy .
1 if agg(q"*") = agg(q™™)
(D

— normalalization of aggregate positive attributes(i.e. ¢; €
QoS™:):

agg(gi)—agg(g!™) . max

~— ifa
agg(q"*)—agg(g/"™) 881
1

) # agg(g"™
min)

if agg(q/"*") = agg(q;
2

Q(CCS); =

InEqgs. 1and 2,agg(q,"**) and agg (ql’”i”) denote the maxi-
mum and minimum possible aggregated values of the th QoS
criterion for the composite CC'S, respectively, and agg(q;)
denotes the aggregated value of the 7th QoS criterion of CCS.

Score(CCS) = Z Q(CCS); * w; 3)

t=1

The aggregation operation (i.e. agg ={>_, [ [, avg, min and
max }) for each QoS attribute can be applied according to the
composite model and the characteristic of the corresponding
QoS parameter. For example, the sum operation (i.e. >) is
the aggregation operation of the QoS response time for the
sequential composite model. The calculation score formulas
of the most used QoS attributes in literature for the different
composition models (Tao et al. 2008; Zeng et al. 2004) are
shown in Table 1. In this study, only the sequential composite
model is considered, while the other models can be simpli-
fied or converted using the methods mentioned in Ardagna
and Pernici (2007).Using the aforementioned descriptions
and the above evaluation method to calculate the global QoS
score of CCSS, the QoS-CSC is planned to find the optimal
CCS with the maximum score value and meet the global
QoS constraints GCst, which can be formulated as follows:

max : Score(CCS) 4)

subject to

Vi =1

k [ agg(qr) < Csty if g, € QoS™ 5)

agg(q) = Cst; if g, € QoST,

where Cst; € GCst, and agg(q;) denotes the aggregated
value of the 7th QoS criterion of the composite concrete cloud
services CCS.

The proposed approach

In this section, we present the design of our HGA for
QoS-CSC problem, which includes the solution’s encoding
scheme, improved population initialization, fitness evalua-
tion of solution, the genetic algorithm phase in which a
novel selection operator is proposed to enhance the efficiency
and exploration ability, and in order to reduce the computa-
tion time and to maintain a balance between exploration and
exploitation abilities of HGA, the fruit fly optimization phase
is performed after every genetic evolution, and the elitism
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Table 1 QoS aggregation functions for the different composition models.

Attribute (g;) Composition model

Sequential: (n sequential
cloud services)

Parallel: (m parallel
cloud services)

Conditional: (call CS,-’
with pr; probability)

Loop: (call CSi/
h times)

price (t = price) 2 (‘lirice,i) > l(q;j;rm i) z:'n:l(q;j;ri(:e.i * pri) hs (qirice,i)
time (1 = rime) S @) maxL | (e ) S e * PTO) B @)
availability (+ = ava) Hf':l(q({w,,-) [T (qava.i) Z;":l(q,{mi * pri) (q({mj)h
reliability (t = rel) [T (qrjel,i) [T (qrje[,i) 2 (qrjel,i * pri) (‘lrjel.i)h
reputation (f = rpt) avg?:l(q:pt.i) avg! (qrjpt,i) z;-":l(qrjpm * pri) q{pm
throughput (1 = thr) minf_, (q),.;) min, (q),,;) S0 @ % PO Do

Jj is the index value of the selected concrete cloud service from the related candidate set S;. In the case of the conditional compoistion model:

>, pri = 1 and m its number of choices

operator is applied after the termination of the fruit fly opti-
mization phase to prevent the loss of the best solutions during
the evolutionary process. In the following subsections, we
present the components of the proposed algorithm and its
framework.

Encoding scheme

In the proposed HGA, each individual is a solution of the
QoS-CSC problem, which is represented by an array of
integers. Each integer in the array corresponds to a chosen
concrete cloud service from the corresponding candidate set
of concrete cloud services. In Fig. 3 the shown individual
represents composite concrete cloud service consisting of
five abstract cloud services, in which each entry in the array
encodes the selected concrete cloud service from its related
candidate set. For example, the second entry in the array rep-
resents the first concrete cloud service of the second abstract
cloud service (i.e. the concrete cloud service: C S21).

Population initialization

In general, the initial population of an interactive evolution-
ary algorithm such as GA or FOA is generated randomly. But
a population with a high level of solution quality and diver-
sity is very crucial in order to get a near-optimal solution with
short convergence time. In this study we propose a heuristic
local optimization selection method to generate an improved
solution and then we present the procedure of generating the
initial population of our HGA.

Local optimization selection method
To create an individual (ind) with high level of solution qual-

ity, we use a local optimization selection method (Zeng et al.
2004), which is given by the two following steps:
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Fig. 3 Array integer encoding of solution

Step 1. Calculate the local score of each concrete cloud
service C Sij , using the SAW method as follows:

max ]
. q[ . _— ql‘ .
Score;(CS)) = z LBy,
i max __ ,min
gi1€Q0S~ 4;.i 4y.i

q —q;
+ Z t,i ll. * Wy,

greQoS+ qtl ql!

(6)

where q[j ; denotes the rth criterion value of the jth cloud

service C Sl.j from the ith candidate set S;, ¢,""* and ¢;",

denote the maximum and minimum values of the 7th attrlbute
in the set S;, and w, represents the user’s weight of the rth
QoS attribute.

Wlll’l

Step 2. For each set of candidate cloud services S; cor-
responds to the position i of what an individual ind does,
do
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1. Use a binary tournament selection Goldberg (1989)
to select two different concrete cloud services C Sl.]
and C Sf at random from the set ;.

2. If Scorez(CSij) > Score; (CS?‘) ,Affect the ith posi-
tion of ind with the index value j of the cloud service
cs/

3. Else Affect the ith position of ind with the index
value k of the cloud service C Sf

4. End if

End For

Improved initial population generation

Using the above method of generating a solution, we initialize
the population as follows:

Step 1. Generate an improved solution using the local
optimization selection method.

Step 2. Letiteration itr = 1, perform the following steps
until irr = PopSize (PopSize: is the population size.)
Step 3. Generate a new improved solution using the local
optimization selection method. If the newly-generated
solution is not the same as any solution in the current pop-
ulation, insert it into the population and letitr = itr +1;
otherwise, discard it.

Step 4. Go back to step 3.

