
Contents

1 Introduction 4

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Brief Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Halo Nuclei 11

2.1 Historical Development of the Field . . . . . . . . . . . . . . . 11

2.2 Definition and Experimental Evidences of Halos . . . . . . . . 15

2.3 Astrophysical Interest of Halo Nuclei Reactions . . . . . . . . 19

3 The Theoretical Framework: Two Body and Three Body

Models 24

3.1 Two Body Problem . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Three Body Problem . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.1 The Hyperspherical Coordinates . . . . . . . . . . . . . 30

3.2.2 The Schrodinger Equation in the Hyperspherical Co-

ordinates: General Treatment . . . . . . . . . . . . . . 32

3.2.3 The Hyperspherical Expansion of the Three Body Wave-

function . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Hyperspherical Sturmians . . . . . . . . . . . . . . . . . . . . 36

3.3.1 The Sturmians . . . . . . . . . . . . . . . . . . . . . . 36

3.3.2 The Sturmian Coupled Channels Equations for Two

Body Problem . . . . . . . . . . . . . . . . . . . . . . . 38

1



CONTENTS 2

3.3.3 The Sturmian Coupled Channels Equation for Three

Body Problem . . . . . . . . . . . . . . . . . . . . . . . 39

3.4 Treatment of the Pauli Principle . . . . . . . . . . . . . . . . . 42

4 Application of the Two Body Model to 17C 46

4.1 Overview of the Studies on Neutron Rich Carbon Isotopes . . 46

4.2 Understanding the 17C Spectrum on the Basis of Nilsson Model 48

4.3 Determination of the n-16C Interaction . . . . . . . . . . . . . 52

5 Study of 18C in Three Body System 56

5.1 18C Bound States . . . . . . . . . . . . . . . . . . . . . . . . 56

5.2 ]Unbound States Above the 17C+n Threshold and their Con-

tribution to the 17C(n, γ)18C Reaction Rate . . . . . . . . . . 62

5.3 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . 68

6 Study of Nuclei in the Vicinity of 100Sn:Theoretical Frame-

work 74

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.2 Nuclear Shell Model . . . . . . . . . . . . . . . . . . . . . . . 76

6.2.1 Prologue:The Nuclear Magic Numbers . . . . . . . . . 76

6.2.2 Basic Nuclear Nhell Model: The Mean Field . . . . . . 77

6.2.3 Phenomenological Potentials . . . . . . . . . . . . . . . 80

6.2.4 The Ingredients of Shell Model Calculation . . . . . . 84

6.3 The interacting Boson Model (IBM) . . . . . . . . . . . . . . . 88

6.4 The Consistent Q Formalism . . . . . . . . . . . . . . . . . . . 89

7 SM and IBM calculation Results 93

7.1 Shell model study of 100Sn mass region nuclei . . . . . . . . . 93

7.1.1 Cd isotopes chain . . . . . . . . . . . . . . . . . . . . . 94

7.1.2 Sn isotopes chain . . . . . . . . . . . . . . . . . . . . . 96

7.1.3 Te isotopes chain . . . . . . . . . . . . . . . . . . . . . 98

7.2 Algebraic study of 102−108Mo . . . . . . . . . . . . . . . . . . . 99



CONTENTS 3

8 Overview and Outlook 103

A Pauli principle treatment 106

A.1 constructing the three body forbidden states . . . . . . . . . . 106

A.2 Projection into the allowed space . . . . . . . . . . . . . . . . 109

B The Lanczos Diagonalization Method of the Hamiltonian

Matrix 113



Chapter 1

Introduction

1.1 Motivation

By the improvement of radioactive nuclear beams facilities, a large door

in investigating the nuclear reaction and structure of nuclei far from the

stability path is opened, and thus new phenomena arise on. As we go far

away toward the drip-line of nuclear existence in the two sides, proton-rich

nuclei and neutron rich nuclei, experimental data came with a surprising

results, and thus put on a great challengers of the existing models. The main

new phenomena appearing far away of stability are the halo structure for

light drip lines nuclei and the appearance of new magic numbers for medium

and heavy nuclei. In this work we targeted two regions: neutron-rich light

nuclei and proton rich nuclei in the vicinity of 100Sn.

Many of light neutron rich nuclei near the drip line have either nucleon or

two-nucleon separation energy less than 1MeV. This value is extremely small

compared with the common value of 6-8 MeV in stable nuclei. The neutron

density distribution in such loosely bound nuclei shows an extremely long

tail, called the neutron halo.

The discovery of halo nuclei have opened studies of the weakly bound

of nuclear system. Among the current themes of interest related to these

nuclei [3] are nuclear interactions in low density, asymmetric nucleus, shells
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1.2 Brief Review 5

for high-isospin nuclei, the collective motions of low density nuclear matter

and loosely bound three body interactions.

The study of this region of neutron rich nuclei is, also, of great importance

in astrophysics. The (r)apid neutron capture process (r-process) which is

responsible of the formation of a half of nuclei heavier than iron depends on

the light neutron-rich elements reaction rates.

The second targeted region is that of medium masses of proton rich nuclei

in the vicinity of 100Sn. It is of great interest in nuclear structure physics

and astrophysics because of several reasons. The 100Sn is the heaviest doubly

magic Z=N nucleus can be synthesized up to now. It is located at the very

limits of nuclear existence giving more possibility to understand the evolution

of nuclear shell structure away of stability line.

More study of nuclei in this region can enhance our understanding of

other important questions still need more interpretations like as nature of

the pairing interaction between proton and neutron, symmetries and charge

invariance of the nucleon-nucleon interaction, and collective phenomena.

In addition, the structure of the region has astrophysical consequences

since it is predicted that the region ’southwest’ of 100Sn lies on the rapid

proton capture (rp-process) path, which ends shortly beyond the N=Z=50

shell closure due to fast alpha decays.

1.2 Brief Review

The first landmark in the field of halo nuclei was in 1985 by Tanihata et al

[1, 2] with a series of experiments at Lawrence Berkely laboratory’s Bevalac,

in which they found much larger measured rms matter radii of 6He and 11Li

than they would be expected. Since than many hundreds of papers in both

experimental and theoretical perspectives have been published.
6He and 11Li are the most studied experimentally and theoretically in

Borromean three body model. Along with these two nuclei several others are

confirmed to have the same feature: in 2001 by Labiche et al [7] for 14Be, in
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2002 by Suzuki et al[7] for 17B, and recently, in 2010,by Tanaka et al [12] for
22C.

The other kind of halo structure is the one neutron halo. Beside the

many theoretical studies in two body model, this structure is confirmed ex-

perimentally for : 11Be by Kelley et al in 1995 [5], 19C by Bazin et al[8] and

Nakamura et al [6] in 1995 and 1999 respectively, and for 15C to have a mod-

erate halo structure, are confirmed to have one neutron halo structure and

they are studied in two body model in several reviews. More details about

the reviews on the field can be found in the next chapter.

In the other hand, the second region has attracted a growing interest

and it has been studied extensively in the two perspectives: experimentally

and theoretically. In this introduction we limit ourselves to mention some

examples of those works focusing on 100Sn and its nearest neighbours because

of their significant role in structure models and they have a relationship of

our work.

Experimentally, studies of nuclei in the vicinity of 100Sn are hampered by

low cross sections and they require very sensitive and selective experimental

apparatus. Despite this, β-decay half life of 101Sn was reported [10] and the

first data on its relative single particle states have been measured, recently,

by Seweryniak et al [1]. The production cross section for 103Sn is much

larger than for 101Sn, so its β-decay properties have been measured with

considerable precision [11]. The excited states in this nucleus have been

observed using in-beam spectroscopic methods [13]. The 0+
gs → 2+ transition

strengths have been measured in 106,108Sn isotopes by Ekström et al [4].

Theoretically, Coraggio et al [3] have performed shell model calculations

for odd-odd nuclei with neutron particles and proton holes around 100Sn us-

ing realistic effective interaction derived from the CD-Bonn nucleon-nucleon

potential. The even-even Te isotopes with 116 < A < 130 have been studied

in shell model framework to explain shell structure and collectivity in this

isotopic chain [5].
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1.3 Outline

The work here presented is divided into two parts:

Part A: Halo structure of light neutron-rich nuclei: Study of 17C and 18C

in two and three body models. This part is divided into four chapters.

In chapter 2, a brief historical development of the field of halo nuclei is

presented, definition and experimental evidences of this new phenomena of

light exotic nuclei and their astrophysical interests are expanded.

Chapter 3 is devoted to explain the theoretical framework. The two- and

three-body models usually used to study one neutron halo and two neutron

halo nuclei are specified. Mainly, the hyperspherical harmonics technique

and the anti-symmetrization procedure is discussed.

In chapter 4 definition of the n-16C interaction is made by studying the
17C as two body system. The cost we have pay for this purpose is discussed.

In chapter 5, we studied 18C in three body model using the interaction de-

termined in chapter 3 and GPT potential to describe the interaction between

the two neutrons. Bound states are compared to the available experimen-

tal data, and the astrophysical interests of resonance states predicted are

discussed.

Part B: Structural study of nuclei in the vicinity of 100Sn: 96−104Cd,
104−108Sn, 106,108Te and 102−108Mo nuclei. This part consists to study even

even nuclei in the vicinity of the doubly magic nucleus 100Sn and is divided

into two chapters:

Chapter 6 is devoted to the description of the theoretical framework

needed in the study of the selected isotopic chains. The many body shell

model (SM) and the algebraic interacting boson model (IBM) are described.

In chapter 7, we present the results obtained for spectra of even-even
96−104Cd, 104−108Sn and 106,108Te isotopes studied within the shell model, and

of 102−108Mo isotopes studied within the IBM model. The obtained results

are discussed upon the available experimental data.

Finally, an overall evaluation of this work, conclusions and future per-

spectives are given in an outlook chapter.
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Part A

Halo Structure of Neutron Rich Nuclei:

Study of 17C and 18C in two- and Three-body

models



Chapter 2

Halo Nuclei

2.1 Historical Development of the Field

The field of halo nuclei represents a paradigm shift in the study of nuclear

physics, and it is still regarded as a ’hot’ topic even after more than two

decades of its first discovery. The consensus view is that this field was ac-

tually begin in 1985 with a series of experiments by Tanihata and his group

at Lawrence Berkely laboratory’s Bevalac in which they measured the in-

teraction cross sections of He [1] and Li [2] isotopes and found much larger

values for the rms matter radii than would be predicted by the normal A1/3

dependence. The next remarkable landmark in this journey would be the

two years later pioneering paper, 1987, by Hensen and Jonson [3] in which

the term “halo” was first applied to these nuclei, and they proposed that the

large size of these nuclei is due to the halo effect. They explained the large

matter radius of 11Li by treating it as a binary system of 9Li core plus a

dineutron and showed how the weak binding between the pair could form an

extended halo density.

Over since then, an important number of review articles, from both exper-

imental and theoretical perspectives, have been written. A number of nuclei

have been confirmed to have a halo structure. Some of other halo candidates

are still waiting for experimental confirmation and more theoretical studies.

11
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.

Figure 2.1: A light nuclei part of the Segre chart showing the halo nuclei

Carbon isotopes The isotopic chain of carbon nuclei interestingly shows

an abrupt increase in interaction cross-section for two isotopes, namely, 15C

and 19C [8]. This feature, together with the relatively narrow momentum

distribution [9] for one neutron removal suggested this nucleus(19C) to have

a one neuron halo structure. The large Coulomb dissociation cross-section

also support the halo nature in this nucleus.

In 1995, and ten years after the first paper published in the field, Bazin et

al [8] in simultaneous measurement of the longitudinal moment distribution

experiment of 18C, 17C and 16C following the breakup of 19C, 18C and 17C,

respectively. In the 19C data, both the observation of a large value for the

one neutron removal cross-section and a narrow momentum peak of the 18C

fragments compared to those for the lighter carbon isotopes, indicate the

presence of one-neutron halo. This result is confirmed in a supplementary
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experiment by observing the coulomb breakup of 19C on a Ta target [9]. The

observed width is very similar in both breakup processes.

The 15C nucleus is known to have a structure dominated by the s-wave

valence neutron coupled to 14C(0+) with Sn = 1.218 MeV. In this sense, 15C

may be called a “moderate” halo nucleus [11]

The latest up to date nucleus confirmed to have this particular feature is
22C. The obtained results about it have been published just the early of 2010.

Tanaka et al [12] report in their paper the first measurement of reaction cross

sections for 19,20,22C + p reactions. The observed reaction cross section for
22C is significantly larger than those for 19,20C. Using a finite-range Glauber

calculation under an optical-limit approximation, the rms matter radius of
22C was deduced to be 5.4±0.9fm. It does not follow the systematic behavior

of radii in carbon isotopes with N ≤ 14, suggestive of a two neutron halo

nucleus.

Boron isotopes In 2002, Suzuki et al report in their letter [7] the first

measurements of the 15B longitudinal momentum distribution and the two

neutron removal cross section for 17B. A Glauber-type analysis of the data

obtained of the two neutron cross section and the width of the 17B→15B

moment distribution provides clear evidence of a two-neutron halo structure

in 17B. This conclusion was the same deduced by ZhengGuo et al [10] where

they report, using a Gauss + Harmonic Oscillator tail, a rms radii of the core

and halo are extracted to be 2.25 and 5.85 fm, respectively.

Proton halo nuclei Nuclei exhibiting proton halos are not so common

due to the confining effects of the Coulomb barrier. Nevertheless, there are

a number of candidates along the proton drip-line, such as 8B, 13N, 17Ne and

the first excited state of 17F.

The common feature of all nuclei with prominent interaction cross section

is that they lie close to the neutron drip-line. We can distinguish two types of

these nuclei. Some of theme have a small binding energy of the last nucleon

and the nucleus manifests as a two body system. In the others, constituting
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Figure 2.2: A plot of the matter radii of isotopes of light nuclei as predicted

by reaction cross section measurements and deduced from Glauber-model

analysis. The rms radii belonging to the same isotope chain are connected

by line. A summary of rms matter radii is given in [6]

the most part of the halo nuclei[8], the last two nucleons are weakly bound

to the core, and the nucleus is well looked to a three body system. The same

phenomena is observed for the later halo nuclei, when one of their neutron is

removed, they become unstable and eject one more neutron. In other words,

any binary subsystem of the three body system is unstable. They are called

Borromean nuclei.

The binding of the last one or two neutrons in these nuclei is very weak,

typically around 1MeV or even less. This should be compared with the

average single-nucleon separation energy which is about 8MeV.

The small binding of the last one or two neutrons, and the large nuclear

radii Fig.2.2, lead to the idea of halo structure: one or two neutrons orbit, in
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extremely extensive orbits, around a compact core of the remaining nucleons

of the nucleus, and tied to the core very weakly.

2.2 Definition and Experimental Evidences of

Halos

Definition and Necessary Conditions: The halo is a threshold effect

arising from the very weak binding of the last one or two nucleons (usually

neutrons) to, and hence decoupling from, a well-defined inert “core” con-

taining all the other nucleons. Textbook quantum mechanics states that the

combination of weak binding and short range nuclear force (since the core is

relatively compact) means that the nucleon(s) can tunnel out into a volume

well beyond the nuclear core and into the classically -forbidden region. Due

to the small separation energy, the exponential wave-function tail extends

far into the classically forbidden region, which enhances the nuclear radius

with respect to the A1/3 systematic. Quantum mechanically, this means that

there is a significant probability of finding the particle outside of the well.

To more emphasize the threshold nature of the halo in nucleus, let us

consider this example given in [8]. We consider a single neutron bound in an

s-orbit in a spherically symmetric potential well as a simple model for the halo

structure. Closest to this model is the nucleus 11Be, whose g.s. is supposed to

have a predominantly s-wave one-neutron halo. In the Fig.(2.3) the 1s- and

0p-wave single-neutron radial wave functions are shown in a Woods-Saxon

potential, which is also plotted. The shape of the potential is tailored for
11Be, and its depth is adjusted to reproduce the neutron separation energy

of the g.s., 0.503 MeV, and then, separately, of the first excited state, 0.187

MeV.

The figure shows that it has a large probability that the neutron stays out-

side the region that is prohibited in classical mechanics. A one-particle halo is

nothing but an orbit with a classically forbidden long tail. The neutron wave

function in the classically forbidden region is proportional to 1
r
e−κrwhere κ
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Figure 2.3: Radial wave functions of weakly bound single-particle (s.p.) s-

wave (solid curve) and p-wave (dashed curve) orbits in a Woods-Saxon po-

tential, imitating the g.s. and first excited state of 11Be in a 10Be+n model,

with energies -0.503 MeV and -0.187 MeV, respectively. The potential shape

is also shown in a separate panel. The classical turning points are around 6

fm for both partial waves..[8]

is related to the neutron separation energy |ε| by |ε| = h2κ2

2µ
, with , being

the reduced mass of the neutron and the core. Taking |ε| = 0.503 MeV, we

obtain κ−1 ≃ 7fm , which is much larger than the radius of light nuclei,

which accounts for the long tail. Since all nuclei with large interaction cross

sections are characterized by small neutron separation energies, it is natural

to attribute the large interaction cross section to the large spatial extension

of their halo.

Therefore, the accepted definition of a halo nucleus is [9, 13] that the

halo nucleon(s) is required to have more than 50% of its probability density

outside the range of the core potential and thus in the classically forbidden

region.
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Figure 2.4: The size and granularity for the most studied halo nucleus 11Li.

