

MINISTERE DE L’ENSEIGNEMENT SUPÉRIEUR
ET DE LA RECHERCHE SCIENTIFIQUE

UNIVERSITÉ FERHAT ABBAS – SÉTIF

UFAS (ALGÉRIE)

THESE

Présentée devant la Faculté des Sciences
Département d’Informatique

Pour l’obtention du diplôme de

DOCTORAT D’ÉTAT

OPTION : INTELLIGENCE ARTIFICIELLE

Par

Chafia KARA-MOHAMED (épouse HAMDI-CHERIF)

THEME

A development environment integrating algorithms,
inferences and learning – ESLIM Project

Soutenue le : 01/07/2012 Devant la commission d’examen

A. BOUKERRAM Maître de Conférences U. FA, Sétif Président

A. HAMDI-CHERIF Professeur Qassim U., Arabie S. Rapporteur

M. BENMOHAMMED Professeur U. Constantine Examinateur

A. REFOUFI Maître de Conférences U. FA, Sétif Examinateur

M. ALIOUAT Maître de Conférences U. FA, Sétif Examinateur

 ا�ه�اء

ُ��نَ ِ�َ���ِ�ْ� ُ���ً�ا وَ ِ�
ا�ِ��َ� "	 إ���ــَـَ�ًِ�"...

 و ا�����، ��� ا��ّ� ���ن	���� ��...

 ...�ً���� ������ إ�%...��� او !$#یً� ، ! 	�� ��'...

 ��0 أا �� �� آ-�ً��� ,ّ�ا�+ی� ا�*�ی(�� وا�#يّ...

�� ح�3 ا��2 زو�0 ا�+ي �ّ�...)
��

�� آ�9 !*5ن ا8	�ة واح#56ا!� ا��5ا!� �ّ�أ... � ة(

 ��ة و ا�ّ<���= و ا�>ّ;(�� ا�ّ:أ�6 ا�*��� ا�+ي �ّ�...

�� اBرادة ا�$5یّ?�� ا�+ي �ّ�أ�6 ا�ّ<...)=

 اآ��ً�أن ی*5ن ?�� ّ<ی(*� ��(��5 آ�9 و أوCدي ا�+ی� �ّ�...

This work is dedicated to:

…Those who “spend their nights prostrated or standing in prayers”

Those whose knowledge came from the Source-Of-All

In human and intelligible form

Springing out of the profoundness of Self

For guidance, light and salvation

Far from the whims of mundane glory …

Table of contents

Thèse de Doctorat d’État – The ESLIM Project I

TABLE OF CONTENTS

LIST OF SYMBOLS AND ABREVIATIONS ... I

LIST OF FIGURES ... IV

LIST OF TABLES ... VI

LIST OF ALGORITHMS... VII

ACKNOWLEDGEMENTS .. IX

 X ... م#"!

ABSTRACT ... XI

RESUME .. XII

CHAPTER 1 INTRODUCTION ... 1

1. PRELIMINARIES ... 1

2. MOTIVATIONS ... 2

3. BACKGROUND AND OBJECTIVES.. 3

3.1 Process of inference ... 3

3.1.1 Inference in symbolic settings .. 3

3.1.2 Inference in knowledge-based systems (KBSs) .. 4

3.1.3 Inference in learning settings ... 4

3.2 Specific goals ... 5

3.2.1 Avoiding the “general problem solving (GSP)” syndrome .. 5

3.2.2 Syntactic level - first .. 6

3.3 Main tools .. 7

3.3.1 Grammars and parsing ... 7

3.3.2 Declarative programming and FOL .. 8

4. ORGANIZATION OF THE MANUSCRIPT .. 8

CHAPTER 2 SOME CONCEPTS OF FORMAL LANGUAGES 11

1. INTRODUCTION ... 11

2. PRELIMINARIES ... 12

3. LANGUAGES ... 13

3.1 Operations on languages .. 13

3.2 languages models ... 14

3.2.1 Formal grammars .. 14

3.2.2 Automata .. 14

3.2.2.1 Finite state automata (FSA) ... 15
3.2.2.2 Push-down automata (PDA) ... 15

3.2.3 Regular expression... 16

Table of contents

Thèse de Doctorat d’État – The ESLIM Project II

3.2.4 Topological consideration ... 17

4. CHOMSKY LANGUAGES HIERARCHY .. 17

4.1 Type 3 - Regular languages .. 17

4.2 Type 2 - Context-free languages .. 17

4.3 Type 1 - Context-sensitive languages ... 18

4.4 Type 0 - Unrestricted (free) languages ... 18

5. REGULAR LANGUAGES... 19

5.1 Introductory example .. 19

5.2 Characteristics of regular languages ... 20

6. CONTEXT-FREE LANGUAGES (CFLS) ... 21

6.1 Examples of CFLs ... 21

6.2 Applications of CFLs ... 22

6.3 Characteristics of CFLs .. 22

6.4 Relationship between regular and CFLs.. 23

7. PARSING .. 24

7.1 Top-down parsing .. 24

7.2 Bottom-up parsing.. 25

7.3 Hybrid parsing .. 25

8. CONCLUSION ... 25

CHAPTER 3 STATE OF THE ART OF GRAMMATICAL INFERENCE 27

INTRODUCTION ... 27

2. THEORETICAL MODELS FOR GRAMMAR INFERENCE ... 28

2.1. Identification in the limit (learning from text) .. 29

2.1.1 Definition .. 29

2.1.2 Characteristics ... 30

2.2 Active learning .. 30

2.2.1 Definition .. 31

2.2.2 Characteristics of active learning ... 32

2.3 PAC learning ... 32

2.3.1 Definitions .. 32

2.3.2 Characteristics ... 33

2.4 Relation between active learning and PAC learning .. 33

3. ALGORITHMS FOR GI .. 34

3.1 Algorithms for regular grammars ... 34

3.1.1 Complexity for inferring regular grammars ... 35

3.1.2 Learning FA .. 36

3.1.2.1 Trakhtenbrot and Barzdin .. 36
3.1.2.2 Gold’s algorithm... 36
3.1.2.3 RPNI algorithm ... 36
3.1.2.4 Traxbar algorithm .. 37
3.1.2.5 Dupont’s lattice setting.. 37
3.1.2.6 Evidence Driven State Merging (EDSM) Heuristic ... 37
3.1.2.7 Data-driven heuristic ... 38

3.1.3 Learning non-deterministic finite state automata NFA .. 38

3.1.4 Learning quantum finite automata ... 39

3.2. Algorithms for CFGs .. 39

Table of contents

Thèse de Doctorat d’État – The ESLIM Project III

3.2.1 Difficulty of CFG inference .. 40

3.2.2 Algorithms for CFG inference .. 41

3.2.2.1 Complexity ... 41
3.2.2.2 Patterns in strings ... 42
3.2.2.3 Extension of regular languages ’results to CFLs ... 42
3.2.2.4 Use of artificial intelligence techniques .. 43
3.2.2.5 Stochastic CFGs (SCFGs) .. 43
3.2.2.6 Algorithms that uses alternative representations for languages .. 44
3.2.2.7 Algorithms that rely on structured data .. 45
3.2.2.8 ILSGInf : Inductive Learning System for Grammatical Inference ... 45

4. APPLICATIONS OF GRAMMATICAL INFERENCE TECHNIQUES ... 47

4.1 Structured pattern recognition ... 47

4.2 Computational linguistics .. 47

4.3 Speech recognition ... 48

4.4 Automatic translation .. 48

4.5 Document management .. 48

4.6 Data and text mining ... 49

4.6.1 Text mining ... 49

4.6.2 Text compression ... 49

4.6.3 RPNI and structure induction ... 50

4.7 Biological interfaces ... 50

4.7.1 Grammatical structures in biological sequences .. 50

4.7.2 DNA computing ... 50

4.8 Map learning ... 51

4.9 Self assembling ... 51

4.10 Software engineering .. 52

4.11 Soft computing and evolutionary multiobjective optimization (EMO) 52

CHAPTER 4 GRAMMATICAL INFERENCE WITH GASRIA 53

1. INTRODUCTION ... 53

2. PROBLEM FORMULATION AND BASIC METHODS .. 54

2.1 GASRIA Objectives ... 55

2.2 Methods used .. 56

3. RELATED WORKS: THREE INTERCONNECTED FIELDS .. 56

3.1 Formal languages approach .. 56

3.2 Machine Learning (ML) .. 58

3.2.1 Inductive and deductive learning .. 58

3.2.2 Some ML/data mining methods ... 58

3.3 Inductive logic programming (ILP) .. 59

4. GI VS. ILP .. 60

4.1 Problem of inductive inference ... 60

4.1.1 Inductive inference and normal semantics ... 60

4.1.2 Inductive inference and definite semantics .. 62

4.2 Formalized ILP approach .. 63

4.3 GI formulated in ILP framework .. 64

4.4 GI - ILP interplay .. 64

5. GASRIA ARCHITECTURE ... 65

Table of contents

Thèse de Doctorat d’État – The ESLIM Project IV

5.1 GASRIA modes of operation .. 65

5.1.1 Overall block diagram .. 65

5.1.2 GASRIA class diagram .. 67

5.2 Learning mode: ILSGInf .. 67

5.3 Exploitation mode: EXINF .. 68

5.4 Fact base ... 68

5.4.1 Initial symbol and the grammar of the language.. 68

5.4.2 Additional information .. 69

5.5 Rule base .. 69

5.5.1 Vocabulary and rule base syntax .. 69

5.5.5.1 Vocabulary ... 69
5.5.5.2 Rule base syntax... 70

5.5.2 Automatic syntactic analysis .. 70

6. PARSING .. 71

6.1 Notation .. 71

6.2 Earley’s algorithm .. 71

6.2.1 The idea ... 71

6.2.2 Detailed steps of Earley’s algorithm .. 73

6.2.3 Correctness ... 74

6.2.4 Earley and CYK algorithms ... 74

6.3 Additional definitions ... 75

6.3.1 Types of sentences and partial derivatives (PaDe’s) .. 75

6.3.2 Derivation trees ... 75

6.4 Motivation for using PaDe’s .. 76

7. LEARNING IN GASRIA ... 77

7.1 Learning characteristics ... 77

7.2 Learning strategy implementation .. 77

8. RESULTS AND DISCUSSION .. 77

8.1 GASRIA implementation .. 77

8.2 Example .. 78

8.2.1 Learning phase: ILSGInf use .. 79

8.2.2 Exploitation phase: EXINF use ... 80

9. CONCLUSION ... 81

CHAPTER 5 INFERENCES WITH EXINF INTELLIGENT PARSING ISSUES 83

1. INTRODUCTION ... 83

2. EXINF OBJECTIVES ... 84

2.1 Inferential characteristics .. 85

2.2 Parsing characteristics ... 85

2.3 Complementary characteristics .. 86

3. FIRST-ORDER LOGIC (FOL) CONSIDERATIONS .. 86

3.1 Rule-based deduction systems .. 86

3.1.1 Rules and operation .. 86

3.1.2 Basic components of rule-based systems ... 87

3.2 Knowledge-base engineering issues .. 88

3.2.1 Knowledge acquisition ... 88

3.2.2 Knowledge explanation .. 89

3.3 Forward chaining (FC .. 89

Table of contents

Thèse de Doctorat d’État – The ESLIM Project V

3.4 Backward chaining (BC) ... 90

3.5 Backward chaining vs. forward chaining .. 91

4. EXINF ARCHITECTURE ... 92

4.1 Design diagrams ... 92

4.1.1 Use case diagram ... 92

4.1.2 Class diagram ... 93

4.3 The three EXINF layers .. 93

4.3.1 EXINF first layer ... 93

4.3.2 EXINF second layer ... 94

4.3.3 EXINF third layer .. 94

5. EXINF - KBS USED FOR PARSING .. 97

5.1 EXINF as a knowledge-based system (KBS) ... 97

5.2 Declarative Earley’s algorithm: rule base .. 97

5.2.1 Summarized Earley’s algorithm .. 97

5.3 EXINF reasoning mechanism ... 98

5.3.1 Forward chaining implementation ... 99

5.3.2 Example .. 100

6. APPLICATIONS ... 101

6.1 Problem 1: regular language .. 101

6.1.1 EXINF first and second layers ... 101

6.1.2 EXINF third layer .. 104

6.2 Problem 2 : context-free language (CFL) .. 104

6.2.1 EXINF 2nd layer .. 104

6.2.2 EXINF with counter example ... 106

6.2.3 EXINF third layer for CFL .. 107

7. CONCLUSION .. 107

CHAPTER 6 AN INDUCTIVE LEARNING SYSTEM FOR GRAMMATICAL
INFERENCE - ILSGINF ... 109

1. INTRODUCTION ... 109

2. RELATED WORKS ... 110

2.1 ML and human interaction ... 110

2.2 Algorithm types .. 111

3. ILSGINF OBJECTIVES .. 112

4. ILSGINF LEARNING SOLUTION ... 112

4.1 Basic properties ... 112

4.2 ILSGInf architecture ... 113

4.3 General structure of ILSGInf learning strategy ... 115

4.3.1 Strategy overview and complexity ... 115

4.3.2 Refinement cycle .. 116

4.4 Validation procedure ... 117

5. ILSGINF IMPLEMENTATION ... 117

5.1 Initial grammar construction ... 117

5.2 Partial parsing ... 119

5.3 Detailed refinement cycle ... 120

5.3.1 Generalization ... 120

5.3.2 Partial derivatives (PaDe’s) construction ... 121

Table of contents

Thèse de Doctorat d’État – The ESLIM Project VI

5.3.3 One PaDe construction for a sub-sentence .. 122

5.3.4 Heuristics for sorting PaDe's ... 122

6. TESTED EXAMPLE ... 123

6.1 PPA use .. 123

6.2 Discussions .. 124

7. CONCLUSION ... 125

CHAPTER 7 GASRIA/ILSGINF INTERACTIONS WITH SYSTEMS CONTROL127

1. INTRODUCTION ... 127

2. ILSGINF AND CONTROL SYSTEMS INTERACTION ... 128

2.1 The basic control methodology ... 128

2.1.1 Negative feedback dynamic control .. 128

2.1.2 Control laws construction ... 129

2.2 Motivations for grammatical control approach .. 130

2.3 Using grammars to control machine drives .. 131

2.4 Steps for using GI in control systems .. 132

2.4.1 Quantification of the variables ... 132

2.4.2 Production rules .. 132

2.4.3 Learning .. 133

2.5 EXINF/ILSGInf in control of machine drives .. 133

2.6 Comparing GI-controlled systems with other methods 134

3. SELF-ASSEMBLY ISSUE ... 134

3.1 Self-assembly as a process .. 134

3.2 Modes of self-assembly ... 136

3.3 Self-assembly central issue .. 136

3.4 Graph grammars ... 137

3.4.1 Definition of graph grammar ... 137

3.4.2 Application of graph grammars in self-assembly ... 137

4. FROM STRING GI TO GRAPH GI .. 138

4.1 Four methodological levels for solution .. 138

5 CONCLUSION .. 139

CONCLUSION ... 141

1. FIRST-ORDER LOGIC (FOL) AND GRAMMATICAL INFERENCE (GI) 141

2. INFERENCES AND “INTELLIGENT” PARSING .. 142

3. PARTIAL PARSING ALGORITHM .. 142

4. PERFORMANCE CRITERIA .. 143

5. GI, CONTROL AND SELF-ASSEMBLY ... 144

6. PROSPECTS .. 144

6.1 Parsing .. 144

6.2 GI-based control and self-assembly ... 144

7. FURTHER… FOR THE FUTURE .. 145

7.1 Computer algebra system (CAS) improvement ... 145

7.2 Semantic level of programming languages ... 145

Table of contents

Thèse de Doctorat d’État – The ESLIM Project VII

7.3 Grammars and bioinformatics ... 145

REFERENCES .. 147

GLOSSARY .. 155

APPENDIX 1 - CLASS OF LANGUAGES INFERRED BY GASRIA 161

APPENDIX 2 – ILSGINF CLASS DIAGRAM ... 163

APPENDIX 3 COMPLEXITY OF ILSGINF LEARNING ALGORITHM 164

INDEX ... 165

List of symbols and abbreviations

Thèse de Doctorat d’État – The ESLIM Project i

LIST OF SYMBOLS AND ABREVIATIONS

ai

a1…an

ω
ω, r, l, x, v
|ω|
ωR
|ω|a

≤alpha

Character in a string (i=1,2,3…)
Sequence of characters
String: a sequence of characters ω=a1…an
Strings of terminals
Length of string ω
Reversal of ω=an…a1
Number of character a in the string ω
Alphabetical order over elements of Σ

≤length-lex Length-lexical order over strings

≤lex Lexical order over strings

≤prefix Prefix order over strings

≤subseq
→

Subsequence order over strings
Symbol separating left- and right-hand-side of a production

⇒ Single derivation

 Multiple derivation
╞ Entailment
α, β Strings formed by terminals and non-terminals
a

1
a

2
…a

n

B
BC

A string formed by n characters
Background (prior) knowledge
Backward chaining

Bpop State with branch and read symbol from stack operation

Bread State with branch and read symbol from input operations
BNF
CG, CS

Backus Naur Form
Conjunction of clauses

CFG Context-free grammar
CFL Context-free language
CL Class of languages
CNF
CRS
CYK
CSP
Dg, Dg’

Chomsky normal form
Conflict resolution set
Cocke-Younger-Kasami algorithm
Constraint satisfaction problem
Most general concatenation of all sub-sentences

δΝ Transition function

DPDA, PDA
DSL

−+ ∪= EEE

Deterministic push-down automaton, non deterministic
Domain-specific language
Evidence as the concatenation of positive and negative evidence

FA Set of accepting states, a subset of Q

List of symbols and abbreviations

Thèse de Doctorat d’État – The ESLIM Project ii

FA or DFA Finite automaton (deterministic)
FR

FC
Set of rejecting states, a subset of Q
Forward chaining

FOL First order logic
|G| Size of G
G
G0
Gi

Symbol for grammar
Initial inferred grammar
Inferred grammar at stage i (i=1,2,…) of the inference process

GI Grammar inference (or induction)
g Set of grammars
Gh
Gt

Hypothesis grammar
Target grammar

H
h

Set of hypotheses
One hypothesis, element of H

Γ Set of symbols in the stack
I
IE
IR

Set of initial states, a subset of Q
information extraction
information retrieval

ILP Inductive logic programming
KB
KBS
LHS

Knowledge base
Knowledge-based system
Left-hand side

L Language defined over an alphabet
L* L* = ∪i∈N Li

L(G) Language generated by grammar G
λ, ε Empty character
L’ Complement of L
L1/L2 Complement of L2 in L1

LBA Linear bounded automaton
L+
L-

Set of positive examples of sentences
Set of negative examples or counter examples of L

Ln Power set of L, L0= {λ} and Ln+1 = L.Ln

MAT
MCV

Minimum adequate teacher
Most constrained variable

MQ
MRV

Membership query
Minimum remaining value, used in constraint satisfaction problem

NBpush States with no branching but only push operations
NFA
N

Non deterministic finite automaton
Set of non-terminals or variables

P Set of productions or rules

List of symbols and abbreviations

Thèse de Doctorat d’État – The ESLIM Project iii

PAC Probabilistic approximately correct
PaDe Partial derivative
PPA Partial parsing algorithm
PTA Prefix tree acceptor
Q
R
RHS

Set of states
Inductive inference rule
Right-hand side

Σ
Σ∗

Set of characters (terminals) called alphabet
All string of different lengths (including λ) formed over Σ

S
STA

Starting symbol, special symbol in V
Skeletal tree automata

SCFG
TM

Stochastic context-free grammar
Text mining

TL
U
y

Target language
Control variable
Output (controlled) variable

List of figures

Thèse de Doctorat d’État – The ESLIM Project iv

LIST OF FIGURES

CHAPTER 2: SOME CONCEPTS OF FORMAL LANGUAGES

Figure 2.1 DIAG21 - DFA that recognizes strings containing 001

Figure 2.2 DIAG22 - PDA recognizing {ωωR | ω ∈ {0, 1}*}

CHAPTER 3: SURVEY OF GRAMMATICAL INFERENCE (GI)

