
Arabian Journal for Science and Engineering
https://doi.org/10.1007/s13369-017-3046-5

RESEARCH ART ICLE - ELECTR ICAL ENGINEER ING

Power System Voltage Stability Assessment Using a Hybrid Approach
Combining Dragonfly Optimization Algorithm and Support Vector
Regression

Mohammed Amroune1 · Tarek Bouktir1 · Ismail Musirin2

Received: 17 April 2017 / Accepted: 20 December 2017
© King Fahd University of Petroleum &Minerals 2018

Abstract
In this paper, an efficient approach based on the combination of dragonfly optimization (DFO) algorithm and support vector
regression (SVR) has been proposed for online voltage stability assessment. As the performance of the SVRmodel extremely
depends on careful selection of its parameters, the DFO algorithm involves SVR parameters setting, which significantly
ameliorates their performance. In the proposed approach, the voltage magnitudes of the phasor measurement unit (PMU)
buses are adopted as the input data for the hybrid DFO–SVR model, while the minimum values of voltage stability index
(VSI) are taken as the output vector. Using the data provided by PMUs as the input variables makes the proposed model
capable of assessing the voltage stability in a real-time manner, which helps the operators to adopt the required measures to
avert large blackouts. The predictive ability of the proposed hybrid model was investigated and compared with the adaptive
neuro-fuzzy inference system (ANFIS) through the IEEE 30-bus and the Algerian 59-bus systems. According to the obtained
results, the proposed DFO–SVR model can successfully predict the VSI. Moreover, it provides a better performance than the
ANFIS model.

Keywords Voltage stability assessment · Phasor measurement unit · Support vector regression · Dragonfly optimization
algorithm

1 Introduction

Electric power systems have become larger and more com-
plex. They operate close to their stability limits, with a small
security margin. Under such a situation, any disturbance,
such as generator, transformer or transmission line outages,
can lead to voltage instability the cause of many blackouts in
different countries [1]. The occurrence of the blackouts and
their large impacts clearly demonstrate the great importance
of online voltage security/stability assessment.

Owing to its ability to perform parallel data processing
with high accuracy and swift response, the artificial neu-
ral network (ANN) has attained increasing importance in
recent years as a tool for assessment of voltage stability [2–
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6]. Although ANNs have gained the attention of researchers,
it has some shortcomings, particularly with respect to the
relatively long time required for learning, sticking at local
minima, and the fact that the learning is highly dependent
on the number of training data [7]. To remedy these short-
comings, some substitute methods, such as support vector
machine (SVM), have been proposed.

SVM is a novel machine learning technique introduced by
Vapnik [8]. It is based on statistical learning theory and struc-
tural risk minimization. Recently, the SVM has emerged as
an effective computational technique, due to its performance
in solving classification and regression problems. Support
vector regression (SVR), the regression version of SVM, is
the widespread form of application of SVM. However, in the
area of voltage stability monitoring, most of the published
works use the SVM as a classification tool. Cortés et al. [9]
successfully employed every single SVM that was trained
to classify the situations of a power system as secure, alert
and emergency. The final classification, representing a sys-
tem security assessment, is extracted from the coalescence of
each classifier output undertaken by utilizing the Bayesian
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rule. This approach has been applied in a relatively analo-
gous manner with the proposed multi-class SVM used for
security assessment, which has been discussed in [10]. In the
proposed approach, there are four different statuses of system
security which are normal, alert, emergency_1 and emer-
gency_2. Further amelioration of multi-class SVM has been
undertakenby consolidating the pattern recognition approach
for security assessment [11]. SVR was introduced into volt-
age stability assessment by Suganyadevi and Babulal [12], it
was proposed to evaluate the voltage stability of power sys-
tem incorporating flexible AC transmission system (FACTS)
devices. On the overleaf, a new methodology for online pre-
diction of voltage stability margin has been introduced by
deploying the SVR trained by considering the input infor-
mation of real and reactive power load at all buses [13].

