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For guidance, light and salvation

Far from the whims of mundane glory ...
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ABSTRACT

Most programming languages are based on context free grammars (CFGs). The
purpose of grammatical inference is to infer a grammar, in our situation a CFG, from
positive examples of sentences and possibly incorrect ones, for a given language.
Based on these two fundamental definitions, we propose an environment followed
by an implementation unifying different aspects of programming in machine
learning settings. The central idea of this work is to use grammatical inference (GI)
as a unifying framework for achieving this integration. Because any program can be
considered as a string of characters, we show that the use of grammatical inference
can not only unify different aspects of programming but also extend to wider areas
of applications. The work sums up the following contributions:
* State of the art of language theory and of grammatical inference;
* Design and development of an environment integrating machine learning and
tirst-order logic (FOL);
* Design and development of a FOL system for parsing sentences
independently or with a learning module;
* Design and development of a heuristics-based polynomial-time complexity
algorithm enhancing the learning process in grammatical inference.
* Interaction between grammatical inference and control systems.
The present work bears a promising line of research, contributing further to
programming languages integration, aiming at the improvement of these languages

with a machine learning layer.

ACM Categories and Subject Descriptors

D.3.1 [Formal definitions and theory], D.3.2 [Language classifications], Design languages,
F.4.2 [Grammars and other rewriting systems], Parsing, F.4.3 [Formal Languages], 1.2
[Artificial intelligence], 1.2.3 [Deduction and theorem proving], Inference engine, 1.2.6
[Learning], Language acquisition.
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RESUME

La majorité des langages de programmation est basée sur les grammaires a contexte
libre (CFG). Le but de l'inférence grammaticale est d’inférer une grammaire, en
l'occurrence a contexte libre (CFG), a partir d’exemples de phrases correctes et
éventuellement incorrectes, d'un langage donné. Partant de ces deux définitions
fondamentales, nous proposons un environnement suivi d’'une implémentation
unifiant des aspects différents de la programmation dans le cadre d’apprentissage
automatique. L’'idée centrale du travail est donc d’utiliser 1'inférence grammaticale
comme trame unificatrice pour réaliser cette intégration. Dans la mesure ou tout
programme peut étre considéré comme une suite de caracteres, nous montrons que
l'utilisation de l'inférence grammaticale peut non seulement unifier des aspects
différents de la programmation mais aussi s’étendre a d’autres domaines plus vastes.
Le travail s’articule autour des contributions suivantes :

Etat de l'art de la théorie des langages ; Etat de l'art de l'inférence grammaticale ;
Ftude et développement d’un environnement intégrant apprentissage et logique du
premier ordre ; Etude et développement d'un systéme fonctionnant en logique du
premier ordre agissant comme analyseur syntaxique autonome ou en collaboration
avec un module d’apprentissage; Ftude et implémentation d’un algorithme a
complexité polynomiale, basé sur des heuristiques et destiné a ’amélioration du
processus d’apprentissage dans le cadre de l'inférence grammaticale ; Interaction
avec les systemes de commande automatique.

Le présent travail est porteur d’une ligne prometteuse de recherche, et contribue
davantage a l'intégration des langages de programmation, projetant de les enrichir

par la caractéristique d’apprentissage qui leur fait actuellement défaut.

Catégories et descripteurs de sujets de ACM

D.3.1 [Définitions formelles], D.3.2 [Classifications de langages], conception des langages, F.1.1
[Modeéles de calcul], F.4.2 [Grammaires et systemes de réécriture], analyse syntaxique, F.4.3
[Langages formels], 1.2 [Intelligence artificielle], 1.2.3 [Déduction et démonstration de
théoremes], moteur  d’inférence, 1.2.6 [Apprentissage], acquisition de langages
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CHAPTER 1
INTRODUCTION

1. Preliminaries

Most programming languages, whether imperative or declarative, are based on

context-free grammars (CFGs). This remains true at a more refined level, with CFGs

present in procedural, object-oriented, functional, logic programming and multi-

paradigmatic languages. A sketchy summary of programming languages can be

summarized as follows:

* Conventional imperative languages: These incorporate structured and/or object-
oriented approaches with the high-level built-in functions and provide numerical

processing like FORTRAN, PASCAL or C/C++, among others.
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» Advanced imperative approach: These languages include numerical systems
exemplified by the matrix environments like MATLAB™! supported by various
visual programming aids like Simulink™ or symbolic general-purpose computer
algebra systems (CASs) like Mathematica™?2 or Maple™3 and their various
corresponding toolboxes. Sophisticated CASE (computer aided software
engineering) tools are also available, e.g. Rational Rose™% Whether they are
designed for number-crunching calculations or for symbolic processing or for
modeling and implementation, these systems can be considered as one layer above
the previous one.

* Declarative approach: The declarative approach focuses on what computational
processes to undertake and not on how to perform them. This approach is
represented by subcategories of functional programming (e.g., LISP ) and logic
programming (e.g., Prolog). On top of these, we find expert systems shells or
generators like NASA CLIPS5, essentially based on inductive logic programming
(ILP), or its offshoots. This layer is still even more powerful in handling imprecise,
non-numerical, and linguistic data. These environments/shells represent the
favourite setting for knowledge base (KB) construction and inference engineering, a

sub-filed of knowledge engineering.

2. Motivations

As far as scientific computation is concerned, most programming, modeling and
simulation environments that have been developed in the last two decades or so,
heavily concentrated on the following topics: matrix environments, computer

algebra software (CAS), visual programming, object-oriented programming (OOP)

L MATLAB™ is a trademark of the Mathworks, http://wwwathworks.com

2 Mathematica™ is a trademark of Wolfram Researat, http://mww.wolfram.com/mathematica
3 Maple™ is a trademark of Maplesoft, http://www.esmft.com

4 Rational Rose is a trademark of IBM™ http://www-0fnibom/software/rational/

5 NASA CLIPS http://www:.siliconvalleyone.com/clipsat
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simulation environments, coupled or hybrid systems that attempted to combine both
numerical systems with advanced expert systems development aids. However
sophisticated these systems might be, none considered the possibility of
incorporating the learning layer in their implementation. Therefore none of these
rightly deserves the overly-used appellation of intelligent system. For approximately
tive decades, these programming languages and environments contributed lines of
implementation from basic algorithmic settings, incorporating sophisticated
numerical and symbolic methods, to inferential / declarative methods. Notoriously,
machine learning methods have not yet been fully applied in this domain. Our aim is
to contribute towards this end using one machine learning approach, namely

grammatical inference (GI).

3. Background and objectives

3.1 Process of inference

3.1.1 Inference in symbolic settings

In logic-based symbolic environments, the word inference is defined as the process of
reasoning logically building new knowledge on the basis of available rules and facts.
This process requires a problem-solving model, or paradigm, that organizes and
controls the steps taken to solve the problem. One powerful paradigm involves the
chaining of IF-THEN rules to form a given line of reasoning. There are three modes
of chaining. If the chaining starts from a set of conditions and moves toward some
conclusion, the method is called forward chaining. If the conclusion is known, for
example, a goal to be achieved, but the path to that conclusion is not known, then
reasoning backwards is used, resulting in backward chaining. Hybrid chaining is a

combination of both; it might start with forward and shift to backward chaining.
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These problem-solving methods are built into program modules known as inference
engines that manipulate and use knowledge in the KB to form a line of reasoning.

One of the most important results of this problem-solving method is the emergence
of expert systems. In symbolic settings, an expert system is a program that
incorporates two main components - an inference engine, responsible for reasoning
by entailing new facts, and a KB containing both factual and heuristic knowledge.
Factual knowledge is that specific knowledge of the task domain that is widely shared,
typically consisting of printed material like textbooks or journals, multimedia
support found in Websites or any other electronic support. This knowledge is
commonly agreed upon by those knowledgeable in the particular field. Heuristic
knowledge is the less rigorous, more experiential, more judgmental knowledge of
performance. In contrast to factual knowledge, heuristic knowledge is rarely
discussed, and is largely individualistic. It is the knowledge of good practice, good
judgment, and plausible reasoning in the field and mainly describes personal rules
of thumb encompassing an “art of good guessing”, personally acquired over lifetime
training. As a result, expert systems are normally used to model the human decision-
making process. Although expert systems contain algorithms, many of those

algorithms tend to be static, i.e. they do not change over time.
3.1.2 Inference in knowledge-based systems (KBSs)

Abusively, knowledge-based systems (KBSs) are considered as synonymous of
expert systems. In our account, we will make a distinction between the two
categories programs and consider expert systems as a particular form of KBS. Expert
systems usually rely on rule as a form of knowledge representation formalism.
Obviously, not all knowledge is expressible as rules. That is why we need other
types of KBs like neural networks, case-based reasoning genetic algorithms,

intelligent agents, data mining, and intelligent tutoring systems [KCO07].

3.1.3 Inference in learning settings
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In learning settings, a program is intended to infer (or induce) an unknown result
based on some past data. This operation involves a metric for attesting the quality of
the results. In this context, inference implies the identification of a hidden function,
given a set of its values. In particular, the learning of the syntax of the language is
usually referred to as grammatical inference or grammar induction (GI); an important
domain for both cognitive and psycholinguistic domain as well as for the domain of
engineering and computation. GI deals with the problem of inferring (or learning or
inducing) a grammar from some given data. Data, whether sequential or structured
are composed from a finite alphabet, and may have unbounded string-lengths. By
grammars, we intend only deterministic finite automata DFA, equivalent to regular
grammars [Sip06] and some context free grammars (CFGs). If we refer to Chomsky
hierarchy, only type-3 and subclasses of type-2 grammars, respectively, are
concerned. In a machine learning perspective, we need the grammar, i.e. the concept
learned, to predict and classify unseen data. The inferred grammar is also used as a
model or a compressed representation of the input data. Early work in the field was
set out in [Fu74]. But since 1994, more interests have been given to the field. An
International Conference on Grammatical Inference (ICGI) is held every two years. The
last one was held on September 2010 in Valencia, Spain. This increasing interest in
the field is probably due to the following reasons:

- Need for a more elaborate theory; the GI community became aware of the fact that
the hardness of even the easiest problem needs more theoretical attention and
developments.

- Expansion of applications; the new fields where GI techniques can be applied are

increasing every year.
3.2 Specific goals

3.2.1 Avoiding the “general problem solving (GPS)” syndrome

The question that interests us is: “How to integrate a Gl-based machine learning

layer in programming languages?” If we were to realize this, then solving similar
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problems using this type of programming languages will take less and less time to
be solved, thanks to learning from examples of problems. However, this is a very
distant end. We want to avoid the “general problem solving (GSP)” syndrome.
Developed in the fifties, in the early days of artificial intelligence (AI), GPS was a
program that tried to solve a very broad class of problems from theorem proof,
geometric problems to chess playing [NS72]. GPS solved simple problems that could
be sufficiently formalized such as the Towers of Hanoi. However, it could not solve
any real-world problems because search was easily lost in the combinatorial
explosion of intermediate states. In our account, we will therefore study only the

syntactic level of languages.
3.2.2 Syntactic level - first

As a first step towards the realization of the objective of adding a learning layer to
programming, we propose to start at the syntactic level. Because any program can
syntactically be considered as a string of characters, we show that the use of GI can
not only unify different aspects of programming but also extend to wider areas of
applications such as control systems and self-assembly. As a result, the central idea
for answering the central question above is to use grammatical inference (GI) as a
unifying framework.

The purpose of GI is to infer a grammar, in our situation a context-free grammar
(CFG), from positive examples of sentences and possibly incorrect ones, for a given
language. In the attempt to address our fundamental issue, we propose an
environment followed by an implementation. We show how the issue of GI can be
reduced to learning heuristics. We describe our GASRIA GI system; fully designed,
developed and tested as a system for GI capable of learning inductively a broad class
of CFGs. The overall work consists of:

— The design and development of a first-order logic (FOL) environment used for

parsing;
— The design and development of a knowledge base (KB) consisting of a rule base

and a fact base describing the grammar rules under consideration;
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— The design and implementation of the inductive learning partial parsing algorithm
(PPA); an Earley-like algorithm capable of parsing sentences not as whole but as

parts; [HHO07b]

— The integration of FOL and an inductive learning within a coherent system;

[HHO07a]

— The study of some interactions between GI self-assembly and control systems; this

latter being usually handled by matrix environments, [HH09a], [HH09Db].

3.3 Main tools

The main tools can be summarized in two categories, namely, grammars and first-

order logic (FOL).

3.3.1 Grammars and parsing

Grammars can be regular, context-free, context-sensitive and unrestricted. Context-
sensitive and unrestricted grammars are more expressive, because the left-hand side
of the productions can be more than just a single non-terminal. To start with,
however, we aim at learning regular and CFGs, which have single non-terminals on
the left side of production rules. The result is a reasoning or “intelligent” syntactic
analyzer capable of inductive learning. One of the most important properties is that
grammars have the ability to generalize over a specific language, i.e. to learn by
induction. Therefore, it is possible to learn a grammar based on a set of sample
sentences. We do not need to specify every sentence in a given language. This is the
observation that led us to explore the possibility of using GI as a machine learning
paradigm. Indeed, GI like most machine learning algorithms objective is to
generalize over a set of (a preferably small number of) examples in order to obtain a
more general model, by induction. Moreover, we need to handle strings of
characters; hence the use of grammars and not other machine learning methods. On
the other hand, the number of training examples has to be preferably small - less

than six examples, in our tested cases.
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3.3.2 Declarative programming and FOL

In addition, we combine GI with the declarative programming approach and
specifically with first-order logic (FOL), to infer and use the grammar that has been
produced for syntactic purposes. Declarative programming encompasses many
different sub-fields such as constraint programming, domain-specific languages (e.g.
SQL-based, XML-based), functional programming (e.g. Lisp, Scheme), and logic
programming (e.g. Prolog).

The motivation for using the declarative approach is that this paradigm requires
what computation should be performed and not how to compute it. It has a clear
correspondence with mathematical logic and specifically with FOL. The knowledge
base containing FOL-based rules and facts allows the entailment of new facts, thus

contributing to the GI process.

4. Organization of the manuscript

In this manuscript, we explain the main building blocks of the proposed solution;
each one of these blocks in an independent chapter. The work is structured around
the following components:

- State of the art of language theory: Chapter 2 describes the theory of languages that is
necessary for explaining the main results.

- State of the art of GI: Chapter 3 reports the theoretical background of GI and
discusses the most important related algorithms, systems and applications.

- GASRIA: In an attempt to integrate GI and FOL, Chapter 4 explains the design and
development of an architecture, namely GASRIA as a complete and integrated
system for GI. Its main modules are explained in two subsequent independent
chapters. The main idea is based on a novel machine learning algorithm, namely
the partial parsing algorithm (PPA), coupled with a FOL-based system.

- EXINF: Chapter 5 describes aspects related to first-order logic (FOL) and

declarative systems. It discusses an in-depth description of one of the components
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of the solution, namely the design and development of EXINF as a FOL-based
system. EXINF characteristics are the possibility of use as a stand-alone system or
as a support for partial parsing. EXINF is presented as a knowledge-based system
(KBS) using dynamic facts, necessary for parsing. These facts are the translation of
input sentences into syntactical rules. As shown in the examples, important
parsing steps are undertaken using EXINF.

- ILSGInf: Chapter 6 reports the design and implementation of one machine learning
environment called ILSGInf. It is based on the partial parsing algorithm (PPA). The
chapter explains specific aspects of grammar inference, including regular and
CFGs. It also describes the experimental PPA capability and validation as a core
component of ILSGInf.

- Interactions: Chapter 7 reports application areas of some of our results. Control
systems, mainly, and self-assembly, peripherally, are discussed as possible
applications fields.

The work ends with a conclusion summing up results and recommendations with

prospective developments to address open issues.
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CHAPTER 2
SOME CONCEPTS OF FORMAL LANGUAGES

1. Introduction

The elaboration of the theoretical “Universal-Algorithm Machine” and the invention
of the vacuum tube gave birth to the idea of a stored-program computer. The goal
was to convert the electronic computer to a real-life model of the “Universal-
Algorithm Machine”. Along with the concept of programming a computer, came the
question: “What is the ‘best’ language in which to write programs”? As a result,
different programming languages were developed, but they apparently shared the
same possibilities and limitations.

Many questions rose: what is language in general? How do people learn it? Linguists
created the subject of mathematical models for the description of languages to
answer these questions. Consequently, the computer took on linguistic abilities. It
became a word processor, a translator, an interpreter of simple grammar, a compiler

of a programming language, a speech recognizer, and now we try to give it the
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ability to learn languages, under the constraint that we are not yet able to

understand how human do that.

2. Preliminaries

We start by giving some mathematical definitions, which are of interest to us. They
can be found in any book dealing with concepts of formal language [GddO08],
[deH10] [Sip06].
- An alphabet is a finite non-empty set of symbols or letters, often denoted by 2.
- A string wover an alphabet 2'is a sequence w= a;...a, of letters a; 1S
- Length of @ noted | wl is the number of letters constructing it, in this example
| wl =n.
- Number of occurrences: Given al1Z, | wl, denotes number of occurrences of the letter
a in the string w
* The empty string denoted by A (or by &) such that [A] = 0.
* Given two strings 1 and v, we define u.v (or simply uv) as the concatenation
ofuandvand luvl= lul+lvl.
- If wis a string, aw=a;...an we note &R = a,...a1 as the reversal of w
- 2 is the set of all finite strings over 2. We define Z*={x//>: |x| > 0} and
Zon={x[JZ: 1 x| <n}
- The string u is a substring of a string x if there are two strings [ and r such that
x=Lu.r.
- We define | x|, as the number of occurrences of the substring u in the superstring

X.
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- The string u is a subsequence of a string x if u is obtained by removing some letters

from x. More precisely, u is a subsequence of x if there is a sequence of indices

i=(i1,..., 11i1) where 1si; <...<i1;<1x| and u; = xij. We note u = x(i).

- Orders in strings: there are four ordering relations between strings based on the total

order relation over elements of 2, noted <. called alphabetical order. These four

ordering relations are defined as:
- Prefix order: x Sprefy if Lw [7 57 such that y = xw.
- Lexicographical order: x<iexy if XSprefy OF (X=uav, y=ubw and a<upnb)
*  Subsequence order: x Subseqy if x is a subsequence of y
 Length-lex order : xSiengt-texy if 1x1< 1yl or (Ix1=1y| and xsjexy)
We can assign with all these orders the corresponding strict orders

Salpha , <pref , subseq, length-lex.

3. Languages

A language is a certain specified set of strings, where strings have symbols from a

specific alphabet. A language L over 5, L/75*.

3.1 Operations on languages

Certain operations can be done on languages: let L1, L, be two languages
o Union: L1 OLy={ x[J2*: x[1L1 OR x[JL>}
o Intersection: LinL={x[/>*: x[IL; AND x/IL>}
e Product: L1.Ly ={ wo : ullL1, vy}
e Powerset: LO={A}, Ln+1 = [n,[=L.L"
o Star: L" = [in Li, where N is the set of positive or null integers.

» Complement: L" = {w/[J>*: w[JL}, L1\L> is the complement of L, in L1

Thése de Doctorat d’Etat — The ESLIM Project
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»  Symmetric difference, L1/JL2 = L1\Ly [JL>\Lq

3.2 Languages models

There are different ways to allow computation of languages. Hence, we find
methods to generate grammars, to recognize finite automata, to define regular
expressions, and recently to use topological operations to represent a language. The
work in [Cho59] was the first to classify languages into four classes using four types

of grammars.
3.2.1 Formal grammars

Definition 1 - A formal grammar G has four components G=<2, N, P, 5> where
- 2is an alphabet, called also set of terminals.
- N a set of symbols, called non-terminals or variables, with the restriction that 2
and N are disjoint.
- S a special non-terminal symbol, called a start symbol.
- P is a set of production rules, each one is of the form a - or sometimes noted
(ap).
Definition 2 - A reqular grammar is a formal grammar where:
PN x 2*)[A(Nx 2*N)[A(Nx N. 2*)
Definition 3 - A context-free grammar (CFG) is a formal grammar where:
P [ON x (Z[JN)*
Definition 4 - A context-sensitive grammar is a formal grammar where:
P [J(N[J2)*N.(N[J2)*x (2 [JN)*, where for each (a, f)inP, |al <1l

Definition 5 - An unrestricted grammar is a formal grammar where P//N*x(Z[/N)*

3.2.2 Automata
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We can informally define an automaton (plural automata) as a mathematical model of
a machine that recognizes a set of strings. There are different types of such models
that differ from each other essentially in the amount of memory they use. These are

tinite state automata (FSA) and push-down automata (PDA).

3.2.2.1 Finite state automata (FSA)
Finite state automata (FSA) were developed in 1950’s. There two types of finite state
automata, namely:

* Non deterministic finite automaton (NFA) is a sextuple A = <2, Q, I, Fa, Fr, &>
where:

- Z'is an alphabet,

- Qis a finite set of states,

- I [7Q the set of initial states,

- Fa [JQ is the set of final accepting states,

- Fr [JQ is the set of final rejecting states,

-N:Qux (Z0{A) - 29, is the transition function, and 29 is the powerset of Q.

* A deterministic finite automaton (DFA or FA) is obtained from an NFA if [ is
reduced to only one initial state, and the image given by dv is only one state,
and hence dv: Q x (2) — Q. Note that the empty transition is also excluded.

* A string w= a1...ax is recognized by an automaton A, if there is a sequence of
states starting at an initial state go,...,gn and a sequence of letters b;...by, biin 2
[7{A} (in the case of NFA) or in 2 (in the case of FA) and a;...a,=b;...by such
that 4 J[1..m], q; J &(gj1,b). go JI and g LI Fa.

We note that for any NFA, there is an FA which recognizes the same language (FA
= NFA).

3.2.2.2 Push-down automata (PDA)
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Here, we need memory to keep some intermediate information. Push-down
automata (PDA) uses memory that has a last-in first-out structure, LIFO or stack. A
PDA is an FA with a stack. A PDA is eight-tuple = <5, I, I, Fa, Fr, NBpusH, Breap,

Bpop> where:

Z'is the alphabet of input data,
- [is the alphabet of the stack,
- Iis the initial state,
- Fais the set of accepting states,
- Fris the set of rejecting states,
- NBpusn is the set of non-branching states that only push letter in the
stack,
- Breap is the set of branching states that read letters from the input, and
- Bpor is the set of branching states that read letters from the stack.
PDA can be divided into two categories based on determinism:

* A PDA is said to deterministic (DPDA), if for each input string there is only
one way in the machine. Otherwise, it is non-deterministic and it is simply
noted PDA. Unlike FAs, DPDA is not equivalent to PDA. Non-determinism
adds a significant power to PDA.

* A string w= ai...an is recognized by a PDA if, starting at initial state and
following a path of labelled and unlabelled edges according to different read

input letters and stack characters, the process ends at accepting state.
3.2.3 Regular expression

A regular expression over 2 is defined recursively as follows:
- the empty set @ the empty character A and & [/2 are regular expressions

over 2.
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- if r1, r2 are two regular expressions, then (r1), r1.r2, r1+r2, r1* are regular
expressions.

Regular expressions are equivalent to FA and to NFA, by Kleene’s theorem.
3.2.4 Topological consideration

After defining some metrics and distances over string and especially the edit
distance, a language can be considered as a topology. Hence, the notion of ball can
be introduced. Ball of strings is the set of all strings presenting a distance from
special string (the centre) less or equal to some value r (the radius of the ball)

[deH10].

4. Chomsky languages hierarchy

Chomsky [Cho59] defined four classes of languages as a hierarchy. These classes of
languages are from the bottom regular languages (type-3), context-free languages
(type-2), context-sensitive languages (type-1) and recursive enumerable languages
(type-0).

Because it is a hierarchy, each language in a class is also an element of the superior
class. The distinction between language classes can be done by examining the
structure of the production rules of their corresponding grammars, or the nature of

the machines which can be used to recognize them.

4.1 Type 3 - Regular languages

A language L is a regular language if it can be generated by a regular grammar. This
class of languages can be defined by regular expressions and can be recognized by

an FA. Any finite language is regular.

4.2 Type 2 - Context-free languages
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A language L is a context-free language (CFL) if it can be generated by a context-free
grammar (CFG). This class of languages is recognized by PDAs. Deterministic PDAs
recognize a subclass of CFLs called deterministic CFLs while nondeterministic PDAs
can recognize larger class of CFLs.

For type 1 and 0 languages, we just cite them as elements of Chomsky hierarchy. We
do not expand our study to these because they are not studied in grammatical

inference (GI) due to their complexity.

4.3 Type 1 - Context-sensitive languages

A language L is a context-sensitive language if it can be generated by a context-
sensitive grammar (CSG). Since more than one symbol is permitted on the left hand
side, symbols surrounding the non-terminal concerned by the replacement are
known as context. The automaton which recognizes a context-sensitive language
(CSL) is called a linear-bounded automaton (LBA) i.e. basically an NFA /FA which

can store symbols in a list.

