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ABSTRACT 

Most programming languages are based on context free grammars (CFGs). The 

purpose of grammatical inference is to infer a grammar, in our situation a CFG, from 

positive examples of sentences and possibly incorrect ones, for a given language. 

Based on these two fundamental definitions, we propose an environment followed 

by an implementation unifying different aspects of programming in machine 

learning settings. The central idea of this work is to use grammatical inference (GI) 

as a unifying framework for achieving this integration. Because any program can be 

considered as a string of characters, we show that the use of grammatical inference 

can not only unify different aspects of programming but also extend to wider areas 

of applications. The work sums up the following contributions:  

• State of the art of language theory and of grammatical inference; 

• Design and development of an environment integrating machine learning and 

first-order logic (FOL);  

• Design and development of a FOL system for parsing sentences 

independently or with a learning module;  

• Design and development of a heuristics-based polynomial-time complexity 

algorithm enhancing the learning process in grammatical inference.   

• Interaction between grammatical inference and control systems.    

The present work bears a promising line of research, contributing further to 

programming languages integration, aiming at the improvement of these languages 

with a machine learning layer.   

 

ACM Categories and Subject Descriptors 

D.3.1 [Formal definitions and theory], D.3.2 [Language classifications], Design languages, 
F.4.2 [Grammars and other rewriting systems], Parsing, F.4.3 [Formal Languages], I.2 
[Artificial intelligence], I.2.3 [Deduction and theorem proving], Inference engine, I.2.6 
[Learning], Language acquisition.  
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RESUME 

La majorité des langages de programmation est basée sur les grammaires à contexte 

libre (CFG). Le but de l’inférence grammaticale est d’inférer une grammaire, en 

l’occurrence à contexte libre (CFG), à partir d’exemples de phrases correctes et 

éventuellement incorrectes, d’un langage donné. Partant de ces deux définitions 

fondamentales, nous proposons un environnement suivi d’une implémentation 

unifiant des aspects différents de la programmation dans le cadre d’apprentissage 

automatique. L’idée centrale du travail est donc d’utiliser l’inférence grammaticale 

comme trame unificatrice pour réaliser cette intégration. Dans la mesure où tout 

programme peut être considéré comme une suite de caractères, nous montrons que 

l’utilisation de l’inférence grammaticale peut non seulement unifier des aspects 

différents de la programmation mais aussi s’étendre  à d’autres domaines plus vastes. 

Le travail s’articule autour des contributions suivantes : 

État de l’art de la théorie des langages ; État de l’art de l’inférence grammaticale ; 

Étude et développement d’un  environnement intégrant apprentissage et logique du 

premier ordre ; Étude et développement d’un système fonctionnant en logique du 

premier ordre agissant comme analyseur syntaxique autonome ou en collaboration 

avec un module d’apprentissage ; Étude et implémentation d’un algorithme à 

complexité polynomiale, basé sur des heuristiques et destiné à l’amélioration du 

processus d’apprentissage dans le cadre de l’inférence grammaticale ; Interaction 

avec les systèmes de commande automatique.   

Le présent travail est porteur d’une ligne prometteuse de recherche, et contribue 

davantage à l'intégration des langages de programmation, projetant de les enrichir 

par la caractéristique d’apprentissage qui leur fait actuellement défaut.  

 

Catégories et descripteurs de sujets de ACM 

D.3.1 [Définitions formelles], D.3.2 [Classifications de langages], conception des langages, F.1.1 
[Modèles de calcul], F.4.2 [Grammaires et systèmes de réécriture], analyse syntaxique, F.4.3 
[Langages formels], I.2 [Intelligence artificielle], I.2.3 [Déduction et démonstration de 
théorèmes], moteur d'inférence, I.2.6 [Apprentissage], acquisition de langages
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No matter where you stand, you need effort.  

Diagram from : http://en.wikipedia.org/wiki/Portal:Scientific_method 

 

CHAPTER 1  

INTRODUCTION  
 

1. Preliminaries 

Most programming languages, whether imperative or declarative, are based on 

context-free grammars (CFGs). This remains true at a more refined level, with CFGs 

present in procedural, object-oriented, functional, logic programming and multi-

paradigmatic languages. A sketchy summary of programming languages can be 

summarized as follows: 

• Conventional imperative languages: These incorporate structured and/or object-

oriented approaches with the high-level built-in functions and provide numerical 

processing like FORTRAN, PASCAL or C/C++, among others.  
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• Advanced imperative approach: These languages include numerical systems 

exemplified by the matrix environments like MATLAB™1 supported by various 

visual programming aids like Simulink™ or symbolic general-purpose computer 

algebra systems (CASs) like Mathematica™2 or Maple™3 and their various 

corresponding toolboxes. Sophisticated CASE (computer aided software 

engineering) tools are also available, e.g. Rational Rose™4. Whether they are 

designed for number-crunching calculations or for symbolic processing or for 

modeling and implementation, these systems can be considered as one layer above 

the previous one.  

• Declarative approach: The declarative approach focuses on what computational 

processes to undertake and not on how to perform them. This approach is 

represented by subcategories of functional programming (e.g., LISP ) and logic 

programming (e.g., Prolog). On top of these, we find expert systems shells or 

generators like NASA CLIPS5, essentially based on inductive logic programming 

(ILP), or its offshoots. This layer is still even more powerful in handling imprecise, 

non-numerical, and linguistic data. These environments/shells represent the 

favourite setting for knowledge base (KB) construction and inference engineering, a 

sub-filed of knowledge engineering.  

2. Motivations 

As far as scientific computation is concerned, most programming, modeling and 

simulation environments that have been developed in the last two decades or so, 

heavily concentrated on the following topics: matrix environments, computer 

algebra software (CAS), visual programming, object-oriented programming (OOP) 

                                                           
 
1 MATLAB™ is a trademark of the Mathworks, http://www.mathworks.com 
2 Mathematica™ is a trademark of Wolfram Research, Inc., http://www.wolfram.com/mathematica  
3 Maple™ is a trademark of Maplesoft, http://www.maplesoft.com 
4 Rational Rose is a trademark of IBM™ http://www-01.ibm.com/software/rational/  
5 NASA CLIPS http://www.siliconvalleyone.com/clips.htm 
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simulation environments, coupled or hybrid systems that attempted to combine both 

numerical systems with advanced expert systems development aids. However 

sophisticated these systems might be, none considered the possibility of 

incorporating the learning layer in their implementation. Therefore none of these 

rightly deserves the overly-used appellation of intelligent system. For approximately 

five decades, these programming languages and environments contributed lines of 

implementation from basic algorithmic settings, incorporating sophisticated 

numerical and symbolic methods, to inferential / declarative methods. Notoriously, 

machine learning methods have not yet been fully applied in this domain. Our aim is 

to contribute towards this end using one machine learning approach, namely 

grammatical inference (GI).  

3. Background and objectives 

3.1 Process of inference  

3.1.1 Inference in symbolic settings  

In logic-based symbolic environments, the word inference is defined as the process of 

reasoning logically building new knowledge on the basis of available rules and facts. 

This process requires a problem-solving model, or paradigm, that organizes and 

controls the steps taken to solve the problem. One powerful paradigm involves the 

chaining of IF-THEN rules to form a given line of reasoning. There are three modes 

of chaining. If the chaining starts from a set of conditions and moves toward some 

conclusion, the method is called forward chaining. If the conclusion is known, for 

example, a goal to be achieved, but the path to that conclusion is not known, then 

reasoning backwards is used, resulting in backward chaining. Hybrid chaining is a 

combination of both; it might start with forward and shift to backward chaining. 
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These problem-solving methods are built into program modules known as inference 

engines that manipulate and use knowledge in the KB to form a line of reasoning. 

One of the most important results of this problem-solving method is the emergence 

of expert systems. In symbolic settings, an expert system is a program that 

incorporates two main components - an inference engine, responsible for reasoning 

by entailing new facts, and a KB containing both factual and heuristic knowledge. 

Factual knowledge is that specific knowledge of the task domain that is widely shared, 

typically consisting of printed material like textbooks or journals, multimedia 

support found in Websites or any other electronic support. This knowledge is 

commonly agreed upon by those knowledgeable in the particular field. Heuristic 

knowledge is the less rigorous, more experiential, more judgmental knowledge of 

performance. In contrast to factual knowledge, heuristic knowledge is rarely 

discussed, and is largely individualistic. It is the knowledge of good practice, good 

judgment, and plausible reasoning in the field and mainly describes personal rules 

of thumb encompassing an “art of good guessing”, personally acquired over lifetime 

training. As a result, expert systems are normally used to model the human decision-

making process. Although expert systems contain algorithms, many of those 

algorithms tend to be static, i.e. they do not change over time. 

3.1.2 Inference in knowledge-based systems (KBSs) 

Abusively, knowledge-based systems (KBSs) are considered as synonymous of 

expert systems. In our account, we will make a distinction between the two 

categories programs and consider expert systems as a particular form of KBS. Expert 

systems usually rely on rule as a form of knowledge representation formalism. 

Obviously, not all knowledge is expressible as rules. That is why we need other 

types of KBs like neural networks, case-based reasoning genetic algorithms, 

intelligent agents, data mining, and intelligent tutoring systems [KC07]. 

3.1.3 Inference in learning settings  
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In learning settings, a program is intended to infer (or induce) an unknown result 

based on some past data. This operation involves a metric for attesting the quality of 

the results. In this context, inference implies the identification of a hidden function, 

given a set of its values. In particular, the learning of the syntax of the language is 

usually referred to as grammatical inference or grammar induction (GI); an important 

domain for both cognitive and psycholinguistic domain as well as for the domain of 

engineering and computation. GI deals with the problem of inferring (or learning or 

inducing) a grammar from some given data. Data, whether sequential or structured 

are composed from a finite alphabet, and may have unbounded string-lengths. By 

grammars, we intend only deterministic finite automata DFA, equivalent to regular 

grammars [Sip06] and some context free grammars (CFGs). If we refer to Chomsky 

hierarchy, only type-3 and subclasses of type-2 grammars, respectively, are 

concerned. In a machine learning perspective, we need the grammar, i.e. the concept 

learned, to predict and classify unseen data. The inferred grammar is also used as a 

model or a compressed representation of the input data.  Early work in the field was 

set out in [Fu74]. But since 1994, more interests have been given to the field. An 

International Conference on Grammatical Inference (ICGI) is held every two years. The 

last one was held on September 2010 in Valencia, Spain.  This increasing interest in 

the field is probably due to the following reasons: 

- Need for a more elaborate theory; the GI community became aware of the fact that 

the hardness of even the easiest problem needs more theoretical attention and 

developments. 

- Expansion of applications; the new fields where GI techniques can be applied are 

increasing every year.  

3.2 Specific goals 

3.2.1 Avoiding the “general problem solving (GPS)” syndrome 

The question that interests us is: “How to integrate a GI-based machine learning 

layer in programming languages?” If we were to realize this, then solving similar 
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problems using this type of programming languages will take less and less time to 

be solved, thanks to learning from examples of problems. However, this is a very 

distant end. We want to avoid the “general problem solving (GSP)” syndrome. 

Developed in the fifties, in the early days of artificial intelligence (AI), GPS was a 

program that tried to solve a very broad class of problems from theorem proof, 

geometric problems to chess playing [NS72]. GPS solved simple problems that could 

be sufficiently formalized such as the Towers of Hanoi. However, it could not solve 

any real-world problems because search was easily lost in the combinatorial 

explosion of intermediate states. In our account, we will therefore study only the 

syntactic level of languages.  

3.2.2 Syntactic level  - first 

As a first step towards the realization of the objective of adding a learning layer to 

programming, we propose to start at the syntactic level. Because any program can 

syntactically be considered as a string of characters, we show that the use of GI can 

not only unify different aspects of programming but also extend to wider areas of 

applications such as control systems and self-assembly. As a result, the central idea 

for answering the central question above is to use grammatical inference (GI) as a 

unifying framework.  

The purpose of GI is to infer a grammar, in our situation a context-free grammar 

(CFG), from positive examples of sentences and possibly incorrect ones, for a given 

language. In the attempt to address our fundamental issue, we propose an 

environment followed by an implementation. We show how the issue of GI can be 

reduced to learning heuristics. We describe our GASRIA GI system; fully designed, 

developed and tested as a system for GI capable of learning inductively a broad class 

of CFGs. The overall work consists of:  

– The design and development of a first-order logic (FOL) environment used for 

parsing;  

– The design and development of a knowledge base (KB) consisting of a rule base 

and a fact base describing the grammar rules under consideration;  
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– The design and implementation of the inductive learning partial parsing algorithm 

(PPA); an Earley-like algorithm capable of parsing  sentences not as whole but as 

parts; [HH07b] 

– The integration of FOL and an inductive learning within a coherent system; 

[HH07a] 

– The study of some interactions between GI self-assembly and control systems; this 

latter being usually handled by matrix environments, [HH09a], [HH09b]. 

3.3 Main tools 

The main tools can be summarized in two categories, namely, grammars and first-

order logic (FOL). 

3.3.1 Grammars and parsing 

Grammars can be regular, context-free, context-sensitive and unrestricted. Context-

sensitive and unrestricted grammars are more expressive, because the left-hand side 

of the productions can be more than just a single non-terminal. To start with, 

however, we aim at learning regular and CFGs, which have single non-terminals on 

the left side of production rules. The result is a reasoning or “intelligent” syntactic 

analyzer capable of inductive learning. One of the most important properties is that 

grammars have the ability to generalize over a specific language, i.e. to learn by 

induction. Therefore, it is possible to learn a grammar based on a set of sample 

sentences. We do not need to specify every sentence in a given language. This is the 

observation that led us to explore the possibility of using GI as a machine learning 

paradigm. Indeed, GI like most machine learning algorithms objective is to 

generalize over a set of (a preferably small number of) examples in order to obtain a 

more general model, by induction. Moreover, we need to handle strings of 

characters; hence the use of grammars and not other machine learning methods. On 

the other hand, the number of training examples has to be preferably small - less 

than six examples, in our tested cases.  
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3.3.2 Declarative programming and FOL 

In addition, we combine GI with the declarative programming approach and 

specifically with first-order logic (FOL), to infer and use the grammar that has been 

produced for syntactic purposes. Declarative programming encompasses many 

different sub-fields such as constraint programming, domain-specific languages (e.g. 

SQL-based, XML-based), functional programming (e.g. Lisp, Scheme), and logic 

programming (e.g. Prolog).  

The motivation for using the declarative approach is that this paradigm requires 

what computation should be performed and not how to compute it. It has a clear 

correspondence with mathematical logic and specifically with FOL. The knowledge 

base containing FOL-based rules and facts allows the entailment of new facts, thus 

contributing to the GI process.    

4. Organization of the manuscript 

In this manuscript, we explain the main building blocks of the proposed solution; 

each one of these blocks in an independent chapter. The work is structured around 

the following components:  

- State of the art of language theory: Chapter 2 describes the theory of languages that is 

necessary for explaining the main results.  

- State of the art of GI: Chapter 3 reports the theoretical background of GI and 

discusses the most important related algorithms, systems and applications. 

- GASRIA: In an attempt to integrate GI and FOL, Chapter 4 explains the design and 

development of an architecture, namely GASRIA as a complete and integrated 

system for GI. Its main modules are explained in two subsequent independent 

chapters. The main idea is based on a novel machine learning algorithm, namely 

the partial parsing algorithm (PPA), coupled with a FOL-based system.  

- EXINF: Chapter 5 describes aspects related to first-order logic (FOL) and 

declarative systems. It discusses an in-depth description of one of the components 



Chapter 1 – Introduction 
 

Thèse de Doctorat d’État – The ESLIM Project  9 

of the solution, namely the design and development of EXINF as a FOL-based 

system. EXINF characteristics are the possibility of use as a stand-alone system or 

as a support for partial parsing.  EXINF is presented as a knowledge-based system 

(KBS) using dynamic facts, necessary for parsing. These facts are the translation of 

input sentences into syntactical rules. As shown in the examples, important 

parsing steps are undertaken using EXINF.  

- ILSGInf: Chapter 6 reports the design and implementation of one machine learning 

environment called ILSGInf.  It is based on the partial parsing algorithm (PPA). The 

chapter explains specific aspects of grammar inference, including regular and 

CFGs. It also describes the experimental PPA capability and validation as a core 

component of ILSGInf.  

- Interactions: Chapter 7 reports application areas of some of our results. Control 

systems, mainly, and self-assembly, peripherally, are discussed as possible 

applications fields.  

The work ends with a conclusion summing up results and recommendations with 

prospective developments to address open issues.  
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CHAPTER 2  

SOME CONCEPTS OF FORMAL LANGUAGES 

1. Introduction 

The elaboration of the theoretical “Universal-Algorithm Machine” and the invention 

of the vacuum tube gave birth to the idea of a stored-program computer. The goal 

was to convert the electronic computer to a real-life model of the “Universal-

Algorithm Machine”. Along with the concept of programming a computer, came the 

question: “What is the ‘best’ language in which to write programs”? As a result, 

different programming languages were developed, but they apparently shared the 

same possibilities and limitations.  

Many questions rose: what is language in general? How do people learn it? Linguists 

created the subject of mathematical models for the description of languages to 

answer these questions. Consequently, the computer took on linguistic abilities. It 

became a word processor, a translator, an interpreter of simple grammar, a compiler 

of a programming language, a speech recognizer, and now we try to give it the 



Chapter 2 – Some concepts of formal languages 
 

Thèse de Doctorat d’État – The ESLIM Project  12 

ability to learn languages, under the constraint that we are not yet able to 

understand how human do that. 

2. Preliminaries 

We start by giving some mathematical definitions, which are of interest to us. They 

can be found in any book dealing with concepts of formal language [Gdd08], 

[deH10] [Sip06].  

- An alphabet is a finite non-empty set of symbols or letters, often denoted by Σ. 

- A string ω over an alphabet Σ is a sequence ω = a1…an of letters ai ∈Σ .  

- Length of ω, noted |ω| is the number of letters constructing it, in this example 

|ω|=n. 

- Number of occurrences: Given a∈ΣΣΣΣ, |ωωωω|a denotes number of occurrences of the letter 

a in the string ω.  

• The empty string denoted by λ (or by ε) such that |λ| = 0.  

• Given two strings u and v, we define u.v (or simply uv) as the concatenation 

of u and v and |uv|= |u|+|v|. 

- If ω is a string, ω= a1…an we note ωR = an…a1 as the reversal of ω. 

- Σ* is the set of all finite strings over Σ. We define Σ+={x∈Σ*: |x| > 0} and 

Σ<n={x∈Σ*:|x|<n} 

- The string u is a substring of a string x if there are two strings l and r such that 

x=l.u.r.  

- We define |x|u as the number of occurrences of the substring u in the superstring 

x. 
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- The string u is a subsequence of a string x if u is obtained by removing some letters 

from x.  More precisely, u is a subsequence of x if there is a sequence of indices 

i=(i1,…, i|i|) where   1≤i1 ≤…≤ i|i|≤|x| and uj = xij. We note u = x(i). 

- Orders in strings: there are four ordering relations between strings based on the total 

order relation over elements of  Σ, noted ≤alpha called alphabetical order. These four 

ordering relations are defined as: 

- Prefix order: x ≤pref y if ∃ w ∈ Σ* such that y = xw. 

- Lexicographical order: x≤lexy if x≤prefy or (x=uav, y=ubw and a≤alphab) 

• Subsequence order: x≤subseqy if x is a subsequence of y 

• Length-lex order : x≤length-lexy if |x|<|y| or (|x|=|y| and x≤lexy) 

We can assign with all these orders the corresponding strict orders  

<alpha , <pref , <subseq, <length-lex. 

3. Languages 

 A language is a certain specified set of strings, where strings have symbols from a 

specific alphabet. A language L over Σ, L⊆ Σ*. 

3.1 Operations on languages 

Certain operations can be done on languages: let L1, L2 be two languages 

• Union: L1∪L2={ x∈Σ*: x∈L1 OR x∈ L2} 

• Intersection: L1∩L2={x∈Σ*:  x∈L1 AND x∈L2} 

• Product: L1.L2 = { uv : u∈L1, v∈L2} 

• Powerset: L0={λ}, Ln+1 = Ln.L=L.Ln 

• Star: L* = ∪i∈N Li, where N is the set of positive or null integers. 

• Complement: L’ = {w∈Σ*: w∉ L}, L1\L2 is the complement of L2 in L1 
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• Symmetric difference, L1⊕ L2 = L1\L2 ∪ L2\L1 

3.2 Languages models 

There are different ways to allow computation of languages. Hence, we find 

methods to generate grammars, to recognize finite automata, to define regular 

expressions, and recently to use topological operations to represent a language. The 

work in [Cho59] was the first to classify languages into four classes using four types 

of grammars.  

3.2.1 Formal grammars 

Definition 1 - A formal grammar G has four components G=<ΣΣΣΣ, N, P, S> where 

    - Σ is an alphabet, called also set of terminals.  

- N a set of symbols, called non-terminals or variables, with the restriction that ΣΣΣΣ 

and N are disjoint. 

    - S a special non-terminal symbol, called a start symbol. 

- P is a set of production rules, each one is of the form α→β or sometimes noted 

(α,β). 

Definition 2 - A regular grammar is a formal grammar where:  

P⊂(N x Σ*)∪(Nx Σ*.N)∪(Nx N. Σ*) 

Definition 3 - A context-free grammar (CFG) is a formal grammar where: 

P ⊂ N x (Σ ∪ N)* 

Definition 4 - A context-sensitive grammar is a formal grammar where:  

  P ⊂ (N∪Σ)*.N.(N∪Σ)* x (Σ ∪ N)+, where for  each (α, β) in P, |α| ≤ |β| 

  Definition 5 - An unrestricted grammar is a formal grammar where P⊂ N+x(Σ∪N)* 

3.2.2 Automata  
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We can informally define an automaton (plural automata) as a mathematical model of 

a machine that recognizes a set of strings. There are different types of such models 

that differ from each other essentially in the amount of memory they use. These are 

finite state automata (FSA) and push-down automata (PDA).  

3.2.2.1 Finite state automata (FSA) 

Finite state automata (FSA) were developed in 1950’s. There two types of finite state 

automata, namely: 

• Non deterministic finite automaton (NFA) is a sextuple A = <Σ, Q, I, FA, FR, δN> 

where: 

- Σ is an alphabet,  

- Q is a finite set of states,  

- I ⊆ Q the set of initial states,  

- FA ⊆ Q is the set of final accepting states,  

- FR ⊆ Q is the set of final rejecting states,  

- δN : Q x (Σ ∪ {λ}) → 2Q, is the transition function, and 2Q is the powerset of Q. 

• A deterministic finite automaton (DFA or FA) is obtained from an NFA if I is 

reduced to only one initial state, and the image given by δN is only one state,  

and hence δN : Q x (Σ) → Q. Note that the empty transition is also excluded.   

• A string ω= a1…an is recognized by an automaton A, if there is a sequence of 

states starting at an initial state q0,…,qm and a sequence of letters b1…bm, bi in Σ 

∪ {λ} (in the case of NFA) or in Σ (in the case of FA) and a1…an=b1…bm such 

that ∀j ∈ [1..m], qj ∈ δN(qj-1,bj). q0 ∈ I and qm ∈ FA.  

  We note that for any NFA, there is an FA which recognizes the same language (FA 

= NFA).  

3.2.2.2 Push-down automata (PDA) 
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Here, we need memory to keep some intermediate information. Push-down 

automata (PDA) uses memory that has a last-in first-out structure, LIFO or stack. A 

PDA is an FA with a stack. A PDA is eight-tuple = <Σ, Γ, I, FA, FR, NBPUSH, BREAD, 

BPOP> where: 

-  Σ is the alphabet of input data,  

- Γ is the alphabet of the stack,  

- I is the initial state,  

- FA is the set of accepting states,  

- FR is the set of rejecting states,  

- NBPUSH is the set of non-branching states that only push letter in the 

stack,  

- BREAD is the set of branching states that read letters from the input, and 

- BPOP is the set of branching states that read letters from the stack.  

PDA can be divided into two categories based on determinism: 

• A PDA is said to deterministic (DPDA), if for each input string there is only 

one way in the machine. Otherwise, it is non-deterministic and it is simply 

noted PDA. Unlike FAs, DPDA is not equivalent to PDA. Non-determinism 

adds a significant power to PDA. 

• A string ω= a1…an is recognized by a PDA if, starting at initial state and 

following a path of labelled and unlabelled edges according to different read 

input letters and stack characters, the process ends at accepting state.  

3.2.3 Regular expression  

A regular expression over Σ is defined recursively as follows: 

 - the empty set φ, the empty character λ and ∀a ∈Σ are regular expressions 

over Σ.  
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- if r1, r2 are two regular expressions, then (r1), r1.r2, r1+r2, r1* are regular 

expressions. 

Regular expressions are equivalent to FA and to NFA, by Kleene’s theorem. 

3.2.4 Topological consideration 

After defining some metrics and distances over string and especially the edit 

distance, a language can be considered as a topology. Hence, the notion of ball can 

be introduced.  Ball of strings is the set of all strings presenting a distance from 

special string (the centre) less or equal to some value r (the radius of the ball) 

[deH10].  

4. Chomsky languages hierarchy  

Chomsky [Cho59] defined four classes of languages as a hierarchy. These classes of 

languages are from the bottom regular languages (type-3), context-free languages 

(type-2), context-sensitive languages (type-1) and recursive enumerable languages 

(type-0). 

Because it is a hierarchy, each language in a class is also an element of the superior 

class. The distinction between language classes can be done by examining the 

structure of the production rules of their corresponding grammars, or the nature of 

the machines which can be used to recognize them.  

4.1 Type 3 - Regular languages  

A language L is a regular language if it can be generated by a regular grammar. This 

class of languages can be defined by regular expressions and can be recognized by 

an FA. Any finite language is regular. 

4.2 Type 2 - Context-free languages  
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A language L is a context-free language (CFL) if it can be generated by a context-free 

grammar (CFG). This class of languages is recognized by PDAs. Deterministic PDAs 

recognize a subclass of CFLs called deterministic CFLs while nondeterministic PDAs 

can recognize larger class of CFLs. 

For type 1 and 0 languages, we just cite them as elements of Chomsky hierarchy. We 

do not expand our study to these because they are not studied in grammatical 

inference (GI) due to their complexity. 

4.3 Type 1 - Context-sensitive languages  

A language L is a context-sensitive language if it can be generated by a context-

sensitive grammar (CSG). Since more than one symbol is permitted on the left hand 

side, symbols surrounding the non-terminal concerned by the replacement are 

known as context. The automaton which recognizes a context-sensitive language 

(CSL) is called a linear-bounded automaton (LBA) i.e. basically an NFA/FA which 

can store symbols in a list.  

4.4 Type 0 - Unrestricted (free) languages  

A language L is an unrestricted language if it can be generated by an unrestricted 

grammar. Free grammars have absolutely no restrictions on their grammar rules, 

except of course, that there must be at least one non-terminal on the left-hand-side. 

The languages generated by such grammars are recursively enumerable (RE). The type 

of automata which can recognize such a language is basically an NFA/FA with an 

infinitely-long list. This is called a Turing machine (TM).  

The hierarchy can be summarized in the table below. Type-1 and Type-0 languages 

are recognized by Turing machines (not studied here) which were developed in 

1930’s and 1940’s. 
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Table 2.1 TAB21 – Chomsky languages hierarchy 

Type Language Class Grammar Automaton 

3  Regular language Regular NFA or FA 

2  Context-free language Context-free Push-down automaton (PDA) 

1  Context-sensitive 

language 
Context-sensitive Linear-bounded automaton 

0  Recursive enumerable 

language 
Unrestricted (free) Turing machine (TM) 

 

In the following sections, we concentrate our study on regular and context-free 

languages because of their wide implications in different learning methods and 

programming languages. 