The matter distribution extends far out from the nucleus such that the rms

matter radius of 11Li is as large as 48Ca, and the radius of the halo neutrons

as large as for the outermost neutrons in 208Pb.[13]

The necessary conditions for the formation of a halo are now known that,

besides the condition of a small binding energy for the valence particle(s),

only states with small relative angular momentum may form halo states.

Two-body halos can thus only occur for nucleons in s- or p-states, while

three-body halos are restricted to states with lx + ly ≤ 1 (see more for the

hypermoment quantum number k in the next chapter)

Narrow Longitudinal Momentum Distribution Additional clear ev-

idence for the halo structure has been observed, late 1980s just three years

after the first discovery of the halo phenomena in nuclei at the drip line of

neutron existence. Kobayachi el al [14] have observed that the longitudi-

nal momentum distributions of 9Li from the fragmentation of 11Li show two

Gaussian components with different widths. The width of the wide compo-
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Figure 2.5: Transverse momentum distribution of the 9Li fragment removed

from 11Li in a collision with 12C at E=800 A MeV. The measured momen-

tum distribution can be fitted by a superposition of two Gaussians. The

narrower one has a width of 213 MeV/c, which should be compared with the

momentum width of normal nuclei, 50-200 MeV/c. Taken from Ref.[8].

nent is consistent with the values observed in the fragmentation of stable

nuclei, whereas the other component shows an extremely narrow width re-

flecting the week binding of the two outer neutrons in 11Li nucleus.

It is well-known that the momentum of a fragment obtained by removing

a nucleon from the projectile in a high-energy collision reflects their relative

momentum in the g.s. of the projectile. In systematic measurements of the

fragment momenta of unstable nuclei it was found that, for projectiles that

are known to have halo structure, the core momentum distribution shows a

very narrow peak [14]

The narrow momentum distribution may be intuitively understood by

considering the uncertainty principle between the position and momentum

[8]. A large spatial spread implies large uncertainty in the position, as we see
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Figure 2.6: longitudinal momentum distribution

in Fig. 2.3, which, in turn, corresponds to a narrow momentum distribution.

Large Reaction Cross Section Another observation characteristic of

halo nuclei has been found in their reactions with heavy target nuclei. The

interaction cross section has been found to be much larger than originally ex-

pected based on the nuclear reaction mechanism. This is due to the increase

of the neutron-removal cross section and the breakaway of the halo [8]

2.3 Astrophysical Interest of Halo Nuclei Re-

actions

Almost all the hydrogen and the helium in the cosmos, along with some of the

lithium, was created in the first three minutes after the Big Bang. Two more

light nuclei, beryllium and boron are synthesized in the interstellar space

by collisions between cosmic rays and gas nuclei. All the other elements

in nature are formed by nuclear reactions inside stars [16]. Fusion nuclear
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reactions are responsible of formation of all elements up to iron-56. These

reactions are exothermic. They release energy that powers stars against

gravitational contraction.

But binding energy per nucleon increases with nuclear mass only up to

iron-56, the most tightly bound nucleus of all nuclei. The production of any

heavier nucleus is affected by two impediments: the direct fusion after iron-

56 isotope is endothermic, the second is the growth of the coulomb barrier

with increasing proton number Z. At sufficiently high Z, the coulomb barrier

prevents all nuclear reaction induced by charged particles in stellar temper-

atures. Therefore, the isotopes of elements heavier than iron are exclusively

formed in neutron-capture processes.

The two main n-capture processes were identified in a pioneering work of

Burbidge et al in 1957[15]. After a nucleus has captured a neutron to become

a heavier nucleus, the time scale τn for it to capture an additional neutron

is either slow or rapid on competing time scale τβ for it to undergo beta

decay.The former refers to the slow (s-process) neutron capture, whereas the

later is associated to rapid (r-process) neutron capture.

It is generally believed that the r-process is associated with supernova

(SN) explosions , neutron star mergers, or gamma-ray bursts in which a

neutron-rich environment is realized. However, the astronomical site for the

r-process has not been unambiguously determined. Clarifying the origin of

the r-process and understanding the heavy-element production therein are,

currently, important subjects in astrophysics. In this context, light nuclei, as

well as heavy nuclei, are expected to play important roles in the production

of seed nuclei and r-process elements.

Many works have been published in this subject. As examples of the

recent works, Terasawa et al [18] have confirmed that light neutron rich nuclei

reaction have a critical role during r-process nucleosynthesis in supernovae.

Sasaqui et al [17] have studied the sensitivity of r-process nucleosynthesis to

light-element nuclear reactions. Two neutron capture reactions of some light

neutron rich nuclei, 4He(2n, γ )6He and 6He(α, n)9Be, and their effects on
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r-process nucleosynthesis have been studied by Bartlett et al. [19].

In this part of the work we studied the effect of light neutron rich nuclei

reaction, 17C( n,γ)18C, on r-process nucleosynthesis.
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Chapter 3

The Theoretical Framework:

Two Body and Three Body

Models

3.1 Two Body Problem

In this section we present the theory of the two body, core+n in our case,

systems. The problem of these systems within a Schrödinger formalism is

generally well known to physicists.

Using the two body cluster model is for two aims. The first is to study the

so called one neutron halo nuclei. The second is to define the core-neutron

interaction to use it in the three body model to study the two neutron halo

nuclei.

In this model we assume that the core is deformed and allowed to excite

into excited states as well as the ground state. This assumption has several

consequences. Mainly, it leads to couplings between the various channels

deduced for the problem.

The Hamiltonian of the core neutron system is

Ĥ = T̂r + ĥcore(ξ) + V̂cn(r, ξ) (3.1)

24
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Figure 3.1: Two body coordinates

where ĥcore is the Hamiltonian of the core which contains the internal

dynamics of the core, ξ, and its eigenfunctions are defined by the eigenvalue

equation:

ĥcore(ξ)φi(ξ) = εiφi(ξ) (3.2)

As the potential V̂cn(r, ξ) has a spherical symmetry, it is usually to express

the Hamiltonian in polar coordinates, and it is sufficient for that to write the

Laplace operator in this system. The Schrödinger equation for the two body

problem is thus

[

− h̄2

2µ

(

d2

dr2
+

2

r

d

dr

)

+
L̂2

2µr2
+ ĥcore(ξ) + V̂cn(r, ξ)

]

Ψ = EΨ (3.3)

The total wavefunction of the system is expanded in a basis with an

appropriate coupling of angular momenta: the orbital angular momentum l

and the total spin s of the neutron couple to a total angular momentum of

the neutron j: [l ⊗ s]jmj
, and thereafter the total angular momentum j of

the neutron couples with the intrinsic spin I of the core to a total angular

momentum of the two body system J : [j ⊗ I]JM . As we are interested in

studying a halo type system, it is useful to separate the core internal motion

from the relative motion of the neutron. We will therefore express the total

wavefunction in terms of the core’s eigenfunctions as
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Ψ =

Ncore
∑

i

ψi(r, r̂, σ)φi(ξ) (3.4)

and we anticipate that only a few terms φi(ξ) are required for a good de-

scription. By substituting this expression of the total wavefunction in the

Schrödinger equation we obtain a set of coupled channels equations of the

general form:

(T̂r + V̂ii + εi − E)ψi = −
∑

j 6=i

Vijψj , i = 1, ..., Ncore;

where Vij(r) = 〈φi(ξ)|V̂cn(r, ξ)|φj(ξ)〉 (3.5)

The total wavefunction expanded in a basis with the appropriate coupling of

the angular momentum, as it is mentioned above, allow us to write it as

ΨJM =
∑

λ

χJ
λ(r)

r
YJM

λ (r̂, σ, ξ)

with YJM
λ (r̂, σ, ξ) = {[Yl ⊗Xs]

j ⊗ φI}JM

and λ = {l, j, I} (3.6)

One can substitute this expression in eq.(3.5) to obtain the radial set of

two-body coupled channels equations:

(

− h̄2

2µ

[

d2

dr2
− l(l + 1)

r2

]

+ V J
λλ(r) − E + εI

)

χJ
λ(r) = −

∑

λ′ 6=λ

V J
λλ′(r)χJ

λ′(r),

V J
λλ′(r) =

〈

YJM
λ (r̂, σ, ξ)|Vcn(r, r̂, ξ)|YJM

λ′ (r̂, σ, ξ)
〉

,

where λ = {l, j, I} and λ′ = {l′, j′, I ′}. (3.7)

where the boundary conditions are:

χJ
λ(r)

r→0−−→ 0 and χJ
λ(r)

r→∞−−−→ 0, ∀λ. (3.8)
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Next we define the interaction between the neutron and the core. Based on

the idea of rotating objects generating a deformed field, we use a deformed

Woods-Saxon nuclear potential in the core’s rest frame,

Vcore−n(r, θ, φ) =
V

1 + e(
r−R(θ,φ)

a )
, R(θ, φ) = R(1 + β Y20(θ, φ)) (3.9)

where R = r0A
1/3 and a are the radius and the diffuseness of the interaction,

respectively. The core exhibits a quadrupole deformation parametrized by

the fractional parameter β.

We also include a standard undeformed spin-orbit term, where the form

factor is proportional to the derivative of the undeformed Woods-Saxon po-

tential:

Vls(r) = −
(

h̄2

mπc

)2

(2~l.~s)
Vso

r

d

dr

[

1 + e(
r−R

a )
]−1

(3.10)

As it has been shown that the level shifts due to deformation of the spin-

orbit potential are negligible for nuclei lighter than the rare earths [9]. The

undeformed spin-orbit potential has been successfully used in three body cal-

culations of 12Be [7]. The parameters V, r0, a and β are chosen to reproduce

the experimental spectrum of the (core+n) nuclei. More details of this point

will be discussed in the results chapters.

3.2 Three Body Problem

Cluster models of light nuclei allow us to approximate the many-nucleon

problem by few-body one, by enclosing the inner nucleons in a so called

core and the remaining nucleons are called the valence nucleons. For the

treatment of the latter problem a number of methods have been developed.

Faddeev [1] and Schrödinger few-body formulations have been successfully

solved with the help of momentum space[1], variational technique [4] and
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Hyperspherical Harmonic [2, 3] procedures. Faddeev equations have also

been solved with the adiabatic hyperspherical method [5].

In the case where there are two valence nucleons we have a three body

system, two neutrons in our case, interacting with the core and with each

other. Here, in order to solve the three-body problem, we will work within

the Schrodinger formalism combining it with the Hyperspherical method.

Despite this method was used for a long time in atomic, molecular and nuclear

reaction physics, it was only for the two last decades that this method was

applied to exotic nuclei, spontaneously with the discovery and the abundance

studies of the halo nuclei. We refer to Refs. [2, 3, 14, 8] which contain more

details of the method.

In the following sections we develop the formalism needed to handle the

bound state properties of core+n+n systems where the core is deformed and

allowed to excite. In this development we will not include the isospin depen-

dence since the interactions assume a fixed isospin. The full Hamiltonian of

the system, after extracting the center of mass motion, contains the intrinsic

Hamiltonian of the core, the relative energy and the two body interactions

between the three bodies:

Ĥ = T̂r + T̂R + ĥcore(ξ) + V̂ (3.11)

where

V̂ = V̂cn(r31, ξ) + V̂cn(r32, ξ) + V̂nn(r, snn, lnn) (3.12)

The distances between each neutron and the core (labeled 1,2 and 3 respec-

tively): ~r31 and ~r32, can be easily expressed in terms of Jacobi coordinates

(~r,~R), where ~r = ~r12 is the distance between the two neutrons and ~R is the

distance between the core and the two neutron’s centre of mass:

~r31 = ~r1 − ~r3 = −~R − 1

2
~r and ~r32 = ~r2 − ~r3 = −~R +

1

2
~r (3.13)

The intrinsic Hamiltonian of the core determines a set of eigenstates φI
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Figure 3.2: Two body interactions in three body system

and eigenvalues ǫI given by the eigenvalue equation:

ĥcore(ξ)φI(ξ) = ǫIφI(ξ) (3.14)

where ξ represents the degree of freedom of the core.

The procedure consists of expanding the total wavefunction of the system

in terms of these φI states and separating the degree of freedom of the core

from the neutron’s:

ΨJM =
∑

I

φIψI (3.15)

Here, ψI contains the radial, angular and spin dependence for the valence

neutrons. This process is advantageous if only a small number of core states

φI is needed to describe the system accurately and this is the case for halo

systems.

Thus, the Schrodinger equation of the system we have to solve is:

ĤΨJM = EΨJM (3.16)
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The useful method to solve the problem is to transform the Schrodinger

equation into the Hyperspherical coupled channels equations. For that a

Hyperspherical coordinates and explicit Hyperspherical expansions of the

wave function are needed.

3.2.1 The Hyperspherical Coordinates

The Hyperspherical method for solving the three body problem makes use

of the Hyperspherical coordinates (hyper-radius ρ and hyper-angle θ ). The

latter are defined on the bases of general Jacobi coordinates.

It is convenient to introduce translation-invariant sets of normalized Ja-

cobi coordinates:

xk =
√

Aijrij and yk =
√

A(ij)kr(ij)k (3.17)

where Aij and A(ij)k are respectively the reduced mass of the subsystem (i+j)

and the reduced mass of the cluster (ij) with respect to the particle k, given

in unit of nucleon mass by:

Aij =
AiAj

Ai + Aj
and A(ij)k =

(Ai + Aj)Ak

Ai + Aj + Ak
(3.18)

The figure (3.3) illustrates the scaled Jacobi coordinates for the partic-

ular case we are interesting in: that is of two valence neutrons interacting

with a core. It is easy to deduce the following relations between these and

the standard Jacobi coordinates, pointing out that the two sets (x1, y1) and

(x2, y2) are defined in equivalent manner due to the mass symmetry between

the particles 1 and 2.

x3 =
r√
2

y3 =

√

2A3

A3 + 2
R (3.19)

x1 =

√

A3

A3 + 1
r23 y1 =

√

(A3 + 1)

A3 + 2
r(23)1 (3.20)

For obvious graphic reasons, (x3, y3) is often called the T basis set, and both

(x1, y1) and (x2, y2) are called the Y basis set.
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Figure 3.3: Jacobi coordinates for the cor+n+n system

As we mention before, to solve the three body problem we need to make

transformation from the Jacobi coordinate system to the Hyperspherical co-

ordinate system. This transformation does not affect the angular and spin

variables of the two neutrons, nor the degree of freedom of the core.

The Hyperspherical coordinates are explicitly defined as:

ρ2 = (x2
i + y2

i ) = Σ3
iAir

2
i θi = arctan(

xi

yi
) (3.21)

We mention that the hyperradius, x2
i + y2

i , is the same for all i = 1, 2, 3.

This aspect is a basic advantage offered by the hyperspherical coordinate

system. It is an invariant variable under translations, rotations and (1,2)

permutations. An other important physical feature is, although the abso-

lute value of x and y no longer coincide with the relative physical distances

between the bodies of the system, the hyperradius is directly related to the

overall size of the nucleus.

On the other hand, the hyperangle,θi = arctan xi

yi
, is different for the
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T and the Y basis. It contains radial correlations and it is related to the

relative magnitude of the two Jacobi coordinates. As an example in the T

basis, θ = 0 means that the two neutrons are much closer to each other than

to the core. The opposite case is obtained for θ = π
2

which consists of two

neutrons far from each other and the core is sitting in between.

In the following, the development of the formalism will assume that the

Jacobi coordinates are taken in the T basis. The use of this choice will ease

for us the construction of the anti-symmetrization of the wave function of

the two neutrons. When constructing the channels for the T basis we have

to account the anti-symmetrization of the total wave function and of the

two neutron wave function. For the latter the antisymmetrisation can be

accounted for just by imposing {lx + S + T = odd}, where lx is the relative

orbital angular momentum between the two neutrons, S and T are the total

spin and the total isospin of the two neutrons subsystem. As the isospin of the

two neutron subsystem is one, the condition is equivalent to {lx +S = even}.
The discussion of the antisymmetrisation between the valence neutrons and

the neutrons of the core will be later.

3.2.2 The Schrodinger Equation in the Hyperspheri-

cal Coordinates: General Treatment

According to Danilin et al [3], the kinetic energy operator in the hyperspher-

ical variables has the separable form

− h̄2

2m
(

1

A12
∇2

x +
1

A(12)3

∇2
y) = − h̄2

2m
(
∂2

∂ρ2
+

5

ρ

∂

∂ρ
− 1

ρ2
K̂2(Ω5)) (3.22)

where the generator of rotations in the hyperangular coordinate is the hy-

permomentum operator K̂

K̂2(Ω5) = − ∂2

∂α2
− 4 cot(2α)

∂

∂α
+

1

cos2 α
l2(x̂) +

1

sin2 α
l2(ŷ) (3.23)

with eigenvalues K(K + 4), where K = 2n + lx + ly for integer n. The

quantum number K is called the hypermomentum, and does not depend on
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the particular choice of the system coordinates.