Figure 3.1 Methodology 31 - METH31 Methodological steps: inference problem

Figure 3.2 Methodology 32 - METH32 Combinatorial probl. associated with DFA

Figure 3.3 Diagram 31 - DIAG31 – ILSGInf within existing GI methods

CHAPTER 4: GRAMMATICAL INFERENCE WITH GASRIA

Figure 4.1 Methodology 41 – METH41 Methodological steps used in GASRIA

Figure 4.2 Methodology 42 – METH42 Inductive inference and normal semantics

Figure 4.3 Methodology 43 – METH43 Inductive inference and definite semantics

Figure 4.4 Methodology 44 – METH44 General ILP approach

Figure 4.5 Methodology 45 – METH45 GI problem formulated as an ILP problem

Figure 4.6 Architecture 41 – ARCH41 GASRIA architecture

Figure 4.7 Architecture 42 – ARCH42 GASRIA class diagram

Figure 4.8 Methodology 46 – METH46 Fact base syntax

Figure 4.9 Methodology 47 – METH47 Fact base structure

Figure 4.10 Methodology 48 – METH48 Syntax used by EXINF

Figure 4.11 Diagram 41 – DIAG41 Derivation tree of G

Figure 4.12 Methodology 49 – METH49 Grammar generation

Figure 4.13 Methodology 4.10 – METH410 Refining cycle in grammar generation

CHAPTER 5: INFERENCES WITH EXINF - INTELLIGENT PARSING ISSUES

List of figures

Thèse de Doctorat d’État – The ESLIM Project v

Figure 5.1 Methodology 51 - METH51 Fact base

Figure 5.2 Methodology 52 - METH52 Rule base

Figure 5.3 Methodology 53 - METH53 Heuristics for learning from an expert

Figure 5.4 Methodology 54 - METH54 Heuristics in a rule-base system

Figure 5.5 Methodology 55 - METH55 Backward chaining vs. forward chaining

Figure 5.6 Architecture 51 - ARCH51 EXINF Use case diagram

Figure 5.7 Architecture 52 - ARCH52 EXINF as a three-layered system

Figure 5.8 Architecture 53 - ARCH53 EXINF as a detailed three-layered system

Figure 5.9 Application 51 - APPL51 Example of facts and rules

Figure 5.10 Application 52 - APPL52 Fact base for RL L1 = { w = (ab)n, n>=1}

Figure 5.11 Application 53 - APPL53 Construction of list l0*

Figure 5.12 Application 54 - APPL54 Fact base for CFL L2 = { w = (a nbn, n>=1}

Figure 5.13 Application 55 - APPL55 Fact base for CFL L2 with counter example

CHAPTER 6: ILSGInf - AN INDUCTIVE LEARNING SYSTEM FOR GI

Figure 6.1 Diagram 61 – DIAG61 ILSGINF block diagram

Chapter 7: GASRIA/ILSGInf INTERACTIONS WITH SYSTEMS CONTOL

Figure 7.1 Diagram 7.1 – DIAG71 GI control in open-loop/closed-loop modes
Figure 7.2 Methodology 71 – METH71 Adapted GI control system methodology

List of tables

Thèse de Doctorat d’État – The ESLIM Project vi

LIST OF TABLES

CHAPTER 2: GRAMMATICAL INFERENCE WITH GASRIA

Table 2.1 TAB21 – Chomsky languages hierarchy

CHAPTER 4: GRAMMATICAL INFERENCE WITH GASRIA

Table 4.1 TAB41 Partial derivative construction for (a+b) sentence based on a+b

CHAPTER 5: INFERENCES WITH EXINF - INTELLIGENT PARSING ISSUES

Table 5.1 TAB51 Progressive construction of sub-lists

Table 5.2 TAB52 Construction of sub-lists for L2 = { w = (a nbn, n>=1}

Table 5.3 TAB53 Construction of sub-lists for L2 with counter example

CHAPTER 6: ILSGInf - AN INDUCTIVE LEARNING SYSTEM FOR GI

Table 6.1 TAB61 – Progressive construction of sub-lists

APPENDIX 1: CLASS OF LANGUAGES LEARNED BY GASRIA

Table A1 TABA1 - Class of languages inferred by GASRIA

List of algorithms

Thèse de Doctorat d’État – The ESLIM Project vii

LIST OF ALGORITHMS

CHAPTER 4: GRAMMATICAL INFERENCE WITH GASRIA

Algorithm 4.1 ALGO41 – Earley’s algorithm

CHAPTER 5: INFERENCES WITH EXINF - INTELLIGENT PARSING ISSUES

Algorithm 5.1 ALGO51 Declarative Earley’s algorithm

Algorithm 5.2 ALGO52 Implemented forward chaining

CHAPTER 6: ILSGInf - AN INDUCTIVE LEARNING SYSTEM FOR GI

Algorithm 6.1 ALGO61 ILSGInf learning strategy

Algorithm 6.2 ALGO62 ILSGInf refinement cycle

Algorithm 6.3 ALGO63 Main steps in partial parsing algorithm

Algorithm 6.4 ALGO64 Algorithm for initial grammar construction

Algorithm 6.5 ALGO65 Partial parsing algorithm

Algorithm 6.6 ALGO66 Generalization

Algorithm 6.7 ALGO67 Partial derivatives (PaDe’s) construction

Algorithm 6.8 ALGO68 PaDe’s construction for a sub-sentence

Algorithm 6.9 ALGO69 Heuristics for PaDe’s sorting

Thèse de Doctorat d’État – The ESLIM Project ix

ACKNOWLEDGEMENTS

Praise to Almighty Allah, Source and Goal of our true search in this life; praise for

sustaining us in all our endeavors – throughout our lives. Although many people

and bodies have to be thanked for their help in the accomplishment of this work,

some have to be singled out. I would like to thank my supervisor Dr. A. Hamdi-

Cherif for his guidance and unfading support throughout this many-year research.

A special thank go to the members of the examination panel, namely Dr. A.

Boukerram, Prof. M. Benmohamed, Dr. M. Aliouat and Dr. A. Refoufi; all of them

got into the details of deciphering the manuscript and sending valuable constructive

criticisms. My special thanks go to the administrative and scientific bodies of

Université Ferhat Abbas, Sétif, especially Computer Science Department, where this

work was initially formulated and came into conclusion. I also thank Computer

College at Qassim University, Saudi Arabia, where some parts of research have been

conducted, although, in most times at odd hours and within the hard constraints of a

very busy working life. Many thanks go to our long standing family’s friend

Mohamed-Najib Harmas for the difficult administrative cobweb-like tasks he went

through before this research was allowed to be defended, several months after its

total completion. My heartfelt thanks are addressed to all members of my small and

larger families for all their support and patience; some of these literally grew with

this research like Mohamed, Saliha, Zineb, and Khadidja.

Grateful thanks to all…

Thèse de Doctorat d’État – The ESLIM Project x

 م#"!

	 ا����ق ����� ����� �
��ت ا������ ��م
�� ��ا� ������ إن ا���ض �	 ا$س��$لو . إن

��إ�)� .���0
� ��1�� �	 ا��0/ ا�.���� و أح���� ��� +���� �	 ا�)��ي ه� اس�)��ط ��ا
� ا��

 /7 ه4ا ا�)�ع �	 �8 أن ا��ا
� ا�=>��� ا���0)�;� وب0.
	 ا����ق�:�9 78 دراس�)� ه34 ب��)�� ا���0

� ��آ�? ا��0/ ��A ��
 Bب/
�� ا��EF� ب�	 ا��ح�ات ا�C��D0� ا�0>��� ���0�� و ا�)�� $ ��ل 8

�(F09:8 ا� ��
 �
 . ب�����7 ���

 ��
��ح إ���ج �� س�Hب)�ء � ، �Lب� �:�Mش 	4، ��C(ب� �
���� 78 ا���ا�? ا�C��D0� ��� ��ح������

7�O9 ا�Fر ا���Aرً. إ�Aإ QC+ام ا$س��$ل ا�)��ي ب��Dح ه7 اس���ا إن ا�C>�ة ا���0ر�� ��0F/ ا�0

�0
� �	 ا��Eس/، �T8)� ���	 أن اس��Dام �أس�سًب�0 أن أي ب����S ه� . ا ����H ه4ا ا��>��/��حً���

� إ�� �? ا�C��D0� �������، أن ���0 أ�Xً�� ا���0ه0� 78 �>��/ ا���ا
 ز��دةQ(<0ْ، ا$س��$ل ا�)��ي ُ�

��;� Yً�ـ���$ت أ�1ى أوس.

 : ����0ر ا�0F/ ح�ل ا���0ه�0ت ا������

 ا������؛ ����تدراس� �[��� •

 دراس� ا$س��$ل ا�)��ي؛ •

 ���L� ���S ا��F�9 ا7�O وا�H;(0 �	 ا��رج� ا_و��؛ �)4�Cو دراس� •

��رج� ا_و�� $س�Q��0F 78 ����/ ا��0/ ب;��� �[�م ��)7
�� �);H ا و �)4�Cدراس� •

�0�
 ا��F�9؛
��د �)�Cدة أو ب�$

0��� ا��F�9 78 إ�Aر ��)7
�� ا���س��ت ��Dارزم4 و �)�C دراس� • 	����� Q��0Fو اس�

 . ، و 78 ز�	 ���ودا$س��$ل ا�)��ي

 . ا�)��ي و أ�[0� ا���>9 ا7�Oا$س��$ل ا���ا1/ ب�	 •

إ�dائ:� � إ��ًـه�د8 ��،ا���0ه0� 78 �>��/ ���ت ا���� 78 إ�Aر / �b�C ���$ وا
�ا ����aه4ا ا�0Fإن

 . ����ى �1ص ب���F�9 ا7�OبTض�8�

%
&��'� ا�(#��ت ا�

.�ر��، ذآ�ء ا����ت ا�إ
�دة ا�>��ب�، ����/ ا��0/، أس���?�.)�g ا����ت، ���ت ا��.9�0، ا�)�� و

7
 .، ا��F�9، اآ���ب ا����ا$س��$ل�ا��	، ���ك ، اس�)��ج و ب�ه)� ا�ا+;)�

Thèse de Doctorat d’État – The ESLIM Project xi

ABSTRACT

Most programming languages are based on context free grammars (CFGs). The

purpose of grammatical inference is to infer a grammar, in our situation a CFG, from

positive examples of sentences and possibly incorrect ones, for a given language.

Based on these two fundamental definitions, we propose an environment followed

by an implementation unifying different aspects of programming in machine

learning settings. The central idea of this work is to use grammatical inference (GI)

as a unifying framework for achieving this integration. Because any program can be

considered as a string of characters, we show that the use of grammatical inference

can not only unify different aspects of programming but also extend to wider areas

of applications. The work sums up the following contributions:

• State of the art of language theory and of grammatical inference;

• Design and development of an environment integrating machine learning and

first-order logic (FOL);

• Design and development of a FOL system for parsing sentences

independently or with a learning module;

• Design and development of a heuristics-based polynomial-time complexity

algorithm enhancing the learning process in grammatical inference.

• Interaction between grammatical inference and control systems.

The present work bears a promising line of research, contributing further to

programming languages integration, aiming at the improvement of these languages

with a machine learning layer.

ACM Categories and Subject Descriptors

D.3.1 [Formal definitions and theory], D.3.2 [Language classifications], Design languages,
F.4.2 [Grammars and other rewriting systems], Parsing, F.4.3 [Formal Languages], I.2
[Artificial intelligence], I.2.3 [Deduction and theorem proving], Inference engine, I.2.6
[Learning], Language acquisition.

Thèse de Doctorat d’État – The ESLIM Project xii

RESUME

La majorité des langages de programmation est basée sur les grammaires à contexte

libre (CFG). Le but de l’inférence grammaticale est d’inférer une grammaire, en

l’occurrence à contexte libre (CFG), à partir d’exemples de phrases correctes et

éventuellement incorrectes, d’un langage donné. Partant de ces deux définitions

fondamentales, nous proposons un environnement suivi d’une implémentation

unifiant des aspects différents de la programmation dans le cadre d’apprentissage

automatique. L’idée centrale du travail est donc d’utiliser l’inférence grammaticale

comme trame unificatrice pour réaliser cette intégration. Dans la mesure où tout

programme peut être considéré comme une suite de caractères, nous montrons que

l’utilisation de l’inférence grammaticale peut non seulement unifier des aspects

différents de la programmation mais aussi s’étendre à d’autres domaines plus vastes.

Le travail s’articule autour des contributions suivantes :

État de l’art de la théorie des langages ; État de l’art de l’inférence grammaticale ;

Étude et développement d’un environnement intégrant apprentissage et logique du

premier ordre ; Étude et développement d’un système fonctionnant en logique du

premier ordre agissant comme analyseur syntaxique autonome ou en collaboration

avec un module d’apprentissage ; Étude et implémentation d’un algorithme à

complexité polynomiale, basé sur des heuristiques et destiné à l’amélioration du

processus d’apprentissage dans le cadre de l’inférence grammaticale ; Interaction

avec les systèmes de commande automatique.

Le présent travail est porteur d’une ligne prometteuse de recherche, et contribue

davantage à l'intégration des langages de programmation, projetant de les enrichir

par la caractéristique d’apprentissage qui leur fait actuellement défaut.

Catégories et descripteurs de sujets de ACM

D.3.1 [Définitions formelles], D.3.2 [Classifications de langages], conception des langages, F.1.1
[Modèles de calcul], F.4.2 [Grammaires et systèmes de réécriture], analyse syntaxique, F.4.3
[Langages formels], I.2 [Intelligence artificielle], I.2.3 [Déduction et démonstration de
théorèmes], moteur d'inférence, I.2.6 [Apprentissage], acquisition de langages

Chapter 1 – Introduction

Thèse de Doctorat d’État – The ESLIM Project 1

No matter where you stand, you need effort.

Diagram from : http://en.wikipedia.org/wiki/Portal:Scientific_method

CHAPTER 1

INTRODUCTION

1. Preliminaries

Most programming languages, whether imperative or declarative, are based on

context-free grammars (CFGs). This remains true at a more refined level, with CFGs

present in procedural, object-oriented, functional, logic programming and multi-

paradigmatic languages. A sketchy summary of programming languages can be

summarized as follows:

• Conventional imperative languages: These incorporate structured and/or object-

oriented approaches with the high-level built-in functions and provide numerical

processing like FORTRAN, PASCAL or C/C++, among others.

Chapter 1 – Introduction

Thèse de Doctorat d’État – The ESLIM Project 2

• Advanced imperative approach: These languages include numerical systems

exemplified by the matrix environments like MATLAB™1 supported by various

visual programming aids like Simulink™ or symbolic general-purpose computer

algebra systems (CASs) like Mathematica™2 or Maple™3 and their various

corresponding toolboxes. Sophisticated CASE (computer aided software

engineering) tools are also available, e.g. Rational Rose™4. Whether they are

designed for number-crunching calculations or for symbolic processing or for

modeling and implementation, these systems can be considered as one layer above

the previous one.

• Declarative approach: The declarative approach focuses on what computational

processes to undertake and not on how to perform them. This approach is

represented by subcategories of functional programming (e.g., LISP) and logic

programming (e.g., Prolog). On top of these, we find expert systems shells or

generators like NASA CLIPS5, essentially based on inductive logic programming

(ILP), or its offshoots. This layer is still even more powerful in handling imprecise,

non-numerical, and linguistic data. These environments/shells represent the

favourite setting for knowledge base (KB) construction and inference engineering, a

sub-filed of knowledge engineering.

2. Motivations

As far as scientific computation is concerned, most programming, modeling and

simulation environments that have been developed in the last two decades or so,

heavily concentrated on the following topics: matrix environments, computer

algebra software (CAS), visual programming, object-oriented programming (OOP)

1 MATLAB™ is a trademark of the Mathworks, http://www.mathworks.com
2 Mathematica™ is a trademark of Wolfram Research, Inc., http://www.wolfram.com/mathematica
3 Maple™ is a trademark of Maplesoft, http://www.maplesoft.com
4 Rational Rose is a trademark of IBM™ http://www-01.ibm.com/software/rational/
5 NASA CLIPS http://www.siliconvalleyone.com/clips.htm

Chapter 1 – Introduction

Thèse de Doctorat d’État – The ESLIM Project 3

simulation environments, coupled or hybrid systems that attempted to combine both

numerical systems with advanced expert systems development aids. However

sophisticated these systems might be, none considered the possibility of

incorporating the learning layer in their implementation. Therefore none of these

rightly deserves the overly-used appellation of intelligent system. For approximately

five decades, these programming languages and environments contributed lines of

implementation from basic algorithmic settings, incorporating sophisticated

numerical and symbolic methods, to inferential / declarative methods. Notoriously,

machine learning methods have not yet been fully applied in this domain. Our aim is

to contribute towards this end using one machine learning approach, namely

grammatical inference (GI).

3. Background and objectives

3.1 Process of inference

3.1.1 Inference in symbolic settings

In logic-based symbolic environments, the word inference is defined as the process of

reasoning logically building new knowledge on the basis of available rules and facts.

This process requires a problem-solving model, or paradigm, that organizes and

controls the steps taken to solve the problem. One powerful paradigm involves the

chaining of IF-THEN rules to form a given line of reasoning. There are three modes

of chaining. If the chaining starts from a set of conditions and moves toward some

conclusion, the method is called forward chaining. If the conclusion is known, for

example, a goal to be achieved, but the path to that conclusion is not known, then

reasoning backwards is used, resulting in backward chaining. Hybrid chaining is a

combination of both; it might start with forward and shift to backward chaining.

Chapter 1 – Introduction

Thèse de Doctorat d’État – The ESLIM Project 4

These problem-solving methods are built into program modules known as inference

engines that manipulate and use knowledge in the KB to form a line of reasoning.

One of the most important results of this problem-solving method is the emergence

of expert systems. In symbolic settings, an expert system is a program that

incorporates two main components - an inference engine, responsible for reasoning

by entailing new facts, and a KB containing both factual and heuristic knowledge.

Factual knowledge is that specific knowledge of the task domain that is widely shared,

typically consisting of printed material like textbooks or journals, multimedia

support found in Websites or any other electronic support. This knowledge is

commonly agreed upon by those knowledgeable in the particular field. Heuristic

knowledge is the less rigorous, more experiential, more judgmental knowledge of

performance. In contrast to factual knowledge, heuristic knowledge is rarely

discussed, and is largely individualistic. It is the knowledge of good practice, good

judgment, and plausible reasoning in the field and mainly describes personal rules

of thumb encompassing an “art of good guessing”, personally acquired over lifetime

training. As a result, expert systems are normally used to model the human decision-

making process. Although expert systems contain algorithms, many of those

algorithms tend to be static, i.e. they do not change over time.

3.1.2 Inference in knowledge-based systems (KBSs)

Abusively, knowledge-based systems (KBSs) are considered as synonymous of

expert systems. In our account, we will make a distinction between the two

categories programs and consider expert systems as a particular form of KBS. Expert

systems usually rely on rule as a form of knowledge representation formalism.

Obviously, not all knowledge is expressible as rules. That is why we need other

types of KBs like neural networks, case-based reasoning genetic algorithms,

intelligent agents, data mining, and intelligent tutoring systems [KC07].

3.1.3 Inference in learning settings

Chapter 1 – Introduction

Thèse de Doctorat d’État – The ESLIM Project 5

In learning settings, a program is intended to infer (or induce) an unknown result

based on some past data. This operation involves a metric for attesting the quality of

the results. In this context, inference implies the identification of a hidden function,

given a set of its values. In particular, the learning of the syntax of the language is

usually referred to as grammatical inference or grammar induction (GI); an important

domain for both cognitive and psycholinguistic domain as well as for the domain of

engineering and computation. GI deals with the problem of inferring (or learning or

inducing) a grammar from some given data. Data, whether sequential or structured

are composed from a finite alphabet, and may have unbounded string-lengths. By

grammars, we intend only deterministic finite automata DFA, equivalent to regular

grammars [Sip06] and some context free grammars (CFGs). If we refer to Chomsky

hierarchy, only type-3 and subclasses of type-2 grammars, respectively, are

concerned. In a machine learning perspective, we need the grammar, i.e. the concept

learned, to predict and classify unseen data. The inferred grammar is also used as a

model or a compressed representation of the input data. Early work in the field was

set out in [Fu74]. But since 1994, more interests have been given to the field. An

International Conference on Grammatical Inference (ICGI) is held every two years. The

last one was held on September 2010 in Valencia, Spain. This increasing interest in

the field is probably due to the following reasons:

- Need for a more elaborate theory; the GI community became aware of the fact that

the hardness of even the easiest problem needs more theoretical attention and

developments.