5. Regular languages 

5.1 Introductory example  

A regular language is any language that can be recognized by an automaton, defined 

by a regular expression or generated by a regular grammar. In general, we can use 

regular languages whenever we need a limited amount of memory. For examples, 

we use them in text editors, automated opening doors, elevators, to cite but a few. 

For example, we give here a language and its three equivalent representations using 

Kleene’s theorem,  for simplicity we consider Σ = {0, 1};  with L accepting strings 

containing 001.  
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Figure 2.1 DIAG21 An FA that recognizes strings containing 001  

A regular expression that defines L is (1* + (01)*) 00 0* 1(0+1)* 

A regular grammar that generates L is:  

S → 1S | 0A ; A → 0B | 1S; B → 0B | 1C; C → 0C | 1C | 0 | 1; 

5.2 Characteristics of regular languages 

Regular languages are closed under union, intersection, Kleene star, concatenation 

and complementation. We can consider union, star and concatenation as regular 

operations. The following definitions summarize the main characteristics of regular 

languages [Sip06]. 

- Quotient: if L1 is regular, L2 is any language, then Pref(L2 in L1) is also regular, 

where Pref(L2 in L1) is the set of all strings that can be placed in front of 

some elements in L2 to produce some elements in L1. 

- Equivalence: two NFAs are equivalent if they recognize the same language. This 

problem is decidable. Equivalence between two regular expressions is 

also decidable. 

- Finiteness: whether an NFA accepts a finite or infinite language is decidable. If an 

NFA has N states then it accepts an infinite language if and only if it 

accepts an input string with ω such that N≤ |ω|< 2N. 

0 

q0 q1 q2 q3 

1 0 

1 

0 1 

1,0 
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- Emptiness:  if an NFA has N states, then if it accepts any word then it accepts words 

of length less or equal to N. 

- Membership problem: it is the problem of deciding if some string is recognized 

(defined or generated) respectively by a NFA, (regular expression or 

regular grammar). This problem is decidable.  

- Pumping lemma: if L is a regular language, then there is a number p (the pumping 

length) where, if w is any string in L of length at least p, then w may be 

divided into three pieces, w = xyz, satisfying the following conditions: 

1. For each i ≥ 0, xyiz  ∈ L, 

2. |y| > 0, and 

3. |xy| ≤ p 

P is always taken as number of states in the automaton that recognizes the language. 

6. Context-free languages (CFLs)  

Any language that can be recognized by a PDA or generated by a CFG is a CFL. The 

set of CFLs is larger than that of regular languages.  

6.1 Examples of CFLs 

- For Σ = {a, b}, L1 = {anbn, n≥ 0} 

- L2 = {ω ∈ Σ*| ω has same number of a and b} is a CFL. 

- L3 can be generated by the CFG S → aSb | SS |λ . 

- L4 = {ωωR | ω ∈ {0, 1}*} can be recognized by the PDA described in Figure 2.2 

below. 
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Figure 2.2 DIAG22 PDA recognizing {ωωR | ω ∈ {0, 1}* } [Sip06] 

We can interpret this figure as starting by pushing the symbols that are read onto the 

stack. At each point, non-deterministically guess that the middle of the string has 

been reached and then change its behavior into pop operation. For each symbol that 

has been read, check its similarity with the popped symbol.  

6.2 Applications of CFLs 

All programming languages and compilers are based on CFLs. CFGs were first used 

in the study of human languages. CFLs have been applied to a variety of fields from 

user behavior modeling to DNA (DeoxyriboNucleic Acid) structure. Note that these 

complex systems can be interpreted as languages, in general and grammars, in 

particular. 

6.3 Characteristics of CFLs  

-  CFLs are closed under union, product and Kleene star operations.  

q
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- Complements: complement of a CFL may not be a CFL. This type of language is not 

closed under complementation.  

- Intersection: CFLs are not closed under intersection. However, intersection of a CFL 

and a regular language is always a CFL. 

- Equivalence: a CFG is equivalent to PDA but deterministic PDA is not equivalent to 

PDA. 

- Finiteness and emptiness: it is decidable whether a CFG generates a finite or an 

infinite language and whether it generates any string (if L (G) = {}).   

- Membership: Membership tells whether a string belongs to a given language. This is 

done through parsing.  

- Empty production: if L is a CFL generated by a CFG that includes λ-productions, 

then there is a different CFG with no such productions and that generates L or 

L-{λ}.  

- Chomsky Normal Form (CNF): for any CFL L, the non-empty strings of L can be 

generated by a CFG with each production is one of the forms A → BC or A → a.  

- Pumping Lemma: if L is a CFL, then there is a number p called the pumping length, 

such that, if w is any string in L of length at least equal to p, w may be divided 

into five substrings u v x y z satisfying the following three conditions: 

 - |vy| > 0 

 - |vxy| ≤ p 

 - for each i ≥ 0, uvixyiz in L 

Pumping lemma for regular languages (resp. CFLs) is in general used to prove that 

a language is not regular (resp. CFL).  

6.4 Relationship between regular and CFLs 

• All regular languages can be generated by CFGs (they are CFLs) 

• If all the productions in a given CFG fit one of the two forms: 
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           A → ωB or  A → ω  or   A → λ, where A and B are nonterminals and ω ∈Σ*, 

then the language generated by this CFG is regular. 

• A CFG is called a regular grammar if each of its productions is of one of the 

two forms A → ωB or  A → ω where A and B are nonterminals and ω ∈Σ*.  

7. Parsing  

 Parsing a sentence using a grammar is determining how this sentence could be 

formed from the rules of the grammar starting at the special non-terminal. 

Derivation is the sequence of applications of the rules that produces the specified 

string of terminals from the starting symbol. 

Example 

Let the productions be:           S → aS      (1) 

         S → λ         (2) 

Generate the sentence aaaaaa 

  S ⇒ aS ⇒ aaS ⇒ aaaS ⇒ aaaaS ⇒ aaaaaS ⇒ aaaaaaS ⇒ aaaaaa  

All strings of terminals and non-terminals in the derivation and before reaching the 

final sentence are called working strings. This derivation can be traced as a tree called 

parse tree. We concentrate here on syntactic parsing of formal languages. There are 

three different approaches  

7.1 Top-down parsing 

Starting with the symbol S, we try to find some sequence of productions that 

generates the target word. This is done by checking all possibilities for left-most 

derivations. We follow each branch until it becomes clear that this branch can no 

longer present a viable possibility. 
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A general form of a top-down parsing is known as recursive-descent parsing that may 

involve backtracking. 

In some cases, we can write grammars such that a recursive-descent parsing can be 

applied with no backtracking. This type of parsing is called predictive parsing.  

7.2 Bottom-up parsing 

Starting with the word, we try to find the last few productions to reach the starting 

symbol. A general form of bottom-up parsing is known as shift-reduce parsing. 

7.3 Hybrid parsing 

The first and the second approaches are combined so that the parsing is optimized. 

An important bibliographical study of parsing algorithms can be found in [ALS07]. 

8. Conclusion 

In this chapter, we have summarized the most important notions of formal 

languages of interest to us. The central ideas remain those related to parsing and 

CFGs. The next chapter is dedicated to grammatical inference i.e. how to infer a 

grammar for a language from a set of examples (or sentences). 
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CHAPTER 3 

STATE OF THE ART OF GRAMMATICAL 

INFERENCE 

 

1. Introduction 

In order to study the state of art of grammatical inference, we proceed as follows. In 

Section 2, we describe the theoretical models available for GI. We start with the 

identification in the limit, as defined in the late sixties in [Gol67], followed by the 

seminal contributions of the eighties represented by the so-called active learning as 

defined in [Ang81], and ending with PAC (probably approximately correct) learning 

due to [Val84]. Section 3 reports the main algorithms used in GI. We only stress 

those that deal with regular grammars and CFGs. Section 4 is devoted to 

applications of GI. Given the range of these applications, it clearly appears that it is a 

multidisciplinary domain spanning pattern recognition [Cas90], bioinformatics 
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[Coh04], syntactic pattern recognition [Luc94], DNA computers [Adl94], and 

robotics [Kla07], among others.   

2. Theoretical models for grammar inference 

A computer program is said to learn from experience E with respect to some class of 

tasks T and performance measure P, if its performance at tasks in T, as measured by 

P, improves with experience E [Mit97].  

In GI, experience E is the linguistic input, the task T is a grammar, and performance 

measure P is any metric that provides a measure of difference between the 

grammars inferred and a target grammar. Learning languages are based on 

inductive inference [AS83]. We can specify a classical inference problem by the 

following points, expanded in Figure 3.1 below. 

 

 
/* Methodology 3.1 */ 

/* METH31 */ 
 

/* Methodological Steps – Inference Problem  */ 
 

• What is the class of concepts or rules being consid ered? 

• What is the hypothesis space (descriptions)? 

• Find an admissible presentation: the information an d the way 

it is presented in. 

• What is the class of methods under consideration? 

• What is the criterion of a successful inference, i.e.  

convergence?  

 

Figure 3.1 METH31 Methodological Steps – Inference problem 
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For GI, the hypothesis can represent FAs, regular expressions, regular grammars, 

CFGs, or tree-grammars. The examples are typically strings or some special graphs. 

Obviously, the methods used to tackle these different hypotheses are different and 

so are the algorithms used. However, we can single out three main theoretical 

models that were established for this purpose. 

2.1. Identification in the limit (learning from text) 

2.1.1 Definition 

The seminal work in [Gol67] established a theoretical model for on-line and 

incremental learning destined to learning languages. 

This contribution asserts the following points: 

1. A presentation is a function f: N→ X 

• Where N is the set of integers and X is any enumerable set, 

• f is associated to a language L through a function yields(f)=L. 

• If f (N) = g(N) then yields(f) = yields(g).  

2. A presentation is a text or an informant 

• A text presentation of a language L ⊆ ∑* is a function f : N → ∑* , f(N)=L, with 

f an infinite succession of elements of L, where each one must appear at 

some instant.  

• An informant presentation f: N → ∑*X {+,-} such that f (N) = (L,+) ∪ (L,-). 

In this case, f is an infinite succession of labelled examples, positive or 

negative elements of ∑*, and where each one must appear at some instant t.  

3. A learning function, called inductive machine, which, after each example, returns 

a hypothesis.  

• The learning function takes as input n elements (e
1
,…, e

n
) of  f. 
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• It returns some hypothesis Hn (e
1
,…, e

n
).  

• The target language is identified in a finite time t, if the learning function 

attains a fixed point, i.e. a point in time after which it does not change with 

the new inputs.     

4. In this case, we say that the class of languages to which the target language 

belongs is identifiable in the limit.   

2.1.2 Characteristics 

• Identifiability is a property of a class of languages, not of an individual 

language. It is the characteristics of a class of languages for being 

identifiable. We say that a class of languages CL is identifiable if and only if a 

learning function that identifies CL exists.  

• A learning function LF identifies a class of languages CL if and only if it 

identifies any language L of the class CL.  

• A learning function identifies a language L if and only if it identifies any 

presentation of the language. 

• A learning function identifies a presentation f, if and only if, the learning 

function converges to h and yields(f) = yields(h).  

• If we are given examples and counter-examples of the language to be 

identified, and each individual string is sure of appearing, then at some 

point the inductive machine will return the correct hypothesis.  

• If we are given only the examples of the target, then identification is 

impossible for any super finite class of languages, i.e. a class containing all 

finite languages and at least one infinite language.  

2.2 Active learning 
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This model was set out in [Ang81]. This framework concerns the learning with 

additional information, queries asked from an oracle.  

• The oracle is a device that knows the target language. When it is asked, the 

oracle gives correct answers with no probabilities. 

• Different types of queries are established: let a string w (in general), a target 

language TL and a grammar G.  

- Membership queries: the question asked to the oracle is “Is w ∈ TL 

true?”   

For a membership query, we have MQ: ∑* → {yes, no}.  

- Equivalence queries: the question asked to the oracle is “Is L (G) = TL?”  

*  Weak equivalence query WEQ: g → {yes, no} or  

* Strong equivalence query SEQ: g → {yes} ∪ ∑* 

- Inclusion queries: the question asked to the oracle is “Is L (G) ⊆ TL?” 

      Inclusion query: SSQ: g → {yes} ∪ ∑* 

•  Different system depends on the type of queries used. 

- Only membership queries Γ = {MQ} 

- All types of queries Γ = {MQ, WEQ, SSQ} 

- Minimum adequate teacher MAT with  Γ  = {MQ, EQ}.  

2.2.1 Definition 

A class of grammars g is identifiable with a polynomial number of queries if there is 

an algorithm alg such that: 

- For each grammar G in g, alg identifies G with polynomial (in |G|) 

number of queries in Γ. 
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- This algorithm does each update in time polynomial (in |G|) and in 

the length of the longest counter-example. 

2.2.2 Characteristics of active learning 

• With an MAT, we can learn FA and also a variety of other classes of 

grammars.  

• It is difficult to see how powerful is really an MAT. 

• It is easy to find a class, a set of queries and provide and algorithm that 

learns using them.  

• It cannot learn FA from (a polynomial number of) membership queries 

alone or from equivalence queries alone. 

• With only a polynomial number of examples, or with a polynomial 

number of mind changes, learning FA is not possible.  

2.3 PAC learning 

2.3.1 Definitions 

Probably approximately correct (PAC) learning was proposed as an alternative model 

for identification in the limit [Val84]. While in this latter, it is assumed that a finite 

time for learning an exact hypothesis, PAC allows for a hypothesis to identify a target 

language with certain probability and this identification is performed in polynomial 

time.  

A hypothesis h is said to be approximately correct if and only if Pr
D

( [ h( x)≠ L( x)]<ε 

Where:  
• C is a class of languages and H is a set of hypothesis.  

• L ∈ CL and h ∈ H.  

• ε is some positive value.  
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PAC-learnability 

Let us take CL to be defined over a set of example sentences from the alphabet Σ of 

length n. CL is said to be PAC-learnable by the learner if, for all grammars g ∈ C, 

given a distribution D of examples over Σ*, ε and δδδδ constrained by ε > 0 and δ < 0.5, 

the learner will, with Pr
D

 > (1 - δδδδ), output a hypothesis grammar g
h
 with g

h
 ∈ G such 

that error
D

(g
h
) < ε.  

This means that the inference is done with a probability Pr
D

 with an error as small as 

prescribed. For so doing, we need to measure the difference between the target and 

the inferred grammars using an error metric. The error, denoted error
D

(g
h
), of the 

hypothesis grammar g
h
 with respect to the target grammar g

t
 is the probability that 

g
h
 and g

t
 disagree on the classification of randomly-drawn instances x from 

distribution D.   

2.3.2 Characteristics 

• A class CL is polynomially PAC-learnable if it is PAC-learnable in a 

polynomial time in 1/ε, 1/δδδδ, n and the size of g.  

• PAC-learning of FA is still an open problem but it is believed to be 

impossible. 

• Assumption that the PAC learning will be held under any distribution can 

lead to abnormal examples.  

2.4 Relation between active learning and PAC learning 

A class is polynomially identifiable by equivalence queries if and only if it is 

polynomially PAC-learnable [Ang88].  
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3. Algorithms for GI 

Classes of grammars are studied at levels in reverse order of their classification in 

the Chomsky hierarchy [Cho59]. A lot of work is done in the field of regular 

grammars (type 3) and less work for the class of CFGs (type 2). Some works have 

considered the possibility of extracting grammars from programs [CMZ05]. These 

two types concern formal languages. Important interest is given to these two classes 

because there are efficient algorithms that solve the decidable problem of 

membership of an element to the associated languages. Case-sensitive grammars 

(type-1) and unrestricted grammars (type-0) are generally used for natural language 

processing. In the following, we only concentrate our survey on grammars for 

formal languages.  

3.1 Algorithms for regular grammars  

Regular grammars are widely studied in the domain of grammar inference for 

several reasons:  

• They are simple.   

• They are important in syntactic pattern recognition.  

• They have a well-known set of properties such as decidability of 

membership and equivalence questions.  

• There exist efficient parsers for them.  

For each regular grammar, there exist a set of finite state automata which recognize 

language of this grammar. The problem of inferring a regular grammar is that of 

learning a finite state automaton from both positive and negative data. This problem 

can be formally established as a decision problem as described in Fig. 3.2 below.  
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/* Methodology 3.2 */ 

/* METH32 */ 
 

/* Methodological Steps – Inference Problem  */ 
 

• Given  

        - a finite alphabet 

        - two disjoint sets of examples D+ and D-  

           - an integer n 

• Find  

A deterministic finite state automaton ( FA) consistent with 

D+ and D-  

 

• Subject to the constraints   

A number of states less than or equal to n.  

 

Figure 3.2 METH32 Combinatorial problem associated with a FA. 

 

This is known as the combinatorial problem associated with a FA. It was proved that 

this problem is NP-complete [Gol67]. The problem of finding polynomially larger 

FA than the minimum FA, consistent with the input data, is NP-hard [PW93]. The 

learning of FA is also extended to the non-deterministic finite state automata NFA. 

We give below some algorithms concerning the two recognizers.  

3.1.1 Complexity for inferring regular grammars 

The search space of regular grammar inference depends on the total number of 

states in the maximal canonical automaton. We usually build a lattice. However, 

even for a small number of states it is not practical to explicitly build the lattice. For 

example, with only 4 states, 15 different automata can be obtained by merging states. 
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With 10 states the number of different automata is increased to 115,975. To overcome 

this problem, we usually rely on heuristic [Sav04] or incremental methods [PV96]. 

3.1.2 Learning FA 

The importance of work on FA is justified by the fact that the algorithms treating the 

inference problem for FA can be adapted for larger classes of grammars, for instance 

even linear grammars [Tak88], sub-sequential transducers [Knu94] or tree 

grammars. They can even be transposed to solve the inference problem for CFGs, 

when the data is presented as unlabelled trees [Sak92].  

3.1.2.1 Trakhtenbrot and Barzdin [TB73]  

In [TB73], the authors study the case where all data length is greater than a certain 

value. For this case, there exists an algorithm that identifies FA. They describe a 

greedy learning algorithm with polynomial-time complexity for constructing the 

smallest FA consistent with complete labelled training set. The input is the prefix 

tree acceptor (PTA). This tree is collapsed into a smaller graph by merging all pairs 

of states that represent compatible mappings from string suffixes to labels. This 

process is called contraction procedure.  

 3.1.2.2 Gold’s algorithm [Gol78] 

 This algorithm tries to find the minimum FA compatible with the data. The states 

of the FA are strings or prefixes of strings. An observation table OT(S,E) is 

constructed and contains the whole information. S is a set of states and E is some 

experiment. The algorithm will find the correct automaton when a characteristic 

sample is included in the data. It has a polynomial-time complexity. 

3.1.2.3 RPNI algorithm [OG92] 

 A regular positive negative inference (RPNI) algorithm is based on state merging 

method, [OG92]. In this case also, a prefix acceptor automaton is initially 
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constructed on the basis of positive data set. An iterative merging process is 

performed but corrected by a set of negative data. Many other algorithms followed 

RPNI, intending to improve the order of states to be merged. For instance, BLUE* 

[Seb03] is an adaptation of RPNI that deals with noisy data.   

3.1.2.4 Traxbar algorithm [Lan92] 

Traxbar algorithm is a variant of the algorithm exposed above [TB73]. It is used in 

the case where both target machine and training set are drawn randomly by a 

uniform distribution [Lan92]. In this work, it is experimentally shown that Traxbar 

can learn approximately a FA if the training set and the machine are generated 

randomly instead of being chosen by an adversary. This had a great impact on the 

induction community since languages of infinite size become learnable.   

3.1.2.5 Dupont’s lattice setting [DMV94] 

This work considers the grammar inference as a “generalization of search” 

problem, inferring a grammar is reduced to the process of searching for a target 

grammar in the search space. Regular inference may be defined as the discovery of 

an unknown automaton A from which an observed positive sample I+ is supposed 

to have been generated. Given the additional hypothesis of structural completeness 

of I+, this problem is considered as a search through a Boolean lattice built from 

the positive information. 

 3.1.2.6 Evidence Driven State Merging (EDSM) Heuristic [LPP98] 

The main idea in the so-called evidence-driven state merging (EDSM) algorithm 

[LPP98] is to try all possible merges and keep only the merge with the high score. 

It was realized that an effective way to choose which pair of nodes to merge next 

within the augmented prefix tree acceptor (APTA) would simply involve selecting 

the pair of nodes whose sub-trees share the most similar labels. To improve the 
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running time of EDMS, window-EDMS (W-EDMS) was suggested where only 

nodes that lie within a fixed-sized window from the root node of the APTA are 

considered for merging. An analytical study of W-EDMS shows that it is better 

than its full-width counterpart [CK02].    

EDMS won the Abbadingo learning competition (http://abbadingo.cs.unm.edu/), 

in 1998. This competition's topic is average case learnability of FA from given 

training data. The basic setup is based on 16 benchmark problems. Each problem 

consists of a secret randomly generated FA which serves as a target concept, a set 

of training strings which have been labeled by that target concept, and a set of 

unlabeled testing strings. The task is to predict the labels that the target concept 

would assign to the testing strings. Each problem will be considered solved by the 

first competitor who demonstrates a test set error rate of 1% or less.  

3.1.2.7 Data-driven heuristic  

This represents a new framework for learning FA, where the quantity of data is 

used as heuristic to drive the learning process [deH96]. Any data-independent 

ordering will allow for identification in the limit. Here, a heuristic is chosen. It 

tries to merge those two states for which most evidence is available. Based on this 

heuristic, it is proved that the algorithm identifies in the limit. However, the 

characteristic set associated to this heuristic can be exponential. The learning 

algorithm is called data-independent if it does not need information about the data 

of positive and negative examples to return its result. Otherwise it is data-

dependent. Results obtained assert that polynomial identification from given data is a 

non-trivial condition leading to interesting algorithms in GI. 

3.1.3 Learning non-deterministic finite state automata NFA 
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Inferring NFA is not polynomially possible from given data [deH97]. In [DLT01], it 

is proposed to learn cheaper structure than FA; looking for an NFA seems to be a 

promising way. A sub-class of FA called residual finite state automata (RFSA) is 

studied. RFSA shares the property of existence of a canonical representation with 

FA. They define the system called DeLeTe that builds the canonical representation 

from any sample containing SA, where SA is a characteristic sample with polynomial 

cardinal associated with a FA.   

3.1.4 Learning quantum finite automata 

Equivalence between quantum automata [Moo00] and quantum grammars on one 

side and FA and grammars are studied in [KW97]. The importance of quantum 

automata is due to their lower space complexity (fewer states, fewer steps) and their 

capacity to recognize some non-regular and non-CFLs. In [RG01], it is shown that 

quantum and classical learning are information-theoretical equivalent. However, 

apparent computational advantages of the quantum model yield to efficient 

quantum learning algorithms which seem, up to now, to have no equivalent in 

classical counterparts such as those proposed in [BJ99].  

3.2. Algorithms for CFGs 

After spending almost three decades on regular grammar inference, it was natural to 

move to the next class in the Chomsky hierarchy, i.e. the CFGs. That was first set in 

the European Conference on Machine Learning (ECML2003). Another motivation to 

study the domain was the limitations of regular grammars in some new domains 

like genetic structures, XML and its technology, text compression, and the like. CFGs 

are more expressive than regular ones. Learning the entire class of CFLs is until now 

an intractable problem, i.e. the time required solving instances of the problem 

growth exponentially with the size of instances of the problem. Providing additional 
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information or avoiding super-finite classes can help to identify this class in the 

limit. In order to avoid the negative result of impossibility of inferring a class of 

languages from positive examples alone, some methods have been set out. On top of 

positive examples, additional information can be negative examples, use of an 

oracle, and knowledge on structures or ad hoc heuristics.     

3.2.1 Difficulty of CFG inference 

A tentative of synthesizing most problems in GI of CFLs is detailed in [Eyr06]. These 

problems can be summarized as follows: 

• CFLs are not stable for a set of algebraic operations like intersection and 

complementation. The use of negative examples is not useful because they 

have not the same structure as the hypothesis to be learned.  

• It was proved that the class of CFLs is not identifiable in the limit, 

polynomially in time and data using a sample of positive and negative 

examples. This is due to the undecidability of equivalence problem in the 

class of CFLs [deH97].  

• Contrarily to regular languages where the entire class is recognized by FA, 

CFLs can be recognized by non-deterministic push-down automata (PDA) 

Determinism is an essential point in learning, so nondeterminism and 

ambiguity of CFGs represent an important problem within the inference 

process.  

• Some CFGs have a huge “expansibility”. Indeed, the number of productions 

grows exponentially with the size of a sentence. For example, the simple 

deterministic grammar:  

Gn = ( {a}, {Ni, i <= n}, P, N0), 

      where: 
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P ={ Ni � a Ni+1  Ni+1 } ∪ { Nn  � a}.  

For this grammar, the equivalence problem is decidable but the number of 

productions used is exponential in the size of the grammar. So inferring it 

in polynomial time is impossible.  

• Indivisibility of the CFGs is another problem for the learning process. Any 

update in the productions can affect the totality of the language; there is no 

separate ways of derivations. 

 

3.2.2 Algorithms for CFG inference 

Due to the serious theoretical limitations of learning the entire CFLs, different 

practical techniques are established to obtain positive results.  So classifying these 

algorithms is a difficult task. This may explain why there are only very few number 

of surveys of the field. To our knowledge, there are only a couple of these, [Lee96] 

and [deH05]. Recently, a book was published for learning automata and grammars 

[deH10]. We give below a tentative classification of the most important algorithms.  

 

3.2.2.1 Complexity 

The complexity of CFGs is obviously is worse than the complexity of regular 

grammars exposed above. Indeed, the search space for (CFG) inference is even larger 

[CMZ05]. For a given positive sentence, we need to find the different derivation 

trees. Using CNF, the number of all possible binary trees with n internal nodes is 

given by the n-th Catalan number. An additional issue is that internal nodes 

(nonterminals) need to be properly labeled. The number of possible labeling of 

nonterminals is defined by Bell numbers. As a result, the construction of derivational 

trees with proper labeling of nonterminals contributes to an immense search space. 

For instance, a statement with 5 terminals (4 nonterminals) can be parsed by 210 
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different derivation trees, while this number increases to 1.9479161E9 for a statement 

with 11 terminals (10 nonterminals) [SF01].  

3.2.2.2 Patterns in strings 

In general, this type of algorithms is popular in the pattern recognition 

community. A pattern is a special substring. These algorithms deal with learning 

from text, i.e. a set positive data and eventually negative ones. This approach is 

limited by Gold’s theorem. The first algorithm is reported in [Sol59] while [Tan87] 

gives an algorithm that learns CFGs from positive and negative examples of 

strings. The technique presented is to remove self-embedding structures from a 

finite sample, infer a linear grammar from the sample, and compose the inferred 

linear grammars to create a CFG. Once again, the learnability from positive 

examples only is not guaranteed for all CFLs.  

The work in [Ang80] gives some sufficient and (or) necessary conditions for this 

purpose. However, the use of negative examples seems also unnatural. As stressed 

earlier, when a child learns a language, he receives only correct sentences from that 

language and needs no incorrect ones. These points motivate research for tools 

other than negative examples.  

3.2.2.3 Extension of regular languages ’results to CFLs 

The class of regular languages is a subset of CFLs. One natural way to upgrade to 

CFG inference is the extension of techniques used for regular grammar inference. 