4.4 Type 0 - Unrestricted (free) languages

A language L is an unrestricted language if it can be generated by an unrestricted
grammar. Free grammars have absolutely no restrictions on their grammar rules,
except of course, that there must be at least one non-terminal on the left-hand-side.
The languages generated by such grammars are recursively enumerable (RE). The type
of automata which can recognize such a language is basically an NFA/FA with an
infinitely-long list. This is called a Turing machine (TM).

The hierarchy can be summarized in the table below. Type-1 and Type-0 languages
are recognized by Turing machines (not studied here) which were developed in

1930’s and 1940’s.
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Table 2.1 TAB21 — Chomsky languages hierarchy

Type Language Class Grammar Automaton
3 Regular language Regular NFA or FA
2 Context-free language Context-free Push-down automaton (PDA)
1 Context-sensitive
Context-sensitive |Linear-bounded automaton
language
0 Recursive enumerable
Unrestricted (free) |Turing machine (TM)
language

In the following sections, we concentrate our study on regular and context-free
languages because of their wide implications in different learning methods and

programming languages.

5. Regular languages

5.1 Introductory example

A regular language is any language that can be recognized by an automaton, defined
by a regular expression or generated by a regular grammar. In general, we can use
regular languages whenever we need a limited amount of memory. For examples,
we use them in text editors, automated opening doors, elevators, to cite but a few.

For example, we give here a language and its three equivalent representations using
Kleene’s theorem, for simplicity we consider 5 = {0, 1}; with L accepting strings

containing 001.
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1 0 0 1

oo lolo

Figure 2.1 DIAG21 An FA that recognizes strings containing 001

A regular expression that defines L is (1* + (01)*) 00 0* 1(0+1)*
A regular grammar that generates L is:

S—>1S10A;A—-0BI115;B—0B | 1C,C—-0CI11CI1011;

5.2 Characteristics of regular languages

Regular languages are closed under union, intersection, Kleene star, concatenation
and complementation. We can consider union, star and concatenation as regular
operations. The following definitions summarize the main characteristics of regular
languages [Sip06].

- Quotient: if L1 is regular, L2 is any language, then Pref(L2 in L1) is also regular,
where Pref(L2 in L1) is the set of all strings that can be placed in front of
some elements in L2 to produce some elements in L1.

- Equivalence: two NFAs are equivalent if they recognize the same language. This
problem is decidable. Equivalence between two regular expressions is
also decidable.

- Finiteness: whether an NFA accepts a finite or infinite language is decidable. If an
NFA has N states then it accepts an infinite language if and only if it

accepts an input string with wsuch that N< | wl < 2N.
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- Emptiness: if an NFA has N states, then if it accepts any word then it accepts words
of length less or equal to N.

- Membership problem: it is the problem of deciding if some string is recognized
(defined or generated) respectively by a NFA, (regular expression or
regular grammar). This problem is decidable.

- Pumping lemma: if L is a regular language, then there is a number p (the pumping
length) where, if w is any string in L of length at least p, then w may be
divided into three pieces, w = xyz, satisfying the following conditions:

1. For eachi >0, xyiz [JL,
2. lyl >0,and
3. lxyl <p

P is always taken as number of states in the automaton that recognizes the language.

6. Context-free languages (CFLs)

Any language that can be recognized by a PDA or generated by a CFG is a CFL. The

set of CFLs is larger than that of regular languages.

6.1 Examples of CFLs

-For 2={a, b}, L1 = {a"b", n= 0}

-L2 ={w/[J2*| whas same number of a and b} is a CFL.

- L3 can be generated by the CFG S —aSb | SS | A.

- 14 = {wdd | w[T1{0, 1}*} can be recognized by the PDA described in Figure 2.2

below.
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AA-$

0,A-0

L0 A

@ 1,1- A
A$-A

Figure 2.2 DIAG22 PDA recognizing {aeR | w/J7{0, 1}* } [Sip06]

We can interpret this figure as starting by pushing the symbols that are read onto the
stack. At each point, non-deterministically guess that the middle of the string has
been reached and then change its behavior into pop operation. For each symbol that

has been read, check its similarity with the popped symbol.

6.2 Applications of CFLs

All programming languages and compilers are based on CFLs. CFGs were first used
in the study of human languages. CFLs have been applied to a variety of fields from
user behavior modeling to DNA (DeoxyriboNucleic Acid) structure. Note that these
complex systems can be interpreted as languages, in general and grammars, in

particular.

6.3 Characteristics of CFLs

- CFLs are closed under union, product and Kleene star operations.
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- Complements: complement of a CFL may not be a CFL. This type of language is not
closed under complementation.

- Intersection: CFLs are not closed under intersection. However, intersection of a CFL
and a regular language is always a CFL.

- Equivalence: a CFG is equivalent to PDA but deterministic PDA is not equivalent to
PDA.

- Finiteness and emptiness: it is decidable whether a CFG generates a finite or an
infinite language and whether it generates any string (if L (G) = {}).

- Membership: Membership tells whether a string belongs to a given language. This is
done through parsing.

- Empty production: if L is a CFL generated by a CFG that includes A-productions,
then there is a different CFG with no such productions and that generates L or
L-{A}.

- Chomsky Normal Form (CNF): for any CFL L, the non-empty strings of L can be
generated by a CFG with each production is one of the forms A — BC or A — a.

- Pumping Lemma: if L is a CFL, then there is a number p called the pumping length,
such that, if w is any string in L of length at least equal to p, w may be divided
into five substrings u v x y z satisfying the following three conditions:

-loyl >0
- loxyl <p
- for each i 2 0, uv'xy'z in L
Pumping lemma for regular languages (resp. CFLs) is in general used to prove that

a language is not regular (resp. CFL).

6.4 Relationship between regular and CFLs
* Allregular languages can be generated by CFGs (they are CFLs)

 If all the productions in a given CFG fit one of the two forms:
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A > aBor A - wor A - A where A and B are nonterminals and w /2%,
then the language generated by this CFG is regular.
* A CFG is called a reqular grammar if each of its productions is of one of the

two forms A — aBor A — wwhere A and B are nonterminals and w /75*.

7. Parsing

Parsing a sentence using a grammar is determining how this sentence could be
formed from the rules of the grammar starting at the special non-terminal.
Derivation is the sequence of applications of the rules that produces the specified
string of terminals from the starting symbol.
Example
Let the productions be: S-asS (1)
S - A (2)

Generate the sentence aaaana

S =aS =aaS = aaaS = aaaaS = aaaaaS = aaaaaaS = aaaaaa
All strings of terminals and non-terminals in the derivation and before reaching the
tinal sentence are called working strings. This derivation can be traced as a tree called
parse tree. We concentrate here on syntactic parsing of formal languages. There are

three different approaches

7.1 Top-down parsing

Starting with the symbol S, we try to find some sequence of productions that
generates the target word. This is done by checking all possibilities for left-most
derivations. We follow each branch until it becomes clear that this branch can no

longer present a viable possibility.
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A general form of a top-down parsing is known as recursive-descent parsing that may
involve backtracking.
In some cases, we can write grammars such that a recursive-descent parsing can be

applied with no backtracking. This type of parsing is called predictive parsing.

7.2 Bottom-up parsing

Starting with the word, we try to find the last few productions to reach the starting
symbol. A general form of bottom-up parsing is known as shift-reduce parsing.

7.3 Hybrid parsing

The first and the second approaches are combined so that the parsing is optimized.

An important bibliographical study of parsing algorithms can be found in [ALS07].

8. Conclusion

In this chapter, we have summarized the most important notions of formal
languages of interest to us. The central ideas remain those related to parsing and
CFGs. The next chapter is dedicated to grammatical inference i.e. how to infer a

grammar for a language from a set of examples (or sentences).
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CHAPTER 3
STATE OF THE ART OF GRAMMATICAL
INFERENCE

1. Introduction

In order to study the state of art of grammatical inference, we proceed as follows. In
Section 2, we describe the theoretical models available for GI. We start with the
identification in the limit, as defined in the late sixties in [Gol67], followed by the
seminal contributions of the eighties represented by the so-called active learning as
defined in [Ang81], and ending with PAC (probably approximately correct) learning
due to [Val84]. Section 3 reports the main algorithms used in GI. We only stress
those that deal with regular grammars and CFGs. Section 4 is devoted to
applications of GI. Given the range of these applications, it clearly appears that it is a

multidisciplinary domain spanning pattern recognition [Cas90], bioinformatics
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[Coh04], syntactic pattern recognition [Luc94], DNA computers [Adl94], and

robotics [Kla07], among others.

2. Theoretical models for grammar inference

A computer program is said to learn from experience E with respect to some class of
tasks T and performance measure P, if its performance at tasks in T, as measured by
P, improves with experience E [Mit97].

In GI, experience E is the linguistic input, the task T is a grammar, and performance
measure P is any metric that provides a measure of difference between the
grammars inferred and a target grammar. Learning languages are based on
inductive inference [AS83]. We can specify a classical inference problem by the

following points, expanded in Figure 3.1 below.

/* Methodology 3.1 */
/* METH31 */

/* Methodological Steps — Inference Problem */

* What is the class of concepts or rules being consid ered?
* What is the hypothesis space (descriptions)?

» Find an admissible presentation: the information an d the way

it is presented in.
 What is the class of methods under consideration?

e What is the criterion of a successful inference, i.e.

convergence?

Figure 3.1 METH31 Methodological Steps — Inferepoeblem
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For GI, the hypothesis can represent FAs, regular expressions, regular grammars,
CFGs, or tree-grammars. The examples are typically strings or some special graphs.
Obviously, the methods used to tackle these different hypotheses are different and
so are the algorithms used. However, we can single out three main theoretical

models that were established for this purpose.

2.1. Identification in the limit (learning from text)

2.1.1 Definition
The seminal work in [Gol67] established a theoretical model for on-line and
incremental learning destined to learning languages.
This contribution asserts the following points:
1. A presentation is a function f: N— X
* Where N is the set of integers and X is any enumerable set,
* fis associated to a language L through a function yields(f)=L.
e If f (N) = g(N) then yields(f) = yields(g).
2. A presentation is a text or an informant
* A text presentation of a language L [J 3" is a function f:N— 5 , f(N)=L, with

f an infinite succession of elements of L, where each one must appear at

some instant.

* An informant presentation f: N — Xt +,-}such that f (N) = (L,+) LJ(L,-).

In this case, f is an infinite succession of labelled examples, positive or

%
negative elements of J', and where each one must appear at some instant .
3. A learning function, called inductive machine, which, after each example, returns
a hypothesis.

* The learning function takes as input 1 elements (e ,..., ¢ ) of f.
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* It returns some hypothesis H,_ ( € en).

* The target language is identified in a finite time ¢, if the learning function
attains a fixed point, i.e. a point in time after which it does not change with
the new inputs.

4. In this case, we say that the class of languages to which the target language

belongs is identifiable in the limit.
2.1.2 Characteristics

* Identifiability is a property of a class of languages, not of an individual
language. It is the characteristics of a class of languages for being
identifiable. We say that a class of languages CL is identifiable if and only if a
learning function that identifies CL exists.

* A learning function LF identifies a class of languages CL if and only if it
identifies any language L of the class CL.

* A learning function identifies a language L if and only if it identifies any

presentation of the language.

* A learning function identifies a presentation f, if and only if, the learning
function converges to h and yields(f) = yields(h).

* If we are given examples and counter-examples of the language to be
identified, and each individual string is sure of appearing, then at some
point the inductive machine will return the correct hypothesis.

» If we are given only the examples of the target, then identification is
impossible for any super finite class of languages, i.e. a class containing all

finite languages and at least one infinite language.

2.2 Active learning
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This model was set out in [Ang81]. This framework concerns the learning with
additional information, queries asked from an oracle.
* The oracle is a device that knows the target language. When it is asked, the
oracle gives correct answers with no probabilities.
* Different types of queries are established: let a string w (in general), a target
language TL and a grammar G.
- Membership queries: the question asked to the oracle is “Is w [J TL

true?”

For a membership query, we have MQ: Z* - {yes, no}.
- Equivalence queries: the question asked to the oracle is “Is L (G) = TL?”

* Weak equivalence query WEQ: ¢ — {yes, no} or

* Strong equivalence query SEQ: ¢ — {yes} Z*

- Inclusion queries: the question asked to the oracle is “Is L (G) LJTL?”

Inclusion query: SSQ: ¢ — {yes} O Z*
+ Different system depends on the type of queries used.
- Only membership queries I = {MQ)}
- All types of queries I = {MQ, WEQ, SSQ}
- Minimum adequate teacher MAT with /I~ = {MQ, EQ}.

2.2.1 Definition

A class of grammars g is identifiable with a polynomial number of queries if there is
an algorithm alg such that:
- For each grammar G in g, alg identifies G with polynomial (in 1G1I)

number of queries in /-
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This algorithm does each update in time polynomial (in |GI) and in

the length of the longest counter-example.

2.2.2 Characteristics of active learning

With an MAT, we can learn FA and also a variety of other classes of
grammars.

It is difficult to see how powerful is really an MAT.

It is easy to find a class, a set of queries and provide and algorithm that
learns using them.

It cannot learn FA from (a polynomial number of) membership queries
alone or from equivalence queries alone.

With only a polynomial number of examples, or with a polynomial

number of mind changes, learning FA is not possible.

2.3 PAC learning

2.3.1 Definitions

Probably approximately correct (PAC) learning was proposed as an alternative model

for identification in the limit [Val84]. While in this latter, it is assumed that a finite

time for learning an exact hypothesis, PAC allows for a hypothesis to identify a target

language with certain probability and this identification is performed in polynomial

time.

A hypothesis h is said to be approximately correct if and only if Pr ([ h( x)# L( x)]<e

Where:

Cis a class of languages and H is a set of hypothesis.
LOCLand h OH.

€ is some positive value.
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PAC-learnability

Let us take CL to be defined over a set of example sentences from the alphabet ¥ of
length n. CL is said to be PAC-learnable by the learner if, for all grammars ¢ //C,
given a distribution D of examples over 2*, € and dconstrained by € > 0 and d < 0.5,
the learner will, with Pr_ > (1 - J), output a hypothesis grammar g, with g, /G such
that error (g,) < &.

This means that the inference is done with a probability Pr_ with an error as small as

prescribed. For so doing, we need to measure the difference between the target and

the inferred grammars using an error metric. The error, denoted error (g,), of the
hypothesis grammar g, with respect to the target grammar g, is the probability that
g, and g disagree on the classification of randomly-drawn instances x from

distribution D.
2.3.2 Characteristics

* A class CL is polynomially PAC-learnable if it is PAC-learnable in a
polynomial time in 1/¢, 1/9, n and the size of g.

* PAC-learning of FA 1is still an open problem but it is believed to be
impossible.

» Assumption that the PAC learning will be held under any distribution can

lead to abnormal examples.

2.4 Relation between active learning and PAC learning

A class is polynomially identifiable by equivalence queries if and only if it is

polynomially PAC-learnable [Ang88].
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3. Algorithms for GI

Classes of grammars are studied at levels in reverse order of their classification in
the Chomsky hierarchy [Cho59]. A lot of work is done in the field of regular
grammars (type 3) and less work for the class of CFGs (type 2). Some works have
considered the possibility of extracting grammars from programs [CMZ05]. These
two types concern formal languages. Important interest is given to these two classes
because there are efficient algorithms that solve the decidable problem of
membership of an element to the associated languages. Case-sensitive grammars
(type-1) and unrestricted grammars (type-0) are generally used for natural language
processing. In the following, we only concentrate our survey on grammars for

formal languages.

3.1 Algorithms for regular grammars

Regular grammars are widely studied in the domain of grammar inference for
several reasons:

* They are simple.

 They are important in syntactic pattern recognition.

* They have a well-known set of properties such as decidability of

membership and equivalence questions.

* There exist efficient parsers for them.
For each regular grammar, there exist a set of finite state automata which recognize
language of this grammar. The problem of inferring a regular grammar is that of
learning a finite state automaton from both positive and negative data. This problem

can be formally established as a decision problem as described in Fig. 3.2 below.
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/* Methodology 3.2 */
/* METH32 */

/* Methodological Steps — Inference Problem */

« Given

- a finite alphabet

- two disjoint sets of examples D+ and D-
- an integer n
* Find
A deterministic finite state automaton ( FA) consistent with
D+ and D-

» Subject to the constraints

A number of states less than or equal to n.

Figure 3.2 METH32 Combinatorial problem associated with a FA.

This is known as the combinatorial problem associated with a FA. It was proved that
this problem is NP-complete [Gol67]. The problem of finding polynomially larger
FA than the minimum FA, consistent with the input data, is NP-hard [PW93]. The
learning of FA is also extended to the non-deterministic finite state automata NFA.

We give below some algorithms concerning the two recognizers.
3.1.1 Complexity for inferring regular grammars

The search space of regular grammar inference depends on the total number of
states in the maximal canonical automaton. We usually build a lattice. However,
even for a small number of states it is not practical to explicitly build the lattice. For

example, with only 4 states, 15 different automata can be obtained by merging states.
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With 10 states the number of different automata is increased to 115,975. To overcome

this problem, we usually rely on heuristic [Sav04] or incremental methods [PV96].
3.1.2 Learning FA

The importance of work on FA is justified by the fact that the algorithms treating the

inference problem for FA can be adapted for larger classes of grammars, for instance

even linear grammars [Tak88], sub-sequential transducers [Knu94] or tree

grammars. They can even be transposed to solve the inference problem for CFGs,

when the data is presented as unlabelled trees [Sak92].

3.1.2.1 Trakhtenbrot and Barzdin [TB73]
In [TB73], the authors study the case where all data length is greater than a certain
value. For this case, there exists an algorithm that identifies FA. They describe a
greedy learning algorithm with polynomial-time complexity for constructing the
smallest FA consistent with complete labelled training set. The input is the prefix
tree acceptor (PTA). This tree is collapsed into a smaller graph by merging all pairs
of states that represent compatible mappings from string suffixes to labels. This

process is called contraction procedure.

3.1.2.2 Gold’s algorithm [Gol78]
This algorithm tries to find the minimum FA compatible with the data. The states
of the FA are strings or prefixes of strings. An observation table OT(S,E) is
constructed and contains the whole information. S is a set of states and E is some
experiment. The algorithm will find the correct automaton when a characteristic

sample is included in the data. It has a polynomial-time complexity.

3.1.2.3 RPNI algorithm [OG92]
A regular positive negative inference (RPNI) algorithm is based on state merging

method, [OG92]. In this case also, a prefix acceptor automaton is initially
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constructed on the basis of positive data set. An iterative merging process is
performed but corrected by a set of negative data. Many other algorithms followed
RPNI, intending to improve the order of states to be merged. For instance, BLUE*

[Seb03] is an adaptation of RPNI that deals with noisy data.

3.1.2.4 Traxbar algorithm [Lan92]
Traxbar algorithm is a variant of the algorithm exposed above [TB73]. It is used in
the case where both target machine and training set are drawn randomly by a
uniform distribution [Lan92]. In this work, it is experimentally shown that Traxbar
can learn approximately a FA if the training set and the machine are generated
randomly instead of being chosen by an adversary. This had a great impact on the

induction community since languages of infinite size become learnable.
3.1.2.5 Dupont’s lattice setting [DMV94]

This work considers the grammar inference as a “generalization of search”
problem, inferring a grammar is reduced to the process of searching for a target
grammar in the search space. Regular inference may be defined as the discovery of
an unknown automaton A from which an observed positive sample I+ is supposed
to have been generated. Given the additional hypothesis of structural completeness
of I+, this problem is considered as a search through a Boolean lattice built from
the positive information.
3.1.2.6 Evidence Driven State Merging (EDSM) Heuristic [LPP98]

The main idea in the so-called evidence-driven state merging (EDSM) algorithm
[LPP98] is to try all possible merges and keep only the merge with the high score.
It was realized that an effective way to choose which pair of nodes to merge next
within the augmented prefix tree acceptor (APTA) would simply involve selecting

the pair of nodes whose sub-trees share the most similar labels. To improve the
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running time of EDMS, window-EDMS (W-EDMS) was suggested where only
nodes that lie within a fixed-sized window from the root node of the APTA are
considered for merging. An analytical study of W-EDMS shows that it is better
than its full-width counterpart [CKO02].

EDMS won the Abbadingo learning competition (http://abbadingo.cs.unm.edu/),

in 1998. This competition's topic is average case learnability of FA from given
training data. The basic setup is based on 16 benchmark problems. Each problem
consists of a secret randomly generated FA which serves as a target concept, a set
of training strings which have been labeled by that target concept, and a set of
unlabeled testing strings. The task is to predict the labels that the target concept
would assign to the testing strings. Each problem will be considered solved by the

first competitor who demonstrates a test set error rate of 1% or less.

3.1.2.7 Data-driven heuristic
This represents a new framework for learning FA, where the quantity of data is
used as heuristic to drive the learning process [deH96]. Any data-independent
ordering will allow for identification in the limit. Here, a heuristic is chosen. It
tries to merge those two states for which most evidence is available. Based on this
heuristic, it is proved that the algorithm identifies in the limit. However, the
characteristic set associated to this heuristic can be exponential. The learning
algorithm is called data-independent if it does not need information about the data
of positive and negative examples to return its result. Otherwise it is data-
dependent. Results obtained assert that polynomial identification from given data is a

non-trivial condition leading to interesting algorithms in GI.

3.1.3 Learning non-deterministic finite state automata NFA
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Inferring NFA is not polynomially possible from given data [deH97]. In [DLTO1], it
is proposed to learn cheaper structure than FA; looking for an NFA seems to be a
promising way. A sub-class of FA called residual finite state automata (RFSA) is
studied. RFSA shares the property of existence of a canonical representation with
FA. They define the system called DeLeTe that builds the canonical representation
from any sample containing Sa, where S4 is a characteristic sample with polynomial

cardinal associated with a FA.
3.1.4 Learning quantum finite automata

Equivalence between quantum automata [Moo0O] and quantum grammars on one
side and FA and grammars are studied in [KW97]. The importance of quantum
automata is due to their lower space complexity (fewer states, fewer steps) and their
capacity to recognize some non-regular and non-CFLs. In [RG01], it is shown that
quantum and classical learning are information-theoretical equivalent. However,
apparent computational advantages of the quantum model yield to efficient
quantum learning algorithms which seem, up to now, to have no equivalent in

classical counterparts such as those proposed in [B]J99].

3.2. Algorithms for CFGs

After spending almost three decades on regular grammar inference, it was natural to
move to the next class in the Chomsky hierarchy, i.e. the CFGs. That was first set in
the European Conference on Machine Learning (ECML2003). Another motivation to
study the domain was the limitations of regular grammars in some new domains
like genetic structures, XML and its technology, text compression, and the like. CFGs
are more expressive than regular ones. Learning the entire class of CFLs is until now
an intractable problem, i.e. the time required solving instances of the problem

growth exponentially with the size of instances of the problem. Providing additional
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information or avoiding super-finite classes can help to identify this class in the
limit. In order to avoid the negative result of impossibility of inferring a class of
languages from positive examples alone, some methods have been set out. On top of
positive examples, additional information can be negative examples, use of an

oracle, and knowledge on structures or ad hoc heuristics.
3.2.1 Difficulty of CFG inference

A tentative of synthesizing most problems in GI of CFLs is detailed in [Eyr06]. These
problems can be summarized as follows:

* CFLs are not stable for a set of algebraic operations like intersection and
complementation. The use of negative examples is not useful because they
have not the same structure as the hypothesis to be learned.

» It was proved that the class of CFLs is not identifiable in the limit,
polynomially in time and data using a sample of positive and negative
examples. This is due to the undecidability of equivalence problem in the
class of CFLs [deH97].

 Contrarily to regular languages where the entire class is recognized by FA,
CFLs can be recognized by non-deterministic push-down automata (PDA)
Determinism is an essential point in learning, so nondeterminism and
ambiguity of CFGs represent an important problem within the inference
process.

* Some CFGs have a huge “expansibility”. Indeed, the number of productions
grows exponentially with the size of a sentence. For example, the simple
deterministic grammar:

Gn = ({a}, {N;, i <=n}, P, No),

where:
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P={ Ni 2?aNix Ni1} O{ N» 2a).
For this grammar, the equivalence problem is decidable but the number of
productions used is exponential in the size of the grammar. So inferring it
in polynomial time is impossible.
* Indivisibility of the CFGs is another problem for the learning process. Any
update in the productions can affect the totality of the language; there is no

separate ways of derivations.

