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Abstract: This paper presents the application of support vector regression (SVR) and adaptive
neuro-fuzzy inference system (ANFIS) models that are amalgamated with synchronized phasor
measurements for on-line voltage stability assessment. As the performance of SVR model extremely
depends on the good selection of its parameters, the recently developed ant lion optimizer (ALO) is
adapted to seek for the SVR’s optimal parameters. In particular, the input vector of ALO-SVR and
ANFIS soft computing models is provided in the form of voltage magnitudes provided by the phasor
measurement units (PMUs). In order to investigate the effectiveness of ALO-SVR and ANFIS models
towards performing the on-line voltage stability assessment, in-depth analyses on the results have
been carried out on the IEEE 30-bus and IEEE 118-bus test systems considering different topologies
and operating conditions. Two statistical performance criteria of root mean square error (RMSE)
and correlation coefficient (R) were considered as metrics to further assess both of the modeling
performances in contrast with the power flow equations. The results have demonstrated that the
ALO-SVR model is able to predict the voltage stability margin with greater accuracy compared to the
ANFIS model.

Keywords: voltage stability; phasor measurement unit; support vector regression; adaptive
neuro-fuzzy inference system; ant lion optimizer

1. Introduction

In recent years, the voltage instability problem has become an imperative research area in the
field of power system due to the advent of competitive electricity market inflicting towards an intense
and complex planning that shove the system to operate near to their stability limits [1]. In such
situations, and for better operation of the system, the voltage stability margins (VSM) and control
actions must be determined in an on-line manner. Hence, it is indispensable that the measurement,
the estimation, and the analysis be attained during a short period of time. Traditionally, the voltage
phasors i.e., voltage magnitudes and angles at all system buses are provided by supervisory control
and data acquisition (SCADA) typically every few minutes [2]. Nowadays, phasor measurement unit
(PMU) is employed in many countries to enhance the security, reliability, and the efficient monitoring
of the power system [3]. When compared to the slow nature of SCADA, PMU devices are able
to provide the synchronized measurement data (voltages and currents), with great accuracy and
100 times faster than SCADA system [2]. However, due to the high cost of the PMU devices, it is
neither economical nor possible to install these units on the entire power system buses [4]. On the other
hand, the numerous tools that have been developed and introduced by the researchers to conduct a
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comprehensive analysis on the voltage stability assessment, such as P–V and Q–V curves, continuation
power flow and voltage stability indices [5–7] have the scarcity to be used in a real-time or on-line
operation, as they are computationally time-consuming due to its reliant on a complex mathematical
modeling of a power system.

The aforementioned impediments of PMUs installation costs and enormous computational
requirements of the traditional methods of voltage stability analysis could be resolved by utilizing the
advanced biological computation of artificial intelligence (AI) techniques, such as the artificial neural
network (ANN), adaptive neuro-fuzzy inference system (ANFIS), and support vector machines (SVM).

Several ANN architectures have been implemented in on-line voltage stability assessment.
Debbie et al. [8] presented an ANN-based method for on-line assessment of the voltage stability.
Chakrabarti [9] proposed a new methodology for on-line voltage stability monitoring using
multi-layered perceptron neural network and a regression-based method of selecting features for
training the network. Jayasankar et al. [10] used a single ANN trained by the back-propagation
algorithm to evaluate the voltage stability of power system incorporating flexible AC transmission
system (FACTS) devices. Further improvement of ANN performance in an on-line monitoring of
voltage stability has been realized by reducing the input data into an optimal size using Z-score
based algorithm [11]. It is worthwhile to notify that the load active and reactive powers are generally
used as the input features for the ANN [12]. The application of ANN-based radial basis function
(RBF) for on-line voltage stability assessment has been performed by several researchers [13–16].
The application of self-organizing Kohonen-neural network (KNN) for fast indication and visualization
of voltage stability has been conferred [17]. Chakraborty et al. [18] incorporated a self-organizing
feature map (SOFM) with RBF network for detection and classification of power system voltage
instability. Duraipandy et al. [19] proposed the use of extreme learning machine (ELM) technique
for on-line voltage stability assessment with multiple contingencies. Albeit, the ANN has gained
considerable attention from researchers in lately as a tool for on-line voltage stability assessment, it has
several limitations particularly with respect to a relatively long time required for the training process
as well as the problem of sticking at local minima [20].