We have seen that the lack of linearity and determinism represent a problem in 

CFG inference. This has motivated the study of linear and even linear languages. 

The GI problem for even linear languages can be solved by reducing it to the GI 

problem for regular languages [Tak88]. [Mäk96] introduces subclasses of even 

linear languages for which there exist inference algorithms using positive samples 

only; this is done via Szilard languages [Ros97]. 
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k-bounded CFGs are identifiable in polynomial time using equivalence queries and 

non-terminal membership queries [Ang87]. Non-terminal membership queries 

propose a string w and a non-terminal A; the answer is “yes” if w is derivable from 

A and “no” otherwise. In effect, the learner is allowed to ask about the structure of 

the target grammar. A larger class of the deterministic linear grammar is proved to 

be identifiable from polynomial time and data [deH02].  

Simple deterministic languages (SDLs) are used in such a way that non-terminal 

membership queries are no longer needed [Ish90]. Instead, the algorithm is 

allowed extended equivalence queries, which propose a grammar G, where G does not 

have to be a grammar for an SDL; the answer is “yes” if the target grammar is 

equivalent to G.  

Other subclasses of CFLs that have been shown to be learnable are structurally 

reversible languages, one-counter languages (languages accepted by deterministic 

one-counter automata), pivot languages, very simple languages, and terminal 

distinguishable CFLs [LN03]. 

 3.2.2.4 Use of artificial intelligence techniques 

Here the inference problem is seen as a search in the space of possible grammars. 

The main problem to study is the size of the search space. For CFGs, the search 

space has been seen as a version space [Lan00].  Search algorithms like hill-

climbing or genetic algorithms are used. We can use genetic algorithm on the rules 

of grammars on the condition that some help is provided from structures of data to 

reduce the size of the population [Sak00]. Other techniques like the use of an 

intelligent backtracking or the prior conflict diagnosis or heuristics are of a great 

utility.   

3.2.2.5 Stochastic CFGs (SCFGs)  
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There is sometimes a need to deal with noisy data for example in speech 

recognition or in computational biology. Here stochastic CFGs (SCFGs) are used. 

SCFGs are CFGs where a probability is associated to each production so that the 

sum of probabilities of all productions with the same left hand side is one. One 

problem in this approach is how to decide of the correctness of these probabilities. 

The second is with parsing such grammars. Here, all algorithms attempt to search 

the space of all SCFGs, either exhaustively, i.e., by enumeration, or by some sort of 

heuristic search. An enumerative algorithm is developed that identifies SCFG's in 

the limit with probability one from stochastic data [Hor72]. The approach of 

inferring directly the CFGs is hard. It seems that artificial intelligence techniques 

like genetic algorithms can be of great help in solving this problem [Sak00].   

3.2.2.6 Algorithms that uses alternative representations for languages 

Instead of representing a language by a grammar from the Chomsky hierarchy, it 

is represented in different ways: context-free expression, pattern languages, and 

categorical grammars. 

The first representation is used by [Yok88] and is inspired by learning regular 

expression. The author gives an NP-complete algorithm that learns context-free 

expressions. Pattern languages are first studied by [AS83], defining a pattern as the 

concatenation of constants and variables, and the language of a pattern as the set of 

strings obtained by substituting constant strings for variables. Introduction of 

types [Kos95] or using only one pattern [ERS97] are ways to simplify the problem 

of inference. Pattern languages have been also used with probabilities in [RZ01]. 

Grammars in Chomsky hierarchy deal only with syntax. For linguistics, learning a 

language concerns both syntax and semantics. Categorial grammars are grammars 

where syntax is attributed some semantics [Kan98]. Important role of semantics 
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and context in the early stages of children’s language acquisition, especially in the 

2-wordstage has motivated the work in [BA08].  

3.2.2.7 Algorithms that rely on structured data 

We saw that additional information is needed along with positive examples to 

achieve learnability of CFGs. Important information concerns the structure of the 

data. This structural information is known as derivation trees. Structural data can be 

represented by strings generated by a parenthesis grammar or by skeleton.  

For any CFG G, the corresponding parenthesis grammar (G) is formed from G by 

replacing every production A→ α   by A→ (α). On the other hand, skeletons are 

derivation trees with the non-terminal labels removed. The key property of 

skeletons is that they are exactly the set of trees accepted by skeletal tree automata 

(STA), a variation of finite automata that take skeletons as input. There are very 

strong relations between learning CFGs from parenthesized data or skeletons and 

learning regular tree grammars. 

Learning FA has been extended to the identification of STA in polynomial time, 

although this requires being able to ask structural membership and structural 

equivalence queries [Sak92]. As a result, inference is made possible for reversible 

CFGs in the limit from positive structural data alone by adapting the technique for 

reversible automata [Ang82]. Skeletons are also used to infer terminal 

distinguishable CFGs [LN03].  

3.2.2.8 ILSGInf : Inductive Learning System for Grammatical Inference 

Derivation trees and the so-called partial derivatives heuristic construction is at the 

heart of our method, used in the development of ILSGInf [HH07b], detailed in 

Chapter 6.  
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Figure 3.3 DIAG31 – ILSGInf : a system for GI within existing GI methods 
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4. Applications of grammatical inference techniques 

GI techniques are widely used in different domains. We survey a set of such 

applications in different fields such as pattern recognition, language processing, data 

processing, robotics, and software engineering, to cite just a few of these numerous 

applications.  

4.1 Structured pattern recognition 

Pattern recognition is the field where GI was applied first. Sometimes objects with 

no independent measurable properties are recognizable by their structural 

configuration. Structures are described using grammars where terminals are the set 

of recognizable pieces, and productions encode the different configuration. Then 

classification is equivalent to parsing. GI is present when we want to infer the global 

structure of a set of instances. It was applied to textures in images, image contours 

[Luc94], fingerprints classification, recognition of pictures of industrial objects, 

character recognition by learning stochastic finite automata. 

4.2 Computational linguistics 

One of the earliest motivations of GI was to understand human language 

acquisition. While GI deals only with syntax, human language acquisition takes also 

semantics in consideration. EMILE prototype [AV02] is a toolbox for natural 

language processing. It is intended to help researchers to analyse the grammatical 

structure of free text. This work is based on categorical (or categorial) grammars 

which are most suitable for linking syntax with semantics. Another worthy 

application is shallow parsing, i.e. the task of dividing sentences into a sequence of 

simple phrases [Tho02]. Shallow parsing can be used to index internet pages, for 

instance.  
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4.3 Speech recognition 

Speech is the domain where noise is an important characteristic. Probabilistic 

grammar inference is used via two models: hidden Markov models (HMMs), i.e. 

automata with probability, and n-grams models. One of the earliest models was 

used by [MB95] to focus on a description of the hybrid HMM/artificial neural 

networks method. In this work, the authors also began to look at the connectionist 

inference of language models, including phonology, from data. This step is required 

in order to take advantage of locally discriminant probabilities rather than simply 

translating to likelihoods. GI techniques were also used to language simplification 

trough error-correcting [ASV01].    

4.4 Automatic translation 

Usually a transduction is viewed as a string to string function f ("My red car") = "Ma 

voiture rouge". Automata with outputs are used. We can cite the improvement of the 

OSTIA algorithm. The input of learning is represented by pairs of strings (input 

string and the associated output). Multiplicity automata are used to deal with 

ambiguity. Alignment techniques were used with dictionaries to improve the 

learning of sub-sequential transducers [Vil00].  

4.5 Document management 

In recent years, writing, storing, and retrieving documents in electronic form has 

become popular. These documents are structured. The common way to describe the 

structure of similar documents is the use of grammars. Extended markup language 

XML has been recently used for text element markup. The extraction of schematic 

information from XML documents often requires certain generalisation of input 

data. Among existing conceptual approaches to the XML, the grammar-based one 
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seems to be the most promising for the schema extraction. An XML data is 

equivalent to a derivation tree of a CFG without non-terminal labels in GI theory. 

This extraction was addressed as a GI approach [Chi01].    

4.6 Data and text mining 

4.6.1 Text mining 

Both information extraction (IE) and information retrieval (IR) belong to the broader 

field of text mining (TM). In information retrieval, we seek to recover information 

from a subset of documents that are hopefully relevant to a query, based on 

keywords searching, usually augmented by a thesaurus. In information extraction, 

the goal is to extract from the documents, which may be in a variety of languages, 

important facts about ad hoc types of events, entities or relationships. These facts are 

then usually entered automatically into a database, which may then be used to 

analyze the data for trends, to give a natural language summary, or simply to serve 

for on-line access. Information extraction consists in finding subtle or at least non-

trivial knowledge from text. Automatic information extraction is still in the making 

despite the fact that there are many public Web-based platforms that can be used for 

this purpose, e.g. GATE6 platform.  

4.6.2 Text compression 

Grammars have the potential of representing infinite information using only finite 

set of rules. As a result of this property, one can consider a grammar as a 

compression tool of the whole language. For example, Sequitur is a compression 

system that was developed based on the idea that a good grammar is a compact 

                                                           
 
6GATE was developed at Sheffield University, England,  http://gate.ac.uk/ie/  
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grammar [NW97]. It requires no input except a single text and it produces a 

grammar that generates only the input text. It is clear that that Sequitur cannot be 

considered as a GI system but it has an important role to compress an input text.  

4.6.3 RPNI and structure induction 

In [KR07], the authors study the use of RPNI algorithm, described in Section 3.1.2.3 

above, to infer information extraction models from positive and negative examples. 

In [Sai06], GI is applied to text corpus. These techniques attempt to induce the 

structures of a source data by a set of production rules of regular grammar.  

4.7 Biological interfaces 

4.7.1 Grammatical structures in biological sequences  

The huge amount of data about genes and proteins and the availability of complete 

genomes offer the possibility to study more globally the interaction between bio-

entities in complex cellular processes. Many efforts focused on the decoding of 

complete genomes and assignment of functions to genes and proteins. The result is 

the birth of the field of bioinformatics. Its principal goal is to bridge the gap between 

biology and computer science to understand cell behaviour and to develop systems 

that link computational techniques and biology, among others. Bioinformatics is 

facing new challenges in analyzing the functioning of biochemical networks and 

molecular biology. GI techniques are expected to find many useful grammatical 

structures in biological sequences [Coh04].  

4.7.2 DNA computing 

DNA computing began by the demonstration that DNA can be used as a form of 

computation for solving the seven-point Hamiltonian path problem [Adl94]. DNA 

computing and parallel computing are fundamentally similar. Indeed, in DNA 
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computing, many different molecules of DNA try many different possibilities at 

once. In this novel computer architecture, simple biological operations are coded as 

simple instructions. DNA sequences are used to encode information and enzymes 

can be employed to simulate basic computations. As a result, a DNA computer was 

constructed and coupled with an input and output module, which would 

theoretically be capable of diagnosing cancerous activity within a cell, and releasing 

an anti-cancer drug upon diagnosis [BGB04]. It has been demonstrated that DNA 

array can implement a cellular automaton, which generates a fractal called the 

Sierpinski gasket. This shows that computation can be incorporated into the 

assembly of DNA arrays, increasing its scope beyond simple periodic arrays 

[RPW04]. 

4.8 Map learning 

In their article [DBK92], the authors present a robot with automatic learning abilities 

based on GI in the field of map learning. It is useful for a robot to construct a spatial 

representation of its environment from experiments and observations. Probabilistic 

GI techniques are used to infer the global structure of the environment from a 

sample of experiences.   

4.9 Self assembling 

In self assembly, a collection of particles spontaneously arrange themselves into 

some coherent structure.  In one approach, each particle is provided with a local 

interaction rule, based on graph grammar [KGL06]. The main problem is to infer a 

global behaviour of a system by means of local rules. The approach shows that we 

can refer to grammars approaches to precisely predict and control the emergent 

behaviour of self-organizing system. Some aspects of grammars are used to model 

dynamical systems and self-organized systems are described in Chapter 7. 
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4.10 Software engineering 

Extracting grammars from programs attracts researchers from software engineering. 

In this field, we want to recover a grammar from legacy systems in order to 

automatically generate various software analysis and modification tools. The so-

called memetic algorithm MAGIc improves current results in grammar inference of 

domain-specific language (DSL) grammars from example of DSL programs. The 

result is a tool support for DSL development, assisting domain experts and software 

language engineers in developing a DSL and its implementation. A semiautomatic 

grammar-driven system, called MARS, uses GI techniques to recover metamodels 

from instance models developed on a network metamodel [MHB09]. 

4.11 Soft computing and evolutionary multiobjective optimization (EMO) 

Learning can be reduced to finding solutions using evolutionary multiobjective 

optimization (EMO). In this framework, the different solutions are handled by the 

standard evolutionary operators such as selection, crossover, and mutation. The 

improvement of the solution is handled by the construction and comparison of the 

Pareto fronts using the various fitness (objective) functions. This framework was 

used and tested on a medical classification problem and gave satisfactory results 

[HH11]7.  

                                                           
 
7 Part of this work has been published under the title: “Evolutionary multiobjective optimization for medical classification”, 
2011 IEEE GCC Conference & Exhibition, "For Sustainable Ubiquitous Technology",  Dubai, United Arab Emirates, pp. 
441-444, 19-22 February 2011, http://www.ieeexplore.org 
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CHAPTER 4 

GRAMMATICAL INFERENCE WITH GASRIA8 

1. Introduction 

As stressed in Chapter 2, many methods and systems have been developed for GI for 

more than half a century. As far as this chapter is concerned, the proposed contribution 

falls at the intersection of three major fields of research, namely formal languages, 

machine learning (ML) with special emphasis on grammatical inference (GI), and 

inductive logical programming (ILP). We know that these fields of research historically 

evolved independently, although it can be well be argued that they are naturally related 

since both GI and ILP are considered as integral parts of ML. On the other hand, formal 

languages are described using grammars. Now each of these areas has now its own 

scientific community with its ad hoc periodicals, its scientific meetings and its 

specialized conferences. Because the system we propose is based on one logic-based 

                                                           
 
8  Part of this chapter has been published under the title “Apprentissage inductif de grammaires: Le système GASRIA. (Inductive 
learning for grammars: The GASRIA System)”, In Revue d’Intelligence Artificielle, Hermes-Lavoisier Edition, Paris, France, 
ISSN: 0992499X, 21(2):223-253, March-April 2007 
http//ria.revuesonline.com, http://www.revuesonline.com, http://ria.revuesonline.com/article.jsp?articleId=9770 
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environment and one inductive learning module, we attempt a useful rapprochement 

between ILP and GI.  

Specifically, our main problem deals with parsing. In classical parsing, a sentence is 

either recognized or refused. In other words, parsing is stopped, perhaps at the outset, 

due to the first unrecognized character - with no further search. This limitation 

characterizes all existing methods like Earley’s algorithm [Ear70] or its offshoots 

[Lee92]. In a more general context involving learning, as the one we are considering, 

this limitation is a truly severe drawback [MGZ03]. Indeed, we want, for example, to 

know whether at least some part(s) of the sentence is (are) correct without getting 

ousted by the first unrecognized character. Therefore, we apply a method to parse all 

that is parsable using partial derivation. In this way, we are able to draw maximum 

syntactic knowledge from the sentence under consideration. In order to address this 

issue, we introduce the concept of partial parsing and its corresponding algorithm, the 

so-called partial parsing algorithm (PPA) [HH07a]. 

This chapter is organized as follows. Section 2 formulates the problem, putting 

forward the objectives to be realized and the available methods for doing so. Section 3 

describes related works from three different perspectives, namely GI, machine learning 

and ILP. In Section 4, GI and ILP approaches are defined and compared and GI is 

formulated in an ILP framework. GASRIA architecture is described in Section 5 while 

Section 6 reports relevant parsing issues. Section 7 describes the learning process in 

GASRIA and Section 8 reports the backbone of the implementation and operation of 

GASRIA on an illustrative example. The chapter ends up with a conclusion and 

perspectives for further developments.  

2. Problem formulation and basic methods  

One of the reasons hindering coupling a first-order logic-based environment with a 

learning system for grammar acquisition lies in the structural and functional differences 

between these two types of systems. We develop a synergy between both systems in 
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order to induce, or infer, one possible grammar. We concentrate on CFGs because they 

are used to specify the majority of programming languages. The other reason is that 

CFGs inference is still a challenging issue.  

2.1 GASRIA Objectives  

A complex and multidisciplinary environment is the intelligent and synergetic 

interaction of basic and modular building blocks tied together in a coherent action 

towards the achievement of the most practical and lesser-effort design. For so doing the 

overall environment is to comply with the methodological steps depicted in Figure 4.1 

below. 

 

 
/* Methodology 4.1 */ 

/* METH41 */ 
 

/* Methodological steps used in GASRIA */ 

1. Goal : GASRIA level   

Design an integrated architecture and develop a sys tem based on 
coupling inductive learning and first-order logic ( FOL) for the 
purpose of grammatical inference for some CFGs.   

2. Modules  

EXINF Module /* Chapter 5 */ 

Design and develop an FOL- based module for addressing both 
traditional or “crude” parsing and “intelligent” parsing issues 
based on an original declarative Earley-like algori thm.  

 

ILSGINF  Module /* Chapter 6 */ 

Design and develop an inductive learning module for solving the 
following incremental learning problem:  

From a set of positive strings with respect to a gi ven language , 
induce one possible CFG that generates all strings acceptable by 
the given language.  

  

Figure 4.1 METH41 Methodological steps used in GASRIA  
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2.2 Methods used  

We rely on methods drawn from parsing and from inductive logic programming (ILP). 

Parsing is used to recognize and/or classify a string. ILP is used to make the required 

inferences during the learning process.  

3. Related works: three interconnected fields  

There are many approaches that can be used to meet the methodological steps 

described in Figure 4.1 above. We stress the important fields that are of interest to us. 

We thus report some aspects of formal languages, as the basis for parsing, before 

concentrating on machine learning and ILP.  

3.1 Formal languages approach 

This approach has been addressed in details in Chapter 2, specifically dealing with 

formal languages and grammars. We further summarize the basic concepts we need for 

our work. Intuitively speaking, a language is a complex system of structured messages 

that enables humans, or other species, to communicate what they know about the world. 

Communication is meant as the intentional exchange of information that is brought about 

by the production and perception of signs drawn from a shared system of conventional 

signs. Particularly for humans, language is at the root of thinking. That is why the so-

called Turing Test, used for the definition and examination of machine intelligence is, 

above all, based on language. A formal language is the eventually infinite set of strings, 

each of which is the concatenation of terminal symbols, usually called words in natural 

languages. For instance, in the language of arithmetic, the terminal symbols include real 

numbers, or symbols representing them, and other symbols like the + sign, the – sign, 

the = sign. In this case, if a and b are two numbers then “a+b” is a member of the 

arithmetic language, “+a,b-” is not. Formal languages, like first-order logic have strict 

mathematical definitions. A grammar is a finite set of rules that specifies a given 

language. Formal languages always have a precise, official grammar, specified in 
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manuals or books. Both formal and natural languages associate a meaning or semantics 

to each valid string. For instance, in the language of arithmetic, a grammatical rule 

would specify that if “a” and “b” are expressions then “a+b” is also an expression whose 

semantics is the sum of both a and b. Pragmatics is a characteristic of natural language 

which consists of the interpretation of a given string according to the situation or 

context.   

Most grammar rule formalisms are based on the idea of phrase structure – that strings 

are composed of substrings called phrases, which can be expressed in different 

categories, known as noun phrase (NP), verb phrase (VP). For example the NP “The 

paper” can be concatenated with the VP “is excellent” to produce the sentence S “The 

paper is excellent”. The category names such as VP, NP and S are called non-terminal 

symbols or simply non-terminals. Grammars define non-terminals using rewrite rules, 

usually described in Backus-Naur Form (BNF), previously known as Backus Normal 

Form. In that case, the previous sentence can be expressed in the form S → NP VP 

meaning that any sentence S can be written as any NP followed by any VP.  Parsing is 

the process of building a parse tree, composed of a root S, interior nodes composed of 

non-terminals and leaves composed of words as terminals. For example, the previous 

sentence “The paper is excellent” would have S as root with one left-child NP and one 

right-child VP. The NP node would have a left-child Article and a right-child Noun. The 

VP node would have a left-child Verb and a right-child Adjective. Further down in the 

tree we would have all the words composing the sentence, as leaves. The only child of 

Article is The. Likewise, Noun is instantiated by paper, Verb by is, and Adjective by 

excellent. The result is that the parsed sentence appears at the bottom of the tree. This 

process is called top-down parsing. Conversely, if we start from any sentence, we try, in 

bottom-up process to go up to the start symbol S. If we succeed in doing this, then the 

sentence is said to be correct, i.e. the sentence belongs to the language; otherwise, it is 

incorrect. The process of moving “upwards” in the parse tree from the leaves to the 

immediate level above is referred to as “tokenization”.  Therefore, the instantiation of 

tokens ends up with terminals [RN03].  
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3.2 Machine Learning (ML) 

3.2.1 Inductive and deductive learning 

As a broad subfield of artificial intelligence, ML is concerned with the design and 

development of algorithms and techniques that allow computers to improve their 

processing through training. At a general level, there are two types of learning: 

inductive and deductive. Inductive methods extract rules and patterns out of massive 

data sets. The major focus of ML research is to extract information from data 

automatically, by computational and statistical methods. ML is therefore closely related 

to not only theoretical computer science but also to data mining and statistics. ML has a 

wide spectrum of applications including natural language processing, syntactic pattern 

recognition, search engines, medical diagnosis, bioinformatics, brain-machine 

interfaces, detecting credit card fraud, stock market analysis, classifying DNA 

sequences, speech and handwriting recognition, object recognition in computer vision, 

game playing and robot locomotion, among others [Mit97]. 

3.2.2 Some ML/data mining methods 

The main traditional methods available in ML are decision tree learning (DTL), neural 

networks, Bayesian learning, instance-based learning, genetic algorithms, rule learning, 

analytical learning, and reinforcement learning. Among the most well-known 

algorithms, we can cite symbolic rule-learning algorithm such as CN2 [CN89], and C4.5 

[Qui93]. When rules have to be learned from extremely large data sets, specialized 

algorithms stressing computational efficiency may also be used. Other machine learning 

algorithms commonly applied to this kind of problems include inductive logic 

programming [Mug99], neural networks, and Bayesian learning algorithms. The 

textbook [Mit97] describes a broad range of machine learning algorithms, as well as the 

statistical principles on which they are based. The field of ML has borne the explosive 

field of data mining, sometimes called knowledge discovery from databases, or 

advanced data analysis. It has already produced practical applications in such areas as 

analyzing medical outcomes, detecting credit card fraud (e.g. using the so-called White 
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Hat Google™ Hacking), predicting customer purchase behavior, predicting the 

personal interests of Web users, and optimizing manufacturing processes, among 

others. This is so because data mining algorithms enable discovery of important 

“regularities” in large data sets. A more recent survey describes most systems and 

algorithms of data mining [MR11] and some textbooks describe applied data mining 

platforms such as the Weka9 platform [WFH11]. The study of ML has also led to a set of 

fundamental scientific and epistemological questions about how computers might 

automatically learn from experience and subsequently improve behavior.  

3.3 Inductive logic programming (ILP)  

ILP aims to construct a set of hypotheses to enrich available background knowledge 

using predicate logic. In the case where positive examples are not entailed by 

background knowledge, the idea is to construct a new set of hypotheses to extend 

background knowledge in order to make this entailment possible.  

From ML, ILP inherits the goals, namely to develop tools and techniques to induce 

hypotheses from observations (examples) and to synthesize new knowledge from 

experience. By using computational logic as the representational mechanism for 

hypotheses and observations, ILP can overcome the two main limitations of classical 

ML techniques, namely the use of limited knowledge representation formalism encoded 

as a propositional logic, on the one hand, and the difficulties in using substantial 

background knowledge in the learning process, on the other hand  [Mug99]. As an 

interaction with grammars, we can refer to the specific application where ILP has been 

applied to the problem of learning a grammar that is augmented with semantics. Since 

an augmented grammar is a Horn clause logic program, techniques of ILP are found 

appropriate. As an example, CHILL [ZM96] is an ILP program that learns a grammar 

and a specialized parser for that grammar from examples. The target domain is natural 

language database queries.  CHILL’s task is to learn the predicate Parse(words, query) 

                                                           
 
9 Weka is a Web-based platform developed at Waikato University, New Zeland; http://www.cs.waikato.ac.nz/ml/weka   
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that is consistent with examples and, hopefully, generalizes well to other examples. For 

instance, the query “what is the capital of the state with the largest population?” is 

transformed into “Answer(c, Capital(s,c) AND Largest(p, State(s), AND Population(s,p))). 

Applying ILP directly to learn this sort of predicate results in poor performance since 

the induced parser has only about 20% accuracy. Fortunately, ILP learners can improve 

by adding knowledge through the construction of hypotheses. In this case, most of the 

Parse predicate was defined as a logic program, and CHILL’s task was reduced to 

inducing the control rules that guide the parser to select one parse over another. With 

this additional background knowledge, CHILL achieves 70 to 85% of accuracy on 

various database query tasks. This is obviously based on the assumption that the 

problem can be expressed in a predicate form; an assumption that might turn out 

difficult to be realized in some situations.   

4. GI vs. ILP 

4.1 Problem of inductive inference  

Inductive learning's task, at large, is based on the idea of fitting a set of instances (or 

examples) into a more general framework. This is equivalent to identifying a 

relationship between some variables, given some observed results. It can be set in a 

variety of manners, but the question ends up with an identification of some hidden 

relationship between the known inputs and the produced outputs.  

4.1.1 Inductive inference and normal semantics 

We are given a background (prior) knowledge B and evidence E. This evidence is 

described by the union of two disjoint subsets of positive evidence (E+) and negative 

evidence (E-). Assume that we have evidence −+= EEE V  a background theory and 

some hypotheses all expressed as well-formed formula (wff). We can formulate the general 

problem of inductive inference as described in Figure 4.2 below.  
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/* Methodology 4.2 */ 
/* METH42 */ 

 
/* General problem of inductive inference (GPII) */ 

/* Normal semantics */ 
Given 
 

-  A background (prior) knowledge B  
-  Evidence E 
-  −+ ∪= EEE       / * Positive and negative evidence   */  

 
Find  

                 One hypothesis H 
 
Constraints 

1. Prior satisfiability 
 

≠∩ − |EB □   

/* i.e.  The conjunction of background (prior) knowledge B 
and negative evidence does not entail the inconsistent 
clause.  */ 

 
2. Posterior satisfiability (or consistency with negative evidence)  

 

≠∩∩ − |EHB □  
/* i.e.   The conjunction of all knowledge except the positive 

evidence does not entail the inconsistent clause . */ 
 

3. Prior necessity 
 

+≠ EB |  
/* i.e.  Background knowledge alone does not entail positive 

evidence , which means that we need additional knowledge 
from constructed hypotheses */  

 
4. Posterior sufficiency (or completeness with regard to positive 

evidence)  
 

+=∩ EHB |)(  
/* i.e. Background knowledge and all constructed hypotheses  

entail all positive evidence. */  
 

 

Figure 4.2 METH42 Inductive inference and normal semantics 

By satisfiability, it is meant that the inconsistency clause cannot be entailed from 

background knowledge and negative evidence. This is true for prior satisfiability, i.e. 
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before the introduction of any hypothesis. It remains true after the introduction of 

hypotheses, for the case of posterior satisfiability.  

