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Abstract 

 Current Source Inverter (CSI) topology is gaining acceptance as a competitive 

alternative for grid interface of renewable energy systems due to its unique and advantageous 

features. Merits of CSI over the more popular voltage source inverter (VSI) topology have been 

elaborated on by a number of researchers. However, there is a lack of quality work in control 

strategies of CSI topology for both stand-alone and grid connected modes. Therefore this thesis 

contributes by proposing new voltage control techniques, and power control techniques for 

stand-alone and grid-connected modes, respectively. Existing voltage control techniques for 

stand-alone CSI are conventional, and complex. They employ usually modulators and 

regulation loops which are designed depending on the connected load, this reduces the accuracy 

and stability of the controllers. For this reason, two direct voltage control methods have been 

proposed in this work. The proposed methods overcome the aforementioned drawbacks of 

conventional methods. In the other side, PV grid connected CSI systems available in the 

literature suffer from many problems such like complexity of control strategies, poor power 

control, filter resonance, and low efficiency. Therefore, new high-performance control 

strategies are introduced to get over these problems. The proposed techniques can fulfill all the 

control objectives of the system, i.e. fast and accurate maximum power point tracking, 

decoupled control of active and reactive powers exchanged with the grid, low distorted grid 

currents, unity power factor operation or reactive power injection, depending on grid operator 

demand, and high efficiency through the use of active damping methods. Moreover, system 

cost and complexity are reduced, and better performances are reached by the use of a sliding 

mode observer (SMO) instead of hardware sensors. Simulation results using Matlab/Simulink, 

experimental results, and real-time (RT) implementation results have been carried out to assess 

the different control techniques proposed in this thesis. 
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Chapter 1   

Introduction  

 
1.1 Background and motivation  

Electric energy consumption has been growing dramatically over the past few years to 

meet the energy needs related to global population and high economic growth [1.1]-[1.3]. 

Currently fossil fuels present the majority of electricity productions, approximately 78.4% 

[1.1]. The burning of fossil fuels release carbon dioxide and other greenhouse gases (GHG), as 

well as, many other pollutants such as sulfur dioxide and nitrogen oxides. The carbon dioxide 

released when fossil fuels are burned is leading to global climate change. Global GHG 

emissions have increased with 70% between 1970 and 2016. During this same time period, 

global GHG emissions from the electric energy sector have increased with about 145% [1.4]. 

Demand for clean, economical, and renewable energy has increased consistently over 

the past few decades, especially as a consequence of the energy crisis and environmental issues 

such as global warming and pollution. There has been a significant progress in the development 

of renewable energy sources such as biomass, hydropower, solar photovoltaic energy, and wind 

energy [1.5]-[1.16]. Approximately 19.3% of global electricity production in the world is from 

renewable energy sources (RES) [1.1]. The sub-divisions of RES percentages are depicted in 

Figure1.1 

 

Figure 1.1 Estimated renewable energy share of total final energy consumption, 2016 [1.1] 
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 Among a variety of renewable energy resources available, solar energy appears to be a 

major contender due to its abundance and pollution-free conversion to electricity through 

photovoltaic (PV) process [1.5]-[1.16]. PV energy installed capacity has increased 

exponentially over the recent years, and has become a real alternative to boost renewable energy 

penetration [1.1]-[1.3], Figure 1.2 shows the worldwide cumulative PV power installed.  

 

Figure 1.2 Evolution of cumulative PV installations (GW). [1.2] 

Increasing interest in PV systems, demands growth in research and development 

activities in various aspects such as Maximum Power Point Tracking (MPPT), PV arrays, anti-

islanding protection, stability and reliability, power quality and power electronic interface 

[1.15]. With increase in penetration level of PV systems in the existing power systems, these 

issues are expected to become more critical in time since they can have noticeable impact on 

the overall system performance [1.4]-[1.10]. More efficient and cost-effective PV modules are 

being developed and manufactured, in response to the concerns raised by the PV system 

developers, utilities and customers [1.4], [1.8], [1.13]. Numerous standards have been designed 

to address power quality and grid-integration issues [1.6]. Extensive research in the field of 

MPPT has resulted in fast and optimized method to track the maximum power point [1.13], 

[1.15]. 