- Expansion of applications; the new fields where GI techniques can be applied are

increasing every year.

3.2 Specific goals

3.2.1 Avoiding the “general problem solving (GPS)” syndrome

The question that interests us is: “How to integrate a GI-based machine learning

layer in programming languages?” If we were to realize this, then solving similar

Chapter 1 – Introduction

Thèse de Doctorat d’État – The ESLIM Project 6

problems using this type of programming languages will take less and less time to

be solved, thanks to learning from examples of problems. However, this is a very

distant end. We want to avoid the “general problem solving (GSP)” syndrome.

Developed in the fifties, in the early days of artificial intelligence (AI), GPS was a

program that tried to solve a very broad class of problems from theorem proof,

geometric problems to chess playing [NS72]. GPS solved simple problems that could

be sufficiently formalized such as the Towers of Hanoi. However, it could not solve

any real-world problems because search was easily lost in the combinatorial

explosion of intermediate states. In our account, we will therefore study only the

syntactic level of languages.

3.2.2 Syntactic level - first

As a first step towards the realization of the objective of adding a learning layer to

programming, we propose to start at the syntactic level. Because any program can

syntactically be considered as a string of characters, we show that the use of GI can

not only unify different aspects of programming but also extend to wider areas of

applications such as control systems and self-assembly. As a result, the central idea

for answering the central question above is to use grammatical inference (GI) as a

unifying framework.

The purpose of GI is to infer a grammar, in our situation a context-free grammar

(CFG), from positive examples of sentences and possibly incorrect ones, for a given

language. In the attempt to address our fundamental issue, we propose an

environment followed by an implementation. We show how the issue of GI can be

reduced to learning heuristics. We describe our GASRIA GI system; fully designed,

developed and tested as a system for GI capable of learning inductively a broad class

of CFGs. The overall work consists of:

– The design and development of a first-order logic (FOL) environment used for

parsing;

– The design and development of a knowledge base (KB) consisting of a rule base

and a fact base describing the grammar rules under consideration;

Chapter 1 – Introduction

Thèse de Doctorat d’État – The ESLIM Project 7

– The design and implementation of the inductive learning partial parsing algorithm

(PPA); an Earley-like algorithm capable of parsing sentences not as whole but as

parts; [HH07b]

– The integration of FOL and an inductive learning within a coherent system;

[HH07a]

– The study of some interactions between GI self-assembly and control systems; this

latter being usually handled by matrix environments, [HH09a], [HH09b].

3.3 Main tools

The main tools can be summarized in two categories, namely, grammars and first-

order logic (FOL).

3.3.1 Grammars and parsing

Grammars can be regular, context-free, context-sensitive and unrestricted. Context-

sensitive and unrestricted grammars are more expressive, because the left-hand side

of the productions can be more than just a single non-terminal. To start with,

however, we aim at learning regular and CFGs, which have single non-terminals on

the left side of production rules. The result is a reasoning or “intelligent” syntactic

analyzer capable of inductive learning. One of the most important properties is that

grammars have the ability to generalize over a specific language, i.e. to learn by

induction. Therefore, it is possible to learn a grammar based on a set of sample

sentences. We do not need to specify every sentence in a given language. This is the

observation that led us to explore the possibility of using GI as a machine learning

paradigm. Indeed, GI like most machine learning algorithms objective is to

generalize over a set of (a preferably small number of) examples in order to obtain a

more general model, by induction. Moreover, we need to handle strings of

characters; hence the use of grammars and not other machine learning methods. On

the other hand, the number of training examples has to be preferably small - less

than six examples, in our tested cases.

Chapter 1 – Introduction

Thèse de Doctorat d’État – The ESLIM Project 8

3.3.2 Declarative programming and FOL

In addition, we combine GI with the declarative programming approach and

specifically with first-order logic (FOL), to infer and use the grammar that has been

produced for syntactic purposes. Declarative programming encompasses many

different sub-fields such as constraint programming, domain-specific languages (e.g.

SQL-based, XML-based), functional programming (e.g. Lisp, Scheme), and logic

programming (e.g. Prolog).

The motivation for using the declarative approach is that this paradigm requires

what computation should be performed and not how to compute it. It has a clear

correspondence with mathematical logic and specifically with FOL. The knowledge

base containing FOL-based rules and facts allows the entailment of new facts, thus

contributing to the GI process.

4. Organization of the manuscript

In this manuscript, we explain the main building blocks of the proposed solution;

each one of these blocks in an independent chapter. The work is structured around

the following components:

- State of the art of language theory: Chapter 2 describes the theory of languages that is

necessary for explaining the main results.

- State of the art of GI: Chapter 3 reports the theoretical background of GI and

discusses the most important related algorithms, systems and applications.

- GASRIA: In an attempt to integrate GI and FOL, Chapter 4 explains the design and

development of an architecture, namely GASRIA as a complete and integrated

system for GI. Its main modules are explained in two subsequent independent

chapters. The main idea is based on a novel machine learning algorithm, namely

the partial parsing algorithm (PPA), coupled with a FOL-based system.

- EXINF: Chapter 5 describes aspects related to first-order logic (FOL) and

declarative systems. It discusses an in-depth description of one of the components

Chapter 1 – Introduction

Thèse de Doctorat d’État – The ESLIM Project 9

of the solution, namely the design and development of EXINF as a FOL-based

system. EXINF characteristics are the possibility of use as a stand-alone system or

as a support for partial parsing. EXINF is presented as a knowledge-based system

(KBS) using dynamic facts, necessary for parsing. These facts are the translation of

input sentences into syntactical rules. As shown in the examples, important

parsing steps are undertaken using EXINF.

- ILSGInf: Chapter 6 reports the design and implementation of one machine learning

environment called ILSGInf. It is based on the partial parsing algorithm (PPA). The

chapter explains specific aspects of grammar inference, including regular and

CFGs. It also describes the experimental PPA capability and validation as a core

component of ILSGInf.

- Interactions: Chapter 7 reports application areas of some of our results. Control

systems, mainly, and self-assembly, peripherally, are discussed as possible

applications fields.

The work ends with a conclusion summing up results and recommendations with

prospective developments to address open issues.

Chapter 2 – Some concepts of formal languages

Thèse de Doctorat d’État – The ESLIM Project 11

CHAPTER 2

SOME CONCEPTS OF FORMAL LANGUAGES

1. Introduction

The elaboration of the theoretical “Universal-Algorithm Machine” and the invention

of the vacuum tube gave birth to the idea of a stored-program computer. The goal

was to convert the electronic computer to a real-life model of the “Universal-

Algorithm Machine”. Along with the concept of programming a computer, came the

question: “What is the ‘best’ language in which to write programs”? As a result,

different programming languages were developed, but they apparently shared the

same possibilities and limitations.

Many questions rose: what is language in general? How do people learn it? Linguists

created the subject of mathematical models for the description of languages to

answer these questions. Consequently, the computer took on linguistic abilities. It

became a word processor, a translator, an interpreter of simple grammar, a compiler

of a programming language, a speech recognizer, and now we try to give it the

Chapter 2 – Some concepts of formal languages

Thèse de Doctorat d’État – The ESLIM Project 12

ability to learn languages, under the constraint that we are not yet able to

understand how human do that.

2. Preliminaries

We start by giving some mathematical definitions, which are of interest to us. They

can be found in any book dealing with concepts of formal language [Gdd08],

[deH10] [Sip06].

- An alphabet is a finite non-empty set of symbols or letters, often denoted by Σ.

- A string ω over an alphabet Σ is a sequence ω = a1…an of letters ai ∈Σ .

- Length of ω, noted |ω| is the number of letters constructing it, in this example

|ω|=n.

- Number of occurrences: Given a∈ΣΣΣΣ, |ωωωω|a denotes number of occurrences of the letter

a in the string ω.

• The empty string denoted by λ (or by ε) such that |λ| = 0.

• Given two strings u and v, we define u.v (or simply uv) as the concatenation

of u and v and |uv|= |u|+|v|.

- If ω is a string, ω= a1…an we note ωR = an…a1 as the reversal of ω.

- Σ* is the set of all finite strings over Σ. We define Σ+={x∈Σ*: |x| > 0} and

Σ<n={x∈Σ*:|x|<n}

- The string u is a substring of a string x if there are two strings l and r such that

x=l.u.r.

- We define |x|u as the number of occurrences of the substring u in the superstring

x.

Chapter 2 – Some concepts of formal languages

Thèse de Doctorat d’État – The ESLIM Project 13

- The string u is a subsequence of a string x if u is obtained by removing some letters

from x. More precisely, u is a subsequence of x if there is a sequence of indices

i=(i1,…, i|i|) where 1≤i1 ≤…≤ i|i|≤|x| and uj = xij. We note u = x(i).

- Orders in strings: there are four ordering relations between strings based on the total

order relation over elements of Σ, noted ≤alpha called alphabetical order. These four

ordering relations are defined as:

- Prefix order: x ≤pref y if ∃ w ∈ Σ* such that y = xw.

- Lexicographical order: x≤lexy if x≤prefy or (x=uav, y=ubw and a≤alphab)

• Subsequence order: x≤subseqy if x is a subsequence of y

• Length-lex order : x≤length-lexy if |x|<|y| or (|x|=|y| and x≤lexy)

We can assign with all these orders the corresponding strict orders

<alpha , <pref , <subseq, <length-lex.

3. Languages

 A language is a certain specified set of strings, where strings have symbols from a

specific alphabet. A language L over Σ, L⊆ Σ*.

3.1 Operations on languages

Certain operations can be done on languages: let L1, L2 be two languages

• Union: L1∪L2={ x∈Σ*: x∈L1 OR x∈ L2}

• Intersection: L1∩L2={x∈Σ*: x∈L1 AND x∈L2}

• Product: L1.L2 = { uv : u∈L1, v∈L2}

• Powerset: L0={λ}, Ln+1 = Ln.L=L.Ln

• Star: L* = ∪i∈N Li, where N is the set of positive or null integers.

• Complement: L’ = {w∈Σ*: w∉ L}, L1\L2 is the complement of L2 in L1

Chapter 2 – Some concepts of formal languages

Thèse de Doctorat d’État – The ESLIM Project 14

• Symmetric difference, L1⊕ L2 = L1\L2 ∪ L2\L1

3.2 Languages models

There are different ways to allow computation of languages. Hence, we find

methods to generate grammars, to recognize finite automata, to define regular

expressions, and recently to use topological operations to represent a language. The

work in [Cho59] was the first to classify languages into four classes using four types

of grammars.

3.2.1 Formal grammars

Definition 1 - A formal grammar G has four components G=<ΣΣΣΣ, N, P, S> where

 - Σ is an alphabet, called also set of terminals.

- N a set of symbols, called non-terminals or variables, with the restriction that ΣΣΣΣ

and N are disjoint.

 - S a special non-terminal symbol, called a start symbol.

- P is a set of production rules, each one is of the form α→β or sometimes noted

(α,β).

Definition 2 - A regular grammar is a formal grammar where:

P⊂(N x Σ*)∪(Nx Σ*.N)∪(Nx N. Σ*)

Definition 3 - A context-free grammar (CFG) is a formal grammar where:

P ⊂ N x (Σ ∪ N)*

Definition 4 - A context-sensitive grammar is a formal grammar where:

 P ⊂ (N∪Σ)*.N.(N∪Σ)* x (Σ ∪ N)+, where for each (α, β) in P, |α| ≤ |β|

 Definition 5 - An unrestricted grammar is a formal grammar where P⊂ N+x(Σ∪N)*

3.2.2 Automata

Chapter 2 – Some concepts of formal languages

Thèse de Doctorat d’État – The ESLIM Project 15

We can informally define an automaton (plural automata) as a mathematical model of

a machine that recognizes a set of strings. There are different types of such models

that differ from each other essentially in the amount of memory they use. These are

finite state automata (FSA) and push-down automata (PDA).

3.2.2.1 Finite state automata (FSA)

Finite state automata (FSA) were developed in 1950’s. There two types of finite state

automata, namely:

• Non deterministic finite automaton (NFA) is a sextuple A = <Σ, Q, I, FA, FR, δN>

where:

- Σ is an alphabet,

- Q is a finite set of states,

- I ⊆ Q the set of initial states,

- FA ⊆ Q is the set of final accepting states,

- FR ⊆ Q is the set of final rejecting states,

- δN : Q x (Σ ∪ {λ}) → 2Q, is the transition function, and 2Q is the powerset of Q.

• A deterministic finite automaton (DFA or FA) is obtained from an NFA if I is

reduced to only one initial state, and the image given by δN is only one state,

and hence δN : Q x (Σ) → Q. Note that the empty transition is also excluded.

• A string ω= a1…an is recognized by an automaton A, if there is a sequence of

states starting at an initial state q0,…,qm and a sequence of letters b1…bm, bi in Σ

∪ {λ} (in the case of NFA) or in Σ (in the case of FA) and a1…an=b1…bm such

that ∀j ∈ [1..m], qj ∈ δN(qj-1,bj). q0 ∈ I and qm ∈ FA.

 We note that for any NFA, there is an FA which recognizes the same language (FA

= NFA).

3.2.2.2 Push-down automata (PDA)

Chapter 2 – Some concepts of formal languages

Thèse de Doctorat d’État – The ESLIM Project 16

Here, we need memory to keep some intermediate information. Push-down

automata (PDA) uses memory that has a last-in first-out structure, LIFO or stack. A

PDA is an FA with a stack. A PDA is eight-tuple = <Σ, Γ, I, FA, FR, NBPUSH, BREAD,

BPOP> where:

- Σ is the alphabet of input data,

- Γ is the alphabet of the stack,

- I is the initial state,

- FA is the set of accepting states,

- FR is the set of rejecting states,

- NBPUSH is the set of non-branching states that only push letter in the

stack,

- BREAD is the set of branching states that read letters from the input, and

- BPOP is the set of branching states that read letters from the stack.

PDA can be divided into two categories based on determinism:

• A PDA is said to deterministic (DPDA), if for each input string there is only

one way in the machine. Otherwise, it is non-deterministic and it is simply

noted PDA. Unlike FAs, DPDA is not equivalent to PDA. Non-determinism

adds a significant power to PDA.

• A string ω= a1…an is recognized by a PDA if, starting at initial state and

following a path of labelled and unlabelled edges according to different read

input letters and stack characters, the process ends at accepting state.

3.2.3 Regular expression

A regular expression over Σ is defined recursively as follows:

 - the empty set φ, the empty character λ and ∀a ∈Σ are regular expressions

over Σ.

Chapter 2 – Some concepts of formal languages

Thèse de Doctorat d’État – The ESLIM Project 17

- if r1, r2 are two regular expressions, then (r1), r1.r2, r1+r2, r1* are regular

expressions.

Regular expressions are equivalent to FA and to NFA, by Kleene’s theorem.

3.2.4 Topological consideration

After defining some metrics and distances over string and especially the edit

distance, a language can be considered as a topology. Hence, the notion of ball can

be introduced. Ball of strings is the set of all strings presenting a distance from

special string (the centre) less or equal to some value r (the radius of the ball)

[deH10].

4. Chomsky languages hierarchy

Chomsky [Cho59] defined four classes of languages as a hierarchy. These classes of

languages are from the bottom regular languages (type-3), context-free languages

(type-2), context-sensitive languages (type-1) and recursive enumerable languages

(type-0).

Because it is a hierarchy, each language in a class is also an element of the superior

class. The distinction between language classes can be done by examining the

structure of the production rules of their corresponding grammars, or the nature of

the machines which can be used to recognize them.

4.1 Type 3 - Regular languages

A language L is a regular language if it can be generated by a regular grammar. This

class of languages can be defined by regular expressions and can be recognized by

an FA. Any finite language is regular.

4.2 Type 2 - Context-free languages

Chapter 2 – Some concepts of formal languages

Thèse de Doctorat d’État – The ESLIM Project 18

A language L is a context-free language (CFL) if it can be generated by a context-free

grammar (CFG). This class of languages is recognized by PDAs. Deterministic PDAs

recognize a subclass of CFLs called deterministic CFLs while nondeterministic PDAs

can recognize larger class of CFLs.

For type 1 and 0 languages, we just cite them as elements of Chomsky hierarchy. We

do not expand our study to these because they are not studied in grammatical

inference (GI) due to their complexity.

4.3 Type 1 - Context-sensitive languages

A language L is a context-sensitive language if it can be generated by a context-

sensitive grammar (CSG). Since more than one symbol is permitted on the left hand

side, symbols surrounding the non-terminal concerned by the replacement are

known as context. The automaton which recognizes a context-sensitive language

(CSL) is called a linear-bounded automaton (LBA) i.e. basically an NFA/FA which

can store symbols in a list.

4.4 Type 0 - Unrestricted (free) languages

A language L is an unrestricted language if it can be generated by an unrestricted

grammar. Free grammars have absolutely no restrictions on their grammar rules,

except of course, that there must be at least one non-terminal on the left-hand-side.

The languages generated by such grammars are recursively enumerable (RE). The type

of automata which can recognize such a language is basically an NFA/FA with an

infinitely-long list. This is called a Turing machine (TM).

The hierarchy can be summarized in the table below. Type-1 and Type-0 languages

are recognized by Turing machines (not studied here) which were developed in

1930’s and 1940’s.

Chapter 2 – Some concepts of formal languages

Thèse de Doctorat d’État – The ESLIM Project 19

Table 2.1 TAB21 – Chomsky languages hierarchy

Type Language Class Grammar Automaton

3 Regular language Regular NFA or FA

2 Context-free language Context-free Push-down automaton (PDA)

1 Context-sensitive

language
Context-sensitive Linear-bounded automaton

0 Recursive enumerable

language
Unrestricted (free) Turing machine (TM)

In the following sections, we concentrate our study on regular and context-free

languages because of their wide implications in different learning methods and

programming languages.

5. Regular languages

5.1 Introductory example

A regular language is any language that can be recognized by an automaton, defined

by a regular expression or generated by a regular grammar. In general, we can use

regular languages whenever we need a limited amount of memory. For examples,

we use them in text editors, automated opening doors, elevators, to cite but a few.

For example, we give here a language and its three equivalent representations using

Kleene’s theorem, for simplicity we consider Σ = {0, 1}; with L accepting strings

containing 001.

Chapter 2 – Some concepts of formal languages

Thèse de Doctorat d’État – The ESLIM Project 20

Figure 2.1 DIAG21 An FA that recognizes strings containing 001

A regular expression that defines L is (1* + (01)*) 00 0* 1(0+1)*

A regular grammar that generates L is:

S → 1S | 0A ; A → 0B | 1S; B → 0B | 1C; C → 0C | 1C | 0 | 1;

5.2 Characteristics of regular languages

Regular languages are closed under union, intersection, Kleene star, concatenation

and complementation. We can consider union, star and concatenation as regular

operations. The following definitions summarize the main characteristics of regular

languages [Sip06].

- Quotient: if L1 is regular, L2 is any language, then Pref(L2 in L1) is also regular,

where Pref(L2 in L1) is the set of all strings that can be placed in front of

some elements in L2 to produce some elements in L1.

- Equivalence: two NFAs are equivalent if they recognize the same language. This

problem is decidable. Equivalence between two regular expressions is

also decidable.

- Finiteness: whether an NFA accepts a finite or infinite language is decidable. If an

NFA has N states then it accepts an infinite language if and only if it

accepts an input string with ω such that N≤ |ω|< 2N.

0

q0 q1 q2 q3

1 0

1

0 1

1,0

Chapter 2 – Some concepts of formal languages

Thèse de Doctorat d’État – The ESLIM Project 21

- Emptiness: if an NFA has N states, then if it accepts any word then it accepts words

of length less or equal to N.