Other techniques such as decision tree (DT) and multilinear regression models (MLRM) have
been also applied to assess power system voltage stability [21–24]. Zheng et al. [21] proposed the
use of DT for fast and accurate evaluation of voltage stability based on PMUs data. Li and Wu [22]
employed the gathered voltage phase angles from PMUs to enhance DT’s identification precision.
In [23], a novel on-line voltage security assessment technique based on wide-area measurements,
adaptive boosting technique, and DT algorithm has been developed. Bruno and Venkataramana [24]
proposed a new methodology to estimate the VSM of power system using statistical MLRM and
reactive power reserves.

In the last decade, the use of ANFIS and SVR models has attracted much attention to the
researchers since these techniques have several advantages and have been successfully applied in
different engineering areas. The ANFIS model is a well-developed fuzzy inference system that takes
into account the important elements of fuzzy logic and neural network. The prelude utilization
of ANFIS has been explored to perform a comprehensive risk assessment of voltage collapse [20].
The model is constructed in conjunction with the input information of voltage stability indices
termed as the VOltage STAbility (VOSTA), while the output was the megawatt (MW) distance
of the current operating point from the stability limit demarcated for voltage collapse analysis.
Torres et al. [25], uses the subtractive clustering (SC) and ANFIS methods to estimate the loadability
margin by means of various voltage stability indices that have been chosen as the inputs. More recently,
the Kohonen-self-organizing map is employed to cluster the real and reactive loads to reduce the
input features of ANFIS to compute the loadability margin of a power system incorporating FACTS
devices [26].

Recently, the voltage instability condition of power system has been assessed by imposing
SVM [27], which is a powerful machine learning technique that based on statistical learning theory.
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However, its application in voltage stability assessment is still in a small volume. Nevertheless,
SVM has become a very interesting topic due to its successful application towards classification
and regression tasks in other fields of research [28]. Cortés et al. [29] successfully employed every
single SVM that was trained to classify the state of a system either it is secure, alert, or emergency.
The final classification representing a system security assessment is obtained from the combination of
each classifier output undertaken by using the Bayesian rule. This approach has been implemented
that is relatively similar to the proposed multi-class SVM used for security assessment that has been
discussed in [30]. In the proposed approach, there are four different statuses of system security: normal,
alert, emergency_1, and emergency_2 for system splitting statuses that have been used to classify
the system security. Further improvement of multi-class SVM has been undertaken by consolidating
the pattern recognition approach for security assessment [31]. Support vector regression (SVR) is
an extended version of SVM that has been used to predict the VSM of a power system incorporating
flexible AC transmission system (FACTS) devices [32]. On the overleaf, a new methodology for on-line
prediction of VSM has been introduced by deploying the SVR trained by taking into account the input
information of real and reactive power load at all of the buses [28].

Notwithstanding that SVR is an efficient method to solve the nonlinear regression problems,
there are no general guidelines to define their parameters, which becomes an impediment to the breadth
of the use of SVR in manufacturing applications and scientific research. Inappropriate chosen values of
SVR parameters lead to over-fitting or under-fitting problems, and various parameter settings can also
lead to considerable differences in performance [33]. Traditionally, experience-based trial and error [34],
grid search algorithm [35], and gradient descent algorithm [36] are the most applied techniques to
select the SVR parameters. Convergence to local minima point, computational complexity, and height
computational time requirement are the major drawbacks of these conventional methods [37]. With the
development of meta-heuristic optimization algorithms, some of them have been adopted to determine
the SVR parameters, such as genetic algorithm (GA) [38] and particle swarm optimization (PSO) [39].
However, the performance of these methods is imperfect, the GA encloses a sequence of processes,
i.e., coding, selection, crossover, and mutation, which could affect the speed and the precision of this
optimization technique. In the same way, the effectiveness of the PSO is influenced by the particle’s
multiple parameters [40].

This paper presents the application of SVR and ANFIS in predicting the VSM with regards
to the input data of voltage magnitudes attained from PMUs. As the prediction capability of SVR
model tremendously depends on the good selection of its parameters, the recently developed ant lion
optimization (ALO) algorithm was employed to determine the optimal parameters of SVR model.
Thereafter, the developed ALO-SVR model has been applied to assess the voltage stability and was
compared to the ANFIS model. The effectiveness of the proposed approach is verified using the IEEE
30-bus and 118-bus test systems.