Regarding power electronic converters to interface PV arrays to the grid, voltage source 

inverter (VSI) is the most used topology to date [1.16]-[1.18]. However, this topology has some 

limitation when it comes to PV applications. The VSI topology has buck (step-down) 

characteristics; therefore to step-up the low voltage output from the PV array, an extra power 
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electronic converter is required, this is known as dual-stage topology [1.17], [1.18]. These 

drawbacks can be overcome by the use another type of inverters known as Current source 

inverters (CSIs). CSIs appear to be direct competitors of VSIs, especially in medium, and high 

power applications, due to the advantages listed below [1.19]-[1.23]: 

�9 CSI outputs grid and motor friendly waveforms. Its AC voltage and current 

waveforms are close to sinusoidal with low harmonics distortion. It also 

inherently avoids high dv/dt resulting from filtering effect of output capacitors. 

�9  DC-side current regulation offers an inherent current limiting, over-current, and 

short-circuit protection features during AC-side faults. 

�9 The most important feature of CSI is the boosting capability, namely it can 

operate with a low-voltage DC source. Thus, AC voltages required in certain 

applications such like uninterruptible power supply (UPS) can be obtained from 

a low battery voltage in one single power stage. On the other hand, PV sources 

can be interfaced to grid using CSI in a single-stage topology. This decreases the 

�S�R�Z�H�U�� �O�R�V�V�H�V�� �D�Q�G�� �L�Q�F�U�H�D�V�H�V�� �W�K�H�� �V�\�V�W�H�P�¶�V�� �H�I�Iiciency in comparison with dual-

stage topologies. 

De�V�S�L�W�H���&�6�,�¶�V���P�D�Q�\���I�D�Y�R�U�D�E�O�H���I�H�D�W�X�U�H�V���I�R�U���3�9���D�S�S�O�L�F�D�W�L�R�Q�� its use has been limited due 

to the following drawbacks [1.19]-[1.25]: 

o The on-state losses in the switching elements, where the semiconductor switches 

used are not capable of withstanding negative voltage, and thus have to be 

connected in series with a diode, this makes CSI losses higher than those in VSI. 

However, with new advances in the power semiconductor technologies, CSI 

switching losses have been reduced to great extent; since, insolated gate bipolar 

transistor (IGBT) in series with diodes could now be replaced by only one 

component, which is reverse-blocking IGBT (RB-IGBT). 

o The losses in the DC inductor of CSI are known to be higher than those in the 

DC capacitor of the VSI. However, with recent developments in 

Superconducting Magnetic Energy Storage (SMES) technology, there is hope 

that concerns regarding inductor can be removed in the future. 

o The AC-side filter capacitors can resonate �Z�L�W�K�� �W�K�H�� �I�L�O�W�H�U�¶�V�� �L�Q�G�X�F�W�D�Q�F�H�� �R�U��

distribution line inductance. 

o The complexity of the control techniques represents one of the major drawbacks 

of CSI. 
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Though researchers have studied CSI for different applications, there still exist many 

points that could be investigated and improved. 

Motivated by the huge demand for solar energy and immediate need for improvements 

in PV systems, the research reported in this thesis intends to add to the existing knowledge on 

PV system applications of CSI and make quality contributions to the field. 

 

1.2 Objectives  

 The main objectives of the research can be summarized as follows: 

 To achieve a complete survey on CSIs, in terms of working principle, modeling, 

design, and existing modulation and control techniques. 

 To develop new control strategies for voltage control of CSI that could be used 

when switching from grid-connected to stand-alone modes due to grid 

disconnection of local loads during islanding of DG systems. The developed 

techniques should ensure fast and accurate voltage and frequency control and 

should also pass the robustness tests. 

 To develop new control strategies for single-stage three phase PV grid connected 

CSI. The developed strategies should be capable of extracting maximum power 

from the PV arrays at all insolation levels, and injecting a clean sinusoidal 

current into the power grid in accordance with grid codes.  

 To develop a sliding mode observer (SMO) observer for AC-side that must be 

able to estimate the required variables accurately. 

 To introduce active resonance damping methods for PV grid connected CSI to 

increase the systems efficiency and enhance the power quality. 

 

1.3 Thesis outline  

 To achieve the aforementioned objectives and facilitate the presentation of results 

derived in the course of this research, the thesis is organized as follows: 

�™ Chapter 2 Provides a literature survey on distributed generation systems in the first 

part. Then, an overview of inverter topologies is presented. In the next section of the 
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chapter, the existing inverters modulation techniques and control strategies are studied 

and explained. Finally, literature reviews on stand-alone and grid connected CSI are 

performed. 