- Membership problem: it is the problem of deciding if some string is recognized

(defined or generated) respectively by a NFA, (regular expression or

regular grammar). This problem is decidable.

- Pumping lemma: if L is a regular language, then there is a number p (the pumping

length) where, if w is any string in L of length at least p, then w may be

divided into three pieces, w = xyz, satisfying the following conditions:

1. For each i ≥ 0, xyiz ∈ L,

2. |y| > 0, and

3. |xy| ≤ p

P is always taken as number of states in the automaton that recognizes the language.

6. Context-free languages (CFLs)

Any language that can be recognized by a PDA or generated by a CFG is a CFL. The

set of CFLs is larger than that of regular languages.

6.1 Examples of CFLs

- For Σ = {a, b}, L1 = {anbn, n≥ 0}

- L2 = {ω ∈ Σ*| ω has same number of a and b} is a CFL.

- L3 can be generated by the CFG S → aSb | SS |λ .

- L4 = {ωωR | ω ∈ {0, 1}*} can be recognized by the PDA described in Figure 2.2

below.

Chapter 2 – Some concepts of formal languages

Thèse de Doctorat d’État – The ESLIM Project 22

Figure 2.2 DIAG22 PDA recognizing {ωωR | ω ∈ {0, 1}* } [Sip06]

We can interpret this figure as starting by pushing the symbols that are read onto the

stack. At each point, non-deterministically guess that the middle of the string has

been reached and then change its behavior into pop operation. For each symbol that

has been read, check its similarity with the popped symbol.

6.2 Applications of CFLs

All programming languages and compilers are based on CFLs. CFGs were first used

in the study of human languages. CFLs have been applied to a variety of fields from

user behavior modeling to DNA (DeoxyriboNucleic Acid) structure. Note that these

complex systems can be interpreted as languages, in general and grammars, in

particular.

6.3 Characteristics of CFLs

- CFLs are closed under union, product and Kleene star operations.

q
1

q
3

q
2

q
4

λ, λ → $
0, λ → 0

1, λ → 1

λ, λ → 0

0, 0 → λ

1, 1 → λ

λ, $ → λ

Chapter 2 – Some concepts of formal languages

Thèse de Doctorat d’État – The ESLIM Project 23

- Complements: complement of a CFL may not be a CFL. This type of language is not

closed under complementation.

- Intersection: CFLs are not closed under intersection. However, intersection of a CFL

and a regular language is always a CFL.

- Equivalence: a CFG is equivalent to PDA but deterministic PDA is not equivalent to

PDA.

- Finiteness and emptiness: it is decidable whether a CFG generates a finite or an

infinite language and whether it generates any string (if L (G) = {}).

- Membership: Membership tells whether a string belongs to a given language. This is

done through parsing.

- Empty production: if L is a CFL generated by a CFG that includes λ-productions,

then there is a different CFG with no such productions and that generates L or

L-{λ}.

- Chomsky Normal Form (CNF): for any CFL L, the non-empty strings of L can be

generated by a CFG with each production is one of the forms A → BC or A → a.

- Pumping Lemma: if L is a CFL, then there is a number p called the pumping length,

such that, if w is any string in L of length at least equal to p, w may be divided

into five substrings u v x y z satisfying the following three conditions:

 - |vy| > 0

 - |vxy| ≤ p

 - for each i ≥ 0, uvixyiz in L

Pumping lemma for regular languages (resp. CFLs) is in general used to prove that

a language is not regular (resp. CFL).

6.4 Relationship between regular and CFLs

• All regular languages can be generated by CFGs (they are CFLs)

• If all the productions in a given CFG fit one of the two forms:

Chapter 2 – Some concepts of formal languages

Thèse de Doctorat d’État – The ESLIM Project 24

 A → ωB or A → ω or A → λ, where A and B are nonterminals and ω ∈Σ*,

then the language generated by this CFG is regular.

• A CFG is called a regular grammar if each of its productions is of one of the

two forms A → ωB or A → ω where A and B are nonterminals and ω ∈Σ*.

7. Parsing

 Parsing a sentence using a grammar is determining how this sentence could be

formed from the rules of the grammar starting at the special non-terminal.

Derivation is the sequence of applications of the rules that produces the specified

string of terminals from the starting symbol.

Example

Let the productions be: S → aS (1)

 S → λ (2)

Generate the sentence aaaaaa

 S ⇒ aS ⇒ aaS ⇒ aaaS ⇒ aaaaS ⇒ aaaaaS ⇒ aaaaaaS ⇒ aaaaaa

All strings of terminals and non-terminals in the derivation and before reaching the

final sentence are called working strings. This derivation can be traced as a tree called

parse tree. We concentrate here on syntactic parsing of formal languages. There are

three different approaches

7.1 Top-down parsing

Starting with the symbol S, we try to find some sequence of productions that

generates the target word. This is done by checking all possibilities for left-most

derivations. We follow each branch until it becomes clear that this branch can no

longer present a viable possibility.

Chapter 2 – Some concepts of formal languages

Thèse de Doctorat d’État – The ESLIM Project 25

A general form of a top-down parsing is known as recursive-descent parsing that may

involve backtracking.

In some cases, we can write grammars such that a recursive-descent parsing can be

applied with no backtracking. This type of parsing is called predictive parsing.

7.2 Bottom-up parsing

Starting with the word, we try to find the last few productions to reach the starting

symbol. A general form of bottom-up parsing is known as shift-reduce parsing.

7.3 Hybrid parsing

The first and the second approaches are combined so that the parsing is optimized.

An important bibliographical study of parsing algorithms can be found in [ALS07].

8. Conclusion

In this chapter, we have summarized the most important notions of formal

languages of interest to us. The central ideas remain those related to parsing and

CFGs. The next chapter is dedicated to grammatical inference i.e. how to infer a

grammar for a language from a set of examples (or sentences).

Chapter 3 – State of the art of grammatical inference

Thèse de Doctorat d’État – The ESLIM Project 27

CHAPTER 3

STATE OF THE ART OF GRAMMATICAL

INFERENCE

1. Introduction

In order to study the state of art of grammatical inference, we proceed as follows. In

Section 2, we describe the theoretical models available for GI. We start with the

identification in the limit, as defined in the late sixties in [Gol67], followed by the

seminal contributions of the eighties represented by the so-called active learning as

defined in [Ang81], and ending with PAC (probably approximately correct) learning

due to [Val84]. Section 3 reports the main algorithms used in GI. We only stress

those that deal with regular grammars and CFGs. Section 4 is devoted to

applications of GI. Given the range of these applications, it clearly appears that it is a

multidisciplinary domain spanning pattern recognition [Cas90], bioinformatics

Chapter 3 – State of the art of grammatical inference

Thèse de Doctorat d’État – The ESLIM Project 28

[Coh04], syntactic pattern recognition [Luc94], DNA computers [Adl94], and

robotics [Kla07], among others.

2. Theoretical models for grammar inference

A computer program is said to learn from experience E with respect to some class of

tasks T and performance measure P, if its performance at tasks in T, as measured by

P, improves with experience E [Mit97].

In GI, experience E is the linguistic input, the task T is a grammar, and performance

measure P is any metric that provides a measure of difference between the

grammars inferred and a target grammar. Learning languages are based on

inductive inference [AS83]. We can specify a classical inference problem by the

following points, expanded in Figure 3.1 below.

/* Methodology 3.1 */

/* METH31 */

/* Methodological Steps – Inference Problem */

• What is the class of concepts or rules being consid ered?

• What is the hypothesis space (descriptions)?

• Find an admissible presentation: the information an d the way

it is presented in.

• What is the class of methods under consideration?

• What is the criterion of a successful inference, i.e.

convergence?

Figure 3.1 METH31 Methodological Steps – Inference problem

Chapter 3 – State of the art of grammatical inference

Thèse de Doctorat d’État – The ESLIM Project 29

For GI, the hypothesis can represent FAs, regular expressions, regular grammars,

CFGs, or tree-grammars. The examples are typically strings or some special graphs.

Obviously, the methods used to tackle these different hypotheses are different and

so are the algorithms used. However, we can single out three main theoretical

models that were established for this purpose.

2.1. Identification in the limit (learning from text)

2.1.1 Definition

The seminal work in [Gol67] established a theoretical model for on-line and

incremental learning destined to learning languages.

This contribution asserts the following points:

1. A presentation is a function f: N→ X

• Where N is the set of integers and X is any enumerable set,

• f is associated to a language L through a function yields(f)=L.

• If f (N) = g(N) then yields(f) = yields(g).

2. A presentation is a text or an informant

• A text presentation of a language L ⊆ ∑* is a function f : N → ∑* , f(N)=L, with

f an infinite succession of elements of L, where each one must appear at

some instant.

• An informant presentation f: N → ∑*X {+,-} such that f (N) = (L,+) ∪ (L,-).

In this case, f is an infinite succession of labelled examples, positive or

negative elements of ∑*, and where each one must appear at some instant t.

3. A learning function, called inductive machine, which, after each example, returns

a hypothesis.

• The learning function takes as input n elements (e
1
,…, e

n
) of f.

Chapter 3 – State of the art of grammatical inference

Thèse de Doctorat d’État – The ESLIM Project 30

• It returns some hypothesis Hn (e
1
,…, e

n
).

• The target language is identified in a finite time t, if the learning function

attains a fixed point, i.e. a point in time after which it does not change with

the new inputs.

4. In this case, we say that the class of languages to which the target language

belongs is identifiable in the limit.

2.1.2 Characteristics

• Identifiability is a property of a class of languages, not of an individual

language. It is the characteristics of a class of languages for being

identifiable. We say that a class of languages CL is identifiable if and only if a

learning function that identifies CL exists.

• A learning function LF identifies a class of languages CL if and only if it

identifies any language L of the class CL.

• A learning function identifies a language L if and only if it identifies any

presentation of the language.

• A learning function identifies a presentation f, if and only if, the learning

function converges to h and yields(f) = yields(h).

• If we are given examples and counter-examples of the language to be

identified, and each individual string is sure of appearing, then at some

point the inductive machine will return the correct hypothesis.

• If we are given only the examples of the target, then identification is

impossible for any super finite class of languages, i.e. a class containing all

finite languages and at least one infinite language.

2.2 Active learning

Chapter 3 – State of the art of grammatical inference

Thèse de Doctorat d’État – The ESLIM Project 31

This model was set out in [Ang81]. This framework concerns the learning with

additional information, queries asked from an oracle.

• The oracle is a device that knows the target language. When it is asked, the

oracle gives correct answers with no probabilities.

• Different types of queries are established: let a string w (in general), a target

language TL and a grammar G.

- Membership queries: the question asked to the oracle is “Is w ∈ TL

true?”

For a membership query, we have MQ: ∑* → {yes, no}.

- Equivalence queries: the question asked to the oracle is “Is L (G) = TL?”

* Weak equivalence query WEQ: g → {yes, no} or

* Strong equivalence query SEQ: g → {yes} ∪ ∑*

- Inclusion queries: the question asked to the oracle is “Is L (G) ⊆ TL?”

 Inclusion query: SSQ: g → {yes} ∪ ∑*

• Different system depends on the type of queries used.

- Only membership queries Γ = {MQ}

- All types of queries Γ = {MQ, WEQ, SSQ}

- Minimum adequate teacher MAT with Γ = {MQ, EQ}.

2.2.1 Definition

A class of grammars g is identifiable with a polynomial number of queries if there is

an algorithm alg such that:

- For each grammar G in g, alg identifies G with polynomial (in |G|)

number of queries in Γ.

Chapter 3 – State of the art of grammatical inference

Thèse de Doctorat d’État – The ESLIM Project 32

- This algorithm does each update in time polynomial (in |G|) and in

the length of the longest counter-example.

2.2.2 Characteristics of active learning

• With an MAT, we can learn FA and also a variety of other classes of

grammars.

• It is difficult to see how powerful is really an MAT.

• It is easy to find a class, a set of queries and provide and algorithm that

learns using them.

• It cannot learn FA from (a polynomial number of) membership queries

alone or from equivalence queries alone.

• With only a polynomial number of examples, or with a polynomial

number of mind changes, learning FA is not possible.

2.3 PAC learning

2.3.1 Definitions

Probably approximately correct (PAC) learning was proposed as an alternative model

for identification in the limit [Val84]. While in this latter, it is assumed that a finite

time for learning an exact hypothesis, PAC allows for a hypothesis to identify a target

language with certain probability and this identification is performed in polynomial

time.

A hypothesis h is said to be approximately correct if and only if Pr
D

([h(x)≠ L(x)]<ε

Where:
• C is a class of languages and H is a set of hypothesis.

• L ∈ CL and h ∈ H.

• ε is some positive value.

Chapter 3 – State of the art of grammatical inference

Thèse de Doctorat d’État – The ESLIM Project 33

PAC-learnability

Let us take CL to be defined over a set of example sentences from the alphabet Σ of

length n. CL is said to be PAC-learnable by the learner if, for all grammars g ∈ C,

given a distribution D of examples over Σ*, ε and δδδδ constrained by ε > 0 and δ < 0.5,

the learner will, with Pr
D

 > (1 - δδδδ), output a hypothesis grammar g
h
 with g

h
 ∈ G such

that error
D

(g
h
) < ε.

This means that the inference is done with a probability Pr
D

 with an error as small as

prescribed. For so doing, we need to measure the difference between the target and

the inferred grammars using an error metric. The error, denoted error
D

(g
h
), of the

hypothesis grammar g
h
 with respect to the target grammar g

t
 is the probability that

g
h
 and g

t
 disagree on the classification of randomly-drawn instances x from

distribution D.

2.3.2 Characteristics

• A class CL is polynomially PAC-learnable if it is PAC-learnable in a

polynomial time in 1/ε, 1/δδδδ, n and the size of g.

• PAC-learning of FA is still an open problem but it is believed to be

impossible.

• Assumption that the PAC learning will be held under any distribution can

lead to abnormal examples.

2.4 Relation between active learning and PAC learning

A class is polynomially identifiable by equivalence queries if and only if it is

polynomially PAC-learnable [Ang88].

Chapter 3 – State of the art of grammatical inference

Thèse de Doctorat d’État – The ESLIM Project 34

3. Algorithms for GI

Classes of grammars are studied at levels in reverse order of their classification in

the Chomsky hierarchy [Cho59]. A lot of work is done in the field of regular

grammars (type 3) and less work for the class of CFGs (type 2). Some works have

considered the possibility of extracting grammars from programs [CMZ05]. These

two types concern formal languages. Important interest is given to these two classes

because there are efficient algorithms that solve the decidable problem of

membership of an element to the associated languages. Case-sensitive grammars

(type-1) and unrestricted grammars (type-0) are generally used for natural language

processing. In the following, we only concentrate our survey on grammars for

formal languages.

3.1 Algorithms for regular grammars

Regular grammars are widely studied in the domain of grammar inference for

several reasons:

• They are simple.

• They are important in syntactic pattern recognition.

• They have a well-known set of properties such as decidability of

membership and equivalence questions.

• There exist efficient parsers for them.

For each regular grammar, there exist a set of finite state automata which recognize

language of this grammar. The problem of inferring a regular grammar is that of

learning a finite state automaton from both positive and negative data. This problem

can be formally established as a decision problem as described in Fig. 3.2 below.

Chapter 3 – State of the art of grammatical inference

Thèse de Doctorat d’État – The ESLIM Project 35

/* Methodology 3.2 */

/* METH32 */

/* Methodological Steps – Inference Problem */

• Given

 - a finite alphabet

 - two disjoint sets of examples D+ and D-

 - an integer n

• Find

A deterministic finite state automaton (FA) consistent with

D+ and D-

• Subject to the constraints

A number of states less than or equal to n.

Figure 3.2 METH32 Combinatorial problem associated with a FA.

This is known as the combinatorial problem associated with a FA. It was proved that

this problem is NP-complete [Gol67]. The problem of finding polynomially larger

FA than the minimum FA, consistent with the input data, is NP-hard [PW93]. The

learning of FA is also extended to the non-deterministic finite state automata NFA.

We give below some algorithms concerning the two recognizers.

3.1.1 Complexity for inferring regular grammars

The search space of regular grammar inference depends on the total number of

states in the maximal canonical automaton. We usually build a lattice. However,

even for a small number of states it is not practical to explicitly build the lattice. For

example, with only 4 states, 15 different automata can be obtained by merging states.

Chapter 3 – State of the art of grammatical inference

Thèse de Doctorat d’État – The ESLIM Project 36

With 10 states the number of different automata is increased to 115,975. To overcome

this problem, we usually rely on heuristic [Sav04] or incremental methods [PV96].

3.1.2 Learning FA

The importance of work on FA is justified by the fact that the algorithms treating the

inference problem for FA can be adapted for larger classes of grammars, for instance

even linear grammars [Tak88], sub-sequential transducers [Knu94] or tree

grammars. They can even be transposed to solve the inference problem for CFGs,

when the data is presented as unlabelled trees [Sak92].

3.1.2.1 Trakhtenbrot and Barzdin [TB73]

In [TB73], the authors study the case where all data length is greater than a certain

value. For this case, there exists an algorithm that identifies FA. They describe a

greedy learning algorithm with polynomial-time complexity for constructing the

smallest FA consistent with complete labelled training set. The input is the prefix

tree acceptor (PTA). This tree is collapsed into a smaller graph by merging all pairs

of states that represent compatible mappings from string suffixes to labels. This

process is called contraction procedure.

 3.1.2.2 Gold’s algorithm [Gol78]

 This algorithm tries to find the minimum FA compatible with the data. The states

of the FA are strings or prefixes of strings. An observation table OT(S,E) is

constructed and contains the whole information. S is a set of states and E is some

experiment. The algorithm will find the correct automaton when a characteristic

sample is included in the data. It has a polynomial-time complexity.

3.1.2.3 RPNI algorithm [OG92]

 A regular positive negative inference (RPNI) algorithm is based on state merging

method, [OG92]. In this case also, a prefix acceptor automaton is initially

Chapter 3 – State of the art of grammatical inference

Thèse de Doctorat d’État – The ESLIM Project 37

constructed on the basis of positive data set. An iterative merging process is

performed but corrected by a set of negative data. Many other algorithms followed

RPNI, intending to improve the order of states to be merged. For instance, BLUE*

[Seb03] is an adaptation of RPNI that deals with noisy data.

3.1.2.4 Traxbar algorithm [Lan92]

Traxbar algorithm is a variant of the algorithm exposed above [TB73]. It is used in

the case where both target machine and training set are drawn randomly by a

uniform distribution [Lan92]. In this work, it is experimentally shown that Traxbar

can learn approximately a FA if the training set and the machine are generated

randomly instead of being chosen by an adversary. This had a great impact on the

induction community since languages of infinite size become learnable.

3.1.2.5 Dupont’s lattice setting [DMV94]

This work considers the grammar inference as a “generalization of search”

problem, inferring a grammar is reduced to the process of searching for a target

grammar in the search space. Regular inference may be defined as the discovery of

an unknown automaton A from which an observed positive sample I+ is supposed

to have been generated. Given the additional hypothesis of structural completeness

of I+, this problem is considered as a search through a Boolean lattice built from

the positive information.

 3.1.2.6 Evidence Driven State Merging (EDSM) Heuristic [LPP98]

The main idea in the so-called evidence-driven state merging (EDSM) algorithm

[LPP98] is to try all possible merges and keep only the merge with the high score.

It was realized that an effective way to choose which pair of nodes to merge next

within the augmented prefix tree acceptor (APTA) would simply involve selecting

the pair of nodes whose sub-trees share the most similar labels. To improve the

Chapter 3 – State of the art of grammatical inference

Thèse de Doctorat d’État – The ESLIM Project 38

running time of EDMS, window-EDMS (W-EDMS) was suggested where only

nodes that lie within a fixed-sized window from the root node of the APTA are

considered for merging. An analytical study of W-EDMS shows that it is better

than its full-width counterpart [CK02].