Notwithstanding that SVR is a robust tool to solve non-
linear regression problems, there are no general guidelines
to define their parameters, which is an obstacle to the
widespread of the use of SVR in manufacturing applica-
tions and scientific research. Therefore, the main concern
for researchers is to reveal convenient parameter values for
a given data set in SVR that can ensure high accuracy.
Inappropriate SVR parameters values cause over-fitting or
under-fitting problems, and various parameter settings can
also lead to considerable differences in performance [14].
Traditionally, the grid search algorithm [15] and gradient
descent algorithm [16] are the most commonly applied algo-
rithms to select SVM parameters. Convergence to local
minima point, computational complexity and height compu-
tational time requirement are the major drawbacks of these
conventional methods [17]. With the development of meta-
heuristic optimization algorithms, some of them have been
adopted to determine the SVR parameters, such as genetic
algorithm (GA) [18,19] and particle swarm optimization
(PSO) [20]. However, the performance of these methods is
imperfect; the GA has some disadvantages, for instance, the
premature convergence and the poor aptitude of local search.
Another problem is related to the difficulty of choosing of
GA operators such as population size, selection method,
crossover rate and mutation rate, which have a significant
impact on the convergence to the optimum solution [21,22].
In a like manner, the effectiveness of the PSO is influenced
by the particle’s multiple parameters [23].

Dragonfly optimization (DFO) is a novel optimization
technique proposed by Mirjalili [24]. It is inspired from the
static and dynamic demeanour of a swarm of dragonflies.
Compared to the other well-known optimization techniques,
DFO has some advantages, such as a simple concept and
easy implementation. The robustness of this new optimiza-
tion method is tested and validated by authors using many
standardbenchmark functions.The results show that theDFO
algorithm outperforms existing well-known algorithms such
as GA and PSO [24]. In this paper, a new hybrid DFO–SVR

model is proposed for online voltage stability assessment.
In the proposed model, the DFO algorithm is deployed to
seek out the optimal values of SVR parameters. The devel-
oped model was trained based on the voltage magnitudes
obtained from PMU buses, for various operating conditions,
as the input variables, and the minimum values of voltage
stability index (VSI) as the output variables. The efficiency
of the developed model is evaluated and compared with the
well-known ANFIS model. Numerical results of the pro-
posed approach are presented using the IEEE 30-bus and
the Algerian 59-bus systems.

2 Development of DFO–SVRModel

2.1 Support Vector Regression (SVR)

Support vector regression (SVR), the extended version of
SVM, was initially suggested by Vapnik [8]. It has become
a paramount computational tool due to its effective appli-
cations in regression and prediction problems. SVR was
developed for the prediction of regression functions, and it
is based on the implicit nonlinear conversion of the data into
a higher-dimensional feature space [25]. The fundamentals
of SVR are briefly reported here considering a regression
function F which is estimated based on the training data in
the form of {(xi , yi )i = 1, 2, . . ., n}, where xi and yi are the
input and output sets, respectively; n is the overall number
of the dataset. SVR predicts the target values by utilizing the
regression function as follows [8]:

F = wTϕ(x) + b (1)

where F is the predicted output, w is the weight vector, b
is the bias, and ϕ(x) is the high-dimensional input vector.
Flatness in (1) means that one seeks small w. For this, it is
required to minimize the Euclidean norm, i.e. ||w||2 [26].
The coefficients w and b were computed by minimizing the
risk function, as given below.

R (F) = 1

2
‖w‖2 + C

1

n

n∑

i=1

Lε (yi , Fi ) (2)

where

Lε (yi , Fi ) =
{
0 if |yi − Fi | ≤ ε

|yi − Fi | − ε otherwise
(3)

The penalty parameter C is used to identify the trade-off
between function intricacy and losses. As can be seen in
Fig. 1, the parameter ε is the loss function which repre-
sents the range between the actual values and the regression
function. This range can be seen as a tube around the regres-
sion function. All points located on the exterior of the tube

123



Arabian Journal for Science and Engineering

are considered as training errors. Lε(yi , Fi ) is called the ε-
insensitive loss function. Equation (2) can be changed to the
following constrained form [8].

minimize
1

2
‖w‖2 + C

n∑

i=1

(ξi + ξ∗
i ) (4)

Subject to

⎧
⎨

⎩

w · ϕ(x) + b − yi ≤ ε + ξi
yi − (w · ϕ(x) + b) ≤ ε + ξ∗

i
ξi , ξ

∗
i ≥ 0, i = 1, 2, . . . , n

(5)

where ξ and ξ∗ are two positive slack variables, which
assume nonzero values on the exterior of the ε-tube and zero
inside (Fig. 1).