�™ Chapter 3 Presents the design and modeling of the different components of the systems 

of this research. First, the PV panel has been modeled using the equivalent single diode 

circuit. Then, the model of CSI and its possible switching states and space vectors are 

exhibited. Finally, the design and modeling of the output filter have been studied. 

�™ Chapter 4 Proposes new voltage control strategies for stand-alone CSIs. The developed 

techniques ensure a fast and accurate voltage control independently of the type of the 

load, directly, i.e. without any regulations loops, and with no modulators. Simulation 

results using Matlab/Simulink of the proposed techniques has been carried out for 

different loads and during different tests. In the last part of this chapter, experimental 

results for a low power CSI prototype controlled by a digital signal processor (DSP) are 

exposed. 

�™ Chapter 5 develops a single-stage grid connected PV system based on CSI. First, it has 

been presented the different parts of the control strategies proposed in this chapter. 

Starting by the PV MPPT, where perturb and observe (P&O) algorithm is chosen due 

to its simplicity and good performance. A SMO is proposed for the grid-side variables 

estimation in order to reduce �V�\�V�W�H�P�¶�V���F�R�V�W���D�Q�G���F�R�P�S�O�H�[�L�W�\���D�Q�G���D�Y�R�L�G���V�H�Q�V�R�U���Q�R�L�V�H. After 

that, two novel control techniques both based on model predictive control (MPC) have 

been analyzed. Besides that, an active damping method for each technique is introduced 

instead of passive damping method. Simulation results and real-time (RT) 

implementation results are presented and discussed in the last part of this chapter. 

�™ Chapter 6 presents the conclusions, the contributions of this research, and the 

recommendations for future work plans. 
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Chapter 2   

Literature survey  

 
2.1 Introduction  

The rapid depletion of fossil based energy resources such as coal, natural gas and oil, 

together with an effort to reduce CO2 emission into the atmosphere has required a demand for 

a larger share of clean energy to be produced from renewable energy sources (RES). Recently, 

there has been a great interest on distributed generation (DG) in order to replace the 

conventional electrical distribution systems and achieve better performance and management 

of energy. In this chapter; a brief review on DG trends has been presented. DG systems can be 

sourced by different renewable energy sources such as photovoltaic (PV), wind, and others. The 

focus in this chapter was on photovoltaic energy, where the electricity generation process is 

discussed and the possible grid integration configurations are presented. Generally, there exist 

two configuration single- and dual-stage. In dual-stage configuration the generator side 

converter is responsible for the extraction of the maximum power, whereas the grid-side 

converter is responsible for injecting the resulting power in a suitable form. Nevertheless, in 

single-stage configuration the inverter can fulfill both control objectives. A classification and 

description of the most common inverter topologies used to interface PV systems is done in the 

third part of this chapter. In the next section, different modulation techniques of current source 

inverter (CSI) have been exposed and analyzed. Finally literature reviews on stand-alone and 

grid-connected CSIs are completed to evaluate the state of the art of available control strategies. 

2.2 Distributed generation systems  

The existing power grids can be considered as a hierarchical systems where power plants are at 

the top of the chain and loads are at the bottom, resulting in a unidirectional electrical power 

flow managed with limited informations about the exchange between sources and terminal 

points. This situation present serious drawbacks, including the following [2.1]-[2.2]: 

o System sensitivity to voltage and frequency instabilities as well as to power security 

problems caused by load variations and dynamic network reconfigurations. 
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o Risks of failures and blackouts and decreased system efficiency. 

o Unsuitability for the integration of renewable energy. 

During the last decade, the electrical energy market has been characterized by a growing 

demand for energy and two important innovations: the quick growth and massive diffusion of 

RESs and the subsequent rapid development of DG systems and smart grids (SGs) [2.1]�±[2.5]. 