The Schrodinger equation in the hyperspherical coordinates is

− h̄2

2m

(

∂2

∂ρ2
+

5

ρ

∂

∂ρ
− 1

ρ2
K̂2(Ω5)

)

Ψ = (E − V )Ψ (3.24)

we seek to find the total wavefunction Ψ as

Ψ(ρ,Ω) = R(ρ)Y(Ω5) (3.25)

where R(ρ) are functions of the hyperradius ρ only, and Y(Ω5) are the

hyperspherical harmonic basis functions containing all angular dependence

(Ω5 = α, x̂, ŷ)of the three body system, and thus are eigenfunctions of K̂2

with the eigenvalues K(K + 4). The Schrodinger equation becomes

− h̄2

2m

(

∂2

∂ρ2
+

5

ρ

∂

∂ρ
− K(K + 4)

ρ2

)

R(ρ) = (E − V )R(ρ) (3.26)

Now to eliminate the second term we define R(ρ) as

R(ρ) =
χ(ρ)

ρ5/2
(3.27)

making this substitution we get

− h̄2

2m

(

∂2

∂ρ2
− 15

4ρ2
− K(K + 4)

ρ2

)

χ(ρ) = (E − V )χ(ρ) (3.28)

By puting L = K + 3/2, the Schrodinger equation becomes

− h̄2

2m

(

∂2

∂ρ2
− L(L + 1)

ρ2

)

χ(ρ) = (E − V )χ(ρ) (3.29)

3.2.3 The Hyperspherical Expansion of the Three Body

Wavefunction

In the previous section we obtained the Schrodinger equation in the general

case without paying any attention to the details parameters. A small mod-

ification will be taken into account in this section where we will introduce
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all the parameters of the core, and we assume that the core is deformed and

allowed to excite, which is the fact of the nuclei targeted in this study.

Given the orbital angular momenta (lx, ly), relative to the coordinates

(x, y), the spin of the core I, and the spin of the two neutrons (σ1, σ2), and

by including all the couplings, the total wavefunction can be written in the

T basis as:

ΨT
JM =

∑

lx,ly,L,I,σ1,σ2,S,j

ψLSIJj
lx,ly

(r, R){([Ylx ⊗ Yly ]L ⊗ [Xσ1 ⊗Xσ2 ]S)j ⊗ φI}JM

(3.30)

The radial wavefunction ψ(r, R) can be expanded in the hyperspherical vari-

ables. The separation between hyperangle and hyperradial dependence of the

wavefunction can be performed. Taking into account the expressions (3.27)

we can write:

ψLSIjJ
lxly

(r, R) = ρ−
5
2

∑

K

χLSIjJ
Klxly

ϕ
lxly
K (θ) (3.31)

where ϕ
lxly
K (θ) is the hyperangle function, eigensolution of the hyperangle

equation, are explicitly defined in terms of the Jacobi polynomials as:

ϕ
lxly
K (θ) = N

lxly
K (sin θ)lx(cos θ)lyP lx+1/2,ly+1/2

n (cos 2θ) (3.32)

where P
lx+1/2,ly+1/2
n (cos 2θ) is the Jacobi polynomial and N

lxly
K is the normal-

isation coefficient. This expansion introduces the hyper-angle-momentum

quantum number directly related to the order of the corresponding Jacobi

polynomial K = lx + ly + 2n(n = 0, 1, 2...)

Comparing the expressions of the total wave function(3.25 and 3.30), we

can define the hyperspherical harmonics, sometimes called hyperharmonics,

including all but hyperradial dependence (Ω5, σ1, σ2, ξ)

YLSIjJM
Klxly

(Ω5, σ1, σ2, ξ) = ϕ
lxly
K (θ){([Ylx ⊗ Yly ]L ⊗ [Xσ1 ⊗Xσ2 ]S)j ⊗ φI}JM

(3.33)
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such that the total wavefunction can be written as:

ΨT
JM = ρ−5/2

∑

lx,ly,L,I,σ1,σ2,S,j,K

χLSIjJ
Klxly

(ρ)YLSIjJM
Klxly

(Ω5, σ1, σ2, ξ) (3.34)

When the previous expansions of the wavefunctions are substituted in

the three body Schrodinger equation(3.24), one is left with a set of coupled

equations, equivalent to those obtained for a single particle with scale mass

m moving in deformed mean field. The hyperspherical coupled channels

equation is thus

(

− h̄2

2m

[

∂2

∂ρ2
− L(L + 1)

ρ2

]

+ Vγγ(ρ) −E + ǫI

)

χγ(ρ) = −
∑

γ′ 6=γ

Vγ,γ′χγ′(ρ)

Vγ,γ′χγ′(ρ) = 〈Yγ′(Ω5, σ1, σ2, ξ)|
3
∑

j 6=i=1

Vij(ρ,Ω5, ξ)|Yγ(Ω5, σ1, σ2, ξ)〉

γ = {lx, ly, L, S, I, j,K} ;L = K + 3/2 (3.35)

In this hyperspherical coupled channels equation, the hypermomentum K

generates a three body effective centrifugal barrier L(L+1)
ρ2 , which does not

vanish even if the angular momenta lx and ly of the subsystems are equal to

zero [3]. This centrifugal barrier contains not only the single particle cen-

trifugal barriers associated with each variable, but an added repulsion term

reflecting the difficulty of finding both neutrons close to the core simultane-

ously.

The Asymptotic Behavior of the Wavefunction and the Interaction

In the formalism for the three-body bound states in Borromean systems

and finite range two-body interactions, the three-body asymptotic are easily

specified by an exponential decay

χ(ρ)
ρ→∞−−−→ exp(−κρ), where κ =

√

2m(ǫI − E)

h̄2 (3.36)

However, if any two-body subsystems is bound when the third is removed,

the three-body asymptotic in one part of configuration space will be ruled
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by the two-body asymptotic and no simple representation for the boundary

conditions can be found in this coordinate system.

It is of relevance for the numerical treatment of the problem, to know the

asymptotic behaviour of the three body couplings. It has been proved [12]

that, for short range two body interactions, the three body potential behaves

as:

VKK ′(ρ→ ∞) ∼ ρ−n, with n ≥ 3 (n = 3 for the diagonal terms) (3.37)

The slow rate decay reflects the peculiar feature of three body systems, where

two particles can still interact when at large distances from the third. The

long tail for the mean field has numerical implications, namely that a large

radial range will be needed for the calculations.

3.3 Hyperspherical Sturmians

3.3.1 The Sturmians

The usual procedure to reduce a set of coupled differential equations to an

algebraic one is either to expand the wave function of the system using a

complete set of known eigenfunctions or to use some other set of trial func-

tions in variational way [8]. However there are three requirements that should

primarily be satisfied: a) the complete set should be discrete (otherwise the

problem would become impossible to solve); b) the method should give good

convergence; c) the expansion should provide simple boundary conditions.

Choosing a set of known eigenfunctions that satisfy b) and c) may be diffi-

cult and one often finds himself with complex boundary conditions. On the

other hand, an expansion using trial functions involves fitting many param-

eters and often offers very slow convergence.

The Sturmian eigenfunctions were introduced by Rotenberg [10] as a basis

set for solving 2nd order differential equations. Subsequently, this method

is successfully applied to several problems in atomic and nuclear physics
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[11]. The Sturmians are generated by an equation that much resembles the

Schrodinger equation,
{

− h̄2

2µ

d2

dr2
+
h̄2l(l + 1)

2µr2
+ αnλV

λ
sturm(r) + εI

}

Snλ(r) = E0Snλ(r)

n = 1, 2, ..., Nsturm and λ = {l, j, I} (3.38)

The boundary conditions for the Sturmian functions at large distances are

given by:

Sn,λ(0) = 0

Sn,λ(r)
r→∞−−−→ Aexp(−κ0r), where κ2

0 =
2µ(εI − E0)

h̄2 (3.39)

Note that if Snλ(r) is to be square integrable, then εI − E0 > 0.

The Sturmians Sn,λ(r) form a complete set in the regions where the po-

tential is either positive or negative (Vsturm(r) 6= 0), whichever its shape.

In this equation the core properties are accounted by introducing the core

energy term εI . By this way, the Sturmian eigenfunction will depend on the

spin of the core I along with the l, j quantum numbers

The orthogonality condition for the Sturmians differs from the standard

definition for wave functions, since it is weighted by the Sturmian potential

as:
∫ ∞

0

Snλ(r)V
λ
sturmSn′λ(r)dr = −δnn′ (3.40)

The sign on the right hand side of the equation (3.40) already assumes that

the Sturmian interaction is attractive

The set of the Sturmian states generated by the equation (3.38) satisfy

both requirements a) and c) presented above. Whether or not these functions

satisfy the second requirement depends on the choice of E0 and V λ
sturm(r).

These two ingredients, E0 and V λ
sturm(r), present a useful feature of this

basis if they can be chosen in accordance with the physics of the system under

study. Specifically, the parameter E0 should be chosen to match the known

asymptotic for of the eigenfunctions of the Hamiltonian. An other feature

of the Sturmian functions is that they behave very much like the ordinary

bound state Schrodinger wavefunctions.[8].
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3.3.2 The Sturmian Coupled Channels Equations for

Two Body Problem

In order to solve the equation (3.7) we expand the two body radial wave

function in terms of the Sturmian basis functions:

χλ(r) =

Nsturm
∑

µ=1

CµλSµλ(r) (3.41)

where Sµλ(r) are the Sturmians functions generated by the equation (3.38)

and satisfy the boundary conditions of the equation (3.39) Due to the asymp-

totic properties of the Sturmians, and because of the coefficients Cµλ do not

diverge, the radial wavefuction χλ is limited and stisfies the boundary con-

ditions of the equation (3.8).

Substituting this expansion in equation (3.7) we get:

∑

µ

(

− h̄2

2µ

[

d2

dr2
− l(l + 1

r2

]

+ V J
λλ(r) − E + εI

)

CµλSµλ(r) =

−
∑

µ,λ′ 6=λ

Vλλ′(r)Cµλ′Sµλ′(r). (3.42)

Multiplying the equattion (3.38) by Cµλ and make summation over the lable

µ we get:

∑

µ

{

− h̄2

2µ

d2

dr2
+
h̄2l(l + 1)

2µr2
+ αµλV

λ
sturm(r) + εI

}

CµλSµλ(r) =

∑

µ

E0CµλSµλ(r) (3.43)

By subtracting the latter equation from the former, one can eliminate the

kinetic energy terms and we get:

∑

µ

{Vλλ(r) − αµλV
λ
sturm(r) + (E0 − E)}CµλSµλ(r) +

∑

µ,λ′ 6=λ

Vλλ′(r)Cµλ′Sµλ′(r) = 0

where µ = 1, 2, ..., Nsturm, λ = {l, j, I}, λ′ = {l′, j′, I ′}
(3.44)

A further simplification can be obtained if we take V λ
sturm(r) = Vλλ(r)
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The next step consists of obtaining a set of algebraic equations such that

the problem is reduced to a matrix equation. Multiplying equation (3.44)

on the left by S∗
νλ(r) and integrating over the radial coordinate from zero to

infinity, we get:

∑

µ

{
∫

S∗
νλ(r)Vλλ(r)Sµλ(r)dr + αµλδµν + E0

∫

S∗
νλ(r)Sµλ(r)dr

}

Cµλ +

∑

µ

∑

λ′ 6=λ

∫

S∗
νλ(r)Vλλ′(r)Sµλ′(r)drCµλ′ = E

∑

µ

∫

S∗
νλ(r)Vλλ′(r)Sµλ(r)drCµλ,

where µ, ν = 1, 2, ...., Nsturm, λ = {l, j, I} and λ′ = {l′, j′, I ′} (3.45)

If one defines Nchan as the total number of channels λ = {l, j, I} then the

equation (3.45) contains (Nchan×Nsturm) coupled equations for the same un-

known number Cµλ. This means that the problem is completely determined.

This matrix equation describes a generalized eigenvalue problem and is of

the form (Hc = EiMc) where H and M are real symmetric matrices. There

are library subroutines available to solve the generalized eigenvalue problem

and the eigenvalues obtained are always real.

The most important advantage of the application of the Sturmian ex-

pansion to physical problems is the good and rapid convergence of the en-

ergy curves. A wise choice for E0 present the fundamental criteria for this

purpose[8].

3.3.3 The Sturmian Coupled Channels Equation for

Three Body Problem

The motivation of the correct use of the Sturmians method in three body

problem is what exist of structural similarities between the two body Schrodinger

equation and the three body hyperspherical Schrodinger equation, and thus

between the two body coupled channels equations (3.7) and the hyperspher-

ical coupled channels equations (3.35). The hyperspherical Sturmians are

the direct generalization of the standard Sturmians to the three body hyper-
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spherical problem. They satisfy an equation exactly analogous to eq.(3.38):

{

− h̄2

2m

∂2

∂ρ2
+
h̄2L(L + 1)

2mρ2
+ αKLSI

n Vsturm(ρ) + εI

}

SKLSI
n (ρ) = E0S

KLSI
n (ρ)

n = 1, 2, ... and L = K + 3/2 (3.46)

and have boundary conditions similar to those which constrain the standard

Sturmians:

SKLSI
n (0) = 0

SKLSI
n (ρ)

ρ→∞−−−→ Ae−kIρ k2
I =

2m(ε− E0)

h̄2 (3.47)

When applying Sturmians to hyperspherical three body problem we have

to be careful do not make all the traditional associations. The hyper-radius

ρ is directly related to the size of the three body system rather than any

two body distance. The term resembling the centrifugal barrier has no ob-

vious physical meaning, as in the two body case, and it arises in the three

body problem simply from the hyperspherical expansion that generates a new

quantum number K(L = K + 3/2). The simple form of the boundary con-

ditions expressions offers an enormous advantage of the Sturmians method

compared to others (the Gaussian expansion,.. ). In general and specially for

three body systems, convergence is always harder to be obtained for loosely

bound systems. The Sturmian method overcomes this problem by choosing

the appropriate tail for the basis states (i.e. by choosing E0)

Due to the asymptotic behaviour of the diagonal terms of the three body

mean field given in the equation(3.37) the use of the coulomb field for the

Sturmian potential may be a better choice than the monopole part of any

particular two body short-range interactions.

In order to solve the hyperspherical coupled channels equation (3.35)

we follow an identical procedure to that used for the two body problem:

expanding the radial wave function χρ on the Sturmian basis , obtaining the

hyperspherical Sturmian coupled channels equation, and obtaining a set of

algebraic equation and reducing the problem to a matrix equation.
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The three body radial wave function can be expanded in terms of the

hyperspherical Sturmian basis functions, generated by the equation (3.46),

as:

χγ(ρ) =

Nsturm
∑

µ=1

CµγSµγ(ρ) (3.48)

where γ = {KLSJIj} and χ(ρ) hyperradial wave fuction given by the ex-

pression (3.34)

Substituting this expression in the three body hyperspherical coupled

channels equations (3.35) we get:

Nsturm
∑

µ=1

(

− h̄2

2m

[

∂2

∂ρ2
− L(L + 1)

ρ2

]

+ Vγγ(ρ) −E + ǫI

)

CµγSµγ(ρ) =

−
Nsturm
∑

µ,γ′ 6=γ

Vγ,γ′CµγSµγ(ρ) (3.49)

By multiplying the equation (3.46) by Cµγ and make summation over the

lable µ we get:

∑

µ

{

− h̄2

2m

∂2

∂ρ2
+
h̄2L(L + 1)

2mρ2
+ αγ

µVsturm(ρ) + εI

}

Cγ
µS

γ
µ(ρ) =

∑

µ

E0C
γ
µS

γ
µ(ρ)

(3.50)

By subtracting the latter equation from the former, one can eliminate the

kinetic energy term and the to the centrifugal barrier similar term, and we

get:

∑

µ

{Vγγ(ρ) − αµγV
γ
sturm(ρ) + (E0 −E)}CµγSµγ(ρ) +

∑

µ,γ 6=γ′

Vγγ′(ρ)CµγSµγ(ρ) = 0

where µ = 1, 2, ..., Nsturm, γ = {KLSJIj}, γ′ = {K ′L′S ′J ′I ′j′}
(3.51)

As in the previous section, the next step consists of reducing the problem

to a matrix equation by doing the same thing of multiplying the equation
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(3.51)on the left by S∗
νγ(ρ) and integrating over the hyperradial coordinate ρ

from zero to infinity.

∑

µ

{
∫

S∗
νγ(ρ)Vγγ(ρ)Sµγ(r)dr + αµγδµν + E0

∫

S∗
νγ(ρ)Sµγ(ρ)dr

}

Cµγ +

∑

µ

∑

γ′ 6=γ

∫

S∗
νγ(ρ)Vγγ′(ρ)Sµγ′(ρ)drCµγ′ = E

∑

µ

∫

S∗
νγ(r)Vγγ′(ρ)Sµγ(r)drCµγ,

(3.52)

As identical to the Sturmian coupled channels equation for the two body

problem, we can defineNchan as the total number of channels γ = {KLSJIj},
then the problem is totally determined because the equation (3.52) contains

(Nchan ×Nsturm) coupled equations for the same unknown number Cµγ . This

matrix equation is of the form (Hc = EiMc ), where H and M are real

symmetric matrices, and there are software tools to solve this generalized

eigenvalue problem.

3.4 Treatment of the Pauli Principle

The model developed, till now, requires some treatment of antisymmetrisa-

tion of the system’s wavefunction. In few body models the alternative to the

full microscopic antisymmetrisation of (A+2) nucleon system is the use of

Pauli principle inter-clusters subsystems. For the system we are concerned

with (core + n + n), the total wavefunction would,firstly, be antisymmetric

under the two neutrons permutation and, secondly, we would consider the

restrictions introduced by the neutrons of the core.