The optimization problem in (4) can be solved more eas-
ily in its dual formulation. Therefore, a standard dualization
technique using Lagrangian multipliers has been employed.
Using theLagrangianmultipliers, this problemcan bewritten
in the dual formulation as follows [26]:

Maximize

⎧
⎨

⎩−1

2

n∑

i, j=1

(αi , α
∗
i )(α j , α

∗
j )(ϕ(xi ) · ϕ(x j ))

−ε

n∑

i=1

(αi , α
∗
i ) +

n∑

i=1

yi (αi , α
∗
i )

⎫
⎬

⎭ (6)

Subject to

⎧
⎨

⎩

∑n
i=1 (αi − α∗

i ) = 0
0 ≤ αi ≤ C i = 1, 2, . . . , n
0 ≤ αi ≤ C i = 1, 2, . . . , n

(7)

where αi , α∗
i are nonlinear Lagrangian multipliers. The SVR

function can be obtained by solving the dual maximization
problem in (6) as follows [26]:

F
(
x, αi , α

∗
i

) =
n∑

i=1

(αi − α∗
i )(ϕ(xi ) · ϕ(x j )) + b (8)

The vector inner-product (ϕ(xi ) ·ϕ(x j )) represents the map-
ping function from the input space to feature space, and it

Fig. 1 Regression with the ε-insensitive tube

can be replaced by a kernel function K (xi , x j ). Hence, Equa-
tion (8) becomes:

F
(
x, αi , α

∗
i

) =
n∑

i=1

(
αi − α∗

i

)
k
(
xi , x j

) + b (9)

The prevalent kernel functions provided by the SVR are lin-
ear, polynomial, sigmoid and radial basis function. Among
these functions, the radial basis function (RBF) is the most
used due to its effectiveness, reliability and simplicity. The
RBF is defined as follows:

K
(
xi , x j

) = exp

(
− ∥∥xi − x j

∥∥2

2γ

)
(10)

where γ represents the bandwidth of the RBF function.

2.2 Dragonfly Optimization (DFO) Technique

The dragonfly optimization (DFO) algorithm is a recently
established new and efficient swarm intelligence optimiza-
tion technique proposed by Mirjalili [24]. It was inspired by
the dynamics of dragonflies in nature. Dragonflies are car-
nivorous insects that catch and eat a wide variety of small
insects, from gnats and mosquitoes to wasps and butter-
flies. Generally, dragonfly swarms are both dynamic and
static in the natural world. Dynamic swarms, or migra-
tory swarms, form as large groups (hundreds of thousands
of dragonflies) and fly in a single direction for long dis-
tances as shown in Fig. 2. During the process of static
swarms, in which the dragonflies hunt prey, they fly in small
groups frequently over a well-determined small area and
much closer to the land as shown in Fig. 3. Naturally, the

Fig. 2 Dynamic dragonfly swarms
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Fig. 3 Static dragonfly swarms

instinct of each individual in the swarm imposes to attract to
the nurturing sources and distract outward enemies. From
these two conducts, the DFO algorithm is inspired. The
position updating of each individual in the swarm is rep-
resented in Fig. 4 and mathematically explained as follows
[24].
Separation (S) the aim of this step is to eschew the collision
of individuals with their neighbours in the static swarm. This
separation is expressed by the following equation.

Si =
n∑

j=1

X − X j (11)

where X and X j are the positions of the current individual
and the j th neighbouring individual, respectively. n is the
number of neighbouring individuals.
Alignment (A) the purpose of this step is tomatch the velocity
of each individual with the other. The alignment is given by
(12).