3.2.2 Algorithms for CFG inference

Due to the serious theoretical limitations of learning the entire CFLs, different
practical techniques are established to obtain positive results. So classifying these
algorithms is a difficult task. This may explain why there are only very few number
of surveys of the field. To our knowledge, there are only a couple of these, [Lee96]
and [deHO05]. Recently, a book was published for learning automata and grammars

[deH10]. We give below a tentative classification of the most important algorithms.

3.2.2.1 Complexity

The complexity of CFGs is obviously is worse than the complexity of regular
grammars exposed above. Indeed, the search space for (CFG) inference is even larger
[CMZ05]. For a given positive sentence, we need to find the different derivation
trees. Using CNF, the number of all possible binary trees with n internal nodes is
given by the n-th Catalan number. An additional issue is that internal nodes
(nonterminals) need to be properly labeled. The number of possible labeling of
nonterminals is defined by Bell numbers. As a result, the construction of derivational
trees with proper labeling of nonterminals contributes to an immense search space.

For instance, a statement with 5 terminals (4 nonterminals) can be parsed by 210
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different derivation trees, while this number increases to 1.9479161E9 for a statement

with 11 terminals (10 nonterminals) [SFO1].

3.2.2.2 Patterns in strings

In general, this type of algorithms is popular in the pattern recognition
community. A pattern is a special substring. These algorithms deal with learning
from text, i.e. a set positive data and eventually negative ones. This approach is
limited by Gold’s theorem. The first algorithm is reported in [Sol59] while [Tan87]
gives an algorithm that learns CFGs from positive and negative examples of
strings. The technique presented is to remove self-embedding structures from a
finite sample, infer a linear grammar from the sample, and compose the inferred
linear grammars to create a CFG. Once again, the learnability from positive
examples only is not guaranteed for all CFLs.

The work in [Ang80] gives some sufficient and (or) necessary conditions for this
purpose. However, the use of negative examples seems also unnatural. As stressed
earlier, when a child learns a language, he receives only correct sentences from that
language and needs no incorrect ones. These points motivate research for tools

other than negative examples.

3.2.2.3 Extension of reqular languages "results to CFLs
The class of regular languages is a subset of CFLs. One natural way to upgrade to
CFG inference is the extension of techniques used for regular grammar inference.
We have seen that the lack of linearity and determinism represent a problem in
CFG inference. This has motivated the study of linear and even linear languages.
The GI problem for even linear languages can be solved by reducing it to the GI
problem for regular languages [Tak88]. [Mdk96] introduces subclasses of even
linear languages for which there exist inference algorithms using positive samples

only; this is done via Szilard languages [Ros97].

Thése de Doctorat d’Etat — The ESLIM Project 42



Chapter 3 — State of the art of grammatical inference

k-bounded CFGs are identifiable in polynomial time using equivalence queries and
non-terminal membership queries [Ang87]. Non-terminal membership queries
propose a string w and a non-terminal A; the answer is “yes” if w is derivable from
A and “no” otherwise. In effect, the learner is allowed to ask about the structure of
the target grammar. A larger class of the deterministic linear grammar is proved to
be identifiable from polynomial time and data [deH02].

Simple deterministic languages (SDLs) are used in such a way that non-terminal
membership queries are no longer needed [Ish90]. Instead, the algorithm is
allowed extended equivalence queries, which propose a grammar G, where G does not
have to be a grammar for an SDL; the answer is “yes” if the target grammar is
equivalent to G.

Other subclasses of CFLs that have been shown to be learnable are structurally
reversible languages, one-counter languages (languages accepted by deterministic
one-counter automata), pivot languages, very simple languages, and terminal

distinguishable CFLs [LNO3].

3.2.2.4 Use of artificial intelligence techniques
Here the inference problem is seen as a search in the space of possible grammars.
The main problem to study is the size of the search space. For CFGs, the search
space has been seen as a version space [Lan00]. Search algorithms like hill-
climbing or genetic algorithms are used. We can use genetic algorithm on the rules
of grammars on the condition that some help is provided from structures of data to
reduce the size of the population [Sak00]. Other techniques like the use of an
intelligent backtracking or the prior conflict diagnosis or heuristics are of a great

utility.

3.2.2.5 Stochastic CFGs (SCFGs)
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There is sometimes a need to deal with noisy data for example in speech
recognition or in computational biology. Here stochastic CFGs (SCFGs) are used.
SCFGs are CFGs where a probability is associated to each production so that the
sum of probabilities of all productions with the same left hand side is one. One
problem in this approach is how to decide of the correctness of these probabilities.
The second is with parsing such grammars. Here, all algorithms attempt to search
the space of all SCFGs, either exhaustively, i.e., by enumeration, or by some sort of
heuristic search. An enumerative algorithm is developed that identifies SCFG's in
the limit with probability one from stochastic data [Hor72]. The approach of
inferring directly the CFGs is hard. It seems that artificial intelligence techniques

like genetic algorithms can be of great help in solving this problem [Sak00].

3.2.2.6 Algorithms that uses alternative representations for languages

Instead of representing a language by a grammar from the Chomsky hierarchy, it
is represented in different ways: context-free expression, pattern languages, and
categorical grammars.

The first representation is used by [Yok88] and is inspired by learning regular
expression. The author gives an NP-complete algorithm that learns context-free
expressions. Pattern languages are first studied by [AS83], defining a pattern as the
concatenation of constants and variables, and the language of a pattern as the set of
strings obtained by substituting constant strings for variables. Introduction of
types [Kos95] or using only one pattern [ERS97] are ways to simplify the problem
of inference. Pattern languages have been also used with probabilities in [RZ01].
Grammars in Chomsky hierarchy deal only with syntax. For linguistics, learning a
language concerns both syntax and semantics. Categorial grammars are grammars

where syntax is attributed some semantics [Kan98]. Important role of semantics

Thése de Doctorat d’Etat — The ESLIM Project 44



Chapter 3 — State of the art of grammatical inference

and context in the early stages of children’s language acquisition, especially in the

2-wordstage has motivated the work in [BAOS].

3.2.2.7 Algorithms that rely on structured data

We saw that additional information is needed along with positive examples to
achieve learnability of CFGs. Important information concerns the structure of the
data. This structural information is known as derivation trees. Structural data can be
represented by strings generated by a parenthesis grammar or by skeleton.

For any CFG G, the corresponding parenthesis grammar (G) is formed from G by
replacing every production A~ a by A - (a). On the other hand, skeletons are
derivation trees with the non-terminal labels removed. The key property of
skeletons is that they are exactly the set of trees accepted by skeletal tree automata
(STA), a variation of finite automata that take skeletons as input. There are very
strong relations between learning CFGs from parenthesized data or skeletons and
learning regular tree grammars.

Learning FA has been extended to the identification of STA in polynomial time,
although this requires being able to ask structural membership and structural
equivalence queries [Sak92]. As a result, inference is made possible for reversible
CFGs in the limit from positive structural data alone by adapting the technique for
reversible automata [Ang82]. Skeletons are also used to infer terminal

distinguishable CFGs [LNO3].

3.2.2.8 ILSGInf : Inductive Learning System for Grammatical Inference
Derivation trees and the so-called partial derivatives heuristic construction is at the
heart of our method, used in the development of ILSGInf [HHO7b], detailed in
Chapter 6.
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4. Applications of grammatical inference techniques

GI techniques are widely used in different domains. We survey a set of such
applications in different fields such as pattern recognition, language processing, data
processing, robotics, and software engineering, to cite just a few of these numerous

applications.

4.1 Structured pattern recognition

Pattern recognition is the field where GI was applied first. Sometimes objects with
no independent measurable properties are recognizable by their structural
configuration. Structures are described using grammars where terminals are the set
of recognizable pieces, and productions encode the different configuration. Then
classification is equivalent to parsing. GI is present when we want to infer the global
structure of a set of instances. It was applied to textures in images, image contours
[Luc94], fingerprints classification, recognition of pictures of industrial objects,

character recognition by learning stochastic finite automata.

4.2 Computational linguistics

One of the earliest motivations of GI was to understand human language
acquisition. While GI deals only with syntax, human language acquisition takes also
semantics in consideration. EMILE prototype [AV02] is a toolbox for natural
language processing. It is intended to help researchers to analyse the grammatical
structure of free text. This work is based on categorical (or categorial) grammars
which are most suitable for linking syntax with semantics. Another worthy
application is shallow parsing, i.e. the task of dividing sentences into a sequence of
simple phrases [Tho02]. Shallow parsing can be used to index internet pages, for

instance.
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4.3 Speech recognition

Speech is the domain where noise is an important characteristic. Probabilistic
grammar inference is used via two models: hidden Markov models (HMMs), i.e.
automata with probability, and n-grams models. One of the earliest models was
used by [MB95] to focus on a description of the hybrid HMM/artificial neural
networks method. In this work, the authors also began to look at the connectionist
inference of language models, including phonology, from data. This step is required
in order to take advantage of locally discriminant probabilities rather than simply
translating to likelihoods. GI techniques were also used to language simplification

trough error-correcting [ASVO01].

4.4 Automatic translation

Usually a transduction is viewed as a string to string function f ("My red car") = "Ma
voiture rouge". Automata with outputs are used. We can cite the improvement of the
OSTIA algorithm. The input of learning is represented by pairs of strings (input
string and the associated output). Multiplicity automata are used to deal with
ambiguity. Alignment techniques were used with dictionaries to improve the

learning of sub-sequential transducers [Vil00].

4.5 Document management

In recent years, writing, storing, and retrieving documents in electronic form has
become popular. These documents are structured. The common way to describe the
structure of similar documents is the use of grammars. Extended markup language
XML has been recently used for text element markup. The extraction of schematic
information from XML documents often requires certain generalisation of input

data. Among existing conceptual approaches to the XML, the grammar-based one
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seems to be the most promising for the schema extraction. An XML data is
equivalent to a derivation tree of a CFG without non-terminal labels in GI theory.

This extraction was addressed as a GI approach [Chi(1].

4.6 Data and text mining

4.6.1 Text mining

Both information extraction (IE) and information retrieval (IR) belong to the broader
tield of text mining (TM). In information retrieval, we seek to recover information
from a subset of documents that are hopefully relevant to a query, based on
keywords searching, usually augmented by a thesaurus. In information extraction,
the goal is to extract from the documents, which may be in a variety of languages,
important facts about ad hoc types of events, entities or relationships. These facts are
then usually entered automatically into a database, which may then be used to
analyze the data for trends, to give a natural language summary, or simply to serve
for on-line access. Information extraction consists in finding subtle or at least non-
trivial knowledge from text. Automatic information extraction is still in the making
despite the fact that there are many public Web-based platforms that can be used for
this purpose, e.g. GATE® platform.

4.6.2 Text compression

Grammars have the potential of representing infinite information using only finite
set of rules. As a result of this property, one can consider a grammar as a
compression tool of the whole language. For example, Sequitur is a compression

system that was developed based on the idea that a good grammar is a compact

SGATE was developed at Sheffield University, Engladtp://gate.ac.uk/ie/
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grammar [NWO97]. It requires no input except a single text and it produces a
grammar that generates only the input text. It is clear that that Sequitur cannot be

considered as a GI system but it has an important role to compress an input text.
4.6.3 RPNI and structure induction

In [KRO7], the authors study the use of RPNI algorithm, described in Section 3.1.2.3
above, to infer information extraction models from positive and negative examples.
In [Sai06], GI is applied to text corpus. These techniques attempt to induce the

structures of a source data by a set of production rules of regular grammar.

4.7 Biological interfaces

4.7.1 Grammatical structures in biological sequences

The huge amount of data about genes and proteins and the availability of complete
genomes offer the possibility to study more globally the interaction between bio-
entities in complex cellular processes. Many efforts focused on the decoding of
complete genomes and assignment of functions to genes and proteins. The result is
the birth of the field of bioinformatics. Its principal goal is to bridge the gap between
biology and computer science to understand cell behaviour and to develop systems
that link computational techniques and biology, among others. Bioinformatics is
facing new challenges in analyzing the functioning of biochemical networks and
molecular biology. GI techniques are expected to find many useful grammatical

structures in biological sequences [Coh04].
4.7.2 DNA computing

DNA computing began by the demonstration that DNA can be used as a form of
computation for solving the seven-point Hamiltonian path problem [AdI94]. DNA

computing and parallel computing are fundamentally similar. Indeed, in DNA
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computing, many different molecules of DNA try many different possibilities at
once. In this novel computer architecture, simple biological operations are coded as
simple instructions. DNA sequences are used to encode information and enzymes
can be employed to simulate basic computations. As a result, a DNA computer was
constructed and coupled with an input and output module, which would
theoretically be capable of diagnosing cancerous activity within a cell, and releasing
an anti-cancer drug upon diagnosis [BGB04]. It has been demonstrated that DNA
array can implement a cellular automaton, which generates a fractal called the
Sierpinski gasket. This shows that computation can be incorporated into the

assembly of DNA arrays, increasing its scope beyond simple periodic arrays

[RPWO4].

4.8 Map learning

In their article [DBK92], the authors present a robot with automatic learning abilities
based on GI in the field of map learning. It is useful for a robot to construct a spatial
representation of its environment from experiments and observations. Probabilistic
GI techniques are used to infer the global structure of the environment from a

sample of experiences.

4.9 Self assembling

In self assembly, a collection of particles spontaneously arrange themselves into
some coherent structure. In one approach, each particle is provided with a local
interaction rule, based on graph grammar [KGLO06]. The main problem is to infer a
global behaviour of a system by means of local rules. The approach shows that we
can refer to grammars approaches to precisely predict and control the emergent
behaviour of self-organizing system. Some aspects of grammars are used to model

dynamical systems and self-organized systems are described in Chapter 7.
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4.10 Software engineering

Extracting grammars from programs attracts researchers from software engineering.
In this field, we want to recover a grammar from legacy systems in order to
automatically generate various software analysis and modification tools. The so-
called memetic algorithm MAGIc improves current results in grammar inference of
domain-specific language (DSL) grammars from example of DSL programs. The
result is a tool support for DSL development, assisting domain experts and software
language engineers in developing a DSL and its implementation. A semiautomatic
grammar-driven system, called MARS, uses GI techniques to recover metamodels

from instance models developed on a network metamodel [MHB09].

4.11 Soft computing and evolutionary multiobjective optimization (EMO)

Learning can be reduced to finding solutions using evolutionary multiobjective
optimization (EMO). In this framework, the different solutions are handled by the
standard evolutionary operators such as selection, crossover, and mutation. The
improvement of the solution is handled by the construction and comparison of the
Pareto fronts using the various fitness (objective) functions. This framework was
used and tested on a medical classification problem and gave satisfactory results

[HH11].

" Part of this work has been published under the= tiEvolutionary multiobjective optimization for edical classification”,
2011 IEEE GCC Conference & Exhibition, "For Sustaimabbiquitous Technology"Dubai, United Arab Emirates, pp.
441-444, 19-22 February 2011, http://www.ieeexplmeg
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CHAPTER 4
GRAMMATICAL INFERENCE WITH GASRIAS

1. Introduction

As stressed in Chapter 2, many methods and systems have been developed for GI for
more than half a century. As far as this chapter is concerned, the proposed contribution
falls at the intersection of three major fields of research, namely formal languages,
machine learning (ML) with special emphasis on grammatical inference (GI), and
inductive logical programming (ILP). We know that these fields of research historically
evolved independently, although it can be well be argued that they are naturally related
since both GI and ILP are considered as integral parts of ML. On the other hand, formal
languages are described using grammars. Now each of these areas has now its own
scientific community with its ad hoc periodicals, its scientific meetings and its

specialized conferences. Because the system we propose is based on one logic-based

8 Part of this chapter has been published undetittaéApprentissage inductif de grammaires: Latéyne GASRIA. (Inductive
learning for grammars: The GASRIA System)”, Revue d’Intelligence AtrtificielleHermes-Lavoisier Edition, Paris, France,
ISSN: 0992499X21(2):223-253, March-April 2007

http//ria.revuesonline.com, http://www.revuesonlawen http://ria.revuesonline.com/article.jsp?artickedd70
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environment and one inductive learning module, we attempt a useful rapprochement
between ILP and GI.

Specifically, our main problem deals with parsing. In classical parsing, a sentence is
either recognized or refused. In other words, parsing is stopped, perhaps at the outset,
due to the first unrecognized character - with no further search. This limitation
characterizes all existing methods like Earley’s algorithm [Ear70] or its offshoots
[Lee92]. In a more general context involving learning, as the one we are considering,
this limitation is a truly severe drawback [MGZ03]. Indeed, we want, for example, to
know whether at least some part(s) of the sentence is (are) correct without getting
ousted by the first unrecognized character. Therefore, we apply a method to parse all
that is parsable using partial derivation. In this way, we are able to draw maximum
syntactic knowledge from the sentence under consideration. In order to address this
issue, we introduce the concept of partial parsing and its corresponding algorithm, the

so-called partial parsing algorithm (PPA) [HHO7a].

This chapter is organized as follows. Section 2 formulates the problem, putting
forward the objectives to be realized and the available methods for doing so. Section 3
describes related works from three different perspectives, namely GI, machine learning
and ILP. In Section 4, GI and ILP approaches are defined and compared and GI is
formulated in an ILP framework. GASRIA architecture is described in Section 5 while
Section 6 reports relevant parsing issues. Section 7 describes the learning process in
GASRIA and Section 8 reports the backbone of the implementation and operation of
GASRIA on an illustrative example. The chapter ends up with a conclusion and

perspectives for further developments.

2. Problem formulation and basic methods

One of the reasons hindering coupling a first-order logic-based environment with a
learning system for grammar acquisition lies in the structural and functional differences

between these two types of systems. We develop a synergy between both systems in
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order to induce, or infer, one possible grammar. We concentrate on CFGs because they
are used to specify the majority of programming languages. The other reason is that

CFGs inference is still a challenging issue.

2.1 GASRIA Objectives

A complex and multidisciplinary environment is the intelligent and synergetic
interaction of basic and modular building blocks tied together in a coherent action
towards the achievement of the most practical and lesser-effort design. For so doing the
overall environment is to comply with the methodological steps depicted in Figure 4.1

below.

/* Methodology 4.1 */
/* METH41 */

/* Methodological steps used in GASRIA */
1. Goal : GASRIA level
Design an integrated architecture and develop a sys tem based on

coupling inductive learning and first-order logic ( FOL) for the
purpose of grammatical inference for some CFGs.

2. Modules
EXINF Module /* Chapter 5 */
Design and develop an FOL- based module for addressing both
traditional or “crude” parsing and “intelligent” parsing issues
based on an original declarative Earley-like algori thm.
ILSGINF Module /* Chapter 6 */
Design and develop an inductive learning module for solving the

following incremental learning problem:

From a set of positive strings with respect to a gi ven language
induce one possible CFG that generates all strings acceptable by
the given language.

Figure 4.1 METH41 Methodological steps used in GASRIA
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2.2 Methods used

We rely on methods drawn from parsing and from inductive logic programming (ILP).
Parsing is used to recognize and/or classify a string. ILP is used to make the required

inferences during the learning process.

3. Related works: three interconnected fields

There are many approaches that can be used to meet the methodological steps
described in Figure 4.1 above. We stress the important fields that are of interest to us.
We thus report some aspects of formal languages, as the basis for parsing, before

concentrating on machine learning and ILP.

3.1 Formal languages approach

This approach has been addressed in details in Chapter 2, specifically dealing with
formal languages and grammars. We further summarize the basic concepts we need for
our work. Intuitively speaking, a language is a complex system of structured messages
that enables humans, or other species, to communicate what they know about the world.
Communication is meant as the intentional exchange of information that is brought about
by the production and perception of signs drawn from a shared system of conventional
signs. Particularly for humans, language is at the root of thinking. That is why the so-
called Turing Test, used for the definition and examination of machine intelligence is,
above all, based on language. A formal language is the eventually infinite set of strings,
each of which is the concatenation of terminal symbols, usually called words in natural
languages. For instance, in the language of arithmetic, the terminal symbols include real
numbers, or symbols representing them, and other symbols like the + sign, the — sign,
the = sign. In this case, if 4 and b are two numbers then “a+b” is a member of the
arithmetic language, “+a,b-" is not. Formal languages, like first-order logic have strict
mathematical definitions. A grammar is a finite set of rules that specifies a given

language. Formal languages always have a precise, official grammar, specified in

These de Doctorat d’Etat — The ESLIM Project 56



Chapter 4 — Grammatical inference with GASRIA

manuals or books. Both formal and natural languages associate a meaning or semantics
to each valid string. For instance, in the language of arithmetic, a grammatical rule
would specify that if “a” and “b” are expressions then “a+b” is also an expression whose
semantics is the sum of both a and b. Pragmatics is a characteristic of natural language
which consists of the interpretation of a given string according to the situation or
context.

Most grammar rule formalisms are based on the idea of phrase structure — that strings
are composed of substrings called phrases, which can be expressed in different
categories, known as noun phrase (NP), verb phrase (VP). For example the NP “The
paper” can be concatenated with the VP “is excellent” to produce the sentence S “The
paper is excellent”. The category names such as VP, NP and S are called non-terminal
symbols or simply non-terminals. Grammars define non-terminals using rewrite rules,
usually described in Backus-Naur Form (BNF), previously known as Backus Normal
Form. In that case, the previous sentence can be expressed in the form S — NP VP
meaning that any sentence S can be written as any NP followed by any VP. Parsing is
the process of building a parse tree, composed of a root S, interior nodes composed of
non-terminals and leaves composed of words as terminals. For example, the previous
sentence “The paper is excellent” would have S as root with one left-child NP and one
right-child VP. The NP node would have a left-child Article and a right-child Noun. The
VP node would have a left-child Verb and a right-child Adjective. Further down in the
tree we would have all the words composing the sentence, as leaves. The only child of
Article is The. Likewise, Noun is instantiated by paper, Verb by is, and Adjective by
excellent. The result is that the parsed sentence appears at the bottom of the tree. This
process is called top-down parsing. Conversely, if we start from any sentence, we try, in
bottom-up process to go up to the start symbol S. If we succeed in doing this, then the
sentence is said to be correct, i.e. the sentence belongs to the language; otherwise, it is
incorrect. The process of moving “upwards” in the parse tree from the leaves to the
immediate level above is referred to as “tokenization”. Therefore, the instantiation of

tokens ends up with terminals [RNO3].
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3.2 Machine Learning (ML)
3.2.1 Inductive and deductive learning

As a broad subfield of artificial intelligence, ML is concerned with the design and
development of algorithms and techniques that allow computers to improve their
processing through training. At a general level, there are two types of learning:
inductive and deductive. Inductive methods extract rules and patterns out of massive
data sets. The major focus of ML research is to extract information from data
automatically, by computational and statistical methods. ML is therefore closely related
to not only theoretical computer science but also to data mining and statistics. ML has a
wide spectrum of applications including natural language processing, syntactic pattern
recognition, search engines, medical diagnosis, bioinformatics, brain-machine
interfaces, detecting credit card fraud, stock market analysis, classifying DNA
sequences, speech and handwriting recognition, object recognition in computer vision,

game playing and robot locomotion, among others [Mit97].
3.2.2 Some ML/data mining methods

The main traditional methods available in ML are decision tree learning (DTL), neural
networks, Bayesian learning, instance-based learning, genetic algorithms, rule learning,
analytical learning, and reinforcement learning. Among the most well-known
algorithms, we can cite symbolic rule-learning algorithm such as CN2 [CN89], and C4.5
[Qui93]. When rules have to be learned from extremely large data sets, specialized
algorithms stressing computational efficiency may also be used. Other machine learning
algorithms commonly applied to this kind of problems include inductive logic
programming [Mug99], neural networks, and Bayesian learning algorithms. The
textbook [Mit97] describes a broad range of machine learning algorithms, as well as the
statistical principles on which they are based. The field of ML has borne the explosive
field of data mining, sometimes called knowledge discovery from databases, or
advanced data analysis. It has already produced practical applications in such areas as

analyzing medical outcomes, detecting credit card fraud (e.g. using the so-called White
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Hat Google™ Hacking), predicting customer purchase behavior, predicting the
personal interests of Web users, and optimizing manufacturing processes, among
others. This is so because data mining algorithms enable discovery of important
“regularities” in large data sets. A more recent survey describes most systems and
algorithms of data mining [MR11] and some textbooks describe applied data mining
platforms such as the Weka® platform [WFH11]. The study of ML has also led to a set of
fundamental scientific and epistemological questions about how computers might

automatically learn from experience and subsequently improve behavior.

3.3 Inductive logic programming (ILP)

ILP aims to construct a set of hypotheses to enrich available background knowledge
using predicate logic. In the case where positive examples are not entailed by
background knowledge, the idea is to construct a new set of hypotheses to extend
background knowledge in order to make this entailment possible.