An illustrative example will help us understand and demon-
strate the effectiveness of the aforesaid initial generating
population process. Let’s consider, for instance, a sequential
abstract cloud service composition ACSC of three atomic
tasks, where each task 7;(;=1..3) is related to the candidate

. . j(j=1..3
cloud service S; of three concrete cloud services C Sl.] G ),

Each concrete cloud service C Sij has two QoS-criteria : cost
($) and response time (ms), assigned by the QoS-weights
Wprice = 0.5 and wyime = 0.5, respectively. QoS val-
ues of theses concrete cloud services are shown in Table 2.
Using the formula given in Eq. 6, we can calculate the local

score of each CSl.j, for example, Scorel(CSzl) = g%% * 0.5

—i—% % 0.5 = 0.7 . Table 3 presents the evaluated local

score values of theses cloud services. By using our proposed
local optimization selection method, It is obvious that, for
the candidate set S3, the concrete service CS% with the high-
est local score is more likely to be selected in the generated
individual when the selection’s probability of the concrete
service C S; with the lowest local score, is zero(i.e. C S; has
never been selected in individual’s generation by applying
the tournament selection method in the candidate set S3).

In the presented example, the total number of possible
combinations to generate individuals is 33, implying that
we have 27 different solutions. To show the effectiveness

Table 2 An example of nine cloud services assessed on two criteria

QoS attribue values : C Sij (cost, time)

Sl Sz S3

CS}(2,220) CS1(2,180) CSi4,140)
CS%(3,190) CS3(2,200) CS3(1,150)
CS3(5,180) CS3(8,150) CS3(3,170)

Table 3 Local score values of the nine cloud services

Local score values: CS[.j {Score; (CSij)}

Si S $3

CS1{0.50} €51{0.70} €$1{0.50}
CS?{0.71} €53{0.50} CS53{0.84}
C$3{0.50} €$3{0.50} €S$3{0.17}

of the proposed improved initial population generation, two
populations of 7 solutions are generated using our heuris-
tic generation method and a random approach (denoted as
Imp,op and Rndp,p, respectively). A population with a high
level of solution quality (Qua,p) and diversity (Div,ep) is
more important to get a near-optimal global solution. The
following pseudo-code is used to determine the Qua,,,, and
Divp,p values of each generated population, in which the
function Generate Pop() simulates our proposed generation
approach to create /mp ., or a random method to generate
Rndpop.

1. For i=1 to 1000 % experiment repeats 1000 times.

2. Pop = GeneratePop() % generates a population
(Pop).

3. S(Pop) = calculateScore(Pop) % calculates the score
values of the individuals in (Pop) using Eq. 3.

4. AS; = average(S(Pop)) % calculates the scores’ aver-
age value of the individuals in Pop and store it in AS;.

5. D(Pop) = calculate Div(Pop) % calculates the diver-
sity values of the individuals in Pop as we will illustrate
in Sect. “Selection operator”.

6. AD; = average(D(Pop)) % calculates the diversities’
average value of the individuals in Pop and store it in
AD;.

7. End For 1000
_ 2] (AS)
8 Quapop_ 10(1)(1900
. _ >i%ADy)
9. Divpop = 11000

Table 4 lists the result of the above code applied in the
current example (EXxpgq:4) and another example (Rndgq:q).
In Rndja.1q: we have a sequential ACSC with 15 abstract
cloud services, and for each abstract service, 500 concrete
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Table 4 Diversity and quality solution results of the generated popu-
lations for the two examples: Expgqrq and Rndgag

Expaata Rndgaia

Quapep Divpop Quapep Divpep
Imppop 0.6403 0.2599 0.6171 0.6649
Rnd,p 0.5561 0.2854 0.4994 0.6654

services are created, where the cost and the time QoS values
of theses cloud services were randomly generated in the inter-
vals [2, 15]($), [20, 1500] (ms), respectively. The number of
generated solutions for populations Imp p.p and Rnd,p in
Rnd 41, example is set to 10. The results shown in Table. 4
reflect that our approach in generating a powerful population
is significantly better than the random generation method
(i.e. the quality solution of Imp ), is better than Rnd,,’s
quality solution), and this process of population generation
has a great impact on the coverage and the diversity of solu-
tions when the optimization problem has a high number of
objectives in a huge search space (i.e. in Rnd;,;, example,
Imppop and Divp,p, have the same diversity values).

Fitness evaluation

A fitness value is assigned for each individual in the gener-
ated population of the proposed HGA, which measures the
individual’s performance in the research space. As discussed
in the problem description section, the QoS-CSC aims to
find a solution with a maximum score value of the global
QoS and meets the global QoS constraints (i.e. Highest fea-
sible solution where all the QoS constraints are satisfied),
but some of the generated individuals may be infeasible solu-
tions (i.e. individuals with some or all global QoS constraints
are unverified), to distinguish between each infeasible and
feasible solution, a penalty is given to the fitness of an infea-
sible solution. The employed penalty function in our study
is shown in Eq. 7 and the fitness function for each individual
is given in Eq. 9.

0 satisfied Csts
P | d = 7
nind) Zf:] CstV;(ind)* % p; unsatisfied Csts, @
where « is the severity of the penalty (herex = 2 ),

Di=1..k) € [0, 1]is the penalty factor with Zle p: = land
CstV,(ind) is the constraint violation value for the attribute
g: which is defined in Eq. 8.

max(0,Cst;—agg(qr)) if +
. — 0 1 ifg € QoS
CstV,(ind) = Csty 8
t( ) [ max(O,agcgs(Zt)—Cst,) ifq; € QoS~, (8)
where Cst; € GCst, agg(q;) denotes the aggregated value
of the rth QoS criterion of the individual ind, and Cst; and
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agg(q:) refer to negative or positive constraints formulas
agg(qy) < Csty,agg(q:) = Cst; givenin Eq. 5, respectively.

0.5 + Score(ind) % 0.5 if ind is feasible
Score(ind) x 0.5 — Pn(ind) if ind is infeasible,

®

Ffit(ind) =

where Score(ind), is the score value of the individual ind
given in Eq. 3 and Pn(ind) is the penalty value of this indi-
vidual.

It can be seen from Eq. 9 that fitness values of infeasible
solutions are between 0 and 0.5, while those of feasible ones
are between 0.5 and 1. Thus, it can be assured that a feasible
solution has more fitness value than any infeasible solution.