Ai =
∑n

j=1 Vj

n
− X (12)

where Vj is the velocity of neighbouring individual j .
Cohesion (C) refers to the movement of individuals towards
the centre of the swarm’s group.

Ci =
∑n

j=1 X j

n
− X (13)

Attraction towards the food (F) All individuals tend to move
towards the food.

Fi = X+ − X (14)

where X+ shows the position of the food source.
Distraction outwards an enemy (E) is calculated as follows:

Ei = X− − X (15)

where X− shows the position of the enemy.
The position of each dragonfly is updated based on step

vector ΔX , which is calculated as follows.

ΔXi = (sSi + aAi + cCi + f Fi + eEi ) + wΔXt (16)

Fig. 4 Primitive corrective patterns between individuals in a swarm [24]
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where s, a, and c represent, respectively, the separation,
alignment and cohesion weights; f and e are the food and
the enemy factors, respectively; w is the inertia weight, and
t is the iteration counter. The updated position vector is cal-
culated as follows.

Xt+1 = Xt + ΔXt+1 (17)

In the case of no neighbouring solutions founded, dragonflies
fly around the search space using a random walk, or Lévy
flight [27], to ameliorate their randomness, stochasticity and
exploration. In this case, the dragonflies update their position
based on the following equation [24]:

Xt+1 = Xt + Lévy (d) × Xt (18)

where t is the current iteration, and d is the dimension of the
search space. Levy flight is given by [28]:

Lévy (x) = 0.01 × r1 × σ

|r2|
1
β

(19)

where r1 and r2 are the random numbers in the range of [0,1],
β is a constant, and σ is given by (20).

σ −
⎛

⎝
Γ (1 + β) × sin

(
πβ
2

)

Γ
(
1+β
2

)
× β × 2

(
β−1
2

)

⎞

⎠

1
β

(20)

where Γ (x) = (x − 1)!.

2.3 The Hybrid DFO–SVR Algorithm

In order to obtain an effective SVRmodelwith a good predic-
tive ability, there are three parameters that necessitate being
chosen carefully [29]. These parameters include the penalty
parameter C , the non-sensitivity coefficient ε and the ker-
nel parameters (bandwidth of the Gaussian RBF kernel γ in
this study). These parameters have a great importance in the
regression accuracy and generalization performance of the
SVR model [29]. Hence, a robust and efficient optimization
method is coveted to select the above-mentioned parameters.
In this study, the recently developed dragonfly algorithm has
been deployed to optimize the SVR parameters. The pro-
posed hybrid DFO–SVR algorithm can be briefly described
by the following steps (Fig. 5).

Step 1 Set the values of DFO parameters such as:

• The number of dragonflies (candidate solutions);
• The maximum number of iterations;
• The upper and the lower bounds of C , γ and ε.

Step 2 Initialize the step vectors ΔXi (i = 1, 2, . . ., n), the
values of s, a, c, f , e and w, and the values of SVR
parameters (C, γ , and ε).

Step 3 Train the SVRmodel using the training set and com-
pute the fitness value of every dragonfly. The root
mean square error (RMSE) was used as a fitness
function. The fitness function is in the form of:

Fitness =
√√√√1

n

n∑

n=1

(ai − pi )2 (21)

where α and P are the actual output and the pre-
dicted output, respectively, and n is the overall
number of data.

Step 4 Update the values of s, a, c, f and e.
Step 5 For all individuals, calculate the values of S, A, C ,

F and E using (11)–(15).
Step 6 Update the neighbouring radius.
Step 7 If the dragonfly has at least one neighbouring drag-

onfly, the velocity and the position of the dragonfly
are updated based on (16) and (17). Otherwise, the
position vector is updated using (18).

Step 8 Correct the new positions taking into account the
upper and lower values of variables C , γ and ε.

Step 9 Check the stop criterion: if its criterion is achieved,
go to the Step 10. Otherwise, loop to Step 3.

Step 10 The best position for all individuals comprising the
optimized SVR parameters is selected, and then the
SVR model was tested and evaluated.