From ML, ILP inherits the goals, namely to develop tools and techniques to induce
hypotheses from observations (examples) and to synthesize new knowledge from
experience. By using computational logic as the representational mechanism for
hypotheses and observations, ILP can overcome the two main limitations of classical
ML techniques, namely the use of limited knowledge representation formalism encoded
as a propositional logic, on the one hand, and the difficulties in using substantial
background knowledge in the learning process, on the other hand [Mug99]. As an
interaction with grammars, we can refer to the specific application where ILP has been
applied to the problem of learning a grammar that is augmented with semantics. Since
an augmented grammar is a Horn clause logic program, techniques of ILP are found
appropriate. As an example, CHILL [ZM96] is an ILP program that learns a grammar
and a specialized parser for that grammar from examples. The target domain is natural

language database queries. CHILL's task is to learn the predicate Parse(words, query)

® Weka is a Web-based platform developed at Waikiaiversity, New Zeland;_http://www.cs.waikato.admiweka
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that is consistent with examples and, hopefully, generalizes well to other examples. For
instance, the query “what is the capital of the state with the largest population?” is
transformed into “Answer(c, Capital(s,c) AND Largest(p, State(s), AND Population(s,p))).
Applying ILP directly to learn this sort of predicate results in poor performance since
the induced parser has only about 20% accuracy. Fortunately, ILP learners can improve
by adding knowledge through the construction of hypotheses. In this case, most of the
Parse predicate was defined as a logic program, and CHILL’s task was reduced to
inducing the control rules that guide the parser to select one parse over another. With
this additional background knowledge, CHILL achieves 70 to 85% of accuracy on
various database query tasks. This is obviously based on the assumption that the
problem can be expressed in a predicate form; an assumption that might turn out

difficult to be realized in some situations.

4. Gl vs. ILP

4.1 Problem of inductive inference

Inductive learning's task, at large, is based on the idea of fitting a set of instances (or
examples) into a more general framework. This is equivalent to identifying a
relationship between some variables, given some observed results. It can be set in a
variety of manners, but the question ends up with an identification of some hidden

relationship between the known inputs and the produced outputs.
4.1.1 Inductive inference and normal semantics

We are given a background (prior) knowledge B and evidence E. This evidence is
described by the union of two disjoint subsets of positive evidence (E*) and negative
evidence (E-). Assume that we have evidence E=E"'V E~ a background theory and
some hypotheses all expressed as well-formed formula (wff). We can formulate the general

problem of inductive inference as described in Figure 4.2 below.
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/* Methodology 4.2 */
/* METH42 */

/* General problem of inductive inference (GPII) */
/* Normal semantics */

Given

- A background (prior) knowledge B

- Evidence E

- E=ETOE 1/ * Positive and negative evidence */
Find

One hypothesis H
Constraints

1. Prior satisfiability

BnE [#DO

/* i.e. The conjunction of background (prior) knowledge B
and negative evidence does not entail the inconsistent
clause. */

2. Posterior satisfiability (or consistency with negative evidence)

BnHnNE [Zo
/*ie. The conjunction of all knowledge except the positive
evidence does not entail the inconsistent clause ¥

3. Prior necessity

Bl# E*
/* i.e. Background knowledge alone does not entail positive

evidence , which means that we need additional knowledge
from constructed hypotheses */

4. Posterior sufficiency (or completeness with regard to positive
evidence)

(BnH)|FE"
/* i.e. Background knowledge and all constructed hypotheses
entail all positive evidence. */

Figure 4.2 METH42 Inductive inference and normal semantics
By satisfiability, it is meant that the inconsistency clause cannot be entailed from

background knowledge and negative evidence. This is true for prior satisfiability, i.e.
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before the introduction of any hypothesis. It remains true after the introduction of

hypotheses, for the case of posterior satisfiability.
4.1.2 Inductive inference and definite semantics

In most ILP systems, background theory and hypotheses are restricted to being definite,
thus simplifying the general setting. Indeed, a definite clause theory T has a unique
minimal Herbrand model M*(T), and any logical formulae is either true or false in the
minimal model. The above general problem can be redefined with adapted constraints

as follows.

/* Methodology 4.3 */

/* METHA43 */

/* General problem of inductive inference (GPII) */
/* Definite semantics */

Solve the same problem as for normal semantics above

Constraints

1. Prior satisfiability
Oeld E™, e falsein M *(B)
/* i.e. Background knowledge cannot support negative evidence*/

2. Posterior satisfiability (or consistency with ne gative evidence)
Oeld E,efalseinM*(Bn H)

/* i.e. A fortiori nor can negative evidence be supported by both background
knowledge and hypotheses, supposed to enrich background knowledge */

3. Prior necessity
Cel E*/ e falsein M *(B)

/* Some positive evidence is false in background knowledge. Otherwise, we
would not need additional hypotheses to try to establish that it is true */

4. Posterior sufficiency (or completeness with rega rd to positive
evidence)

Oeld E*, etrueinM*(Bn H)

/* i.e. All positive evidence is contained in background knowledge and all
constructed hypotheses. */

Figure 4.3 METH43 Inductive inference and definite semantics
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The general case of the definite semantics, where the evidence is restricted to true and
false ground facts (examples), is called example setting. Notice that the example setting
is equivalent to the normal semantics, where B and H are definite clauses and E is a set
of ground unit clauses. The example setting is the main setting of ILP. It is used by the

large majority of existing ILP systems.

4.2 Formalized ILP approach

The general ILP approach works as follows. It keeps track of a queue of candidate
hypotheses QH. It repeatedly deletes a hypothesis H from the queue and expands that
hypothesis using inference rules. The expanded hypotheses are then added to the queue
of hypotheses QH, which may be pruned to discard unpromising hypotheses for further

investigation. This process is continued until the stop-criterion is satisfied.

/* Methodology 4.4 */
/* METHA44 */
/* The general ILP approach */

QH :=Initialize /* Set of starting hypotheses */
REPEAT
Delete H from QH
/* Delete influences search strategy. Can realize depth-first (LIFO), breadth-first
(FIFO), best-first. */

Choose the inference rules ry,...r¢ in R to be applied to H
/* R is the set of rules to be applied */

/* Choose determines the inference rule to be applied on H */
Apply the rules to H to yield Hy,...,H,
Add Hy,...,H, to QH

Prune QH
/* Prune determines which candidates hypothesis are to be deleted from the queue.
Can rely on user as “oracle” */
UNTIL stop-criterion (QH) satisfied
/* Conditions under which algorithm stops. When either solution or failure is found
from current queue */

/* Combining delete and prune it is easy to obtain advanced search strategies such as
hill-climbing, beam-search, best-first, etc... */

Figure 4.4 METH44 General ILP approach

These de Doctorat d’Etat — The ESLIM Project 63



Chapter 4 — Grammatical inference with GASRIA

4.3 GI formulated in ILP framework

We can express our positive-example-based grammatical inference problem (PIB-GIP)

within an ILP framework, as follows:

/* Methodology 4.5 */
/* METHA45 */

/* Gl Problem formulated as an ILP problem */

[* Positive-example-based grammatical inference problem (PEB-GIP) */
Given

- A logic program representing background knowledge
/* In our context, background knowledge corresponds to CFG definitions and
parsing methods. */
- A set of positive examples (or sentences) D"

Find
- In ILP framework, construct additional rules describing a CFG that generates
this specific set of data.
- In GI framework, departing from ILP, the aim is also to generate other similar
data not necessarily given at the outset.

Figure 4.5 METH45 GI problem formulated as an ILP problem

In any of the frameworks of Figure 4.5, there remains the delicate operation of
reducing the number of relevant hypotheses to construct. In our case, the partial
parsing algorithm (PPA), described in forthcoming Section 5.2 of Chapter 6 reduces
drastically this number since it searches within known sub-sentences. This step
represents a useful contribution. To our knowledge, no absolute minimization method

exists regarding the number of hypotheses to consider.

4.4 GI - ILP interplay

As can be easily seen from the literature, ILP [Mug99] has several links with GI. When
learning recursive rules, ILP shares some of GI's objectives and sometimes its

techniques. For instance, MERLIN'® (Model Extraction by Regular Language INference)

10 http://people.dsv.su.se/~henke/ML/MERLIN.html
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system parses the data by the background knowledge and uses this information to learn
a deterministic finite automaton or a stochastic one [Bos98]. MERLIN 2.0 is an inductive
logic programming (ILP) system that uses a general hypothesis in the form of a logic
program together with sets of positive and (optionally) negative examples in order to
find an inductive hypothesis which entails all positive examples but no negative
examples. MERLIN has been improved resulting the GIFT system [BHO1]. This latter
builds on MERLIN by learning directly tree automata, thus not needing to lose
representation capacity by having to linearize the data. However, systems like MERLIN
and GIFT use GI as the inference engine of logic programs; they do not combine GI with

existing ILP systems.

5. GASRIA Architecture

5.1 GASRIA modes of operation
5.1.1 Overall block diagram

Figure 4.6 shows the overall architecture of GASRIA system. As shown, the proposed
system is based on two main components: the learning module ILSGInf and an FOL-
based environment called EXINF containing Earley parsing rules and the facts
concerning the grammar and the sentence to be parsed. Each component is associated
with one specific mode of operation. As indicated, there are two modes (or sessions) of
possible operation, namely the learning or training mode destined to the expert or
teacher, and linked to the ILSGInf module and the exploitation or testing mode destined
to the ordinary user, linked to the analysis / classification of sentences to be parsed. We

begin by describing the learning mode, and then the exploitation mode.
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Figure 4.6 ARCH41 - GASRIA architecture
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5.1.2 GASRIA class diagram

Figure 4.7 below describes the main classes used in GASRIA. It depicts the overall class

diagram of system and is used for reusability, readability and easier maintenance.
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Figure 4.7 ARCH42 GASRIA class diagram
5.2 Learning mode: ILSGInf

In this mode, the system acquires knowledge from examples introduced by the human
expert or teacher, with an exclusive interest in positive examples. At the beginning of
the training, the ILSGInf learning module receives, one by one, human expert-chosen
sentences of a given language and thus enriches its fact base, initially empty. Starting
from this set of sentences, this module builds a CFG that generates the language. The

fact base is automatically and incrementally filled with the grammar rules describing

These de Doctorat d’Etat — The ESLIM Project 67



Chapter 4 — Grammatical inference with GASRIA

the language. This eventually completes the session with the expert. The learning mode

is further detailed in Chapter 6.

5.3 Exploitation mode: EXINF

Because any incremental learning mode requires by its nature the integration of an
element of exploitation, we use for that purpose a first-order logic (FOL) programming
environment, called EXINF working in forward chaining fashion. This form of chaining
is used because syntactic analysis is a bottom-up approach. Parsing starts with facts and
ends up with goals. EXINF allows a specification of the expert knowledge using
production rules and plays the role of a parser. In this mode, the available knowledge is
used to classify the new sentence. The sentences introduced by the user are syntactically
analyzed and the result is displayed indicating whether they belong to the language.
The blocks involved in this mode are the inference engine, the fact base and the rule

base. The exploitation mode is further explained in Chapter 5.

5.4 Fact base

The fact base consists of a CFG for a given language. The main components of the fact

base consist of the two components depicted below.
5.4.1 Initial symbol and the grammar of the language

These are represented by a set of production rules written using the syntax described in

Figure 4.8 below.

/* Methodology 4.6 */
/* METH46 */

/* Fact base syntax */
RULE FACT <rule right-hand side> < rule left-hand side >

FACT initial-symbol < initial symbol >

Figure 4.8 METH46 Fact base syntax
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5.4.2 Additional information

This concerns the string to be analyzed, such as the string itself and its length (i.e. the

number of symbols). Figure 4.9 below shows the fact base structure

/* Methodology 4.7 */
/* METHA47 */

/* Fact base structure */

FACT string <string >
FACT length < length >

Figure 4.9 METH47 Fact base structure

5.5 Rule base

The rule base consists of a set of production rules describing a parser such as Earley’s
parser. It is written using the language accepted by EXINF, detailed in Chapter 5. The

rule base is used by the exploitation mode.
5.5.1 Vocabulary and rule base syntax

The language of expression allows communication with the expert. This language is

used to describe the rule base. Like any language, it is described by a vocabulary and

grammar.

5.5.5.1 Vocabulary

The vocabulary includes:

- The identifiers in the form of strings that represent predicates;

- The variables represented by alphanumeric identifiers preceded by the symbols "?",
in the case of a single variable (i.e. substituted by one string), or by "&" in the case of
many variables (i.e. substituted by more than one string);

- Reserved words that have a specific meaning for the system: IF, THEN RULE,
FACT, ADD, EXECUTE, DELETE, END.
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5.5.5.2 Rule base syntax
The rule base syntax (or more precisely the rules of production) that generates the

language is written in the normal form of Backus-Naur form (BNF) as expressed in

Figure 4.10 below.
/* Methodology 4.8 */
/* Syntax used by EXINF */
/* METH48 */
<declarations> :: = <declaration> [ <declaration> ] *END
<declaration> :: = < rule-declaration> | < fact-dec laration>

<rule-declaration> :: = RULE [ <name> ]* <rule>
<name> :: = string of 5 characters
<rule> :: = IF <antecedents> THEN <consequents>
<antecedents> :: = ( <premise> ) [ <antecedents> ]*
<premise> :: = <predicate> <element>+
<predicate> :: = classical identifier
<element> :: = <constant> | <variable>
<constant> :: = classical identifier
<variable> :: = ?<constant> | &<constant> | ?- | &-
<consequents> :: = {<conclusion> |<action>}[ <conse quents>]*
<conclusion> :: = ADD ( <predicate> <element>+) | D ELETE
(<predicate> <element>+)
<action> :: = EXECUTE (<expression>)
<expression> :: = write ( message ) | <variable> |
{<variable> | <constant>} <operation> {<variable> |
<constant>}
<operation> :: = arithmetic operation
< fact-declaration> :: = FACT <fact>
<fact> :: = <predicate> [ <constant> |+

Standard notations

- Symbol * indicates existence of 0 or more symbol (s)

- Symbol + indicates existence of 1 or more symbol(s)

- Symbol ?identifier concerns only one identifier variable

- Symbol &identifier concerns more than one identifier variable

Figure 4.10 - METH48 Syntax used by EXINF

5.5.2 Automatic syntactic analysis

Once learning is finished, GASRIA is ready to work as a simple syntactic analyzer i.e.
switches to the exploitation mode of operation. In this case, the user is supposed to

learn a language from the system. Thus, the user supplies new sentences to be
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recognized. EXINF deals with these sentences as a syntactic analyzer, or rule base, using
the grammar of the language i.e. the content of the fact base which has been updated
during the learning phase. GASRIA operates a classification on the membership of these
new sentences and informs the user. In addition, the system always questions the
results obtained because it has to rely on experience. For that, the system keeps track of
all details of the session with the user and transmits it to the expert for a possible
validation of responses, thus enriching the language. The eventual mistakes are
corrected using the ILSGInf module. Note that these errors affect the answers provided

by GASRIA that the expert has refuted.

6. Parsing

6.1 Notation

In all subsequent analysis, we use the following notation:

Symbols A, B, C,... to range over non-terminals N, with symbols g, b, ¢, ... to range over
the input alphabet Z.

Symbols X, Y range over (N 7 2).

Symbols a, 3, y range over (N [J 2)*

Symbols v, w, X,..range over 2*

For a fixed grammar, the binary relation (=) is defined over (N /7 5)* such that

YAS = yad whenever (A — a) O P.

Multiple derivation, closure of (=), is denoted (=).

6.2 Earley’s algorithm
6.2.1 The idea

We briefly present here the Earley’s algorithm, before introducing our declarative
adaptation, detailed in Chapter 5. Let G = (N, 2, P, S)be a CFG. We associate with G a
set of symbols, called dotted items, specified as:

le={[A—>a-f|(A—ap) UP}
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Dotted items are used to represent intermediate steps in the process of recognition of a
production of the grammar. The sequence of symbols between the arrow and the dot
indicates the sequence of constituents recognized so far at consecutive positions within
the input string. More precisely, given a production:
p:(A— XiXz..X), r>=0,

the process of recognition of the right-hand side of p is carried out in several steps. We
start from item (A — XX ...X;), attesting that the empty sequence of constituents has
been collected so far. This item represents a prediction for p. We then proceed with item
(A — X1+ X, ...X),after the recognition of a constituent X1, and so on. Production p has
has been fully recognized only if we reach item (A — X; Xy ...X*), attesting therefore

the complete recognition of a constituent A.

Given a string W = @1az...a,, with n >= 0 and each a; a terminal symbol, a position
within w is any integer i such that 0 =< i < = n. In what follows, E is a square matrix
whose entries are subsets of |z and are addressed by indices that are positions within
the input string. Entries are denoted as E;j. The insertion by the algorithm of item [A —
ae A inE;j,i =< j, attests the fact that the sequence of constituents in a exactly spans
the substring aj+1...a; of the input. Control flow is not specified in the method below,
since it is usually regulated by means of a data structure called agenda, which directs the
incremental construction of the table by means of an iteration: starting from an empty

table, items are added as long as needed, and with the desired priority.
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6.2.2 Detailed steps of Earley’s algorithm

/* Algorithm 4.1 */
/* ALGO41 */

/* Earley’s Algorithm */
/* In a list I, where p> 0, item "A— a« 5, " has the meaning described below */

/I* By neglecting the first g symbol(s) of the sub-string, we can parse the string
ain the case where the string S comes after it (£ is called a prevision string).

Therefore, in the case where [ =¢ (empty string), we say that the string a is
parsed by neglecting q symbols. *//

1 Construction of I
1.1-FOR everyrule S —» a inP, ADD [S —ea ,0]in .

1.2- IF the item is of the form [B — ye, O] in g,
THEN FOR every item of the form [A— a*B 8 ,0] in o,
ADDitem [A— a Bs 3,0]to I,

13-IF [A—a+*B3,0] isinly
THEN FOR every rule of the form B — vy
ADD item [B —ey, 0] to lo.

1.4- REPEAT 12 et 13 UNTIL no item can be added

2 Construction of 1, from lists lg,...,I5.1

2.1- FOR every item of the form [ B — a+a S, q]in l,; such that a= a;in w,
ADD [B— a a*£,qlinl,

2.2- FOR every item of the form [A — ye, q]in |,
AND FOR every item of the form [ B —a+ ABk ] in |,
ADD[B — a A B Kk]tol,

2.3- FOR every item of the form [A — a*B S, q]in |,
AND FOR every rule of the form B — yin P,
ADD[B —e ypltol,

2.4- REPEAT 22 et 23 UNTIL no item can be added
3 Eventual acceptance of a string of length n
3.1 IF n+1 lists are constructed
AND an item of the form[ S — a+, 0] is found in I,

THEN string is accepted
3.2 ELSE string is refused.

Algorithm 4.1 - ALGO41 Earley’s algorithm
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6.2.3 Correctness

The string w is accepted if and only if [ S — « a/ U Eop for some (S — a) O P,. The
correctness of the algorithm immediately follows from the property below.
Property: in Earley’s algorithm described above, anitem [ A — a « B/ isinserted in Ej;

if and only if the following conditions hold:
Cl.s = aia;...a;A y, for some ), and

C2. a = Aj+1...
For methods cruder than the Earley’s algorithm, membership of an item in some entry
may merely be subject to condition C2, which is sufficient for determining the
correctness of the input. However, Earley's algorithm is more selective, as is apparent
from condition C1, which characterizes the so-called top-down filtering capability of the
method. Condition C1 guarantees that only those constituents are predicted that are
compatible with the portion of the input that has been read so far. Assuming the
working grammar is fixed, a simple analysis reveals that the considered algorithm runs

in time O(n3).

6.2.4 Earley and CYK algorithms

Earley’s algorithm is an example of chart parser class. Cocke-Younger-Kasami
algorithm (CYK) is another example (Manacher, 1978). These algorithms are both based
on dynamic programming. The choice of Earley’s algorithm is dictated by
considerations related to complexity and simplicity of implementation. The time
complexity of both algorithms is O(n3) where 7 is the length of the sentence. However,
Earley’s algorithm performs better in most situations. Indeed, it reaches O(n?) for
unambiguous grammars and O(n) for LR(k). For the space complexity, Earley’s
consumes O(n), while CYK needs O(n?). Earley’s algorithm can parse all CFGs, but CYK
parses only grammars in Chomsky normal form (CNF). For these reasons, we have

used Earley’s parser for our system and not CYK.
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6.3 Additional definitions

6.3.1 Types of sentences and partial derivatives (PaDe’s)

(1) Let C be a global sentence defined as a blank-free string of characters in any artificial
language.

(2) A sub-sentence of a given global sentence C is any recognized sub-sequence of
characters in this global sentence.

(3) A partial derivative (PaDe) of C is the parse sub-tree of any sub-sentence.

(4) Any parsing based on PaDe’s is termed partial parsing and its corresponding
algorithm called partial parsing algorithm (PPA).

(5) A list (resp. sub-list) is the result of parsing using Earley’s algorithm for a global
sentence (resp. sub-sentence).

(6) More general PaDe : we say of a PaDe that it is more general than another if the
former contains the minimum number of terminals i.e. the maximum of terminals
are transformed into non-terminals. The resulting PaDe is therefore smaller.

(7) More general grammar: In order to obtain a more general grammar, it is necessary to
add a more general rule to each step of the generalization process. The rule to be

added is always of the form “S — DP;” where DP; is the concatenation of PaDe’s.

6.3.2 Derivation trees

We need derivation trees [ALS07] for the construction of our grammar from the
initial stage to the final stage. A labeled and ordered tree D is said to be a derivation tree

for a CFG of the formG = (N, Z, P, S) if :
1- The root of D is labeled by S ;

2- Dy,..., D are sub-trees of direct descendents of S and the roots of Dj are X;, then S
— Xi1...Xk is a production rule in P. D; must be a derivation tree for G = (N, Z, P, X)) if X; is
a non-terminal and D; is a unique node (named X; if it is a terminal).

3-D; is the only sub-tree of D, the root of D1 is € . In this case, the production rule

S edP.

These de Doctorat d’Etat — The ESLIM Project 75



Chapter 4 — Grammatical inference with GASRIA

Example: G=(N, {a, b, &, P, S) where :
N={S}
P:{S — aSbS,S — bSaS, S o 5}

Among the syntactic trees of this grammar, we find those of Figure 4.11.

S
a
S b S
€ €

Figure 4.11 —- DIAG41 — A derivation tree of G

6.4 Motivation for using PaDe’s

Now, we use the additional definitions above to proceed further through an example of
PaDe use. For example, we have the following problem:

Initially recognized global sentence: a+b

New global sentence to be recognized: (a+b)

How can we handle this new sentence? In classical parsing: new global sentence refused
because of first unrecognized character “(”.

With the use of PaDe’s:

PaDel = (

PaDe2 = a+b
PaDe3 =)

Result: Accept DP2. Reject all other sub-sentences.
Head of sub- Sub
sentence in ub- PaDe’s of sub-sentence :
sentence
global length Result is a dynamic string
sentence
0 1 D (
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1 3 S a+b

4 1 E )

Table 4.1 TAB41 PaDe’s construction for (a+b) based on a+b

7. Learning in GASRIA

7.1 Learning characteristics

It is useful to make the following remarks concerning learning in GASRIA.

- No pre-classification is required from the expert when supplying the sentences for
training. Therefore, the system does not need to make any search in the sentences
space.

- The system gradually builds a grammar that generates these sentences.

- For the validation of any learning system, we need an exploitation module to check
whether learning has been done correctly. We use the module EXINF for parsing.

- We use the property that rules can be written in the forms A -~ BC, or A - a.

7.2 Learning strategy implementation

Implementation concerns the development of all required phases, i.e. those that take in
charge the initial grammar construction, partial parsing, the refinement cycle and the
treatment of partial derivatives. All these phases are described in details in Chapter 6

concerning ILSGInf module.

8. Results and discussion

8.1 GASRIA implementation

A program has been developed using Microsoft Visual C++ release 6.0 (MVC++6.000)
under Microsoft Windows XPO. This program takes full advantage of the object-

oriented method. Grammar generation follows the steps described in Figure 4.12 below:
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/* Methodology 4.9 */
/* METH49 */

/* Grammar generation */

- Read first positive sentence
- Generate an initial grammar
- Use refinement cycle
-- Read a new positive sentence
-- Generalize this grammar

- Give results
- Test grammar validity on additional sentences, wi th

eventual recourse to human expert

Figure 4.12 METH49 Grammar generation
Refinement cycle for grammar generation follows the steps described in Figure 4.13, but

with no specialization.

/* Methodology 4.10 */
/* METH410 */

/* Refinement cycle */

- Use result given by PPA

- Generalize grammar if result gives failure for a positive
example

- Specialize grammar if result gives success for a negative
example

Figure 4.13 METH410 Refinement cycle in grammar generation

8.2 Example

The details of how to operate the complete system is described in the two forthcoming
chapters. We only give here the basic steps as building blocks of the grammar induction
as performed by GASRIA, on a simple example. The class of languages learned by
GASRIA are given in Appendix 1.
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Problem Statement
1. Given a set of positive examples S™ = { a+b, (a+b)} from a language L.
2. Infer a grammar that can generate L in the limit.