Genetic phase (global exploration)
Selection operator

Roulette wheel selection is an often selection operator used in
several proposed genetic algorithms tackling the QoS-CSC
(Canfora et al. 2005; Yue and Chengwen 2008; Maolin and
feng 2010; Wang et al. 2015), the basic strategy of its selec-
tion is: the better fitted an individual is, and the larger the
probability of its survival and mating is Goldberg (1989). By
this strategy of selection, stronger (more fitted) individuals
dominate weaker individuals in the population, which causes
the loss of population diversity; as a result, it will engen-
der the premature convergence phenomena. To overcome
this problem, we propose a novel roulette wheel selection
based on the selection’s probability related to the fitness of
the chromosomes and its diversities at the same time, where
fitted and diversified individuals are typically more likely to
be selected for reproduction. In order to calculate the new
selection’s scores for individuals, we evaluate the diversities
between each individual and the rest of the individuals within
the population. In this study we use the Hamming distance to
define the distance between two individuals ind; and indj,
which is given as follow:

n
dist(ind;.indg) = D y;., (10)
i=1
- | Vifind;(@Q) # indi (i) L
where y; = [0 it ind; (i) = indy(i) " and ind; (i) is the

value in the ith position of the individual ind ;. The diversity
div(ind;) between each individual ind; and the rest of the
individuals of the population is given in Eq. 11, and its new
selection’s score Scre (ind;) is givenin Eq. 12, which is cal-
culated using the above mentioned simple additive weighting
technique SAW (i.e. SAW is used in order to map the fitness
and the diversity values of each individual into a single real
value).
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PopSize
div(indj) = ) dist(ind;,indy), (11)
h=1

where j # h and PopSize is the population size
Scrsei(ind;) = Ny(indj) x wy + Ng(ind;) * wq (12)
where

Ny (ind;)
{ fir(i"dj)*min(_fitl’ap)

max(filp,,p)fmin(ftp,,,,) if max(filP()p) # min(filP()p)
1 if max(fitpop) = min(fitpop)
(13)

Ny (indj)
{ div(ind;)—min(divp,p)

X (dT0pop)—MIN(dT0pop) if max(divpyp) # min(divpep)
1 if max(divpep) = min(divp,p)

(14)

in Egs. 12, 13 and 14 :

fit(ind;), is the fitness value of the individual ind,
shown in Eq. 9.

div(ind}), is the diversity value of the individual ind;.
max(fitpop) andmin( fitp,p),denote the maximum and
minimum fitness values, respectively, in the current pop-
ulation Pop.

max(divpep) and min(divp,p), denote the maximum
and minimum diversity values, respectively in the cur-
rent population Pop.

w s and wy, are the weighting factors for controlling the
weights of fitness and diversity values, respectively, in
the current population, which are adaptively calculated
using the following equations:

counter

wr=054+ —— 15
! 2 % max;, (15
counter
wg=05— ———, (16)
2 % maxiy

where counter and max;,, are the current iteration value and
the maximum number of iterations of the proposed algorithm,
respectively. To select an individual for a new population
(Popnew), we use the following steps:

Step 1. Generate a random real number (r) € [0, 1].
Step 2. If r < pq, select the first individual ind;, oth-
erwise; select the ith individual ind;—1...popsize)» such
that p;_; < r < p;, where p; is the cumulative proba-
bility for each individual ind; in the current population
(Pop) which is calculated as defined in Eq. 17.

p1= Sc_rscl(indl)
>0 Serger (ind;)
Pi = pic1 + —pooendlind) _ ¢ 5 < j < PopSize

opSize .
52 Sergeind))

a7)
Crossover operator

After selecting two individuals (parents) in the current popu-
lation using the above selection operator, a crossover operator
produces two new individuals (children) by combining the
genes of the two selected parents. The most using crossover
operators for QoS-CSC are a one-point crossover (Wang et al.
2015), or atwo-point crossover (Canfora et al. 2005; Wu et al.
2014; Jin et al. 2015). In the one-point crossover, a cutting
point is randomly selected in two individuals. After that, the
genes from the cutting point to the end of the individuals are
swapped between the two chromosomes (see Fig. 4a). In the
two-point crossover, two crossover locations are randomly
selected in two individuals. After that, the subsequences
of genes, between the two locations of each individual are
exchanged from a chromosome to another one (see Fig. 4b).
In this study, a random real number r € [0, 1] is generated, if
r < 0.5, the one-point crossover is used for a reproduction;
otherwise, the standard two-point crossover is employed in
our proposed algorithm for evolution.

Mutation operator

In order to prevent a potential stagnation of the population
in a local optimum, we apply the mutation operator to main-
tain the diversity of the population, and to achieve a better
exploration in the research space by making a slow and small
genetic frequency change in the generated chromosomes.
The mutation operator used in this study selects a position
(i.e. an abstract cloud service) in the generated individual (i.e.
individual obtained by crossover) and randomly replaces it
with a new chosen concrete cloud service in the correspond-
ing candidate set of cloud services (see Fig. 4c)

FOA phase (local exploitation)

The genetic phase described above make more attention
to the global exploration, to reduce the computation time
and to maintain a balance between the exploration and the
exploitation abilities of the proposed HGA. As inspired by
the onlooker bee phase of the artificial bee colony algorithm
(ABC) (Karaboga and Basturk 2007), the FOA scheme is
performed on the better solutions generated after the genetic
evolution. In the smell-based foraging process, SN neighbors
are generated around each selected solution; to be specific,
the new neighbor is generated by applying the mutation
operator discussed in Sect. “Mutation operator” for L posi-
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Fig. 4 Crossover and mutation operators in genetic phase. a One-point crossover, b two-point crossover, ¢ mutation operation

The selected solution | 2

lzlz
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Fig. 5 Neighborhood strategy in the smell-based search process

The generated neighbor | 2

tions that are randomly selected from the chosen solution.
Consider the solution in Fig. 3, for example, the generated
neighbor is illustrated in Fig. 5, where I = 2. It can be
seen that the second and the forth positions (C Szl, C Si)
are replaced by the concrete cloud services (CS3, C Si).
In the vision-based search processes, the SN neighbors of
the selected individual (ind) are evaluated and the best one
(BestInd) of the neighbors is returned; if BestInd is better
than ind, then the individual ind is replaced with BestInd.
Otherwise, it is maintained. The detailed steps for the FOA
process applied on each generated solution by the genetic
phase are given as follows:

Step 1. For each individual ind; generated after the
genetic phase, where i is the population size (PopSize),
perform the following steps.

Step 2. Calculate the selecting probability ps of ind; by
using Eq. 18 (Karaboga and Basturk 2007).

fit(ind;)
- _ , (18)
P ST fitindy)

where fit(ind;) is the fitness value of the individual ind;
given in Eq. 9.

Step 3. Generate a random number » € [0, 1]

Step 4. If r is smaller than ps, SN neighbors are
generated around ind; to construct a sub-population
Subp; .Then ind; is replaced with the best individual
Best Ind in the corresponding sub-population Subp; (i.e.
if BestInd has bigger fitness than ind;); otherwise, ind;
remains unchanged.
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The elitism operator

In order to replace the old population (Pop) with the new
population (Popyey ), the elitism strategy is used as areplace-
ment one. In our proposed algorithm, we replace the worst
solution of population Pop;.,, With the best solution of pop-
ulation Pop .This strategy of preserving and replacing, speed
up the convergence of the algorithm and prevent the loss of
the best individuals during the evolutionary process.