Concerning the first point, introducing antisymmetrisation under neutron

permutation within the T basis consists simply of requiring that {lx+S+T =

odd}, where lx is the relative angular moment between the two neutrons,

S = {0, 1} and T = 1 are the total spin and the total isospin of the two

neutron system, respectively.
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It is useful to mention again that the T basis is chosen to do the calcu-

lations of the Schrödinger equation to simplify the obtaining of the two neu-

trons wavefunction antisymmetrisation by imposing this simple constraint.

As for the second point, and of special interest is the question of Pauli

blocking, arising because the neutron-core interactions have deeply bound

eigenstates which must be regarded as already occupied by core nucleus, and

blocked to the halo neutrons. Pauli blocking is needed to remove components

of the halo wave function that would disappear under full antisymmetrisation

[14].

The effect of Pauli blocking in three body models has been addressed in

detail by Thompson al. [14], who investigate different techniques to remove

two-body forbidden states. These techniques can be classified in three main

methods:

1. The full projection operator method.

2. Method using repulsive potentials in those neutron-core partial waves

with bound states.

3. Hyperspherical adiabatic approximation in which the lowest-energy

eigensurface is removed.

It appeared from the results obtained that the projection operator method

gives results nearer to experiment than those using local l−dependent po-

tentials. This is what makes it the favoured method used in treating the

wavefunction antisymmetrisation problem in three body model.

The method consists of two main steps. Firstly, we construct the three

body forbidden states. Secondly, we have to guarantee that the total wave

function for the system is orthogonal to these forbidden states. This is done

by projecting them out of the Hamiltonian model space. More details about

the technique procedure are developed in Appendix A.
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Chapter 4

Application of the Two Body

Model to 17C

4.1 Overview of the Studies on Neutron Rich

Carbon Isotopes

Bazin et al [8], in 1995, have measured the longitudinal momentum distri-

bution of 18C, 17C and 16C of the one-neutron breakup of 19C, 18C and 17C

respectively. The observed narrow width for the 18C fragments indicates that
19C is a new example of one-neutron halo.

To complete and to perfect the results obtained in this experiment, three

years later in 1998, Bazin et al [9] have measured the parallel momentum dis-

tributions of outcome fragments in the one-neutron breakup of the odd-mass

carbon isotopes 19,17,15C. Results indicates that 17C halo appears hindered by

the d-wave neutron ground state configuration. The data on the halo nucleus
19C suggests a structure of s-wave neutron around the 2+ excited state of 18C

Just the next year, the neutron-rich nucleus 19C was the objective of

coulomb dissociation experiment by Nakamura et al [6]. The study resulted

to a large E1 strength of 0.71 ±0.07 e2fm2, small separation energy of 530

±130 KeV, and the ground state structure is dominated by an s-wave va-

lence neutron. These results provide a consistent picture of the neutron halo

46
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structure of this nucleus.

Using one neutron knockout reactions, Maddalena et al [7] have studied

the structure of neutron-rich carbon isotopes 16,17,19C. The study leaded to

the ground state spins of 17,19C of 3/2+ and 1/2+ respectively.

In 2004 the 16C properties were a target of an experiment by Imai et al[5]

where they have studied the electric quadrupole transition from 2+ to the

ground state 0+ in 16C. The measured mean life is found to be 77± 14 (stat)

± 19(syst) which coresponds to a B(E2: 2+
1 → 0+) value of 0.63 e2fm4. This

value is anomalously small compared to the empirically predicted value.

Theoretically, several papers have been published on the isotopes of this

chain. In this brief overview we mention the most recent ones.

In 2004, Suzuki et al [2] have applied the three body model of 14C+n+n

to study the E2 transition in 16C. The n-14C potential is chosen to reproduce

the single particle energies of 15C. It turns out that the model is reasonable

to account for the hindered transition strength as well as the longitudinal

moment distribution of 15C fragments from 16C breakup.

In the same year another paper had been published in which Sagawa et

al [3] have studied the deformation and electromagnetic moments of neutron

rich carbon isotopes. They have shown that the quadrupole moments Q,

and the magnetic moments µ of odd C isotopes depend clearly on assigned

configurations, and their experimental data will be useful to determine the

deformation of nuclei near the neutron drip-line. The electric quadrupole

(E2) transitions in even carbon isotopes are also studied, and the observed

isotope dependence of the E2 transition strength is properly reproduced, even

its abnormal observed value in 16C.

Two years later and motivated by its general properties, Horiuchi et al

[1] have studied the drip-line nucleus 22C in a Borromean three body model

of 20C + n+ n. The valence neutrons, interacting via a realistic potential,

are constrained to be orthogonal to the occupied orbits in 20C. In this work,

Horiuchi and Suzuki obtained results which support that 22C is an ideal

s-wave two neutron halo nucleus.
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Figure 4.1: rms matter radius of neutron rich carbon isotopes .

In This work a systematic study of the total reaction cross sections of car-

bon isotopes with N=6-16 on a proton target has been made. Abu-Ibbrahim

et al [4] used two types of dynamical models: one is a core + n for odd

neutron nuclei, and the other is a core+n +n model for 16C and 22C. The

study results to empirical formulas which are useful in predicting unknown

cross sections.

4.2 Understanding the 17C Spectrum on the

Basis of Nilsson Model

The three experimental low-lying levels of 17C are shown in Fig.4.2. The

ground state is 3/2+ with a neutron separation energy of 0.728 MeV. The

other two bound excited states are 1/2+ and 5/2+, located at 0.210 MeV
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and 0.330 MeV respectively. The spin-parity assignments for these states

have been established by analysing the γ-ray spectrum observed in p+17C

inelastic scattering [10], and by studying the one neutron removal reaction

from 18C [11].

.
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Figure 4.2: Low lying experimental spectrum of 17C plotted relatively to the
16C+n threshold and compared to the shell model with WBP interaction

from [10] and the two-body model calculations with a 16C-n potential from

Ridikas et al [14].

The shell model calculations using the WBP interaction predict the 17C

ground state to be Jπ = 3/2+ [10], consistent with experiment. However, the

shell model predicts the first excited state to be 5/2+ at Ex = 0.032 MeV

while the second excited state should be 1/2+ at 0.295 MeV. Experimentally,

1/2+ is below 5/2+, as can be seen in Fig.4.2.
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.

Figure 4.3: Spectrum of single particle orbits in spherical potential (N and

Z < 20). The figure is taken from Bohr and Mottelson texbook [12]. The

orbits are labled by the asymtotic quantum numbers [Nn3ΛΩ] refering to

large prolate deformation. Levels with even and odd parity are drawn with

solide and dashed lines, respectively.
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The level ordering in 17C can be understood on the basis of a simple

Nilsson model. According to this model, in light nuclei the 0d5/2 level splits

into three levels, [2201
2
], [2113

2
] and [2025

2
] [12]. For β > 0, typical for the

carbon isotopes, the lowest level is [2201
2
] followed by [2113

2
] and for β > 0.25

the [2025
2
] level rises above [2111

2
]. The first eight neutrons from 17C fill 0s

and 0p shells. The two out of three remaining neutrons fill the [2201
2
] shell.

Therefore, the low-lying spectrum of 17C is determined by the single-particle

spectrum of the Nilsson model above this shell, which, for typical values of

β ∼ 0.5, is 3/2+, 1/2+ and 5/2+.

The successful interpretation of the 17C spectrum on the basis of the

Nilsson model, combined with its small separation energy, suggests that 17C

could be described by a deformed two-body model. However, the Coulomb

breakup [13] and the single-neutron knockout [7] experiments imply that 17C

is built mostly on the 16C(2+) state. Therefore, to understand 17C, the 2+

excitation of the 16C core should be taken into account.
17C has already been studied in a two-body deformed model with core

excitations by Ridikas et al [14]. At that time, the spin-parity of the 17C

ground state was unknown. Therefore, Ridikas et al have found different sets

of the 16C-n interaction, that binds 17C by 0.728 MeV, for each Jπ, 1/2+,

3/2+ and 5/2+, separately. In particular, for the 3/2+ state to be bound

by the experimental value of 0.728 MeV, the set of parameters V=−54.101

MeV, Vso = 6.5 MeV, r0 = 1.083 fm, a=0.65 fm and β = 0.55 should be

used. However, our calculations of 17C performed with this set of parameters

give 1/2+ as a ground state at a much lower energy (see Fig.4.2). Therefore,

we cannot use this potential in three-body 16C+n+n calculations because we

would get a strongly overbound 18C.
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4.3 Determination of the n-16C Interaction

In this work, we find the 16C-n interaction that exactly reproduces the 17C

spectrum. We use the same model as in Ridikas et al, which is a coupled

channel problem with a deformed 16C-n potential and non-diagonal interac-

tion described by the rotational model. We use the deformed Wood-Saxon

potential and the non-deformed spin-orbit potential given by Eqs. (3.9) and

(3.10). For r0 we use the standard value of 1.25 fm, which is widely accepted

by various two-body models and which is larger than the value of 1.083 fm

used by Ridikas et al, and we use the same diffuseness a = 0.65 fm. Both r0

and a are fixed in these calculations.

In our calculations we have used two values for the deformation parameter

β. The first one, β = 0.55, calculated by Ridikas et al from the experimental

transition probability B(E2 : 0+
gs → 2+

1 ), available at the time, and used in

Ref. [15] to study effects of dynamical core deformation on single nucleon

knockout reactions. The second one, β = 0.48 has been calculated by us from

the experimental matter deformation lenth δm = βmRm = 1.3 fm obtained in

Ref. [16] from the Coulomb-nuclear interference in the 208Pb+16C inelastic

scattering. To get this value, we used the 16C matter radius Rm equal to 2.82

fm. This value was used in Ref. [8] to deduce the r.m.s. radii of the carbon

isotopes.

To reproduce the 17C spectrum, we vary the depths of the Woods-Saxon

and the spin-orbit potentials. There are two important features of the po-

tential we have found. To make the 3/2+ state lower than 5/2+ we had

to inverse the sign of the spin-orbit potential, and to reproduce the narrow

splitting between all three states we had to use an l-dependent 16C-n poten-

tial, which is stronger in d-wave than in s-wave. We have found one set of

parameters for each β: the set A for β = 0.55 and the set B for β=0.48, both

presented in Table I. These potentials are similar to each other, so we use

only one of them (namely, the set B) in calculations of the 18C spectrum.

Although our two-body model reproduced very well the 17C spectrum,

it cannot explain the probability of the core excitations observed in the
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Coulomb breakup [13] and one-neutron knockout experiments [7]. In our

model, 69% of the 17C wave function is built on the ground state of the 16C

core, while only 31% is built on the 2+ excitation of 16C. Experimentally, the

probabilities of 16C(0+) and 16C(2+) are 19 ± 9 % and 58 ± 8 % respectively.

Nevertheless, we have to use potentials A or B in three-body calculations

since they give correct binding for the 16C+n two-body subsystem.

The decomposition of the 17C wave function for each bound state into

the 16C(Jπ) ⊗ nlj configurations is shown in Table II in more details. One

can see that the 3/2+ and 5/2+ states have similar probabilities of the core

excitations while the 1/2+ state is very different. The r.m.s. radius of the
16C(0+)⊗ s1/2, shown in Table II as well, is typical for halo states. However,

the probability of this configuration in 17C is only 44%.
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Table 4.1: The parameter sets A and B for the n−16C potential that fits the
17C spectrum in a deformed two-body model with core excitations, corre-

sponding to two deformations β, and the binding (B.E.) and excitation (Ex)

energies of the 0+
1 , 2+

1,2 and 4+
1 states in 18C obtained with these sets. The Vl=0

and V even
l 6=0 are the depths of the central potentials in l = 0 and l 6= 0 even

partial waves, Vls is the depth of l-independent spin-orbit potential. Two

values of the central potentials in odd partial waves, Vodd, has been used in

three-body calculations for each set A and B. The radius and diffuseness for

all potentials are fixed as r0=1.25 fm and a=0.65 fm. All potential depths

and binding energies are in MeV.

β Vl=0 V even
l 6=0 Vls Vodd B.E.(0+

1 )Ex(2
+
1 )Ex(2

+
2 )Ex(4

+
1 )

A
A1 0.55 −30.95−44.05−0.58 −44.05−5.18 3.07 4.23 1.75

A2 0.55 −30.95−44.05−0.58 0.0 −5.22 1.12 3.89 2.23

B
B1 0.48 −32.15−44.72−0.56 −32.00−4.92 1.77 3.92 1.62

B2 0.48 −32.15−44.72−0.56 0.0 −5.26 1.11 4.07 2.18
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Table 4.2: The probabilities P (in per cents) of the 16C(Jπ)⊗nlj configuration and their r.m.s. radii 〈r2〉1/2 (in fm)

for bound states in 17C.

16C(0+) ⊗ s1/2
16C(0+) ⊗ d3/2

16C(0+) ⊗ d5/2
16C(2+) ⊗ s1/2

16C(2+) ⊗ d3/2
16C(2+) ⊗ d5/2

P 〈r2〉1/2 P 〈r2〉1/2 P 〈r2〉1/2 P 〈r2〉1/2 P 〈r2〉1/2 P 〈r2〉1/2

17C(3
2

+
) 69 4.34 8 3.28 16 4.00 5 3.99

17C(1
2

+
) 44 6.37 28 4.10 28 4.14

17C(5
2

+
) 68 4.53 9 3.57 5 4.05 17 4.07



Chapter 5

Study of 18C in Three Body

System

5.1 18C Bound States

The 16C-n interaction found in previous section is, strictly speaking, defined

only for even partial waves as all the bound state of 17C have positive par-

ity. However, in the three-body system 16C+n+n, odd partial waves will be

present in the 16C+n subsystem too. There are no experimental data which

would allow us to fix the Vodd interaction in such subsystems. There are three

strategies to deal with such a situation: (i) to use Vodd =0. This makes sense

as the odd parity states in known neutron-rich carbon isotopes lie relatively

high; (ii) To put Vodd equal to the Veven interaction in one of even partial

waves and (iii) to find Vodd by fitting the ground state binding energy of 18C.

In this work, we try all three options.

For Vodd 6= 0, bound states may be present in the 0p-wave. Such states

should be forbidden as the 0p neutron shell is occupied. Therefore, we elimi-

nate these states, as well as the 0s states, using the Pauli projection technique

when Vodd 6= 0 is used. We reference the potential sets A and B for Vodd 6= 0

as A1 and B1, while for Vodd = 0 we use notations A2 and B2.

We have investigated convergence of the three-body solutions for the 18C
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binding energy. For 0+ states, we were able to go up to Kmax = 28, for which

the ground state energy is practically converged. The other two excites 0+

states are above the 17C+n threshold. The convergence in their energy is

similar to that in ground state, however, one should keep in mind that no

convergence could be achieved for states above the two-body threshold since

such states are resonances whose energies are defined within their widths.

For non-zero spins, computer memory limitations allowed us to go only up

to Kmax = 14 for 4+ state, Kmax = 16 for 1+ and 2+, and Kmax = 18 for 1−.

Although for these Kmax the eigenenergies have not completely converged,

their excitation energies are more stable with respect to increase of Kmax.

Therefore, the all the excitation energies shown below are calculated with

respect to the ground state energy at Kmax = 14.

The 18C ground state binding energy calculated with Vodd = 0 is prac-

tically the same (see Table 4.1) for potentials A2 and B2. Including Vodd

does not change it too much. Thus, for potential A1, where Vodd is the same

as the Veven interaction in l 6= 0 it changes only by 33 keV. Such a small

change in binding energy despite a huge change in odd potential results from

a small probability of the odd partial waves in 18C. This probability is ap-

proximately equal to 4 and 2 % for the A1 and A2 potentials respectively.

Similar contributions from odd partial waves are obtained for the B1 and B2

potentials.

The energy of the first excited state 2+ is more sensitive to the choice of

the odd interactions. When Vodd is fitted to reproduce the 18C ground state

binding energy (potential set B1), the excitation energy of the 2+ is above

the experimental one by only 100 keV. This looks like a very good result but

for the same potential the first 4+ level unexpectedly decreases just below

2+ (see Table 4.1), which contradicts our knowledge about nuclear structure.

It is very difficult to know whether this is a consequence of the two-body

potential model chosen, or is a result from unnoticed numerical problems

arising in large scale three-body calculations. For Vodd 6= 0, the model space

is much larger than that for Vodd = 0 because it includes also the model space
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of 0p forbidden states to which the total three-body wave function should be

orthogonal. For 4+, the number of channels becomes so large that it becomes

physically impossible to verify the sensitivity of the three-body solutions to

all the parameters that control their quality. We use the same sets of such

control parameters both for Vodd 6= 0 and Vodd = 0, where no problems were

encountered. However, this may not guarantee us from numerical problems

in larger model spaces. On the other hand, there may be also a physical

reason for abnormally low 4+ state with the interaction chosen. At least, we

have found out that the reason for low position of the 4+ state obtained with

the B2 potential was the l-dependence of the 16C-n potential. When this

l-dependence is removed, the split between the 0+, 2+ and 4+ states looks

more traditional but the 18C three-body ground state becomes over-bound.

Therefore, below we mainly discuss the results obtained with B2 potential

for which the ordering of 2+ and 4+ states is correct.

For B2, the calculated 18C binding energy of the ground state, E = −5.26

MeV is only about 350 keV larger than the experimental value of −4.92 MeV.

The r.m.s. radius has converged to 2.932 fm. The distance between the two

valence neutrons is Rnn = 4.64 fm and 16C-n distance is Rn−16C = 3.85 fm.