3. Describe all the steps of the induction process and consider both learning phase and

exploitation phase.
8.2.1 Learning phase: ILSGInf use

1. Initial sentence introduction: the expert introduces the sentence: a+a

2. Initial grammar generation
The program generates the following initial grammar Go = (No, Zo, Po, S) where:
No={A, B, S, C}; 20={a, +}; S initial symbol in Ng.
Po={A-aB-+C - AB,S - CA}

3 Parsing of the new sentence: EXINF as parser rejects the new sentence (a+a) according
to Go since the opening parenthesis “(” and the closing one “)”are not recognized
by Go.

4. Refinement cycle

3.1 Sub-lists construction: the partial parsing algorithm (PPA) uses all sub-lits for
all sub-strings for analysis.

3.2 PaDe’s construction: all PaDe’s are obtained.

3.3. Generalization: The program selects the most general rule which is the
concatenation of the most general PaDe’s. This selection gives: S —~ DSE

3.4 Grammar induction: The program generates the following induced grammar:

G1 = (Ny, 21, Py, S) where:

N1={A,B,S,C,D, E}; 2:={a, +, (, )},

P,={A-aB-+C-AB,S-CAD-(E-),S - DSE}

3.5 Introduction of new positive sentence: the expert introduces (a+a)+(at+a)
3.6 Parsing of the new sentence: Go to Step 3 above.

3.7 Generation of the third grammar of the form:
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G2 = (N2, 23, P2, S)
N.={A,B,S,C,D,E,F}; Z2={a, +, (, )};
Pp,={A-aB-+C-AB,S-CAD-(E-),S-FBF,F- DSES -
F}

4. Grammar transformation to Chomsky normal form (CNF)

The grammar is improved using the CNF as follows:
Rule F — DSE isreplacedby:F -~ DHand H - SE
Rule S - FBF isreplacedby:S - FGand G -~ BF

The actual grammar is now the most general grammar since it can generate all
(infinite) strings of the form : a+a, (at+a), (((a+a))), (((at+a))+(a+a)), ...

Formally the actual grammar generates the following language:

expression - at+a

expression — (expression)

expression — expression + expression

Discussion

Only three positive examples a + a, (a+a), (a+a) + (a+a) are needed to infer a grammar
that generates all strings belonging to L. Our method does not produce any counter
examples; which represents an important result. Chapter 6 provides more details of

how this is done by ILSGInf.
8.2.2 Exploitation phase: EXINF use

The grammar G; is introduced in the fact base of EXINF. At this stage EXINF is able to
parse any sentence of the language L.

1. Recognized sentence: ((((a+b)+(a+b)+(a+b)+(a+b)))). The analysis gives success.

2. Unrecognized sentence: ((a+b)+a+b. The analysis gives failure.

Chapter 5, Section 5 describes in more details of how this is done by EXINF.
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9. Conclusion

In this chapter, we reported an early attempt in bridging the gap between GI and first-
order logic (FOL). Based on this idea, GASRIA has been designed and developed as a GI
system that can infer some CFG’s from positive examples. Thus, the system behaves as
a parser with the ability to learn inductively, with the learning module, and to reason
through an FOL-based programming environment, EXINF, developed for a broader
context. For the tested languages, the number of examples required for induction is
very small, here not exceeding five examples. On the other hand, the generated
language is not empty since it contains at least the introduced examples, and generates
no counter example. The combination of GI and FOL can be regarded as an important
step towards “intelligent” compilers. The results obtained in this chapter are further
expanded in Chapter 5, reporting in details the parsing problem using logic, and

complemented by learning in Chapter 6.
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CHAPTER 5

INFERENCES THROUGH EXINF INTELLIGENT
PARSING ISSUES

1. Introduction

This chapter is concerned with coupling first-order logic (FOL) and grammatical
inference (GI) aiming to construct an intelligent parser (IntPar). Our goal here is to
establish the “methodological production” rule FOL and GI — IntPar. We mainly build
our contribution on methods drawn from FOL as applied to parsing. Starting from
truly first principles, we design and develop a rule-based first-order deduction system,
called EXINF, and couple it with a learning module, called ILSGInf, for the purpose of
GI. While we stress the importance of the logic-based methods wused for
implementation, we also raise the issues imposed by such a coupling. Although EXINF
is used here for parsing, it can also be used as a stand-alone inferential system. On top
of that general-purpose usage, the application of EXINF is two-fold; it can be considered
as an ordinary sentence parser, or as an extended Earley’s parser for a given grammar.
More importantly, EXINF can contribute to the inference of one unknown grammar
from positive examples in conjunction with the learning module ILSGInf, described in
Chapter 6. In summary, EXINF can be used as a stand-alone inference engine

implementing both forward and backward chaining, as a “crude” parser or an
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“intelligent” parser. All these issues are addressed in this chapter. The resulting
implementation gives a powerful unified framework able to meet one of the challenges
of GL

The chapter is structured as follows. In Section 2, we formulate our problem by
specifying the refined objectives. EXINF parsing capabilities are described in Section 3
while Section 4 explains its reasoning mechanisms based on forward chaining. Section 5
is devoted to the implementation of the system and to experimental results. Finally,
lessons learned are drawn from the actual results and proposals are highlighted

pointing towards the improvement of the actual work.

2. EXINF objectives

The objective is to concentrate on the description of a first-order rule-based or logic
programming environment, called EXINF, capable of reasoning on assertions related to
an unknown grammar to be induced. While the operation of the complete system,
inferential and learning has been reported in Chapter 4, we here stress the importance
of the logic programming environment EXINF. The main objectives of this system are:
(i) Stand-alone inferences capability, i.e. EXINF is a system based on FOL that can infer
knowledge for general-purpose application. In this respect, EXINF can be
compared to those available over the Web, e.g. NASA CLIPS rule-based language.
(ii) Simple parsing, i.e. EXINF can be used to parse any language based on a CFG.
(iii)“Intelligent” parsing, i.e. EXINF can infer one unknown CFG from positive
examples, in conjunction with a learning module, namely ILSGInf.
(iv) Moreover, EXINF is a system developed from scratch and, as such, is easier to
update and to adapt for special applications such as the one we are dealing with.
Our developed logic programming environment has the inferential and

complementary characteristics described below.
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2.1 Inferential characteristics

The central process in any intelligent system is inference, defined here as the ability to
add valid new propositions to a knowledge base or to derive the truth of propositions
not explicitly contained within the knowledge base.

(i) Rule-based system: Knowledge is rule-based i.e. it is represented by production rules.

(ii) First-order, predicate logic: Reasoning is based on first-order or predicate logic.

(iii) Variables: Use of variables are allowed. These are instantiated (or bound) by
constants from the fact base.

(iv) Closed world assumption: Like many systems (e.g. Prolog), our system works with the
closed world assumption, i.e. a goal that is not explicitly expressed in the fact base, or
that cannot be inferred from it, is considered as false. This assumption does not
reduce the capabilities of our system since the grammar contains all information
concerning the language under consideration. Indeed, any grammar generates all the
instances of the corresponding language. The difficulty resides in inferring a
grammar, not in using it.

(v) Backtrack characteristics: in the case of failure, search for a new solution is done by
returning to the state preceding actual failure.

(vi) Resolution principle: The system does not use the Robinson’s resolution principle.
Therefore, it can be easily adapted.

(vil) Forward chaining and backward chaining: The system uses both forward and
backward chaining for deriving or proving new knowledge. Only forward chaining

is used and described in this chapter.

2.2 Parsing characteristics

A problem that often faces a learning system designer lies in the difference between the
types of representations used to describe the examples, on the one hand, and the
concepts describing these examples, on the other. In our case, an example is a string. As

for the concepts or generalizations, it consists of a context free grammar (CFG).
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It is clear that the difference between a string and a grammar is important. For
minimizing this difference, we rely on syntax trees which are located halfway between
these two approaches. We use the link between a string of characters and a grammar as
a means of transforming examples from string representation to a closer representation
with respect to a grammar. This transformation can be seen as a process of

interpretation. Thus, in learning mode, the parser is used for this rapprochement.

2.3 Complementary characteristics

(i) Parsing: We use an adapted version of Early’s algorithm for parsing [Ear70].
(ii) Learning: A description of the learning module ILSGInf is given in Chapter 6.
(iii) Integration: An integrated implementation involving both learning and parsing is

reported in [HHO7a].

3. First-order logic (FOL) considerations

3.1 Rule-based deduction systems

3.1.1 Rules and operation

Rule-based problem-solving deduction-oriented systems are built using rules of the
form:

<if antecedent ...then conclusion>.

The antecedent is also known as premise, condition or left-hand side (LHS). The
conclusion is also known as consequent, action or right-hand side (RHS). The rules are
therefore interchangeably called if-then rules or antecedent-consequent rules condition-
action rules [Win93].

Rule-based systems can either work in a forward or backward chaining mode. In the
tirst mode, we move from the LHS to the RHS. We therefore use the condition pattern to
identify the action pattern. During the forward chaining mode, whenever a RHS pattern

is observed to match a fact in the fact base, the condition is satisfied. A rule is triggered
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whenever all RHS patterns are satisfied. When a triggered rule establishes a new fact,
the rule is said to be fired. In deduction systems, all triggered rules generally fire. In the
case where many rules need to be fired, a conflict-resolution procedure is needed to
decide which rule to fire. All deduction systems whether forward or backward
comprise an inference cycle consisting of three phases, namely:
Detection - conflict resolution - execution or firing

During the first phase, which is the detection phase, a conflict resolution set (CRS) is
constructed and which consists of all candidates rule. The second phase is conflict
resolution proper i.e. the choice of the rule to trigger. The last phase is the deduction
phase during which the chosen rule is finally fired. A termination procedure is used to

end the search.
3.1.2 Basic components of rule-based systems

The basic components of a rule-based problem-solving deduction system are a rule base
and a fact base [Win93].
(i) The fact base

/* Methodology 5.1 */
/* METH51 */

/* Fact Base*/

Lexically : There are application- specific symbols
and pattern symbols.

Structurally: assertions are application- specific
symbols and patterns are application- specific
symbols and pattern symbols.

Semantically: the assertions denote facts in some
world. Facts cannot be false but assertion
can.

Constructors
Add an assertion to working memory.
Readers
Produce a list of matching assertions
in fact base given a pattern.

Figure 5.1 - METHS51 Fact base
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I* Methodology 5.2 */
I* METH52 */
/* Rule Base */
Lexically: There are application- specific symbols
and pattern symbols.
Structurally: Patterns are lists application-

specific symbols and pattern symbols, and rules
consist of patterns. Some of these patterns
constitute the LHS of the rule and the others
constitute the RHS of the rule.

Semantically: Rules denote ¢  onstraints that enable
procedures to seek new assertions or to
validate a hypothesis.

Constructors
Construct a rule, given an ord ered list of LHS
patterns and a RHS pattern.
Readers
Produce a list of a given rule’s RHS patterns.
Produce a list of a given rule’s LHS patterns.

Figure 5.2 - METH52 Rule base

3.2 Knowledge-base engineering issues

3.2.1 Knowledge acquisition

To acquire or extract the necessary knowledge from a human expert in order to code
it as rules understandable by a computer, the following strategy is used, as decribed

in Figure 5.3.

/* Methodology 5.3 */
/* METH53 */
/* Heuristics for learning from an expert */

- Ask about specific situations to learn the
expert’s general knowledge

- Ask about situations pairs that look identical
but that are handled differently, so that the
expert’s vocabulary becomes understandable.

Figure 5.3 —METHS53 Heuristics for learning from an expert
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3.2.2 Knowledge explanation

In order to answer a question about the behavior of a rule-base deduction system, the

following heuristics are used, as explained in Figure 5.4 below.

/* Methodology 5.4 */
/* METH54 */

/* Heuristics for explaining results given by a rule-base system */

To answer a question about the reasoning done by a
rule-base deduction system:

IF the question is a HOWjuestion,

THENTreport the assertions connected to the RHSof
the rule that established the assertion
referenced in the question.

IF the question is a WHYquestion,

THENTreport the assertions connected to the LHS of
the rule of all rules that used the assertion
referenced in the question.

Figure 5.4 METH54 Heuristics for explaining results given by a rule-base system

3.3 Forward chaining (FC

The forward chaining is based on the modus ponens rule which states that:
(p-qlandp)|= (q)
The symbol |= represents entailment. In this logical expression, the RHS, g, is said to be

entailed, inferred or derived from the LHS, ((p - g ) and p ). Both LHS and RHS are

related by two fundamental theorems:
Deduction theorem: (LHS [=RHS) « (LHS — RHS is valid or is a tautology).
Contradiction theorem: (LHS |= RHS) o (LHS AND NOT( RHS) is unsatisfiable).

In our situation, parsing is a bottom-up process since parsing begins from the facts and
tries to attain some specified goals. Therefore, it is more suitable to use forward

chaining. We are in a situation where the goal is not precisely known. Indeed, at the
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outset, the system ignores whether or not a given sentence belongs to the language

under consideration.

3.4 Backward chaining (BC)

Backward chaining is goal-driven reasoning approach. It attempts to answer a question
of the form: “how did we reach this conclusion (goal)?” Starting from this specific
conclusion, the premise(s) is (are) tried as sub-goals to be proved by tracing back to
eventually meet facts. Therefore, this approach works back from the conclusion or
query. If this query is true then no proof is needed. Otherwise, the algorithm finds those
implications in the knowledge base that conclude the query. All premises become sub-
goals to be proved. If all the premises of one of these implications can be proved true,
by backward chaining, then the query is true. The process is therefore repeated until it
reaches a set of known facts that forms the basis of the proof. In backward chaining,
modus ponens is run in reverse. Backward chaining is a sound inference rule i.e. a rule that
yields true derived conclusions provided that the conditions are true. It is useful to
distinguish between reasoning with backward chaining, and reasoning backwards,
starting from known consequents to unknown antecedents. To be specific, by reasoning
backwards we mean if the consequent of a rule is known to be true, then the antecedent
will be true as well. This is usually referred to as plausible reasoning. This can be
expressed in the form (( p - g) and q)= ( p ) and is known as logical abduction. For
example, from the sentence “all Gamma Computers are fast” and the “My computer is
fast”, we can infer the eventually false sentence “My computer is Gamma Computer”.
Proof by contradiction is an example of use of backward chaining. It can alternatively
be expressed by the so-called modus tollens rule which states that:
(p-q)=(-g- —p)

Because the backward chaining is goal-directed, we have therefore to establish a list
containing the goal and all relevant sub-goals. Although EXINF implements also the

backward chaining, it will not be described here, because of no concern.
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3.5 Backward chaining vs. forward chaining

Choosing one mode of chaining depends on the problem under consideration. We can
use some rules of thumb or heuristics to find an acceptable choice. Let us define a meta-
heuristic i.e. a heuristic of how to choose heuristics themselves. Any meta-heuristic has
to produce a heuristic that reduces the search state space of the problem. Applying this
meta-heuristic, we readily find the steps of choosing between the two modes of
chaining. Whenever the rules are such that a typical set of facts can lead to many
conclusions, we say that the system exhibits a high degree of fan out. In this case, we
choose a backward mode. Alternatively, whenever the rules are such that a typical
hypothesis can lead to many questions, the system is said to exhibit a high degree of fan
in, which argues for the use of forward chaining. Of course, in many situations, these
concepts of fan in and fan out cannot be used since no one dominates. In this case, we
have to use other heuristics such as amount of facts heuristics. The meta-heuristic is

described in Figure 5.5 below [Win93].

/* Methodology 5.5 */
/* METHS55 */

/* Backward chaining vs. forward chaining * /
/*BCus. FC %/
/* Level 0 : META-HEURISTIC //
[* Heuristic has to reduce the solution state space */

[ * Level 1 : Choose fanin and fanout heuristics */

1fanin and fan out calculation

1.1 FOR every rule base find the fan in, alternatively
find the number of consequents that can be
instantiated

1.2 FOR every rule base find the fan out,
alternatively find the number of premises that can be
instantiated.

2 C omparison between fanin  and fan out

These de Doctorat d’Etat — The ESLIM Project 91



Chapter 5 — Inferences through EXINF : intelligent parsing issues

IF fan in = fan out
THEN choice between BC and FC is done with equal

weight
ELSE
IF fanin > fan out THEN choose FC
ELSE choose BC
/* Level 2: Choose the amount of facts heuristics */

IF no facts are available

ANDinterest is in whether one of many possible
conclusions is true

THEN use BC
IF all possible facts are available

ANDinterest is in deriving all possible conclusions
from those facts

THEN use FC

Figure 5.5 Backward chaining vs. forward chaining

4. EXINF Architecture

4.1 Design diagrams

4.1.1 Use case diagram

There are two external modes when using EXINF. These modes are referred to as
exploitation and learning modes. Figure 5.6 shows the use cases describing both of them
in relation with the two main actors i.e. the human expert teaching the system EXINF in
the quest of grammar construction and the ordinary user, looking for sentences parsing.
- Exploitation mode: it concerns any user interested in parsing a given sentence using a
given grammar.

- Learning mode: it concerns a human expert acting as a teacher via ILSGInf.
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User

Request syntax analysis of a
sentence

Validate the new
grammar

Inference of a grammar
Human expert (‘teacher’)

Figure 5.6 ARCH51 EXINF Use case diagram

4.1.2 Class diagram

Figure 4.7, in Chapter 4 described the main classes in EXINF class diagram. It depicts
the overall architecture of EXINF with the broader system. It is mainly used for

readability and maintenance.

4.3 The three EXINF layers

EXINF can be used for three different purposes, specified as layers. As a result, EXINF
is a three-layered system, as depicted in Figure 5.7 and Figure 5.8. Only two of these are

of interest to us i.e. the second and third layers.
4.3.1 EXINF first layer

Here EXINF can be used as a general purpose first-order logic (FOL) expert system
shell, or inferential system, for knowledge-base systems development. It allows the user
to introduce both rules and facts concerning a given problem. This is a general issue not

discussed here.
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4.3.2 EXINF second layer

This layer is more specialized than the first one. Here, the knowledge base is a set of
parsing rules based on declarative form of Earley’s algorithm. This layer is concerned
with parsing a given sentence using a given grammar, introduced manually by the user.

Here, EXINF is used as a “crude” parser or sentence recognizer like any other parser.
4.3.3 EXINF third layer

In the third layer, EXINF is used as a system that can infer a grammar from positive
examples, or as “intelligent” parser. However, this issue cannot be undertaken by

EXINF alone. It is resolved in conjunction with the learning module ILSGInf.
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Figure 5.7 ARCH52 EXINF as a three-layered system

Fact Base

User

A 4

Level 0
Any user-defined facts

ILSGInf

A 4

Level 1: Specialized Level 0
Facts concerning

- Grammars introduced by user
- Sentences to be parsed

A 4

Level 2: Automating Level 1
Facts concerning

- Induced grammar

- Sentences to be parsed

Rule Base

A 4

Level 0
Any user-defined rules

Level 1 and Level 2
Declarative Earley algorithm
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Figure 5.8 ARCHS53 EXINF as a detailed three-layered system

3 Layer EXINF as Knowledge-based system
acting as “intelligent” parser.
Sequence of
positive 21 Layer
examples EXINF Used as knowledge-based
system for “crude” parsing.
(By human v P 8
expert)
1st Layer
ILSGIn
—> f _ > EXINF acting as first-order logic
(FOL) shell for general purpose.
Facts Rules
A
Use EXINF as Use EXINF as “crude” parser (2" layer use)

General purpose (15t layer use)

3rd Jayer boundary

Use EXINF to infer a grammar
Inferred grammar “intelligent” parser (3*4 layer use)
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5. EXINF - KBS used for parsing

5.1 EXINF as a knowledge-based system (KBS)

As a knowledge-based system (KBS) for parsing, EXINF is composed of:
1. Knowledge base which consists of :
1.1. A fact base that contains the generated grammar and the sentence to be
parsed.
1.2. A rule base which contains the declarative form of Earley’s algorithm.
2. Inference engine relying on:
2.1. Forward chaining as far as parsing is concerned.

2.2. Backward chaining, for other problems.

5.2 Declarative Earley’s algorithm: rule base

EXINF rule base is built on Earley’s algorithm ALGOA41 described in Chapter 4 Section

6.2. The idea is to translate this algorithm into a declarative form.

5.2.1 Summarized Earley’s algorithm

Let G = (N, 2, P, S) be a CFG. Let w = &;a,...a,, be an input string, n >=0,and a; O N for
1=<i=< n.

Compute the least (n + 1)* (n + 1) table E such that the following conditions hold:

[S— ¢a] OEgforeach (S— «a) 0P, and

1.[A— « y] OE; . if[B— a*Af] UE;,(A—y)0P;
2[A—>a'aj-,8] DE“ |f[A—>0"aJ,8]|:|E”1,
3[A—>0’B'IB]DE“ |f[A—>0"B,B]|:|E|k,[B—)V']DEKI

Write an algorithm that undertakes this task declaratively.
5.2.2 Declarative Earley’s algorithm

The solution is the declarative Earley’s algorithm as described in Algorithm 5.1 below.
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[* Algorithm 5.1 */
[* ALGO51 */

/* Declarative Earley’s algorithm */
RULE 1 /*construction of list | o*/
IF ( RULE ?symbol &part)
(initial_symbol ?symbol)
THEN ADD (I ¢ [ ?symbol —~e&part,0])

RULE 2 /*construction of list | of
IF (I o[ ?symboll - & +,0])
(I o [ ?symbol2 - & +?symboll &-,0])
THEN ADD (I o[ ?symbol2 - &- ?symboll e« &-, 0])

RULE 3 /* construction of list | o */

IF (I o[ ?symboll - &-+ ?symbol2 &-, 0])
(rule ?symbol2 &part)

THEN ADD (I o[ ?symbol2 - * &part, 0])

RULE 4 /* going from | p1 ol 1 acharacter is recognized*/
IF (I op1 [ ?Symboll — &partl  ?a &part2, ?q))
(string ?a ? string_remainder)
THEN EXECUTE( ?p ?(p -1) + 1)
ADD (I 5, [ ?symboll - &partl ?a -+ &part2, ?q])
DELETE (string ?a &string_remainder)
ADD (string & string_remainder)

RULE 5 /*Filling list | p ¥

IF (I % [?symboll - &+, 7q)

(I »q [?symbol2 - &partl « ?symboll &part2, ?K])

THEN ADD (I?p [?symbol2 - &partl?symboll « &part2,?k])

RULE 6 /* Filling list | p ¥

IF (I 5 [ ?symboll - &+ ?symbol2 &-, ?q])
( RULE?symbol2 &part)

THEN ADD (I 5, [?symbol2 - ¢ &part, ?p])
RULE 7 /*Parsing of complete string*/

IF (string)

(length ?n)

(I' »n [?symbol - &part ¢, 0])

(initial_symbol ?symbol)

THEN ADD (write ("parsing is successfully achieved"))
DELETE (string)

Algorithm 5.1 - ALGO51 Declarative Earley’s algorithm

5.3 EXINF reasoning mechanism

Once parsing characteristics have been settled, we now introduce the inference engine
reasoning mechanism, based on forward chaining. This process handles parsing based

on the declarative approach.
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5.3.1 Forward chaining implementation

The following steps, describing the forward chaining, are a standard method of

reasoning. For instance refer to [Win93].

[* Algorithm 5.2 */
/* ALGO52 */
/* Implemented forward chaining */

UNTIL no rules produces new assertions,

/* Detection : Conflict Resolution Set (CRS) Const ruction */

FOR each rule
Try to match the first antecedent with a n existing assertion.
Create a new binding set with variable bindings est ablished by
the match.
Using the existing variable bindings, try to match the next
antecedent with an existing assertion. If any new v ariables appear
in this antecedent, augment the existing variable b indings.

/* Conflict Resolution Phase or Execution Phase */

REPEAT the previous step for each antecedent , accumulating
variable bindings incrementally
UNTIL
» Thereisnoma tch with any existing assertion using the binding
set established so far. In this case, back up to pr evious match
of an antecedent to an assertion, looking for an alternative
match that produces an alternative, workable bindin g set.
» There are no antecedents to be matched. In this cas e,
- Use binding set in hand to instantiate the conseque nt,

- Determine if the instantiated consequent is already
asserted. If not, assert it.

- Back up to the most recent match with unexplored bi ndings,
looking fo r an alternative match that produces a workable
binding set
/* Termination Test */
» There are no more alternative matches to be explore d at any
level.