3 Voltage Stability Assessment

Voltage stability assessment is one of the important parts
in the planning and operating of power systems. This assess-
ment is for objective to identifywhether the current operating
point is secure or not, as well as to determine how close the
system is to the voltage instability. Several methods have
been introduced to assess the voltage stability and to deter-
mine the stability margins such as minimum eigenvalue,
tangent vector and continuation power flow [30]. However,
the high computational requirements make these methods
inadequate for online application. To overcome this problem,
several indices have been proposed to evaluate the voltage
stability such as line stability factor (LQP) [31], line sta-
bility index (Lmn) [32], fast voltage stability index (FVSI)
[33] and voltage stability index (VSI) [34]. These indices
do not require computational effort and are suitable for fast
analysing the voltage stability. A comparative study of these
indices has been presented in [35]. Based on this comparison,
the VSI is found to be the best index since the mathematical
formulation is derived considering all of the system mar-
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Fig. 5 The flowchart of the proposed DFO–SVR model

gins, including active, reactive and apparent power margins.
The VSI can be calculated in a real-time manner to predict
the power system operating condition. The derivation of VSI
formulation is originated from a 2-bus system illustrated in
Fig. 6.

The current I that flows in the line given by:

I = Vs � δs − Vr � δr

R + j X
(22)

The apparent power S at receiving end bus can be written as:

Sr = Vr I
∗ (23)

Fig. 6 Single transmission line model

Rearranging (23) yields:

I =
(
Sr
Vr

)
= Pr − j Qr

Vr � − δr
(24)
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Equating (22) and (24)

Vs � δs − Vr � δr

R + j X
= Pr − j Qr

Vr � − δr
(25)

Separating the real and imaginary parts yields:

VsVr cos δ − V 2
r = RPr + XQr (26)

And,

−VsVr sin δ = X Pr + RQr (27)

where δ = δs-δr .
From (26) and (27), the real and reactive powers at the

receiving end bus can be given by:

Pr =
[
(Vs cos δ − Vr )

R

R2 + X2 + Vs sin δ
X

R2 + X2

]
Vr

(28)

Qr =
[
(Vs cos δ − Vr )

X

R2 + X2 − Vs sin δ
R

R2 + X2

]
Vr

(29)

Combining (28) and (29) by removing δ, as a result, the
voltage Vr can be expressed by (30).

Vr =
√√√√V 2

s

2
− (Qr X + Pr R) ±

√
V 4
s

4
− (Qr X + Pr R) V 2

s − (Pr X + Qr R)2

(30)

where V is the voltagemagnitude; s and r are the sending and
receiving buses, respectively; R and X are the line resistance
and reactance, respectively. Themaximum transmitted power
Smax through the line is attainedwhen the internal root phrase
equals to zero [35]. There is a unique solution for Vs and Vr
located at the collapse point. Themaximum transferred active
power Pmax, the maximum transferred reactive power Qmax

and the maximum transferred power Smax can be expressed
by (31)–(33), respectively:

Pmax = Qr R

X
− V 2

s R

2X2 + |ZL | Vs
√
V 2
s − 4Qr X

2X2 (31)

Qmax = Pr X

R
− V 2

s X

2R2 + |ZL | Vs
√
V 2
s − 4Pr R

2R2 (32)

Smax = V 2
s [|ZL | − (sin (θ) X + cos (θ) R)]

2 (cos (θ) X − sin (θ) R)2
(33)

where θ is the load power angle, θ = tan−1
[
Qr
Pr

]
.

These equations can be simplified by supposing high X to
R ratio.

Pmax =
√

V 4
s

4X2 − Qr
V 2
s

X
(34)

Qmax = V 2
s

4X

P2
r X

V 2
s

(35)

Smax = (1 − sin (θ)) V 2
s

2 cos (θ)2 X
(36)

Therefore, based on these relations, the total VSI can be
defined by [34]:

V SI = min

(
Pmax − Pr

Pmax
,
Qmax − Qr

Qmax
,
Smax − Sr

Smax

)
(37)

A small value of VSI indicates that the voltage magnitude
at the load bus is approaching to its collapse point. Once
the voltage magnitude at a load bus has reached its collapse
point, consequently the VSI is equal to zero.