The stopping criterion

There are several stopping criteria to terminate a meta-
heuristic algorithm such as:

1. Reaching a specific CPU time;

2. Fixing a large number MaxItr as maximum number of

iterations;

Converging to a specific value of fitness function;

4. and letting max_gen_imp is a fixed number of gener-
ations. If the solution Solp.s; with the highest fitness
value does not improve over the max_gen_imp gener-
ations, the algorithm stops and returns the near-optimal
solution Solpes;.

et

In our experiments we use the second or/and the fourth cri-
teria to stop the proposed HGA.

The framework of the proposed HGA

The following is the detailed steps of the proposed HGA:

Step 1. Initialization phase.

1. Setthe system parameters: Population size (Pop Size),
Probability of Crossover(P.), Probability of Muta-
tion (P,) , neighbors’ size (SN) and the number
of the selected positions (L) in the smell-based
search process, and the maximum number of itera-
tion (MaxlItr).

2. Generate the initial population (Pop) as discussed in
Sect. “Improved initial population generation”.
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3. Calculate the fitness value of each solution in the ini-
tial population (Pop).

Step 2. If the stopping criterion is satisfied, stop the HGA
and return the best solution; otherwise, perform steps 3
to 6.

Step 3. Genetic phase. Construct the new population
(Poppew) using the population(Pop) as follows:

1. In order to select two new individuals (pair of par-
ents), apply the selection operator as discussed in
Sect. “Selection operator”.

2. Apply the crossover operator to the selected pairs
of parents with crossover probability of (P,) as dis-
cussed in Sect. “Crossover operator”.

3. Apply the mutation operator to each individual
obtained by crossover with mutation probability of
(Py,) as discussed in Sect. “Mutation operator”.

Step 4. FOA phase. Perform the local exploitation in the
new population (Popyey) as discussed in Sect. “FOA
phase (Local exploitation)”.

Step 5. Apply the elitism operator as discussed in
Sect. “The elitism operator”, and then replace (Pop)
with(Popuew)-

Step 6. Go back to step 2.

Experiments

To verify the efficiency and effectiveness of our proposed
HGA, a sequential abstract cloud service composition ACSC
with (n) abstract cloud services is simulated and for each
abstract cloud service, the corresponding candidate set of
cloud services contains (m) concrete cloud services. For sim-
plicity, we assume that we have four QoS-criteria for each
concrete cloud service, two are negatives (response time and
price) and the others are positives (availability and reliability)
and their values were generated randomly. The random val-
ues of response time, price, availability and reliability in each
set of candidate cloud services were generated in the inter-
vals [20, 1500] (ms), [2, 15] %, [0.95, 1] %eand[0.4, 1] %,
respectively. The weights of these QoS criteria were set to
the same as W{(wyime = 0.25), (Wprice = 0.25), (Wqva =
0.25) and (w;¢; = 0.25)}, and for positive and negative QoS-
parameters, their QoS constraints can be calculated as the
same in the paper (Wu and Zhu 2013) via the strength of
user’s end-to-end global QoS constraints (¢) by Egs. 19 and
20, respectively.

¢ * (agg(q"™) — agg(g™")) + agg(q™) (19)

agg (g™ —agg(g"™)) (20)

max

— ¢ * (agg(q;

where, the percentage (¢) is used to represent the strength
of user’s end-to-end global QoS constraints. agg(q;"*") and

agg(g™™) denote the maximum and minimum possible
aggregated values of the rth QoS criterion of ACSC, respec-
tively.

The proposed algorithm HGA and the compared algorithms
are coded on MATLAB R2013a, and we run them on a com-
puter with 2.6 GHz and 2 GB of RAM under windows 7(32
bit) system. Each simulation on the following runs 20 times
and the results are averaged.

Parameter setting of HGA

The proposed HGA contains six key parameters: Population
size (PopSize), Probability of crossover (P.), Probability of
mutation (P,,) , neighbors size (SN) and the number of the
selected positions (L) in the smell-based search process, and
the maximum number of iteration (Max Itr). Among these,
MaxlItr is set to 1000. In order to investigate the influence
of the rest of parameters on the performance of the pro-
posed algorithm, the Taguchi method of design of experiment
(DOE) Montgomery (2005) is utilized, the five parameters
PopSize, P. ,P,, SN and L of HGA are tuned in a random
dataset, where the number of abstract cloud services (1) is
set to 15, and the related number of concrete cloud services
(m) for each abstract cloud service is set to 300 with the per-
centage (¢) of end-to-end global QoS constraints set to 0.4.
The levels of these five parameters are given in Table 5 in
which we use four levels for each factor, so an orthogonal
array 14 (4%) is used to calibrate these parameters. To analyze
the significance rank of each parameter, the proposed algo-
rithm is run 20 times independently for each combination
of factors values. The levels’ values of each factor and the
average optimal fitness value (AO F'V : which is regarded as
the response value variable) are given in Table 6, where the
highest AOFV value is, the better the parameter combination
values is; and by using the statistical analysis tool Minitab,
the trend of each factor level is shown in Table 7 and Fig. 6,
respectively.

It can be observed from Table 7 and Fig. 6 that PopSize
and P, are the most significant parameters of the proposed
algorithm. Large values of PopSize and P, are very helpful
for global exploration. Consequently, the problem’s solution
is attained with a good quality. As for SN and L , it can be

Table 5 The parameter levels of HGA

Level Parameter

P, P, PopSize SN L
1 0.75 0.15 20 1 1
2 0.80 0.20 40 3 2
3 0.85 0.25 70 5 3
4 0.90 0.30 100 7 5