The 18C wave function is built on the ground state of the 16C core rather than

on its first excited state, with P(16C(0+))=62% and P(16C(0+))=28%. The

composition of the ground state in terms of the 17C(Jπ)⊗nlj configurations

is shown in Table 5.1.

The three-body 2+
1 state is lower that the experimental one by 472 keV.

The life time of this state has been recently measured and the B(E2; 2+ →
0+) transition probability has been determined in a lifetime measurement

experiment [17] to be 4.3±0.2±1.0 e2fm4. The calculated three-body value

of B(E2 : 2+ → 0+) for 18C is 9.47 e2 fm4. This value has been calculated

at Kmax = 12 and it differs from that obtained at Kmax = 10 by ∼ 1%. The

three-body B(E2) probability is about twice as large as the experimental

value. Such an overestimation can result from neglecting interactions in odd

partial waves. Indeed, using the potential set B1 instead of B2 we get 7.79
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Table 5.1: The probabilities P (in per cents) of the 17C(Jπ)⊗ nlj configura-

tion for bound states in 18C calculated with B2 potential

18C
17C(3/2+)⊗ 17C(1/2+)⊗ 17C(5/2+)⊗
s1/2 d3/2 d5/2 s1/2 d3/2 d5/2 s1/2 d3/2 d5/2

0+
1 38 11 42

2+
1 6 12 5 10 16 9 5 14

2+
2 0 3 22 0 0 0 45 21

4+
1 32 32 12

1+ 0 0 42 0 0 41 0

e2 fm4, which is closer to experiment.

Apart from the 2+
1 and 4+ states discussed above, the B2 potential pre-

dicts another three states below the 17C+n threshold, which are 1+, 2+
2 and

2+
3 . The 1+ state, predicted at 3.68 MeV, is reasonably close the state at 4

MeV observed in Refs. [11, 18]. The 1+ state could not be seen in the recent

neutron knockout experiment with the 19C beam because the cross section

for population of this state should be very small [11]. On the other hand,

the shell model calculations from [19] do not predict any 1+ states below

the 16C+2n threshold, so that the low position of the three-body 1+ state

could have the same origin as the abnormal decrease of the 4+ state, namely,

the l-dependence of the 16C+n interaction. As well as the 4+ state, the 1+

state is built on the d2 configuration (see Table II), where the interaction

is stronger. Including non-zero Vodd (using potential B1) pushes 1+ into the

region between the 17C+n and 16C+2n thresholds. Interestingly, the modifi-

cation of the shell model interaction made in Ref. [18] brings the shell model

1+ state into the vicinity of the 17C+n threshold too.

The last two bound states, predicted with B2, are the two 2+ states at

3.85 and 4.07 MeV. Both of them are close to the observed 4 MeV state with

the tentative (2+,3+) parity assignment. For B1, the 2+
2 state almost does not

change its position, slightly shifting to 3.92 MeV, while the 2+
3 state becomes
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Figure 5.3: The three-body 18C spectrum obtained with potential B2 and

B1 in comparison to shell model spectrum from Ref. [10] and the latest

experimental spectrum from Ref. [11].

unbound. Although the energy of the 2+
3 is not converged, its decrease with

Kmax suggests that 2+
3 becomes a two-body 17C+n resonance. Both calcu-

lations support the 2+ interpretation of the observed 4 MeV state. Such an

interpretation is also consistent with the modified shell model calculations

from Ref. [18]. However, this interpretation is not consistent with large

cross sections for the neutron removal reaction of 19C [11]. This contradic-

tion could be resolved if two states, 2+ and 3+, existed in 18C very close to

each other near Ex = 4 MeV.

Finally, the three-body model cannot offer an explanation for the observed

state at 2.5 MeV. Although it predicts a 4+ state at 2.18 MeV, our current

knowledge about the split between the first 0+, 2+ and 4+ levels suggest that

the lowering of the 4+ state is more likely a by-product of the chosen two-

body interaction. On the other hand, if a 4+ excited state existed very close

to 2.5 MeV next to either a hypothetical 0+ or 2+ state, then its de-excitation
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by γ-ray emission would be almost indistinguishable from that from the 0+

or 2+ states. A hypothetical 4+ state near 2.5 MeV would not have been seen

in neutron knockout from 19C either as it would require an l = 4 momentum

transfer, which should be suppressed for dynamical reasons.

5.2 ]Unbound States Above the 17C+n Thresh-

old and their Contribution to the 17C(n, γ)18C

Reaction Rate

The three-body model predicts five states above the 17C+n but below the
16C+2n threshold: two 0+ sates along with a 2+, 3+, and 1−. They should be

seen a resonances in the 17C+n two-body continuum. However, we predicted

these states by solving a bound state problem and therefore do not know

their widths. We estimate these widths in a single channel two-body 17C+n

model with a standard spherical Woods-Saxon potential (r0 = 1.25 fm, a

= 0.65 fm) whose depths is fitted to reproduce the calculated positions of

theoretical resonances. The single-particle widths obtained in this way were

multiplied then by the probabilities of the corresponding 17C(3/2+) ⊗ nlj

configurations. The 0+
2 , 0+

3 and 3+ states are pure d-wave resonances, and

their estimated widths are 0.04, 0.4 and 2 keV respectively. The p-wave

resonance 1− has an estimated width of 150 keV. The 2+
4 state has s-wave

and d-wave components built on 17C(3/2+), the probability of the d-wave

channel being about three times larger than that in the s-wave channel. The

partial width in the d-wave channel is easily estimated in a similar way to be

∼4 keV. However, since there is no centrifugal barrier in the s-wave channel,

we cannot provide any estimate for its width. It is questionable whether such

a state could exist at all as the absence of any barriers could spread it over

all the continuum. It is possible that it can exist as a virtual state, similar

to 10Li or 9He, however, at present we cannot make any predictions for its

scattering length.
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Table 5.2: Reduced transition probabilities B(Ji → Jf ; σλ) (in e2fm2λ for

σλ = Eλ and in µ2
N for σλ = M1), the corresponding partial widths Γγ and

resonance strendth ωγ (both in eV). The resonance energies Eres and the

γ-ray energies Eγ are in MeV. Transitions with very small contributions are

not included in the table.

Jπ
i Eres Jπ

f Eγ σλ B(σλ) Γγ ωγ

0+
2 0.047 2+

1 3.46 E2 0.30 1.24 × 10−4 1.55 × 10−5

0+
3 0.21 2+

1 3.63 E2 0.54 2.82 × 10−4 3.53 × 10−5

1+ 1.07 M1 3.51 4.99 × 10−2 6.23 × 10−3

3+
1 0.28 2+

1 3.71 E2 0.18 1.01 × 10−4 8.84 × 10−5

M1 0.012 9.80 × 10−3 8.58 × 10−3

2+
2 0.96 E2 2.50 1.69 × 10−6 1.48 × 10−6

2+
3 0.75 M1 0.023 1.10 × 10−4 9.68 × 10−5

1+
1 1.14 E2 6.11 9.44 × 10−6 8.26 × 10−6

4+
1 2.64 E2 0.24 2.56 × 10−5 2.24 × 10−5

M1 0.055 1.2 × 10−2 1.05 × 10−2

2+
4 0.29 2+

1 3.72 E2 0.30 1.71 × 10−4 1.07 × 10−4

M1 2.2 ×
10−4

1.31 × 10−4 8.19 × 10−5

2+
2 0.98 E2 2.33 1.69 × 10−6 1.06 × 10−6

1+
1 1.15 E2 2.28 3.73 × 10−6 2.33 × 10−6

0+
1 4.83 E2 0.033 7.14 × 10−5 4.46 × 10−5

4+
1 2.66 E2 0.46 4.93 × 10−5 3.08 × 10−5

1−1 0.61 2+
1 4.03 E1 0.21 14.45 5.42

0+
1 5.15 E1 0.018 2.53 0.95
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The resonance energies of 0+
3 , 3+ and 2+

4 states, 0.211, 0.277 and 0.290

MeV respectively, are very close to those that corresponding to supernovae

temperatures. We have calculated the contribution from these states to the

resonant 17C(n,γ)18C reaction rate NA〈σν〉R. For an isolated narrow reso-

nance i this rate is [19]

NA〈σν〉R = 1.54 × 105µ−3/2T−3/2
∑

i

(ωγ)i

× exp(−11.605Ei/T9) cm3mole−1s−1, (5.1)

where Ei is the resonance energy in MeV, T9 is the temperature in 109 K,

µ is the reduced mass mnm17C/(mn +m17C), where mn is the neutron mass

and m17C is the mass of 17C, and ωγ is the resonance strength (in eV) given

by:

ωγ =
2J + 1

2(2jt + 1)

ΓnΓγ

Γtot

. (5.2)

Here J and jt are the spins of resonance and the target nucleus 17C respec-

tively, Γn and Γγ are the partial widths of the entrance and the exit channels

respectively, and the total width Γtot is the sum over the partial widths of all

channels. The partial widths Γγ are calculated from the electromagnetic re-

duced transition probabilities B(Ji → Jf ;L) which is calculated in the same

three-body model. Two types of electromagnetic transitionsn are possible for

the 0+
3 , 3+ and 2+

4 resonances, E2 and M1, for which the Γγ partial widths

are given by expressions [19]

ΓE2[eV] = 8.13 × 10−7E5
γ [MeV]B(E2)[e2fm4], (5.3)

ΓM1[eV ] = 1.16 × 10−2E3
γ [MeV]B(M1)[µ2

N ]. (5.4)

To calculate the electromagnetic transitions E2 and M1 in the three-body

model, two terms in the transition operator are required: one that acts on the

two valence neutrons and the other treating the collective excitation of the
16C core. No effective charges were applied for neutrons in this work. Effec-

tive charges arise normally when the electromagnetic transitions have strong
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contributions from the model spaces absent in the model Hamiltonians. This

is the case in conventional shell model which does not account for clustering

and correct asymptotic behaviour outside the range of the nucleon-nucleus in-

teraction. Microscopic cluster models include them explicitly and do not use

effective charges. Whether effective charges are needed in few-body models

is still unclear. The three-body calculations of 16C have shown that effective

charges that reproduce the B(E2) value for 15C lead to overestimated B(E2;

2+ → 0+) value for 16C [1]. In the case of 18C, the model space is much larger

than was used for 16C in [1], so the introduction of effective charges appears

to be less necessary. The contributions that come from effective charges can

be compensated by various other effects like, for example, two-body poten-

tials in odd partial waves or contribution from other excited states of the

core.

The E2 transition involves two matrix elements 〈16C(0+)|E2|16C(2+)〉,
responsible for the core excitation, and 〈16C(2+)|E2|16C(2+)〉 , which in-

duces reorientation and is related to the quadrupole moment of 16C. Both

of these terms were taken to be consistent with the experimental deforma-

tion length of δm = βmRm = 1.3fm used to calculate the three-body 18C

wave functions. As for the M1 transition, we require the matrix element

〈16C(2+)|M1|16C(2+)〉. We calculate it in the spsdpf shell model with the

WBP interaction [20] using the code NuShell@MSU [5].

The calculated ΓE2 are presented in Table 5.2. All of them are much

smaller than neutron widths, which means that the resonance strength ωγ

depends only on Γγ:

ωγ ≈ 2J + 1

2(2jt + 1)
Γγ. (5.5)

The resonant E2 reaction rates for 0+
3 , 3+ and 2+

4 are presented in Fig.

5.4, where they are compared to the non-resonant reaction rate,

NA〈σν〉NR = 3417.69T9 − 358.029T 1.66
9 cm3mole−1s−1, (5.6)

obtained by Herndl et al earlier in Ref. [19]. The resonant rates are about

three order of magnitude smaller. This happens because the non-resonant
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E1 capture proceeds via the p-wave entrance channel where the centrifugal

barrier is smaller.

In calculating B(M1), we encountered two types of situations. For some

transitions, this value is large for small Kmax but decreases with increasing

model space, and this decrease becomes faster with increasing Kmax. The

B(M1) in such situations is not converged so we cannot estimate the corre-

sponding M1 reaction rate. For only five transitions, 2+
4 → 2+

1 , 0+
3 → 1+,

3+ → 2+
1 , 3+ → 2+

3 and 3+ → 4+, have we obtained converged B(M1) val-

ues, which are shown in Table 5.2. The corresponding M1 contributions to

the resonant reaction rate, arising from 0+
3 and 3+ resonances, are shown in

Fig.5.4. They are two orders of magnitude larger than the corresponding E2

reaction rates, but still smaller than the non-resonant rate from Ref. [19].

The M1 contribution from 2+
4 is about an order of magnitude smaller than

the E2 one for the same state and it is not shown.

The three-body model predicts existence of the 1− state around 600 keV,

which is close to the energies relevant for supernovae explosions. We have

calculated the resonant E1 contribution to the 17C(n,γ)18C reaction rate due

to this state. The width Γγ for this case is [19]

ΓE1[eV ] = 1.06E3
γ [MeV]B(E1)[e2fm2]. (5.7)

The B(E1) transition probabilities and ΓE1 are given in Table 5.2. The reso-

nant E1 capture rate, shown in Fig.5.4, dominates the non-resonant capture

calculated by Herndl et al at T9 ≥ 1.2.We have to mention, however, that

the ωγ ∼ 10 eV obtained in our three-body calculations is much larger than

the shell model value of 0.022 eV from Ref. [19]. If the shell model value is

used in our calculations, the resonant reaction rate would still be lower than

the non-resonant rate.

The resonant rates discussed above were obtained using the B2 potential

set where interaction in odd partial waves is absent. Including Vodd (by

using potential B1) pushes the 1−, 3+, 0+
3 and 2+

4 states above the 16C+2n

threshold. The 0+
2 state will take place of the 0+

3 state and the 1+ state

becomes unbound with respect to neutron emission. The 2+
3 state will be just
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under the 16C+2n, which is a bit far from the astrophysical relevant energies.

In this case, the only important contribution to the resonant reaction rate

may come from the M1 transitions from 1+. However, we do not calculate it

here.
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5.3 Summary and Conclusions

We have studied the 18C spectrum within a three-body deformed 16C+n+n

model with 2+ excitation of the 16C core. This study reveals that the bound

state energy of 18C is compatible with the three-body structure of this nu-

cleus. Our model gives the energy of the first excited 2+ state within 0.4

MeV of the experimentally observed one and suggest that there should exist

another 2+ state around 4 MeV, which is compatible with recent experimen-

tal studies. However, our model gives low positions of the first 4+ and 1+

levels, which could be a drawback of the 17C+n interaction used. Although

this interaction reproduces exactly the observed spectrum of 17C, its compo-

sition in terms of probabilities of the core states is not reproduced. Including

more excitation, for example, by adding the 16C(4+) into the coupled channel

problem, could improve this situation, however it would increase the number

of channels in the three-body problem to such extent that it would make

such calculations impossible.

Our calculations suggest that there may be resonances in the region be-

tween the 17C+n and 16C+2n thresholds, the most important of which is 1−.

Interestingly, the recent analysis of the two-neutron knockout from 19C [22]

suggests that the important part of the removal cross section comes from

population of the intermediate 1− state in 18C. If this resonance has a three-

body structure and a large E1 strength associated with it, then it will give

a large contribution to the 17C(n,γ)18C capture rate. The increased reaction

rate may significantly influence the abundances of actinides synthesized in

the r-process and, therefore, a search for this resonance is an important and

timely task.

The three-body calculations suggest that a 2+ state may be present in

the astrophysical relevant region between the 16C+2n and 17C+n. This state

should have a significant s-wave component in which the valence neutron

does not see any centrifugal barrier. Such a state may manifest itself as a

virtual state in the 17C+n continuum. To calculate the contribution from this

state correctly, a scattering three-body problem includes a binary channel
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should be solved. This problem should also include core excitations and

Pauli projection of forbidden states, which is too complicated at the moment.

However, it is very important to perform such calculations properly because

the presence of a virtual s-wave states could lead to an enhanced neutron

M1 capture rate. Predictions for strong M1 enhancement have been recently

made for a similar reaction, 17F(p,γ)18Ne, in the Gamow shell model [23].
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Part B

Structural Study of Nuclei in the Vicinity of

100Sn: 96−104Cd, 104,108Sn, 106,108Te and 102−108Mo

Nuclei



Chapter 6

Study of Nuclei in the Vicinity

of 100Sn:Theoretical Framework

6.1 Introduction

In this second part of the work we chose to study an other mass region

of nuclei far from stability. It is located at the other side of nuclear chart

including proton-rich nuclei in the vicinity of 100Sn. The importance of this

region is due to its interest in nuclear structure and nuclear astrophysics.

The region, especially its cornerstone 100Sn nucleus, is located at the

very limits of nuclear stability giving more possibility in understanding the

evolution of nuclear structure away from the stability line. The interest in the

structure of nuclei located in the direct vicinity of the 100Sn nucleus comes

in part from the fact that this nucleus is the heaviest doubly-magic N=Z

nucleus which can be synthesized. Hence, it offers a possibility to test the

validity of the shell model in a many-body system where protons and neutrons

occupy the same orbitals, also for relativistic mean field and Hartree-Fock

calculations. This fact might also lead to interesting information about the

interaction between the protons and neutrons, collective phenomena, and

symmetries and charge invariance of the nucleon-nucleon forces.