4.1.2 Inductive inference and definite semantics 

In most ILP systems, background theory and hypotheses are restricted to being definite, 

thus simplifying the general setting. Indeed, a definite clause theory T has a unique 

minimal Herbrand model M+(T), and any logical formulae is either true or false in the 

minimal model. The above general problem can be redefined with adapted constraints 

as follows. 

 

/* Methodology 4.3 */ 

/* METH43 */ 

/* General problem of inductive inference (GPII) */ 
/* Definite  semantics */ 

 
Solve the same problem as for normal semantics above 
 
Constraints 

1. Prior satisfiability 

)(, BMinfalseeEe +−∈∀   
/* i.e. Background knowledge cannot support negative evidence*/ 
 

2. Posterior satisfiability (or consistency with ne gative evidence)  

)(, HBMinfalseeEe ∩∈∀ +−   
/* i.e. A fortiori nor can negative evidence be supported by both  background 

knowledge and hypotheses, supposed to enrich background knowledge  */ 
 

3. Prior necessity 

)(/ BMinfalseeEe ++∈∃  
/* Some positive evidence is false in background knowledge. Otherwise, we 

would not need additional hypotheses to try to establish that it is true */  
 

4. Posterior sufficiency (or completeness with rega rd to positive 
evidence)  

)(, HBMintrueeEe ∩∈∀ ++   
/* i.e. All positive evidence is contained in background knowledge and all 

constructed hypotheses. */ 
 
 

Figure 4.3 METH43 Inductive inference and definite semantics 
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The general case of the definite semantics, where the evidence is restricted to true and 

false ground facts (examples), is called example setting. Notice that the example setting 

is equivalent to the normal semantics, where B and H are definite clauses and E is a set 

of ground unit clauses. The example setting is the main setting of ILP. It is used by the 

large majority of existing ILP systems.  

4.2 Formalized ILP approach 

The general ILP approach works as follows. It keeps track of a queue of candidate 

hypotheses QH. It repeatedly deletes a hypothesis H from the queue and expands that 

hypothesis using inference rules. The expanded hypotheses are then added to the queue 

of hypotheses QH, which may be pruned to discard unpromising hypotheses for further 

investigation. This process is continued until the stop-criterion is satisfied.   

 
/* Methodology 4.4 */ 

/* METH44 */ 
/* The general ILP approach */ 

 
QH := Initialize /* Set of starting hypotheses */ 
REPEAT 
 Delete H from QH 
   /* Delete influences search strategy. Can realize depth-first (LIFO), breadth-first 

(FIFO), best-first. */ 
 
 Choose the inference rules r1,…rk in R to be applied to H 
 /* R is the set of rules to be applied */ 
   /* Choose determines the inference rule to be applied on H */ 
 Apply the rules to H to yield H1,…,Hn 
 Add H1,…,Hn to QH 
 
 Prune QH 
    /* Prune determines which candidates hypothesis are to be deleted from the queue. 

Can rely on user as “oracle”  */  
UNTIL stop-criterion (QH) satisfied  
    /* Conditions under which algorithm stops. When either solution or failure is found 

from current queue */ 
         
/* Combining delete and prune it is easy to obtain advanced search strategies such as 
hill-climbing, beam-search, best-first, etc… */ 
 

 

Figure 4.4 METH44 General ILP approach 
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4.3 GI formulated in ILP framework 

We can express our positive-example-based grammatical inference problem (PIB-GIP) 

within an ILP framework, as follows:  

 
/* Methodology 4.5 */ 

/* METH45 */ 
 

/* GI Problem formulated as an ILP problem */ 

/* Positive-example-based grammatical inference problem (PEB-GIP) */ 
 

Given  
 

-  A logic program representing background knowledge   
/* In our context, background knowledge corresponds to CFG definitions and 
parsing methods. */ 

-  A set of positive  examples (or sentences) D+ 
 

Find  
- In ILP framework, construct additional rules describing a CFG that generates 

this specific set of data.   
     - In GI framework, departing from ILP, the aim is also to generate other similar 

data not necessarily given at the outset.         
     

 

Figure 4.5 METH45 GI problem formulated as an ILP problem 

 

In any of the frameworks of Figure 4.5, there remains the delicate operation of 

reducing the number of relevant hypotheses to construct. In our case, the partial 

parsing algorithm (PPA), described in forthcoming Section 5.2 of Chapter 6 reduces 

drastically this number since it searches within known sub-sentences. This step 

represents a useful contribution. To our knowledge, no absolute minimization method 

exists regarding the number of hypotheses to consider. 

4.4 GI - ILP interplay 

As can be easily seen from the literature, ILP [Mug99] has several links with GI. When 

learning recursive rules, ILP shares some of GI’s objectives and sometimes its 

techniques. For instance, MERLIN10 (Model Extraction by Regular Language INference) 

                                                           
 
10 http://people.dsv.su.se/~henke/ML/MERLIN.html  
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system parses the data by the background knowledge and uses this information to learn 

a deterministic finite automaton or a stochastic one [Bos98]. MERLIN 2.0 is an inductive 

logic programming (ILP) system that uses a general hypothesis in the form of a logic 

program together with sets of positive and (optionally) negative examples in order to 

find an inductive hypothesis which entails all positive examples but no negative 

examples. MERLIN has been improved resulting the GIFT system [BH01]. This latter 

builds on MERLIN by learning directly tree automata, thus not needing to lose 

representation capacity by having to linearize the data. However, systems like MERLIN 

and GIFT use GI as the inference engine of logic programs; they do not combine GI with 

existing ILP systems.  

5. GASRIA Architecture 

5.1 GASRIA modes of operation 

5.1.1 Overall block diagram 

Figure 4.6 shows the overall architecture of GASRIA system. As shown, the proposed 

system is based on two main components: the learning module ILSGInf and an FOL-

based environment called EXINF containing Earley parsing rules and the facts 

concerning the grammar and the sentence to be parsed. Each component is associated 

with one specific mode of operation. As indicated, there are two modes (or sessions) of 

possible operation, namely the learning or training mode destined to the expert or 

teacher, and linked to the ILSGInf module and the exploitation or testing mode destined 

to the ordinary user, linked to the analysis / classification of sentences to be parsed. We 

begin by describing the learning mode, and then the exploitation mode. 
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Figure 4.6 ARCH41 - GASRIA architecture 
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5.1.2 GASRIA class  diagram 

Figure 4.7 below describes the main classes used in GASRIA. It depicts the overall class 

diagram of system and is used for reusability, readability and easier maintenance.  

 

 

 

 

 

 

 

 

 

Figure 4.7 ARCH42 GASRIA class diagram  

5.2 Learning mode: ILSGInf 

In this mode, the system acquires knowledge from examples introduced by the human 

expert or teacher, with an exclusive interest in positive examples. At the beginning of 

the training, the ILSGInf learning module receives, one by one, human expert-chosen 

sentences of a given language and thus enriches its fact base, initially empty. Starting 

from this set of sentences, this module builds a CFG that generates the language. The 

fact base is automatically and incrementally filled with the grammar rules describing 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
GASRIA (Chapter 4) 

 
 
 
 
 
 
 
ILSGInf (Chapter 6) 

EXINF (Chapter 5) 

Grammar 

Terminal NonTerminal InitialSymb
ol

Production 

KnowledgeBase 
InferenceEngine 

RuleBase FactBase 

Editor 



 
Chapter 4 – Grammatical inference with GASRIA 

Thèse de Doctorat d’État – The ESLIM Project  68 
 

the language. This eventually completes the session with the expert. The learning mode 

is further detailed in Chapter 6.  

5.3 Exploitation mode: EXINF 

 Because any incremental learning mode requires by its nature the integration of an 

element of exploitation, we use for that purpose a first-order logic (FOL) programming 

environment, called EXINF working in forward chaining fashion. This form of chaining 

is used because syntactic analysis is a bottom-up approach. Parsing starts with facts and 

ends up with goals. EXINF allows a specification of the expert knowledge using 

production rules and plays the role of a parser. In this mode, the available knowledge is 

used to classify the new sentence. The sentences introduced by the user are syntactically 

analyzed and the result is displayed indicating whether they belong to the language. 

The blocks involved in this mode are the inference engine, the fact base and the rule 

base. The exploitation mode is further explained in Chapter 5. 

5.4 Fact base  

The fact base consists of a CFG for a given language. The main components of the fact 

base consist of the two components depicted below.  

5.4.1 Initial symbol and the grammar of the language 

These are represented by a set of production rules written using the syntax described in 

Figure 4.8 below.  

 

 
/* Methodology 4.6 */ 

/* METH46 */ 
 

/* Fact base syntax */ 

RULE FACT <rule right-hand side> < rule left-hand side > 

FACT initial-symbol < initial symbol > 

 

Figure 4.8 METH46 Fact base syntax 



 
Chapter 4 – Grammatical inference with GASRIA 

Thèse de Doctorat d’État – The ESLIM Project  69 
 

5.4.2 Additional information 

This concerns the string to be analyzed, such as the string itself and its length (i.e. the 

number of symbols). Figure 4.9 below shows the fact base structure 

 

 
/* Methodology 4.7 */ 

/* METH47 */ 
 

/* Fact base structure */ 

 

FACT string <string > 

FACT length < length > 

 

Figure 4.9 METH47 Fact base structure 

5.5 Rule base  

The rule base consists of a set of production rules describing a parser such as Earley’s 

parser. It is written using the language accepted by EXINF, detailed in Chapter 5. The 

rule base is used by the exploitation mode. 

5.5.1 Vocabulary and rule base syntax 

The language of expression allows communication with the expert. This language is 

used to describe the rule base. Like any language, it is described by a vocabulary and 

grammar.  

5.5.5.1 Vocabulary  

The vocabulary includes:  

- The identifiers in the form of strings that represent predicates;  

- The variables represented by alphanumeric identifiers preceded by the symbols "?", 

in the case of a single variable (i.e. substituted by one string), or by "&" in the case of 

many variables (i.e. substituted by more than one string);  

- Reserved words that have a specific meaning for the system: IF, THEN RULE, 

FACT, ADD, EXECUTE, DELETE, END.   
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5.5.5.2 Rule base syntax  

The rule base syntax (or more precisely the rules of production) that generates the 

language is written in the normal form of Backus-Naur form (BNF) as expressed in 

Figure 4.10 below.  

 
 

/* Methodology 4.8 */ 
 

/* Syntax used by EXINF */ 
/* METH48 */ 

 
<declarations> :: = <declaration> [ <declaration> ] * END 
<declaration> :: = < rule-declaration> | < fact-dec laration> 
<rule-declaration> :: = RULE [ <name> ]* <rule> 
<name> :: = string of 5 characters 
<rule> :: = IF <antecedents> THEN <consequents> 
<antecedents> :: = ( <premise> ) [ <antecedents> ]*  
<premise> :: = <predicate> <element>+ 
<predicate> :: = classical identifier 
<element> :: = <constant> | <variable> 
<constant> :: = classical identifier 
<variable> :: = ?<constant> | &<constant> | ?- | &-  
<consequents> :: = {<conclusion> |<action>}[ <conse quents>]* 
<conclusion> :: = ADD ( <predicate> <element>+) | D ELETE 

(<predicate> <element>+) 
<action> :: = EXECUTE (<expression>) 
<expression> :: = write ( message ) | <variable> | 

{<variable> | <constant>} <operation> {<variable> |  
<constant>} 

<operation> :: = arithmetic operation  
< fact-declaration> :: = FACT <fact> 
<fact> :: = <predicate> [ <constant> ]+ 
 

Standard notations 
- Symbol * indicates existence of  0 or more symbol (s) 
- Symbol +  indicates existence of  1 or more symbol(s) 
- Symbol ?identifier  concerns only one identifier  variable  
- Symbol &identifier  concerns more than  one identifier  variable  
 
 

 

Figure 4.10 – METH48 Syntax used by EXINF  

5.5.2 Automatic syntactic analysis 

Once learning is finished, GASRIA is ready to work as a simple syntactic analyzer i.e. 

switches to the exploitation mode of operation. In this case, the user is supposed to 

learn a language from the system. Thus, the user supplies new sentences to be 
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recognized. EXINF deals with these sentences as a syntactic analyzer, or rule base, using 

the grammar of the language i.e. the content of the fact base which has been updated 

during the learning phase. GASRIA operates a classification on the membership of these 

new sentences and informs the user. In addition, the system always questions the 

results obtained because it has to rely on experience. For that, the system keeps track of 

all details of the session with the user and transmits it to the expert for a possible 

validation of responses, thus enriching the language. The eventual mistakes are 

corrected using the ILSGInf module. Note that these errors affect the answers provided 

by GASRIA that the expert has refuted. 

6. Parsing  

6.1 Notation 

In all subsequent analysis, we use the following notation: 

Symbols A, B, C,… to range over non-terminals N, with symbols a, b, c, … to range over 

the input alphabet Σ.  

Symbols X, Y range over (N ∪ Σ).  

Symbols α, β, γ  range over (N ∪ Σ)* 

Symbols v, w, x,… range over Σ* 

For a fixed grammar, the binary relation (⇒ ) is defined over (N ∪ Σ)* such that 

γΑδ ⇒  γαδ  whenever (A → α)  ∈ P.  

Multiple derivation, closure of (⇒ ), is denoted ( ).     

6.2 Earley’s algorithm 

6.2.1 The idea 

We briefly present here the Earley’s algorithm, before introducing our declarative 

adaptation, detailed in Chapter 5. Let G = (N, Σ, P, S) be a CFG. We associate with G a 

set of symbols, called dotted items, specified as:  

IE = { [A → α • β] | (A → α β)  ∈P}. 
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Dotted items are used to represent intermediate steps in the process of recognition of a 

production of the grammar.  The sequence of symbols between the arrow and the dot 

indicates the sequence of constituents recognized so far at consecutive positions within 

the input string. More precisely, given a production: 

p : (A →  X1X2 …Xr), r >= 0, 

the process of recognition of the right-hand side of p is carried out in several steps. We 

start from item (A →  •X1X2 …Xr), attesting that the empty sequence of constituents has 

been collected so far. This item represents a prediction for p. We then proceed with item 

(A →  X1  • X2 …Xr),after the recognition of a constituent X1 , and so on. Production p has 

has been fully recognized only if we reach item (A →  X1  X2 …Xr•), attesting therefore 

the complete recognition of a constituent A.  

 

Given a string w = a1a2…an, with n >= 0 and each ai a terminal symbol, a position 

within w is any integer i such that 0 =<  i  < = n. In what follows, E is a square matrix 

whose entries are subsets of IE and are addressed by indices that are positions within 

the input string. Entries are denoted as Ei,j. The insertion by the algorithm of item [A → 

α • β]  in Ei,j , i  =<  j, attests the fact that the sequence of constituents in α exactly spans 

the substring ai+1…a j  of the input. Control flow is not specified in the method below, 

since it is usually regulated by means of a data structure called agenda, which directs the 

incremental construction of the table by means of an iteration: starting from an empty 

table, items are added as long as needed, and with the desired priority. 
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6.2.2 Detailed steps of Earley’s algorithm  

 
  

 
/* Algorithm 4.1 */ 

/* ALGO41 */  
 

/* Earley’s Algorithm */ 
 

/* In a list Ip where p> 0, item "A→ α • β,q " has the meaning described below */ 
 
//* By neglecting the first q symbol(s) of the sub-string, we can parse the string 
α in the case where the string β comes after it (β is called a prevision string). 
Therefore, in the case where β = ε (empty string), we say that the string α is 
parsed by neglecting q symbols. *// 
 
1 Construction of I0   
 

1.1- FOR every rule S → α   in P, ADD  [ S →•α  , 0 ] in I0. 
 

1.2- IF the item is of the form [B → γ •, 0] in I0,  
         THEN FOR every item of the form [ A → α • B β  , 0 ]  in I0,  
         ADD item  [ A → α  B• β , 0 ] to I0.   
 

1.3- IF  [ A → α • B β , 0 ]  is in I0  
         THEN FOR every rule of the form B → γ 
         ADD item  [ B →•γ , 0 ] to I0. 
 

1.4- REPEAT 12 et 13 UNTIL no item can be added 
   
2 Construction of  Ip  from  lists I0,...,Ip-1  
 
   2.1- FOR every item of the form [ B → α • a β, q ] in Ip-1  such that a= ap in ω, 

ADD  [ B → α  a•β , q ] in Ip 
 
   2.2- FOR every item of the form [ A → γ •, q ] in Ip,  
                         AND FOR every item of the form [ B →α • Aβ,k ] in Iq,  
                         ADD [ B → α  A• β, k ] to Ip  
 
   2.3- FOR every item of the form  [ A → α • B β, q ] in Ip,  
                         AND FOR every rule of the form B → γ in P,  
                         ADD [ B →• γ, p ] to Ip 
 
   2.4- REPEAT 22 et 23 UNTIL no item can be added 
 
3 Eventual acceptance of a string of length n   
 
   3.1 IF n+1 lists are constructed  

        AND an item of the form [ S → α •, 0 ] is found in In   
        THEN string is accepted 

  3.2 ELSE string is refused.  
 

Algorithm 4.1 - ALGO41 Earley’s algorithm 
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6.2.3 Correctness 

The string w is accepted if and only if [ S →  • α ]  ∈ E0,n for some ( S →  α )  ∈ P,. The 

correctness of the algorithm immediately follows from the property below.  

Property: in Earley’s algorithm described above, an item [ A → α  • β ]   is inserted in Ei,j 

if and only if the following conditions hold: 

C1. S    a1a2…ai A γ , for some γ; and  

C2.  α     ai+1…aj  

For methods cruder than the Earley’s algorithm, membership of an item in some entry 

may merely be subject to condition C2, which is sufficient for determining the 

correctness of the input. However, Earley's algorithm is more selective, as is apparent 

from condition C1, which characterizes the so-called top-down filtering capability of the 

method. Condition C1 guarantees that only those constituents are predicted that are 

compatible with the portion of the input that has been read so far. Assuming the 

working grammar is fixed, a simple analysis reveals that the considered algorithm runs 

in time O(n3). 

 

6.2.4 Earley and CYK algorithms 

Earley’s algorithm is an example of chart parser class. Cocke-Younger-Kasami 

algorithm (CYK) is another example (Manacher, 1978). These algorithms are both based 

on dynamic programming. The choice of Earley’s algorithm is dictated by 

considerations related to complexity and simplicity of implementation. The time 

complexity of both algorithms is O(n3) where n is the length of the sentence. However, 

Earley’s algorithm performs better in most situations. Indeed, it reaches O(n2) for 

unambiguous grammars and O(n) for LR(k). For the space complexity, Earley’s 

consumes O(n), while CYK needs O(n2). Earley’s algorithm can parse all CFGs, but CYK 

parses only grammars in Chomsky normal form (CNF). For these reasons, we have 

used Earley’s parser for our system and not CYK. 
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6.3 Additional definitions 

6.3.1 Types of sentences and partial derivatives (PaDe’s) 

(1) Let C be a global sentence defined as a blank-free string of characters in any artificial 

language.  

(2) A sub-sentence of a given global sentence C is any recognized sub-sequence of 

characters in this global sentence.    

(3) A partial derivative (PaDe) of C is the parse sub-tree of any sub-sentence.  

(4) Any parsing based on PaDe’s is termed partial parsing and its corresponding 

algorithm called partial parsing algorithm (PPA).  

(5) A list (resp. sub-list) is the result of parsing using Earley’s algorithm for a global 

sentence (resp. sub-sentence).     

(6) More  general PaDe : we say of a PaDe that it is more general than another if the 

former contains the minimum number of terminals i.e. the maximum of terminals 

are transformed into non-terminals. The resulting PaDe is therefore smaller.   

(7) More general grammar: In order to obtain a more general grammar, it is necessary to 

add a more general rule to each step of the generalization process. The rule to be 

added is always of the form “S → DPi” where DPi is the concatenation of PaDe’s.  

6.3.2 Derivation trees 

We need derivation trees [ALS07] for the construction of our grammar from the 

initial stage to the final stage. A labeled and ordered tree D is said to be a derivation tree 

for a CFG of the form G = (N, Σ, P, S) if :  

1- The root of D is labeled by S ; 

2- D1,..., Dk are sub-trees of direct descendents of S and the roots of  Di are xi, then  S 

→ x1...xk is a production rule in P. Di must be a derivation tree for G = (N, Σ, P, xi) if xi is 

a non-terminal and Di is a unique node (named xi if it is a terminal).       

3- D1 is the only sub-tree of D, the root of D1 is ε . In this case, the production rule  

S→ ε ∈ P. 
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Example:        G = (N, {a, b, ε}, P, S) where :    

   N = { S } 

                       P = { S → a SbS, S → bSaS,  S  → ε } 

Among the syntactic trees of this grammar, we find those of Figure 4.11.  

                                 

Figure 4.11 – DIAG41 – A derivation tree of G 

6.4 Motivation for using PaDe’s 

Now, we use the additional definitions above to proceed further through an example of 

PaDe use. For example, we have the following problem: 

Initially recognized global sentence: a+b 

New global sentence to be recognized: (a+b) 

How can we handle this new sentence? In classical parsing: new global sentence refused 

because of first unrecognized character “(“.   

With the use of PaDe’s:  

PaDe1 =  (   

PaDe2 = a+b 

PaDe3 = ) 

Result: Accept DP2. Reject all other sub-sentences.  

Head of sub-
sentence in 

global 
sentence  

Sub-
sentence 
length  

PaDe’s of sub-sentence : 

Result is a dynamic string  

0 1 D ( 

a 
S b S 

S 

ε ε 
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1 3 S a+b 

4 1 E ) 

Table 4.1 TAB41 PaDe’s construction for (a+b) based on a+b 

7. Learning in GASRIA  

7.1 Learning characteristics  

It is useful to make the following remarks concerning learning in GASRIA.  

- No pre-classification is required from the expert when supplying the sentences for 

training. Therefore, the system does not need to make any search in the sentences 

space. 

- The system gradually builds a grammar that generates these sentences.   

- For the validation of any learning system, we need an exploitation module to check 

whether learning has been done correctly. We use the module EXINF for parsing.  

- We use the property that rules can be written in the forms A → BC, or A → a.  

7.2 Learning strategy implementation  

Implementation concerns the development of all required phases, i.e. those that take in 

charge the initial grammar construction, partial parsing, the refinement cycle and the 

treatment of partial derivatives. All these phases are described in details in Chapter 6 

concerning ILSGInf module.  

8. Results and discussion   

8.1 GASRIA implementation     

A program has been developed using Microsoft Visual C++ release 6.0 (MVC++6.0) 

under Microsoft Windows XP. This program takes full advantage of the object-

oriented method. Grammar generation follows the steps described in Figure 4.12 below:  
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/* Methodology 4.9 */ 

/* METH49 */ 
 

/* Grammar generation */ 

 
- Read first positive sentence  
- Generate an initial grammar 
- Use refinement cycle 

    -- Read a new positive sentence 
      -- Generalize this grammar 
- Give results 
- Test grammar validity on additional sentences, wi th 

eventual recourse to human expert          
 
 

 

Figure 4.12 METH49 Grammar generation 

Refinement cycle for grammar generation follows the steps described in Figure 4.13, but 

with no specialization.  

 

 
/* Methodology 4.10 */ 

/* METH410 */ 
 

/* Refinement cycle */ 
 
- Use result given by PPA  
- Generalize grammar if result gives failure for a positive 

example 
- Specialize grammar if result gives success for a negative 

example       
 
 

 

Figure 4.13 METH410 Refinement cycle in grammar generation 

8.2 Example  

The details of how to operate the complete system is described in the two forthcoming 

chapters. We only give here the basic steps as building blocks of the grammar induction 

as performed by GASRIA, on a simple example. The class of languages learned by 

GASRIA are given in Appendix 1.  
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Problem Statement 

1. Given a set of positive examples S+ = { a+b, (a+b)}  from a language L. 

2. Infer a grammar that can generate L in the limit.  

3. Describe all the steps of the induction process and consider both learning phase and 

exploitation phase.  

8.2.1 Learning phase: ILSGInf use 

1. Initial sentence introduction: the expert introduces the sentence: a+a 

2. Initial grammar generation  

The program generates the following initial grammar G0 = (N0, Σ0, P0, S) where:  

N0 = {A, B, S, C} ; Σ0 ={a, +} ; S initial symbol in N0 .  

P0 =  {  A → a, B → +, C → AB , S → CA } 

3 Parsing of the new sentence: EXINF as parser rejects the new sentence (a+a) according 

to G0 since the opening parenthesis “(“ and the closing one “)”are not recognized 

by G0.  

4. Refinement cycle 

 3.1 Sub-lists construction: the partial parsing algorithm (PPA) uses all sub-lits for 

all sub-strings for analysis.  

 3.2 PaDe’s construction: all PaDe’s are obtained.  

 3.3. Generalization: The program selects the most general rule which is the 

concatenation of the most general PaDe’s. This selection gives: S → DSE 

 3.4 Grammar induction: The program generates the following induced grammar:  

 G1 = (N1, Σ1, P1, S) where: 

N1 = {A, B, S, C, D, E} ; Σ1 ={a, +, (, )} ;  

P1 =  { A → a, B → +, C → AB , S → CA, D → (, E → ) , S → DSE}   

3.5 Introduction of new positive sentence: the expert introduces (a+a)+(a+a) 

3.6 Parsing of the new sentence: Go to Step 3 above.  

3.7 Generation of the third grammar of the form: 
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G2 = (N2, Σ2, P2, S) 

N2 = {A, B, S, C, D, E, F} ; Σ2 = {a, +, (, )} ;  

P2 =  { A → a, B → +, C → AB, S → CA, D → (, E → ) , S → FBF, F →  DSE, S → 

F} 

4. Grammar transformation to Chomsky normal form (CNF) 

The grammar is improved using the CNF as follows:  

Rule F → DSE is replaced by : F → DH and H →  SE 

Rule S → FBF is replaced by : S → FG and G →  BF 

The actual grammar is now the most general grammar since it can generate all 

(infinite) strings of the form :  a+a, (a+a), (((a+a))), (((a+a))+(a+a)), … 

Formally the actual grammar generates the following language:  

expression → a+a 

expression → (expression) 

expression → expression + expression 

Discussion  

Only three positive examples a + a, (a+a), (a+a) + (a+a) are needed to infer a grammar 

that generates all strings belonging to L. Our method does not produce any counter 

examples; which represents an important result. Chapter 6 provides more details of 

how this is done by ILSGInf. 

8.2.2 Exploitation phase: EXINF use 

The grammar G2 is introduced in the fact base of EXINF. At this stage EXINF is able to 

parse any sentence of the language L.  

1. Recognized sentence: ((((a+b)+(a+b)+(a+b)+(a+b)))). The analysis gives success.  

2. Unrecognized sentence: ((a+b)+a+b. The analysis gives failure.   

Chapter 5, Section 5 describes in more details of how this is done by EXINF.  
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9. Conclusion  

In this chapter, we reported an early attempt in bridging the gap between GI and first-

order logic (FOL). Based on this idea, GASRIA has been designed and developed as a GI 

system that can infer some CFG’s from positive examples. Thus, the system behaves as 

a parser with the ability to learn inductively, with the learning module, and to reason 

through an FOL-based programming environment, EXINF, developed for a broader 

context. For the tested languages, the number of examples required for induction is 

very small, here not exceeding five examples. On the other hand, the generated 

language is not empty since it contains at least the introduced examples, and generates 

no counter example. The combination of GI and FOL can be regarded as an important 

step towards “intelligent” compilers. The results obtained in this chapter are further 

expanded in Chapter 5, reporting in details the parsing problem using logic, and 

complemented by learning in Chapter 6. 
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CHAPTER 5 

INFERENCES THROUGH EXINF INTELLIGENT 
PARSING ISSUES 

1. Introduction  

This chapter is concerned with coupling first-order logic (FOL) and grammatical 

inference (GI) aiming to construct an intelligent parser (IntPar). Our goal here is to 

establish the “methodological production” rule FOL and GI → IntPar. We mainly build 

our contribution on methods drawn from FOL as applied to parsing.  Starting from 

truly first principles, we design and develop a rule-based first-order deduction system, 

called EXINF, and couple it with a learning module, called ILSGInf, for the purpose of 

GI. While we stress the importance of the logic-based methods used for 

implementation, we also raise the issues imposed by such a coupling. Although EXINF 

is used here for parsing, it can also be used as a stand-alone inferential system. On top 

of that general-purpose usage, the application of EXINF is two-fold; it can be considered 

as an ordinary sentence parser, or as an extended Earley’s parser for a given grammar. 