EDMS won the Abbadingo learning competition (http://abbadingo.cs.unm.edu/),

in 1998. This competition's topic is average case learnability of FA from given

training data. The basic setup is based on 16 benchmark problems. Each problem

consists of a secret randomly generated FA which serves as a target concept, a set

of training strings which have been labeled by that target concept, and a set of

unlabeled testing strings. The task is to predict the labels that the target concept

would assign to the testing strings. Each problem will be considered solved by the

first competitor who demonstrates a test set error rate of 1% or less.

3.1.2.7 Data-driven heuristic

This represents a new framework for learning FA, where the quantity of data is

used as heuristic to drive the learning process [deH96]. Any data-independent

ordering will allow for identification in the limit. Here, a heuristic is chosen. It

tries to merge those two states for which most evidence is available. Based on this

heuristic, it is proved that the algorithm identifies in the limit. However, the

characteristic set associated to this heuristic can be exponential. The learning

algorithm is called data-independent if it does not need information about the data

of positive and negative examples to return its result. Otherwise it is data-

dependent. Results obtained assert that polynomial identification from given data is a

non-trivial condition leading to interesting algorithms in GI.

3.1.3 Learning non-deterministic finite state automata NFA

Chapter 3 – State of the art of grammatical inference

Thèse de Doctorat d’État – The ESLIM Project 39

Inferring NFA is not polynomially possible from given data [deH97]. In [DLT01], it

is proposed to learn cheaper structure than FA; looking for an NFA seems to be a

promising way. A sub-class of FA called residual finite state automata (RFSA) is

studied. RFSA shares the property of existence of a canonical representation with

FA. They define the system called DeLeTe that builds the canonical representation

from any sample containing SA, where SA is a characteristic sample with polynomial

cardinal associated with a FA.

3.1.4 Learning quantum finite automata

Equivalence between quantum automata [Moo00] and quantum grammars on one

side and FA and grammars are studied in [KW97]. The importance of quantum

automata is due to their lower space complexity (fewer states, fewer steps) and their

capacity to recognize some non-regular and non-CFLs. In [RG01], it is shown that

quantum and classical learning are information-theoretical equivalent. However,

apparent computational advantages of the quantum model yield to efficient

quantum learning algorithms which seem, up to now, to have no equivalent in

classical counterparts such as those proposed in [BJ99].

3.2. Algorithms for CFGs

After spending almost three decades on regular grammar inference, it was natural to

move to the next class in the Chomsky hierarchy, i.e. the CFGs. That was first set in

the European Conference on Machine Learning (ECML2003). Another motivation to

study the domain was the limitations of regular grammars in some new domains

like genetic structures, XML and its technology, text compression, and the like. CFGs

are more expressive than regular ones. Learning the entire class of CFLs is until now

an intractable problem, i.e. the time required solving instances of the problem

growth exponentially with the size of instances of the problem. Providing additional

Chapter 3 – State of the art of grammatical inference

Thèse de Doctorat d’État – The ESLIM Project 40

information or avoiding super-finite classes can help to identify this class in the

limit. In order to avoid the negative result of impossibility of inferring a class of

languages from positive examples alone, some methods have been set out. On top of

positive examples, additional information can be negative examples, use of an

oracle, and knowledge on structures or ad hoc heuristics.

3.2.1 Difficulty of CFG inference

A tentative of synthesizing most problems in GI of CFLs is detailed in [Eyr06]. These

problems can be summarized as follows:

• CFLs are not stable for a set of algebraic operations like intersection and

complementation. The use of negative examples is not useful because they

have not the same structure as the hypothesis to be learned.

• It was proved that the class of CFLs is not identifiable in the limit,

polynomially in time and data using a sample of positive and negative

examples. This is due to the undecidability of equivalence problem in the

class of CFLs [deH97].

• Contrarily to regular languages where the entire class is recognized by FA,

CFLs can be recognized by non-deterministic push-down automata (PDA)

Determinism is an essential point in learning, so nondeterminism and

ambiguity of CFGs represent an important problem within the inference

process.

• Some CFGs have a huge “expansibility”. Indeed, the number of productions

grows exponentially with the size of a sentence. For example, the simple

deterministic grammar:

Gn = ({a}, {Ni, i <= n}, P, N0),

 where:

Chapter 3 – State of the art of grammatical inference

Thèse de Doctorat d’État – The ESLIM Project 41

P ={ Ni � a Ni+1 Ni+1 } ∪ { Nn � a}.

For this grammar, the equivalence problem is decidable but the number of

productions used is exponential in the size of the grammar. So inferring it

in polynomial time is impossible.

• Indivisibility of the CFGs is another problem for the learning process. Any

update in the productions can affect the totality of the language; there is no

separate ways of derivations.

3.2.2 Algorithms for CFG inference

Due to the serious theoretical limitations of learning the entire CFLs, different

practical techniques are established to obtain positive results. So classifying these

algorithms is a difficult task. This may explain why there are only very few number

of surveys of the field. To our knowledge, there are only a couple of these, [Lee96]

and [deH05]. Recently, a book was published for learning automata and grammars

[deH10]. We give below a tentative classification of the most important algorithms.

3.2.2.1 Complexity

The complexity of CFGs is obviously is worse than the complexity of regular

grammars exposed above. Indeed, the search space for (CFG) inference is even larger

[CMZ05]. For a given positive sentence, we need to find the different derivation

trees. Using CNF, the number of all possible binary trees with n internal nodes is

given by the n-th Catalan number. An additional issue is that internal nodes

(nonterminals) need to be properly labeled. The number of possible labeling of

nonterminals is defined by Bell numbers. As a result, the construction of derivational

trees with proper labeling of nonterminals contributes to an immense search space.

For instance, a statement with 5 terminals (4 nonterminals) can be parsed by 210

Chapter 3 – State of the art of grammatical inference

Thèse de Doctorat d’État – The ESLIM Project 42

different derivation trees, while this number increases to 1.9479161E9 for a statement

with 11 terminals (10 nonterminals) [SF01].

3.2.2.2 Patterns in strings

In general, this type of algorithms is popular in the pattern recognition

community. A pattern is a special substring. These algorithms deal with learning

from text, i.e. a set positive data and eventually negative ones. This approach is

limited by Gold’s theorem. The first algorithm is reported in [Sol59] while [Tan87]

gives an algorithm that learns CFGs from positive and negative examples of

strings. The technique presented is to remove self-embedding structures from a

finite sample, infer a linear grammar from the sample, and compose the inferred

linear grammars to create a CFG. Once again, the learnability from positive

examples only is not guaranteed for all CFLs.

The work in [Ang80] gives some sufficient and (or) necessary conditions for this

purpose. However, the use of negative examples seems also unnatural. As stressed

earlier, when a child learns a language, he receives only correct sentences from that

language and needs no incorrect ones. These points motivate research for tools

other than negative examples.

3.2.2.3 Extension of regular languages ’results to CFLs

The class of regular languages is a subset of CFLs. One natural way to upgrade to

CFG inference is the extension of techniques used for regular grammar inference.

We have seen that the lack of linearity and determinism represent a problem in

CFG inference. This has motivated the study of linear and even linear languages.

The GI problem for even linear languages can be solved by reducing it to the GI

problem for regular languages [Tak88]. [Mäk96] introduces subclasses of even

linear languages for which there exist inference algorithms using positive samples

only; this is done via Szilard languages [Ros97].

Chapter 3 – State of the art of grammatical inference

Thèse de Doctorat d’État – The ESLIM Project 43

k-bounded CFGs are identifiable in polynomial time using equivalence queries and

non-terminal membership queries [Ang87]. Non-terminal membership queries

propose a string w and a non-terminal A; the answer is “yes” if w is derivable from

A and “no” otherwise. In effect, the learner is allowed to ask about the structure of

the target grammar. A larger class of the deterministic linear grammar is proved to

be identifiable from polynomial time and data [deH02].

Simple deterministic languages (SDLs) are used in such a way that non-terminal

membership queries are no longer needed [Ish90]. Instead, the algorithm is

allowed extended equivalence queries, which propose a grammar G, where G does not

have to be a grammar for an SDL; the answer is “yes” if the target grammar is

equivalent to G.

Other subclasses of CFLs that have been shown to be learnable are structurally

reversible languages, one-counter languages (languages accepted by deterministic

one-counter automata), pivot languages, very simple languages, and terminal

distinguishable CFLs [LN03].

 3.2.2.4 Use of artificial intelligence techniques

Here the inference problem is seen as a search in the space of possible grammars.

The main problem to study is the size of the search space. For CFGs, the search

space has been seen as a version space [Lan00]. Search algorithms like hill-

climbing or genetic algorithms are used. We can use genetic algorithm on the rules

of grammars on the condition that some help is provided from structures of data to

reduce the size of the population [Sak00]. Other techniques like the use of an

intelligent backtracking or the prior conflict diagnosis or heuristics are of a great

utility.

3.2.2.5 Stochastic CFGs (SCFGs)

Chapter 3 – State of the art of grammatical inference

Thèse de Doctorat d’État – The ESLIM Project 44

There is sometimes a need to deal with noisy data for example in speech

recognition or in computational biology. Here stochastic CFGs (SCFGs) are used.

SCFGs are CFGs where a probability is associated to each production so that the

sum of probabilities of all productions with the same left hand side is one. One

problem in this approach is how to decide of the correctness of these probabilities.

The second is with parsing such grammars. Here, all algorithms attempt to search

the space of all SCFGs, either exhaustively, i.e., by enumeration, or by some sort of

heuristic search. An enumerative algorithm is developed that identifies SCFG's in

the limit with probability one from stochastic data [Hor72]. The approach of

inferring directly the CFGs is hard. It seems that artificial intelligence techniques

like genetic algorithms can be of great help in solving this problem [Sak00].

3.2.2.6 Algorithms that uses alternative representations for languages

Instead of representing a language by a grammar from the Chomsky hierarchy, it

is represented in different ways: context-free expression, pattern languages, and

categorical grammars.

The first representation is used by [Yok88] and is inspired by learning regular

expression. The author gives an NP-complete algorithm that learns context-free

expressions. Pattern languages are first studied by [AS83], defining a pattern as the

concatenation of constants and variables, and the language of a pattern as the set of

strings obtained by substituting constant strings for variables. Introduction of

types [Kos95] or using only one pattern [ERS97] are ways to simplify the problem

of inference. Pattern languages have been also used with probabilities in [RZ01].

Grammars in Chomsky hierarchy deal only with syntax. For linguistics, learning a

language concerns both syntax and semantics. Categorial grammars are grammars

where syntax is attributed some semantics [Kan98]. Important role of semantics

Chapter 3 – State of the art of grammatical inference

Thèse de Doctorat d’État – The ESLIM Project 45

and context in the early stages of children’s language acquisition, especially in the

2-wordstage has motivated the work in [BA08].

3.2.2.7 Algorithms that rely on structured data

We saw that additional information is needed along with positive examples to

achieve learnability of CFGs. Important information concerns the structure of the

data. This structural information is known as derivation trees. Structural data can be

represented by strings generated by a parenthesis grammar or by skeleton.

For any CFG G, the corresponding parenthesis grammar (G) is formed from G by

replacing every production A→ α by A→ (α). On the other hand, skeletons are

derivation trees with the non-terminal labels removed. The key property of

skeletons is that they are exactly the set of trees accepted by skeletal tree automata

(STA), a variation of finite automata that take skeletons as input. There are very

strong relations between learning CFGs from parenthesized data or skeletons and

learning regular tree grammars.

Learning FA has been extended to the identification of STA in polynomial time,

although this requires being able to ask structural membership and structural

equivalence queries [Sak92]. As a result, inference is made possible for reversible

CFGs in the limit from positive structural data alone by adapting the technique for

reversible automata [Ang82]. Skeletons are also used to infer terminal

distinguishable CFGs [LN03].

3.2.2.8 ILSGInf : Inductive Learning System for Grammatical Inference

Derivation trees and the so-called partial derivatives heuristic construction is at the

heart of our method, used in the development of ILSGInf [HH07b], detailed in

Chapter 6.

Chapter 3 – State of the art of grammatical inference

Thèse de Doctorat d’État – The ESLIM Project 46

Figure 3.3 DIAG31 – ILSGInf : a system for GI within existing GI methods

Grammar
Induction

Algorithms

Algorithms for
regular

grammars

Algorithms for
CFGs

Exact
learning
model

PAC
learning
model

Exact learning
model

PAC
learning
model

Help from
negative
examples

Extend results
from regular
grammars to

subclasses of CFGs

Help from
structural

information of
examples

Use of derivation
trees and ad hoc

heuristics
- ILSGInf

To avoid Gold’s negative result

Chapter 3 – State of the art of grammatical inference

Thèse de Doctorat d’État – The ESLIM Project 47

4. Applications of grammatical inference techniques

GI techniques are widely used in different domains. We survey a set of such

applications in different fields such as pattern recognition, language processing, data

processing, robotics, and software engineering, to cite just a few of these numerous

applications.

4.1 Structured pattern recognition

Pattern recognition is the field where GI was applied first. Sometimes objects with

no independent measurable properties are recognizable by their structural

configuration. Structures are described using grammars where terminals are the set

of recognizable pieces, and productions encode the different configuration. Then

classification is equivalent to parsing. GI is present when we want to infer the global

structure of a set of instances. It was applied to textures in images, image contours

[Luc94], fingerprints classification, recognition of pictures of industrial objects,

character recognition by learning stochastic finite automata.

4.2 Computational linguistics

One of the earliest motivations of GI was to understand human language

acquisition. While GI deals only with syntax, human language acquisition takes also

semantics in consideration. EMILE prototype [AV02] is a toolbox for natural

language processing. It is intended to help researchers to analyse the grammatical

structure of free text. This work is based on categorical (or categorial) grammars

which are most suitable for linking syntax with semantics. Another worthy

application is shallow parsing, i.e. the task of dividing sentences into a sequence of

simple phrases [Tho02]. Shallow parsing can be used to index internet pages, for

instance.

Chapter 3 – State of the art of grammatical inference

Thèse de Doctorat d’État – The ESLIM Project 48

4.3 Speech recognition

Speech is the domain where noise is an important characteristic. Probabilistic

grammar inference is used via two models: hidden Markov models (HMMs), i.e.

automata with probability, and n-grams models. One of the earliest models was

used by [MB95] to focus on a description of the hybrid HMM/artificial neural

networks method. In this work, the authors also began to look at the connectionist

inference of language models, including phonology, from data. This step is required

in order to take advantage of locally discriminant probabilities rather than simply

translating to likelihoods. GI techniques were also used to language simplification

trough error-correcting [ASV01].

4.4 Automatic translation

Usually a transduction is viewed as a string to string function f ("My red car") = "Ma

voiture rouge". Automata with outputs are used. We can cite the improvement of the

OSTIA algorithm. The input of learning is represented by pairs of strings (input

string and the associated output). Multiplicity automata are used to deal with

ambiguity. Alignment techniques were used with dictionaries to improve the

learning of sub-sequential transducers [Vil00].

4.5 Document management

In recent years, writing, storing, and retrieving documents in electronic form has

become popular. These documents are structured. The common way to describe the

structure of similar documents is the use of grammars. Extended markup language

XML has been recently used for text element markup. The extraction of schematic

information from XML documents often requires certain generalisation of input

data. Among existing conceptual approaches to the XML, the grammar-based one

Chapter 3 – State of the art of grammatical inference

Thèse de Doctorat d’État – The ESLIM Project 49

seems to be the most promising for the schema extraction. An XML data is

equivalent to a derivation tree of a CFG without non-terminal labels in GI theory.

This extraction was addressed as a GI approach [Chi01].

4.6 Data and text mining

4.6.1 Text mining

Both information extraction (IE) and information retrieval (IR) belong to the broader

field of text mining (TM). In information retrieval, we seek to recover information

from a subset of documents that are hopefully relevant to a query, based on

keywords searching, usually augmented by a thesaurus. In information extraction,

the goal is to extract from the documents, which may be in a variety of languages,

important facts about ad hoc types of events, entities or relationships. These facts are

then usually entered automatically into a database, which may then be used to

analyze the data for trends, to give a natural language summary, or simply to serve

for on-line access. Information extraction consists in finding subtle or at least non-

trivial knowledge from text. Automatic information extraction is still in the making

despite the fact that there are many public Web-based platforms that can be used for

this purpose, e.g. GATE6 platform.

4.6.2 Text compression

Grammars have the potential of representing infinite information using only finite

set of rules. As a result of this property, one can consider a grammar as a

compression tool of the whole language. For example, Sequitur is a compression

system that was developed based on the idea that a good grammar is a compact

6GATE was developed at Sheffield University, England, http://gate.ac.uk/ie/

Chapter 3 – State of the art of grammatical inference

Thèse de Doctorat d’État – The ESLIM Project 50

grammar [NW97]. It requires no input except a single text and it produces a

grammar that generates only the input text. It is clear that that Sequitur cannot be

considered as a GI system but it has an important role to compress an input text.

4.6.3 RPNI and structure induction

In [KR07], the authors study the use of RPNI algorithm, described in Section 3.1.2.3

above, to infer information extraction models from positive and negative examples.

In [Sai06], GI is applied to text corpus. These techniques attempt to induce the

structures of a source data by a set of production rules of regular grammar.

4.7 Biological interfaces

4.7.1 Grammatical structures in biological sequences

The huge amount of data about genes and proteins and the availability of complete

genomes offer the possibility to study more globally the interaction between bio-

entities in complex cellular processes. Many efforts focused on the decoding of

complete genomes and assignment of functions to genes and proteins. The result is

the birth of the field of bioinformatics. Its principal goal is to bridge the gap between

biology and computer science to understand cell behaviour and to develop systems

that link computational techniques and biology, among others. Bioinformatics is

facing new challenges in analyzing the functioning of biochemical networks and

molecular biology. GI techniques are expected to find many useful grammatical

structures in biological sequences [Coh04].

4.7.2 DNA computing

DNA computing began by the demonstration that DNA can be used as a form of

computation for solving the seven-point Hamiltonian path problem [Adl94]. DNA

computing and parallel computing are fundamentally similar. Indeed, in DNA

Chapter 3 – State of the art of grammatical inference

Thèse de Doctorat d’État – The ESLIM Project 51

computing, many different molecules of DNA try many different possibilities at

once. In this novel computer architecture, simple biological operations are coded as

simple instructions. DNA sequences are used to encode information and enzymes

can be employed to simulate basic computations. As a result, a DNA computer was

constructed and coupled with an input and output module, which would

theoretically be capable of diagnosing cancerous activity within a cell, and releasing

an anti-cancer drug upon diagnosis [BGB04]. It has been demonstrated that DNA

array can implement a cellular automaton, which generates a fractal called the

Sierpinski gasket. This shows that computation can be incorporated into the

assembly of DNA arrays, increasing its scope beyond simple periodic arrays

[RPW04].

4.8 Map learning

In their article [DBK92], the authors present a robot with automatic learning abilities

based on GI in the field of map learning. It is useful for a robot to construct a spatial

representation of its environment from experiments and observations. Probabilistic

GI techniques are used to infer the global structure of the environment from a

sample of experiences.

4.9 Self assembling

In self assembly, a collection of particles spontaneously arrange themselves into

some coherent structure. In one approach, each particle is provided with a local

interaction rule, based on graph grammar [KGL06]. The main problem is to infer a

global behaviour of a system by means of local rules. The approach shows that we

can refer to grammars approaches to precisely predict and control the emergent

behaviour of self-organizing system. Some aspects of grammars are used to model

dynamical systems and self-organized systems are described in Chapter 7.

Chapter 3 – State of the art of grammatical inference

Thèse de Doctorat d’État – The ESLIM Project 52

4.10 Software engineering

Extracting grammars from programs attracts researchers from software engineering.

In this field, we want to recover a grammar from legacy systems in order to

automatically generate various software analysis and modification tools. The so-

called memetic algorithm MAGIc improves current results in grammar inference of

domain-specific language (DSL) grammars from example of DSL programs. The

result is a tool support for DSL development, assisting domain experts and software

language engineers in developing a DSL and its implementation. A semiautomatic

grammar-driven system, called MARS, uses GI techniques to recover metamodels

from instance models developed on a network metamodel [MHB09].