@ Springer



J Intell Manuf

Table 6 Orthogonal array and AOFV values

Expt number  Factor AOFV
P Py, PopSize SN L
1 0.75  0.15 20 1 1 0.52272
2 0.75  0.20 40 3 2 0.72736
3 0.75 025 70 5 3 0.77175
4 0.75  0.30 100 7 5 0.79479
5 0.80  0.15 40 5 5 0.74997
6 0.80  0.20 20 7 3 0.61356
7 0.80  0.25 100 1 2 0.79516
8 0.80  0.30 70 3 1 0.74947
9 0.85 0.15 70 7 2 0.79556
10 0.85 0.20 100 5 1 0.79481
11 0.85 025 20 3 5 0.56837
12 0.85 0.30 40 1 3 0.75003
13 0.90 0.15 100 3 3 0.79504
14 0.90 0.20 70 1 5 0.79553
15 0.90 0.25 40 7 1 0.77321
16 0.90 0.30 20 5 2 0.63630
Table 7 Response value (AOFV)
Level P, Py PopSize SN L
1 0.7042 0.7158 0.5852 0.7159 0.7101
2 0.7270 0.7328 0.7501 0.7101 0.7386
3 0.7272 0.7271 0.7781 0.7382 0.7326
4 0.7500 0.7326 0.7950 0.7443 0.7272
Delta 0.0459 0.0170 0.2097 0.0342 0.0285
Rank 2 5 1 3 4

shown from Fig. 6 that they have small behavior effect on
the proposed algorithm. If SN is very large value, it means
that the exploitation is over-focused. As a result, we’ll get
more computation time on the proposed algorithm with a lit-
tle improvement of the solution quality, because there is a
number of SN evaluation times for each selected individual
in the local search process; a medium value of SN is rec-
ommended. As for the number of the individual’s modified
positions L in the smell-based search process; if it is with a
large value, it means that high modification is applied in the
selected individual causing no improvement in the quality of
solution. So, in order to enhance the solution quality, a slight
modification in the chosen individual is preferred. As for a
probability of mutation P,,, it can be seen from Table 7 that
it has a little influence on the proposed algorithm; so in our
HGA, its value is set to 0.2. According to the above analysis,
the optimal values of theses parameters are set as P. = 0.9,
P, = 0.20, PopSize = 70, SN = 5 and L = 2. These
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parameter values will be used for the proposed HGA in the
following simulation and comparison tests.

Comparisons and results

In this subsection, to validate the performance of our pro-
posed algorithm HGA, we compared it with traditional
genetic algorithm (TGA) (Canfora et al. 2005), simple
fruit fly optimization algorithm (SFOA) (Pan 2012) and
the Discrete Gbest-guided Artificial Bee Colony algorithm
(DGABC) proposed by Huo et al. (2015), where their exper-
iment results show that DGABC can obtain a better solution
within a short period of time than GA, PSO and deferen-
tial evolution (DE) algorithm, especially for large scale data.
Table 8 details the initial parameters setting values of the
compared algorithms, which are used in the rest of the sim-
ulations, and the following metrics are used to compare the
performance of our HGA:

— Optimality: this metric describes the solution’s fitness
value of the optimal composite cloud services generated
by each algorithm.

— Execution time: this metric represents the required time
to find the optimal composite cloud services for each
algorithm.

— Feasibility rate: Measures the success rate to obtain fea-
sible solutions for user’s requests, which is calculated
using the formula given in Eq. 21.

Nys
Nrt

FR = , 21
where N,; is the number of execution times and Nz, is the
number of feasible solutions found in N,; execution times
for each algorithm.

Optimality and execution time

In order to evaluate the optimality and the computation time
of our proposed algorithm, two scenarios are considered. The
first is the number of abstract services n = 15, and the num-
ber of related concrete services m varies from 50 to 500 with
an increment of 50, and the percentage ¢ of QoS constraints
is set to 0.4. The second is m = 200 and n varies from 7 to
25 with an increment of 2, and also the percentage ¢ is set
to 0.4. The stopping criterion for all compared algorithms
in these two scenarios is that the best fitness value remains
unchanged over the last 50 iterations, or the maximum num-
ber of iterations is reached (i.e. max_gen_imp = 50 or
MaxItr = 1000).

As observed in Fig. 7 that by varying the number of
concrete cloud services m, the fitness value (optimality)
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Table 8 Algorithms parameter

. Algorithms Parameter settings values
settings
PopSize P. P, SN L Limit

DGABC (Huo et al. 2015) 70 - - - - 100

TGA (Canfora et al. 2005) 70 0.9 0.2 - - -

SFOA (Pan 2012) 70 - - - 2 -

HGA 70 0.9 0.2 5 2 -
Fig. 7 Optimality comparison 0.8 .
(scenario 1: the number of nggi‘;mathe
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of our approach is better than the other compared algo-
rithms. We can see also from Fig. 8, that with the increasing
number of abstract cloud services, there are eight cases
in which our approach is as optimal as that of DGABC.
The corresponding number of the abstract cloud services is
(9,13,15,17,19,21,23,25), and the average QoS of HGA is
the same as that DGABC’s average QoS in the other two
cases. However, our HGA is by all means better than TGA

Number of concrete services

and SFOA. It can be concluded that our algorithm performs
better than the other compared algorithms do, in terms of
optimality (average QoS of composite cloud services).
Figures 9 and 10, display the comparison of computation
time for the four algorithms with the increasing number of
concrete cloud services m and the number of abstract cloud
services n, respectively. As shown in Fig. 9, it can be seen
that our algorithm is faster than DGABC, and the SFOA
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Fig. 8 Optimality comparison (scenario 2: the number of concrete services m = 200 and the number of abstract services n varies from 7 to 25
with an increment of 2)

—SFOA
7 - Our approache

TGA
——DGABC

Execution Time(s)
[27]
T

2 | | 1 | | 1 | | |
50 100 150 200 250 300 350 400 450 500

Number of concrete services

Fig. 9 Computation time comparison (scenario 1: the number of abstract services n = 15 and the number of concrete services m varies from 50
to 500 with an increment of 50)
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Fig. 10 Computation time comparison (scenario 2: the number of concrete services m = 200 and the number of abstract services n varies from 7
to 25 with an increment of 2)

@ Springer



J Intell Manuf

08 -
07 -
06 -
o
3 s
S 05
@ F
©
-3
s
v ——SFOA
Our approache
—TGA
——DGABC
] ] ] | ] ] | ] 1 ]
100 200 300 400 500 600 700 800 900 1000

Generation

Fig. 11 The convergence curves of the quality of the optimal composite service obtained by the compared algorithms.

requires the least running time with a very low fitness val-
ues compared to our algorithm. TGA is a little faster than
HGA; however, the HGA can find better solutions than TGA.
Moreover, in Fig. 10, HGA is also faster than DGABC, and
its execution time slightly increases with the abstract cloud
service’s growth. Due to the stagnation of SFOA and TGA in
local optimum, and especially where n the large value would
be, it is shown that their running times are the lowest com-
pared to HGA and DGABC. Thus, these results can prove that
HGA is better than DGABC in terms of its execution time,
and it has a good tradeoff between the execution time and
the optimality compared to the other two algorithms: TGA
and SFOA. In order to verify how the compared algorithms
find the near-optimal solutions (i.e. the convergence curve),
the experiment shown in Fig. 11 presents the convergence
curves of the fitness values obtained by these algorithms,
where the number of abstract services n is set to 15. The
number of candidate services m is set to 200, the percentage
¢ of QoS constraints is set to 0.4, and the stopping criterion is
MaxItr = 1000. It can be observed from Fig. 11 that HGA
reaches the global optimal fitness value faster than DGABC
and TGA; it is shown from Fig. 11 that the solutions found
by HGA are worse than the solutions found by SFOA when
the number of generations is less than 25. However, when the
number of generations is larger than 25, the solutions found
by HGA are better than the solutions found by SFOA; the
latter converges more quickly to the local optimal in least
number of generations. It can be seen also from Fig. 11 that
the global searching ability of our HGA largely stronger than
the other algorithms are. The best fitness value found by our
approach is 0.79513; whereas, the best solutions found by
DGABC, TGA and SFOA are (0.54418, 0.45459, 0.3869),
respectively.