More importantly, EXINF can contribute to the inference of one unknown grammar 

from positive examples in conjunction with the learning module ILSGInf, described in 

Chapter 6. In summary, EXINF can be used as a stand-alone inference engine 

implementing both forward and backward chaining, as a “crude” parser or an 
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“intelligent” parser. All these issues are addressed in this chapter. The resulting 

implementation gives a powerful unified framework able to meet one of the challenges 

of GI.  

The chapter is structured as follows. In Section 2, we formulate our problem by 

specifying the refined objectives. EXINF parsing capabilities are described in Section 3 

while Section 4 explains its reasoning mechanisms based on forward chaining. Section 5 

is devoted to the implementation of the system and to experimental results. Finally, 

lessons learned are drawn from the actual results and proposals are highlighted 

pointing towards the improvement of the actual work.    

2. EXINF objectives   

The objective is to concentrate on the description of a first-order rule-based or logic 

programming environment, called EXINF, capable of reasoning on assertions related to 

an unknown grammar to be induced. While the operation of the complete system, 

inferential and learning has been reported in Chapter 4, we here stress the importance 

of the logic programming environment EXINF. The main objectives of this system are: 

(i) Stand-alone inferences capability, i.e. EXINF is a system based on FOL that can infer 

knowledge for general-purpose application. In this respect, EXINF can be 

compared to those available over the Web, e.g. NASA CLIPS rule-based language.  

(ii) Simple parsing, i.e. EXINF can be used to parse any language based on a CFG. 

(iii)“Intelligent” parsing, i.e. EXINF can infer one unknown CFG from positive 

examples, in conjunction with a learning module, namely ILSGInf.  

(iv)  Moreover, EXINF is a system developed from scratch and, as such, is easier to 

update and to adapt for special applications such as the one we are dealing with. 

Our developed logic programming environment has the inferential and 

complementary characteristics described below.  
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2.1 Inferential characteristics 

The central process in any intelligent system is inference, defined here as the ability to 

add valid new propositions to a knowledge base or to derive the truth of propositions 

not explicitly contained within the knowledge base.  

(i) Rule-based system: Knowledge is rule-based i.e. it is represented by production rules. 

(ii) First-order, predicate logic: Reasoning is based on first-order or predicate logic.  

(iii) Variables: Use of variables are allowed. These are instantiated (or bound) by 

constants from the fact base.   

(iv) Closed world assumption: Like many systems (e.g. Prolog), our system works with the 

closed world assumption, i.e. a goal that is not explicitly expressed in the fact base, or 

that cannot be inferred from it, is considered as false. This assumption does not 

reduce the capabilities of our system since the grammar contains all information 

concerning the language under consideration. Indeed, any grammar generates all the 

instances of the corresponding language. The difficulty resides in inferring a 

grammar, not in using it.     

(v) Backtrack characteristics: in the case of failure, search for a new solution is done by 

returning to the state preceding actual failure.  

(vi) Resolution principle: The system does not use the Robinson’s resolution principle. 

Therefore, it can be easily adapted.  

(vii) Forward chaining and backward chaining: The system uses both forward and 

backward chaining for deriving or proving new knowledge. Only forward chaining 

is used and described in this chapter. 

2.2 Parsing characteristics 

A problem that often faces a learning system designer lies in the difference between the 

types of representations used to describe the examples, on the one hand, and the 

concepts describing these examples, on the other. In our case, an example is a string. As 

for the concepts or generalizations, it consists of a context free grammar (CFG). 
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It is clear that the difference between a string and a grammar is important. For 

minimizing this difference, we rely on syntax trees which are located halfway between 

these two approaches. We use the link between a string of characters and a grammar as 

a means of transforming examples from string representation to a closer representation 

with respect to a grammar. This transformation can be seen as a process of 

interpretation. Thus, in learning mode, the parser is used for this rapprochement. 

2.3 Complementary characteristics 

(i) Parsing: We use an adapted version of Early’s algorithm for parsing [Ear70].  

(ii)  Learning: A description of the learning module ILSGInf is given in Chapter 6.  

(iii) Integration: An integrated implementation involving both learning and parsing is 

reported in [HH07a].    

 3. First-order logic (FOL) considerations 

3.1 Rule-based deduction systems 

3.1.1 Rules and operation 

Rule-based problem-solving deduction-oriented systems are built using rules of the 

form:  

<if antecedent …then conclusion>. 

 

The antecedent is also known as premise, condition or left-hand side (LHS). The 

conclusion is also known as consequent, action or right-hand side (RHS). The rules are 

therefore interchangeably called if-then rules or antecedent-consequent rules condition-

action rules [Win93].  

Rule-based systems can either work in a forward or backward chaining mode. In the 

first mode, we move from the LHS to the RHS. We therefore use the condition pattern to 

identify the action pattern.  During the forward chaining mode, whenever a RHS pattern 

is observed to match a fact in the fact base, the condition is satisfied. A rule is triggered 
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whenever all RHS patterns are satisfied. When a triggered rule establishes a new fact, 

the rule is said to be fired. In deduction systems, all triggered rules generally fire. In the 

case where many rules need to be fired, a conflict-resolution procedure is needed to 

decide which rule to fire. All deduction systems whether forward or backward 

comprise an inference cycle consisting of three phases, namely: 

Detection →→→→ conflict resolution →→→→ execution or firing 

During the first phase, which is the detection phase, a conflict resolution set (CRS) is 

constructed and which consists of all candidates rule. The second phase is conflict 

resolution proper i.e. the choice of the rule to trigger. The last phase is the deduction 

phase during which the chosen rule is finally fired. A termination procedure is used to 

end the search.  

3.1.2 Basic components of rule-based systems 

The basic components of a rule-based problem-solving deduction system are a rule base 

and a fact base [Win93].  

(i) The fact base 

 
 

/* Methodology 5.1 */ 
/* METH51 */ 

 
/* Fact Base*/ 

 
Lexically : There are application- specific symbols 

and pattern symbols.  
Structurally: assertions are application- specific 

symbols and patterns are application- specific 
symbols and pattern symbols.   

Semantically: the assertions denote facts in some 
world. Facts cannot be false but assertion 
can.  

 
Constructors 

Add an assertion to working memory.  
Readers  

Produce a list of matching assertions 
in fact base given a pattern.  

 
 

Figure 5.1 – METH51 Fact base 
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/* Methodology 5.2 */ 
/* METH52 */ 

 
/* Rule Base */ 

 
Lexically:  There are application- specific symbols 

and pattern symbols.  
Structurally:  Patterns are lists application-

specific symbols and pattern symbols, and rules  
consist of patterns. Some of these patterns 
constitute the LHS of the rule and the others 
constitute the RHS of the rule.  

Semantically: Rules denote c onstraints that enable 
procedures to seek new assertions or to 
validate a hypothesis. 

 
Constructors  

Construct a rule, given an ord ered list of LHS 
patterns and a RHS pattern.  

Readers  
Produce a list of a given rule’s RHS patterns. 
Produce a list of a given rule’s LHS patterns.  

              

Figure 5.2 – METH52 Rule base 

3.2 Knowledge-base engineering issues 

3.2.1 Knowledge acquisition 

To acquire or extract the necessary knowledge from a human expert in order to code 

it as rules understandable by a computer, the following strategy is used, as decribed 

in Figure 5.3. 

/* Methodology 5.3 */ 
/* METH53 */  

/* Heuristics for learning from an expert */ 
 
- Ask about specific situations to learn the 

expert’s general knowledge 
 
- Ask about situations pairs that look identical 

but that are handled differently, so that the 
expert’s vocabulary becomes understandable.  

Figure 5.3 – METH53 Heuristics for learning from an expert 
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3.2.2 Knowledge explanation 

In order to answer a question about the behavior of a rule-base deduction system, the 

following heuristics are used, as explained in Figure 5.4 below.  

 
 

/* Methodology 5.4 */ 
/* METH54 */ 

 
/* Heuristics for explaining results given by a rule-base system */ 
 
To answer a question about the reasoning done by a 
rule-base deduction system: 
 
IF  the question is a HOW question,  
THEN report the assertions connected to the RHS of 

the rule that established the assertion 
referenced in the question.  

 
IF  the question is a WHY question,  
THEN report the assertions connected to the LHS of 

the rule of all rules that used the assertion 
referenced in the question.  

 

Figure 5.4 METH54 Heuristics for explaining results given by a rule-base system 

3.3 Forward chaining (FC 

The forward chaining is based on the modus ponens rule which states that:  

((  p → q ) and p ) =  (q) 

The symbol =  represents entailment. In this logical expression, the RHS, q, is said to be 

entailed, inferred or derived from the LHS, (( p → q ) and p ). Both LHS and RHS are 

related by two fundamental theorems: 

Deduction theorem: (LHS = RHS) ↔  (LHS → RHS is valid or is a tautology).  

Contradiction theorem: (LHS =  RHS) ↔  (LHS AND NOT( RHS) is unsatisfiable). 

In our situation, parsing is a bottom-up process since parsing begins from the facts and 

tries to attain some specified goals. Therefore, it is more suitable to use forward 

chaining. We are in a situation where the goal is not precisely known. Indeed, at the 
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outset, the system ignores whether or not a given sentence belongs to the language 

under consideration.    

3.4 Backward chaining (BC) 

Backward chaining is goal-driven reasoning approach. It attempts to answer a question 

of the form: “how did we reach this conclusion (goal)?” Starting from this specific 

conclusion, the premise(s) is (are) tried as sub-goals to be proved by tracing back to 

eventually meet facts. Therefore, this approach works back from the conclusion or 

query. If this query is true then no proof is needed. Otherwise, the algorithm finds those 

implications in the knowledge base that conclude the query. All premises become sub-

goals to be proved. If all the premises of one of these implications can be proved true, 

by backward chaining, then the query is true. The process is therefore repeated until it 

reaches a set of known facts that forms the basis of the proof. In backward chaining, 

modus ponens is run in reverse. Backward chaining is a sound inference rule i.e. a rule that 

yields true derived conclusions provided that the conditions are true. It is useful to 

distinguish between reasoning with backward chaining, and reasoning backwards, 

starting from known consequents to unknown antecedents. To be specific, by reasoning 

backwards we mean if the consequent of a rule is known to be true, then the antecedent 

will be true as well. This is usually referred to as plausible reasoning. This can be 

expressed in the form (( p → q) and q) ≡  ( p ) and is known as logical abduction. For 

example, from the sentence “all Gamma Computers are fast” and the “My computer is 

fast”, we can infer the eventually false sentence “My computer is Gamma Computer”. 

Proof by contradiction is an example of use of backward chaining. It can alternatively 

be expressed by the so-called modus tollens rule which states that:  

(p → q) ≡  ( ¬ q → ¬ p). 

Because the backward chaining is goal-directed, we have therefore to establish a list 

containing the goal and all relevant sub-goals. Although EXINF implements also the 

backward chaining, it will not be described here, because of no concern.   
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3.5 Backward chaining vs. forward chaining 

Choosing one mode of chaining depends on the problem under consideration. We can 

use some rules of thumb or heuristics to find an acceptable choice. Let us define a meta-

heuristic i.e. a heuristic of how to choose heuristics themselves. Any meta-heuristic has 

to produce a heuristic that reduces the search state space of the problem. Applying this 

meta-heuristic, we readily find the steps of choosing between the two modes of 

chaining. Whenever the rules are such that a typical set of facts can lead to many 

conclusions, we say that the system exhibits a high degree of fan out. In this case, we 

choose a backward mode. Alternatively, whenever the rules are such that a typical 

hypothesis can lead to many questions, the system is said to exhibit a high degree of fan 

in, which argues for the use of forward chaining.  Of course, in many situations, these 

concepts of fan in and fan out cannot be used since no one dominates. In this case, we 

have to use other heuristics such as amount of facts heuristics. The meta-heuristic is 

described in Figure 5.5 below [Win93].  

 
 

  

/* Methodology 5.5 */ 
/* METH55 */ 

 
/* Backward chaining vs. forward chaining * / 

/* BC vs. FC  */ 
 
/* Level 0 : META-HEURISTIC // 
 
/* Heuristic has to reduce the solution state space  */ 
 
/ * Level 1 : Choose fan in  and fan out  heuristics */  
 
1 fan in and  fan out calculation      
 
1.1 FOR every rule base find the fan in, alternatively 

find the number of consequents that can be 
instantiated 

 
1.2 FOR every rule base find the fan out, 

alternatively find the number of premises that can be 
instantiated. 

 
 
2 C omparison between  fan in and  fan out  
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IF fan in = fan out   
THEN choice between BC and FC is done with equal 

weight 
         ELSE  
                  IF  fan in  > fan out  THEN choose FC  
                  ELSE choose BC 
 
/ * Level 2 :  Choose  the amount of facts  heuristics */  

IF  no facts are available  

AND interest is in whether one of many possible 
conclusions is true  

    THEN  use BC 
IF  all possible facts are available   

AND interest is in deriving all possible conclusions 
from those facts 

    THEN use FC   

 
 

Figure 5.5 Backward chaining vs. forward chaining 

4. EXINF Architecture 

4.1 Design diagrams 

4.1.1 Use case diagram 

There are two external modes when using EXINF. These modes are referred to as 

exploitation and learning modes. Figure 5.6 shows the use cases describing both of them 

in relation with the two main actors i.e. the human expert teaching the system EXINF in 

the quest of grammar construction and the ordinary user, looking for sentences parsing.   

- Exploitation mode: it concerns any user interested in parsing a given sentence using a 

given grammar.  

- Learning mode: it concerns a human expert acting as a teacher via ILSGInf.  
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Figure 5.6 ARCH51 EXINF Use case diagram 

4.1.2 Class diagram 

Figure 4.7, in Chapter 4 described the main classes in EXINF class diagram. It depicts 

the overall architecture of EXINF with the broader system. It is mainly used for 

readability and maintenance.  

4.3 The three EXINF layers  

EXINF can be used for three different purposes, specified as layers. As a result, EXINF 

is a three-layered system, as depicted in Figure 5.7 and Figure 5.8. Only two of these are 

of interest to us i.e. the second and third layers.  

4.3.1 EXINF first layer 

Here EXINF can be used as a general purpose first-order logic (FOL) expert system 

shell, or inferential system, for knowledge-base systems development. It allows the user 

to introduce both rules and facts concerning a given problem. This is a general issue not 

discussed here.  

Request syntax analysis of a 
sentence 

User 

Inference of a grammar 

Validate the new 
grammar 

Human expert (‘teacher’) 
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4.3.2 EXINF second layer 

This layer is more specialized than the first one. Here, the knowledge base is a set of 

parsing rules based on declarative form of Earley’s algorithm. This layer is concerned 

with parsing a given sentence using a given grammar, introduced manually by the user. 

Here, EXINF is used as a “crude” parser or sentence recognizer like any other parser.  

4.3.3 EXINF third layer 

In the third layer, EXINF is used as a system that can infer a grammar from positive 

examples, or as “intelligent” parser. However, this issue cannot be undertaken by 

EXINF alone. It is resolved in conjunction with the learning module ILSGInf.  
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Figure 5.7 ARCH52 EXINF as a three-layered system  

Fact Base 

Level 0   
Any user-defined facts 

Level 1: Specialized Level 0 
Facts concerning 
- Grammars introduced by user 
- Sentences to be parsed 

Level 2: Automating Level 1 
Facts concerning 
- Induced grammar  
- Sentences to be parsed 

Level 1 and Level 2   
Declarative Earley algorithm 
 
 

Rule Base 

Level 0   
Any user-defined rules  
 

ILSGInf 

User 
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Figure 5.8 ARCH53 EXINF as a detailed three-layered system 

Use EXINF as                                                             Use EXINF as “crude” parser (2nd layer use)  
General purpose (1st  layer use)                                                                

3rd Layer EXINF as Knowledge-based system 
acting as “intelligent” parser.  

Inferred grammar 

Sequence of 
positive 
examples 
 
(By human 
expert) 

   Facts                Rules 
 

2nd Layer  
EXINF Used as knowledge-based 
system for “crude” parsing.  
 

1st Layer  
 
EXINF acting as first-order logic 
(FOL) shell for general purpose. 

 

ILSGInf 

Use EXINF to infer a grammar  
“intelligent” parser (3rd  layer use) 

3rd  layer boundary 
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5. EXINF - KBS used for parsing    

5.1 EXINF as a knowledge-based system (KBS) 

As a knowledge-based system (KBS) for parsing, EXINF is composed of: 

1. Knowledge base which consists of : 

1.1. A fact base that contains the generated grammar and the sentence to be 

parsed. 

1.2. A rule base which contains the declarative form of Earley’s algorithm.  

2. Inference engine relying on: 

2.1. Forward chaining as far as parsing is concerned. 

2.2. Backward chaining, for other problems.  

5.2 Declarative Earley’s algorithm: rule base  

EXINF rule base is built on Earley’s algorithm ALGO41 described in Chapter 4 Section 

6.2. The idea is to translate this algorithm into a declarative form.   

5.2.1 Summarized Earley’s algorithm  

Let G = (N, Σ, P, S) be a CFG. Let w = a1a2…an, be an input string, n >= 0, and ai  ∈ N  for    

1= <i =<  n.   

Compute the least (n + 1)* (n + 1) table E such that the following conditions hold: 

[S →  • α]  ∈ E0,0 for each  ( S →  • α ) ∈P,  and  

1. [A →  • γ ] ∈Ej,j  .     if [B → α • Aβ]  ∈ Ei,j , (A → γ ) ∈ P ;  
2. [A → α aj  • β ]  ∈  Ej,j     if [A → α • aj β]  ∈  Ei,j-1 ;  
3. [A → αΒ  • β ] ∈ Ej,j     if [A → α • B β]  ∈ Ei,k ,  [B → γ  •  ] ∈Ek,j  
 
Write an algorithm that undertakes this task declaratively.  

5.2.2  Declarative  Earley’s algorithm 

The solution is the declarative Earley’s algorithm as described in Algorithm 5.1 below.  
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/* Algorithm 5.1 */ 

/* ALGO51 */ 
/* Declarative Earley’s algorithm */ 

RULE 1  /*construction of list l 0*/ 
IF ( RULE ?symbol &part) 

(initial_symbol ?symbol) 
THEN ADD (I 0 [ ?symbol → • &part , 0 ] ) 
 
RULE 2  /*construction of list l 0/ 
IF (I 0 [ ?symbol1 →  &- • , 0 ] ) 

(I 0 [ ?symbol2 →  &- • ?symbol1 &- , 0 ] )  
THEN ADD (l 0 [ ?symbol2  →  &- ?symbol1  • &-, 0]) 
 
RULE 3  /* construction of list l 0 */ 
IF (I 0 [ ?symbol1  →  &-•  ?symbol2 &-, 0])    

(rule ?symbol2 &part) 
THEN ADD (I 0 [ ?symbol2  → • &part, 0]) 
 
RULE 4  /* going from I p-1  to l p : a character is recognized*/ 
IF ( I ?p-1  [ ?symbol1 →  &part1 • ?a &part2, ?q])  

(string ?a ? string_remainder) 
THEN EXECUTE ( ?p ?(p -1) + 1) 
ADD (I ?p [ ?symbol1  →  &part1 ?a •  &part2, ?q]) 
DELETE (string ?a &string_remainder) 
ADD (string & string_remainder)  
 
RULE 5  /*Filling list l p */ 
IF (I ?p [?symbol1  → &- • , ?q]) 
(I ?q [?symbol2 →  &part1 • ?symbol1 &part2, ?k])  
THEN ADD (I?p [?symbol2 →  &part1?symbol1 •  &part2,?k]) 
 
RULE 6  /* Filling list l p */ 
IF (I ?p [ ?symbol1  →  &- • ?symbol2 &-, ?q]) 
( RULE?symbol2 &part) 
THEN ADD (I ?p [?symbol2  → • &part, ?p]) 
RULE 7  /*Parsing of complete string*/ 
IF (string) 
(length ?n) 
(I ?n [?symbol  → &part •, 0])  
(initial_symbol ?symbol) 
THEN ADD (write ("parsing is successfully achieved")) 
DELETE (string) 

Algorithm 5.1 - ALGO51 Declarative Earley’s algorithm 

5.3 EXINF reasoning mechanism 

Once parsing characteristics have been settled, we now introduce the inference engine 

reasoning mechanism, based on forward chaining. This process handles parsing based 

on the declarative approach.  
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5.3.1 Forward chaining implementation  

The following steps, describing the forward chaining, are a standard method of 

reasoning. For instance refer to [Win93].  

 
/* Algorithm 5.2 */ 

/* ALGO52 */ 
 /* Implemented forward chaining */ 

 
UNTIL no rules produces new assertions, 
 
/* Detection : Conflict Resolution Set  (CRS) Const ruction */ 
FOR each rule  

Try to match the first antecedent with a n existing assertion. 
Create a new binding set with variable bindings est ablished by 
the match.  
 

 Using the existing variable bindings, try to match the next 
antecedent with an existing assertion. If any new v ariables appear 
in this antecedent, augment the existing variable b indings.  

 
/* Conflict Resolution Phase or Execution Phase */  
 
   REPEAT the previous step for each antecedent , accumulating 

variable bindings incrementally  
UNTIL  

• There is no ma tch with any existing assertion using the binding 
set established so far. In this case, back up to pr evious match 
of an antecedent to an assertion, looking for an alternative 
match that produces an alternative, workable bindin g set. 

• There are no antecedents to be matched. In this cas e, 
- Use binding set in hand to instantiate the conseque nt, 
-  Determine if the instantiated consequent is already  

asserted. If not, assert it. 
- Back up to the most recent match with unexplored bi ndings, 
looking fo r an alternative match that produces a workable 
binding set 

/* Termination Test */ 
• There are no more alternative matches to be explore d at any 

level.  
 

Algorithm 5.2 - ALGO52 Implemented forward chaining 
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5.3.2 Example  

Assume we have the following knowledge base, given in Figure 5.9 below: 

 

/* Application 5.1 */ 
/* APPL51 */ 

 
/* Fact base */ 

R(a) 
F(b)  
 
 

/* Rule Base */ 
 
Rule1    IF      R(?x) 
         AND    F(?y) 
            THEN   M(?x) 
 
Rule2    IF     A(?x) 
         AND   R(?x) 
            THEN  print ("end of program") 
 

Figure 5.9 APPL51 Example of facts and rules 

 
 

In this case, we can see that RULE1 is a potential candidate for triggering. Indeed, all its 

premises are satisfied by the fact base. But RULE2 is not a candidate since the condition 

A(?x)  cannot be bound with any fact in the fact base. The construction of the conflict 

resolution set (CRS) is based on the variables that can actually be instantiated. In our 

case, two types of variables are considered.  

- The first type is called simple variable and is preceded by “?”, e.g. ?x . It captures one 

simple item of the data. 

- The second, called commentary variable, is preceded by “&”, e.g. &y.  It incorporates a 

list of items.  

Consider the following filter: R(?x, ?y, a, &z).   

Consider the following data: R (This is a good example).    
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After filtering, the simple variables ?x , and ?y  are respectively instantiated by “This” 

and “is”. The constant “a” is identical to the given constant. The variable &z is 

instantiated by “good example”.  The overall result is: “This is a good example”.  

6. Applications 

We incrementally use all layers of EXINF to solve the problems described below.  

6.1 Problem 1: regular language 

We have a regular language of the form L1 = { w = (ab)n, n>=1}. Use EXINF as a “crude” 

parser based on a grammar introduced as facts and on the rules embodied in 

declarative Earley’s algorithm. The grammar is to be introduced manually by the user.  

6.1.1 EXINF first and second layers 

Since we are concerned with parsing, only the second layer is of interest to us. A 

possible grammar for L1 is: 

G1 = (N1, Σ1, S, P1) 

Σ1  = {a, b } 

N1  = {A, B, S} 

P1  = {  A → a   

          B → b   

               S → AB   

          S → SS }  

 (1) Filling the fact base  

EXINF stores this grammar as facts as shown in Figure 5.10 below: 

 
/* Application 5.2 */ 

/* APPL52 */ 
 

/* Fact Base for Tested Example 1*/ 
 

/* Production rules stored as facts */ 
 
FACT  RULE A  a                   // Fact1 // 
FACT  RULE B  b                     // Fact2 //  
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FACT  RULE S  A  B                 // Fact3 // 
FACT  RULE S  S  S                 // Fact4 // 
FACT  initial_symbol S             // Fact5 // 
 

/* Sentence to be parsed and its length */ 
 
FACT  string   ababab             // Fact6 //     
FACT  length  6                     // Fact7 // 

Figure 5.10 APPL52 Fact base for regular language L1 = { w = (ab)n, n>=1} 

 
EXINF represents each production rule in the grammar as a fact (Fact1, 2, 3, 4, 5). The 

sentence to be parsed and its length are also introduced in the fact base (Fact6, 7). 

Parsing is processed by EXINF as a sequence of forward chaining inference cycles. 

(2) EXINF Typical Inference Cycle   

1st Step: Detection 

As described in Algorithm 5.2 above, this step involves the so-called detection or 

construction of conflict resolution set CRS.  

CRS(0) = {RULE1}. In this special case, only RULE1 has all its premises instantiated 

with some facts and therefore RULE1 is the only candidate for eventual triggering. 

We use RULE1 for instantiation, i.e., we use the description given in Figure 5.11 

below: 

 
 

/* Application 5.3 */ 
 

/* APPL53 */ 
 

RULE1 /*construction of list l 0*/ 
 
IF ( RULE ?symbol &part) 
(initial_symbol ?symbol) 
THEN ADD (I 0 [ ?symbol  → • &part ,0])  
 

Figure 5.11 APPL53 Construction of list l0* 

 
2nd  Step: Execution / conflict resolution 

(i) Matching  
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First premise (RULE ?symbol &part) can be matched by FACT 1,2,3,4.  

The second premise can be matched with FACT5.   

(ii) Heuristics for premise choice 

Now the obvious question is: “which premise to evaluate at this step”? Consider 

this question as a constraint satisfaction problem (CSP). All CSP search algorithms 

generate successors by considering possible assignments for only a single variable 

at each node in the search tree. The so-called minimum remaining value (MRV) is 

a common heuristic used in CSP. Like any heuristics, its aim is to reduce the search 

space. MRV heuristic chooses an unassigned variable that has the minimum 

number of remaining values, at some stage of the assignment process. Here the 

number of values assignable to a given premise has to be minimum. MRV heuristic 

is also called the most constrained variable (MCV) or fail-first heuristic; the latter 

because it picks a variable that is most likely to cause a failure soon, thereby 

pruning the search tree. If there is a variable X with zero legal values remaining, 

the MRV heuristics will select X and failure will be detected immediately—

avoiding pointless searches through other variables which always will fail when X 

is finally selected. 