In addition, the structure of the region has astrophysical consequences
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Figure 6.1: Segre nuclei chart part in the vicinity of the doubly magic nucleus
100Sn

since it is predicted that the region ’southwest’ of 100Sn lies on the rapid

proton capture (rp-process) path, which ends shortly beyond the N=Z=50

shell closure due to fast alpha decays.

For these reasons, this region is attracting growing interests in theoret-

ically and experimentally perspectives. In this brief introduction we can

mention, as examples, those works focusing on the nearest neighbors of 100Sn

because of its significant role in structure models and which have relation-

ship with our work. In 2007 , Seweryniak et al [1] have measured the first

two neutron states in 101Sn, and the energy splitting between the single neu-

tron g7/2 and d5/2 orbitals is evaluated to be 171.7(6) KeV. This work was

a subject of a perfection two years later by the author and his collabora-

tors [2]. The 0+
gs → 2+ transition strengths have been measured in 106,108Sn
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isotopes by Ekström et al [4]. The obtained results, B(E2 : 0+
gs → 2+) =

0.222(19)e2b2 for 108Sn and B(E2 : 0+
gs → 2+) = 0.195(39)e2b2 for 106Sn, are

∼ 30% larger than shell model predictions and deviate from the generalized

seniority model, which may be an indication of a weak N=Z=50 shell closure.

Theoretically, Coraggio et al [3] have performed shell model calculations for

odd-odd nuclei with neutron particles and proton holes around 100Sn using

realistic effective interaction derived from the CD-Bonn nucleon-nucleon po-

tential. The even-even Te isotopes with 116 < A < 130 have been studied

in shell model framework to explain shell structure and collectivity in this

isotopic chain [5].

In this work we aim to add a theoretical contribution in studying nuclei

in the vicinity of the doubly magic nucleus 100Sn, using two different mod-

els:shell model and and interacting boson model. The objective is to test

the validity of these two models in region far from the stability. The many

body shell model, is applied on even even isotopes of three chains with differ-

ent model spaces: Cd, Sn and Te. Whereas the algebraic interacting boson

model is applied on the lightest even-even molybdenum isotopes, 102−108Mo,

which have the ratio E4+/E2+ higher than 2, an indicator of the existence

of collective excitations.

6.2 Nuclear Shell Model

6.2.1 Prologue:The Nuclear Magic Numbers

The starting point of the nuclear shell model was, without any doubt, the

nuclear properties of the magic nuclei and their neighbors. In nuclear physics

nuclei with nucleons number, protons or neutrons or both of them, equal to

2, 8, 20, 28, 50, 82 and 126 are called magic nuclei because of their impressive

properties compared to their neighbors. The accumulated experimental data

for decades show the similarities of nuclear properties of these nuclei pointing

out to closed shell structure corresponding to numbers of nucleons equal to

magic numbers. Briefly, we can enumerate the most important of them.
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More details can be reviewed in [6, 7]

• Nuclei with a magic number of protons or neutrons, or both of them,

are found to be particularly stable. They are more tightly bound nuclei;

and the separation energy of the last nucleon in nuclei with one more

nucleons than the magic numbers is particularly low.

• Nuclei with magic numbers have an abundance of stable nuclides par-

ticularly large. Systematic study of stable isotones shows that nuclides

with neutron numbers 20, 28, 50, and 82 are more abundant by 5 to 7

times than those with non-magic neutron numbers.

• The first excited states of even-even nuclei have higher than usual en-

ergies at the magic numbers, indicating that the magic nuclei are more

tightly bound.

• The neutron capture cross sections for magic nuclei are small, indicating

a wider spacing of the energy levels just beyond a closed shell

6.2.2 Basic Nuclear Nhell Model: The Mean Field

The Nucleus is a system of A nucleons, N neutrons and Z protons, interac-

tion with each other by strong nuclear interactions. In addition, protons also

feel the coulomb force. At first the nucleons are assumed to be point parti-

cles without any internal structure, the nuclear forces are described without

attention to the basic mechanisms underlying them, and the two nucleon

interaction is described by two body interaction matrix elements.

The aim of the targeted nuclear shell model is to reproduce the shell

structure of nuclei where the closed shells correspond to the magic numbers

of nucleons: protons or neutrons.

As the number of the nucleons, A, grows, the Schrodinger equation be-

comes impossible to be solved exactly. And to overtake this problem, one

has to convert the strongly interacting system of A nucleons into a system of

A particles freely moving in an average potential: the mean field potential.
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This potential is assumed to resume all the mutual interactions between the

nucleon and all the remaining A-1 nucleons of the system.

The Hamilton H of the many-body nucleus system consisting of kinetic

energy T and potential energy V is

H = T + V =

A
∑

i=1

t(ri) +

A
∑

i,j=1,j>i

v(ri, rj) =

A
∑

i=1

−h̄2

2m0
∇2

i +

A
∑

i,j=1,j>i

v(ri, rj)

(6.1)

where m0 is the mass of a nucleon, and ri denotes the nucleon coordinates of

the nucleon i. By adding and subtracting a sum of single particle potential

energy, v(ri), we get

H =

[

T +
A
∑

i=1

v(ri)

]

+

[

V −
A
∑

i=1

v(ri)

]

= HMF + VRES (6.2)

where the nuclear mean field Hamiltonian is

HMF = T +
A
∑

i=1

v(ri) = T + VMF =
A
∑

i=1

[t(i) + v(i)] =
A
∑

i=1

h(i) (6.3)

and

VRES = V −
A
∑

i=1

v(ri) =
A
∑

i,j=1,j>i

v(ri, rj) −
A
∑

i=1

v(ri) (6.4)

is the residual interaction presumed to be much smaller in strength from the

potential energy V .

In the mean field approximation we convert the strongly interacting A

fermions system to a system of A non-interacting fermions where each nu-

cleon can be viewed as moving in an external potential v(r) created by the

remaining A-1 neighbors.
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The corresponding Schrodinger equation of the A non-interacting fermions

system is:

HMFΨ0(r1, r2, ..., rA) = EΨ0(r1, r2, ..., rA) (6.4)

where the total wave function can be written, a priori, as the product of all

the one-nucleon wave functions

Ψ0(r1, r2, ..., rA) = φα1(r1)φα2(r2)...φαA
(rA). (6.5)

Substituting this wave functions product into the Schrödinger equation

(6.4) yields A identical one-nucleon Schrödinger equations for an external

potential well

h(r)φα(r) = ǫαφα(r), h(r) = t(r) + v(r) =
−h̄2

2m0

∇2 + v(r) (6.6)

with the partial eigenvalues ǫαi
satisfying the condition

E =
A
∑

i=1

ǫαi
(6.6)

By the concept of the mean field we succeed to simplify the complicated

many nucleon problem to a simple one-nucleon one. But the problem remains

how to determine the mean field that minimizes the residual interaction be-

tween the non-interacting valence particles.

Hartree-Fock self consistency potential There are two point of view

how to deal with the mean field potential VMF : the microscopic method

(Hartree-Fock) and the phenomenological method. Since our aim is not to

enter into all the details of the field, and just to follow the procedure how to
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solve the many body system problem at the nucleus scale, we refer for more

details about the microscopic mean field method to [7, 10].

The Hartree-Fock is a method to solve the non-linear Hartree-Fock equa-

tion obtained from the Schrödinger equation by the variational method. The

solution can be only carried out by iteration. A set of guessed single particle

wave functions {φ(0)
i }A

i=1 are used to calculate the initial potential term V
(0)
HF .

As the following step we solve the equation for a complete set of new wave

functions {φ(1)
α }∞α=1 and eigenenergies ǫ

(1)
α . With this new set of eigenfunc-

tions we generate the next potential V
(1)
HF and solve again the Hartree-fock

equation for the next set of eigenfunctions and eigenvalues. In schematic

way, this process can be represented as

φ
(0)
i −→ V

(0)
HF −→ φ(1)

α , ǫ(1)α −→ V
(1)
HF −→ ... −→ φ(n)

α , ǫ(n)
α (6.7)

This process is repeated until self consistency is achieved.

6.2.3 Phenomenological Potentials

The other method to determine the mean field, that is very often used and

represents a practical shortcut, is just one selects a particular type of mean

field potential. The more realistic choise is the Woods-Saxon potential

vWS(r) =
−V0

1 + e(r−R)/a
(6.8)

Its usual parameters are: The nuclear radius R = r0A
1/3 = 1.27A1/3fm,

the surface diffuseness a = 0.67fm and the depth of the well V0. The later

one has different values for neutrons and protons because of the addition of

the coulomb interaction effect for the protons. A suitable average value of

V0 = 57MeV is usually taken when not making distinction between nucleons.

The problem in the Woods-Saxon central potential, in general, is that

there is no analytical solutions of the Schrödinger equation. The simplest

frequently used potential is the three dimensional harmonic oscillator poten-

tial
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vHO(r) = −V1 + kr2 = −V1 +
1

2
m0ω

2r2 (6.9)

where V1 and k are two parameters to be fitted for best result.

This potential is a good approximation of the 2nd order for the Woods-

Saxon potential expansion. The central potential succeeds to reproduce the

qualitative behavior of the single particle energies. However for the higher

values of angular momentum, clear differences between the two potentials

appear, especially the asymptotic behavior. Higher order of the expansion

are necessary to restore the equivalence ( edge term ∼ −→
l 2). The observed

energies bunch into groups, or shells. Only three of the major shells, cor-

responding to magic numbers: 2, 8 and 20, are reproduced by the central

potential .

To reproduce theoretically all the observed numbers experimentally, Goepert-

Mayer [8] and Axel, Jensen and Suess proposed [9] the addition of an other

term to the mean field called spin-orbit interaction.

In fact, this Spin-Orbit interaction, or coupling or force, splits the states

of the same orbital angular momentum quantum number l into two, with

total single particle angular momenta j = l + 1
2

and j = l − 1
2
.

The main features of the spin-orbit term are : the splitting energy scale

is of the same scale of the single-particle differences which affected the global

shell structure, and the splitting has an opposite order so that the the state

j = l + 1
2

is always lower in energy compared to the state j = l − 1
2
.

Thus, the Hamiltonian of single nucleon is written as:

h(r) = t(r) +
1

2
m0ω

2r2 +D
−→
l 2 + f(r)

−→
l −→s (6.9)

The term D
−→
l 2 , called the edge term, is for adjusting the Harmonic

Oscillator to Woods-Saxon potential at the limits of the well. The eigen-

wavefunctions of the Hamiltonian h(r) are of the form
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φnljm = Rnl

∑

ml,ms

〈lml
1

2
ms|jm〉Y ml

l (θ, ϕ)χms

s (σ) (6.10)

where Y ml

l (θ, ϕ)and χms
s (σ) are the Spherical Harmonics and spin func-

tions respectively. The corresponding eigenenergies are given by:

Enlj = (N + 3/2)h̄ω +Dl(l + 1)h̄2 +
h̄2

2
〈f(r)〉nl







−l(l + 1) if j = l − 1
2

l if j = l + 1
2

(6.11)

The total wave functions Φ0, solutions of the equation (6.4), are the prod-

ucts of the single nucleon wave function given by eq(6.10) with the eigenen-

ergies given by eq(6.11).

As the nucleons are fermions, the total wave functions have to be anti-

symmetric according to the exclusive Pauli principle. The representation of

the wave functions as Slater determinants can verify this condition. Thus,

the total wave function is thus written as the following Slater determinant

Φ0 = A
Z
∏

i=1

φπi
A

N
∏

j=1

φνj
(6.12)

Here, A is an antisymmetrization operator that performs the sign-accompanied

permutations of the single-particle orbitals in the product wave function; A
also carries a normalization factor. For example, for three particles in single

particle states labeled 1,2,3 the normalized antisymmetric state, or Slater

determinant, is

Φ0(r1, r2, r3) =
1√
6

















φ1(r1) φ1(r2) φ1(r3)

φ2(r1) φ2(r2) φ2(r3)

φ3(r1) φ3(r2) φ3(r3)

















(6.12)
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Harmonic 

Oscillator

Figure 6.2: Nuclear levels scheme of the mean field with Spin-Orbit term
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6.2.4 The Ingredients of Shell Model Calculation

Each Shell Model calculation requires the definition of the following ingredi-

ents:

• Definition of a valence (or model) space,

• Derivation of the effective interaction consistent with the chosen model

space,

• Calculation code to construct and diagonalize the Hamiltonian of the

system.

i) The Model Space

We mean by “model space”, also called “valence space”, the set of orbitals

and the truncation within that set of orbitals assumed in generating a cal-

culation in a many-body model. Generally, the larger is the model space,

the best and most complete the results are. However the computation time

increases exponentially with the size of the model space.

A typical model spaces are those constitute of the complete LS major

shells. There are regions of nuclei in which the valence protons an neutrons

go into the same major shell like as:

• The p shell: Two orbitals are included in the model space: 0p1/2 and

0p3/2 in which nuclei properties of 2 < N,Z < 8 may be described and

the core is the 4He.

• The sd shell: This model space is composed of three orbitals: 0d3/2,

1s1/2 and 0d5/2. In this model space we can describe the positive states

of nuclei with 8 < N,Z < 20. The inert core is 16O.

• The pf shell: The orbitals included in this valence space are 0f7/2, 1p3/2,

0f5/2 and 1p1/2. Nuclei with 20 < N,Z < 40 can be treated within this

model space. The core used is 40Ca.
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• The r3g shell formed of r3 ≡ 1p3/2, 0f5/2 and 1p1/2, and g ≡ 0g9/2.

Within this model space nuclei with 28 < N,Z < 50 are described; the

inert core is 56Ni.

• r4g shell composed of subsells 0g7/2, 1d5/2, 1d3/2, 2s1/2 and 0h11/2 is

the most adequate model space to study nuclei with 50 < N,Z < 80;

the inert core is 50Sn.

There are other regions in which the model space involves protons in

one major shell and neutrons in another, such as the p− sd region for light

neutron-rich nuclei with 2 < Z < 8 and 8 < N < 20, and the sd− pf region

for medium neutron-rich nuclei with 8 < Z < 20 and 20 < N < 40.

In this work in studying nuclei in the A=100 mass region in the vicin-

ity of 100Sn, we used the r4g model space for Sn isotopes and Te isotopes.

Lightest Cd isotopes are studied within the r3g model space, and a mixing

configuration involving r3g and r4g model spaces for protons and neutrons,

respectively, is used for the heavier isotopes of Cd.

ii) The Effective Interaction

The main problem in nuclear shell model has long been the determination of

the effective interactions Veff . The intuitive starting point in the derivation

of these interactions is the free nucleon-nucleon potentials.

Any realistic free nucleon-nucleon interaction (N-N) exhibits a strong

short range repulsion for small distances, this is the so called hard core

potential. At such short distances, carrying nuclear structure and matter

calculations, within many body model, faces the problem that the energy

between nucleons for such interaction 〈ψ|V |ψ〉 evaluated for uncorrelated

wave function ψ(r) diverges, since the uncorrelated wave function is different

from zero, also for relative distances r smaller than the hard core radius.

Similarly, even one uses interactions with soft cores, the matrix elements

become very large at short distances[4].
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For the last 60 years, there were two points of view how to see the solution

in order to overcome this problem giving rise for two main approaches of the

nuclear effective interaction.

Realistic effective interaction:

This method aims to construct an apropriate effective interaction starting

from the bare nucleon-nucleon (N-N) interaction. The traditional way to

overcome the divergence difficulty is The Brueckner G-matrix method, elter-

natively called the renormalized G matrix. Its is used to obtain a set of two

body matrix elements (TBME) for the model space. This takes into account

the short repulsive behavior of the interaction via the ladder diagrams. The

G-matrix can then be renormalized to include the effects of mixing with con-

figurations outside the model space- the core-polarization diagrams. In this

method, the renormalized G matrix, one usually takes the experimental sin-

gle particle energies (SPE), when available, together with the renormalized

G matrix (TBME). Calculations with this method for a few valence particles

or holes are very successful, which is not the case when the number of valence

particles or holes is increasing [19, 4].

To minimase the disadvantages encountered with shell model calcula-

tions over a wide mass region using a purely realistic interaction based on

the renormalised G matrix, an empirical approaches to the realistic effective

interaction are made. In these approaches, the Hamiltonians start from the

G matrix but they are empirically renormalised to account the divergence

encountered with the G matrix. The remarkable success known of method is

based upon the fact that the shell model spectra and excitation energies are

related to only a relatively few TBME or linear combinations of TBME [19].

Phenomenological approach of the effective interaction:

Because of the difficulties encountered in using the microscopic approach to

nuclear structure and matter density calculations, some studies have been

performed at the end of 60’s which aimed at building an approach to nuclear

structure starting directly from a parametrized form of the effective inter-

action. This parametrization is chosen to be simple enough in order to be
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used in complex calculations such as the fission and matter density. Simi-

larities with the G-Matrix are also accounted in building these interactions,

especially those related to the correlations associated with the repulsive core

of the bare N-N interaction (short rang correlations), and can thus be em-

ployed to describe independant particle states. In the last decades, different

phenomenological effective interactions have been proposed. Two of them

are the most employed: Skyrme interaction [20] and Gogny interaction [21].

iii) Shell Model Code

There are several methods for carrying out the many body calculation. One

of these involves defining the configurations within the model space in terms

of an M-scheme basis. Diagonalization of the Hamiltonian in the M-scheme

basis results in eigenfunctions with good J

Another method involves configurations defined in terms of definite Ji

coupling of the intermediate states to a total value J . The dimension of

the M-scheme is much larger than the J-scheme basis. For example, for 12

particles in the sd model space (28Si) the M = 0 dimension is 93710 and

the J = 0 dimension is 839. Although the matrix is much larger in the

Mscheme, the computation of the elements of the matrix is much easier. M-

scheme and J-scheme codes are competitive, but there are situations where

one is preferred over the other.