2. Voltage Stability Assessment

It is perspicuous that a power system operating at the pinnacle of the unstable condition is
conspicuously referring to the voltage magnitude approaching to its limit and it is presented by
the voltage stability indices. Many voltage stability indices have been used to evaluate the voltage
instability condition [7,41–43]. In this work, the voltage stability index (VSI) is taken as an indicator of
voltage stability. The major advantage of this index is that the mathematical formulation is derived
considering all of the system margins including active, reactive, and apparent power margins [44].
The derivation of VSI formulation is originated from a 2-bus system, where the active (Pr) and reactive
(Qr) powers at the receiving bus can be given by Equations (1) and (2), respectively., The voltage at Vr,
resulted from combining these equations with eliminating δ, can be expressed by Equation (3).

Pr =

[
(Vs cos δ−Vr)

R
R2 + X2 + Vs sin δ

X
R2 + X2

]
Vr (1)
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Qr =

[
(Vs cos δ−Vr)

X
R2 + X2 −Vs sin δ

R
R2 + X2

]
Vr (2)

Vr =

√√√√V2
s

2
− (QrX + PrR)±

√
V4

s
4
− (QrX + PrR)V2

s − (PrX−QrR)
2 (3)

where Vs and Vr are the voltages at the sending and receiving buses, respectively; R and X are the line
resistance and the line reactance, respectively.

The maximum transferable power, Smax, through the line is attained as the internal root phrase
equals to zero [43]. There is only one solution for Vs and Vr is at the collapse point.

The maximum transferred active power Pmax, the maximum transferred reactive power Qmax and
the maximum transferred power Smax can be expressed by Equations (4)–(6), respectively:

Pmax =
QrR

X
− V2

sR
2X2 +

|ZL|Vs

√
V2

s − 4QrX

2X2 (4)

Qmax =
PrX
R
− V2

sX
2R2 +

|ZL|Vs

√
V2

s − 4PrR

2R2 (5)

Smax =
V2

s [|ZL| − (sin(θ)X + cos(θ)R)]

2(cos(θ)X− sin(θ)R)2 (6)

where θ is the load power angle, θ = tan−1
[

Qr
Pr

]
.

These Equations can be simplified by assuming high X to R ratio.

Pmax =

√
V4

s
4X
−Qr

V2
s

X
(7)

Qmax =
V2

s
4X

P2
r X

V2
s

(8)

Smax =
(1− sin(θ)X)V2

s

2 cos(θ)2X
(9)

Therefore, according to these relations, the total on-line VSI can be calculated as [44]:

VSI = min
(

Pmax − Pr

Pmax
,

Qmax −Qr
Qmax

,
Smax − Sr

Smax

)
(10)

A small value of VSI indicates that the voltage magnitude at the load bus is close to its collapse
point. Once the voltage magnitude at a load bus has reached its collapse point, and consequently the
VSI is equal to zero and vice-versa.

3. A Brief Theoretical Background of SVR and ANFIS Models

This section explicates the theoretical background of SVR and ANFIS models with concise
mathematical equations representing the relationship among all variables.

3.1. SVR Model

Support vector machine (SVM) was developed by Vapnik [27] on 1995. It has become a very
important computational tool due to its successful application in classification and regression tasks [28].
SVR is an extended version of SVM that was developed to estimate regression functions and it has
received an increasing attention in the estimation of nonlinear problems. The SVR is based on the
mapping of the original data x nonlinearly into a higher dimensional feature space. In order to illustrate
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the concept of SVR, one should consider a regression function F, which is estimated based on a given
training data, {(xi, yi) i = 1, 2, . . . , n}, where xi are the inputs, yi are the outputs, and n is the number of
patterns. SVR estimates the target values by using the linear equation as follows [45].

F = wTϕ(x) + b (11)

where F is the output, w is the weight vector, b is the constant (bias), and ϕ(x) is the high dimensional
real input vector. The ε-insensitive loss function is used to represent the deviation between the actual
values and the regression function. This deviation can be treated as a tube spanning around the
regression function. Any points outside of the tube are viewed as training errors. The coefficients w
and b purporting as the support vector weight and bias calculated by minimizing the risk function as
given below.

R(F) = C
1
n

n

∑
i=1

Lε(yi, Fi) +
1
2
‖w‖2 (12)

where

Lε(yi, Fi) =

{
0 if|yi − Fi| ≤ ε

|yi − Fi| − ε otherwise
(13)

In Equation (12), the first term is the ε-insensitive loss function. Moreover, the second term is used
to estimate the function flatness. Accordingly, parameter C is used to specify the trade-off between
function complexity and losses (penalty parameter). Two positive slack variables ξ and ξ* which are
equal to zero if the data points are within the ε-tube. Then, Equation (12) can be transformed into the
following constrained form [45].

minimize
1
2
‖w‖2 + C

n

∑
i=1

(ξi + ξ
∗
i ) (14)