(iii) Instantiation 

 Here the variable ?symbol is instantiated with value S.  

(iv) Propagation 

The last instantiation is then propagated in the entire rule.  

The first premise will be (RULE S &part).  

After propagation, the only facts that can be instantiated with this premise are now 

FACT3 and FACT4. Choose the first fact in list which is FACT3 and the variable 

&part is instantiated with A B.  

(v) Conclusion execution 

Now all premises of the rule are instantiated, therefore the system executes the 

rule’s conclusion which is the insertion of the fact:   

I0 [ ?symbol  →  • &part , 0 ] as I0 [ S →  • A B, 0 ] in the fact base.   
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(vi) Rule saturation 

EXINF is based on rule saturation, i.e. it explores all possible inductions. It 

therefore tries to match the second premise with FACT4. So &part is instantiated 

with SS and the fact I0 [S →  •S S,0] is inserted in the fact base. Now there is no 

other choice and the first cycle is finished.  

(vii) Termination 

This basic cycle is repeated until no other new derivations are available.  

 
(3) Parsing final result 

The final result is presented in Table 5.1. 

 

Table 5.1: TAB51 Progressive construction of sub-lists for L1 = { w = (ab)n, n>=1}. 

 sub-list 0 sub-list 1 sub-list 2 sub-list 3 sub-list 4 sub-list 5 sub-list 6 
Sentence  
ababab 

I01    
 
S →•SS, 0 
S →•AB, 0 
A → • a, 0 

I11   
 
A → a •, 0 
S →A•B, 0 
B → • b,1 
 

I21   
 
B → b •,1 
S →  AB •,0 
S →  S •S,0 
S →  •AB,2 
S →  •SS,2 
A →  •a,2 
 

I31   
 
A →  a •,2 
S →A •B,2 
B → •b,3 
  

I41   
 
B →  b •,3 
S →AB •,2 
S →SS •,0 
S →S •S,2 
S →S •S,0 
S →• AB,4 
S → •SS,4 
A → • a,4 
 
 
 

I51 
 
A →  a •,4 
S→A •B,4 
B →  • b,5 
 

I61 
 
B →  b •,5 
S→AB •,4 
S →SS •,2 
S →SS •,0 
S → S•S,4 
S → S•S,2 
S → S•S,0 
S → •SS,6 
S →• AB,6 
A → • a, 6 
 

 
Discussions and decisions  

Decision: The introduced sentence ababab is accepted because in sub-list 6, we find the 
item S → SS •,0.  

 

6.1.2 EXINF third layer  

The issue is to automatically classify any unknown sentence using EXINF as 

“intelligent” parser. This phase is not treated here since it relies on the learning module 

ILSGInf.  

6.2 Problem 2 : context-free language (CFL) 

6.2.1 EXINF 2nd layer 

Use EXINF 2nd layer in order to parse a CFL of the form:  
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L2 = { w = anbn, n>=1} 

 

A possible grammar for L2 is: 

G2 = (N2, Σ2, S, P2) 

Σ1  = {a, b } 

N2  = {A, B, C, S} 

P2  = {  A → a   

          B → b   

           S → AB   

                                                       C � AS  

                                                      S → CB 

         }  

 (1) Filling the fact base  

EXINF stores this grammar as facts as explained in Figure 5.12 below. 

 
/* Application 5.4 */ 

/* APPL54 */ 
 

/* Fact Base for Tested Example 2*/ 
 

/* Production rules stored as facts */ 
 
FACT  RULE A  a                  // Fact1 // 
FACT  RULE B  b                   // Fact2 //  
FACT  RULE S  A  B                // Fact3 // 
FACT  RULE S  C  B                // Fact4 // 
FACT  RULE C  A  S                // Fact5 // 
FACT  initial_symbol S            // Fact6 // 
 
 

/* Sentence to be parsed and its length */ 
 

FACT  string   aaabbb            // Fact7 //    
FACT  length   6                // Fact8 //  

Figure 5.12 APPL54 Fact base for the CFL L2 = { w = (a nbn, n>=1} 

EXINF represents each production rule in the grammar as a fact (Fact1, 2, 3, 4, 5, 6). The 

sentence to be parsed and its length are also introduced in the fact base (Fact7, 8).  

(2) Inference Cycles 
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As in Problem 1 above 

(3) Parsing final result 

Table 5.2 describes the final result 

Table 5.2: TAB52 Progressive construction of sub-lists for L2 = { w = (a nbn, n>=1} 

 sub-list 0 sub-list 1 sub-list 2 sub-list 3 sub-list 4 sub-list 5 sub-list 6 
Sentence  
aaabbb 

I0    
 
S →•CB, 0 
S →•AB, 0 
C →•AS, 0 
A → • a, 0 

I1   
 
A → a •, 0 
S →A•B, 0 
C →A•S, 0 
B → • b,1 
S → •AB,1 
S → •CB,1 
A → •a,1 
C → •AS,1 
 

I2   
 
A →  a•,1 
S → A•B,1 
C → A•S,1 
B → •b,2 
S → •AB,2 
S → •CB,2 
A → •a,2 
C → •AS,2 
 

I3   
 
A →  a •,2 
S →A •B,2 
C → A•S,2 
B → •b,3 
S → •AB,3 
S → •CB,3 
A → •a,3 
C → •AS,3 

I4   
 
B →  b •,3 
S →AB •,2 
C → AS•,1 
S →C•B,1 
B → •b,4 
 
 
 

I5 
 
B → b •,4 
S→ CB •,1 
C → AS •,0 
S → C •B,0 
B → •b,5 
 

I6 
 
B →  b •,5 
S→ CB •,0 
 

 
Discussions and decisions  

Decision: The introduced sentence aaabbb is accepted because in sub-list 6, we find the 
item    S →CB •,0.  
 

6.2.2 EXINF with counter example  

Let’s consider the same language L2 as above but with a counter example of the form 

aabbb.  

(1) Fact Base  

The fact base is described in Figure 5.13 below: 

/* Application 5.5 */ 
/* APPL55 */ 

/* Fact Base for Tested Counter Example 1*/ 
 

/* Production rules stored as facts */ 
 
FACT  RULE A  a                    // Fact1 // 
FACT  RULE B  b                     // Fact2 //  
FACT  RULE S  A  B                  // Fact3 // 
FACT  RULE S  C  B                  // Fact4 // 
FACT  RULE C  A  S                  // Fact5 // 
FACT  initial_symbol S              // Fact6 // 
 
 

/* Sentence to be parsed and its length */ 
 

FACT  string   aabbb               // Fact7 //    
FACT  length  5                  // Fact8 // 
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Figure 5.13 APPL55 Fact base for the CFL language L2 with counter example 

(2) Inference cycles  

As in Problem 1 above 

 (3) Parsing final result 

Table 5.3: TAB53 Construction of sub-lists for language L2 with counter example 

 
 sub-list 0 sub-list 1 sub-list 2 sub-list 3 sub-list 4 sub-list 5 
Sentence  
aabbb 

I0    
 
S →•CB, 0 
S →•AB, 0 
C →•AS, 0 
A → • a, 0 

I1   
 
A → a •, 0 
S →A•B, 0 
C →A•S, 0 
B → • b,1 
S → •AB,1 
S → •CB,1 
A → •a,1 
C → •AS,1 
 

I2   
 
A →  a•,1 
S → A•B,1 
C → A•S,1 
B → •b,2 
S → •AB,2 
S → •CB,2 
A → •a,2 
C → •AS,2 
 

I3   
 
B → b•,2 
S →AB •,1 
C → AS•,0 
S → C•B,0 
B → •b,3 
 
 

I4   
 
B →  b •,3 
S →CB•,0 
 
 
 

I5 
 
empty 
 

 

Discussions and decisions  

Decision: The introduced sentence aabbb is NOT accepted because sub-list 5 is empty.  
 

6.2.3 EXINF third layer for CFL 

As for the regular case, the issue relies on the learning module ILSGInf and is treated in 

Chapter 6. The processes described above remain exactly the same, but when using 

ILSGInf, the grammar is not introduced by the user but automatically generated by 

ILSGInf.   

7. Conclusion  

We have described the design, development and test of a rule-based deductive system, 

called EXINF and its coupling with a learning module capable of helping in 

grammatical inference. Although the developed system can be used as a general-

purpose first-order logic programming environment, implementing both forward 

chaining and backward chaining, its main use here is in parsing. In this regard, at the 

most basic or “crude” level, it can parse sentences of a given language. But its most 

important aspect is that it is used as an “intelligent” parser i.e. as a grammar constructor 
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in conjunction with the learning module ILSGInf. Advanced integration of first-order 

logic (FOL) and grammar inference (GI) represents an early step towards truly 

intelligent parsers. In Chapter 6, we describe ILSGInf as a useful contribution towards 

this distant end. 
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CHAPTER 6 ILSGInf  

AN INDUCTIVE LEARNING SYSTEM FOR 
GRAMMATICAL INFERENCE11 

 
 

1. Introduction 

In Chapter 4, we described the building blocks of a grammatical inference system or the 

so-called GASRIA system. These building blocks mainly involve an FOL-based system, 

EXINF, used for parsing, coupled with an inductive learning system for grammatical 

inference, called ILSGInf. Both systems collaborate with each other. While Chapter 5 

described EXINF in detail, this chapter describes the learning solution provided by 

ILSGInf.  Here, we are concerned with the learning aspect in the proposed GI system. 

As an in-depth description of the work presented in the previous chapters, principally 

Chapter 4, we now discuss the details of how GASRIA operates through its learning 

module ILSGInf, ending up with an induced grammar from positive examples.  

                                                           
 
11 Part of this chapter has been published under the title “ ILSGInf : Inductive learning system for grammatical inference” In 
WSEAS Trans. on Comp., ISSN: 1991-8755, 6(6):991-996, July 2007,  http://www.wseas.org   
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Some machine learning systems attempt to eliminate the need for human intuition in 

the analysis of the data, while others adopt a collaborative approach between human 

and machine; this latter is what interests us in this chapter. This is so, because human 

intuition cannot be entirely eliminated since the designer of the system must specify 

how the data is to be represented and what mechanisms will be used to search for a 

characterization of the data. This aspect of machine learning can be viewed as an 

attempt to automate parts of the scientific method. 

The chapter is structured as follows. The problem is formulated in Section 2 while 

Section 3 deals with some related works. The proposed solution is described in Section 

4, and implemented in Section 5. Our solution is based on the novel partial parsing 

algorithm (PPA) and its implementation. Tested examples are treated in Section 6. The 

chapter ends with a conclusion reporting the main advantages of the method with 

possible future extensions. 

2. Related works 

2.1 ML and human interaction 

Broadly speaking, machine learning (ML) is a field that attempts to develop algorithms 

that not only helps in taking the proper action at the actual step but also in improving 

future actions. In addition, it is true that many efforts were also provided with an aim to 

bring closer machine learning methods and grammars [CK03], or to integrate these last 

two topics within expert systems framework. In spite of the panoply of methods which 

exist in the attempt to mimic human knowledge by the machine [Lar02] and to integrate 

learning and reasoning [KR97], or to theorize the dynamics of acquisition of languages 

by evolution equations [KNN01], a problem still remains open. We specifically mean 

the automatic acquisition of the knowledge required by GI. In this attempt, our primary 

interest is to study GI from positive data, following [KMT00] and [Sak97].  
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2.2 Algorithm types 

The computational analysis of machine learning algorithms and their performance is a 

branch of theoretical computer science known as computational learning theory. 

Because training sets are finite and the future is uncertain, learning theory usually does 

not yield absolute guarantees of the performance of algorithms. Instead, probabilistic 

bounds on the performance are quite common. 

In addition to performance bounds, computational learning theorists study the time 

complexity and feasibility of learning. In computational learning theory, a computation 

is considered feasible if it can be done in polynomial time. There are two kinds of time 

complexity results. Positive results show that a certain class of functions is learnable in 

polynomial time; negative results show that certain classes cannot be learned. Machine 

learning algorithms are organized into taxonomy, based on the desired outcome of the 

algorithm. We report the main algorithm types.   

• Supervised learning, in which the algorithm generates a function that maps inputs to 

desired outputs. One standard formulation of the supervised learning task is the 

classification problem: the learner is required to learn (to approximate) the 

behavior of a function which maps a vector ],,...,,[ 21 nXXX  into one of several 

classes by looking at several input-output examples of the function.  

• Unsupervised learning, in which an agent which models a set of inputs has no 

knowledge of labeled examples because they are not available.  

• Semi-supervised learning which combines both labeled and unlabeled examples to 

generate an appropriate function or classifier.  

• Reinforcement learning, in which the algorithm learns a policy of how to act, given an 

observation of the world. Every action has some impact in the environment, and 

the environment provides feedback that guides the learning algorithm.  

• Transduction, similar to supervised learning, but does not explicitly construct a 

function. Instead, it tries to predict new outputs based on training inputs, 

training outputs, and test inputs which are available while training.  
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•  Learning to learn in which the algorithm learns its own inductive bias based on 

previous experience.  

 3. ILSGInf objectives  

ILSGInf  is an inductive learning system for GI based on the partial parsing algorithm 

(PPA). The main idea behind the PPA is to take full advantage of the syntactic structure 

of available sentences. It is based on Earley’s algorithm but divides the sentence into 

sub-sentences using partial derivative (PaDes). Given a recognized sentence as 

reference, PPA is able to recognize part of the sentence (or sub-sentence(s)) while 

rejecting the other unrecognized part. Moreover, PPA contributes to the resolution of a 

difficult problem in inductive learning and allows additional search reduction in the 

partial derivatives space which is to equal to the length of the sentence, in the worst 

case.  

4. ILSGInf learning solution   

4.1 Basic properties 

Inductive learning is a bottom-up process. The process of learning begins with specific 

instances and constructs a generalization. Therefore, in order to learn inductively, we 

parse all that is parsable in a global sentence. Like most inductive systems, ILSGInf 

receives the training instances (here through a human expert), then builds a sufficient 

knowledge stored in EXINF facts base, to infer one possible grammar. Thus, ILSGInf 

constructs a CFG capable of generating and/or recognizing all possible sentences 

produced by the language under consideration. As an example from the literature, the 

task undertaken by SubdueGL [Jon04] follows a somewhat similar technique and 

attempts to discover common structures in graphs from examples. In our case, it is 

useful to consider the following points, as stressed above:    
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• ILSGInf relies on a human expert who sequentially introduces chosen instances. In 

our actual work, we obviously suppose that the human expert acts as a 

cooperative teacher, i.e. that the teacher avoids giving, on purpose, examples that 

make the system wander away from the solution.  

• ILSGInf gradually constructs a grammar that generates these examples.  

• An initial grammar is generated and eventually updated until the most general 

grammar is obtained.  

•  For the validation of the learning process, our learning system relies on an inference 

mechanism. Thus, ILSGInf uses EXINF - a first-order general-purpose inference 

engine, developed as a stand-alone system.   

• We take advantage of the fact that rules are written in the form A → BC, or A → a.  

Search is undertaken in the space of rules in order to infer a grammar capable of 

generating these instances and eventually other similar ones.  

4.2 ILSGInf architecture 

By receiving a series of examples chosen by the expert and using the knowledge 

available, ILSGInf improves the facts i.e. the grammar of the language. So it builds the 

CFG that generates all the examples. Figure 6.1 shows its block diagram.  The class 

diagram of ILSGInf is depicted in Appendix 2.  
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Figure 6.1 DIAG61 - ILSGInf block diagram  
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4.3 General structure of ILSGInf  learning strategy  

4.3.1 Strategy overview and complexity  

At the beginning of the learning process, when no syntactical knowledge about the 

language is available, the system makes a direct memorization of the information 

provided in the form of initial grammar that is automatically generated. Then it is 

refined with the presentation with new sentences. Algorithm 6.1 below shows the steps 

involved in ILSGInf learning process. The time complexity of ILSGInf is O(n3) as shown 

in Appendix 3.  

 

 
/* Algorithm 6.1 */ 

/* ALGO61 */ 
 

/* Learning Strategy */ 
BEGIN 
Learning system receives a sentence  
 

initial  grammar construction (ALGO64) 
 

       WHILE  system receives a sentence DO  
 

Refinement cycle (ALGO62) 
 

        ENDWHILE 
 

Give improved grammar of the language 
 END 
 

Algorithm - 6.1 ALGO61 - ILSGInf learning strategy 
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4.3.2 Refinement cycle  

The refinement cycle is summarized in Algorithm 6.2 below.  

 

 
/* Algorithm 6.2 */ 

/* ALGO62 */ 
 

/* Refinement cycle */ 
 

BEGIN 
/* Partial Parsing Algorithm (PPA) */ 

 
CALL PPA (ALGO65)  

 
 IF sentence is positive  

AND analysis gives failure THEN  
 

Generalization of G (ALGO68) 
 

IF sentence is negative AND analysis gives success 
THEN 

      
Specialization of G (left as perspective)  

END 
 

Algorithm 6.2 - ALGO62 ILSGInf refinement cycle 

Algorithm 6.2 describes the refinement cycle. When a given sentence (sentence) is 

received, the PPA is called using the current grammar (grammar). The result of the 

analysis is placed in the variable analysis. Two cases might occur which are: 

1. First case: failure to recognize a recognizable sentence. We are then dealing with 

a grammar which does not recognize a correct sentence. This grammar should be 

generalized so that it can generate more sentences than currently done.  

2. Second case: recognize a counter-example. This requires a specialization of the 

grammar since it recognizes more than needed.  

Note that both generalization and specialization represent difficult and current 

problems. Here, we are only concerned with generalization, since specialization deals 
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with counter-examples, not considered in our work. On the other hand, no counter-

examples are generated by our system.  

 

 

/* Algorithm 6.3 */ 

/* ALGO63 */ 

/* Main steps in  Partial Parsing Algorithm (PPA) */ 

FOR each recognizable sub-sentence 

 

PARSE sub-sentence using Earley’s algorithm  

 

Construct the PaDe’s using each parse tree ALGO67 

ENDFOR  

Algorithm 6.3 - ALGO63 Main steps in partial parsing algorithm (PPA) 

4.4 Validation procedure  

The grammar built is then used to generate a series of sentences that are validated by 

the human expert. This validation constitutes a guarantee that the integration of the 

new rule in the grammar does not conflict with its consistency. The system rejects the 

new rule as soon as the verification process detects an incorrect string. If no counter-

example is generated, the grammar is considered correct.  Otherwise, the level of 

generalization is reduced. This represents a form of specialization.  

5. ILSGInf implementation 

ILSGInf implementation is based on the requirements for obtaining partial parsing for a 

given global sentence. We start with the PPA and describe the heuristics for sorting 

partial derivatives (PaDe's) and conclude with the generalization process.  

5.1 Initial grammar construction 

Initial grammar is of the form : G0 = (N0, Σ0, P0, S) where : 
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N0 = {A / A non-terminal of derivative tree}  

Σ0 = {a / a is a symbol of input character string} 

P0 = {/ R rule of the form A → BC ; or  A →  a } with A, B, C non-terminals in derivation 
tree. 

S = initial symbol.   
 

 

/* Algorithm 6.4 */ 
/* ALGO64 */ 

 
/* Algorithm for the construction of  initial  grammar G0 = (N0, Σ0, P0, S) */   

 
Begin 

string[i]                         /* table containi ng the string example */ 

n                                /* length of initi al global string */  

Initial_symbol:="S"              /*creation of init ial symbol, by convention "S"*/ 

i:=1, k:=1                       /*indices*/ 

                 

/* Associate to each terminal one non-terminal */ 

/* create the set of  initial rules as follows */ 

for  i=1 to  n do 

      if string[i] is not yet associated with a non-terminal   

      then  create_the_rule non-terminal(k) →  string[i]  

      k:=k+1 

      endif 

endfor 

 

if  n<= 2             /* Derivation from S* / 

        then   create_rule S → <non-terminal(1)> <non-terminal(2)> 

 

         else       /*Construction of derivation tree from bottom  to top */ 

         create_the_rule non-terminal(k)    →   <non-terminal(1)> <non-terminal(2)> 

         i:=3; k:=k+1   

 

    while  i<n do 

     create_the_rule non-terminal(k) → <non-terminal(k-1)> <non-terminal(i)> 

     k:=k+1; i:=i+2 

     endwhile 

 

/* For string to be recognized, it must derive from  root * / 

 

     create_rule S  →   <non-terminal(k-1)> <non-terminal(i)> 

                                  

endif  

end 
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Algorithm 6.4 - ALGO64 Algorithm for initial grammar construction 

5.2 Partial parsing 

The detailed steps of the partial parsing algorithm are described in Algorithm 6.4 

below. 

 

/* Algorithm 6.5 */ 

/* ALGO65 */ 

/* Partial Parsing Algorithm */ 

 

FinalParse  := empty     /*a global sentence to be parsed*/ 

i:=1               /* index for spanning the global  sentence */ 

head  := 1         /* head of a sub-sentence to be parse d */ 

read  ( car )       /* read character car   to be parsed */ 

while  car  <> end of sub-sentence do  

  

/* for delimiting the sub-sentence to be parsed */ 

 

while  car  <> end of sub-sentence and car  accepted do 

sub-sentence = sub-sentence + car                     

 /* generation of sub-sentence sub-sentence   */  

i:=i+1   

read ( car )  

endwhile 

if  car  refused then   

  

/* Result is complete parsing of sub-sentence */ 

 

Earley  ( sub-sentence ( head , i-1), result )  

Concatenate  ( FinalParse, result, car  [refused]) 

head  := i+1 /*Start over with sub- sentence following refused 

character*/  

i:=1    /*Consider another sub-sentence  */ 

 else         /* it is the end of global sentence*/ 

Earley  (sub-sentence (head, i-1),  result ) 
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Concatenate  (FinalParse, result, empty);  

 endif 

endwhile  

Algorithm 6.5 - ALGO65 Partial parsing algorithm 

5.3 Detailed refinement cycle 

5.3.1 Generalization 

In our context, we follow [Mug99] for defining generalization as corresponding to 

induction and specialization to deduction. The generalization  algorithm is described in 

Algorithm 6.6 below.  

Definition 1: A hypothesis HG is more general than a hypothesis HS if and only if HG 

entails HS. We also say that HS is more specific than HG.  

Example  

For search algorithms, the notion of generalization and specialization are 

incorporated using inductive and deductive inference rules.  

Definition2: A deductive inference rule r maps a conjunction of clauses CG onto a 

conjunction of clauses CS such that CG entails CS; r is called a specialization rule.  

Examples  

Resolution is a deduction rule. 

Dropping a clause from a hypothesis realizes a specialization. 

Definition3: An inductive inference rule r maps a conjunction of clauses CS onto a 

conjunction of clauses CG such that CG entails CS; r is called a generalization rule. 

Example 

Absorption rule is an inductive inference rule. In the absorption rule the conclusion 

entails the condition. Note that applying the absorption rule in the reverse direction, 

i.e. applying resolution, is a deduction rule.  
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/* Algorithm 6.6 */  

/* ALGO66 Generalization */ 

 

For  each sub-sentence 

- Construct the list of partial derivatives ( PaDe’s ) 

   - sort  these PaDe’s by increasing order of generality 

   - choose  as hypothesis the rule S → D g, where S is the initial symbol and Dg the 

most general concatenation of all sub-sentences 

   - add  this rule to the set P of current grammar rules    

   - use  this grammar to generate a set of sentences called  test sentences   

   - if  this generated set is accepted by a human expert  

     then  accept this new grammar  

   - else  start again with rule S → D g’ , where Dg’ is less general than Dg 

   - if  no PaDe has allowed acceptance of this generated set  

    then  consider it in the same way as an initial grammar  

 

Algorithm 6.6 - ALGO66 Generalization 

5.3.2 Partial derivatives (PaDe’s) construction  

The basics of partial derivatives (PaDe’s) have been treated previously. Construction of 

the PaDe’s for a given string reduces this latter.  Thus, it replaces the parsed parts by the 

corresponding non-terminals. The steps of the construction of a PaDe are described in 

Algorithm 6.7 below.  

 

 

/* Algorithm 6.7 */ 

/* ALGO67 PaDe’s construction */ 

  
/* This technique is based on the use of lists produced by the syntactic analyzer */  

 
   • if partial parsing algorithm ( PPA) generates k  sets of sub-lists 

     t hen  we have k  sub-strings(s) analyzed separately 

   • each sub-string of length m is analyzed by a sub-list I 0...I m 

   • in each sub-string, we have: 
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        • the list I 0 is always present 

        • if  I 1 is empty 

         then  symbol a1 of sub-string is not recognized, therefore, the 

length of sub-string is equal to 1. 

        • if  the sub-list contains at least  I 0 and I 1,                   

          then we have found part of the string  that is recognized and 

which contains at least one symbol.   

 

    

Algorithm 6.7 - ALGO67 PaDe’s construction 

5.3.3 One PaDe construction for a sub-sentence 

For each given sub-string, we need the construction of a PaDe. We proceed using 

Algorithm 6.8 as follows:  

 

 

/* Algorithm 6.8 */ 

/* ALGO68 PaDe’s construction for a given sentence  */ 

 

For each sub-list do  

   if  I 1 is empty, then  the character is not recognized and no 

transformation is needed. 

 if  I k exists for a sub-string of length k ,  

        and  if  item "S  →α•,0" is in it,  

    then  sub-string is totally recognized and transformed i nto S.  

 if  I max for the string of length k exists,  

        and if  0 <max <=k then we proceed as follows :  

        for   j max to  j = 1  

        Consider the items of the form  "A →α•,i" for increasing i 

        Treat these items starting from the most sp ecific α to the most 

general 

 

Algorithm 6.8 - ALGO68 PaDe’s construction for a given sub-sentence 

5.3.4 Heuristics for sorting PaDe's 

There are two levels when sorting PaDe’s, as explained in Algorithm 6.9 below.  
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/* Algorithm 6.9 */ 

/* ALGO69 Heuristics for PaDe’s sorting */ 

/* Level 1 local sorting */ 

for  all sub-sentences 

order  in a decreasing fashion of generality all PaDe’s  

 

/* Level 2 global sorting */ 

order  in increasing fashion of length all sub-sentences of global sentence 

 

/* Heuristics search for the adequate rule */ 

initially  choose rule whose RHS is the concatenation of the most  general 

PaDe’s  for all sub-sentences produced in Level l above 

test  this new grammar by generating new sentences  

if  all generated sentences are accepted   

     then  new rule is accepted 

     else  modify RHS of the rule by considering the followin g PaDe of 

the following sub-sentence  

 
 

Algorithm 6.9 - ALGO69 Heuristics for PaDe’s sorting  

6. Tested example  

6.1 PPA use 

Given the following CFG: G = (N, Σ, P, S), where : 

N = {S, A, B},  Σ ={a, +}, P = {S → A B, A → a, B→+ A} 

Let w= (a+a)+(a+a) be a global sentence to be parsed. The sub-sentences are:  

C1 = ( , C2 = a + a, C3 = ), C4 = +, C5 = ( , C6 = a + a, C7= )   

Our partial parsing algorithm gives the following results of sub-lists and sub-sentences:  
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Table 6.1 TAB61 Progressive construction of sub-lists 

 sub-list 0 sub-list 1 sub-list 2 sub-list 3 

sub-

sentence 1 

I01    

S → •AB, 0 

A → • a, 0 

I11  empty I21  empty I31  empty 

sub-

sentence 2 

I02    

S →• AB, 0 

A → • a, 0 

 

I12 

A → a • , 0 

S →A•B , 0  

B →• +A, 1 

I22  

B →+•A, 1 

A → • a , 2                 

I32 

A → a • , 2 

B →+A•, 1 

S →AB•, 0 

sub-

sentence 3 

I03    

S →•AB, 0               

A  → • a , 0 

 

I13  empty I23  empty I33  empty 

sub-

sentence 4 

I04   

S →•AB, 0              

A → • a , 0 

I14  empty I24  empty I34  empty 

sub-

sentence 5 

I05   

S →•AB, 0               

A → • a , 0 

I15 empty I25  empty I35  empty 

sub-

sentence 6 

I06    

S →• AB, 0 

A → • a, 0 

  

 

I16 

A → a • , 0 

S →A•B , 0  

B→•+A,1 

I26  

B→ +•A, 1 

A→ • a , 2                                   

 

I36 

A → a • , 2 

B →+A•, 1 

S →AB•, 0 

 

sub-

sentence 7 

I07    

S →•AB, 0               

A→ • a , 0 

I17  empty I27  empty I37 empty 

6.2 Discussions 

For the sub-sentences 1, 3, 4, 5 and 7, we note that: 

(i) I1x (x=1,3,4,5,7) is empty. In this case, while no classical algorithm (eg Earley-like) 

proceeds further, the PPA looks for other PaDe’s. Because sub-sentences are refused, 

then no transformation is needed.   