The basic gist of DG is the process of generating energy close to its point of delivery. So, rather 

than having a big power plant (coal, nuclear, hydroelectric, etc.) that generates massive amounts 

of energy, which is then transmitted over a vast and complicated network of power lines and 

transfer stations to be delivered to eventual homeowners or businesses, smaller power plants 

that generate a moderate amount of energy are located at closer proximity to the homes and 

businesses that will use it. [2.2]  

According to many analyses, future electrical systems should have the following parameters 

[2.2],[2.3]: 

�¾ High power capability: electricity is becoming the main power source of the modern 

world and hence the need for it will increase significantly during the next years, this 

�W�U�H�Q�G���L�V���H�[�S�H�F�W�H�G���W�R���U�H�P�D�L�Q���S�R�V�L�W�L�Y�H���I�R�U���P�D�Q�\���G�H�F�D�G�H�V���D�Q�G���Z�L�O�O���E�H���P�D�U�J�L�Q�D�O�O�\���L�Q�À�X�H�Q�F�H�G��

by external perturbations such as economic or political crises. 

�¾ High power quality and reliability: electricity must be available whenever it is needed 

with the lowest or no latency, stable voltage and frequency and low harmonic distortion. 

�¾ High efficiency: electricity should not be dispersed during production, transportation 

and distribution processes. The grid and the loads should be managed to achieve 

maximum system efficiency. 

�¾ �+�L�J�K�� �À�H�[�L�E�L�O�L�W�\���� �W�K�H�� �S�R�Z�H�U�� �V�\�V�W�H�P�� �V�K�R�X�O�G�� �E�H�� �K�L�J�K�O�\�� �F�R�Q�I�L�J�X�U�D�E�O�H�� �D�Q�G�� �V�K�R�X�O�G�� �D�O�O�R�Z��

smooth integration among different power sources, moreover, dynamic changes of loads 

and power sources should not �L�Q�À�X�H�Q�F�H system performance and power quality. 

�¾ Low environmental impact: renewable energy sources should progressively replace 

traditional polluting sources. 

Previous requirements cannot be satisfied by conventional power systems, therefore, during the 

next years a huge revision of the present systems is expected with the introduction of many new 

functionalities, systems, commonly referred to as DG and SG revolution. This is changing the 

way in which next generation power systems have to be designed, operated and maintained, 
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and can be achieved only by introducing new technologies, functionalities and operational 

approaches, which are as follows [2.1]�±[2.3]: 

�9 Full exploitation of all renewables. 

�9 Technological enhancements and large-scale diffusion of energy storage systems. 

�9 Massive introduction of Information and Communication Technologies (ICTs). 

�9 Implementation of high-granularity self-healing and resiliency against unwanted 

situations, such as blackouts or natural disasters. 

�9 �&�R�Q�V�X�P�H�U�V�¶���D�F�W�L�Y�H���S�D�U�W�L�F�L�S�D�W�L�R�Q���W�R���W�K�H���H�O�H�F�W�U�L�F�L�W�\���P�D�U�N�H�W. 

�9 Introduction of new products, services and markets. 

2.2.1 Distributed generators  

As it has been mentioned above, it is necessary for the engineering society to pay more interest 

on the researches of RESs. There exist many forms of renewable energy resources that are 

currently available for the integration into the power grid, the top four energy sources are wind, 

solar photovoltaic, hydroelectric, and geothermal. Only photovoltaic generator will be 

discussed in this section, since it presents the subject of this research. 

2.2.1.1 Photovoltaic generators  

PV cells are direct current (DC) generators which use semiconductor technology to transform 

the energy in sunlight into electricity. Silicon is the most widely used semiconductor material 

in PV cell, which consists of a junction consisting of n- and p-doped silicon. When light 

(photons) strikes the junction, the energy in the photons is converted to electric power. The 

voltage level of PV cells depends on the intrinsic cell characteristics, the number of cascaded 

cells and their temperature, whereas the available current depends on cell characteristics, the 

number of parallel strings (a string is a group of cascaded cells) and sunlight irradiation. With 

present technology, they are arranged in panels providing up to 220�±250 W at a voltage rating 

of 48�±60 V [2.6],[2.7]. 

In order to supply standard loads operating with alternating current (AC), panels are connected 

in series and/or in parallel, thus reaching the desired level of voltage and current, to supply an 

inverter [2.7]. PV sources can also feed the distribution grid using a suitable conversion chain. 

Generally a PV system connected to the grid can be either in single- or dual-stage 

configurations. Figure 2.1. However, single-stage configuration can fulfill all the control 

objectives with lower switching losses, and thus, providing higher efficiency. [2.2],[2.6],[2.7] 
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Figure 2.1 Schematic diagram of photovoltaic grid-connected system configurations: 

(a) Single-stage (b) Dual-stage. 