Subject to


yi −wT ×ϕ(x)− b ≤ ε+ ξ∗i
wT ×ϕ(x) + b− yi ≤ ε+ ξi

ξi, ξ∗i ≥ 0, i = 1, . . . , n
(15)

The above problem can be solved by adding Lagrangian multipliers and considering the case of
non-linear regression by including the mapping to the feature space:

F =
n

∑
i=1

(αi − α∗i )
(
ϕ(xi) ·ϕ

(
xj
))

+ b (16)

where αi and α∗i are the Lagrange multipliers. The vector inner-product (ϕ(xi)·ϕ(xj)) can be replaced
by the kernel function K(xi,xj). Hence, the Equation (16) becomes:

F =
n

∑
i=1

(αi − α∗i )k
(
xi, xj

)
+ b (17)

The most commonly used kernel function is the RBF defined as.

K
(
xi, xj

)
= exp

(
−‖xi − xj‖2

2γ

)
(18)

where γ denotes the width of the RBF. Further details concerning the SVR can be obtained from [45].
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3.2. ANFIS Model

Adaptive neuro-fuzzy inference system (ANFIS) was first introduced by Jangis [46] on 1993.
It combines the two models of ANN and fuzzy system. ANFIS is composed of the features that
able adjust the membership functions (MFs) and the associated parameters using the ANN training
procedure [46]. ANFIS can set the MFs and the related parameters using ANN training procedure.
It can be described as a multi-layered neural network, wherein, the first layer executes the fuzzification
process, the second layer constitute several nodes that compute the degree of activation of any rules,
the third layer normalizes the MFs, the fourth layer is having the nodes that compute the contribution
of the ith rule to the overall output, and the last layer computes the final output by summing up the
outputs of layer four. A typical rule set encompassed with fuzzy if-then rules can be expressed as,

Rule 1 : if x isA1 and y isB1, then f1 = p1x + q1y + r1 (19)

Rule 2 : if x is A2 and y isB2, then f2 = p2x + q2y + r2 (20)

where x and y are the inputs, Ai and Bi are the fuzzy sets, fi is the outputs, pi, qi, and ri are the design
parameters determined by the ANN.

In this paper, the ANFIS with subtractive clustering (SC) based learning technique [47] is used.
This technique has the advantage that its computation is simply proportional to the number of data
points as well as its independence from the dimension of the problem under consideration. Therefore,
simpler fuzzy inference system (FIS) models with few fuzzy rules can be obtained by using this
technique even with the problems having a considerable number of inputs. This model is composed of
significant features expedient for fast computation time [25]. An in-depth discussion regarding this
algorithm can be procured from [48].

3.3. Performance Evaluation

In order to evaluate the performance of SVR and ANFIS models, the difference between the
predicted and actual output values was evaluated according to the correlation coefficient (R) and
RMSE indices. The R and RMSE are determined as follows [40].

R =
∑n

i=1 (ai − a)
(
Pi − P

)√
∑n

i=1 (ai − a)2∑n
i=1
(
Pi − P

)2
(21)

RMSE =

√
1
n

n

∑
i=1

(ai − Pi)
2 (22)

where, a and P, are the actual and the predicted outputs, respectively; n is the number of data; a and P
are the average of the actual and predicted values, respectively. The prediction model can be considered
as robust in its performance if the correlation coefficient reached 1 and the RMSE close to 0.

4. On-Line Voltage Stability Assessment Using SVR and ANFIS Models

The proposed methodology deployed for an on-line assessment of voltage stability using the
ALO-SVR and ANFIS models based PMUs measurements is illustrated in Figure 1. The proposed
methodology incipient with an off-line training for the ALO-SVR and ANFIS models and the outcomes
will be an on-line monitoring of voltage stability condition incurred in a power system. During the
off-line phase of working procedure, the inputs and outputs are generated based on a conventional
power flow required for the training and testing processes of ALO-SVR and ANFIS models until it
culminates to a stage wherein the well trained and tested model is then conveyed for an on-line phase
of working procedure. In the on-line phase of working procedure, the real-time information, or data
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obtained from the PMU devices are applied immediately to the well trained and tested SVR and ANFIS
models to estimate the VSI required for the real-time risk assessment of power system.Energies 2017, 10, 1693 7 of 18 
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Figure 1. Block diagram of the proposed on-line voltage stability assessment method.