4 Implementation of DFO–SVRModel Based
PMUData in Online Voltage Stability
Assessment

PMU is a smart metering device that measures a voltage pha-
sor of the power system’s bus, aswell as, the current phasor of
the lines emanating from that bus, with consideration of the
global time reference offered by the GPS of satellites [36].
The network of PMUs together with the new communication
systems is called wide area measurement system (WAMS)
[37], which is considered as one of the key technologies in
smart grids. The fundamental aims of WAMS are the mon-
itoring, centralized control and protection of power systems
[38]. The simplified architecture of WAMS is represented
in Fig. 7. The distributed PMUs send the time synchronized
data taken from throughout the system to control centre. The
precise and accurate real-time measurements offered by the
PMU devices help the operators to take the required control
action. In the present study, the gathered data from PMU
buses, under different power system operating conditions,
were used to train the developed DFO–SVR model, which
was then employed in online prediction of VSI. Figure 8
shows the schematic representation of the DFO–SVR model
applied to VSI prediction.

4.1 Generation of Training and Testing Data

To train and evaluate the performance of the proposed DFO–
SVR model, appropriate training and testing data must first
be prepared. These data are generated through off-line simu-
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Fig. 7 Simplified architecture of WAMS

Fig. 8 Schematic representation of DFO–SVR model applied to VSI
prediction

lation processes by varying both the active and reactive power
at each load bus in the system.The load is increased randomly
from the base case until the system reaches the collapse point,
and then the VSI is computed for each operating point using
(37). In turn, to meet the increased power demand, the active
and reactive powers of all generators should be adjusted. The
adjustment of the generator output can be achieved using dis-
tributed slack bus [39] or optimal power flow (OPF) methods
[40]. Here, theOPF-based technique has been used. The volt-
age magnitudes of PMU buses (|V |PMU) obtained by solving
the conventional load flow for every load-generating sample
are taken as the input variables of the DFO–SVRmodel. The
minimum VSI values at each operating point are used as the
output variables.

4.2 Performance Evaluation

The evaluation of DFO–SVRmodel was undertaken with the
aid of three statistical indices. These indices are the correla-
tion coefficient (R), the root mean square error (RMSE) and
the percentage RMSE (PRMSE). R and RMSE are given by
(38) and (39):

R =
∑n

i=1 (ai − a)
(
Pi − P

)
√∑n

i=1 (ai − a)2
∑n

i=1

(
Pi − P

)2 (38)

RMSE =
√√√√1

n

n∑

j=1

(ai − pi )2 (39)

where a and P represent the actual and the expected outputs,
respectively; n denotes the overall data; a and P are the
rate of the actual and the expected values, respectively. The
predictionmodel is considered as robust in its performance if
the correlation coefficient R reached 1 and the RMSE close
to 0.

The PRMSE is described as follows:

PRMSE = RMSE√
1
n

∑n
i=1 p

2
i

× 100 (40)

Different levels of PRMSE can be defined to determine the
model accuracy:

• Excellent for PRMSE < 10%;
• Good for 10% < PRMSE < 20%,
• Reasonable for 20% < PRMSE < 30%;
• Low for PRMSE > 30%.

5 Simulation and Results

This section presents the details of the simulation study car-
ried out on IEEE 30-bus and Algerian 59-bus test systems
shown in Figs. 9 and 10, respectively. The IEEE 30-bus
power system contains 30 buses, 6 generators, 24 loads and
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Fig. 9 Single line diagram of the IEEE 30-bus test system

Fig. 10 Topology of the Algerian 59-bus power system [42]
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Table 1 Number and locations of the required PMUs

System Number of
required PMUs

Locations
of PMUs

IEEE
30-bus

7 3, 5, 10, 12, 19, 23, 27

Algerian
59-bus

12 5, 12, 20, 27, 29, 33,
34, 40, 43, 44, 56, 58

Fig. 11 Convergence curve of the DFO algorithm in the case of IEEE
30-bus system

41 branches [41]. The Algerian 59-bus system comprises
59 buses, 10 generators, 36 loads and 83 lines [42]. In the
online assessment of voltage stability based phasor measure-
ment technology, the optimal number and location of PMUs
should be determined beforehand. In the present paper, the
optimal number and locations of PMUs for both systems are
obtained using PSAT software [43]. The attained results are
illustrated in Table 1.