4.11 Soft computing and evolutionary multiobjective optimization (EMO)

Learning can be reduced to finding solutions using evolutionary multiobjective

optimization (EMO). In this framework, the different solutions are handled by the

standard evolutionary operators such as selection, crossover, and mutation. The

improvement of the solution is handled by the construction and comparison of the

Pareto fronts using the various fitness (objective) functions. This framework was

used and tested on a medical classification problem and gave satisfactory results

[HH11]7.

7 Part of this work has been published under the title: “Evolutionary multiobjective optimization for medical classification”,
2011 IEEE GCC Conference & Exhibition, "For Sustainable Ubiquitous Technology", Dubai, United Arab Emirates, pp.
441-444, 19-22 February 2011, http://www.ieeexplore.org

Chapter 4 – Grammatical inference with GASRIA

Thèse de Doctorat d’État – The ESLIM Project 53

CHAPTER 4

GRAMMATICAL INFERENCE WITH GASRIA8

1. Introduction

As stressed in Chapter 2, many methods and systems have been developed for GI for

more than half a century. As far as this chapter is concerned, the proposed contribution

falls at the intersection of three major fields of research, namely formal languages,

machine learning (ML) with special emphasis on grammatical inference (GI), and

inductive logical programming (ILP). We know that these fields of research historically

evolved independently, although it can be well be argued that they are naturally related

since both GI and ILP are considered as integral parts of ML. On the other hand, formal

languages are described using grammars. Now each of these areas has now its own

scientific community with its ad hoc periodicals, its scientific meetings and its

specialized conferences. Because the system we propose is based on one logic-based

8 Part of this chapter has been published under the title “Apprentissage inductif de grammaires: Le système GASRIA. (Inductive
learning for grammars: The GASRIA System)”, In Revue d’Intelligence Artificielle, Hermes-Lavoisier Edition, Paris, France,
ISSN: 0992499X, 21(2):223-253, March-April 2007
http//ria.revuesonline.com, http://www.revuesonline.com, http://ria.revuesonline.com/article.jsp?articleId=9770

Chapter 4 – Grammatical inference with GASRIA

Thèse de Doctorat d’État – The ESLIM Project 54

environment and one inductive learning module, we attempt a useful rapprochement

between ILP and GI.

Specifically, our main problem deals with parsing. In classical parsing, a sentence is

either recognized or refused. In other words, parsing is stopped, perhaps at the outset,

due to the first unrecognized character - with no further search. This limitation

characterizes all existing methods like Earley’s algorithm [Ear70] or its offshoots

[Lee92]. In a more general context involving learning, as the one we are considering,

this limitation is a truly severe drawback [MGZ03]. Indeed, we want, for example, to

know whether at least some part(s) of the sentence is (are) correct without getting

ousted by the first unrecognized character. Therefore, we apply a method to parse all

that is parsable using partial derivation. In this way, we are able to draw maximum

syntactic knowledge from the sentence under consideration. In order to address this

issue, we introduce the concept of partial parsing and its corresponding algorithm, the

so-called partial parsing algorithm (PPA) [HH07a].

This chapter is organized as follows. Section 2 formulates the problem, putting

forward the objectives to be realized and the available methods for doing so. Section 3

describes related works from three different perspectives, namely GI, machine learning

and ILP. In Section 4, GI and ILP approaches are defined and compared and GI is

formulated in an ILP framework. GASRIA architecture is described in Section 5 while

Section 6 reports relevant parsing issues. Section 7 describes the learning process in

GASRIA and Section 8 reports the backbone of the implementation and operation of

GASRIA on an illustrative example. The chapter ends up with a conclusion and

perspectives for further developments.

2. Problem formulation and basic methods

One of the reasons hindering coupling a first-order logic-based environment with a

learning system for grammar acquisition lies in the structural and functional differences

between these two types of systems. We develop a synergy between both systems in

Chapter 4 – Grammatical inference with GASRIA

Thèse de Doctorat d’État – The ESLIM Project 55

order to induce, or infer, one possible grammar. We concentrate on CFGs because they

are used to specify the majority of programming languages. The other reason is that

CFGs inference is still a challenging issue.

2.1 GASRIA Objectives

A complex and multidisciplinary environment is the intelligent and synergetic

interaction of basic and modular building blocks tied together in a coherent action

towards the achievement of the most practical and lesser-effort design. For so doing the

overall environment is to comply with the methodological steps depicted in Figure 4.1

below.

/* Methodology 4.1 */

/* METH41 */

/* Methodological steps used in GASRIA */

1. Goal : GASRIA level

Design an integrated architecture and develop a sys tem based on
coupling inductive learning and first-order logic (FOL) for the
purpose of grammatical inference for some CFGs.

2. Modules

EXINF Module /* Chapter 5 */

Design and develop an FOL- based module for addressing both
traditional or “crude” parsing and “intelligent” parsing issues
based on an original declarative Earley-like algori thm.

ILSGINF Module /* Chapter 6 */

Design and develop an inductive learning module for solving the
following incremental learning problem:

From a set of positive strings with respect to a gi ven language ,
induce one possible CFG that generates all strings acceptable by
the given language.

Figure 4.1 METH41 Methodological steps used in GASRIA

Chapter 4 – Grammatical inference with GASRIA

Thèse de Doctorat d’État – The ESLIM Project 56

2.2 Methods used

We rely on methods drawn from parsing and from inductive logic programming (ILP).

Parsing is used to recognize and/or classify a string. ILP is used to make the required

inferences during the learning process.

3. Related works: three interconnected fields

There are many approaches that can be used to meet the methodological steps

described in Figure 4.1 above. We stress the important fields that are of interest to us.

We thus report some aspects of formal languages, as the basis for parsing, before

concentrating on machine learning and ILP.

3.1 Formal languages approach

This approach has been addressed in details in Chapter 2, specifically dealing with

formal languages and grammars. We further summarize the basic concepts we need for

our work. Intuitively speaking, a language is a complex system of structured messages

that enables humans, or other species, to communicate what they know about the world.

Communication is meant as the intentional exchange of information that is brought about

by the production and perception of signs drawn from a shared system of conventional

signs. Particularly for humans, language is at the root of thinking. That is why the so-

called Turing Test, used for the definition and examination of machine intelligence is,

above all, based on language. A formal language is the eventually infinite set of strings,

each of which is the concatenation of terminal symbols, usually called words in natural

languages. For instance, in the language of arithmetic, the terminal symbols include real

numbers, or symbols representing them, and other symbols like the + sign, the – sign,

the = sign. In this case, if a and b are two numbers then “a+b” is a member of the

arithmetic language, “+a,b-” is not. Formal languages, like first-order logic have strict

mathematical definitions. A grammar is a finite set of rules that specifies a given

language. Formal languages always have a precise, official grammar, specified in

Chapter 4 – Grammatical inference with GASRIA

Thèse de Doctorat d’État – The ESLIM Project 57

manuals or books. Both formal and natural languages associate a meaning or semantics

to each valid string. For instance, in the language of arithmetic, a grammatical rule

would specify that if “a” and “b” are expressions then “a+b” is also an expression whose

semantics is the sum of both a and b. Pragmatics is a characteristic of natural language

which consists of the interpretation of a given string according to the situation or

context.

Most grammar rule formalisms are based on the idea of phrase structure – that strings

are composed of substrings called phrases, which can be expressed in different

categories, known as noun phrase (NP), verb phrase (VP). For example the NP “The

paper” can be concatenated with the VP “is excellent” to produce the sentence S “The

paper is excellent”. The category names such as VP, NP and S are called non-terminal

symbols or simply non-terminals. Grammars define non-terminals using rewrite rules,

usually described in Backus-Naur Form (BNF), previously known as Backus Normal

Form. In that case, the previous sentence can be expressed in the form S → NP VP

meaning that any sentence S can be written as any NP followed by any VP. Parsing is

the process of building a parse tree, composed of a root S, interior nodes composed of

non-terminals and leaves composed of words as terminals. For example, the previous

sentence “The paper is excellent” would have S as root with one left-child NP and one

right-child VP. The NP node would have a left-child Article and a right-child Noun. The

VP node would have a left-child Verb and a right-child Adjective. Further down in the

tree we would have all the words composing the sentence, as leaves. The only child of

Article is The. Likewise, Noun is instantiated by paper, Verb by is, and Adjective by

excellent. The result is that the parsed sentence appears at the bottom of the tree. This

process is called top-down parsing. Conversely, if we start from any sentence, we try, in

bottom-up process to go up to the start symbol S. If we succeed in doing this, then the

sentence is said to be correct, i.e. the sentence belongs to the language; otherwise, it is

incorrect. The process of moving “upwards” in the parse tree from the leaves to the

immediate level above is referred to as “tokenization”. Therefore, the instantiation of

tokens ends up with terminals [RN03].

Chapter 4 – Grammatical inference with GASRIA

Thèse de Doctorat d’État – The ESLIM Project 58

3.2 Machine Learning (ML)

3.2.1 Inductive and deductive learning

As a broad subfield of artificial intelligence, ML is concerned with the design and

development of algorithms and techniques that allow computers to improve their

processing through training. At a general level, there are two types of learning:

inductive and deductive. Inductive methods extract rules and patterns out of massive

data sets. The major focus of ML research is to extract information from data

automatically, by computational and statistical methods. ML is therefore closely related

to not only theoretical computer science but also to data mining and statistics. ML has a

wide spectrum of applications including natural language processing, syntactic pattern

recognition, search engines, medical diagnosis, bioinformatics, brain-machine

interfaces, detecting credit card fraud, stock market analysis, classifying DNA

sequences, speech and handwriting recognition, object recognition in computer vision,

game playing and robot locomotion, among others [Mit97].

3.2.2 Some ML/data mining methods

The main traditional methods available in ML are decision tree learning (DTL), neural

networks, Bayesian learning, instance-based learning, genetic algorithms, rule learning,

analytical learning, and reinforcement learning. Among the most well-known

algorithms, we can cite symbolic rule-learning algorithm such as CN2 [CN89], and C4.5

[Qui93]. When rules have to be learned from extremely large data sets, specialized

algorithms stressing computational efficiency may also be used. Other machine learning

algorithms commonly applied to this kind of problems include inductive logic

programming [Mug99], neural networks, and Bayesian learning algorithms. The

textbook [Mit97] describes a broad range of machine learning algorithms, as well as the

statistical principles on which they are based. The field of ML has borne the explosive

field of data mining, sometimes called knowledge discovery from databases, or

advanced data analysis. It has already produced practical applications in such areas as

analyzing medical outcomes, detecting credit card fraud (e.g. using the so-called White

Chapter 4 – Grammatical inference with GASRIA

Thèse de Doctorat d’État – The ESLIM Project 59

Hat Google™ Hacking), predicting customer purchase behavior, predicting the

personal interests of Web users, and optimizing manufacturing processes, among

others. This is so because data mining algorithms enable discovery of important

“regularities” in large data sets. A more recent survey describes most systems and

algorithms of data mining [MR11] and some textbooks describe applied data mining

platforms such as the Weka9 platform [WFH11]. The study of ML has also led to a set of

fundamental scientific and epistemological questions about how computers might

automatically learn from experience and subsequently improve behavior.

3.3 Inductive logic programming (ILP)

ILP aims to construct a set of hypotheses to enrich available background knowledge

using predicate logic. In the case where positive examples are not entailed by

background knowledge, the idea is to construct a new set of hypotheses to extend

background knowledge in order to make this entailment possible.

From ML, ILP inherits the goals, namely to develop tools and techniques to induce

hypotheses from observations (examples) and to synthesize new knowledge from

experience. By using computational logic as the representational mechanism for

hypotheses and observations, ILP can overcome the two main limitations of classical

ML techniques, namely the use of limited knowledge representation formalism encoded

as a propositional logic, on the one hand, and the difficulties in using substantial

background knowledge in the learning process, on the other hand [Mug99]. As an

interaction with grammars, we can refer to the specific application where ILP has been

applied to the problem of learning a grammar that is augmented with semantics. Since

an augmented grammar is a Horn clause logic program, techniques of ILP are found

appropriate. As an example, CHILL [ZM96] is an ILP program that learns a grammar

and a specialized parser for that grammar from examples. The target domain is natural

language database queries. CHILL’s task is to learn the predicate Parse(words, query)

9 Weka is a Web-based platform developed at Waikato University, New Zeland; http://www.cs.waikato.ac.nz/ml/weka

Chapter 4 – Grammatical inference with GASRIA

Thèse de Doctorat d’État – The ESLIM Project 60

that is consistent with examples and, hopefully, generalizes well to other examples. For

instance, the query “what is the capital of the state with the largest population?” is

transformed into “Answer(c, Capital(s,c) AND Largest(p, State(s), AND Population(s,p))).

Applying ILP directly to learn this sort of predicate results in poor performance since

the induced parser has only about 20% accuracy. Fortunately, ILP learners can improve

by adding knowledge through the construction of hypotheses. In this case, most of the

Parse predicate was defined as a logic program, and CHILL’s task was reduced to

inducing the control rules that guide the parser to select one parse over another. With

this additional background knowledge, CHILL achieves 70 to 85% of accuracy on

various database query tasks. This is obviously based on the assumption that the

problem can be expressed in a predicate form; an assumption that might turn out

difficult to be realized in some situations.

4. GI vs. ILP

4.1 Problem of inductive inference

Inductive learning's task, at large, is based on the idea of fitting a set of instances (or

examples) into a more general framework. This is equivalent to identifying a

relationship between some variables, given some observed results. It can be set in a

variety of manners, but the question ends up with an identification of some hidden

relationship between the known inputs and the produced outputs.

4.1.1 Inductive inference and normal semantics

We are given a background (prior) knowledge B and evidence E. This evidence is

described by the union of two disjoint subsets of positive evidence (E+) and negative

evidence (E-). Assume that we have evidence −+= EEE V a background theory and

some hypotheses all expressed as well-formed formula (wff). We can formulate the general

problem of inductive inference as described in Figure 4.2 below.

Chapter 4 – Grammatical inference with GASRIA

Thèse de Doctorat d’État – The ESLIM Project 61

/* Methodology 4.2 */
/* METH42 */

/* General problem of inductive inference (GPII) */

/* Normal semantics */
Given

- A background (prior) knowledge B
- Evidence E
- −+ ∪= EEE / * Positive and negative evidence */

Find

 One hypothesis H

Constraints

1. Prior satisfiability

≠∩ − |EB □

/* i.e. The conjunction of background (prior) knowledge B
and negative evidence does not entail the inconsistent
clause. */

2. Posterior satisfiability (or consistency with negative evidence)

≠∩∩ − |EHB □
/* i.e. The conjunction of all knowledge except the positive

evidence does not entail the inconsistent clause . */

3. Prior necessity

+≠ EB |
/* i.e. Background knowledge alone does not entail positive

evidence , which means that we need additional knowledge
from constructed hypotheses */

4. Posterior sufficiency (or completeness with regard to positive

evidence)

+=∩ EHB |)(
/* i.e. Background knowledge and all constructed hypotheses

entail all positive evidence. */

Figure 4.2 METH42 Inductive inference and normal semantics

By satisfiability, it is meant that the inconsistency clause cannot be entailed from

background knowledge and negative evidence. This is true for prior satisfiability, i.e.

Chapter 4 – Grammatical inference with GASRIA

Thèse de Doctorat d’État – The ESLIM Project 62

before the introduction of any hypothesis. It remains true after the introduction of

hypotheses, for the case of posterior satisfiability.

4.1.2 Inductive inference and definite semantics

In most ILP systems, background theory and hypotheses are restricted to being definite,

thus simplifying the general setting. Indeed, a definite clause theory T has a unique

minimal Herbrand model M+(T), and any logical formulae is either true or false in the

minimal model. The above general problem can be redefined with adapted constraints

as follows.

/* Methodology 4.3 */

/* METH43 */

/* General problem of inductive inference (GPII) */
/* Definite semantics */

Solve the same problem as for normal semantics above

Constraints

1. Prior satisfiability

)(, BMinfalseeEe +−∈∀
/* i.e. Background knowledge cannot support negative evidence*/

2. Posterior satisfiability (or consistency with ne gative evidence)

)(, HBMinfalseeEe ∩∈∀ +−
/* i.e. A fortiori nor can negative evidence be supported by both background

knowledge and hypotheses, supposed to enrich background knowledge */

3. Prior necessity

)(/ BMinfalseeEe ++∈∃
/* Some positive evidence is false in background knowledge. Otherwise, we

would not need additional hypotheses to try to establish that it is true */

4. Posterior sufficiency (or completeness with rega rd to positive
evidence)

)(, HBMintrueeEe ∩∈∀ ++
/* i.e. All positive evidence is contained in background knowledge and all

constructed hypotheses. */

Figure 4.3 METH43 Inductive inference and definite semantics

Chapter 4 – Grammatical inference with GASRIA

Thèse de Doctorat d’État – The ESLIM Project 63

The general case of the definite semantics, where the evidence is restricted to true and

false ground facts (examples), is called example setting. Notice that the example setting

is equivalent to the normal semantics, where B and H are definite clauses and E is a set

of ground unit clauses. The example setting is the main setting of ILP. It is used by the

large majority of existing ILP systems.

4.2 Formalized ILP approach

The general ILP approach works as follows. It keeps track of a queue of candidate

hypotheses QH. It repeatedly deletes a hypothesis H from the queue and expands that

hypothesis using inference rules. The expanded hypotheses are then added to the queue

of hypotheses QH, which may be pruned to discard unpromising hypotheses for further

investigation. This process is continued until the stop-criterion is satisfied.

/* Methodology 4.4 */

/* METH44 */
/* The general ILP approach */

QH := Initialize /* Set of starting hypotheses */
REPEAT
 Delete H from QH
 /* Delete influences search strategy. Can realize depth-first (LIFO), breadth-first

(FIFO), best-first. */

 Choose the inference rules r1,…rk in R to be applied to H
 /* R is the set of rules to be applied */
 /* Choose determines the inference rule to be applied on H */
 Apply the rules to H to yield H1,…,Hn
 Add H1,…,Hn to QH

 Prune QH
 /* Prune determines which candidates hypothesis are to be deleted from the queue.

Can rely on user as “oracle” */
UNTIL stop-criterion (QH) satisfied
 /* Conditions under which algorithm stops. When either solution or failure is found

from current queue */

/* Combining delete and prune it is easy to obtain advanced search strategies such as
hill-climbing, beam-search, best-first, etc… */

Figure 4.4 METH44 General ILP approach

Chapter 4 – Grammatical inference with GASRIA

Thèse de Doctorat d’État – The ESLIM Project 64

4.3 GI formulated in ILP framework

We can express our positive-example-based grammatical inference problem (PIB-GIP)

within an ILP framework, as follows:

/* Methodology 4.5 */

/* METH45 */

/* GI Problem formulated as an ILP problem */

/* Positive-example-based grammatical inference problem (PEB-GIP) */

Given

- A logic program representing background knowledge
/* In our context, background knowledge corresponds to CFG definitions and
parsing methods. */

- A set of positive examples (or sentences) D+

Find
- In ILP framework, construct additional rules describing a CFG that generates

this specific set of data.
 - In GI framework, departing from ILP, the aim is also to generate other similar

data not necessarily given at the outset.

Figure 4.5 METH45 GI problem formulated as an ILP problem

In any of the frameworks of Figure 4.5, there remains the delicate operation of

reducing the number of relevant hypotheses to construct. In our case, the partial

parsing algorithm (PPA), described in forthcoming Section 5.2 of Chapter 6 reduces

drastically this number since it searches within known sub-sentences. This step

represents a useful contribution. To our knowledge, no absolute minimization method

exists regarding the number of hypotheses to consider.

4.4 GI - ILP interplay

As can be easily seen from the literature, ILP [Mug99] has several links with GI. When

learning recursive rules, ILP shares some of GI’s objectives and sometimes its

techniques. For instance, MERLIN10 (Model Extraction by Regular Language INference)

10 http://people.dsv.su.se/~henke/ML/MERLIN.html

Chapter 4 – Grammatical inference with GASRIA

Thèse de Doctorat d’État – The ESLIM Project 65

system parses the data by the background knowledge and uses this information to learn

a deterministic finite automaton or a stochastic one [Bos98]. MERLIN 2.0 is an inductive

logic programming (ILP) system that uses a general hypothesis in the form of a logic

program together with sets of positive and (optionally) negative examples in order to

find an inductive hypothesis which entails all positive examples but no negative

examples. MERLIN has been improved resulting the GIFT system [BH01]. This latter

builds on MERLIN by learning directly tree automata, thus not needing to lose

representation capacity by having to linearize the data. However, systems like MERLIN

and GIFT use GI as the inference engine of logic programs; they do not combine GI with

existing ILP systems.