 

2.3 Inverter topologies  

The power electronic interface is an important part of DG units as it influences the overall 

system efficiency and performance [2.7]. Many converter types have been used for this purpose, 

depending on the DG source, system requirements, and control objectives. In PV applications, 

DC-DC converters and DC-AC inverters are needed to ensure MPPT and efficient power 

conversion into AC loads. However, in single-stage configuration only DC-AC inverters are 

required to interface PV sources to the distribution grid. 

Fundamentally, as shown in Figure 2.2, there are two types of inverters existed, the voltage 

source inverter (VSI) and the current source inverter (CSI). In general, an inverter that exploits 

the input voltage while producing controlled output voltage is classified as VSI whereas an 

inverter that exploits the input current while producing controlled output current is classified as 

CSI. The VSI is the more mature and proven technology where it has been successfully 

implemented in industry for decades [2.6]-[2.10]. While the 2-Level VSI has found applications 

in many conventional industrial machines, the multi-level VSIs (MVSIs) are more recent and 

established in industry due to their advantages in particular the ability to generate multilevel 

stepped-waveform with reduced harmonic distortion, and to reach higher voltage operation, and 

higher modularity [2.6]. On the other hand, the auto-sequentially commutated inverter (ASCI) 

and the load-commutated inverters (LCI) and are among the earliest inverters used for variable 

speed drives before slowly being replaced by the pulse-width modulation (PWM) CSI mostly 
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in induction motor drives. Quite recently, similar to the VSIs, multi-level CSIs (MCSIs) are 

gaining attention in new research activities [2.8],[2.10]. While both types of inverters have 

substantial differences topologically, they do share the same working principles. Thus, in 

general, common control methods and common power semiconductor switches used for VSI 

can also be applied to CSI with some modifications. 

 

Figure 2.2 Inverters classification 

Today the majority of the worldwide installed power inverters are VSIs followed by CSIs. CSIs 

are available in industrial drives, and have also been connected to wind power and solar power 

generators and fuel cell systems. Comparison between VSIs and CSIs have been reported many 

times [2.11] concluding that the decision lies with the performance of the application. Both 

inverters, however, face the same challenges. Generally they have to be small, light and cost-

effective and technically they have to operate at high efficiencies, produce low harmonics, and 

be simple to control and reliable. For high voltage and high current application this has led to 

the introduction of multi-level topologies, first for VSIs like the diode-clamped, flying capacitor 

and cascaded topologies and later to CSIs [2.6]-[2.10]. With the dominating VSI market 

research into MCSI has been limited. The reason for the lag of interest is, beside the dominance 

of the VSI in the market, the large component count that is required to build MCSI in particular 

for a level higher than five i.e. an existing nine-level CSI requires three inductors and twelve 

power switches. This number goes up rapidly when upgrading the inverter to even higher level 

of currents. For example a seventeen-level CSI can have seven inductors and twenty power 

switches. 
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2.3.1 Voltage source inverters  

The primary function of a VSI is to convert a fixed DC voltage to a three-phase AC voltage 

with variable magnitude and frequency. This section discusses the different VSI topologies used 

commonly in DG systems, and highlights description and features of each one. The topologies 

discussed are two-level and multi-level VSI. MVSI can be subdivided into three main 

topologies: cascaded H-bridge (CHB), diode-clamped, flying capacitor. 

2.3.1.1 Two-level VSI 

A simplified circuit diagram for a two-level VSI for high-power medium-voltage applications 

is shown in Figure 2.3. The inverter is composed of six groups of active switches with a free-

wheeling diode in parallel with each switch. Depending on the DC operating voltage of the 

inverter, each switch group consists of two or more IGBT or gate commutated thyristor (GCT) 

switching devices connected in series [2.6]-[2.10]. 

 

 

Figure 2.3 Three phase VSI 

2.3.1.2 Multi -level VSIs 

A. Cascaded H-bridge  

CHB multilevel inverter is one of the popular converter topologies used in high-power medium-

voltage (MV) drives. It is composed of a multiple units of single-phase H-bridge power cells. 