As mentioned above, the gathered voltage magnitudes
by the distributed PMUs will be used in an online man-
ner as the input information for the DFO–SVR model to
estimate the VSI. To train the model, the dataset is gener-
ated using the conventional power flow by varying the load
at each load bus from the base case to the collapse point.
As much as 80% of the generated data is used as training
samples, while the rest is used to test the proposed model.
To implement the hybrid DFO–SVR model for predicting
the VSI, the MATLAB software was used. The Dragon-
fly optimization algorithm searches for the optimal values
of the C , γ and ε parameters. The number of dragonflies
(candidate solutions) and the maximum number of itera-
tions were taken as 30 and 50, respectively. The RMSE
was considered as a fitness function in the optimization pro-
cess. Moreover, the stop criterion in this study is the set
number of maximum iterations. The ranges of the C , γ

and ε parameters are [1 1000], [0.0001 0.1] and [0.1 1],
respectively. The iterative RMSE trend of the DFO search
of the SVR optimal parameters in the training stage is dis-
played in Figs. 11 and 12. The optimal values of the C ,

Fig. 12 Convergence curve of the DFO algorithm in the case of Alge-
rian 59-bus system

Table 2 Optimal parameters of the SVRmodel found using DFO algo-
rithm

SVR parameters Optimal values of SVR parameters

IEEE 30-bus Algerian 59-bus

C 971.9378 985.561

γ 0.1 0.1

ε 0.0001 0.0001

γ and ε parameters found for both systems are shown in
Table 2.

Once the optimal parameters of the SVR model are
obtained, its ability to predict the VSI was evaluated. The
actual values ofVSI, calculated using conventional load flow,
and the predicted values by DFO–SVR model in training
and testing phases are plotted in Figs. 13 and 14. Fig-
ure 13a, b shows that the DFO–SVR model provides the
results that are in agreement with the actual values. This is
referring to the case study of the IEEE 30-bus system. The
above-mentioned discussion is similar to the compendium
representing the outcome of the DFO–SVR model for the
case study of the Algerian 59-bus system, as shown in
Fig. 14a, b.

Figures 15 and 16 show the correlation plots of predicted
values versus actual values of VSI for both systems in the
training and testing processes. For the IEEE 30-bus system
(Fig. 15a, b), the statistical characteristics of R = 0.99641
and RMSE=0.0166 were obtained in the training phase and
R = 0.98776 and RMSE=0.0273 in the testing phase. For
the Algerian 59-bus system (Fig. 16a, b), the proposed tech-
nique managed to yield R = 0.98968 and RMSE=0.0198
in the training phase and R = 0.91369 and RMSE=0.0565
in the testing phase. According to the obtained results, it can
be noted that the proposed DFO–SVRmodel has a good pre-
dicting performance.

In order to further evaluate the superiority of the DFO–
SVR technique and extract a more crucial conclusion, their
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Fig. 13 Comparison between predicted and actual values of VSI in the case of IEEE 30-bus system: a training phase and b testing phase

Fig. 14 Comparison between predicted and actual values of VSI in the case of Algerian 59-bus system: a training phase and b testing phase

Fig. 15 Correlation plots of actual versus values predicted of VSI in the case of IEEE 30-bus system in a training phase and b testing phase

Fig. 16 Correlation plots of actual versus predicted values of VSI in the case of Algerian 59-bus system in a training phase and b testing phase
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Table 3 Optimal values of
ANFIS cluster radius

Test system Performance indices Value of cluster radius

0.2 0.3 0.4 0.5

IEEE 30-bus RMSE 0.0464 0.0435 0.0381 0.0433

Algerian 59-bus RMSE 0.1008 0.1063 0.0909 0.1049

Fig. 17 Correlation plots of actual versus predicted values of VSI via DFO–SVR and ANFIS in the case of IEEE 30-bus system in a training phase
and b testing phase