A third type of code [12] starts with an M-scheme basis and generates a

basis of good J states with an angular momentum projection operator.

Modern versions of the M-scheme code are ANTOINE [13], VECSSE

[14] and MSHELL [15]. Versions of the J-scheme code are RITSSCHIL

[16]and and NATHAN [17]. OXBASH [12] is the only version of the pro-

jection method. The OXBASH computer package comes with a library of

Hamiltonians. When the OXBASH Hamiltonians are used they should be

referenced to original articles in the literature.

In our work we used the NuShell@MUS code. It is a nushell core program

with input and output formats in the OXBASH style. It is a set of programs
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for carrying out shell model calculations with dimensions up to about 100

000 in the J − T scheme and about 2 000 000 in the M-scheme. As like

as OXBASH, NuShell@MSU code comes with library of model spaces and

interactions. Carrying out NuShell@MSU calculation needs specification of

the model space and the Hamiltonian references in the code library [11].

6.3 The interacting Boson Model (IBM)

The interacting boson model (IBM) is an algebraic model which has been

introduced in 1974 by Arima and Iachello. In this approach the collective low

lying states of even-even nuclei are described by a system of N interacting

bosons: s(L=0) and d(L=2) [22]. The 36 belinear operators s†s, s†d̃µ, (d†d̃)
(l)
µ ,

l = 0, 1, 2, 3, 4 and −l ≤ µ ≤ l are the generator of the U(6) algebra. Three

subalgebra chains can be derived:

(I) U(6) ⊃ U(5) ⊃ SO(5) ⊃ SO(3)

(II) U(6) ⊃ SU(3) ⊃ SO(3)

(III) U(6) ⊃ SO(6) ⊃ SO(5) ⊃ SO(3)

The general Hamiltonian can be written as [23]

H = εn̂d + a0P
†P + a1L̈L̈+ a2QQ+ a3T3T3 + a4T4T4 (6.12)

Where

P =
1

2
(d̃d̃− ss)

Tl = (d†d̃)(l) , l = 0, 1, 2, 3, 4

Q = (s†d̃+ d†s̃)(2) −
√

7

2
(s†d̃)(2) = (s†d̃+ d†s̃)(2) −

√
7

2
T2

n̂d =
√

5T0 , L̂ =
√

10T1
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This model has been successfully applied to describe the structure of

medium and heavy nuclei either vibrational (U(5) limit (I)), rotational

(SU(3) limit (II)) or gamma-unstable (SO(6) limit (III)).

6.4 The Consistent Q Formalism

For deformed nuclei, a simpler version of IBM has been introduced: the

consistent Q formalism (CQF) [23]. In the CQF Hamiltonian the effect of

the pairing term (P †P ) is taken into account through a free value of the T2

factor in the quadupole operator. This leads to the reduced form:

H = a2Q
χQχ + a1L̂L̂ (6.10)

where

Qχ = (s†d+ d†s)(2) + χ(d†d)(2) (6.11)
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Chapter 7

SM and IBM calculation

Results

7.1 Shell model study of 100Sn mass region

nuclei

The doubly magic nuclei are the cornerstones of the nuclear landscape. The

properties of stable nuclei of them such as 16O, 40Ca and 208Pb are quite well

known. Nuclear structure models have achieved a remarkable successes in

describing properties of these nuclei and their nieghbours.

In the other hand, the surface of exotic nuclei on the nuclear chart is

enlarging abundantly in the two directions: proton-rich and neutron-rich

nuclei. New structural phenomena and data about the residual interaction

are becoming now available for many nuclei in these regions which provide a

challenging testing ground for current models. Much attention is currently

focused on nuclei in the regions of shell closures. In this context, data on the

exotic doubly magic nuclei 48Ca, 78Ni, 100Sn, and 132Sn are invaluable. In

this part of the work, we interest only in studying, within the shell model,

nuclei in the vicinity of 100Sn.

The shell model is the basic framework for nuclear structure calculations

in terms of nucleons. Since its development early 1950s to now, hundreds of

93
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calculations within this model have been carried out, many of them being

very successful in describing a variety of structure phenomena.

One of the challenges of this model, as well as all the other current nuclear

models, is to explore the extent to which it can describe nuclei situated

far from the line of stability and to develop extrapolations to nuclei which

cannot be readily synthesized in a laboratory but play an important role in

astrophysics.

In this part, we performed calculations within shell model for even-even

nuclei of three isotopic chains in the vicinity of the doubly magic nucleus
100Sn: 96−104Cd, 104−108Sn an 106,108Te. The calculations have been carried

out using the windows version of NuShell@MSU [5]. The two main ingre-

dients needed are the single particle energies (SPE) of the model space or-

bitals, and two body matrix elements (TBME) of the effective interaction

between valence nucleons. For the former, we will discuss the determination

of the SPEs corresponding to orbitals of each chosen model space. What

concerns the latter, calculations have been performed using the renormalised

two body effective interaction based on G-matrix derived from the CD-Bonn

free nucleon-nucleon potential [6]

7.1.1 Cd isotopes chain

For this isotopic chain, we can distinct between two groups of isotopes seeing

the model space we have to use in studing them in many body shell model.

For the 96
48Cd48 and 98

48Cd50 the model space contains the same orbits.

The number of protons and neutrons are 28≤ Z,N ≤ 50, and thus they fill

the same sub-shells. The wave functions are obtained in the model space

(1p3/2,0f5/2,1p1/2,0g9/2) for both protons and neutrons.

The single particle energies (SPEs) for protons are obtained from the
79
29Cu50 spectrum levels. The relative values of these energies corresponding

to the core 78
28Ni50 are: -14.938, -13.437, -12.044 and -8.905 MeV for the

orbitals : 0f5/2, 1p3/2, 1p1/2, and 0g9/2, respectively.

The SPEs for neutrons are obtained from the excitation energies of neu-
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Figure 7.1: NuShell shell model calculations of Cd isotopes chain spectrum

compared with the available experimental data. Spectrums of 96
48Cd48 and

98
48Cd50 are obtained using jj44pna interaction [2], whereas the jj45pna inter-

action is used for the others

tron in 57
28Ni29, and their relative values to the corresponding core 56

28Ni28 are:

-9.988, -9.153, -8.361 and -5.255 MeV for levels 1p3/2, 0f5/2, 1p1/2, 0g9/2, re-

spectively. The interaction used here is the same used by Lisetskiy et al [2] to

study nuclei in the vicinity of 78
28Ni50 labeled in the NuShell code by jj44pna.

The results obtained for 98
48Cd50 are in good agreement compared to the

existing experimental data, even we did not change the single particle energies

(SPEs) of the model space orbitals to adjust them with the region and we

saved the same ones used by Lisetskiy et al [2] for nuclei in the vicinity

of the doubly magic exotic nucleus 78
28Ni50. In the vicinity of 100

50 Sn50 and

for these two isotopes of Cd chain, protons and neutrons SPEs should be

the orbitals excitation energies of proton hole in 99
49In50 and neutron hole in

99
50Sn49 respectively. More experimental data about the 96

48Cd48 might confirm

the predictions of our calculations 7.1, or push to more perfections of the
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used interaction.

For the isotopes 100
48 Cd52,

102
48 Cd54 and 104

48 Cd56, the wave functions were

obtained in the model space (0g7/2, 1d5/2, 1d3/2, 2s1/2and1h11/2 ) of neutron

particle orbitals, and (1p3/2, 0f5/2, 1p1/2, 0g9/2) of proton hole orbitals. We

used the interaction in NuShell@MSU library labeled by jj45pna. This inter-

action is based on the renormalized G-matrix and the single particle energies

are adjusted to the 132Sn mass region.

Although we did not make changes on the interaction initially made for

nuclei in the vicinity of neutron-rich doubly magic nucleus,132Sn, results for
102Cd and 104Cd are more or less acceptable compared to the experimental

data. But significant discrepancies are obvious for the 100Cd spectrum. The

states sequence is disordred and the energy differences are significant.

7.1.2 Sn isotopes chain

In this subsection we present results for the even 104,106,108Sn isotopes using

the doubly magic nucleus 100Sn as core and distributing the valence neutrons

over the model space constituted of the single-particle orbits in the N =

4 oscillator shell ( 1d5/2, 0g7/2, 1d3/2, 2s1/2) and the orbital 0h11/2 from the

N = 5 oscillator shell. Because of the zero valence protons in this isotope

chain, there is no effect of the protons on their spectra, and thus we delay

the discussion of the model space and the definition of the corresponding

single proton energy to the next section where we present the study of the

Te isotopic chain.

Because of the poor experimental data available for the system with one

valence neutron,101Sn, we used the 107Sn spectrum to establish the single

particle energies of the neutron model space orbitals. This method has been

used in previous works to overtake the lack of information about the nucleus

just next the core [4, 3]. 107Sn is the lightest odd isotope which figures

four of the five of the model space orbitals : 1d5/2, 0g7/2, 1d3/2 and 0h11/2

with excitation energies 0.0 MeV, 0.152 MeV, 0.703 MeV and 1.667 MeV

respectively. The excitation energy of the fifth level, 2s1/2, is not defined
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Figure 7.2: NuShell shell model calculations of Sn isotopes chain spectrums

compared with the corresponding available experimental data.

yet, we adopt an excitation energy of 0.810 MeV. This value is estimated

regarding its excitation energy in 109Sn and the amount of increase of ∼
0.300 Mev of this level compared to 111Sn. Thus, the adopted single particle

energies are:-11.567 MeV, -11.415 MeV, -10.864 MeV, -10.767 MeV and -

9.900 MeV for 1d5/2, 0g7/2, 1d3/2, 2s1/2 and 0h11/2 respectively.

It is clear from the results obtained of the calculations using NuShell

code [5] represented on figure 7.2 that there are some agreements and some

disagreements compared to the experimental data. The model with the re-

strictions of the model space and the single particle energies mentioned above

can reproduce clearly the order sequences of the states below 4 MeV. The

state 2+ is reproduced with a good agreement of ∼ 30 KeV for 106Sn and
108Sn, whereas the agreement is about ∼ 80 KeV for 104Sn. The same thing

can be seen for the 4+ state for the three isotopes, where the predicted states

are a little bit above the experimental ones of about 100 KeV. What con-

cerns the 6+ and 8+ the disagreement is clear and the differences with the

experiment become more and more big arriving to ∼ 500 KeV. These results



7.1 Shell model study of 100Sn mass region nuclei 98

.

0

1

2

3
E

xc
ita

tio
n 

E
ne

rg
y 

(M
eV

)

106
Te

0
+
   0.0000

+
   0.000

EXP SM EXP SM

2
+
    0.664

4
+
   1.353

6
+
   1.646

8
+
    2.386

2
+
   0.543

4
+
   0.928

6
+
    1.745

8
+
    2.548

2
+
   0.625

4
+
  1.289

6
+
  2.048

8
+
   2.945

0
+
   0.000 0

+
   0.000

2
+
   0.377

4
+
   0.825

6
+
  1.531

8
+
   2.299

108
Te

Figure 7.3: NuShell shell model calculations of 106,108Te isotopes spectrums

compared with the corresponding available experimental data.

need more perfections.

7.1.3 Te isotopes chain

For the Te isotopic chain, we present here shell model calculation results

of even-even 106Te and 108Te isotopes. They consist of two proton outside

the Z=50 proton shell closure, and four and six neutrons outside the N=50

neutron shell closure, respectively. The protons and neutrons numbers are

just above the shell closure number and they verify 50 < Z,N < 82. Thus,

the model space consists of 1d5/2, 0g7/2, 1d3/2, 2s1/2 and 0h11/2 for both type

of nucleons.

The neutron single particle energies are defined as it is mentioned above

in the previous section when we studied the Sn isotopes. They are established

from the lightest existing odd isotope spectrum, 107Sn, because of the lack of

information on the 101Sn spectrum and its nearest odd isotopes. The same

problem we are encountered with when we look to establish the proton single
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particle energies of the model space orbitals in this region. The best thing

to do that is the existence of (101
51 Sb50) spectrum. Unfortunately, neither the

experimental spectrum of this nucleus nor its nearest neighbors spectra are

yet obtained. 109Sb is the lightest odd isotope which figures the orbitals of the

model space: 1d5/2, 2s1/2 , 1d3/2, 0g7/2, and 0h11/2, with excitation energies

0.0 MeV, 0.402 MeV, 0.752 MeV, 0.832 MeV and 1.501 MeV, respectively.

Thus, the relative single particle energies adopted in this calculation are

respectively : -2.062 MeV, -1.661 MeV, -1.310 MeV, -1.230 MeV and -0.561

MeV.

The results obtained for these two nuclei compared with the experimental

data are represented on figure 7.3. It is clear that the sequence of the states

2+, 4+, 6+ and 8+ is well reproduced. Comparing the obtained shell model

spectrum to the experimental one of 108Te we can easily see that all theoret-

ical states are lower than experimental ones. The differences are important

and they are between 0.250 MeV and 0.650 MeV which are big.

For the second nucleus, 106Te, the same comments could be made on the

differences between the experimental data and shell model calculation results

even it is a bit smaller than in the previous nucleus.

In summary, results obtained for the Sn isotopes are more or less, good

compared with the experiment. For the other chain, Te isotopes, obvious

discrepencies with the experimental data are obtained. The two isotopic

chains have the same model space with additional two protons for Te iso-

topes. Therefore, one can conclude that the proton single particle energies

adopted here are still far away the real ones. Also, this calculation need more

perfections and experimental data are more than necessary.

7.2 Algebraic study of 102−108Mo

In parallel to the shell model calculation, we planned to achieve a relatively

complete treatment of collective excitations in the A=100 mass region using

different extensions of the interacting boson model (IBM). It is an algebraic
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Table 7.1: Th experimental E4+/E2+ ratios in function of the neutron num-

ber in even-even molybdenum isotopes,94−108Mo. The data are from [7]

isotope E4+/E2+ N

Z= 42

108Mo 563.8/192.9 = 2.92 66

106Mo 522.29/ 171.548= 3.044 64

104Mo 560.68/192.19 = 2.917 62

102Mo 743.74/296.597 = 2.5075 60

100Mo 1136.11/535.57 = 2.12 58

98Mo 1510.039/787.384 = 1.91779 56

96Mo 1628.218/778.245 = 2.092 54

94Mo 1573.72/871.087 = 1.8066 52

description of collective states in the atomic nucleus. It is a truncation (plus

a mapping ) of the shell model. The pairs of nucleons are treated as bosons (s

and d in its simplest version). In a first step, in the frame of the present work,

the consistent Q formalism (CQF-IBM1) Hamiltonian is used to describe the

structure of 102−108Mo isotopes.

The 102−108Mo (Z=42) isotopes show, at low energy, collective behaviour.

This is clear from the experimental E4+/E2+ ratios given in the table 7.1.

It is clear that we can class the molybdenum isotopes into two classes on

the basis of E4+/E2+: Isotopes which have this ratio amount higher than 2

and those which is for them lower than 2. The 100Mo is a transition nucleus.

Table 7.2: CQF parameter values used in the calculations

isotope a1 a2

√
5χ

102Mo 0.0175 -0.0400 -0.4

104Mo 0.0100 -0.0385 -0.6

106Mo 0.0125 -0.0300 -0.6

108Mo 0.0150 -0.0250 -0.5
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Figure 7.4: Algebraic model calculations in the interacting boson model

framework of proton rich Mo isotopes chain spectrums compared with the

available experimental corresponding data. Different colours are used for the

different states: the colours black, red, magenta, blue, turquoise, green, or-

ange and brown are associated for the states 0+, 2+, 3+, 4+, 5+, 6+, 7+ and

8+, respectively.

The latter, with lower ratios, can be studied in shell model basis. Whereas

for the former, with higher ratios, it is expected they have a structure that

can be described in IBM as an SU(3) to SO(6) transition. So the use of CQF

technique is justified.

Results of calculation ( Fig.7.4) uses the CQF parameters of table 7.2,

show a fair agreement with experimental data. However, a beter parameter

optimization is necessary.

Some significant discrepancies are noticed in 102Mo probably to its differ-

ent behaviour because of the relatively low E4+/E2+ ratio.

Similar tendency has been obtained recently [8] using a more compli-

cated Hamiltonian. However a beter understanding of the 102Mo needs more

experimental data. Indeed, many low-lying states in the quasi-gamma and

quasi-beta bands are still missing
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Chapter 8

Overview and Outlook

In this work we targted to study two regions of the nuclear chart which have

a signeficant importance in nuclear structure and astrophysics: neutron rich

light nuclei and proton rich nuclei in the vicinity of 100Sn.