The H-bridge cells are normally connected in cascade on their AC side to achieve medium-

voltage operation and low harmonic distortion [2.7]. 
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B. Neutral point clamped inverters   

The diode-clamped multilevel inverter employs clamping diodes and cascaded DC capacitors 

to produce AC voltage waveforms with multiple levels. The inverter can be generally 

configured as a three or more levels topology, but only the three-level inverter, often known as 

neutral-point clamped (NPC) inverter, has found wide application in high-power medium-

voltage drives. The main features of the NPC inverter include reduced dv/dt and THD in its AC 

output voltages in comparison with the two-level inverter discussed earlier. More importantly, 

the inverter can be used in the medium voltage drive to reach a certain voltage level without 

switching devices in series. [2.7]-[2.10] 

C. Multi -level flying capacitor   

It is evolved from the two-level inverter by adding DC capacitors to the cascaded switches. 

There are four complementary switch pairs in each of the inverter legs. Therefore, only four 

independent gate signals are required for each inverter phase. The flying-capacitor inverter can 

produce an inverter phase voltage with five voltage levels. [2.7] 

2.3.2 Current source invert ers 

The CSI (also called current fed inverter) converts the input DC current into three phase AC 

currents. In CSI, the input current remains constant but could be adjustable. The output currents 

of a CSI are independent of the load. Nevertheless, the load voltage are dependent of load. This 

section discusses the different three phase CSI topologies which are subdivided according to 

their type of commutation into forced-commutated, and natural commutated CSIs (PWM CSIs). 

The forced-commutated CSIs which are ASCI and LCI represent the earliest types of CSIs. 

However, the development of power electronics and fast switching devices have permitted 

lately the appearance of two-level and multi-level (parallel) PWM CSIs. 

2.3.2.1 Auto-sequentially  commutated  inverter  

The conventional auto-sequentially commutated inverter (ASCI) shown in Figure 2.5 has six 

thyristors connected in series with a diode for each. A respective commutating capacitor is 

interconnected between the junctures of the thyristor and diode of each respective branch sub-

circuit and the thyristor and diode of the next adjacent branch sub-circuit. ASCI inverters were 

developed especially for high power variable-speed drives. The major drawbacks of this 

topology is limited control strategies applicable since a thyristor cannot be switched off. [2.10] 
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Figure 2.4 Auto-Sequentially commutated inverter 

2.3.2.2 Load commutated CSI 

The thyristor-based LCI is also one of the earliest inverters developed for variable-speed drives. 

A three-phase LCI has three parallel legs represented by two series connected thyristors per leg, 

which in total requires six thyristors. An AC capacitor filter is installed at the output of LCI in 

order to reduce harmonics content. As shown in Figure 2.6, the thyristor switches are numbered 

according to their firing sequence. The same major drawback reported for ASCIs is present for 

LCI, since a thyristor can only be switched on intentionally, Therefore, the most common 

control technique applied is the six-step switching, in which each thyristor conducts for 120° 

degrees interval. [2.10]  

 

Figure 2.5 Load commutated CSI 

2.3.2.3 Two-level CSI 

An idealized PWM CSI is shown in Figure 2.4. The inverter is composed of six unidirectional 

devices, each of which can be replaced with two or more devices in series for medium-voltage 
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operation. The switching devices used in the CSI are of symmetrical type with a reverse voltage 

blocking capability. The inverter produces a defined PWM output current. The DC side of the 

inverter is an ideal DC current source Idc. In practice, Idc can be obtained by a current source 

rectifier (CSR) or a current controlled buck converter [2.8]-[2.10]. 

 

Figure 2.6 Ideal three phase CSI 

2.3.2.4 Multi -level CSIs 

To increase the power of a CSI, two or more CSIs can be connected in parallel to form a MCSI. 

Figure 2.7 shows such a configuration where two inverters are connected in parallel. Each 

inverter has its own DC current source, while they share the same capacitor filter at their 

outputs. The main issue of this topology is the number of inductors and the unbalance of DC 

currents. [2.8] 

 

 

Figure 2.7 Parallel MCSI 
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2.4 Inverters control  

The purpose of the inverter in a DG system is to convert the raw power generated into a form 

compatible with the local distribution grid, in order to allow the power to be used by standard 

appliances or to be fed back into the utility grid. Therefore, suitable inverter modulation 

techniques and control strategies are of high importance to satisfy all the control objectives of 

the DG system [2.6]. 

As reported previously, VSI represents the most widely used topology in industrial applications. 