4.1. Data Preparation for the Training and Testing

The first step perpetrated in the off-line process involves the data preparation for the training and
testing procedure of the ALO-SVR and ANFIS. The training and testing data sets are generated by
varying both of the real and reactive powers. The load is increased from the base case until the system
reached the maximum loading point yielding to the collapse in a power system operation delineated
by a non-executable power flow solution. Simultaneously, the VSI is calculated corresponding to the
different operating points. In order to accommodate the increased power demand, the active power
generation should be increased reciprocally. The increase in the generation can be carried out by
the use of distributed slack bus method [49], or by the use of the optimal power flow (OPF) method.
In this paper, the OPF technique [50] has been used. During its operation, the power systems face with
a wide range of contingencies such as the loss of a transmission line, transformer or generating unit.
When a contingency occurred, the power system configuration changes and leads to an inaccurate
estimate of VSI by the trained models. In the present paper, a single line outage, which is the most
frequent contingency that can appear, is considered. For a large power system, it is impractical and
unnecessary to train the models for all of the possible contingencies; therefore, contingencies should
be ranked according to their severity on voltage stability to identify the most critical situations.

The voltage magnitudes extracted from the buses where PMUs are installed are taken as the input
variables of ALO-SVR and ANFIS models. In turn, the minimum corresponding values of VSI are
considered as the output variables.

4.2. SVR Parameters Optimization

In order to obtain an effective SVR model with a good predictive ability, there are three
parameters that necessitate being chosen carefully. These parameters include the penalty parameter C,
the non-sensitivity coefficient ε and the kernel parameters (bandwidth of the Gaussian RBF kernel γ in
this study). These parameters have a great importance in the regression accuracy and generalization
performance of the SVR model [51]. In this paper, the recently developed ALO has been deployed to
optimize the SVR parameters.
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4.2.1. Antlion Optimizer (ALO)

Antlion optimizer (ALO) is a recently established new and efficient swarm intelligence
optimization technique proposed by Mirjalili in 2015 [52]. It was inspired from the intelligent demeanor
of antlion hunting mechanism for ants in nature. The mathematical modeling of ALO algorithm can
be summarized in the follows procedures [52].

1. Random movement of ants: In nature, the ants walk in a random way when seeking for food.
This stochastic movement is given by Equation (23).

X(t) =

[
0, cumsum

(
2r(t1)− 1, cumsum(2r(t2)− 1), . . . ,

cumsum(2r(tn)− 1)

) ]
(23)

where cumsum is the cumulative sum, t represents the step of a stochastic walk (iteration), and
r(t) is a random function expressed by the following Equation.

r(t) =

{
1 if rand > 0.5
0 if rand ≤ 0.5

(24)

To confine the random walks within the search space, the ant movement must be normalized at
every iteration as fellows.

Xt
i =

(
Xt

i − ai
)
×
(
dt

i − ct
i
)

(bi − ai)
+ ci (25)

where Xi
t is the normalized value of the ith variable, t represents the iteration, ai and bi are

respectively the min-max of the stochastic walk of the ith variable, ci
t and di

t are the min-max of
the stochastic walk of the ith variable at tth iteration, respectively.

2. Trapping in antlion’s pits: The ant’s stochastic move is influenced by ant-lions’ traps, which can
be modeled as follows.

{
ct

i = Antliont
j + ct

dt
i = Antliont

j + dt (26)

where ct and dt are the min-max of variables at tth iteration, respectively, Antliontj
t indicates the

position of the jth antlion at the tth iteration.
3. Building trap and sliding ants toward ant lion: The ant-lions’ hunting capability can be modeled

using the roulette wheel. The slipping of ants into ant lions pits is given by the Equation (27).

{
ct = ct

I
dt = dt

I
(27)

where I is a ratio given as follows:

I =



102 · t
T if t

T > 0.1
103 · t

T if t
T > 0.5

104 · t
T if t

T > 0.75
105 · t

T if t
T > 0.9

106 · t
T if t

T > 0.95

(28)

where t and T are the current iteration and the total number of iterations, respectively.
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4. Catching ants and rebuilding the pit: when ant reaches the lowest part of the pit, the ant lion
consumes it. To increase the opportunities for catching another ant, the ant lion takes the position
of the latest caught prey and rebuild a novel pit. This process can be modeled as follows.

Antliont
j = Antt

i if f
(
Antt

i
)
> f
(

Antliont
j

)
(29)

where Anti
t is the position of ith ant at tth iteration.