Algorithm 5.2 - ALGO52 Implemented forward chaining
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5.3.2 Example

Assume we have the following knowledge base, given in Figure 5.9 below:

[* Application 5.1 */
/* APPL51 */
/* Fact base */
R(a)
F(b)
/* Rule Base */
Rulel IF  R(?X)
AND F(?y)
THEN M(?x)
Rule2 IF A(?X)
AND R(?x)
THEN print ("end of program")

Figure 5.9 APPL51 Example of facts and rules

In this case, we can see that RULELis a potential candidate for triggering. Indeed, all its

premises are satisfied by the fact base. But RULE2is not a candidate since the condition

A(?x) cannot be bound with any fact in the fact base. The construction of the conflict

resolution set (CRS) is based on the variables that can actually be instantiated. In our

case, two types of variables are considered.

- The first type is called simple variable and is preceded by “?”, e.g.?x. It captures one
simple item of the data.

- The second, called commentary variable, is preceded by “&’, €.9.&y. It incorporates a
list of items.

Consider the following filter: R(?x, ?y, a, &z).

Consider the following data: R (This is a good example).
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After filtering, the simple variables ?x, and ?y are respectively instantiated by “This”

‘"7

and “is”. The constant “a” is identical to the given constant. The variable &z is

instantiated by “good example”. The overall result is: “This is a good example”.

6. Applications
We incrementally use all layers of EXINF to solve the problems described below.

6.1 Problem 1: regular language

We have a regular language of the form L; = { w = (ab)", n>=1}. Use EXINF as a “crude”
parser based on a grammar introduced as facts and on the rules embodied in

declarative Earley’s algorithm. The grammar is to be introduced manually by the user.
6.1.1 EXINF first and second layers

Since we are concerned with parsing, only the second layer is of interest to us. A
possible grammar for L, is:

Gl = (Nl, Zl, S, Pl)

2 ={a,b}

N; ={A, B, S}

P, ={A—a
B—b
S — AB
S —>SS}

(1) Filling the fact base

EXINF stores this grammar as facts as shown in Figure 5.10 below:

/* Application 5.2 */
/* APPL52 */

/* Fact Base for Tested Example 1%/

/* Production rules stored as facts */

FACT RULE A a /I Factl //
FACT RULEB b /l Fact2 //
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Figure 5.10 APPL52 Fact base for regular language L, = { w = (ab)", n>=1}

FACT RULES A B /I Fact3 //
FACTRULES S S /I Fact4 //
FACT initial_symbol S /I Fact5 //

/* Sentence to be parsed and its length */

FACT string ababab /I Fact6 //
FACT length 6 I/l Fact7 /I

EXINF represents each production rule in the grammar as a fact (Factl, 2, 3, 4, 5). The

sentence to be parsed and its length are also introduced in the fact base (Fact6, 7).

Parsing is processed by EXINF as a sequence of forward chaining inference cycles.

(2) EXINF Typical Inference Cycle
1st Step: Detection

As described in Algorithm 5.2 above, this step involves the so-called detection or

construction of conflict resolution set CRS.

CRS(0) = {RULE1}. In this special case, only RULE1 has all its premises instantiated

with some facts and therefore RULE1 is the only candidate for eventual triggering.

We use RULEL for instantiation, i.e., we use the description given in Figure 5.11

below:

I* Application 5.3 */

/¥ APPL53 %/
RULE1 /*construction of list | o*!
IF ( RULE ?symbol &part)

(initial_symbol ?symbol)
THEN ADD (I o [ ?symbol - ¢ &part ,0])

Figure 5.11 APPL53 Construction of list Ip*

2ndStep: Execution / conflict resolution

(i) Matching
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First premise (RULE ?symbol &part) can be matched by FACT 1,2,3,4.
The second premise can be matched with FACTS.

(ii) Heuristics for premise choice
Now the obvious question is: “which premise to evaluate at this step”? Consider
this question as a constraint satisfaction problem (CSP). All CSP search algorithms
generate successors by considering possible assignments for only a single variable
at each node in the search tree. The so-called minimum remaining value (MRV) is
a common heuristic used in CSP. Like any heuristics, its aim is to reduce the search
space. MRV heuristic chooses an unassigned variable that has the minimum
number of remaining values, at some stage of the assignment process. Here the
number of values assignable to a given premise has to be minimum. MRV heuristic
is also called the most constrained variable (MCV) or fail-first heuristic; the latter
because it picks a variable that is most likely to cause a failure soon, thereby
pruning the search tree. If there is a variable X with zero legal values remaining,
the MRV heuristics will select X and failure will be detected immediately—
avoiding pointless searches through other variables which always will fail when X
is finally selected.

(iii) Instantiation
Here the variable ?symbol is instantiated with value S.

(iv) Propagation
The last instantiation is then propagated in the entire rule.
The first premise will be (RULE S &part).
After propagation, the only facts that can be instantiated with this premise are now
FACT3 and FACT4. Choose the first fact in list which is FACT3 and the variable
&part is instantiated with A B.

(v) Conclusion execution
Now all premises of the rule are instantiated, therefore the system executes the
rule’s conclusion which is the insertion of the fact:

lo [ ?symbol — < &part,0]asly[S — ¢ AB, 0] in the fact base.
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(vi) Rule saturation
EXINF is based on rule saturation, ie. it explores all possible inductions. It
therefore tries to match the second premise with FACT4. So &part is instantiated
with SS and the fact I, [S — +S S,0] is inserted in the fact base. Now there is no
other choice and the first cycle is finished.

(vii) Termination

This basic cycle is repeated until no other new derivations are available.

(3) Parsing final result
The final result is presented in Table 5.1.

Table 5.1: TAB51 Progressive construction of sub-lists for L; = { w = (ab)", n>=1}.

sub-list 0 sub-list 1 sub-list 2 sub-list 3 subi-is sub-list 5 sub-list 6
Sentence lo1 l11 Io1 Ia1 la1 Is1 le1
ababab
S —eSS, 0 A—ae-0 B—bel A— as2 B— be3 A— a-4 B— be5
S —+AB, 0 S —>A«B, 0 S— AB+0 S 5A B2 S 5AB 2 S—A <B4 S—AB 4
A—e*a0 B—-e<b1l S — S5,0 B — b3 S 5SS .0 B— b5 S >SS .2
S — *AB,2 S —»SeS.2 S >SS0
S — +SS.2 S —5SS,0 S — SeS,4
A — a2 S —+ AB,4 S — SeS,2
S —+SS/4 S — SeS,0
A—ea4d S — «SS,6
S —e AB,6
A—e+a,6

Discussions and decisions

Decision: The introduced sentence ababab is accepted because in sub-list 6, we find the
item S — SS «,0.

6.1.2 EXINF third layer

The issue is to automatically classify any unknown sentence using EXINF as

“intelligent” parser. This phase is not treated here since it relies on the learning module

ILSGInf.
6.2 Problem 2 : context-free language (CFL)

6.2.1 EXINF 20d Jayer

Use EXINF 2rd Jayer in order to parse a CFL of the form:
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L, ={w=a"b", n>=1}

A possible grammar for L, is:

G, =(Nz, 25, S, Py)

2 ={a,b}
N, ={A, B, C, S}
P, ={ A—>a
B—b
S — AB
C~>AS
S—->CB
}

(1) Filling the fact base

EXINF stores this grammar as facts as explained in Figure 5.12 below.

I* Application 5.4 */
/* APPL54 */

/* Fact Base for Tested Example 2%/

/* Production rules stored as facts */

FACT RULE A a Il Factl /I
FACT RULEB b Il Fact2 J/

FACT RULES A B /I Fact3 //
FACT RULES C B /I Fact4 [/
FACT RULEC A S /I Fact5 //
FACT initial_symbol S /I Fact6 //

/* Sentence to be parsed and its length */

FACT string aaabbb Il Fact7 1/
FACT length 6 /I Fact8 //

Figure 5.12 APPL54 Fact base for the CFL L, = {w = (a"b", n>=1}

EXINF represents each production rule in the grammar as a fact (Factl, 2, 3, 4, 5, 6). The
sentence to be parsed and its length are also introduced in the fact base (Fact7, 8).

(2) Inference Cycles
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As in Problem 1 above

(3) Parsing final result

Table 5.2 describes the final result

Table 5.2: TAB52 Progressive construction of sub-lists for L, = { w = (a"b", n>=1}

sub-list 0 sub-list 1 sub-list 2 sub-list 3 suhi-#is sub-list 5 sub-list 6
Sentence lo 1y I I3 I4 Is lg
aaabbb
S —«CB, 0 A—ae-0 A— asl A— as2 B— be3 B—b-4 B— be5
S —+AB, 0 S —A*B, 0 S—AB,1 S —»A B2 S —>AB 2 S—CB-,1 S—>CB-0
C —¢AS, 0 C —>A-S, 0 C — AS,1 C — AsS,2 C —> ASe1 C—>AS-0
A—e*a0 B—eb1 B — b2 B —+b,3 S —C+B,1 S— C+B,0
S — +AB,1 S — *AB,2 S — *AB,3 B — b4 B — b5
S —«CB,1 S — «CB,2 S — «CB,3
A—eal A — a2 A — a3
C—AS,1 C — *AS,2 C — *AS,3

Discussions and decisions

Decision: The introduced sentence aaabbb is accepted because in sub-list 6, we find the
item S —CB 0.

6.2.2 EXINF with counter example

Let’s consider the same language L, as above but with a counter example of the form
aabbb.

(1) Fact Base

The fact base is described in Figure 5.13 below:

/* Application 5.5 */
/* APPL55 */
/* Fact Base for Tested Counter Example 1%/

/* Production rules stored as facts */

FACT RULE A a /I Factl //
FACT RULEB b /Il Fact2 /I

FACT RULES A B Il Fact3 //
FACTRULES C B /I Fact4 I/
FACTRULEC A S /I Fact5 //
FACT initial_symbol S /I Fact6 //

/* Sentence to be parsed and its length */

/l Fact7 /]
/I Fact8 //

FACT string aabbb
FACT length 5
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(2) Inference cycles

As in Problem 1 above

(3) Parsing final result

Table 5.3: TAB53 Construction of sub-lists for language L, with counter example

Figure 5.13 APPL55 Fact base for the CFL language L> with counter example

sub-list 0 sub-list 1 sub-list 2 sub-list 3 subi-is sub-list 5
Sentence lo Iy I, I3 N Is
aabbb
S —«CB, 0 A—a-0 A— asl B — be,2 B— be3 empty
S —eAB, 0 S —AeB, 0 S — AB,1 S >AB-1 S —CBe,0
C —+AS, 0 C —AsS, 0 C — AsS,1 C — ASe,0
A—e*a0 B—-e<b1l B — ¢b,2 S — C+B,0
S — «AB,1 S — +AB,2 B — b3
S —+CB,1 S — «CB,2
A—eal A — a2
C —+AS|1 C — *AS,2

Discussions and decisions

Decision: The introduced sentence aabbb is NOT accepted because sub-list 5 is empty.

6.2.3 EXINF third layer for CFL

As for the regular case, the issue relies on the learning module ILSGInf and is treated in
Chapter 6. The processes described above remain exactly the same, but when using
ILSGInf, the grammar is not introduced by the user but automatically generated by
ILSGInf.

7. Conclusion

We have described the design, development and test of a rule-based deductive system,
called EXINF and its coupling with a learning module capable of helping in
grammatical inference. Although the developed system can be used as a general-
purpose first-order logic programming environment, implementing both forward
chaining and backward chaining, its main use here is in parsing. In this regard, at the
most basic or “crude” level, it can parse sentences of a given language. But its most

important aspect is that it is used as an “intelligent” parser i.e. as a grammar constructor
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in conjunction with the learning module ILSGInf. Advanced integration of first-order
logic (FOL) and grammar inference (GI) represents an early step towards truly
intelligent parsers. In Chapter 6, we describe ILSGInf as a useful contribution towards

this distant end.
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CHAPTER 6 ILSGInf

AN INDUCTIVE LEARNING SYSTEM FOR
GRAMMATICAL INFERENCE!

1. Introduction

In Chapter 4, we described the building blocks of a grammatical inference system or the
so-called GASRIA system. These building blocks mainly involve an FOL-based system,
EXINF, used for parsing, coupled with an inductive learning system for grammatical
inference, called ILSGInf. Both systems collaborate with each other. While Chapter 5
described EXINF in detail, this chapter describes the learning solution provided by
ILSGInf. Here, we are concerned with the learning aspect in the proposed GI system.
As an in-depth description of the work presented in the previous chapters, principally
Chapter 4, we now discuss the details of how GASRIA operates through its learning

module ILSGInf, ending up with an induced grammar from positive examples.

1 part of this chapter has been published undeitte&ILSGInf: Inductive learning system for grammatical infere’ In
WSEAS Trans. on CompsSN: 1991-8755, 6(6):991-996, July 200tp://www.wseas.org
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Some machine learning systems attempt to eliminate the need for human intuition in
the analysis of the data, while others adopt a collaborative approach between human
and machine; this latter is what interests us in this chapter. This is so, because human
intuition cannot be entirely eliminated since the designer of the system must specify
how the data is to be represented and what mechanisms will be used to search for a
characterization of the data. This aspect of machine learning can be viewed as an
attempt to automate parts of the scientific method.

The chapter is structured as follows. The problem is formulated in Section 2 while
Section 3 deals with some related works. The proposed solution is described in Section
4, and implemented in Section 5. Our solution is based on the novel partial parsing
algorithm (PPA) and its implementation. Tested examples are treated in Section 6. The
chapter ends with a conclusion reporting the main advantages of the method with

possible future extensions.

2. Related works

2.1 ML and human interaction

Broadly speaking, machine learning (ML) is a field that attempts to develop algorithms
that not only helps in taking the proper action at the actual step but also in improving
future actions. In addition, it is true that many efforts were also provided with an aim to
bring closer machine learning methods and grammars [CKO03], or to integrate these last
two topics within expert systems framework. In spite of the panoply of methods which
exist in the attempt to mimic human knowledge by the machine [Lar02] and to integrate
learning and reasoning [KR97], or to theorize the dynamics of acquisition of languages
by evolution equations [KNNO1], a problem still remains open. We specifically mean
the automatic acquisition of the knowledge required by GI. In this attempt, our primary

interest is to study GI from positive data, following [KMTO00] and [Sak97].
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2.2 Algorithm types

The computational analysis of machine learning algorithms and their performance is a
branch of theoretical computer science known as computational learning theory.
Because training sets are finite and the future is uncertain, learning theory usually does
not yield absolute guarantees of the performance of algorithms. Instead, probabilistic
bounds on the performance are quite common.
In addition to performance bounds, computational learning theorists study the time
complexity and feasibility of learning. In computational learning theory, a computation
is considered feasible if it can be done in polynomial time. There are two kinds of time
complexity results. Positive results show that a certain class of functions is learnable in
polynomial time; negative results show that certain classes cannot be learned. Machine
learning algorithms are organized into taxonomy, based on the desired outcome of the
algorithm. We report the main algorithm types.
* Supervised learning, in which the algorithm generates a function that maps inputs to
desired outputs. One standard formulation of the supervised learning task is the
classification problem: the learner is required to learn (to approximate) the

behavior of a function which maps a vector [X,, X,,,...X,], into one of several

classes by looking at several input-output examples of the function.
 Unsupervised learning, in which an agent which models a set of inputs has no
knowledge of labeled examples because they are not available.

* Semi-supervised learning which combines both labeled and unlabeled examples to
generate an appropriate function or classifier.

* Reinforcement learning, in which the algorithm learns a policy of how to act, given an
observation of the world. Every action has some impact in the environment, and
the environment provides feedback that guides the learning algorithm.

* Transduction, similar to supervised learning, but does not explicitly construct a
function. Instead, it tries to predict new outputs based on training inputs,

training outputs, and test inputs which are available while training.

These de Doctorat d’Etat — The ESLIM Project 111



Chapter 6 — ILSGInf : an inductive learning system for GI

* Learning to learn in which the algorithm learns its own inductive bias based on

previous experience.

3. ILSGInf objectives

ILSGInf is an inductive learning system for GI based on the partial parsing algorithm
(PPA). The main idea behind the PPA is to take full advantage of the syntactic structure
of available sentences. It is based on Earley’s algorithm but divides the sentence into
sub-sentences using partial derivative (PaDes). Given a recognized sentence as
reference, PPA is able to recognize part of the sentence (or sub-sentence(s)) while
rejecting the other unrecognized part. Moreover, PPA contributes to the resolution of a
difficult problem in inductive learning and allows additional search reduction in the
partial derivatives space which is to equal to the length of the sentence, in the worst

case.

4. ILSGInf learning solution

4.1 Basic properties

Inductive learning is a bottom-up process. The process of learning begins with specific
instances and constructs a generalization. Therefore, in order to learn inductively, we
parse all that is parsable in a global sentence. Like most inductive systems, ILSGInf
receives the training instances (here through a human expert), then builds a sufficient
knowledge stored in EXINF facts base, to infer one possible grammar. Thus, ILSGInf
constructs a CFG capable of generating and/or recognizing all possible sentences
produced by the language under consideration. As an example from the literature, the
task undertaken by SubdueGL [Jon04] follows a somewhat similar technique and
attempts to discover common structures in graphs from examples. In our case, it is

useful to consider the following points, as stressed above:
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* ILSGlInf relies on a human expert who sequentially introduces chosen instances. In
our actual work, we obviously suppose that the human expert acts as a
cooperative teacher, i.e. that the teacher avoids giving, on purpose, examples that
make the system wander away from the solution.

* ILSGInf gradually constructs a grammar that generates these examples.

* An initial grammar is generated and eventually updated until the most general
grammar is obtained.

* For the validation of the learning process, our learning system relies on an inference
mechanism. Thus, ILSGInf uses EXINF - a first-order general-purpose inference
engine, developed as a stand-alone system.

» We take advantage of the fact that rules are written in the form A — BC,or A - a.

Search is undertaken in the space of rules in order to infer a grammar capable of

generating these instances and eventually other similar ones.

4.2 ILSGInf architecture

By receiving a series of examples chosen by the expert and using the knowledge
available, ILSGInf improves the facts i.e. the grammar of the language. So it builds the
CFG that generates all the examples. Figure 6.1 shows its block diagram. The class
diagram of ILSGInf is depicted in Appendix 2.
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Figure 6.1 DIAG61 - ILSGInf block diagram
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4.3 General structure of ILSGInf learning strategy

4.3.1 Strategy overview and complexity

At the beginning of the learning process, when no syntactical knowledge about the
language is available, the system makes a direct memorization of the information
provided in the form of initial grammar that is automatically generated. Then it is
refined with the presentation with new sentences. Algorithm 6.1 below shows the steps

involved in ILSGInf learning process. The time complexity of ILSGInf is O(n3) as shown

in Appendix 3.
[* Algorithm 6.1 */
/* ALGO61 */
/* Learning Strategy */
BEGIN

Learning system receives a sentence

linitial grammar construction (ALGO64)

WHILE system receives a sentence DO

Refinement cycle (ALGO62) |

ENDWHILE

[Give improved grammar of the language

END

Algorithm - 6.1 ALGOG61 - ILSGInf learning strategy
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4.3.2 Refinement cycle

The refinement cycle is summarized in Algorithm 6.2 below.

/* Algorithm 6.2 */
/* ALGO62 */

/* Refinement cycle ¥/

BEGIN
[* Partial Parsing Algorithm (PPA) */

[CALL PPA (ALGO65) |

IF sentence is positive
AND analysis gives failure THEN

|Generalization of G (ALGO68)

IF sentence is negative AND analysis gives success
THEN

ISpecialization of G (left as perspective) |

END

Algorithm 6.2 - ALGO62 ILSGInf refinement cycle

Algorithm 6.2 describes the refinement cycle. When a given sentence (sentence) is
received, the PPA is called using the current grammar (grammar). The result of the
analysis is placed in the variable analysis. Two cases might occur which are:
1. First case: failure to recognize a recognizable sentence. We are then dealing with
a grammar which does not recognize a correct sentence. This grammar should be
generalized so that it can generate more sentences than currently done.
2. Second case: recognize a counter-example. This requires a specialization of the
grammar since it recognizes more than needed.
Note that both generalization and specialization represent difficult and current

problems. Here, we are only concerned with generalization, since specialization deals
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with counter-examples, not considered in our work. On the other hand, no counter-

examples are generated by our system.

/* Algorithm 6.3 */
/* ALGO63 */
/* Main steps in Partial Parsing Algorithm (PPA) */

FOR each recognizable sub-sentence

[PARSE sub-sentence using Earley’s algorithm |

[Construct the PaDe’s using each parse tree ALGO67 |
ENDFOR

Algorithm 6.3 - ALGO63 Main steps in partial parsing algorithm (PPA)

4.4 Validation procedure

The grammar built is then used to generate a series of sentences that are validated by
the human expert. This validation constitutes a guarantee that the integration of the
new rule in the grammar does not conflict with its consistency. The system rejects the
new rule as soon as the verification process detects an incorrect string. If no counter-
example is generated, the grammar is considered correct. Otherwise, the level of

generalization is reduced. This represents a form of specialization.

5. ILSGInf implementation

ILSGInf implementation is based on the requirements for obtaining partial parsing for a
given global sentence. We start with the PPA and describe the heuristics for sorting
partial derivatives (PaDe’s) and conclude with the generalization process.

5.1 Initial grammar construction

Initial grammar is of the form : Gy = (No, Zo, Po, S) where :
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No = {A / A non-terminal of derivative tree}
2, = {a/ais a symbol of input character string}

Po = {/ R rule of the form A - BC; or A - a} with A, B, C non-terminals in derivation
tree.

S =initial symbol.

[* Algorithm 6.4 */
/* ALGO64 */

/* Algorithm for the construction of initial grammar Go = (No, %, Po, S) */

Begin

string([i] /* table containi ng the string example */

n [* length of initi al global string */
Initial_symbol:="S" [*creation of init ial symbol, by convention "S"*/
i=1, k=1 [*indices*/

/* Associate to each terminal one non-terminal */
/* create the set of initial rules as follows */
for i=1 to n do
if string[i] is not yet associated with a non-terminal
then create_the_rule non-terminal(k) - string[i]
k:=k+1
endif
endfor

if n<=2 /* Derivation from S* /

then create_rule S - <non-terminal(1)> <non-terminal(2)>

else [*Construction of derivation tree from bottom to top */

create_the_rule non-terminal(k) - <non-terminal(1)> <non-terminal(2)>
i:=3; ki=k+1

while i<n do

create_the_rule non-terminal(k) - <non-terminal(k-1)> <non-terminal(i)>
k:=k+1; i:=i+2
endwhile

[* For string to be recognized, it must derive from root * /

create_rule S - <non-terminal(k-1)> <non-terminal(i)>

endif

end
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Algorithm 6.4 - ALGO64 Algorithm for initial grammar construction

5.2 Partial parsing

The detailed steps of the partial parsing algorithm are described in Algorithm 6.4

below.

[* Algorithm 6.5 */
[* ALGOG65 */
/* Partial Parsing Algorithm */

FinalParse :=empty /*a global sentence to be parsed*/

i:=1 /* index for spanning the global sentence */
head =1 /* head of a sub-sentence to be parse d*
read ( car) [* read character car to be parsed */

while car <> end of sub-sentence do
/* for delimiting the sub-sentence to be parsed */

while car <> end of sub-sentence and car accepted do
sub-sentence = sub-sentence + car
/* generation of sub-sentence sub-sentence  */
i=i+1
read (car )

endwhile

if car refused then

1= Result is complete parsing of sub-sentence */

Earley ( sub-sentence (head, i-1), result )
Concatenate  ( FinalParse, result, car [refused])
head := i+1 /*Start over with sub- sentence following refused
character*/
iz=1 /*Consider another sub-sentence */
else [* it is the end of global sentence*/
Earley (sub-sentence (head, i-1), result )
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Concatenate (FinalParse, result, empty);
endif
endwhile

Algorithm 6.5 - ALGO65 Partial parsing algorithm

5.3 Detailed refinement cycle

5.3.1 Generalization

In our context, we follow [Mug99] for defining generalization as corresponding to
induction and specialization to deduction. The generalization algorithm is described in
Algorithm 6.6 below.

Definition 1: A hypothesis Hg is more general than a hypothesis Hs if and only if Hc
entails Hs. We also say that Hs is more specific than He.

Example
For search algorithms, the notion of generalization and specialization are
incorporated using inductive and deductive inference rules.

Definition2: A deductive inference rule r maps a conjunction of clauses Cc onto a
conjunction of clauses Cs such that Cg entails Cs; r is called a specialization rule.
Examples
Resolution is a deduction rule.

Dropping a clause from a hypothesis realizes a specialization.