In the first region, the 18C spectrum has been studied in a three body

n+n+16C model that includes deformation and the 2+ excitation of the 16C

core as well as Pauli projection of forbidden states. The 16C-n interaction,

employed in this study, has been fitted to reproduce the experimental spec-

trum of 17C. The calculations show that two neutron separation energy in
18C in consistent with three-body structure of this nucleus and predict more

states bound with respect to the three-body decay. The comparison of their

position to known excited states in 18C is discussed. These calculations

suggest also that a few states may exist in astrophysically relevant region

between the 17C+n and 16C+2n decay thresholds. The most important of

them is 1− as it can give a large E1 resonant contribution to the 17C(n, γ)18C

neutron capture. The calculations also suggest that a virtual s-wave state

may exist above the 17C+n threshold that can give rise to non-negligible M1

contributions to the 17C(n, γ)18C reaction rate. The presence of these states

in the 18C spectrum can lead to an increased 17C(n, γ)18C reaction rate,

which can signeficantly influence the abundances of uranium and thorium

synthesized in the r-process in the supernovae explosions.
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In the second region, we studied in nuclear shell model and interacting

boson model the even-even 96−104Cd, 104−108Sn , 106,108Te and 102−108Mo iso-

topes.

The calculations of 96−104Cd, 104−108Sn and 106,108Te spectra have been

carried out using the windows version of NuShell@MSU. To define the Hamil-

tonian, the two body matrix element of the effective interaction (TBME) and

single particle energies(SPE) of the valence space orbitals are needed. The

TBME are obtained from the renormalized two body effective interaction

based on G matrix derived from the CD-Bonn free nucleon nucleon poten-

tial.

For Sn an Te isotopes we used 107Sn and 109Sb spectra to establish the

single particle energies of the neutron and proton model space orbitals, re-

spectively. Results are in good agreement with the experimental data, es-

pecially the reproduction of 2+ and 4+ in Sn isotopes. Some discrepancies,

especially for the Te isotopes are obvious.

Calculations for the Cd isotopes are carried out using the same effective

interactions of the NuShell@MSU library labled by jj44pna and jj45pna which

are adjusted for nuclei in the vicinity of 132Sn. Results need more perfection.

In order to study the 102−108Mo isotopes, which show collective behaviour

at low energy, we used the consistent Q formalism (CQF-IBM1) Hamiltonian

to describe their structure. Results of calculations show a fair agreement with

experimental data. However, a better parameter optimization is necessary.

Results of this work open the door largely for more prospective studies.

We can cite, in general, some of them:

• In the region of light neutron rich nuclei, some other nuclei show halo

features (large rms radius, small separation energies of the last nucle-

ons, narrow longitudinal momentum distributions...) like 19C, 22C ,
15B, 17B and 19B are waiting for more studies. Few body calculations

for these nuclei may give us an idea whether it is worth to pay such

high price in defining the core-n interaction in 17C.

• More experimental data of the nearest neighbours of 100Sn are indis-
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pensable and invaluable. Shell model calculations using more appro-

priate single particle energies, for the orbitals of the model spaces in

the region, obtained from nuclei spectra just near the doubly magic

nucleus 100Sn are more than necessary.

• Extending algebraic calculations to the broader region of nuclei close

to 100Sn ( Ru, Pd, Zr,...) isotopes which show collective behaviour. In

this context, different extensions of interacting boson model (IBM) will

be used.

• More studies about the contribution of light neutron rich nuclei reac-

tions in r-process nucleosynthesis, and proton rich nuclei in the vicinity

of 100Sn in rp-process are needed.

In somehow, it is only the end of the beginning...



Appendix A

Pauli principle treatment

A.1 constructing the three body forbidden

states

Let us specify how to construct the three body forbidden wavefunctions, given

the two body occupied states. The Y coordinate system, (~x, ~y) = ( ~x1, ~y1)

or (~x, ~y) = ( ~x2, ~y2) is the natural coordinate system to define two body

forbidden states associated with the (core+n) subsystem. We will represent

these states as a sum over all two body channels identified by the quantum

numbers {(lpk, s
p
k)j

p
k , I

p
k ; Jp

2} as in the following equation:

φp =
∑

k

Up
k (x1)φIp

k
(ξ̂)|(lpk, s

p
k)j

p
k , I

p
k ; Jp

2 〉 (A.1)

and each of these states is lablled by p corresponding to a particular total

angular momentum and parity Jp
2 . Here we have explicitly represented the

radial part of the wavefunction as Up
k (x1) and is the intrinsic core’s wave-

function as φIp
k
(ξ̂). To account for the necessary degrees of freedom of the

three body system one needs a complete set in which to expand the three

body forbidden state, accounting for the extra (~y1) degrees of freedom of the

three body system relative to the two body subsystem with an excited core.

For this effect we use a spline expansion in the y1 Jacobi coordinate, with

the following quantum numbers: χp
n(y1)|(lpn, sp

n)jp
n〉, where n = 1, ..., Nsplines.
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One can then write down the two body forbidden wavefunctions ΦJp
3 based

on the two body ones φp as:

ΦJp
3 =

∑

kn

Up
k (x1)χ

p
n(y1)φIp

k
(ξ̂)|{(lpk, s

p
k)j

p
k , I

p
k}J

p
2 , (l

p
n, s

p
n)jp

n; Jp
3 〉 (A.2)

We now recouple the angular momentum such that the spins and orbital

angular momenta of the valence neutrons are first coupled to a total spin of

the nn subsystem and only then coupled to the spin of the core:

|{(lpk, s
p
k)j

p
k , I

p
k}J

p
2 , (l

p
n, s

p
n)jp

n; Jp
3 〉 → |{(lpk, lpn)Lp, (sp

k, s
p
n)Sp}Jp

kn, I
p
k ; Jp

3 〉 (A.3)

The three body wavefunction in this new coupling order is:

ΦJp
3 =

∑

kn

Up
k (x1)χ

p
n(y1)φIp

k
(ξ̂)(−1)Jp

3 +Jp
2−2Ip

k
−jp

k Ĵp
2 Ĵ

p
knL̂

pŜpĵp
k ĵ

p
n ×

W (Ip
kj

p
k , J

p
3 j

p
nJ

p
kn)















lpk lpn Lp

sp
k sp

n Sp

jp
k jp

n Jp
kn















|{(lpk, lpn)Lp, (sp
k, s

p
n)Sp}Jp

kn, I
p
k ; Jp

3 〉 (A.3)

The radial part of the wavefunction(Up
k (x1)χ

p
n(y1)) is expressed in the nat-

ural Jacobi coordinates for the problem. To proceed, one needs to repre-

sent it in the corresponding hyperspherical coordinates. For each component

{p, k, n}specified by the quantum numbers [{(lpk, lpn)Lp, (sp
k, s

p
n)Sp}Jp

kn, I
p
k ; Jp

3 ],

one performs the hyperspherical decomposition:

Up
k (x1)χ

p
n(y1) = ρ

−5
2

∑

K

χ
LpSpIp

k

Klp
k
lpn

(ρ)ϕ
lp
k
lpn

K (θ) (A.4)

where χ
LpSpIp

k

Klp
k
lpn

(ρ) =
∫ 1

−1
d cos(2θ)

√

1 − cos2(2θ)Up
k (ρ sin θ)χp

n(ρ cos θ)ϕ
lp
k
lpn

K (θ).

Remembering that ϕ
lp
k
lpn

K is analytically defined in terms of the Jacobi poly-

nomials, one can easily calculate the integrals defining χ
LpSpIp

k

Klp
k
lpn

(ρ).

Finally, and because the wavefunction defined in equation (B.7) solution

of the three body Hamiltonian, is represented in the T basis, it is necessary

to perform a rotation from the Y basis to the T basis (see figA.1). Such a

rotation can be performed by introducing the appropriate rotational coeffi-

cients associated with the hyperspherical method known by the Renal-Revai
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Figure A.1: Coordinate Transformation

coefficients [13]

Note that in general the set {(lpk, lpn)Lp, Sp, Ip
k , K} is larger than {(λk, λn)Lp,

Sp, Ip
k , K} due to symmetry restrictions of the nn subsystem.

Summing up these results, one concludes that each component{(λk, λn)Lp,

Sp, Ip
k , K} of the three body forbidden state will be defined in the T basis as:

Φ
Jp
3

kn,(λk,λn)Lp,Sp,Ip
k
,K

(ρ, θ, x̂, ŷ, σ̂1, σ̂2, ξ̂) =
∑

lp
k
,lpn

〈λk, λn|lpk, lpn〉LpSpIp
k
K

(−1)Jp
3 +Jp

2−2Ip
k
−jp

k Ĵp
2 Ĵ

p
knL̂

pŜpĵp
k ĵ

p
n















lpk lpn Lp

sp
k sp

n Sp

jp
k jp

n Jp
kn















W (Ip
kj

p
k , J

p
3 j

p
nJ

p
kn)

χ
LpSpIp

k

Klp
k
lpn

(ρ)φIp
k
(ξ̂)|{(lpk, s

p
k)j

p
k , I

p
k ; Jp

2}, (lpn, sp
n)jp

n; Jp
3 〉. (A.3)

The total three body forbidden states are defined as a sum over all possible

channels of the partial components:

ΦJp
3 (ρ, θ, x̂, ŷ, σ̂1, σ̂2, ξ̂) =

∑

λk ,λn

∑

LpSpIp
k
K

Φ
Jp
3

kn,(λk,λn)Lp,Sp,Ip
k
,K

(ρ, θ, x̂, ŷ, σ̂1, σ̂2, ξ̂),(A.4)

and should now be projected out from the three body Hamiltonian.
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A.2 Projection into the allowed space

Having defined the three body forbidden states, we guarantee that the total

wavefunction for the system is orthogonal to these by projecting them out of

the Hamiltonian model space.

Let us first assume there is only one forbidden state Φ0. The full three

body wavefunctions should satisfy both equations:

Ĥ|Ψ〉 = E|Ψ〉 and 〈Φ0|Ψ〉 = 0, (A.5)

and additionally to the necessary requirement for the bound states which

should be square integrable.

If one defines a projection operator P̂0 = |Φ0〉〈Φ0| and Q̂0 = 1 − P̂0, the

orthogonalisation condition can be expressed as:

Q̂0|Ψ〉 = |Ψ〉 (A.6)

Then, from equation A.5 and equation A.6, the necessary condition to be

satisfied is:

Q̂0ĤQ̂0|Ψ〉 = E|Ψ〉, (A.7)

with the operator Q̂0 defining the allowed subspace into which the Hamilto-

nian is to be projected, and P̂0 defining the forbidden subspace. Notice that

P̂0|Ψ〉 is a solution of equation A.7 if E = 0. Otherwise equation A.7 implies

that P̂0|Ψ〉 ≡ 0.

Let us now represent the wavefunction in terms of a non-orthogonal basis:

|Φ0〉 =
∑

i

f 0
i |Si〉

|Ψ〉 =
∑

i

ci|Si〉, (A.7)

where the subscript i stands for {l, j, I, J}. In this demonstration we are

thinking of using the Sturmian basis for this expansion and, as was pre-

sented previously, the Schrödinger equation reduces to an algebraic general-

ized eigenvalue problem. The projection operator is then defined as:

Q̂0 = 1 −
∑

ij

f 0∗
i f 0

j |Si〉〈Sj|. (A.8)
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One can now work out the explicit form of the matrix operator Q̂0ĤQ̂0, in

terms of the chosen basis set Si,

Q̂0ĤQ̂0 = Ĥ −
∑

ij

f 0∗
i f 0

j

(

|Si〉〈Sj |Ĥ + Ĥ|Si〉〈Sj|
)

∑

ijmn

f 0∗
i f 0

j f
0∗
m f 0

n|Si〉〈Sj |Ĥ|Sm〉〈Sn|, (A.8)

In order to obtain the explicit representation of the matrix elements 〈Sµ|Q̂0ĤQ̂0|Sν〉,
it is useful to define the following matrices:

Hij = 〈Si|Ĥ|Sj〉
Mij = 〈Si|Sj〉. (A.8)

Using these matrices, the representation of Hproj
µν is given by:

Hproj
µν = 〈Sµ|Q̂0ĤQ̂0|Sν〉

= Hµν −
∑

ij

f 0∗
i f 0

j (MµiHjν + HµiMjν)

−
∑

ijmn

f 0∗
i f 0

j f
0∗
m f 0

nMµiHjmMnν

In order to simplify this expression, it is useful to introduce the following

vector representation for partial sums:

H0
µ =

∑

i

f 0
i Hiµ and H0+

µ =
∑

i

Hµif
0∗
i (A.8)

M0
ν =

∑

j

f 0
j Mjν and M0+

ν =
∑

j

Mνjf
0∗
j (A.9)

By direct substitution in the expression of projector operator matrix elements

we get:

Hproj
µν = Hµν −

(

M0+
µ H0

ν + H0+
µ M0

ν

)

+

(

∑

j

f 0
j H0+

j

)

M0+
µ M0

ν . (A.10)

Once the matrix Hproj
µν is calculated, one can perform a diagonalisation

and solve the generalized eigenvalue problem in the restricted space Ψ⊥Φ0.
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In fact this procedure will shift the energy of the forbidden state Φ0 to zero.

Naturally if one is interested in the region close to the threshold, as is the

case for halo nuclei, it is preferable to shift the energy of this forbidden state

away from the threshold, as much as possible, to avoid confusion with the

physical solutions.

Instead of solving equation A.10, by taking into account the properties

of the P̂0 operator, one should solve
(

Q̂0ĤQ̂0 + EshiftP̂0

)

Ψ = EΨ (A.11)

The matrix form of P̂0 can easily be deduced,

P̂0µν =
∑

ij

f 0∗
i f 0

j MµiMjν

= M0+
µ M0

ν

and therefore the algebraic equation to be solved is

∑

ν

{

Hµν −
(

M0+
µ H0

ν + H0+
µ M0

ν

)

+

(

∑

j

f 0
j H0+

j

)

M0+
µ M0

ν+

EshiftM0+
µ M0

ν

}

Cν = E
∑

ν

MµνCν (A.10)

If instead of one forbidden state Φ0, a set of n forbidden states {Φi, i =

1, ..., n} is imposed, and assuming these are all orthogonal(〈Φi|Φj〉 = 0, for i 6=
j) the full solution to the problem will satisfy

Ĥ|Ψ〉 = E|Ψ〉 and Q̂i|Ψ〉 = |Ψ〉, ∀i = 1, n (A.11)

Then, again, the method consists in solving:
(

Q̂ĤQ̂+ EshiftP̂
)

|Ψ〉 = E|Ψ〉

where Q̂ =
n
∏

i=1

Q̂i and P̂ =
n
∏

i=1

P̂i.

The orthogonality condition between forbidden states φi is necessary so that

eq.(A.11) can be reduced to eq.(A.2). This equation, after appropriate al-

gebraic manipulation can be reduced to the following matrix form, given
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that the basis components for the forbidden states are previously defined,

Φl =
∑

i f
l
i |Si〉, l = {1, ..., n}:

∑

ν

{

Hµν −
n
∑

l=1

(

Ml+
µ Hl

ν + Hl+
µ Ml

ν

)

+
∑

l,k

(

∑

j

f l
jHk+

j

)

Ml+
µ Mk

ν+

Eshift

∑

l,k

Ml+
µ Mk

ν

}

Cν = E
∑

ν

MµνCν(A.10)



Appendix B

The Lanczos Diagonalization

Method of the Hamiltonian

Matrix

The LANCZOS algorithm appears as the most powerfull technique in di-

agonalizing the Hamiltonian matrix and in fact the standard method to do

so.

The principle of the method is to build an orthogonal basis in which the

Hamiltonian H matrix is tridiagonal. We start with a normalized vector

φ1 and apply the H operator on this vector. Then we get a parallel and

orthogonal components to the initial vector φ1:

H|φ1〉 = E11|φ1〉 + E12|φ2〉 (B.1)

with

E11 = 〈φ1|H|φ1〉 and E12|φ2〉 = H|φ1〉 − E11|φ1〉 (B.2)

Acting again with H on φ2, we generate a third vector φ3 orthogonal to

the first two

H|φ2〉 = E21|φ1〉 + E22|φ2〉 + E23|φ3〉 (B.3)

113
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E12 = E21 since in our basis H matrix is real symmetric.

Continuing this process, at iteration n, we obtain the diagonal energy of

the vector |φn〉, a new vector |φn+1〉 and the non diagonal energy Enn+1

H|φn〉 = Enn−1|φn−1〉 + Enn|φn〉 + Enn+1|φn+1〉 (B.4)

Enn−1 = En−1n, Enn = 〈φn|H|φn〉 (B.5)

and Enn+1|φn+1〉 = H|φn〉 − Enn|φn〉 −Enn−1|φn−1〉 (B.6)

Due to the hermiticity of the Hamiltonian H , the construction of the

Lanczos matrix ensures that the elements Eij with |i − j| > 1 are zero.

That’s means 〈φi|H|φj〉 = 〈φj|H|φi〉 if |i− j| > 1. Hence, tridiagonal matrix

is constructed:

H =





















E11 E12 0 0 0 . . .

E21 E22 E23 0 0 . . .

0 E32 E33 E34 0 . . .

0 0 E43 E44 E45 . . .
...

...
...

...
. . .





















(B.7)

This iterative process will continue until all the eigenvalues that we need

are converged. For this reason the choice of the pivot state is crucial. An

other important point to notice concerning this method is that all the Lanzos

vectors must be kept during the calculation in order to use them in calcu-

lating the eigenvectors and to avoid numerical problems. Mathematically

the Lanczos vectors should be orthogonal, however numerically this is not

strictly so. Hence, small numerical precision errors can, after some iterations,

produce catastrophes. To avoid that it is necessary to reorthogonalized each

new Lanczos vector to all the precedent.