5. Elitism: The elite ant lion, which is the best ant lion obtained at every iteration, is saved and it
must be competent to influence the locomotion of all the ants. Thus, it presumed that each ant
unsystematically walks around a chosen ant lion by the roulette wheel and the elite at the same
instant as follows:

Antt
i =

Rt
A + Rt

E
2

(30)

where RA
t and RE

t are respectively the stochastic walks around the antlion chosen by the roulette
wheel and round the elite at tth iteration.

4.2.2. Application of ALO in SVR Parameters Optimization

In this section, the ALO algorithm has been deployed to optimize the SVR parameters i.e., C, γ and
ε. The proposed methodology can be briefly described by the following steps.

Step 1: Set the initial parameters of ALO, which are: the number of ants and antlions, the maximum
number of iterations, the number of variables (SVR parameters), and the upper/lower bounds
of variables.

Step 2: Initialize randomly the first population of ants and antlions.
Step 3: Train the SVR model using the training set and compute the fitness value of ant and antlions.

The root mean squared error (RMSE) was used as a fitness function.
Step 4: Find the better ant lion and consider it as the elite.
Step 5: For every antlion:

• Choose an antlion based on the roulette wheel
• Update the values of c and d utilizing Equation (27).
• Generate a stochastic move and normalize it using Equations (23) and (25).
• Update the location of ant based on Equation (30).

Step 6: Compute the fitness of every ant.
Step 7: Substitute an antlion with its corresponding ant if it is better using Equation (29).
Step 8: Update the elite if an antlion becomes better.
Step 9: Check the stopping criterion: if the stopping criterion is achieved go to the step 10. Otherwise,

loop to the step 5.
Step 10: The position of the elite comprised the optimum values of SVR parameters.

5. Results and Discussion

In order to investigate the performance of the proposed SVR and ANFIS models used as tools of
prediction, the accuracy of predicted VSI will be analyzed for the case studies of IEEE 30-bus and IEEE
118-bus test systems. The important parameter values of these systems are given in Table 1 and the
other detailed parameters can be retrieved from [53].
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Table 1. Important information of IEEE 30-bus and IEEE 118-bus test systems.

Test System Number of
Generators

Number of
Lines

Number of
Loads

Total PL
(MW)

Total QL
(MVAr)

Number of
OLTC

IEEE 30-bus 6 41 24 283.4 126.2 4
IEEE 118-bus 54 186 64 3678 1438 9

In the on-line assessment of voltage stability, the optimal number, and placement of phasor
measurement technology based PMUs should be implemented beforehand in such a way that pervasive
as well as a coherent observation on the network performance could be rendered with a minimum
cost of investment and implementation. In order to obtain the optimal number and locations of PMUs
with the aim of static state estimation, the systems were simulated in Power System Analysis Toolbox
(PSAT) software version 2.1.5 [53]. The optimal number and locations of PMUs for both test systems
are shown in Table 2. On the other hand, to identify the most critical contingencies, contingency
analysis was carried out for all single line outages in both systems. The selected contingencies, for both
test systems, along with their corresponding VSI in the base loading condition, are shown in Table 3.

The acquired outcomes i.e., the voltage magnitudes and phase angles measured from the PMUs
will be used as the input information for the SVR and ANFIS models to estimate the on-line VSI.

Table 2. Optimal number and location of phasor measurement units (PMUs) for the IEEE 30-bus and
IEEE 118-bus test systems.

Test System Number of Required PMUs Location of PMUs

IEEE 30-bus 7 3, 5, 10, 12, 19, 23, 27

IEEE 118-bus 31 2, 5, 9, 12, 13, 17, 21, 27, 29, 32, 34, 37, 40, 45, 49, 53, 56,
59, 66, 70, 71, 77, 80, 85, 86, 90, 94, 101, 105, 110, 118

Table 3. Set of the critical contingencies for IEEE 30-bus and 118-bus test systems.

Contingency No
IEEE 30-Bus System IEEE 118-Bus System

Line Outage VSI Line Outage VSI

1 1–2 0.3105 63–66 0.0146
2 6–7 0.5911 81–90 0.0148
3 2–5 0.7037 85–87 0.2690
4 9–10 0.7046 81–82 0.3082
5 4–6 0.7097 87–100 0.3094
6 5–7 0.7171 82–83 0.3219
7 2–6 0.7190 80–82 0.3474
8 1–3 0.7281 105–101 0.3597
9 4–12 0.7285 103–105 0.3649

10 12–13 0.7292 87–99 0.4096
Intact condition All lines are in service 0.7622 All lines are in service 0.5406

5.1. Implementation of ALO-SVR and ANFIS Models in VSI Prediction

This sub-section will divulge on the performance of ALO-SVR and ANFIS models that are used to
estimate the VSI of an IEEE 30-bus and IEEE 118-bus test systems. The models were trained and tested
using the voltage magnitudes that were taken as the input variables procured from the PMUs right
after the load flow solution is performed and the output variable for the models will be the prediction
of minimum VSI. The training and testing data sets for both models are generated for the different
loading conditions and critical contingencies. The subsequent step involved in the training and testing
of ALO-SVR and ANFIS models is to identify the best structure and characteristics that will improve
the performance of both models in prediction.