Consequently, its modulation techniques are well-known, and have been reported widely in the 

literature. VSI modulation techniques include sinusoidal pulse width modulation (SPWM), 

third harmonic injected PWM (THIPWM), space vector modulation (SVM) and Selective 

harmonic elimination (SHE). In the other hand, several control strategies and methods have 

been investigated and developed by researchers for VSI, Figure 2.8 show the most common 

VSI control strategies. [2.6]-[2.10] 

 

 

Figure 2.8 Most common VSI control strategies 



CHAPTER2                                                                                                                                                                    LITERATURE SURVEY 

 

18 
 

In contrast, CSI modulation techniques are less-known compared to those of VSI. Moreover 

CSI control strategies are less developed and less investigated in the literature. Therefore, the 

following sections focus only on giving a detailed analysis of CSI modulation techniques and 

providing literature reviews of CSI control strategies for both stand-alone and grid-connected 

modes. 

2.4.1 CSI modulation techniques  

Various modulation techniques have been developed for the PWM CSI, including carrier-based 

sinusoidal PWM (CSPWM), Trapezoidal PWM space vector modulation (SVM), and selective 

harmonic elimination (SHE). Generally the switching pattern design for the CSI should 

generally satisfy two constraints: (1) The DC current should have a path at any time, (2) The 

output current of CSI should be defined. Thus, at any instant one and only one upper switch, 

and one and only one lower switch should be conducting. [2.8]-[2.10] 

2.4.1.1 Carrier-based SPWM 

A. SPWM VSI to CSI state map [2.12] 

Carrier-based SPWM is simple to implement in a VSI and can be realized with a 

relatively low switching frequency. However, implementation of CSI carrier-based 

SPWM is not as straightforward as for the VSI case. The common approach used for the 

implementation of CSI carrier-based SPWM is to modify the gating signals of the VSI 

PWM using logic mapping circuitry. 

Figure 2.9 depicts the principle of CSI switching signals generation using SPWM VSI to CSI 

state map modulation technique. 

 

Figure 2.9 Diagram of SPWM VSI to CSI state map  
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B. Bi-logic/t ri -logic PWM [2.13] 

Bi-logic/tri-logic PWM is carried out using simple SPWM that generates Xa, Xb, Xc two-level 

signals (+1,-1) which are then transformed to tri-logic (-1,0,+1) PWM variables Ya, Yb, Yc via a 

transformation matrix as follows  

                                                                                                              (1) 

The resulting tri-logic PWM variables satisfy always the following equation 

                                                                                                                                    (2) 

Finally, the tri-logic signals are used by gating logic block to trigger the power switches of CSI, 

in such a way that the pth CSI output current Iop is given in terms of Yp  and DC current Idc as 

                                                                                                                                            (3) 

However, it has to be pointed out that the tri-logic state (Ya=Yb=Yc=0) can be realized by short-

circuiting one of the CSI legs (freewheeling state)  

According to the above analysis, it can noted that this modulation technique fulfills always the 

CSI switching constraints. 

Table2.1 lists all possible bi-logic and tri-logic states with their corresponding switching signals 

Table 2.1 CSI bi-logic/tri-logic states with corresponding switches triggering signals 

Bi-logic signals Tri -logic signals Upper switches Lower switches 

Xa Xb Xc Ya Yb Yc S1 S3 S5 S2 S4 S6 

+1 +1 +1 0 0 0 Freewheeling through one of CSI legs  

+1 +1 -1 0 +1 -1 0 1 0 1 0 0 

+1 -1 +1 +1 -1 0 1 0 0 0 0 1 

+1 -1 -1 +1 0 -1 1 0 0 1 0 0 

-1 +1 +1 -1 0 +1 0 0 1 0 1 0 

-1 +1 -1 -1 +1 0 0 1 0 0 1 0 

-1 -1 +1 0 -1 +1 0 0 1 0 0 1 

-1 -1 -1 0 0 0 Freewheeling through one of CSI legs 

 



CHAPTER2                                                                                                                                                                    LITERATURE SURVEY 

 

20 
 

Figure 2.10 shows the block diagram of bi-logic/tri-logic modulation technique. 

 

Figure 2.10 Diagram of bi-logic/tri-logic modulation technique 

2.4.1.2 Trapezoidal PWM 

The principle of TPWM is similar to PWM applied in VSIs, where the gate signals for one 

switch are generated by comparing the trapezoidal modulator with a defined triangular carrier. 

[2.8]. The gate signals of the rest of switches are derived by phase shifting by �S������the gate 

signals of the previous switch as shown in Figure 2.8. 

 

Figure 2.11 Trapezoidal PWM pattern 

 