5. GASRIA Architecture

5.1 GASRIA modes of operation

5.1.1 Overall block diagram

Figure 4.6 shows the overall architecture of GASRIA system. As shown, the proposed

system is based on two main components: the learning module ILSGInf and an FOL-

based environment called EXINF containing Earley parsing rules and the facts

concerning the grammar and the sentence to be parsed. Each component is associated

with one specific mode of operation. As indicated, there are two modes (or sessions) of

possible operation, namely the learning or training mode destined to the expert or

teacher, and linked to the ILSGInf module and the exploitation or testing mode destined

to the ordinary user, linked to the analysis / classification of sentences to be parsed. We

begin by describing the learning mode, and then the exploitation mode.

Chapter 4 – Grammatical inference with GASRIA

Thèse de Doctorat d’État – The ESLIM Project 66

Figure 4.6 ARCH41 - GASRIA architecture

FACT BASE

CONSTRUCTED

GRAMMAR

PARTIAL PARSING
ALGORITHM (PPA)

EVENTUAL

VALIDATION BY
HUMAN EXPERT

L
E
A
R
N
I
N
G

M
O
D
E

RULE BASE

SYNTACTIC
ANALYSIS

FOL-BASED

ENVIRONMENT
(EXINF)

EXPLOITATION MODE
(ORDINARY USER)

EXPLOITATION

candidate sentence analysis /
classification

LEARNING

Chapter 4 – Grammatical inference with GASRIA

Thèse de Doctorat d’État – The ESLIM Project 67

5.1.2 GASRIA class diagram

Figure 4.7 below describes the main classes used in GASRIA. It depicts the overall class

diagram of system and is used for reusability, readability and easier maintenance.

Figure 4.7 ARCH42 GASRIA class diagram

5.2 Learning mode: ILSGInf

In this mode, the system acquires knowledge from examples introduced by the human

expert or teacher, with an exclusive interest in positive examples. At the beginning of

the training, the ILSGInf learning module receives, one by one, human expert-chosen

sentences of a given language and thus enriches its fact base, initially empty. Starting

from this set of sentences, this module builds a CFG that generates the language. The

fact base is automatically and incrementally filled with the grammar rules describing

GASRIA (Chapter 4)

ILSGInf (Chapter 6)

EXINF (Chapter 5)

Grammar

Terminal NonTerminal InitialSymb
ol

Production

KnowledgeBase
InferenceEngine

RuleBase FactBase

Editor

Chapter 4 – Grammatical inference with GASRIA

Thèse de Doctorat d’État – The ESLIM Project 68

the language. This eventually completes the session with the expert. The learning mode

is further detailed in Chapter 6.

5.3 Exploitation mode: EXINF

 Because any incremental learning mode requires by its nature the integration of an

element of exploitation, we use for that purpose a first-order logic (FOL) programming

environment, called EXINF working in forward chaining fashion. This form of chaining

is used because syntactic analysis is a bottom-up approach. Parsing starts with facts and

ends up with goals. EXINF allows a specification of the expert knowledge using

production rules and plays the role of a parser. In this mode, the available knowledge is

used to classify the new sentence. The sentences introduced by the user are syntactically

analyzed and the result is displayed indicating whether they belong to the language.

The blocks involved in this mode are the inference engine, the fact base and the rule

base. The exploitation mode is further explained in Chapter 5.

5.4 Fact base

The fact base consists of a CFG for a given language. The main components of the fact

base consist of the two components depicted below.

5.4.1 Initial symbol and the grammar of the language

These are represented by a set of production rules written using the syntax described in

Figure 4.8 below.

/* Methodology 4.6 */

/* METH46 */

/* Fact base syntax */

RULE FACT <rule right-hand side> < rule left-hand side >

FACT initial-symbol < initial symbol >

Figure 4.8 METH46 Fact base syntax

Chapter 4 – Grammatical inference with GASRIA

Thèse de Doctorat d’État – The ESLIM Project 69

5.4.2 Additional information

This concerns the string to be analyzed, such as the string itself and its length (i.e. the

number of symbols). Figure 4.9 below shows the fact base structure

/* Methodology 4.7 */

/* METH47 */

/* Fact base structure */

FACT string <string >

FACT length < length >

Figure 4.9 METH47 Fact base structure

5.5 Rule base

The rule base consists of a set of production rules describing a parser such as Earley’s

parser. It is written using the language accepted by EXINF, detailed in Chapter 5. The

rule base is used by the exploitation mode.

5.5.1 Vocabulary and rule base syntax

The language of expression allows communication with the expert. This language is

used to describe the rule base. Like any language, it is described by a vocabulary and

grammar.

5.5.5.1 Vocabulary

The vocabulary includes:

- The identifiers in the form of strings that represent predicates;

- The variables represented by alphanumeric identifiers preceded by the symbols "?",

in the case of a single variable (i.e. substituted by one string), or by "&" in the case of

many variables (i.e. substituted by more than one string);

- Reserved words that have a specific meaning for the system: IF, THEN RULE,

FACT, ADD, EXECUTE, DELETE, END.

Chapter 4 – Grammatical inference with GASRIA

Thèse de Doctorat d’État – The ESLIM Project 70

5.5.5.2 Rule base syntax

The rule base syntax (or more precisely the rules of production) that generates the

language is written in the normal form of Backus-Naur form (BNF) as expressed in

Figure 4.10 below.

/* Methodology 4.8 */

/* Syntax used by EXINF */
/* METH48 */

<declarations> :: = <declaration> [<declaration>] * END
<declaration> :: = < rule-declaration> | < fact-dec laration>
<rule-declaration> :: = RULE [<name>]* <rule>
<name> :: = string of 5 characters
<rule> :: = IF <antecedents> THEN <consequents>
<antecedents> :: = (<premise>) [<antecedents>]*
<premise> :: = <predicate> <element>+
<predicate> :: = classical identifier
<element> :: = <constant> | <variable>
<constant> :: = classical identifier
<variable> :: = ?<constant> | &<constant> | ?- | &-
<consequents> :: = {<conclusion> |<action>}[<conse quents>]*
<conclusion> :: = ADD (<predicate> <element>+) | D ELETE

(<predicate> <element>+)
<action> :: = EXECUTE (<expression>)
<expression> :: = write (message) | <variable> |

{<variable> | <constant>} <operation> {<variable> |
<constant>}

<operation> :: = arithmetic operation
< fact-declaration> :: = FACT <fact>
<fact> :: = <predicate> [<constant>]+

Standard notations
- Symbol * indicates existence of 0 or more symbol (s)
- Symbol + indicates existence of 1 or more symbol(s)
- Symbol ?identifier concerns only one identifier variable
- Symbol &identifier concerns more than one identifier variable

Figure 4.10 – METH48 Syntax used by EXINF

5.5.2 Automatic syntactic analysis

Once learning is finished, GASRIA is ready to work as a simple syntactic analyzer i.e.

switches to the exploitation mode of operation. In this case, the user is supposed to

learn a language from the system. Thus, the user supplies new sentences to be

Chapter 4 – Grammatical inference with GASRIA

Thèse de Doctorat d’État – The ESLIM Project 71

recognized. EXINF deals with these sentences as a syntactic analyzer, or rule base, using

the grammar of the language i.e. the content of the fact base which has been updated

during the learning phase. GASRIA operates a classification on the membership of these

new sentences and informs the user. In addition, the system always questions the

results obtained because it has to rely on experience. For that, the system keeps track of

all details of the session with the user and transmits it to the expert for a possible

validation of responses, thus enriching the language. The eventual mistakes are

corrected using the ILSGInf module. Note that these errors affect the answers provided

by GASRIA that the expert has refuted.

6. Parsing

6.1 Notation

In all subsequent analysis, we use the following notation:

Symbols A, B, C,… to range over non-terminals N, with symbols a, b, c, … to range over

the input alphabet Σ.

Symbols X, Y range over (N ∪ Σ).

Symbols α, β, γ range over (N ∪ Σ)*

Symbols v, w, x,… range over Σ*

For a fixed grammar, the binary relation (⇒) is defined over (N ∪ Σ)* such that

γΑδ ⇒ γαδ whenever (A → α) ∈ P.

Multiple derivation, closure of (⇒), is denoted ().

6.2 Earley’s algorithm

6.2.1 The idea

We briefly present here the Earley’s algorithm, before introducing our declarative

adaptation, detailed in Chapter 5. Let G = (N, Σ, P, S) be a CFG. We associate with G a

set of symbols, called dotted items, specified as:

IE = { [A → α • β] | (A → α β) ∈P}.

Chapter 4 – Grammatical inference with GASRIA

Thèse de Doctorat d’État – The ESLIM Project 72

Dotted items are used to represent intermediate steps in the process of recognition of a

production of the grammar. The sequence of symbols between the arrow and the dot

indicates the sequence of constituents recognized so far at consecutive positions within

the input string. More precisely, given a production:

p : (A → X1X2 …Xr), r >= 0,

the process of recognition of the right-hand side of p is carried out in several steps. We

start from item (A → •X1X2 …Xr), attesting that the empty sequence of constituents has

been collected so far. This item represents a prediction for p. We then proceed with item

(A → X1 • X2 …Xr),after the recognition of a constituent X1 , and so on. Production p has

has been fully recognized only if we reach item (A → X1 X2 …Xr•), attesting therefore

the complete recognition of a constituent A.

Given a string w = a1a2…an, with n >= 0 and each ai a terminal symbol, a position

within w is any integer i such that 0 =< i < = n. In what follows, E is a square matrix

whose entries are subsets of IE and are addressed by indices that are positions within

the input string. Entries are denoted as Ei,j. The insertion by the algorithm of item [A →

α • β] in Ei,j , i =< j, attests the fact that the sequence of constituents in α exactly spans

the substring ai+1…a j of the input. Control flow is not specified in the method below,

since it is usually regulated by means of a data structure called agenda, which directs the

incremental construction of the table by means of an iteration: starting from an empty

table, items are added as long as needed, and with the desired priority.

Chapter 4 – Grammatical inference with GASRIA

Thèse de Doctorat d’État – The ESLIM Project 73

6.2.2 Detailed steps of Earley’s algorithm

/* Algorithm 4.1 */

/* ALGO41 */

/* Earley’s Algorithm */

/* In a list Ip where p> 0, item "A→ α • β,q " has the meaning described below */

//* By neglecting the first q symbol(s) of the sub-string, we can parse the string
α in the case where the string β comes after it (β is called a prevision string).
Therefore, in the case where β = ε (empty string), we say that the string α is
parsed by neglecting q symbols. *//

1 Construction of I0

1.1- FOR every rule S → α in P, ADD [S →•α , 0] in I0.

1.2- IF the item is of the form [B → γ •, 0] in I0,
 THEN FOR every item of the form [A → α • B β , 0] in I0,
 ADD item [A → α B• β , 0] to I0.

1.3- IF [A → α • B β , 0] is in I0
 THEN FOR every rule of the form B → γ
 ADD item [B →•γ , 0] to I0.

1.4- REPEAT 12 et 13 UNTIL no item can be added

2 Construction of Ip from lists I0,...,Ip-1

 2.1- FOR every item of the form [B → α • a β, q] in Ip-1 such that a= ap in ω,

ADD [B → α a•β , q] in Ip

 2.2- FOR every item of the form [A → γ •, q] in Ip,
 AND FOR every item of the form [B →α • Aβ,k] in Iq,
 ADD [B → α A• β, k] to Ip

 2.3- FOR every item of the form [A → α • B β, q] in Ip,
 AND FOR every rule of the form B → γ in P,
 ADD [B →• γ, p] to Ip

 2.4- REPEAT 22 et 23 UNTIL no item can be added

3 Eventual acceptance of a string of length n

 3.1 IF n+1 lists are constructed

 AND an item of the form [S → α •, 0] is found in In
 THEN string is accepted

 3.2 ELSE string is refused.

Algorithm 4.1 - ALGO41 Earley’s algorithm

Chapter 4 – Grammatical inference with GASRIA

Thèse de Doctorat d’État – The ESLIM Project 74

6.2.3 Correctness

The string w is accepted if and only if [S → • α] ∈ E0,n for some (S → α) ∈ P,. The

correctness of the algorithm immediately follows from the property below.

Property: in Earley’s algorithm described above, an item [A → α • β] is inserted in Ei,j

if and only if the following conditions hold:

C1. S a1a2…ai A γ , for some γ; and

C2. α ai+1…aj

For methods cruder than the Earley’s algorithm, membership of an item in some entry

may merely be subject to condition C2, which is sufficient for determining the

correctness of the input. However, Earley's algorithm is more selective, as is apparent

from condition C1, which characterizes the so-called top-down filtering capability of the

method. Condition C1 guarantees that only those constituents are predicted that are

compatible with the portion of the input that has been read so far. Assuming the

working grammar is fixed, a simple analysis reveals that the considered algorithm runs

in time O(n3).

6.2.4 Earley and CYK algorithms

Earley’s algorithm is an example of chart parser class. Cocke-Younger-Kasami

algorithm (CYK) is another example (Manacher, 1978). These algorithms are both based

on dynamic programming. The choice of Earley’s algorithm is dictated by

considerations related to complexity and simplicity of implementation. The time

complexity of both algorithms is O(n3) where n is the length of the sentence. However,

Earley’s algorithm performs better in most situations. Indeed, it reaches O(n2) for

unambiguous grammars and O(n) for LR(k). For the space complexity, Earley’s

consumes O(n), while CYK needs O(n2). Earley’s algorithm can parse all CFGs, but CYK

parses only grammars in Chomsky normal form (CNF). For these reasons, we have

used Earley’s parser for our system and not CYK.

Chapter 4 – Grammatical inference with GASRIA

Thèse de Doctorat d’État – The ESLIM Project 75

6.3 Additional definitions

6.3.1 Types of sentences and partial derivatives (PaDe’s)

(1) Let C be a global sentence defined as a blank-free string of characters in any artificial

language.

(2) A sub-sentence of a given global sentence C is any recognized sub-sequence of

characters in this global sentence.

(3) A partial derivative (PaDe) of C is the parse sub-tree of any sub-sentence.

(4) Any parsing based on PaDe’s is termed partial parsing and its corresponding

algorithm called partial parsing algorithm (PPA).

(5) A list (resp. sub-list) is the result of parsing using Earley’s algorithm for a global

sentence (resp. sub-sentence).

(6) More general PaDe : we say of a PaDe that it is more general than another if the

former contains the minimum number of terminals i.e. the maximum of terminals

are transformed into non-terminals. The resulting PaDe is therefore smaller.

(7) More general grammar: In order to obtain a more general grammar, it is necessary to

add a more general rule to each step of the generalization process. The rule to be

added is always of the form “S → DPi” where DPi is the concatenation of PaDe’s.

6.3.2 Derivation trees

We need derivation trees [ALS07] for the construction of our grammar from the

initial stage to the final stage. A labeled and ordered tree D is said to be a derivation tree

for a CFG of the form G = (N, Σ, P, S) if :

1- The root of D is labeled by S ;

2- D1,..., Dk are sub-trees of direct descendents of S and the roots of Di are xi, then S

→ x1...xk is a production rule in P. Di must be a derivation tree for G = (N, Σ, P, xi) if xi is

a non-terminal and Di is a unique node (named xi if it is a terminal).

3- D1 is the only sub-tree of D, the root of D1 is ε . In this case, the production rule

S→ ε ∈ P.

Chapter 4 – Grammatical inference with GASRIA

Thèse de Doctorat d’État – The ESLIM Project 76

Example: G = (N, {a, b, ε}, P, S) where :

 N = { S }

 P = { S → a SbS, S → bSaS, S → ε }

Among the syntactic trees of this grammar, we find those of Figure 4.11.

Figure 4.11 – DIAG41 – A derivation tree of G

6.4 Motivation for using PaDe’s

Now, we use the additional definitions above to proceed further through an example of

PaDe use. For example, we have the following problem:

Initially recognized global sentence: a+b

New global sentence to be recognized: (a+b)

How can we handle this new sentence? In classical parsing: new global sentence refused

because of first unrecognized character “(“.

With the use of PaDe’s:

PaDe1 = (

PaDe2 = a+b

PaDe3 =)

Result: Accept DP2. Reject all other sub-sentences.

Head of sub-
sentence in

global
sentence

Sub-
sentence
length

PaDe’s of sub-sentence :

Result is a dynamic string

0 1 D (

a
S b S

S

ε ε

Chapter 4 – Grammatical inference with GASRIA

Thèse de Doctorat d’État – The ESLIM Project 77

1 3 S a+b

4 1 E)

Table 4.1 TAB41 PaDe’s construction for (a+b) based on a+b

7. Learning in GASRIA

7.1 Learning characteristics

It is useful to make the following remarks concerning learning in GASRIA.

- No pre-classification is required from the expert when supplying the sentences for

training. Therefore, the system does not need to make any search in the sentences

space.

- The system gradually builds a grammar that generates these sentences.

- For the validation of any learning system, we need an exploitation module to check

whether learning has been done correctly. We use the module EXINF for parsing.

- We use the property that rules can be written in the forms A → BC, or A → a.

7.2 Learning strategy implementation

Implementation concerns the development of all required phases, i.e. those that take in

charge the initial grammar construction, partial parsing, the refinement cycle and the

treatment of partial derivatives. All these phases are described in details in Chapter 6

concerning ILSGInf module.

8. Results and discussion

8.1 GASRIA implementation

A program has been developed using Microsoft Visual C++ release 6.0 (MVC++6.0)

under Microsoft Windows XP. This program takes full advantage of the object-

oriented method. Grammar generation follows the steps described in Figure 4.12 below:

Chapter 4 – Grammatical inference with GASRIA

Thèse de Doctorat d’État – The ESLIM Project 78

/* Methodology 4.9 */

/* METH49 */

/* Grammar generation */

- Read first positive sentence
- Generate an initial grammar
- Use refinement cycle

 -- Read a new positive sentence
 -- Generalize this grammar
- Give results
- Test grammar validity on additional sentences, wi th

eventual recourse to human expert

Figure 4.12 METH49 Grammar generation

Refinement cycle for grammar generation follows the steps described in Figure 4.13, but

with no specialization.

/* Methodology 4.10 */

/* METH410 */

/* Refinement cycle */

- Use result given by PPA
- Generalize grammar if result gives failure for a positive

example
- Specialize grammar if result gives success for a negative

example

Figure 4.13 METH410 Refinement cycle in grammar generation

8.2 Example

The details of how to operate the complete system is described in the two forthcoming

chapters. We only give here the basic steps as building blocks of the grammar induction

as performed by GASRIA, on a simple example. The class of languages learned by

GASRIA are given in Appendix 1.

Chapter 4 – Grammatical inference with GASRIA

Thèse de Doctorat d’État – The ESLIM Project 79

Problem Statement

1. Given a set of positive examples S+ = { a+b, (a+b)} from a language L.

2. Infer a grammar that can generate L in the limit.

3. Describe all the steps of the induction process and consider both learning phase and

exploitation phase.

8.2.1 Learning phase: ILSGInf use

1. Initial sentence introduction: the expert introduces the sentence: a+a

2. Initial grammar generation

The program generates the following initial grammar G0 = (N0, Σ0, P0, S) where:

N0 = {A, B, S, C} ; Σ0 ={a, +} ; S initial symbol in N0 .

P0 = { A → a, B → +, C → AB , S → CA }

3 Parsing of the new sentence: EXINF as parser rejects the new sentence (a+a) according

to G0 since the opening parenthesis “(“ and the closing one “)”are not recognized

by G0.

4. Refinement cycle

 3.1 Sub-lists construction: the partial parsing algorithm (PPA) uses all sub-lits for

all sub-strings for analysis.