With respect to the development of optimal SVR structure, there are two main steps involved via
the selection of kernel function and optimization of the values of penalty (C), ε and kernel parameters.
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In this research, the Gaussian RBF is used as the kernel function. The performance of the SVR based
Gaussian RBF kernel is highly dependent on the RBF kernel width (γ). Unfortunately, there are
no defined rules for determining the optimum values of C, ε, and γ since these values should be
determined in accordance with the current situation of implementation. As aforementioned, the ALO
algorithm seeks for the optimal values of C, γ, and ε parameters.

When using the ALO algorithm for identifying the optimal SVR parameters, some parameters
must be determined, such as the maximum number of iterations, the number of search agents
(candidate solutions), the fitness function, the number of variables, and the upper/lower bounds of
variables. In the present study, the number of iterations was set to 200 with a various number of search
agents (10, 30, 40, and 50) to evaluate the impact of these parameters on SVR performance. The RMSE
was considered as a fitness function in the optimization process. Moreover, the stopping criterion in
this study is the set number of maximum iteration. The ranges of C, γ, and ε parameters are as follows:
[1 1000], [0.0001 0.1], and [0.1 1], respectively. The iterative RMSE trend of the ALO searching of the
SVR optimal parameters in the training stage is displayed in Figure 2a,b. It can be seen from this figure
that the ALO algorithms based 10, 30, 40, and 50 search agents can all achieve the best fitness values,
which are 3.2718 × 10−4 and 1.0290 × 10−4 in the cases of IEEE 30-bus and IEEE 118-bus, respectively.
However, there is a small difference among them in the convergence speed. The optimal found values
of C, γ and ε parameters for both systems are shown in Table 4.
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Table 4. Optimal parameters of SVR model found using ALO algorithm.

SVR Parameters
Optimal Values of SVR Parameters

IEEE 30-Bus IEEE 118-Bus

C 679.673 569.824
γ 0.1 0.11169
ε 0.0001 0.0001

The subsequent implementation of SVR will be the subtractive clustering method that used to
construct the ANFIS model for predicting the VSI. In order to generate fuzzy rules by using the
subtractive clustering method, it is essential to determine a proper cluster radius (radii). According
to [54], the recommended values for ‘radii’ should be in the range between 0.2 and 0.5. The RMSE
results for different values of cluster radius in testing process are presented in Table 5. Based on
the obtained results, a cluster radius of 0.2 and 0.4 are selected for the case studies of IEEE 30-bus
system and IEEE 118-bus system, respectively, for the reason that these values are corresponding to
the minimum RMSE.
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Table 5. Selection of the best ‘Radii’ value of ANFIS model.

Test System Performance Index
‘Radii’ Value

0.2 0.3 0.4 0.5

IEEE 30-bus RMSE 0.0210 0.0373 0.0749 0.0735
IEEE 118-bus RMSE 0.0261 0.0244 0.0238 0.0292