(ii) In sub-sentences 2, 6 all I3x (x=2,6) are accepted. In each of these, we find an item of 

the form  "S→α•,0" which is "S→AB•,0". Then respective sub-sentences are totally 

accepted and transformed as S.  



 
Chapter 6 – ILSGInf : an inductive learning system for GI  

Thèse de Doctorat d’État – The ESLIM Project  125 
 

(iii) PaDe’s of the global sentence “(a+a)+(a+a)”  have the form : “D = (S)+(S)” Other 

PaDe’s of  "a+a" are : 

   a+A    from item    A→a•,2 in  I3x, (x=2,6) 

   aB     from item    B→+A•,1 in I3x, (x=2,6) 

   A+a   from item   A→ a•,0  in I1x  (x = 2,6) 

   AB    from item    A→a•,0 in I1x and I3x, (x=2,6)    

(iv) Local sorting is done as follows: S, AB, aB, a+A, A+a. 

7. Conclusion 

We have designed, developed and tested an inductive system for grammar inference. 

The central idea is the so-called partial parsing algorithm (PPA) that can parse sentences 

not parsed by traditional methods. Comparatively, inductive logic programming (ILP) 

requires a prohibitive number of hypotheses to construct a grammar. Our method 

suggests a drastic reduction in the number of relevant hypotheses to be considered 

while inferring a grammar. Moreover, in our approach, at each step, the system takes 

advantage of the syntactic knowledge contained in the global sentence. In this way, the 

system avoids the construction of redundant rules and thus improves the quality of the 

inferred grammar. In this regard, our implemented and tested system addresses a 

difficult issue while proposing a real application with tangible results.  
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CHAPTER 7  

GASRIA/ILSGInf INTERACTIONS WITH SYSTEMS 
CONTOL12  

 
 

1. Introduction 

In this chapter, we report a framework for inductive learning as used in two different 

fields of applications, very far away from formal languages, namely control of machine 

drives and robotic self-assembly. We present an alternative method for tackling the 

control problem using GI, instead of control law generation using traditional state-space 

methods such as state-feedback or adaptive control methods, for instance. We fully 

describe one example issued from the first field and give the methodological steps for 

solving inference problems for the other field. We rely on graph grammars for robotic 

                                                           
 
12 - Part of this chapter has been published under the title “Grammatical inference for robotic self assembly – basic methodology”, 

Invited conference paper In: Recent Advances in Artificial Intelligence, Knowledge Engineering and Database 
(AIKED’09)”,  Cambridge, UK, February 21-26, 2009, pp. 447-452, ISBN: 978-960-474-051-2, ISSN: 1790-5109, 
http://www.worldses.org/online/2009.htm, http://portal.acm.org/citation.cfm?id=1554004 

- Above article extended  under the title “Grammatical inference methodology for control systems”, WSEAS Trans. on Comp., 
ISSN: 1991-8755, 8(4):610-619, April 2009,  http://www.wseas.us/e-library/transactions/computers/2009/29-113.pdf 
 http://portal.acm.org/citation.cfm?id=1558760 
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self-assembly applications. We further propose a four-level methodology for addressing 

the issue of GI-based control and self-assembly ending with graph grammatical 

inference. 

The Chapter is organized as follows. In Section 2, the issue of controlling a physical 

system, namely machine drives, is addressed with concentration on the integration of 

GI within the control loop. Section 3 discusses the self-assembly issue. Section 4 

describes the methodological steps to follow in order to solve the GI-based control 

problem and robotic self-assembly problem using graph grammars, as an ultimate 

result of the actual work.  

2. ILSGInf and control systems interaction 

2.1 The basic control methodology 

Before considering tackling self-assembly issues using graph grammars, we describe a 

simple control problem related to machine drives. For that, we need an introductory 

account of control systems and their interplay with grammars.  

2.1.1 Negative feedback dynamic control  

Control is an interdisciplinary branch of engineering and mathematics, which deals 

with the behavior of dynamical systems. The desired output of a system is taken as a 

reference to be attained or maintained at a specific value. When one or more output 

variables of a system need to follow a certain reference over time, a controller generates 

the control law (or strategy) necessary to obtain the desired effect on the output of the 

system. This is usually done using negative feedback, i.e. a procedure whereby the 

actual value is subtracted from the desired value to create the error signal which is 

amplified by the controller to allow correction to be undertaken at subsequent stages. 

This procedure is therefore done in closed-loop form.  

A thermostat is a simple example for a closed-loop negative feedback control system: it 

constantly measures the actual temperature and controls the heater's valve setting to 
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increase or decrease the room temperature according to the user-defined setpoint. A 

simple method, called control law or control strategy, switches the heater either 

completely ON, or completely OFF, and an overshoot or undershoot of the controlled 

temperature is to be expected, dictated by the physical inertia of the system. A more 

expensive method varies the amount of heat provided by the heater depending on the 

difference between the required temperature, or setpoint and the actual temperature. 

This minimizes over/undershoots. 

An anti-lock braking system (ABS) used in vehicle braking technology is a more 

complex example, consisting of multiple inputs, conditions and outputs. The aim of the 

system is to avoid the brakes from locking irrespective of the external conditions such 

as speed of the vehicle, weather conditions, road surface, among others.  

2.1.2 Control laws construction 

Whatever control strategy is used, the resulted control system must first guarantee the 

stability of the closed-loop behavior, i.e. preventing that the system state or output take 

unacceptable values. For linear systems, this can be obtained by directly placing the 

poles of the closed-loop transfer function. For multiple-input multiple output (MIMO) 

systems, pole placement can be performed mathematically using a state space 

representation of the open-loop system and calculating a feedback matrix assigning 

poles in desired location of the s-plane for continuous systems or the or z-plane for 

discrete systems. This is usually done by computer aided control systems design 

(CACSD) methods and tools and capabilities [Ham94].   

Whatever methods are used for linear systems, one cannot always ensure robustness, 

i.e. the ability in coping with small differences between the true system and the nominal 

model used for design. Furthermore, all system states cannot in general be measured 

and so estimators must be included and incorporated in pole placement design. The 

estimators are either observers of Luenberger type for deterministic control or Kalman 

filters for stochastic control.  
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2.2 Motivations for grammatical control approach  

By grammatical control, we mean the use of GI to, either generate the control law or to 

detect faulty operating conditions through the detection of abnormal input-output 

pairs. GI as applied to control systems at large is relatively a new area of research. As an 

indication, a rapid search in IEEE site (http://www.ieee.org) using ieeexplore search 

engine and keywords (formal language control + dynamical systems + grammatical 

inference) hits one journal paper [MDP01] and two conferences papers. Subsequent 

efforts remain quite isolated, [HH09a], [HH09b], [CKR10].  

Any grammar codes for the class of all possible syntactical patterns that belong to the 

language produced by the grammar. The basic idea is to design a parser (or classifier) 

that recognizes strings accepted by the grammar. There is a mapping signals-to-strings. 

Each signal is quantized and each value is given a terminal symbol. Under normal 

operations, signals are compatible with the grammar. Once the grammar is learnt, it is 

used as a reference by the nominal system. If at a later time, there is some faulty output 

from the dynamical system then the faulty generated signals are translated as “odd” 

strings, reporting abnormal behavior resulting in anomaly detection. An input of non-

terminals is used for both the nominal and actual dynamical systems. An error is 

evaluated between the strings generated by both systems. Two modes are possible. In 

the open-loop mode, the grammar generates the working patterns imposed by the 

external input command. If this error exceeds some threshold, a fault is reported. A 

closed-loop control is used when the control U is generated for an output y to be within 

some prescribed values [Ham10]. The  basic procedure is described in Figure 7.1 below. 
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Figure 7.1  DIAG71 - Grammatical control used in open-loop/closed-loop modes 
 

As exposed in Chapter 6, ILSGInf classifies negative examples correctly (i.e. as negative) 

but does not take them into account for improving the grammar it generates. In other 

words, the positive examples help ILSGInf in improving the generated grammar, but 

the negative ones do not contribute to this improvement. Now, we discuss the 

application of GI to a context-free language (CFL) as a prelude to a grammatical-based 

control. We must notice that, although the control system under consideration is simple, 

it requires a context-sensitive grammar inference. This is obviously outside the scope of 

ILSGInf. Therefore, we need additional knowledge in the form of p-production as 

explained below.  

2.3 Using grammars to control machine drives 

Before discussing self-assembly, we describe the interaction between a simpler control 

problem and GI, namely the control of machine drives. Control of machine drives is a 

specialized subject in its own right, usually studied within traditional disciplines such 

as electrical and / or mechanical / industrial engineering. Based on mathematical 

models, this subject encompasses a tremendous body of knowledge since the early days 

of cybernetics going back to the late 1940’s. To dynamically control a machine drive is to 

let it follow an imposed behavior, automatically calculated in real-time. The main 

methodology of dynamic control is therefore to produce the so-called prescribed 

feedback control law on the basis of output observations, as and when needed. If the 
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environment is unknown, we use adaptive control. For the purpose of this specific 

application, we are only concerned with control, using grammars as a methodology. So 

far in this thesis, by GI, we intended only deterministic finite automata FA, equivalent 

to regular grammars, on the one hand and some context-free grammars (CFGs), on the 

other hand. If we refer to Chomsky hierarchy, only type-3 and subclasses of type-2 

grammars, respectively, are concerned; as described in Chapter 2. Now, in order to 

control drives, these classes of grammars are not sufficient. We need to include larger 

classes of grammars such as context-sensitive grammars or type-1. This is a real 

challenge since there remain many obstacles in inferring DFAs, let alone context-

sensitive grammars. Because of the difficulty in handling this type of problems, 

supplementary human-supplied expert codification is needed in order to account for 

this kind of induction. 

2.4 Steps for using GI in control systems 

To develop a grammatical description and a GI algorithm for controlled dynamical 

systems three steps are required [MDP01]. 

2.4.1 Quantification of the variables 

Quantification refers to the creation of alphabets for the output (controlled) variable y 

and the control variable U. The objective is to generate the control U in order to 

maintain the output y within some prescribed values. A terminal alphabet Σ is 

associated to the output variable y and the nonterminal alphabet N to the control 

variable U. The feedback control law generates the required value of the input U so as 

to keep the output y within a specified range. For so doing, a quantification of the 

variables is made, in a discrete way, dividing the variables range into equal intervals 

and associating each interval to a symbol in the alphabet. 

2.4.2 Production rules 

p-type productions are defined by the human expert to be some substitution rules of a 

given form. This human-supplied codification is necessary. A p-type production codes 
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the evolution of the output variable, depending on its p past values and on the value of 

the control variable U. There is, therefore, a functional relationship between the 

dynamics of the system and the p-type productions. Note that p-type productions as 

described here are not the Proportional-control or P-control action. 

2.4.3 Learning 

A learning algorithm is necessary to extract the productions from the experimental 

data. To obtain a sample of the language, a sequence of control signals is applied to the 

system in such a way that the output variable y takes values in a sufficiently wide 

region. The signal evolution is then quantified as described above, and a learning 

procedure is followed. 

2.5 EXINF/ILSGInf in control of machine drives 

Since we are at the beginning of the applied work, results mainly concern the 

applicability of GI to machine drives as an introductory application of GI-based control 

methodology. 

In GI control systems, GI is used as an algorithm through which a grammar is inferred 

from a set of sample words produced by the dynamical system considered as the 

linguistic source. Therefore in order to apply GI, a dynamical system must be 

considered as a linguistic source capable of generating a specific language. The set of 

productions encodes the dynamics of the system that generates the language. Any word 

that can be derived from the start symbol S followed by a sequence of productions of 

the grammar is said to be within the language generated by the dynamical system.  
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/* Methodology 7.1 */ 

/* METH71 */ 

/* GI Control systems drive */ 
 

1. Pre-processing phase 

1.1 Quantification of variables 

1.2 Production rules 

Call first level of EXINF (see Fig. 5.9)  

/ * instead of manually-introduced expertise * / 

2. Learning using GI 

Call ILSGInf   

/* Third level of EXINF is implicitly used */  

 
Figure 7.2 DIAG 71 - Adapted GI control system methodology 

 

From quantification, we derive the alphabet of the language. The operation of the drive 

system gives the words that are classified by the human expert as correct, for the case of 

positive examples only. Based on these elements, ILSGInf, with the help of a knowledge 

base in EXINF, as described in Chapter 6, automatically generates the grammar from 

the given examples.  

2.6 Comparing GI-controlled systems with other methods 

A useful methodological comparison can be made between grammatical methods and 

other methods such as observer-based methods of control and soft computing, e.g. 

fuzzy control [Hag07]. 

3. Self-assembly issue 

3.1 Self-assembly as a process 
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In addition to the use of GI in machine drives, GI can be used in self-assembly. Self-

assembly is the process in which a disordered system of preexisting shapes or 

components forms an organized structure or pattern as a consequence of specific, local 

interactions among the components themselves, without external direction. It is a 

phenomenon in which a collection of particles spontaneously arrange themselves into a 

coherent structure. In nature, self-assembly is ubiquitous. For example, cell membranes, 

and tissues are self-assembled from smaller components in a decentralized fashion. It is 

common to encounter, in the natural world members of decentralized systems that self-

organize in response to environmental stimuli and to each other to produce complex 

global behaviors. This is referred to as flocking. Birds and bacteria group behavior are 

among the most common examples. Flocking has been used as a metaphor for the study 

and development of artificial swarm intelligence-based systems. Self-assembly, as a 

facet of flocking is beginning to find its way into science and engineering, through 

various disciplines ranging from molecular application encountered in bioinformatics 

[Win00], to robot reconfiguration, and stochastic self-assembly, among others. 

Assembling geometrical shapes into whatever desired shape is still considered as a 

challenging control problem. Assembling shapes into a given pattern can be seen as a 

language where the individual shapes are the words and the obtained pattern correspond 

to a sentence obeying some specific rules or grammar for generating grammatically 

correct sentences. The process of self-assembly can therefore be seen as the automatic 

generation of a language. One of the central questions for robotic self-organized 

systems is to know whether it is possible to synthesize a set of local controllers that 

produce a prescribed global behavior that is sufficiently robust to uncertainties about 

the environmental conditions. Since assembling geometrical shapes into some desired 

shape can be viewed as a set of sentences of a language, it is therefore not surprising to 

address this issue from the standpoint of grammars. More precisely, we propose to 

make use of GI. Ultimately, graph grammars are considered as an emerging field that is 

believed promising [Kla07].   
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3.2 Modes of self-assembly 

Self-assembly, as defined above, comes in two modes, passive and active. In passive 

self-assembly, particles interact according to their geometry or surface chemistry and 

stay in a thermodynamic equilibrium, once this steady-state is reached. Particles 

behavior in chemical reactions can be classified in this mode. The geometrical patterns 

in the natural world give a clear indication that self-organized systems are omnipresent, 

from leaves to snowflakes, all governed by emergence of global patterns based on 

smaller patterns or fractals. In active self-assembly, each particle may use energy to 

accept some interactions with other particles while rejecting others, according to a 

controlling program. Typical examples are multi-robot systems, where small groups of 

robots determine the outcome of encounters according to their internal programming 

[Kla07]. In our work, we focus on this latter mode of self-assembly. 

3.3 Self-assembly central issue 

As stressed above, the main question in programmed self-organization concerns the 

ability to design rules that govern the global behavior of a system by means of local 

rules. In a wide variety of settings, we can design local rules that yield a specified 

behavior, with the ability to reason about the correctness of the result. In some 

circumstances, we can provide algorithms that automatically generate such a set of 

rules. Recent results are obtained in diverse areas ranging from algorithmic self-

assembly of DNA [Win00], to the formation stabilization of multiple agents using 

decentralized navigation functions [TK05]. These results indicate that the emergent 

behavior of a self-organizing system can be precisely predicted and controlled, although 

there is much work to be done to understand the physics, dynamics, and 

implementation of self-organization. Progress in this area promises to open up new 

vistas for a completely new era of bottom-up engineering of systems, ranging from 

programmable nano-scale molecular machines to controlled swarms of interacting 

autonomous robots [KGL06]. 
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3.4 Graph grammars 

3.4.1 Definition of graph grammar 

Graphical structures of various kinds, like graphs, diagrams, visual sentences are very 

useful to describe complex structures and systems in a direct and intuitive way. Graph 

grammars have been invented in the early seventies in order to generalize Chomsky’s 

(string) grammars. This generalization consists in gluing graphs instead of 

concatenating strings. Graph grammars are evolving graphs from some starting graph, 

and whose evolution follows specified production rules.  

A graph is a pair (V, E) where: 

• V is a finite set called vertices 

• E is a finite set with elements in V×V, called edges. 

A graph grammar is a pair (Gr0, P) where: 

• Gr0 is called the starting graph 

• P is a set of production rules 

Similarly to a language generated by string grammars, a language generated by a graph 

grammar is the set of graphs that can be derived from the starting graph and applying 

rules in P. Mathematical accounts of graph grammars are based on algebraic 

representation [Ehr79]. 

3.4.2 Application of graph grammars in self-assembly 

From the point of view of graphical programming languages, graph grammars are 

useful especially in the storage level. Thus, instead of storing all these graphical 

structures as individual objects, we store only their grammar for reasons of compact 

size and generative power. While earlier mathematical work focused on string 

grammars, more interest is recently based on tree and graph grammars [Hof00]. In self-

assembly applications, graph grammars are used to model the physics of the particles 

by describing the outcomes of interactions among them. When used to program the 

desirable outcomes of interactions among particles, a graph grammar represents a 

description of a communication protocol and is thus intended to be coupled with a 



 
Chapter 7 – GASRIA/ILSGInf interactions with systems control    

Thèse de Doctorat d’État – The ESLIM Project  138 
 

physical model of the environment that mediates the interactions. In particular, a 

suitably designed graph grammar can precisely describe and direct the changing 

network topology of a self-organizing system [MKE07]. 

4. From string GI to graph GI  

4.1 Four methodological levels for solution  

We propose here a set of steps we believe can handle the issue of GI-based control 

starting from string grammars to graph grammars.  

1. Level 1: Extension of known techniques used in GI to graph grammars 

1.1 State of the art in GI for regular languages and CFLs  

1.2 Concentration on on structural methods such as tree and graph grammars  

1.3 Graph grammars and their algebra  

1.4 Investigation of the use of inference in graph grammars 

2. Level 2: Formal languages for systems control  

The main issue here is to consider how formal languages can help in developing novel 

techniques in system control. It can be structured as follows: 

2.1 Current methods for system control based on formal languages 

2.2 Control methods based on (string) grammar inference 

      2.2.1 Extend and apply ILSGInf-EXINF to control drives 

      2.2.2 Extend ILSGInf-EXINF application to robot control 

Level 3: Robotics self-assembly and graph grammars  

The main issue here is to study the phenomenon of self-organizing systems and robotics 

self-assembly using graph grammars. It is structured as follows: 

3.1 Graph grammars for robotic self-assembly 

3.2 Inference in graph grammars for robotics self-assembly 

Level 4: GI-based control vs. other control methods 

4.1 GI-based vs. state-feedback control methods (e.g. observer-based)  

4.2 GI-based vs. soft computing-based control (e.g. neural nets and genetic-based) 
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4.3 Recommendations and feasibility study    

5 Conclusion 

The present chapter paves the way towards an objective evaluation and an introductory 

study of the effectiveness and usefulness of GI as applied in control systems settings. It 

represents an early contribution as far as graph grammars inference integration is 

concerned. A unification of the diversified works dealing with robotic self-assembly 

while concentrating on graph grammars as an alternative control method is made 

possible. This is done using an incremental methodology for control and self-assembly, 

starting with string grammatical inference and ultimately leading to inference in graph 

grammars. However, the results report only a tiny aspect of the overall issue, since 

these describe only the case of context-free language (CFL) inference as (an incomplete) 

part of the control of machine drives. Much work is still required on both sides, i.e. 

control and formal languages, for the development of fully-integrated systems that 

scale up to real-life applications that use context-sensitive grammars.  
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CONCLUSION 
 
 

1. First-order logic (FOL) and grammatical inference (GI) 

In this research, we investigated an early attempt in bridging the gap between 

inferences as produced by first-order logic (FOL) and machine learning processes as 

undertaken by grammatical inference (GI). The aim is programming languages 

improvement with a learning layer. For the purpose of integrating the inferential or 

declarative approach, as exemplified by Prolog-like logic programming, with machine 

learning methods such as those used in GI, we have designed, fully implemented and 

tested various algorithms. Specifically, we studied, from design to testing and 

debugging, an inductive learning environment ILSGInf supported by, and coupled with 

a rule-based deductive reasoning environment, called EXINF. The result of this 

integration is the so-called GASRIA system that has been designed and developed as a 

GI system for the induction of some CFG’s from positive examples using heuristics. 

Thus, the proposed system behaves as a parser with the ability to learn a grammar by 

induction, supported by the learning environment ILSGInf, and reasoning through 

EXINF, a FOL-based programming environment. As a result, GASRIA takes a set of 

sentences from a human teacher and generates a grammar from it. The overall system 
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has been successfully applied to various artificial formal languages ending with a class 

of context-free languages (CFLs).  

2. Inferences and “intelligent” parsing 

Parsing according to a specified grammar is a field of many practical applications. Both 

programming and natural languages parsing represent the most obvious examples. One 

of the major characteristics of grammars is that they have the ability to generalize over a 

specific language. This characteristic is very useful, since it offers the possibility to learn 

a grammar based on a set of sample sentences without the need to specify every 

sentence of a language. This is accomplished by all machine learning algorithms since 

they seek to generalize over a set of examples in order to obtain a more general model.  

In our case, the general model or inferred grammar is obtained using two 

environments; one deductive and the other inductive. Although the deductive 

environment EXINF can be used as a general-purpose FOL programming environment, 

implementing both forward chaining and backward chaining, its main use here is in 

parsing. In this regard, at the most basic or “crude” level, EXINF can parse sentences of 

a given language. But its most important role is that it is used as an “intelligent” parser 

i.e. as a grammar constructor in conjunction with the inductive environment ILSGInf. 

Further integration of FOL and GI represents an important step towards truly 

intelligent parsers. Chapter 6 described ILSGInf, a useful contribution towards this 

distant end.  

3. Partial parsing algorithm  

In our parsing approach, the central idea is the so-called partial parsing algorithm (PPA). 

In this work, the PPA contributes to infer a CFG and is capable of parsing sentences 

that, in our learning settings, are not parsable by existing methods. This is done through 

the use of partial derivatives, representing the different items that can be isolated in the 
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derivation tree of the sentence under analysis. The PPA, which is designed and 

described in detail, is validated using a set of experiments.  

4. Performance criteria  

In evaluating results of this kind, we can rely on criteria that are traditionally 

considered important.  

- How efficient and incremental the method/system is?  

- How precisely and naturally its generalization process is, after the introduction of 

any additional example.  

- How well it obtains correct identification in the limit.  

- How natural and useful the inferred grammatical rules are. 

As shown in the results, the answers to all these questions are satisfactory. Indeed, the 

developed overall system is both efficient and incremental. Our method suggests a 

drastic reduction in the number of relevant hypotheses needed for inferring a grammar. 

Moreover, in our approach, at each step, the system takes advantage of the syntactic 

knowledge contained in the global sentence with the help of partial derivatives. In this 

way, the system avoids the construction of redundant rules and thus improves the 

quality of the inferred grammar.  

On the other hand, some methods suffer from the “curse of dimensionality”. For 

instance, inductive logic programming (ILP) requires a prohibitive number of hypotheses 

to construct a grammar. In our case, the tested languages required a reduced number of 

examples for induction, not exceeding five to six examples attesting that the 

generalization is realized quite rapidly with no generation of counter examples. It is 

shown that this leads, in polynomial time, to correct identification in the limit of the 

regular languages and some CFLs, as detailed in the examples treated in the text. On 

the other hand, the generated language is not empty since it contains at least the 

introduced examples. In this regard, the proposed approach successfully addresses a 
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difficult issue. Our additional asset is the use of FOL within the declarative approach in 

parsing. Avenues for other applications such as control systems is also made possible.  

5. GI, control and self-assembly  

In addition to intelligent parsing through the integration of FOL and GI, we studied 

also applications that are usually considered far from formal languages, namely control 

systems and self-assembly. For GI-based dynamical control systems, original 

knowledge in the form of signal from sensors is translated into rules and facts in the 

form of grammar to be induced. For self-assembly systems, graph grammars are used 

instead, because they are more suitable to describe geometrical patterns. In both cases, 

we are in face of context-sensitive grammar whose inference is not possible by existing 

methods. We therefore need additional human expertise. In GI-based control systems, 

for instance, we need the humanly-supplied p-type productions. These have to be 

coded, updated and used in the inference process. Hence, the use of the declarative 

approach in handling this kind of knowledge. We have taken advantage of the 

integration of GI and FOL to contribute to the development to GI-based control systems 

and self-assembly, as described in Chapter 7.  

6. Prospects 

6.1 Parsing 

Prospectively, much effort is still needed in order to address the difficult issue of 

intelligent parsing so as to scale up to real life applications such as development of a 

new type of compilers. The combination of GI and FOL can be regarded as one 

important step towards the design of intelligent compilers.  

6.2 GI-based control and self-assembly 

GI-based control is still in its infancy. For the time being, this approach does not 

compare well with the so-called soft computing approach, which is based on 
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methods such as neural networks, fuzzy systems, genetic algorithms, and similar 

methods. However, the integration of GI and FOL can open new vistas for novel 

algorithms on the basis that FOL-based declarative environments are very powerful 

in the manipulation of knowledge and its update through inference.  

7. Further… for the future 

The results obtained can be taken as a good starting point for contributions towards 

the following directions of research: 

7.1 Computer algebra system (CAS) improvement 

In today’s CASs, any problem (integration, differentiation, solution of algebraic 

equations…) is solved in the same fixed way irrespective of the number of times it 

solves it. A learning layer will make the system solve problems differently on the 

basis of previous problems.  

7.2 Semantic level of programming languages 

So far, we only considered the syntactic level of languages. A good line of research 

would be to devise methods that address the semantic level as well. GI helps us to 

identify hierarchical structures in programs. These structures identify not only 

different units but also how these units interact. Understanding how interaction 

between parts of a program helps in adding learning to programming, as one 

possible future line of research.  