As far as the optimality, the execution time and the con-
vergence speed are concerned, it can be concluded that HGA
outperforms the other three compared algorithms for solv-
ing the QoS-aware cloud service composition problem with
different scales.

Table 9 Comparison results of the feasibility rate (F' R) values for each
QoS constraints (¢)

(@) TGA (%) SFOA (%) DGABC (%) HGA (%)
0=02 100 100 100 100
0=03 99 82 100 100
9=04 4 0 3 73
9p=05 0 0 0 1
p=06 0 0 0 0
Average  40.60 36.40 40.60 54.60

The best percentages are in bold

Feasibility rate

This experiment is to measure the success rate to obtain a fea-
sible solution for the compared algorithms including TGA,
SFOA, DGABC and our hybrid genetic algorithm HGA by
varying the strength of QoS constraints ¢ from 0.2 to 0.6 with
an increment of 0.1. Table. 9 lists the comparison results
of the feasibility rate (F'R) values obtained by each com-
pared algorithm for each considered QoS constraints ¢. In
this experiment, the number of abstract services n is set
to 17, the number of candidate cloud services m is set to
400, the stopping criterion is MaxItr = 1000, and each
experiment is repeated 100 times (i.e.N,; = 100). There
are five columns in the table. The first column presents the
corresponding strength of QoS constraints ¢. The follow-
ing columns present the feasibility rate F R values obtained
by each compared algorithm where F' R is calculated, using
Eq. 21. The last row in the table presents the average value
of the FR values obtained by each compared algorithm for
all of the five QoS constraints (¢) cases. It can be observed
from Table. 9 that, with the increasing of ¢ values, the F'R
values for all compared algorithms decrease; this is because
the probability to find a feasible solution satisfying all QoS
constraints is declined with the increasing of the strength of
QoS constraints ¢. HGA obtained three best F'R values out
of five cases compared to TGA and SFOA and the two best
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F R values out of five cases compared to DGABC. The pro-
posed HGA obtained an average value with 54.60% for all
of the five QoS constraints (¢) cases, which is better than
the other compared algorithms. Considering these results, it
can be concluded that our proposed algorithm is significantly
better than the other three algorithms in terms of feasibility
rate.

Effects of user QoS preferences

The weights of the four attributes used in the above simula-
tions are all set to 0.25. In order to verify the effect of using
different values of QoS weights on the proposed HGA, 78
vectors of QoS preferences are used to compare and analyze
the superiority of the compared algorithms under different
user QoS preferences. These vectors are shown in Table 10.
In this experiment, the number of abstract services n is set
to 15; the number of candidate cloud services m is set to 400
, the percentage ¢ of QoS constraints is set to 0.4, and the
stopping criterion is when the number of iterations during the
best solution doesn’t improve (max_gen_imp) when being
set to 50, or the maximum number of iteration (MaxItr)
is reached (i.e. max_gen_imp = 50 or MaxItr = 1000).
Table 11 lists the comparison results of the optimal fitness
values obtained by each compared algorithm for each consid-
ered user QoS weights vector. There are five columns in the
table. The first column presents the corresponding number of
user QoS preference vector where their weight attribute val-
ues are shown in Table. 10. The following columns present
the optimal fitness values of the compared algorithms for
each user QoS preferences vector. The row (average row)
in the table presents the average value of the optimal fit-
ness values obtained by each compared algorithm for all QoS
weight vectors. The last two rows (quality rate and weakness
rate rows) in the table present the proportion in which each
algorithm is better than the other algorithms, and the propor-
tion, in which each algorithm is poorer than one or all the
other algorithms, respectively. It can be seen from Table 11
that our proposed HGA has obtained sixty best fitness val-
ues out of seventy eight cases, which is better than the other
three compared algorithms. HGA obtained an average value
of 0.69706, which is better than DGBAC, TGA and SFOA
where their average values are(0.57974, 0.36020, 0.39321),
respectively. The quality rate of HGA is better than the other
compared algorithms. Moreover, the weakness rate of our
proposed algorithm is the least value compared to the other
algorithms. Therefore, it can be concluded that our algorithm
verifies the efficiency and the robustness for solving QoS-
aware cloud service composition under different user QoS
attribute weights.

@ Springer

Table 10 Vectors of QoS preferences

Vectors Weights (Wiime, Wprices Wava, Wrel)

1 (0.1,0.2,0.3,0.4) 40 (04,0.2,0.2,0.2)

2 (0.1,0.2,0.4,0.3) 41 (0.3,0.3,0.3,0.1)

3 (0.1,0.3,0.2,0.4) 42 (0.3,0.3,0.1,0.3)

4 (0.1,0.3,0.4,0.2) 43 (0.3,0.1,0.3,0.3)

5 (0.1,0.4,0.2,0.3) 44 (0.1,0.3,0.3,0.3)