Fig. 18 Correlation plots of actual versus predicted values of VSI via DFO–SVR and ANFIS in the case of Algerian 59-bus system in a training
phase and b testing phase

performance is compared to the ANFIS model. For the
ANFIS model development, a subtractive clustering (SC)
technique [44] has been used to generate the fuzzy rules.
In order to generate fuzzy rules using SC technique, it is
required to determine the adequate value of the cluster radius
[45]. According to [45], the opportune values for the clus-
ter radius are customarily between 0.2 and 0.5. To compare
the predicting results of different cluster radius and to set
the adequate value for each training data set, the RMSE
indicator was used. Table 3 shows the values of RMSE
obtained, for both test systems, by varying cluster radius
in the previous range with 0.1 increment value. Accord-
ing to the obtained results, the minimum values of RMSE
for both test systems were found with a cluster radius of
0.4.

Figure 17a, b, in the form of scatter plot, represents
the predicted outputs via DFO–SVR and ANFIS models
against the actual ones in the case of the IEEE 30-bus sys-
tem. From this figure, it can be noted that the proposed
DFO–SVR model has a better prediction performance in
both training and testing phases compared to the ANFIS
model. In the training phase, these predictions result in a
correlation coefficient R = 0.99641 obtained by the DFO–
SVR model and R = 0.99325 obtained by the ANFIS
model. In the testing phase, the R obtained by DFO–SVR
model was found to be 0.98968, while that obtained by
the ANFIS model was 0.97492. Similarly, the DFO–SVR
predictions in the case of the Algerian 59-bus system plot-
ted in Fig. 18a, b are better than the ANFIS ones. Table 4
shows a comparison between the obtained R, RMSE and
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Table 4 Performance of the
DFO–SVR model compared to
ANFIS model

Model IEEE 30-bus system Algerian 59-bus system

R RMSE PRMSE R RMSE PRMSE

DFO–SVR

Training 0.99641 0.0166 0.98968 0.0198

Testing 0.98776 0.0273 0.91369 0.0565

ANFIS

Training 0.99325 0.0228 0.89092 0.0620

Testing 0.97492 0.0385 0.76918 0.0876

PRMSE by both models in the training and testing steps.
From the obtained results, it is clear that the DFO–SVR
model acquired relatively smaller RMSE and larger R. The
proposed hybrid model also outperforms the ANFIS model
in terms of PRMSE in both test systems. In the IEEE 30-
bus system, it can be seen that the PRMSE value of the
DFO–SVR is 5.6225%, in the testing phase, which is smaller
than that of the ANFIS model which is 7.9798%. For the
Algerian power system, the PRMSE values of DFO–SVR
model are dramatically smaller than those obtained by the
ANFIS model. The deference in PRMSE is up to 16% in the
training phase and 12% in the testing phase. We can con-
clude from the results that the proposed DFO–SVR model
is more suitable for the prediction of VSI than the ANFIS
model.

6 Conclusion

In this paper, a hybrid approach is proposed for online
voltage stability assessment. The proposed approach is
based on the amalgamation of the dragonfly optimization
(DFO) algorithm with support vector regression (SVR).
The DFO is adopted as a search strategy to obtain the
optimal parameters of SVR. The developed model was
trained based on the voltage magnitudes obtained from
PMU buses, for different operating conditions, as the input
vector and the minimum values of voltage stability index
(VSI) as the output vector. The DFO–SVR model was
successfully implemented to estimate VSI, which means
that DFO is a potential optimization technique that can
be employed to determine the appropriate SVR parameters
and to ameliorate its prediction accuracy. Compared with
the well-known ANFIS model, the proposed hybrid DFO–
SVR model is confirmed to have a better performance. For
future work, the DFO algorithm can be incorporated with
other machine learning techniques to develop powerful tools
that can be exploited in a wide variety of problems. Fur-
thermore, other advanced optimization methods could be
amalgamated with the SVR model to improve its perfor-
mance.
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