Once the optimal parameters of SVR and ANFIS models are obtained, the ability of both models
in prediction of voltage stability margin was evaluated. In Figures 3 and 4, the conventional load flow
solution inflicting to the actual values of VSI is compared with the predicted values of VSI determined
by using the training and testing processes of ANFIS and ALO-SVR models. Figure 3a,b, evince that
the ALO-SVR provide the results that are in good agreement with the actual values in contrast with the
ANFIS and this is referring to the case study of IEEE 30-bus system. The abovementioned discussion
is similar with compendium, representing the outcome of ALO-SVR model for the cases study of
IEEE 118-bus system as shown in Figure 4a,b. The linear fits between the actual and results predicted
by the ANFIS and ALO-SVR models for the case of IEEE 30-bus system are illustrated in Figures 5
and 6. It is obvious that the ALO-SVR model has a good prediction performance in both training and
testing processes giving to the linear fits with the correlation coefficient (R) close to 1 when compared
to the ANFIS model. This finding is supported by comparing the correlation coefficients (R) of 1 and
0.9947 obtained from the ALO-SVR and ANFIS training processes, respectively. Withal the findings are
also supported based on the comparison between the correlation coefficients (R) of 0.9984 and 0.9613
determined corresponding to the output of SVR and ANFIS testing processes, respectively. Hence,
the comparison revealed that the ALO-SVR performs a better prediction than the ANFIS either during
the training or testing processes. Robustness of the SVR used to predict the VSI compared to the
ANFIS for the IEEE 118-bus system is also shown in Figures 7 and 8. The finding is proven particularly
referring to the R of 1 and 0.9793 for the ALO-SVR and ANFIS training processes, respectively.
Similarly, the ensuing particular also corroborates the findings such that the R of 0.9807 and 0.9741
for the ALO-SVR and ANFIS testing processes, respectively. These values show that the ALO-SVR
prediction is better than the ANFIS prediction.
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In order to further assess the performance of ALO-SVR model to discern with the ANFIS model,
the performance indicator predicated by the root mean square error will be used in the comparative
analysis. The model’s performance towards training and testing processes for the case studies of
IEEE 30-bus and IEEE 118-bus systems is expounded in Table 6. The statistical error obtained from
training process indicated that the ALO-SVR model produced relatively lower RMSE of 3.2718 × 10–4

for the case study of IEEE 30-bus and 1.0290 × 10–4 for the case study of IEEE 118-bus than the results
provided using the ANFIS model which is 0.0209 for the case of IEEE 30-bus and 0.0238 for the case
of IEEE 118-bus. For the testing process, the RMSE values of 0.0118 and 0.0535 are obtained by the
ALO-SVR and ANFIS models for the case study of IEEE 30-bus system, respectively. For the case
study of IEEE 118-bus system, the predictions are resulting to the RMSE of 0.0230 for ALO-SVR testing
process and RMSE of 0.0238 for ANFIS testing process. From the obtained results, it is clear that the
ALO-SVR model acquired relatively smaller RMSE and larger R contradictory with the ANFIS model
during both training and testing processes. In other words, the ALO-SVR performance culminates in
giving the best prediction results than the ANFIS model. Table 6 shows the results of the comparative
study between the ALO-SVR and ANFIS models for both test systems.



Energies 2017, 10, 1693 15 of 18

Table 6. Statistical coefficient of actual and predicted values.

Test System Parameters ALO-SVR ANFIS

IEEE 30-bus

Training RMSE 3.2718 × 10–4 0.0209
Training R 1 0.9947

Testing RMSE 0.0118 0.0535
Testing R 0.9984 0.9613

IEEE 118-bus

Training RMSE 01.0290 × 10–4 0.0238
Training R 1 0.9793

Testing RMSE 0.0230 0.0238
Testing R 0.9808 0.9741

5.2. Impact of PMUs Outage on ALO-SVR Performance

The effectiveness of the proposed ALO-SVR model in the estimation of VSI was also checked
in the case of PMUs loss contingency. Table 7 lists the performance indices of three test scenarios
with PMUs outage for both test systems. These scenarios include the outages of one, two, and three
PMUs in both case studies of IEEE 30-bus and IEEE 118-bus test systems. From the Table 7, it can be
seen that the proposed ALO-SVR model is still able to accurately predict the VSI when PMUs outage
is considered.

Table 7. ALO-SVR performance with PMUs outage.

Test System Number of PMUs RMSE R

IEEE 30-bus

0 0.0118 0.9984
1 0.0168 0.9975
2 0.0423 0.9815
3 0.0584 0.9626

IEEE 118-bus

0 0.0230 0.9808
1 0.0247 0.9808
2 0.0251 0.9807
3 0.0317 0.9806

6. Conclusions

In this paper, the use of SVR and ANFIS based synchrophasor measurements for on-line voltage
stability assessment has been presented. The antlion optimizer (ALO) algorithm is adopted as a search
strategy to seek for the optimal parameters of SVR and a new hybrid model, namely ALO-SVR,
model is proposed. The voltage magnitudes obtained from PMUs, for both the base case and for
a selected number of contingencies, are used as the input variables of ALO-SVR and ANFIS models,
while the output variables are the minimum values of VSI. The performances of the two models are
evaluated in terms of the correlation coefficient (R) and RMSE. The results suggested that the two
models can be successfully applied to predict the VSI. However, the ALO-SVR model gave a better
performance than the ANFIS model. The study showed also the impact of PMUs loss contingency on
the predictive ability of the ALO-SVR. The results revealed that the model is able to accurately predict
the VSI in the case of PMUs loss contingency.
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