6 (0.1,0.4,0.3,0.2) 45 (0.25,0.25,0.3,0.2)
7 (0.2,0.1,0.3,0.4) 46 (0.25,0.25,0.2,0.3)
8 (0.2,0.1,0.4,0.3) 47 (0.25,0.3,0.25,0.2)
9 (0.2,0.3,0.1,0.4) 48 (0.25,0.2,0.25,0.3)
10 (0.2,0.3,0.4,0.1) 49 (0.25,0.3,0.2,0.25)
11 (0.2,0.4,0.1,0.3) 50 (0.25,0.2,0.3,0.25)
12 0.2,0.4,0.3,0.1) 51 (0.3,0.2,0.25, 0.25)
13 (0.3,0.1,0.2,0.4) 52 (0.3,0.25,0.2,0.25)
14 (0.3,0.1,0.4,0.2) 53 (0.3,0.25,0.25,0.2)
15 (0.3,0.2,0.1,0.4) 54 (0.2,0.3,0.25, 0.25)
16 (0.3,0.2,0.4,0.1) 55 (0.2,0.25,0.3,0.25)
17 (0.3,0.4,0.1,0.2) 56 (0.2,0.25,0.25,0.3)
18 (0.3,0.4,0.2,0.1) 57 (0.25,0.25,0.4,0.1)
19 (04,0.1,0.2,0.3) 58 (0.25,0.25,0.1, 0.4)
20 (04,0.1,0.3,0.2) 59 (0.25,0.4,0.25,0.1)
21 (04,0.2,0.1,0.3) 60 (0.25,0.1,0.25,0.4)
22 (0.4,0.2,0.3,0.1) 61 (0.25,0.1,0.4, 0.25)
23 (04,0.3,0.1,0.2) 62 (0.25,0.4, 0.1, 0.25)
24 (04,0.3,0.2,0.1) 63 (0.4,0.1,0.25, 0.25)
25 (0.4,0.4,0.1,0.1) 64 (0.4,0.25,0.1, 0.25)
26 (0.4,0.1,0.4,0.1) 65 (0.4,0.25,0.25,0.1)
27 (04,0.1,0.1,0.4) 66 (0.1, 0.4, 0.25, 0.25)
28 (0.1,0.1,0.4,0.4) 67 (0.1, 0.25,0.4, 0.25)
29 (0.1,0.4,0.1,0.4) 68 (0.1,0.25,0.25,0.4)
30 (0.1,0.4,0.4,0.1) 69 (0.5,0.25,0.25, 0)
31 (0.2,0.2,0.3,0.3) 70 (0.5, 0.25,0,0.25)
32 (0.2,0.3,0.2,0.3) 71 (0.5, 0, 0.25,0.25)
33 (0.2,0.3,0.3,0.2) 72 (0,0.25,0.25,0.5)
34 (0.3,0.3,0.2,0.2) 73 (0,0.25,0.5,0.25)
35 (0.3,0.2,0.3,0.2) 74 (0, 0.5, 0.25,0.25)
36 (0.3,0.2,0.2,0.3) 75 (0,0.3,0,0.7)

37 0.2,0.2,0.2,0.4) 76 (0,0,0.3,0.7)

38 (0.2,0.2,0.4,0.2) 77 (0.7,0.3,0,0)

39 (0.2,0.4,0.2,0.2) 78 (0.7,0,0,0.3)

Effects of QoS value ranges

This experiment is to verify the performance of our HGA
under different QoS value ranges. Table. 12 presents fifteen
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Table 11 Comparison results of the optimal fitness values for each user QoS preferences vector

Vectors DGABC HGA TGA SFOA Vectors DGABC HGA TGA SFOA
1 0.7665 0.79012 0.023338 0.4079 40 0.38116 0.74132 0.42608 0.35914
2 0.50257 0.76683 0.43391 0.37083 41 0.34448 0.34601 0.3424 0.34614
3 0.74423 0.79127 0.020589 0.38028 42 0.65146 0.78739 0.46758 0.35208
4 0.37225 0.74518 0.37084 0.35086 43 0.5414 0.78977 0.49778 0.36249
5 0.65342 0.78807 0.54081 0.33678 44 0.74616 0.78836 0.47679 0.34276
6 0.43364 0.61019 0.34315 0.3458 45 0.43234 0.69747 0.38699 0.36657
7 0.67698 0.78966 0.036936 0.33902 46 0.67429 0.78811 0.51766 0.35748
8 0.52462 0.78849 0.45675 0.34841 47 0.47331 0.69818 0.38318 0.38513
9 0.72111 0.79096 0.019469 0.44417 48 0.69976 0.78583 0.45073 0.78892
10 0.35372 0.37503 0.35193 0.35374 49 0.63121 0.7667 0.40282 0.3815
11 0.79209 0.78968 0.60719 0.37649 50 0.62928 0.76237 0.4756 0.34128
12 0.3686 0.34647 0.34464 0.34795 51 0.67597 0.78813 0.4282 0.40701
13 0.76703 0.78968 0.024147 0.35527 52 0.60916 0.76502 0.40211 0.38159
14 0.48065 0.72372 0.45893 0.37229 53 0.63055 0.65405 0.4751 0.36217
15 0.79151 0.78884 0.021651 0.44341 54 0.51767 0.76554 0.51985 0.36248
16 0.35062 0.35155 0.34925 0.35244 55 0.5206 0.78935 0.45467 0.34326
17 0.58289 0.78922 0.44654 0.35445 56 0.71976 0.78738 0.47316 0.33884
18 0.33977 0.3617 0.33735 0.33939 57 0.35127 0.35227 0.34244 0.35238
19 0.62963 0.78877 0.49216 0.35543 58 0.79356 0.79146 0.015459 0.51384
20 0.49893 0.65518 0.36276 0.34253 59 0.34291 0.36496 0.34059 0.34364
21 0.6974 0.78833 0.58356 0.37424 60 0.76606 0.79164 0.014413 0.40436
22 0.34346 0.36569 0.34015 0.34459 61 0.59025 0.76856 0.41434 0.3481
23 0.56064 0.7195 0.46866 0.33065 62 0.65145 0.78876 0.51442 0.37645
24 0.33877 0.33854 0.3368 0.38385 63 0.60851 0.76698 0.40445 0.33769
25 0.33252 0.44722 0.35354 0.3325 64 0.60331 0.7868 0.49097 0.37552
26 0.35044 0.35044 0.34761 0.35189 65 0.34145 0.38609 0.33603 0.3418
27 0.76721 0.79145 0.022748 0.44232 66 0.58763 0.74294 0.36184 0.34136
28 0.70182 0.791 0.02859 0.39179 67 0.39243 0.74342 0.36917 0.35041
29 0.794 0.7901 0.019126 0.37552 68 0.78991 0.78868 0.028408 0.49801
30 0.35417 0.35474 0.35284 0.35503 69 0.79876 0.79398 0.79472 0.79842
31 0.54073 0.76559 0.476 0.34119 70 0.79474 0.79192 0.67814 0.44157
32 0.76715 0.78863 0.65614 0.33523 71 0.61161 0.67802 0.40545 0.33801
33 0.52247 0.78654 0.40754 0.34486 72 0.70089 0.79507 0.0030822 0.38241
34 0.44971 0.76564 0.4279 0.33695 73 0.35869 0.59581 0.39991 0.35879
35 0.54295 0.74175 0.47561 0.36588 74 0.41033 0.74878 0.45518 0.36643
36 0.63004 0.78716 0.4474 0.35757 75 0.79886 0.79824 0.0058625 0.58213
37 0.76337 0.789 0.025664 0.42452 76 0.79876 0.79754 0.0031458 0.54415
38 0.37212 0.72288 0.39344 0.37251 77 0.79971 0.79814 0.79795 0.79966
39 0.47304 0.6968 0.38204 0.33875 78 0.79702 0.79786 0.75097 0.67889
Average 0.57974 0.69706 0.36020 0.39321
Quality rate 14 % 78 % 0% 8%
Weakness rate 86 % 22 % 100 % 92 %