 

7.3 Grammars and bioinformatics 

An interesting theme concerns the interaction between GI and gene expression in 

the human cell.  Blending methods from control systems and GI will improve our 

knowledge of gene regulatory networks (GRNs) whose faulty functioning is 

responsible for many devastating human diseases, such as cancer, to cite but one.  
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How much knowledge in GI, control systems, and other computerized medical 

fields with their various interactions do we need in order to eradicate just one of 

these human diseases?  

Obviously, this is another story.  

This thesis extracted a very tiny drop from the vast ocean of knowledge that can 

hopefully help in elucidating this question – for the welfare of all…  
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GLOSSARY  

English Français ����  
  
 

Alphabet Alphabet =ی#Gأ� 
Alphabetical order  Ordre alphabétique   ي#Gأ� H�!�! 
Automata Automates =I)!أ  
Automaton Automate =I)!أ  
Automaton, deterministic 
push-down  

Automate à pile  =I)!س  أ#*� 

Automaton, finite 
(deterministic) 

Automate fini (déterministe)  ودة#�� =I)!أ)=�<L� ( 

Automaton, finite (non 
deterministic ) 

Automate fini non 
déterministe  

=�<L� ��N ودة#�� =I)!أ 

Automaton, linear bounded  Automate linéaire borné ودة#�� =�L6 =I)!أ  
Automata, skeletal tree  Automate d’arbre 

squelettique 
 =I)!ة ه�*��=�أ�G: 

Background (or prior) 
knowledge 

Connaissance de fond (a 
priori) 

�= = ا�(>���Pا�(�3$=(ا�( 

Backus Naur Form Forme de Backus-Naur 5ر - ش*� ��آ5س� 
Character in a string Caractère dans une chaine  ح�ف �� ��3�3=ا
Chomsky normal form Forme normale de Chomsky 3*�ا�:*� ا��5:� ���2� 
Chaining Chainage  �3�3! 
Chaining, backward  Chainage arrière ��6 �3�3! 
Chaining, forward  Chainage avant ���� !�3�3 أ
Chaining, hybrid  Chainage hybride  �3�3!��Gه  
Cocke-Younger-Kasami 
algorithm 

Algorithme de Cocke-
Younger-Kasami  

 -ی�5?� - 56ارزم آ5ك
�� آ�زا

Complement of a language  Complément d’un langage =?�� �)ّ*� 
Concatenation of positive and 
negative evidence 

Concaténation de preuves 
positive et négative 

 U�V�! ا8د�= ا�(�05= و
 ا����3=

Clause  Clause ة�$�  
Clauses, conjunction of  Conjonction de clauses ات�$ و�V ا�
Clauses, disjunction of  Disjonction de clauses �$ �ات<� ا�
Conflict resolution set  Ensemble de résolution de 

conflit  
�G(�5= اI6;ال ا�I>�رض  
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Constraint satisfaction 
problem 

Problème à satisfaction de 
contraintes 

�3 �= !�$�� ا�$�5د 

Control variable  Variable de commande �*�Iا� ��?I� 
Definite  semantics Sémantique définie تCCد =��<� 
Empty character Caractère vide رغ� ا���ف ا�
Emptiness Vide  �اغا�
Entailment  Implication ام;�I	ا  
Equivalence Equivalence Iا�[��* 
Evidence  Preuve  د��� 
“Fail-first” heuristic  Heuristique du premier 

échec  
  �#ی��= أول ر	5ب

Finiteness Finitude =ودی#�� 
Grammar Grammaire 5�� ا�
Grammar, context-sensitive  Grammaire à contexte 

sensitif 
 5��  ا���3س ����3قا�

Grammar, context-free  Grammaire à contexte libre  5�� ا�(I3$� �� ا���3ق ا�
Grammar, formal  Grammaire formelle 5�� ا�:*�� ا�
Grammar, hypothesis  Grammaire hypothèse وض� ا���5 ا�(
Grammar inference (or 
induction) 

Inférence (ou induction) 
grammaticale 

) أو اC	I$�اء(اC	C#Iل 
 ا���5ي 

Grammar, regular Grammaire régulière  5��2� ا�I� ا�(
Grammar, size of a  Grammaire, taille d’une  5��� ا�Gح 
Grammar, stochastic context-
free  

Grammaire stochastique a 
contexte libre 

 5��ا�(I3$� �� ا�>:5ا_� ا�
 ا���3ق

Grammar, target  Grammaire cible #ف�5 ا��� ا�
Grammar, unrestricted (free) Grammaire, non restreinte 

(libre) 
 5�� �N� ا�($�#، ا���ا�

Inductive inference and 
definite semantics 

Inférence inductive et 
sémantique définie  

 دCCتا	C#Iل !�ا0>� و 
�ّ<�=� 

Inductive inference and 
normal semantics 

Inférence inductive et 
sémantique normale 

#I	ل !�ا0>� و اCتCCد 
=���2� 

Inductive inference rule  Règle d’inférence inductive �<0ل !�اC#I	5ن ا��� 
Inductive logic programming Programmation logique 

inductive  
=��C#I	ا =�$L�� =G��� 

Inferred grammar at a given 
stage of the inference process 

Grammaire inférée à un 
niveau donné du processus 
d’ inférence  

 5��`��5I3ى  �I3#ل � ��
��ح�= اC	C#Iل �� ��<� 

Information extraction Extraction d’information =� ا	PI�اج ا�(>�5
Information retrieval Recherche d’information =� ا	c<Iم �� ا�(>�5
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Initial inferred grammar Grammaire initiale inférée `� ا���5 اI�C#ا_� ا�(I3#ل �
Knowledge base Base de connaissances =��<)ة ا�#��� 
Knowledge-based system Système à base de 

connaissance 
 ���#ة ا�(>��=�م �2

Language Langage =?� 
Language, context-free  Langage, à contexte libre  ا���3ق �� =�$I3)ا��?= ا� 
Language, domain-specific  Langage spécifique au 

domaine 
 ا��?= ا�V�P= ���(�#ان

Language defined over an 
alphabet 

Langage défini selon un 
alphabet 

�>��= حH3 أ�G#ی= =?� 

Language, formal  Langage, formel  =?ا�:*��=ا�� 
Language generated by a given 
given grammar  

Langage généré par une 
grammaire donnée 

��5#ة  =?���<� 5��� 

Language, regular Langage, régulier   =?2(=ا��I� ا�(
Language, recursive 
enumerable 

Langage énumérable récursif  =?�،=5دی�  #<�� =���� 

Language, target  Langage cible #ف�ا��?= ا� 
Learning Apprentissage ��<Iا�  
Learning, machine  Apprentissage automatique ��dا ��<Iا� 
Learning, semi-supervised  Apprentissage semi-

supervisé 
 � e� �_;0ش�اف!>�

Learning, supervised  Apprentissage supervisé  ش�افe� ��<Iا� 
Unsupervised learning Apprentissage non supervisé  ��<Iإش�اف?�� �ا� 
Left- and right-hand-side of a 
production 

Partie gauche et partie droite 
de la production 

و ا��(�%  ىا�G�= ا��3�
 ��I�fج

Length of string Longueur de la chaine �3�3=�5ل ا� 
Lexical order over strings Ordre lexical dans les 

chaines 
�	c3ا� �� �)G<� H�!�!  

Logic Logique �L��  
Logic, first order  Logique du premier ordre %ا�#ر0= ا8و� �L�� 
Logic, propositional Logique des propositions  �L��  ا�$�gی�
Membership query Requête d’appartenance ء�)I�Cم �� اc<I	ا 
Membership problem Problème d’appartenance =� 3� اI�C(�ء 
Minimum adequate teacher Enseignant adéquat minimal  H	��� ��<� �?Vأ 
Minimum remaining value Valeur minimale restante =�$�I� أ�� ��(= 
Most constrained variable La variable la plus contrainte ً5د��ا8آ-�  ��?I)اا�  
Most general concatenation of 
all sub-sentences 

La concaténation la plus 
générale de toutes les sous-
phrases 

 �)Gا� �*� �ا�U�V�I ا�8
=�_;Gا� 

Multiple derivation Dérivation multiple د#<I� اشI$�ق 
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Non-terminal Non terminal �_��� ��N 
Number of character in the 
string 

Nombre de caractères dans 
la chaine 

 �#د ا���وف �� ا��3�3=

Operation Operation =��)�  
Operation, complement Operation, complement =��)� �)*)ا�  
Operation, intersection Operation, intersection  =��)�h��$Iا�  
Operation, product Operation, produit  =��)ب��gا�  
Operation, symmetric 
difference 

Operation, difference 
symétrique  

 =��)��i��I)ح ا��Lا�  

Operation, union Operation, union =��)� د��!Bا  
Output (controlled) variable Variable (commandée) de 

sortie  
�I?�� ا�(P�ج )`�� �k*�I)ا�( 

Parsing Analyse syntaxique  5ي�� ا�����I ا�
Parsing, bottom-up Analyse syntaxique, 

ascendante 
  ا�����I ا�I<��#ي

Parsing, hybrid Analyse syntaxique, hybride  ����Iا���G�ا�  
Parsing, top-down Analyse syntaxique, 

descendante 
��ز��Iا� ����Iا� 

Partial derivative Dérivée partielle �_;Gا� �I:)ا� 
Partial parsing algorithm Algorithme à analyse 

syntaxique partielle 
56ارزم ا�����I ا���5ي 

�_;Gا� 
Posterior satisfiability 
(consistency with negative 
evidence) 

Satisfiabilité a posteriori 
(consistance avec l’évidence 
négative) 

ا�$����= ���I$� ا�(�َ�� 
 )ا��G3م �h ا�#��� ا����3(

Posterior sufficiency (or 
completeness with regard to 
positive evidence)  

 Suffisance a posteriori 
(complétude vis-à-vis de 
l’évidence négative) 

آ(�ل �����3= (ا�*�ی= ا�(�َ�$= 
 )��#��� ا����3

Power set  Ensemble puissance 5�ُ�5=  ى)G� 
Programming Programmation =G���  
Programming, declarative  Programmation déclarative =ی���>Iا� =G� ا���
Programming, imperative  Programmation impérative  ة��dا =G� ا���
Programming, functional  Programmation fonctionnelle  =G��= ا����i5ا� 

Programming, procedural Programmation procédurale �ا��=G�  ا0B�ا_�= 
Programming, object-oriented Programmation orientée 

objet 
=G�  ا�:��n=  ا���

Prior necessity Nécessité a priori  �3$ً�,�وري� 
Prior satisfiability Satisfiabilité a priori  �$�I�� =����$ا�(��3ا� 
Probabilistic approximately 
correct 

Probablement 
approximativement correct  

Cً�)Iاح o��>ا� �� Hا�$�ی 
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Pumping lemma Pumping lemma 56ذ � qgا� 
Reversal of a string Inversion de chaine =�3�35س ا�*<� 
Resolution principle Principe de résolution  ال;I6Bأ ا#��  
Sequence of characters  Séquence de caractères ا���وف �� =���II� 
Set of accepting states  Ensemble des états 

acceptants 
�G(�5= ا8ح5ال �$I)ـا�r=� 

Set of characters (terminals) or 
alphabet 

Ensemble de caractères 
(terminaux) ou alphabet  

 =�5)G�) ا����_�=(ا���وف 
 أو أ�G#ی=

Set of hypotheses Ensemble des hypothèses ت��,��G(�5= ا� 
Set of initial states Ensemble des états initiaux  �5= ا8ح5ال)G� اI�C#ا_�=
Set of positive examples  Ensemble des exemples 

positifs  
 =�5)G� ا8�-�= ا�(�05=

Set of negative examples or 
counter examples 

Ensemble des exemples 
négatifs ou contre-exemples 

 =�-�ا����3= أو �G(�5= ا8
 (�gدة ا��-�= ا8

Set of non-terminals or 
variables 

Ensemble des non terminaux 
ou variables 

 =�5)G�cأو ا� =�_���
 ا�(I?��ات

Set of positive (or negative) 
examples of sentences 

Ensemble des exemples 
positifs ( ou négatifs) de 
phrases 

 =�5)G�أو (ا8�-�= ا�(�05= 
�� ا�G(� )ا����3= 

Set of productions or rules Ensemble de productions ou 
de règles  

 =�5)G���GIت أو � ��
 �5ا��� 

Set of rejecting states Ensemble des états de rejet  �5= ا8ح5ال)G�=gا��ا� 
Set of states Ensemble des états  �5= ا8ح5ال)G� 
Set of symbols in the stack Ensemble des symboles dans 

la pile 
 =�5)G� ا���5ز �� ا�(*#س

Single derivation Dérivation simple #ق واح�$Iاش 
Starting symbol  Symbole initial �_ا#I�Cا ;� ا��
State with branch and read 
from input  

État de branchement et de 
lecture des entrées 

 ��ح��= �; و ��اءة 
  تc#�6َُ(ا

State with branch and read 
from stack  

État de branchement et 
lecture de pile 

 ��ح��= �; و ��اءة 
 ا�(*#س

State with no branching but 
only with push  

État sans branchement mais 
avec empilement seul 

tی#*I� �*� و ;� c� =ح�� 
u$�  

Strings of terminals Chaine de terminaux  �� =�3�	�_��� ت�ا�
Symbol Symbole ;� ر
Terminal Terminal �_��� 
Text mining Fouille de texte 5ص>��$�H �� ا�Iا� 
Transition function Fonction de transition ل�$I�Cدا�= ا 
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APPENDIX 1 

CLASS OF LANGUAGES INFERRED BY GASRIA 

Table A1 below gives some of the grammars inferred by GASRIA. For each language, 

the first row contains a description of the language, the second column contains the set 

L+ of positive examples and the third column gives the most general grammar inferred 

by the system. Then a number of rows follow containing the sequence of grammars 

generated. For each grammar, we give only the set of productions. S is the initial 

symbol. We can conclude that the subclass of languages learned by our algorithm is the 

linear languages, which incorporate even linear and regular languages. For the search 

space, the choice of Chomsky normal form for describing the grammar and the 

collection of non-terminal two by two from left to right, we have reduced the search 

space to only one possible grammar. Of course, it may not be the best one always.  

Table A1 – TABA1: Class of languages inferred by GASRIA 

Language L+ Most general grammar 

anbn, n ≥ 1  
ab, aabb, aaabbb 

 
G

1
 

 

G
0

 = S → AB ,         A → a,          B → b 

 

G
1

= S → AB ,  A → a,       B → b       C → AS,        S → CB 

 
S� x 
     | y 
     | z  
     | S+S 
     | S*S 
     | S-S 
     | S/S 
     | (S) 
 
This grammar  generates 
arithmetic expressions 
using x,y,z variables .  

 
x, y, z, x+y, x-y, 
x*y, x/y, (x), 
(x+(x-y)/(z*y-x)) 

 
G

7
 

 

G
0

 = S → x 

 

G
1

= S → x,        S → y 
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G
2

= S → x,        S → y,       S → z 

 

G
3

= S → x,   S → y,  S → z,  S → BS,      B → SA,      A → + 

 

G
4

= S → x,   S → y,  S → z,  S → BS,      B → SA,      A → +,        

C → -,        D → SC,        S → DS 
 
 

G
5

= S → x,   S → y,  S → z,  S → BS,      B → SA,      A → +,        

C → -,   D → SC,   S → DS,  E →  *,   F →  SE,        S →  FS 
 
 

G
6

= S → x,   S → y,  S → z,  S → BS,      B → SA,      A → +,        

C → -,   D → SC,   S → DS,  E →  *,   F →  SE,        S →  FS ,        

G → /,        H → SG,        S → HS 
 
 

G
7

= S → x,   S → y,  S → z,  S → BS,      B → SA,    A → +,        C 

→ -,   D → SC,   S → DS,  E →  *,   F →  SE,     S →  FS,        G 

→ /,   H → SG,   S → HS,    I → (,  J →),        K → IS,    S → KJ 
 

bnab2n n ≥1 babb, bbabbbb, 
bbbabbbbbb, 
bbbbabbbbbbbb  

G
1

 

G
0

= A → b,        B → a,    C → AB,       D → CA,        S → DA,  

 

G
1

= A → b,        B → a,    C → AB,       D → CA,        S → DA,         

E → AS,        F → EA,        S → FA 
 

bnabcb 3n  n ≥ 0 abc, babcbbb, 
bbbabcbbbbbbbbb  

G
1

 

G
0

= A → a,       B → b,       C → c,       D → AB,       S → DC 

G
1

= A → a,       B → b,       C → c,       D → AB,       S → DC,      

E → BS,      F → EB,      G → FB,     S → GB 
 
aaabbbbb, aab aaabbbbb, aab G

1
 

G
0

= A → a,   B → b,     C → AA,        D → CA,        E → DB,        

F → EB,        G → FB,        H → GB,             S → HB 
 

G
1

= S → CB 
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APPENDIX 2 – ILSGINF CLASS DIAGRAM 

 

 
 

Figure A2 – DIAG A/2 : ILSGInf class diagram 

Terminals 

termnls <vector> : char; 
nbr_trmnls : int; 

terminals(int = 0); 
setTerminals (int, char [ 
] ); 
getTerminals( ) : void ; 
inTerminals (char) : bool; 

Symbl_Initl 

symbol : char; 
 
symbl_Initl(char =‘S’) 
:void; 
setsymb(char) : void; 
getsymbl( ) : char;  

Non_Terminls 
 
nonTerminals <vector> : char; 
nbr_non_trmnls : int; 

non_Terminls( int = 0) ; 
set_n_termnls(int, char[ ]): 
void ; 
get_n_termnls( ) : void ; 
inNonTermnls(char ) : bool ; 
add_n_terminls(char c): void; 

Rule 

iD_rule : int ; 
pd : char ; 
pg : char[maxpg]; 
 
rule ( ) ; 
setRule(int,char,char[]): 
void ; 
getlenPg( ) : int ; 
getNumber( ) : int ; 
printRule( int ) : void ; 
getPd( ) : char; 
getPg( int ) : char; 

Grammar 

terminaux : Terminals; 
nonTerminaux : Non_Terminls; 
initial_Symbol : Symbl_Initl; 
r ules <vector> : Rule;  

ilsginf( ) : void; 
grammar( ); 
grammar(int); 
earley_Analyser(char *, List_Item * & ): 



 
Appendix 3 : Complexity of ILSGInf learning   
 

Thèse de DE– The ESLIM Project   164 
 

APPENDIX 3 COMPLEXITY OF ILSGINF LEARNING 

ALGORITHM 

For complexity calculation of ILSGInf, assume that n is the maximum size of examples 

in the input sample, and x is the number of examples in it. The estimated time 

complexity T(.)  of the algorithm is polynomial with respect to the maximum length of 

examples in the input sample. The cardinality of the input sample also increases the 

time complexity until the most general grammar is found.  

T( ILSGInf , n) =  

constant+T( Generate_first_grammar , n)+( x-1)*(const+T( PPA_Parse , n) + 

T( Generalize , n) ) (1) 

Where: 

T( Generate_first_grammar, n) = O(3n)  = O(n)  

T( PPA_Parse , n)=max(T( Earley_algorithm , n), 

}/],0[,{max(
11

3
∑∑

==

=∈
n

i
i

n

i
i nknkk  + T( PaDe_sorting , n)))  (2) 

T( Earley_algorithm , n) = O(n3) (Earley algorithm known complexity) 

T( PaDe_sorting , n) = O(n2) (sorting algorithm known complexity) 

}/],0[,{max(
11

3
∑∑

==

=∈
n

i
i

n

i
i nknkk  = O(n3)  

Thus   (2)  gives   

T( PPA_Parse , n) = max( O(n3), O( n3)+O( n2)  ) = O(n3)  

T( Generalize , n) =  O(n) 

The final result giving the complexity of ILSGInf is given by:  

T( ILSGInf , n) = O(n)  + ( x-1) * (O( n3) + O( n)) = ( x-1) * O( n3)  = O( n3)  

Although, we have been successful in generating a subclass of CFLs in polynomial time, 

the actual method cannot deal with more complex CFG’s such as ωωR. We are now 

developing adequate heuristics to improve the proposed method to enlarge the set of 

learned languages. 
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INDEX 

 
Abbadingo learning 

competition, 36 

absorption rule, 117 

accepting strings, 19 

Active learning, 28 

adaptive control, 
123, 128 

adaptive control 
methods, 123 

AI, 6, 144, 146, 149 

All types of queries, 

29 

alphabet, 5 

antecedent , 83, 

87, 96 

approximately 
correct, iii, 25, 30, 

154 

artificial 
intelligence, II, 6, 

41, 42, 56 

automata, I, II, iii, 14, 

15, 17, 32, 33, 36, 

37, 38, 39, 41, 43, 

46, 63, 145, 146, 

147 

automaton, i, ii, 14, 

17, 18, 20, 32, 33, 

34, 35, 49 

background 
knowledge, 57, 60 

background theory, 

58, 60 

Backtrack 
characteristics, 82 

backward chaining, 

3, 80, 82, 83, 87, 

104, 138 

BLUE*, 35 

C4.5, 56, 148 

CFG, II, i, xi, xii, 6, 13, 

17, 20, 21, 22, 23, 

38, 39, 40, 43, 47, 

53, 62, 65, 66, 69, 

73, 79, 81, 82, 94, 

108, 109, 119, 137, 

138, 160, 167 

CFGs, II, xi, 1, 5, 6, 7, 

9, 21, 23, 24, 25, 

27, 32, 34, 37, 38, 

39, 40, 41, 42, 43, 

53, 72, 128, 143, 

167 

CFL, IV, i, v, 17, 20, 

21, 22, 23, 101, 

102, 103, 127, 135 

CFLs, II, 17, 20, 21, 

22, 23, 37, 38, 39, 

40, 41, 134, 138, 

139, 160 

Chaining, 151 

CHILL, 57 

Chomsky hierarchy, 

5, 17, 32, 37, 42, 

128 

class diagram, iv, 65, 

90, 109 

classes of 
languages, 16 

classification of 
sentences, 63 

Closed world 
assumption, 82 

closed-loop control, 
126 

CN2, 56, 144 

CNF, i, 22, 39, 72, 78 

commentary 
variable, 97 

complementation, 

19, 22, 38 

computer algebra 
software, 2 

concatenation, i, 11, 

19, 42, 54, 73, 77, 

117, 119, 153 

conclusion , V, ix, 

3, 9, 52, 68, 83, 87, 

100, 106, 117 

condition-action 
rules, 83 

conflict-resolution 
procedure, 84 

conjunction of 
clauses, 116, 117 

Constraint 
satisfaction 
problem, i, 152 

constraint 
satisfaction 
problem (CSP), 99 

Constructors , 84, 

85 

context free 
grammars, xi, 5, 

167 

context-free 
expressions, 42, 

149 

context-free grammar, 

iii, 6, 13, 17 

context-free 
grammars, 1, 128, 

146, 147, 148 

context-free 
language, IV, 17, 

101, 127, 135 

Context-free 
language, i, 18 

context-free 
languages, 16, 18, 

138, 146, 147, 149 

context-sensitive, 7 

context-sensitive 
grammar, 13, 17, 

127, 140 

context-sensitive 
language, 17 

Context-sensitive 
language, 18 

context-sensitive 
languages, 16 

Contradiction 
theorem, 86 

control law, 123, 

124, 125, 126, 127, 

128 

control of machine 
drives, V, 123, 127, 

135 

control strategy, 125 

control systems, V, 

xi, 6, 7, 123, 124, 

125, 126, 129, 135, 

140, 141, 142, 145, 

167 

controlling 
program, 132 

counter-example, 

30, 113, 114 

counter-examples, 

28, 113 

data analysis, 56 

data mining, III, 4, 

56 

Data-driven heuristic, 

II 

decision tree 
learning, 56 

decision-making 
process, 4 

declarative, 1, 2, 3, 

8, 53, 69, 91, 94, 

95, 98, 137, 140, 

141, 154 

Declarative 
programming, I, 8 

deduction, IV, 80, 83, 

84, 86, 116, 117 

Deduction theorem, 

86 

DeLeTe, 37 

derivation, i, 23, 39, 

43, 47, 52, 69, 73, 

74, 114, 139, 153, 

155 

determinism, 15, 40 

Determinism, 38 
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Abstract  
Most programming languages are based on context free grammars (CFGs). The purpose of grammatical inference is to infer a grammar, in our situation a CFG, 
from positive examples of sentences and possibly incorrect ones, for a given language. Based on these two fundamental definitions, we propose an 
environment followed by an implementation unifying different aspects of programming in machine learning settings. The central idea of this work is to use 
grammatical inference (GI) as a unifying framework for achieving this integration. Because any program can be considered as a string of characters, we show 
that the use of grammatical inference can not only unify different aspects of programming but also extend to wider areas of applications. The work sums up the 
following contributions:  

• State of the art of language theory and of grammatical inference; 
• Design and development of an environment integrating machine learning and first-order logic (FOL);  
• Design and development of a FOL system for parsing sentences independently or with a learning module;  
• Design and development of a heuristics-based polynomial-time complexity algorithm enhancing the learning process in grammatical inference.  
• Interaction between grammatical inference and control systems.    

The present work bears a promising line of research, contributing further to programming languages integration, aiming at the improvement of these languages 
with a machine learning layer.   
 
ACM Categories and Subject Descriptors 
D.3.1 [Formal definitions and theory], D.3.2 [Language classifications], Design languages, F.4.2 [Grammars and other rewriting systems], Parsing, F.4.3 
[Formal Languages], I.2 [Artificial intelligence], I.2.3 [Deduction and theorem proving], Inference engine, I.2.6 [Learning], Language acquisition.  

Résumé 
La majorité des langages de programmation est basée sur les grammaires à contexte libre (CFG). Le but de l’inférence grammaticale est d’inférer une 
grammaire, en l’occurrence à contexte libre (CFG), à partir d’exemples de phrases correctes et éventuellement incorrectes, d’un langage donné. Partant de ces 
deux définitions fondamentales, nous proposons un environnement suivi d’une implémentation unifiant des aspects différents de la programmation dans le 
cadre d’apprentissage automatique. L’idée centrale du travail est donc d’utiliser l’inférence grammaticale comme trame unificatrice pour réaliser cette 
intégration. Dans la mesure où tout programme peut être considéré comme une suite de caractères, nous montrons que l’utilisation de l’inférence grammaticale 
peut non seulement unifier des aspects différents de la programmation mais aussi s’étendre à d’autres domaines plus vastes. Le travail s’articule autour des 
contributions suivantes : 
État de l’art de la théorie des langages ; État de l’art de l’inférence grammaticale ; Étude et développement d’un  environnement intégrant apprentissage et 
logique du premier ordre ; Étude et développement d’un système fonctionnant en logique du premier ordre agissant comme analyseur syntaxique autonome ou 
en collaboration avec un module d’apprentissage ; Étude et implémentation d’un algorithme à complexité polynomiale, basé sur des heuristiques et destiné à 
l’amélioration du processus d’apprentissage dans le cadre de l’inférence grammaticale ; Interaction avec les systèmes de commande automatique.   
Le présent travail est porteur d’une ligne prometteuse de recherche, et contribue davantage à l'intégration des langages de programmation, projetant de les 
enrichir par la caractéristique d’apprentissage qui leur fait actuellement défaut.  
 
Catégories et descripteurs de sujets de ACM 
D.3.1 [Définitions formelles], D.3.2 [Classifications de langages], conception des langages, F.1.1 [Modèles de calcul], F.4.2 [Grammaires et systèmes de 
réécriture], analyse syntaxique, F.4.3 [Langages formels], I.2 [Intelligence artificielle], I.2.3 [Déduction et démonstration de théorèmes], moteur d'inférence, 
I.2.6 [Apprentissage], acquisition de langages 