Definition3: An inductive inference rule r maps a conjunction of clauses Cs onto a
conjunction of clauses C¢ such that Cg entails Cs;  is called a generalization rule.
Example
Absorption rule is an inductive inference rule. In the absorption rule the conclusion
entails the condition. Note that applying the absorption rule in the reverse direction,

i.e. applying resolution, is a deduction rule.
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/* Algorithm 6.6 */
/* ALGOG66 Generalization */

For each sub-sentence
- Construct the list of partial derivatives ( PaDe’s )
- sort these PaDe’s by increasing order of generality
- choose as hypothesis the rule S — Dy, where Sis the initial symbol and Dy the
most general concatenation of all sub-sentences
- add this rule to the set P of current grammar rules
- use this grammar to generate a set of sentences called test sentences
- if this generated set is accepted by a human expert
then accept this new grammar
- else start again with rule S - Dy ,where Dy isless general than Dy
- if no PaDe has allowed acceptance of this generated set

then consider it in the same way as an initial grammar

Algorithm 6.6 - ALGO66 Generalization

5.3.2 Partial derivatives (PaDe’s) construction

The basics of partial derivatives (PaDe’s) have been treated previously. Construction of
the PaDe’s for a given string reduces this latter. Thus, it replaces the parsed parts by the
corresponding non-terminals. The steps of the construction of a PaDe are described in

Algorithm 6.7 below.

[* Algorithm 6.7 */
1* ALGOG67 PaDe’s construction */

/* This technique is based on the use of lists produced by the syntactic analyzer */

. if partial parsing algorithm ( PPA generates k sets of sub-lists

t hen we have k sub-strings(s) analyzed separately
« each sub-string of length mis analyzed by a sub-list | 0l m
« in each sub-string, we have:
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« the list | o is always present
. if 1 1isempty
then symbol ai of sub-string is not recognized, therefore, the
length of sub-string is equal to 1.
. if the sub-list contains at least | oand!| 1,
then we have found part of the string that is recognized and

which contains at least one symbol.

Algorithm 6.7 - ALGO67 PaDe’s construction

5.3.3 One PaDe construction for a sub-sentence

For each given sub-string, we need the construction of a PaDe. We proceed using

Algorithm 6.8 as follows:

/* Algorithm 6.8 */

/* ALGOG68 PaDe’s construction for a given sentence */

For each sub-list do

if |1 is empty, then the character is not recognized and no
transformation is needed.
if 1 « exists for a sub-string of length k,

and if item"S —ae0"isinit,

if | maxfor the string of length k exists,

and if 0 <max <=k then we proceed as follows :

then sub-string is totally recognized and transformed i nto S.

for j maxto j=1

Consider the items of the form "A —ae,i" for increasing i

Treat these items starting from the most sp ecific a to the most
general

Algorithm 6.8 - ALGO68 PaDe’s construction for a given sub-sentence

5.3.4 Heuristics for sorting PaDe’s

There are two levels when sorting PaDe’s, as explained in Algorithm 6.9 below.
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/* Algorithm 6.9 */
/* ALGOG69 Heuristics for PaDe’s sorting */
/* Level 1 local sorting */

for all sub-sentences
order in a decreasing fashion of generality all PaDe’s

/* Level 2 global sorting */

/* Heuristics search for the adequate rule */

PaDe’s for all sub-sentences produced in Level | above
test this new grammar by generating new sentences
if all generated sentences are accepted
then new rule is accepted
else modify RHS of the rule by considering the followin
the following sub-sentence

order inincreasing fashion of length all sub-sentences of global sentence

initially choose rule whose RHS is the concatenation of the most general

g PaDe of

Algorithm 6.9 - ALGO69 Heuristics for PaDe’s sorting

6. Tested example

6.1 PPA use

Given the following CFG: G = (N, Z, P, S), where :
N={S, A B}, =={a, +},P={S > AB,A— a, Bo+A}

Let w= (at+a)+(a+a) be a global sentence to be parsed. The sub-sentences are:

C.:=(,C=a+a,C3=),Cyi=+,Cs=(,Cs=a+a,Cs=)

Our partial parsing algorithm gives the following results of sub-lists and sub-sentences:
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Table 6.1 TAB61 Progressive construction of sub-lists
sub-list 0 sub-list 1 sub-list 2 sub-list 3
sub- lo1 lia empty |l empty | ls1 empty
sentence 1 | S — +AB, 0
A—ea 0
sub- lo2 l12 I22 I32
sentence 2 |S —+ AB, 0 A—ae*,0 |[B—>+A, 1 |A—>ae-,2
A—ea0 S—>AB,0|A—+a,2 |B—o+A. 1
B —e+A, 1 S —ABe, 0
sub- los lis empty |ls empty | ls3 empty
sentence 3 | S —+AB, 0
A —+a,0
sub- loa lia empty | l24 empty |lss empty
sentence 4 |S —+AB,
A—e+a,0
sub- los l15 empty los empty | I35 empty
sentence 5 |S —+AB, 0
A—e+a,0
sub- los l1e I26 I36
sentence 6 |S —e« AB, 0 A—ae+,0 | Bo+A 1 |[A—ae,?2
A—e+a0 S—>AB,0| A»ea,2 |B—o+A- 1
B—e+A,1 S —ABe, 0
sub- lo7 liz empty |lo7 empty | ls7 empty
sentence 7 | S —+AB, 0
A—e+a,0

6.2 Discussions

For the sub-sentences 1, 3, 4, 5 and 7, we note that:

(i) Iix (x=1,3,4,5,7) is empty. In this case, while no classical algorithm (eg Earley-like)
proceeds further, the PPA looks for other PaDe’s. Because sub-sentences are refused,
then no transformation is needed.

(i) In sub-sentences 2, 6 all Isx (x=2,6) are accepted. In each of these, we find an item of
the form "S—ae,0" which is "S—AB«,0". Then respective sub-sentences are totally

accepted and transformed as S.
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(iii) PaDe’s of the global sentence “(a+a)+(a+a)” have the form : “D = (S)+(S)” Other
PaDe’s of "a+a" are :
a+A fromitem A—ae?2in I3y, (x=2,6)
aB fromitem B—+Ae1in I3, (x=2,6)
A+a fromitem A— ae,0 inLix (x =2,6)
AB fromitem A—ae,0in lixand Iz, (x=2,6)

(iv) Local sorting is done as follows: S, AB, aB, a+A, A+a.

7. Conclusion

We have designed, developed and tested an inductive system for grammar inference.
The central idea is the so-called partial parsing algorithm (PPA) that can parse sentences
not parsed by traditional methods. Comparatively, inductive logic programming (ILP)
requires a prohibitive number of hypotheses to construct a grammar. Our method
suggests a drastic reduction in the number of relevant hypotheses to be considered
while inferring a grammar. Moreover, in our approach, at each step, the system takes
advantage of the syntactic knowledge contained in the global sentence. In this way, the
system avoids the construction of redundant rules and thus improves the quality of the
inferred grammar. In this regard, our implemented and tested system addresses a

difficult issue while proposing a real application with tangible results.
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CHAPTER 7

GASRIA/ILSGInf INTERACTIONS WITH SYSTEMS
CONTOL™®

1. Introduction

In this chapter, we report a framework for inductive learning as used in two different
tields of applications, very far away from formal languages, namely control of machine
drives and robotic self-assembly. We present an alternative method for tackling the
control problem using GI, instead of control law generation using traditional state-space
methods such as state-feedback or adaptive control methods, for instance. We fully
describe one example issued from the first field and give the methodological steps for

solving inference problems for the other field. We rely on graph grammars for robotic

12_ part of this chapter has been published undsiitle “Grammatical inference for robotic self estly — basic methodology”,
Invited conference paper IRecent Advances in Atrtificial Intelligence, KnovgedEngineering and Database
(AIKED’09)", Cambridge, UK, February 21-26, 2009, pp. 442-45BN: 978-960-474-051-2, ISSN: 1790-5109,
http://www.worldses.org/online/2009.httttp://portal.acm.org/citation.cfm?id=1554004

- Above article extended under the title “Gramicatinference methodology for control systenWSEAS Trans. on Comp.
ISSN: 1991-8755, 8(4):610-619, April 2009, httpuiv.wseas.us/e-library/transactions/computers/28®9/4 3.pdf
http://portal.acm.org/citation.cfm?id=1558760
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self-assembly applications. We further propose a four-level methodology for addressing
the issue of Gl-based control and self-assembly ending with graph grammatical
inference.

The Chapter is organized as follows. In Section 2, the issue of controlling a physical
system, namely machine drives, is addressed with concentration on the integration of
GI within the control loop. Section 3 discusses the self-assembly issue. Section 4
describes the methodological steps to follow in order to solve the Gl-based control
problem and robotic self-assembly problem using graph grammars, as an ultimate

result of the actual work.

2. ILSGInf and control systems interaction

2.1 The basic control methodology

Before considering tackling self-assembly issues using graph grammars, we describe a
simple control problem related to machine drives. For that, we need an introductory

account of control systems and their interplay with grammars.

2.1.1 Negative feedback dynamic control

Control is an interdisciplinary branch of engineering and mathematics, which deals
with the behavior of dynamical systems. The desired output of a system is taken as a
reference to be attained or maintained at a specific value. When one or more output
variables of a system need to follow a certain reference over time, a controller generates
the control law (or strategy) necessary to obtain the desired effect on the output of the
system. This is usually done using negative feedback, i.e. a procedure whereby the
actual value is subtracted from the desired value to create the error signal which is
amplified by the controller to allow correction to be undertaken at subsequent stages.

This procedure is therefore done in closed-loop form.

A thermostat is a simple example for a closed-loop negative feedback control system: it

constantly measures the actual temperature and controls the heater's valve setting to
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increase or decrease the room temperature according to the user-defined setpoint. A
simple method, called control law or control strategy, switches the heater either
completely ON, or completely OFF, and an overshoot or undershoot of the controlled
temperature is to be expected, dictated by the physical inertia of the system. A more
expensive method varies the amount of heat provided by the heater depending on the
difference between the required temperature, or setpoint and the actual temperature.

This minimizes over/undershoots.

An anti-lock braking system (ABS) used in vehicle braking technology is a more
complex example, consisting of multiple inputs, conditions and outputs. The aim of the
system is to avoid the brakes from locking irrespective of the external conditions such

as speed of the vehicle, weather conditions, road surface, among others.

2.1.2 Control laws construction

Whatever control strategy is used, the resulted control system must first guarantee the
stability of the closed-loop behavior, i.e. preventing that the system state or output take
unacceptable values. For linear systems, this can be obtained by directly placing the
poles of the closed-loop transfer function. For multiple-input multiple output (MIMO)
systems, pole placement can be performed mathematically using a state space
representation of the open-loop system and calculating a feedback matrix assigning
poles in desired location of the s-plane for continuous systems or the or z-plane for
discrete systems. This is usually done by computer aided control systems design

(CACSD) methods and tools and capabilities [Ham94].

Whatever methods are used for linear systems, one cannot always ensure robustness,
i.e. the ability in coping with small differences between the true system and the nominal
model used for design. Furthermore, all system states cannot in general be measured
and so estimators must be included and incorporated in pole placement design. The
estimators are either observers of Luenberger type for deterministic control or Kalman

filters for stochastic control.
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2.2 Motivations for grammatical control approach

By grammatical control, we mean the use of GI to, either generate the control law or to
detect faulty operating conditions through the detection of abnormal input-output
pairs. GI as applied to control systems at large is relatively a new area of research. As an

indication, a rapid search in IEEE site (http://www.ieee.org) using ieeexplore search

engine and keywords (formal language control + dynamical systems + grammatical
inference) hits one journal paper [MDP01] and two conferences papers. Subsequent

efforts remain quite isolated, [HH09a], [HHO09b], [CKR10].

Any grammar codes for the class of all possible syntactical patterns that belong to the
language produced by the grammar. The basic idea is to design a parser (or classifier)
that recognizes strings accepted by the grammar. There is a mapping signals-to-strings.
Each signal is quantized and each value is given a terminal symbol. Under normal
operations, signals are compatible with the grammar. Once the grammar is learnt, it is
used as a reference by the nominal system. If at a later time, there is some faulty output
from the dynamical system then the faulty generated signals are translated as “odd”
strings, reporting abnormal behavior resulting in anomaly detection. An input of non-
terminals is used for both the nominal and actual dynamical systems. An error is
evaluated between the strings generated by both systems. Two modes are possible. In
the open-loop mode, the grammar generates the working patterns imposed by the
external input command. If this error exceeds some threshold, a fault is reported. A
closed-loop control is used when the control U is generated for an output y to be within

some prescribed values [Ham10]. The basic procedure is described in Figure 7.1 below.
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Figure 7.1 DIAGY1 - Grammatical control used in open-loop/closed-loop modes

As exposed in Chapter 6, ILSGInf classifies negative examples correctly (i.e. as negative)
but does not take them into account for improving the grammar it generates. In other
words, the positive examples help ILSGInf in improving the generated grammar, but
the negative ones do not contribute to this improvement. Now, we discuss the
application of GI to a context-free language (CFL) as a prelude to a grammatical-based
control. We must notice that, although the control system under consideration is simple,
it requires a context-sensitive grammar inference. This is obviously outside the scope of
ILSGInf. Therefore, we need additional knowledge in the form of p-production as

explained below.

2.3 Using grammars to control machine drives

Before discussing self-assembly, we describe the interaction between a simpler control
problem and GI, namely the control of machine drives. Control of machine drives is a
specialized subject in its own right, usually studied within traditional disciplines such
as electrical and / or mechanical / industrial engineering. Based on mathematical
models, this subject encompasses a tremendous body of knowledge since the early days
of cybernetics going back to the late 1940’s. To dynamically control a machine drive is to
let it follow an imposed behavior, automatically calculated in real-time. The main
methodology of dynamic control is therefore to produce the so-called prescribed

feedback control law on the basis of output observations, as and when needed. If the
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environment is unknown, we use adaptive control. For the purpose of this specific
application, we are only concerned with control, using grammars as a methodology. So
far in this thesis, by GI, we intended only deterministic finite automata FA, equivalent
to regular grammars, on the one hand and some context-free grammars (CFGs), on the
other hand. If we refer to Chomsky hierarchy, only type-3 and subclasses of type-2
grammars, respectively, are concerned; as described in Chapter 2. Now, in order to
control drives, these classes of grammars are not sufficient. We need to include larger
classes of grammars such as context-sensitive grammars or type-1. This is a real
challenge since there remain many obstacles in inferring DFAs, let alone context-
sensitive grammars. Because of the difficulty in handling this type of problems,
supplementary human-supplied expert codification is needed in order to account for

this kind of induction.

2.4 Steps for using GI in control systems

To develop a grammatical description and a GI algorithm for controlled dynamical

systems three steps are required [MDP01].

2.4.1 Quantification of the variables

Quantification refers to the creation of alphabets for the output (controlled) variable y
and the control variable U. The objective is to generate the control U in order to
maintain the output y within some prescribed values. A terminal alphabet 2 is
associated to the output variable y and the nonterminal alphabet N to the control
variable U. The feedback control law generates the required value of the input U so as
to keep the output y within a specified range. For so doing, a quantification of the
variables is made, in a discrete way, dividing the variables range into equal intervals

and associating each interval to a symbol in the alphabet.

2.4.2 Production rules

p-type productions are defined by the human expert to be some substitution rules of a

given form. This human-supplied codification is necessary. A p-type production codes
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the evolution of the output variable, depending on its p past values and on the value of
the control variable U. There is, therefore, a functional relationship between the
dynamics of the system and the p-type productions. Note that p-type productions as

described here are not the Proportional-control or P-control action.

2.4.3 Learning

A learning algorithm is necessary to extract the productions from the experimental
data. To obtain a sample of the language, a sequence of control signals is applied to the
system in such a way that the output variable y takes values in a sufficiently wide
region. The signal evolution is then quantified as described above, and a learning

procedure is followed.

2.5 EXINF/ILSGInf in control of machine drives

Since we are at the beginning of the applied work, results mainly concern the
applicability of GI to machine drives as an introductory application of Gl-based control
methodology.

In GI control systems, GI is used as an algorithm through which a grammar is inferred
from a set of sample words produced by the dynamical system considered as the
linguistic source. Therefore in order to apply GI, a dynamical system must be
considered as a linguistic source capable of generating a specific language. The set of
productions encodes the dynamics of the system that generates the language. Any word
that can be derived from the start symbol S followed by a sequence of productions of

the grammar is said to be within the language generated by the dynamical system.
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/* Methodology 7.1 */
/* METH71 */

/* GI Control systems drive */

1. Pre-processing phase
1.1 Quantification of variables
1.2 Production rules
Call first level of EXINF (see Fig. 5.9)
/ * instead of manually-introduced expertise * /
2. Learning using Gl
Call ILSGInf

/* Third level of EXINF is implicitly used */

Figure 7.2 DIAG 71 - Adapted GI control system methodology

From quantification, we derive the alphabet of the language. The operation of the drive
system gives the words that are classified by the human expert as correct, for the case of
positive examples only. Based on these elements, ILSGInf, with the help of a knowledge
base in EXINF, as described in Chapter 6, automatically generates the grammar from

the given examples.

2.6 Comparing GI-controlled systems with other methods

A useful methodological comparison can be made between grammatical methods and
other methods such as observer-based methods of control and soft computing, e.g.

fuzzy control [Hag07].

3. Self-assembly issue

3.1 Self-assembly as a process
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In addition to the use of GI in machine drives, GI can be used in self-assembly. Self-
assembly is the process in which a disordered system of preexisting shapes or
components forms an organized structure or pattern as a consequence of specific, local
interactions among the components themselves, without external direction. It is a
phenomenon in which a collection of particles spontaneously arrange themselves into a
coherent structure. In nature, self-assembly is ubiquitous. For example, cell membranes,
and tissues are self-assembled from smaller components in a decentralized fashion. It is
common to encounter, in the natural world members of decentralized systems that self-
organize in response to environmental stimuli and to each other to produce complex
global behaviors. This is referred to as flocking. Birds and bacteria group behavior are
among the most common examples. Flocking has been used as a metaphor for the study
and development of artificial swarm intelligence-based systems. Self-assembly, as a
facet of flocking is beginning to find its way into science and engineering, through
various disciplines ranging from molecular application encountered in bioinformatics
[Win00], to robot reconfiguration, and stochastic self-assembly, among others.
Assembling geometrical shapes into whatever desired shape is still considered as a
challenging control problem. Assembling shapes into a given pattern can be seen as a
language where the individual shapes are the words and the obtained pattern correspond
to a sentence obeying some specific rules or grammar for generating grammatically
correct sentences. The process of self-assembly can therefore be seen as the automatic
generation of a language. One of the central questions for robotic self-organized
systems is to know whether it is possible to synthesize a set of local controllers that
produce a prescribed global behavior that is sufficiently robust to uncertainties about
the environmental conditions. Since assembling geometrical shapes into some desired
shape can be viewed as a set of sentences of a language, it is therefore not surprising to
address this issue from the standpoint of grammars. More precisely, we propose to
make use of GI. Ultimately, graph grammars are considered as an emerging field that is

believed promising [Kla07].
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3.2 Modes of self-assembly

Self-assembly, as defined above, comes in two modes, passive and active. In passive
self-assembly, particles interact according to their geometry or surface chemistry and
stay in a thermodynamic equilibrium, once this steady-state is reached. Particles
behavior in chemical reactions can be classified in this mode. The geometrical patterns
in the natural world give a clear indication that self-organized systems are omnipresent,
from leaves to snowflakes, all governed by emergence of global patterns based on
smaller patterns or fractals. In active self-assembly, each particle may use energy to
accept some interactions with other particles while rejecting others, according to a
controlling program. Typical examples are multi-robot systems, where small groups of
robots determine the outcome of encounters according to their internal programming

[K1a07]. In our work, we focus on this latter mode of self-assembly.

3.3 Self-assembly central issue

As stressed above, the main question in programmed self-organization concerns the
ability to design rules that govern the global behavior of a system by means of local
rules. In a wide variety of settings, we can design local rules that yield a specified
behavior, with the ability to reason about the correctness of the result. In some
circumstances, we can provide algorithms that automatically generate such a set of
rules. Recent results are obtained in diverse areas ranging from algorithmic self-
assembly of DNA [Win00], to the formation stabilization of multiple agents using
decentralized navigation functions [TKO05]. These results indicate that the emergent
behavior of a self-organizing system can be precisely predicted and controlled, although
there is much work to be done to understand the physics, dynamics, and
implementation of self-organization. Progress in this area promises to open up new
vistas for a completely new era of bottom-up engineering of systems, ranging from
programmable nano-scale molecular machines to controlled swarms of interacting

autonomous robots [KGL06].
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3.4 Graph grammars
3.4.1 Definition of graph grammar

Graphical structures of various kinds, like graphs, diagrams, visual sentences are very
useful to describe complex structures and systems in a direct and intuitive way. Graph
grammars have been invented in the early seventies in order to generalize Chomsky’s
(string) grammars. This generalization consists in gluing graphs instead of
concatenating strings. Graph grammars are evolving graphs from some starting graph,
and whose evolution follows specified production rules.
A graph is a pair (V, E) where:

¢ Vis a finite set called vertices

¢ Eis a finite set with elements in VxV, called edges.
A graph grammar is a pair (Gro, P) where:

¢ Gryis called the starting graph

* Pis a set of production rules
Similarly to a language generated by string grammars, a language generated by a graph
grammar is the set of graphs that can be derived from the starting graph and applying
rules in P. Mathematical accounts of graph grammars are based on algebraic

representation [Ehr79].
3.4.2 Application of graph grammars in self-assembly

From the point of view of graphical programming languages, graph grammars are
useful especially in the storage level. Thus, instead of storing all these graphical
structures as individual objects, we store only their grammar for reasons of compact
size and generative power. While earlier mathematical work focused on string
grammars, more interest is recently based on tree and graph grammars [Hof00]. In self-
assembly applications, graph grammars are used to model the physics of the particles
by describing the outcomes of interactions among them. When used to program the
desirable outcomes of interactions among particles, a graph grammar represents a

description of a communication protocol and is thus intended to be coupled with a
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physical model of the environment that mediates the interactions. In particular, a
suitably designed graph grammar can precisely describe and direct the changing

network topology of a self-organizing system [MKE07].

4. From string GI to graph GI

4.1 Four methodological levels for solution
We propose here a set of steps we believe can handle the issue of Gl-based control
starting from string grammars to graph grammars.
1. Level 1: Extension of known techniques used in GI to graph grammars

1.1 State of the art in GI for regular languages and CFLs

1.2 Concentration on on structural methods such as tree and graph grammars

1.3 Graph grammars and their algebra

1.4 Investigation of the use of inference in graph grammars
2. Level 2: Formal languages for systems control
The main issue here is to consider how formal languages can help in developing novel
techniques in system control. It can be structured as follows:

2.1 Current methods for system control based on formal languages

2.2 Control methods based on (string) grammar inference

2.2.1 Extend and apply ILSGInf-EXINF to control drives
2.2.2 Extend ILSGInf-EXINF application to robot control

Level 3: Robotics self-assembly and graph grammars
The main issue here is to study the phenomenon of self-organizing systems and robotics
self-assembly using graph grammars. It is structured as follows:

3.1 Graph grammars for robotic self-assembly

3.2 Inference in graph grammars for robotics self-assembly
Level 4: GI-based control vs. other control methods

4.1 Gl-based vs. state-feedback control methods (e.g. observer-based)

4.2 Gl-based vs. soft computing-based control (e.g. neural nets and genetic-based)
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4.3 Recommendations and feasibility study

5 Conclusion

The present chapter paves the way towards an objective evaluation and an introductory
study of the effectiveness and usefulness of GI as applied in control systems settings. It
represents an early contribution as far as graph grammars inference integration is
concerned. A unification of the diversified works dealing with robotic self-assembly
while concentrating on graph grammars as an alternative control method is made
possible. This is done using an incremental methodology for control and self-assembly,
starting with string grammatical inference and ultimately leading to inference in graph
grammars. However, the results report only a tiny aspect of the overall issue, since
these describe only the case of context-free language (CFL) inference as (an incomplete)
part of the control of machine drives. Much work is still required on both sides, i.e.
control and formal languages, for the development of fully-integrated systems that

scale up to real-life applications that use context-sensitive grammars.
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CONCLUSION

1. First-order logic (FOL) and grammatical inference (GI)

In this research, we investigated an early attempt in bridging the gap between
inferences as produced by first-order logic (FOL) and machine learning processes as
undertaken by grammatical inference (GI). The aim is programming languages
improvement with a learning layer. For the purpose of integrating the inferential or
declarative approach, as exemplified by Prolog-like logic programming, with machine
learning methods such as those used in GI, we have designed, fully implemented and
tested various algorithms. Specifically, we studied, from design to testing and
debugging, an inductive learning environment ILSGInf supported by, and coupled with
a rule-based deductive reasoning environment, called EXINF. The result of this
integration is the so-called GASRIA system that has been designed and developed as a
GI system for the induction of some CFG’s from positive examples using heuristics.
Thus, the proposed system behaves as a parser with the ability to learn a grammar by
induction, supported by the learning environment ILSGInf, and reasoning through
EXINF, a FOL-based programming environment. As a result, GASRIA takes a set of

sentences from a human teacher and generates a grammar from it. The overall system
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has been successfully applied to various artificial formal languages ending with a class

of context-free languages (CFLs).