The best values are in bold
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Table 12 Sets of QoS value ranges

Sets The ranges of QoS attributes
Time (ms) Price ($) Avail (%) Relia (%)

1 [20, 50] [2,5] [0.1, 1] [0.9, 1]
2 [20, 2000] [2, 5] [0.9, 1] [0.9, 1]
3 [20, 50] [2,70] [0.9, 1] [0.9, 1]
4 [20, 50] [2, 5] [0.9, 1] [0.1, 1]
5 [20, 50] [2, 5] [0.1, 1] [0.1, 1]
6 [20, 50] [2,70] [0.9, 1] [0.1, 1]
7 [20, 2000] [2, 5] [0.9, 1] [0.1, 1]
8 [20, 50] [2,70] [0.1, 1] [0.9, 1]
9 [20, 2000] [2, 5] [0.1, 1] [0.9, 1]
10 [20, 2000] [2,70] [0.9, 1] [0.9, 1]
11 [20, 2000] [2,70] [0.1, 1] [0.9, 1]
12 [20, 2000] [2,70] [0.9, 1] [0.1, 1]
13 [20, 2000] [2,5] [0.1, 1] [0.1, 1]
14 [20, 50] [2,70] [0.1, 1] [0.1, 1]
15 [20, 2000] [2,70] [0.1, 1] [0.1, 1]

different sets of QoS value ranges. In this experiment, the
number of abstract services n is set to 15, the number of
candidate cloud services m is set to 400, the percentage ¢
of QoS constraints is set to 0.4, and the stopping criterion
is when the number of iterations during the best solution
doesn’t improve max_gen_imp when being set to 50 or
the maximum number of iteration MaxItr is reached (i.e.
max_gen_imp = 50 or MaxItr = 1000) .Table. 13 lists
the comparison results of the optimal fitness values obtained
by each compared algorithm for each considered set of QoS
value ranges. There are five columns in the table. The first
column presents the corresponding set of QoS value ranges
where their attribute’s intervals are shown in Table. 12. The
following columns present the optimal fitness values of the
compared algorithms for each set of QoS value ranges. The
row (average row) in the table presents the average value of
the optimal fitness values obtained by each compared algo-
rithm for all sets of QoS value ranges. The last two rows
(quality rate and weakness rate rows) in the table present
the proportion, in which each algorithm is better than the
other algorithms and the proportion, in which each algorithm
is poorer than one or all the other algorithms, respectively.
It can be seen from Table. 13 that our proposed HGA has
obtained nine best fitness values out of fifteen cases, which
is better than the other three compared algorithms. HGA has
obtained an average value of 0.4316, which is better than
DGBAC, TGA and SFOA where their average values are
(0.3869, 0.3093, 0.3450), respectively. The quality rate of
HGA is better than the other compared algorithms. More-
over, the weakness rate of our proposed algorithm is the least
value compared to the other algorithms. Therfore, it can be
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Table 13 Comparison results of the optimal fitness values for each set
of QoS value ranges

Sets DGABC HGA TGA SFOA

1 0.365 0.38392 0.28196 0.30932
2 0.79443 0.79144 0.79165 0.70631
3 0.79446 0.79279 0.79265 0.75147
4 0.34338 0.39838 0.26784 0.28089
5 0.1709 0.15672 0.0 0.17488
6 0.33345 0.46075 0.29854 0.29682
7 0.3336 0.5129 0.2881 0.2961
8 0.3759 0.3944 0.1960 0.2960
9 0.3554 0.4617 0.2857 0.3260
10 0.7710 0.7912 0.7681 0.6322
11 0.3439 0.4963 0.3245 0.2807
12 0.3211 0.4005 0.3446 0.2909
13 0.1718 0.1314 0.0 0.1875
14 0.1499 0.1387 0.0 0.1696
15 0.1797 0.1635 0.0 0.1768
Average 0.3869 0.4316 0.3093 0.3450
Quality rate 20 % 60 % 0% 20%
Weakness rate 80 % 40 % 100 % 80 %

The best values are in bold

concluded that our algorithm verifies the efficiency and the
robustness for solving QoS-aware cloud service composition
under different QoS value ranges.

Conclusion and future work

In this study, a hybrid approach, using genetic algorithm
and fruit fly optimization algorithm, is proposed to solve
the QoS-aware cloud service composition. In order to speed
up the convergence of the proposed algorithm, an improved
initial population based on heuristic local selection method
is presented. The HGA combines two phases to perform the
evolutionary process search. The global search process is per-
formed by the genetic algorithm phase, which applies a novel
roulette wheel selection to avoid premature convergence and
getting stack in local optima. To reduce the computation time
and to maintain a balance between the exploration and the
exploitation abilities of the proposed HGA, the local search
process was employed by the fruit fly optimization phase. To
prevent the loss of the best solutions during the evolutionary
process, the elitism strategy is used as a replacement strategy
for each generation of the proposed algorithm. The parame-
ter settings of our HGA were tuned and calibrated using the
Taguchi method of design of experiment (DOE); the opti-
mal values of these parameters were suggested. To validate
the performance of HGA in terms of optimality, computation
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time, convergence speed, the feasibility rate, and the results
of comparisons with other algorithms, have demonstrated the
effectiveness and the efficiency of the proposed HGA. It is
also verified that weights and value ranges of QoS attributes
will not affect the effectiveness and the robustness of our
HGA.

In the current work, the multi-objective constrained QoS-
aware cloud service composition problem is reduced into
mono-objective problem by using the simple additive weight-
ing method, this kind of methods has some important
drawbacks compared to pareto-based approaches (Cremene
etal. 2016). Interdependencies and correlations among cloud
services are not considered (Wu et al. 2014; Jin et al. 2015),
and also the influence of the distribution of cloud services on
distributed clouds is omitted (Wang et al. 2015). Moreover,
the formulation of this problem in distributed cloud envi-
ronment with multiple objectives, constraints and services
correlations should also be investigated. In the future, we
intend to improve and apply the proposed algorithm to solve
this problem under multi-objective constraints in distributed
cloud environment, which takes both QoS and interdepen-
dencies of cloud services into consideration.
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