2. Inferences and “intelligent” parsing

Parsing according to a specified grammar is a field of many practical applications. Both
programming and natural languages parsing represent the most obvious examples. One
of the major characteristics of grammars is that they have the ability to generalize over a
specific language. This characteristic is very useful, since it offers the possibility to learn
a grammar based on a set of sample sentences without the need to specify every
sentence of a language. This is accomplished by all machine learning algorithms since
they seek to generalize over a set of examples in order to obtain a more general model.

In our case, the general model or inferred grammar is obtained using two
environments; one deductive and the other inductive. Although the deductive
environment EXINF can be used as a general-purpose FOL programming environment,
implementing both forward chaining and backward chaining, its main use here is in
parsing. In this regard, at the most basic or “crude” level, EXINF can parse sentences of
a given language. But its most important role is that it is used as an “intelligent” parser
i.e. as a grammar constructor in conjunction with the inductive environment ILSGInf.
Further integration of FOL and GI represents an important step towards truly
intelligent parsers. Chapter 6 described ILSGInf, a useful contribution towards this

distant end.

3. Partial parsing algorithm

In our parsing approach, the central idea is the so-called partial parsing algorithm (PPA).
In this work, the PPA contributes to infer a CFG and is capable of parsing sentences
that, in our learning settings, are not parsable by existing methods. This is done through

the use of partial derivatives, representing the different items that can be isolated in the
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derivation tree of the sentence under analysis. The PPA, which is designed and

described in detail, is validated using a set of experiments.

4. Performance criteria

In evaluating results of this kind, we can rely on criteria that are traditionally

considered important.

- How efficient and incremental the method/system is?

- How precisely and naturally its generalization process is, after the introduction of
any additional example.

- How well it obtains correct identification in the limit.

- How natural and useful the inferred grammatical rules are.

As shown in the results, the answers to all these questions are satisfactory. Indeed, the

developed overall system is both efficient and incremental. Our method suggests a

drastic reduction in the number of relevant hypotheses needed for inferring a grammar.

Moreover, in our approach, at each step, the system takes advantage of the syntactic

knowledge contained in the global sentence with the help of partial derivatives. In this

way, the system avoids the construction of redundant rules and thus improves the

quality of the inferred grammar.

On the other hand, some methods suffer from the “curse of dimensionality”. For

instance, inductive logic programming (ILP) requires a prohibitive number of hypotheses

to construct a grammar. In our case, the tested languages required a reduced number of

examples for induction, not exceeding five to six examples attesting that the

generalization is realized quite rapidly with no generation of counter examples. It is

shown that this leads, in polynomial time, to correct identification in the limit of the

regular languages and some CFLs, as detailed in the examples treated in the text. On

the other hand, the generated language is not empty since it contains at least the

introduced examples. In this regard, the proposed approach successfully addresses a
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difficult issue. Our additional asset is the use of FOL within the declarative approach in

parsing. Avenues for other applications such as control systems is also made possible.

5. GI, control and self-assembly

In addition to intelligent parsing through the integration of FOL and GI, we studied
also applications that are usually considered far from formal languages, namely control
systems and self-assembly. For Gl-based dynamical control systems, original
knowledge in the form of signal from sensors is translated into rules and facts in the
form of grammar to be induced. For self-assembly systems, graph grammars are used
instead, because they are more suitable to describe geometrical patterns. In both cases,
we are in face of context-sensitive grammar whose inference is not possible by existing
methods. We therefore need additional human expertise. In GI-based control systems,
for instance, we need the humanly-supplied p-type productions. These have to be
coded, updated and used in the inference process. Hence, the use of the declarative
approach in handling this kind of knowledge. We have taken advantage of the
integration of GI and FOL to contribute to the development to GI-based control systems

and self-assembly, as described in Chapter 7.

6. Prospects

6.1 Parsing

Prospectively, much effort is still needed in order to address the difficult issue of
intelligent parsing so as to scale up to real life applications such as development of a
new type of compilers. The combination of GI and FOL can be regarded as one

important step towards the design of intelligent compilers.
6.2 GI-based control and self-assembly

Gl-based control is still in its infancy. For the time being, this approach does not

compare well with the so-called soft computing approach, which is based on
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methods such as neural networks, fuzzy systems, genetic algorithms, and similar
methods. However, the integration of GI and FOL can open new vistas for novel
algorithms on the basis that FOL-based declarative environments are very powerful

in the manipulation of knowledge and its update through inference.

7. Further... for the future

The results obtained can be taken as a good starting point for contributions towards

the following directions of research:
7.1 Computer algebra system (CAS) improvement

In today’s CASs, any problem (integration, differentiation, solution of algebraic
equations...) is solved in the same fixed way irrespective of the number of times it
solves it. A learning layer will make the system solve problems differently on the

basis of previous problems.
7.2 Semantic level of programming languages

So far, we only considered the syntactic level of languages. A good line of research
would be to devise methods that address the semantic level as well. GI helps us to
identify hierarchical structures in programs. These structures identify not only
different units but also how these units interact. Understanding how interaction
between parts of a program helps in adding learning to programming, as one

possible future line of research.

7.3 Grammars and bioinformatics

An interesting theme concerns the interaction between GI and gene expression in
the human cell. Blending methods from control systems and GI will improve our
knowledge of gene regulatory networks (GRNs) whose faulty functioning is

responsible for many devastating human diseases, such as cancer, to cite but one.
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How much knowledge in GI, control systems, and other computerized medical
fields with their various interactions do we need in order to eradicate just one of
these human diseases?

Obviously, this is another story.

This thesis extracted a very tiny drop from the vast ocean of knowledge that can

hopefully help in elucidating this question — for the welfare of all...
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GLOSSARY

English Francais =

Alphabet Alphabet Aoas
Alphabetical order Ordre alphabétique Lﬁq;ei s
Automata Automates il
Automaton Automate il
Automaton, deterministic Automate a pile aSa FoN|
push-down

Automaton, finite Automate fini (déterministe) (Aadad) 83 gana Al
(deterministic)

Automaton, finite (non
deterministic )

Automate fini non
déterministe

Jaadad ye 33 gana Al

Automaton, linear bounded

Automate linéaire borné

33 gana Agad Al

Automata, skeletal tree

Automate d’arbre

Ll 5 il Al

squelettique
Background (or prior) Connaissance de fond (a (Aapsall) 4p8l3) 48 jadll
knowledge priori)

Backus Naur Form Forme de Backus-Naur s - e Sl G
Character in a string Caractere dans une chaine Al e a s
Chomsky normal form Forme normale de Chomsky S gl aldail) (<A
Chaining Chainage Judos
Chaining, backward Chainage arriere @L Sl
Chaining, forward Chainage avant ‘fui Jaliss
Chaining, hybrid Chainage hybride Cpad Judud
Cocke-Younger-Kasami Algorithme de Cocke- - - A S ol A
algorithm Younger-Kasami S
Complement of a language Complément d’un langage Bl Jka
Concatenation of positive and | Concaténation de preuves sdaa gl Y Gava 5
negative evidence positive et négative L)
Clause Clause b ysd
Clauses, conjunction of Conjonction de clauses <8l Jaag
Clauses, disjunction of Disjonction de clauses <l aal) Jaad

Conflict resolution set

Ensemble de résolution de
conflit
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Glossary

Constraint satisfaction Probleme a satisfaction de 2 sl (58 Allise
problem contraintes

Control variable Variable de commande Al yuaia
Definite semantics Sémantique définie 48 yaa YYD
Empty character Caractere vide g oull ol
Emptiness Vide gl Al
Entailment Implication 2l i)
Equivalence Equivalence salal)
Evidence Preuve Jala

“Fail-first” heuristic

Heuristique du premier
échec

gy Jl gy

Finiteness Finitude 300 gana

Grammar Grammaire i)

Grammar, context-sensitive Grammaire a contexte CAlaall (psliaad) gail)
sensitif

Grammar, context-free Grammaire a contexte libre Bl e Jatuall gl

Grammar, formal

Grammaire formelle

LS il

Grammar, hypothesis

Grammaire hypothese

s siall gl

Grammar inference (or

Inférence (ou induction)

(s 8 51y JY iy

induction) grammaticale s sl
Grammar, regular Grammaire réguliere e.LLAI gl
Grammar, size of a Grammaire, taille d’une gl FEEN
Grammar, stochastic context- | Grammaire stochastique a e Jaiuall ) gliall gl
free contexte libre Gl
Grammar, target Grammaire cible aagll gl
Grammar, unrestricted (free) Grammaire, non restreinte oallcagall e gl

(libre)

Inductive inference and

Inférence inductive et

Y'Y 9 L;:A\)ﬁ JYJL.»\

definite semantics sémantique définie Q8 pza
Inductive inference and Inférence inductive et GV g a3 Yl
normal semantics sémantique normale anallas

Inductive inference rule

Regle d’inférence inductive

)i JYaial o 58

Inductive logic programming

Programmation logique
inductive

2V ) Bilie e

Inferred grammar at a given
stage of the inference process

Grammaire inférée a un
niveau donné du processus
d’ inférence

d}m@mdm};s

Information extraction

Extraction d’information

o shaall ) Al

Information retrieval

Recherche d’information

fasbaall (e 2
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Glossary

Initial inferred grammar

Grammaire initiale inférée

aic JSiaal) 15N el

Knowledge base Base de connaissances 44 yrall acld

Knowledge-based system Systéme a base de 4 jaal) 32c 8 alas
connaissance

Language Langage ixl

Language, context-free

Langage, a contexte libre

Bl e Aaiial) 4xl)

Language, domain-specific

Langage spécifique au
domaine

Ol L)) Al

Language defined over an
alphabet

Langage défini selon un
alphabet

Language, formal

Langage, formel

LIS Al

Language generated by a given
given grammar

Langage généré par une
grammaire donnée

Cpra 5oy Bl e 43l

Language, regular

Langage, régulier

Aadatial) 4adl)

Language, recursive
enumerable

Langage énumérable récursif

21l A6 cig g dad

Language, target

Langage cible

Caagl) all

Learning

Apprentissage

La)

Learning, machine

Apprentissage automatique

Y el

Learning, semi-supervised Apprentissage semi- > 8l Al alas
supervisé

Learning, supervised Apprentissage supervisé sl 3l alail)

Unsupervised learning Apprentissage non supervisé 8l ) iy alal)

Left- and right-hand-side of a | Partie gauche et partie droite ) 5 5yl dgall

production de la production Cu_,m

Length of string Longueur de la chaine Al Jgha

Lexical order over strings Ordre lexical dans les Judlud) 3 asma i
chaines -

Logic Logique (3l

Logic, first order

Logique du premier ordre

GJ‘;\}“:&.AJJ\ éL.LA

Logic, propositional

Logique des propositions

Lladll 3haia

Membership query Requéte d’appartenance sl e aDlatiul
Membership problem Probleme d’appartenance claiiy) Allise
Minimum adequate teacher Enseignant adéquat minimal Culia alea jraal

Minimum remaining value

Valeur minimale restante

.~”...,. - “.. d§\

Most constrained variable

La variable la plus contrainte

1258 Y jpaiall

Most general concatenation of
all sub-sentences

La concaténation la plus
générale de toutes les sous-
phrases

Jeall IS0 ac V) (ana il
4 )

Multiple derivation

Dérivation multiple

daxia (3laid)
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Glossary

Non-terminal

Non terminal

S e

Number of character in the

Nombre de caractéres dans

ALuludl A Cagpall 2

string la chaine

Operation Operation lee

Operation, complement Operation, complement JaSall dlae

Operation, intersection Operation, intersection tbufﬂ\ Aalac

Operation, product Operation, produit @ _pall dlac

Operation, symmetric Operation, difference DBl # hall dlee

difference symétrique

Operation, union Operation, union Aty dlee

Output (controlled) variable Variable (commandée) de (4 Saidll) = il e
sortie

Parsing Analyse syntaxique il Jalail)

Parsing, bottom-up Analyse syntaxique, @qcbaﬂ\ Jalasl)
ascendante '

Parsing, hybrid Analyse syntaxique, hybride Omagd) Jaladl)

Parsing, top-down Analyse syntaxique, okl Jalasl)
descendante )

Partial derivative

Dérivée partielle

NN

Partial parsing algorithm

Algorithme a analyse
syntaxique partielle

sl dalaill o5 ) &
ol

Posterior satisfiability
(consistency with negative
evidence)

Satisfiabilité a posteriori
(consistance avec I’évidence
négative)

Gald) asill 4L
(ool Jalal) g alavsl

Posterior sufficiency (or
completeness with regard to
positive evidence)

Suffisance a posteriori
(complétude vis-a-vis de
I"évidence négative)

Al JLeS) ALl 2l
(bl il

Power set Ensemble puissance ic gana (g g
Programming Programmation ey
Programming, declarative Programmation déclarative oy paill dag )
Programming, imperative Programmation impérative 3 3 daa yll
Programming, functional Programmation fonctionnelle dayd gl dag )

Programming, procedural

Programmation procédurale

22yl A

Programming, object-oriented | Programmation orientée Al daa )
objet

Prior necessity Nécessité a priori Baia (5 )9 pa

Prior satisfiability Satisfiabilité a priori Crual) (3aacil] Anlulal)

Probabilistic approximately
correct

Probablement
approximativement correct

Ylaia) zasaall ey Al
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Pumping lemma

Pumping lemma

foall 3 ala

Reversal of a string

Inversion de chaine

AL e Sre

Resolution principle

Principe de résolution

JI 5y lae

Sequence of characters

Séquence de caracteres

oyl (e Al

Set of accepting states

Ensemble des états
acceptants

) J)saY) e gana

Set of characters (terminals) or
alphabet

Ensemble de caracteres
(terminaux) ou alphabet

(Aoleall) oy adl de sana

gl

Set of hypotheses

Ensemble des hypotheses

Set of initial states

Ensemble des états initiaux

Ay J) aY) de sana

Set of positive examples

Ensemble des exemples
positifs

dom pal) ALY de gane

Set of negative examples or

Ensemble des exemples

FERETA e

counter examples négatifs ou contre-exemples salcadll AFY)
Set of non-terminals or Ensemble des non terminaux S i) e sana
variables ou variables <l puaial)
Set of positive (or negative) Ensemble des exemples j) Lua gall AiaY) Ac gana
examples of sentences positifs (ou négatifs) de deall e (Al

phrases

Set of productions or rules

Ensemble de productions ou
de regles

o

Set of rejecting states

Ensemble des états de rejet

il I JI saY) de sans

Set of states

Ensemble des états

JsaY de sana

Set of symbols in the stack

Ensemble des symboles dans
la pile

oSl (3 ) ge )l de sana

Single derivation Dérivation simple a5 (glandl
Starting symbol Symbole initial Y] e )l
State with branch and read Ftat de branchement et de el i g 388 Alla
from input lecture des entrées R A
State with branch and read Etat de branchement et e Bel B 5y Al
from stack lecture de pile oSl
State with no branching but Etat sans branchement mais uSh ST 568 SL Al
only with push avec empilement seul Jasa
Strings of terminals Chaine de terminaux Slileal) e Al
Symbol Symbole BYS)
Terminal Terminal PrE
Text mining Fouille de texte U paill e cuaiil)
Transition function Fonction de transition Jlay) alla
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Appendix 1 : Class of languages inferred by GASRIA

APPENDIX 1
CLASS OF LANGUAGES INFERRED BY GASRIA

Table Al below gives some of the grammars inferred by GASRIA. For each language,
the first row contains a description of the language, the second column contains the set
L+ of positive examples and the third column gives the most general grammar inferred
by the system. Then a number of rows follow containing the sequence of grammars
generated. For each grammar, we give only the set of productions. S is the initial
symbol. We can conclude that the subclass of languages learned by our algorithm is the
linear languages, which incorporate even linear and regular languages. For the search
space, the choice of Chomsky normal form for describing the grammar and the
collection of non-terminal two by two from left to right, we have reduced the search

space to only one possible grammar. Of course, it may not be the best one always.

Table A1 - TABA1: Class of languages inferred by GASRIA

Language L=z Most general grammar
n.n S
ERU ab, aabb, aaabbb Gl
G,=S —AB, A — a, B —b
Glzs — AB, A — a B —b C — AS S — CB
S-> X X, Y, Z, Xty, X-y, G7
|y x*y, Xly, (X),
| z (x+(x-y)/(z*y-x))
| S+S
| S*S
| S-S
| S/S
| (S)
This grammar generates
arithmetic expressions
using X,y,z variables
GO =S —Xx
Glz S —x, S —y
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GZ: S —X, S —Y, S —Z
GB:S — X, S -y, S —>2z S — BS, B — SA, A — +
G4:S — X, S -y, S —2z S — BS, B — SA, A — +,
C —-, D — SC, S — DS
65:8 — X, S -y, S —>z S — BS, B — SA, A — +,
CcC—- D —SC, S — DS, E — * F — SE, S — FS
66: S —x, S —y, S —>z S — BS, B — SA, A — +,
C—- D — SC, S — DS, E — * F — SE, S — FS |
G —/ H —SG, S — HS
G7:S — X, S —y, S —>z S — BS, B — SA, A — +, C
— -, D —SC, S — DS, E — * F — SE, S — FS, G
—/, H —SG, S — HS, | —( J —), K —1S, S — KJ
n_,.2n babb, bbabbbb, G

S bbbabbbbbb, 1

bbbbabbbbbbbb
GO: A — b, B —a, C — AB, D — CA, S — DA,
Glz A — b, B —a, C — AB, D — CA, S — DA,
E — AS, F — EA, S — FA

n 3n abc, babcbbb, G

b"abch™" n =0 bbbabcbbbbbbbbb 1
GO: A — a, B — Db, C — C, D — AB, S — DC
Glz A — a, B — Db, C — C, D — AB, S — DC,
E — BS, F — EB, G —FB, S — GB
aaabbbbb, aab aaabbbbb, aab G1
GOZ A —a, B —b, C — AA, D — CA, E — DB,
F — EB, G — FB, H — GB, S — HB
Glz S —CB
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Appendix 2 : ILSGInf class diagram

APPENDIX 2 — ILSGINF CLASS DIAGRAM

Grammar

terminaux : Terminals;
nonTerminaux : Non_Terminls;
initial_Symbol : Symbl_Initl;
rules <vector>: Rule;

ilsginf( ) : void;

grammar( );

grammar(int);

earley_Analyser(char *, List_Item * & ):

I

Terminals

termnls <vector> : char;
nbr_trmnls : int;

Non_Terminls

terminals(int = 0);
setTerminals (int, char [

gétTerminaIs() :void ;
inTerminals (char) : bool;

nonTerminals <vector> : char;
nbr_non_trmnls : int;

non_Terminls(int = 0) ;
set_n_termnls(int, char[ ]):
void ;

get_n_termnls() : void ;
inNonTermnls(char) : bool ;

Symbl_Initl

symbol : char;

symbl_Initl(char ='S’)
void;

setsymb(char) : void;
getsymbl( ) : char;

Rule

iD_rule : int;
pd : char;
pg : char[maxpg];

rule () ;
setRule(int,char,charf]):
void ;

getlenPg() : int;
getNumber() : int;
printRule(int) : void ;
getPd() : char;
getPg(int) : char;

Figure A2 — DIAG A /2 : ILSGInf class diagram
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Appendix 3 : Complexity of ILSGInf learning

APPENDIX 3 CoMPLEXITY OF ILSGINF LEARNING

ALGORITHM

For complexity calculation of ILSGInf, assume that 7 is the maximum size of examples
in the input sample, and x is the number of examples in it. The estimated time
complexity T(.) of the algorithm is polynomial with respect to the maximum length of
examples in the input sample. The cardinality of the input sample also increases the
time complexity until the most general grammar is found.

T(ILSGInf , n)=

constant+T(  Generate_first grammar . N)+( X-1)*(const+T( PPA Parse, n)+

T(Generalize , n)) (1)

Where:
T( Generate_first_ grammar, ny= 0(3n) = O(n)
T(PPA Parse , n)=max(T( Earley_algorithm , ),

{max(ilg:“, kD[O,n]/ilq =n} +T( PaDe sorting , n)) (2)

T( Earley_algorithm , )= O(n3) (Earley algorithm known complexity)

T(PaDe_sorting ,n)= O(n2) (sorting algorithm known complexity)
{max> k®,  kO[On]/>k=n} = O(nd)
i=1 i=1

Thus (2) gives
T(PPA Parse, n)=max( O(n®), 0( n)+0(n?) )= O(n’)
T(Generalize , n)= o(n)

The final result giving the complexity of ILSGInf is given by:

T(ILSGInf ,n)= O(N) + (XL*O( n3)+0( n)=( xD*O( n’) =0(n

Although, we have been successful in generating a subclass of CFLs in polynomial time,
the actual method cannot deal with more complex CFG’s such as wur. We are now
developing adequate heuristics to improve the proposed method to enlarge the set of

learned languages.
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Abstract
Most programming languages are based on contexgfeanmars (CFGs). The purpose of grammaticaléntssis to infer a grammar, in our situation a CFG,
from positive examples of sentences and possildpriact ones, for a given language. Based on thesefundamental definitions, we propose an
environment followed by an implementation unifyidifferent aspects of programming in machine leagréattings. The central idea of this work is to use
grammatical inference (GI) as a unifying framewfokachieving this integration. Because any progcam be considered as a string of characters, o sh
that the use of grammatical inference can not anlfy different aspects of programming but alsceextto wider areas of applications. The work sumthe
following contributions:

e  State of the art of language theory and of granuakitiference;

» Design and development of an environment integgatiachine learning and first-order logic (FOL);

» Design and development of a FOL system for parsamgences independently or with a learning module;

« Design and development of a heuristics-based pahialetime complexity algorithm enhancing the leamprocess in grammatical inference.

* Interaction between grammatical inference and cbsyrstems.
The present work bears a promising line of reseaattributing further to programming languageggnation, aiming at the improvement of these laggesa
with a machine learning layer.

ACM Categories and Subject Descriptors

D.3.1[Formal definitions and theoryld.3.2[Language classificationdpesign languages$-.4.2[Grammars and other rewriting systeni&rsing,F.4.3

[Formal Languages],2 [Artificial intelligence],1.2.3 [Deduction and theorem provindiference engind.2.6 [Learning],Language acquisition.

Résumé

La majorité des langages de programmation est bmgétes grammaires a contexte libre (CFG). Le drit’inférence grammaticalest d’inférer une
grammaire, en I'occurrence a contexte libre (CRQ)artir d’exemples de phrases correctes et ésrhent incorrectes, d'un langage donné. Partammiede
deux définitions fondamentales, nous proposonsrwiraanement suivi d’une implémentation unifiansdespects différents de la programmation dans le
cadre d'apprentissage automatique. L’idée cenualeravail est donc d'utiliser I'inférence gramneale comme trame unificatrice pour réaliser cette
intégration. Dans la mesure ou tout programme @eatconsidéré comme une suite de caracteresmatsons que l'utilisation de I'inférence grammatée
peut non seulement unifier des aspects différemts gorogrammation mais aussi s'étendldBautres domaines plus vastes. Le travail s’ari@utour des
contributions suivantes :

Etat de l'art de la théorie des langages ; Etatadede I'inférence grammaticale ; Etude et dépglement d’'un environnement intégrant apprentissage
logique du premier ordre ; Etude et développement systéme fonctionnant en logique du premier@adiissant comme analyseur syntaxique autonome ot
en collaboration avec un module d’apprentissagedd-et implémentation d’un algorithme & complepitdynomiale, basé sur des heuristiques et deatiné
I'amélioration du processus d’apprentissage danadee de l'inférence grammaticale ; Interactioecaes systemes de commande automatique.

Le présent travail est porteur d'une ligne promest¢ede recherche, et contribd@vantage a l'intégration des langages de progréommarojetant de les
enrichir par la caractéristique d’apprentissagdeyuri fait actuellement défaut.

Catégories et descripteurs de sujets de ACM

D.3.1 [Définitions formelles],D.3.2 [Classifications de langagegjonception des langageB.1.1 [Modéles de calcul]f.4.2 [Grammaires et systemes de
réécriture],analyse syntaxiqué.4.3 [Langages formels],2 [Intelligence artificielle],l.2.3 [Déduction et démonstration de théorémesjteur d'inférence
1.2.6 [ApprentissageJacquisition de langages