 3.2 PaDe’s construction: all PaDe’s are obtained.

 3.3. Generalization: The program selects the most general rule which is the

concatenation of the most general PaDe’s. This selection gives: S → DSE

 3.4 Grammar induction: The program generates the following induced grammar:

 G1 = (N1, Σ1, P1, S) where:

N1 = {A, B, S, C, D, E} ; Σ1 ={a, +, (,)} ;

P1 = { A → a, B → +, C → AB , S → CA, D → (, E →) , S → DSE}

3.5 Introduction of new positive sentence: the expert introduces (a+a)+(a+a)

3.6 Parsing of the new sentence: Go to Step 3 above.

3.7 Generation of the third grammar of the form:

Chapter 4 – Grammatical inference with GASRIA

Thèse de Doctorat d’État – The ESLIM Project 80

G2 = (N2, Σ2, P2, S)

N2 = {A, B, S, C, D, E, F} ; Σ2 = {a, +, (,)} ;

P2 = { A → a, B → +, C → AB, S → CA, D → (, E →) , S → FBF, F → DSE, S →

F}

4. Grammar transformation to Chomsky normal form (CNF)

The grammar is improved using the CNF as follows:

Rule F → DSE is replaced by : F → DH and H → SE

Rule S → FBF is replaced by : S → FG and G → BF

The actual grammar is now the most general grammar since it can generate all

(infinite) strings of the form : a+a, (a+a), (((a+a))), (((a+a))+(a+a)), …

Formally the actual grammar generates the following language:

expression → a+a

expression → (expression)

expression → expression + expression

Discussion

Only three positive examples a + a, (a+a), (a+a) + (a+a) are needed to infer a grammar

that generates all strings belonging to L. Our method does not produce any counter

examples; which represents an important result. Chapter 6 provides more details of

how this is done by ILSGInf.

8.2.2 Exploitation phase: EXINF use

The grammar G2 is introduced in the fact base of EXINF. At this stage EXINF is able to

parse any sentence of the language L.

1. Recognized sentence: ((((a+b)+(a+b)+(a+b)+(a+b)))). The analysis gives success.

2. Unrecognized sentence: ((a+b)+a+b. The analysis gives failure.

Chapter 5, Section 5 describes in more details of how this is done by EXINF.

Chapter 4 – Grammatical inference with GASRIA

Thèse de Doctorat d’État – The ESLIM Project 81

9. Conclusion

In this chapter, we reported an early attempt in bridging the gap between GI and first-

order logic (FOL). Based on this idea, GASRIA has been designed and developed as a GI

system that can infer some CFG’s from positive examples. Thus, the system behaves as

a parser with the ability to learn inductively, with the learning module, and to reason

through an FOL-based programming environment, EXINF, developed for a broader

context. For the tested languages, the number of examples required for induction is

very small, here not exceeding five examples. On the other hand, the generated

language is not empty since it contains at least the introduced examples, and generates

no counter example. The combination of GI and FOL can be regarded as an important

step towards “intelligent” compilers. The results obtained in this chapter are further

expanded in Chapter 5, reporting in details the parsing problem using logic, and

complemented by learning in Chapter 6.

Chapter 5 – Inferences through EXINF : intelligent parsing issues

Thèse de Doctorat d’État – The ESLIM Project 83

CHAPTER 5

INFERENCES THROUGH EXINF INTELLIGENT
PARSING ISSUES

1. Introduction

This chapter is concerned with coupling first-order logic (FOL) and grammatical

inference (GI) aiming to construct an intelligent parser (IntPar). Our goal here is to

establish the “methodological production” rule FOL and GI → IntPar. We mainly build

our contribution on methods drawn from FOL as applied to parsing. Starting from

truly first principles, we design and develop a rule-based first-order deduction system,

called EXINF, and couple it with a learning module, called ILSGInf, for the purpose of

GI. While we stress the importance of the logic-based methods used for

implementation, we also raise the issues imposed by such a coupling. Although EXINF

is used here for parsing, it can also be used as a stand-alone inferential system. On top

of that general-purpose usage, the application of EXINF is two-fold; it can be considered

as an ordinary sentence parser, or as an extended Earley’s parser for a given grammar.

More importantly, EXINF can contribute to the inference of one unknown grammar

from positive examples in conjunction with the learning module ILSGInf, described in

Chapter 6. In summary, EXINF can be used as a stand-alone inference engine

implementing both forward and backward chaining, as a “crude” parser or an

Chapter 5 – Inferences through EXINF : intelligent parsing issues

Thèse de Doctorat d’État – The ESLIM Project 84

“intelligent” parser. All these issues are addressed in this chapter. The resulting

implementation gives a powerful unified framework able to meet one of the challenges

of GI.

The chapter is structured as follows. In Section 2, we formulate our problem by

specifying the refined objectives. EXINF parsing capabilities are described in Section 3

while Section 4 explains its reasoning mechanisms based on forward chaining. Section 5

is devoted to the implementation of the system and to experimental results. Finally,

lessons learned are drawn from the actual results and proposals are highlighted

pointing towards the improvement of the actual work.

2. EXINF objectives

The objective is to concentrate on the description of a first-order rule-based or logic

programming environment, called EXINF, capable of reasoning on assertions related to

an unknown grammar to be induced. While the operation of the complete system,

inferential and learning has been reported in Chapter 4, we here stress the importance

of the logic programming environment EXINF. The main objectives of this system are:

(i) Stand-alone inferences capability, i.e. EXINF is a system based on FOL that can infer

knowledge for general-purpose application. In this respect, EXINF can be

compared to those available over the Web, e.g. NASA CLIPS rule-based language.

(ii) Simple parsing, i.e. EXINF can be used to parse any language based on a CFG.

(iii)“Intelligent” parsing, i.e. EXINF can infer one unknown CFG from positive

examples, in conjunction with a learning module, namely ILSGInf.

(iv) Moreover, EXINF is a system developed from scratch and, as such, is easier to

update and to adapt for special applications such as the one we are dealing with.

Our developed logic programming environment has the inferential and

complementary characteristics described below.

Chapter 5 – Inferences through EXINF : intelligent parsing issues

Thèse de Doctorat d’État – The ESLIM Project 85

2.1 Inferential characteristics

The central process in any intelligent system is inference, defined here as the ability to

add valid new propositions to a knowledge base or to derive the truth of propositions

not explicitly contained within the knowledge base.

(i) Rule-based system: Knowledge is rule-based i.e. it is represented by production rules.

(ii) First-order, predicate logic: Reasoning is based on first-order or predicate logic.

(iii) Variables: Use of variables are allowed. These are instantiated (or bound) by

constants from the fact base.

(iv) Closed world assumption: Like many systems (e.g. Prolog), our system works with the

closed world assumption, i.e. a goal that is not explicitly expressed in the fact base, or

that cannot be inferred from it, is considered as false. This assumption does not

reduce the capabilities of our system since the grammar contains all information

concerning the language under consideration. Indeed, any grammar generates all the

instances of the corresponding language. The difficulty resides in inferring a

grammar, not in using it.

(v) Backtrack characteristics: in the case of failure, search for a new solution is done by

returning to the state preceding actual failure.

(vi) Resolution principle: The system does not use the Robinson’s resolution principle.

Therefore, it can be easily adapted.

(vii) Forward chaining and backward chaining: The system uses both forward and

backward chaining for deriving or proving new knowledge. Only forward chaining

is used and described in this chapter.

2.2 Parsing characteristics

A problem that often faces a learning system designer lies in the difference between the

types of representations used to describe the examples, on the one hand, and the

concepts describing these examples, on the other. In our case, an example is a string. As

for the concepts or generalizations, it consists of a context free grammar (CFG).

Chapter 5 – Inferences through EXINF : intelligent parsing issues

Thèse de Doctorat d’État – The ESLIM Project 86

It is clear that the difference between a string and a grammar is important. For

minimizing this difference, we rely on syntax trees which are located halfway between

these two approaches. We use the link between a string of characters and a grammar as

a means of transforming examples from string representation to a closer representation

with respect to a grammar. This transformation can be seen as a process of

interpretation. Thus, in learning mode, the parser is used for this rapprochement.

2.3 Complementary characteristics

(i) Parsing: We use an adapted version of Early’s algorithm for parsing [Ear70].

(ii) Learning: A description of the learning module ILSGInf is given in Chapter 6.

(iii) Integration: An integrated implementation involving both learning and parsing is

reported in [HH07a].

 3. First-order logic (FOL) considerations

3.1 Rule-based deduction systems

3.1.1 Rules and operation

Rule-based problem-solving deduction-oriented systems are built using rules of the

form:

<if antecedent …then conclusion>.

The antecedent is also known as premise, condition or left-hand side (LHS). The

conclusion is also known as consequent, action or right-hand side (RHS). The rules are

therefore interchangeably called if-then rules or antecedent-consequent rules condition-

action rules [Win93].

Rule-based systems can either work in a forward or backward chaining mode. In the

first mode, we move from the LHS to the RHS. We therefore use the condition pattern to

identify the action pattern. During the forward chaining mode, whenever a RHS pattern

is observed to match a fact in the fact base, the condition is satisfied. A rule is triggered

Chapter 5 – Inferences through EXINF : intelligent parsing issues

Thèse de Doctorat d’État – The ESLIM Project 87

whenever all RHS patterns are satisfied. When a triggered rule establishes a new fact,

the rule is said to be fired. In deduction systems, all triggered rules generally fire. In the

case where many rules need to be fired, a conflict-resolution procedure is needed to

decide which rule to fire. All deduction systems whether forward or backward

comprise an inference cycle consisting of three phases, namely:

Detection →→→→ conflict resolution →→→→ execution or firing

During the first phase, which is the detection phase, a conflict resolution set (CRS) is

constructed and which consists of all candidates rule. The second phase is conflict

resolution proper i.e. the choice of the rule to trigger. The last phase is the deduction

phase during which the chosen rule is finally fired. A termination procedure is used to

end the search.

3.1.2 Basic components of rule-based systems

The basic components of a rule-based problem-solving deduction system are a rule base

and a fact base [Win93].

(i) The fact base

/* Methodology 5.1 */
/* METH51 */

/* Fact Base*/

Lexically : There are application- specific symbols

and pattern symbols.
Structurally: assertions are application- specific

symbols and patterns are application- specific
symbols and pattern symbols.

Semantically: the assertions denote facts in some
world. Facts cannot be false but assertion
can.

Constructors

Add an assertion to working memory.
Readers

Produce a list of matching assertions
in fact base given a pattern.

Figure 5.1 – METH51 Fact base

Chapter 5 – Inferences through EXINF : intelligent parsing issues

Thèse de Doctorat d’État – The ESLIM Project 88

/* Methodology 5.2 */
/* METH52 */

/* Rule Base */

Lexically: There are application- specific symbols

and pattern symbols.
Structurally: Patterns are lists application-

specific symbols and pattern symbols, and rules
consist of patterns. Some of these patterns
constitute the LHS of the rule and the others
constitute the RHS of the rule.

Semantically: Rules denote c onstraints that enable
procedures to seek new assertions or to
validate a hypothesis.

Constructors

Construct a rule, given an ord ered list of LHS
patterns and a RHS pattern.

Readers
Produce a list of a given rule’s RHS patterns.
Produce a list of a given rule’s LHS patterns.

Figure 5.2 – METH52 Rule base

3.2 Knowledge-base engineering issues

3.2.1 Knowledge acquisition

To acquire or extract the necessary knowledge from a human expert in order to code

it as rules understandable by a computer, the following strategy is used, as decribed

in Figure 5.3.

/* Methodology 5.3 */
/* METH53 */

/* Heuristics for learning from an expert */

- Ask about specific situations to learn the

expert’s general knowledge

- Ask about situations pairs that look identical

but that are handled differently, so that the
expert’s vocabulary becomes understandable.

Figure 5.3 – METH53 Heuristics for learning from an expert

Chapter 5 – Inferences through EXINF : intelligent parsing issues

Thèse de Doctorat d’État – The ESLIM Project 89

3.2.2 Knowledge explanation

In order to answer a question about the behavior of a rule-base deduction system, the

following heuristics are used, as explained in Figure 5.4 below.

/* Methodology 5.4 */
/* METH54 */

/* Heuristics for explaining results given by a rule-base system */

To answer a question about the reasoning done by a
rule-base deduction system:

IF the question is a HOW question,
THEN report the assertions connected to the RHS of

the rule that established the assertion
referenced in the question.

IF the question is a WHY question,
THEN report the assertions connected to the LHS of

the rule of all rules that used the assertion
referenced in the question.

Figure 5.4 METH54 Heuristics for explaining results given by a rule-base system

3.3 Forward chaining (FC

The forward chaining is based on the modus ponens rule which states that:

((p → q) and p) = (q)

The symbol = represents entailment. In this logical expression, the RHS, q, is said to be

entailed, inferred or derived from the LHS, ((p → q) and p). Both LHS and RHS are

related by two fundamental theorems:

Deduction theorem: (LHS = RHS) ↔ (LHS → RHS is valid or is a tautology).

Contradiction theorem: (LHS = RHS) ↔ (LHS AND NOT(RHS) is unsatisfiable).

In our situation, parsing is a bottom-up process since parsing begins from the facts and

tries to attain some specified goals. Therefore, it is more suitable to use forward

chaining. We are in a situation where the goal is not precisely known. Indeed, at the

Chapter 5 – Inferences through EXINF : intelligent parsing issues

Thèse de Doctorat d’État – The ESLIM Project 90

outset, the system ignores whether or not a given sentence belongs to the language

under consideration.

3.4 Backward chaining (BC)

Backward chaining is goal-driven reasoning approach. It attempts to answer a question

of the form: “how did we reach this conclusion (goal)?” Starting from this specific

conclusion, the premise(s) is (are) tried as sub-goals to be proved by tracing back to

eventually meet facts. Therefore, this approach works back from the conclusion or

query. If this query is true then no proof is needed. Otherwise, the algorithm finds those

implications in the knowledge base that conclude the query. All premises become sub-

goals to be proved. If all the premises of one of these implications can be proved true,

by backward chaining, then the query is true. The process is therefore repeated until it

reaches a set of known facts that forms the basis of the proof. In backward chaining,

modus ponens is run in reverse. Backward chaining is a sound inference rule i.e. a rule that

yields true derived conclusions provided that the conditions are true. It is useful to

distinguish between reasoning with backward chaining, and reasoning backwards,

starting from known consequents to unknown antecedents. To be specific, by reasoning

backwards we mean if the consequent of a rule is known to be true, then the antecedent

will be true as well. This is usually referred to as plausible reasoning. This can be

expressed in the form ((p → q) and q) ≡ (p) and is known as logical abduction. For

example, from the sentence “all Gamma Computers are fast” and the “My computer is

fast”, we can infer the eventually false sentence “My computer is Gamma Computer”.

Proof by contradiction is an example of use of backward chaining. It can alternatively

be expressed by the so-called modus tollens rule which states that:

(p → q) ≡ (¬ q → ¬ p).

Because the backward chaining is goal-directed, we have therefore to establish a list

containing the goal and all relevant sub-goals. Although EXINF implements also the

backward chaining, it will not be described here, because of no concern.

Chapter 5 – Inferences through EXINF : intelligent parsing issues

Thèse de Doctorat d’État – The ESLIM Project 91

3.5 Backward chaining vs. forward chaining

Choosing one mode of chaining depends on the problem under consideration. We can

use some rules of thumb or heuristics to find an acceptable choice. Let us define a meta-

heuristic i.e. a heuristic of how to choose heuristics themselves. Any meta-heuristic has

to produce a heuristic that reduces the search state space of the problem. Applying this

meta-heuristic, we readily find the steps of choosing between the two modes of

chaining. Whenever the rules are such that a typical set of facts can lead to many

conclusions, we say that the system exhibits a high degree of fan out. In this case, we

choose a backward mode. Alternatively, whenever the rules are such that a typical

hypothesis can lead to many questions, the system is said to exhibit a high degree of fan

in, which argues for the use of forward chaining. Of course, in many situations, these

concepts of fan in and fan out cannot be used since no one dominates. In this case, we

have to use other heuristics such as amount of facts heuristics. The meta-heuristic is

described in Figure 5.5 below [Win93].

/* Methodology 5.5 */
/* METH55 */

/* Backward chaining vs. forward chaining * /

/* BC vs. FC */

/* Level 0 : META-HEURISTIC //

/* Heuristic has to reduce the solution state space */

/ * Level 1 : Choose fan in and fan out heuristics */

1 fan in and fan out calculation

1.1 FOR every rule base find the fan in, alternatively

find the number of consequents that can be
instantiated

1.2 FOR every rule base find the fan out,

alternatively find the number of premises that can be
instantiated.

2 C omparison between fan in and fan out

Chapter 5 – Inferences through EXINF : intelligent parsing issues

Thèse de Doctorat d’État – The ESLIM Project 92

IF fan in = fan out
THEN choice between BC and FC is done with equal

weight
 ELSE
 IF fan in > fan out THEN choose FC
 ELSE choose BC

/ * Level 2 : Choose the amount of facts heuristics */

IF no facts are available

AND interest is in whether one of many possible
conclusions is true

 THEN use BC
IF all possible facts are available

AND interest is in deriving all possible conclusions
from those facts

 THEN use FC

Figure 5.5 Backward chaining vs. forward chaining

4. EXINF Architecture

4.1 Design diagrams

4.1.1 Use case diagram

There are two external modes when using EXINF. These modes are referred to as

exploitation and learning modes. Figure 5.6 shows the use cases describing both of them

in relation with the two main actors i.e. the human expert teaching the system EXINF in

the quest of grammar construction and the ordinary user, looking for sentences parsing.

- Exploitation mode: it concerns any user interested in parsing a given sentence using a

given grammar.

- Learning mode: it concerns a human expert acting as a teacher via ILSGInf.

Chapter 5 – Inferences through EXINF : intelligent parsing issues

Thèse de Doctorat d’État – The ESLIM Project 93

Figure 5.6 ARCH51 EXINF Use case diagram

4.1.2 Class diagram

Figure 4.7, in Chapter 4 described the main classes in EXINF class diagram. It depicts

the overall architecture of EXINF with the broader system. It is mainly used for

readability and maintenance.

4.3 The three EXINF layers

EXINF can be used for three different purposes, specified as layers. As a result, EXINF

is a three-layered system, as depicted in Figure 5.7 and Figure 5.8. Only two of these are

of interest to us i.e. the second and third layers.

4.3.1 EXINF first layer

Here EXINF can be used as a general purpose first-order logic (FOL) expert system

shell, or inferential system, for knowledge-base systems development. It allows the user

to introduce both rules and facts concerning a given problem. This is a general issue not

discussed here.

Request syntax analysis of a
sentence

User

Inference of a grammar

Validate the new
grammar

Human expert (‘teacher’)

Chapter 5 – Inferences through EXINF : intelligent parsing issues

Thèse de Doctorat d’État – The ESLIM Project 94

4.3.2 EXINF second layer

This layer is more specialized than the first one. Here, the knowledge base is a set of

parsing rules based on declarative form of Earley’s algorithm. This layer is concerned

with parsing a given sentence using a given grammar, introduced manually by the user.

Here, EXINF is used as a “crude” parser or sentence recognizer like any other parser.

4.3.3 EXINF third layer

In the third layer, EXINF is used as a system that can infer a grammar from positive

examples, or as “intelligent” parser. However, this issue cannot be undertaken by

EXINF alone. It is resolved in conjunction with the learning module ILSGInf.

Chapter 5 – Inferences through EXINF : intelligent parsing issues

Thèse de Doctorat d’État – The ESLIM Project 95

Figure 5.7 ARCH52 EXINF as a three-layered system

Fact Base

Level 0
Any user-defined facts

Level 1: Specialized Level 0
Facts concerning
- Grammars introduced by user
- Sentences to be parsed

Level 2: Automating Level 1
Facts concerning
- Induced grammar
- Sentences to be parsed

Level 1 and Level 2
Declarative Earley algorithm

Rule Base

Level 0
Any user-defined rules

ILSGInf

User

Chapter 5 – Inferences through EXINF : intelligent parsing issues

Thèse de Doctorat d’État – The ESLIM Project 96

Figure 5.8 ARCH53 EXINF as a detailed three-layered system

Use EXINF as Use EXINF as “crude” parser (2nd layer use)
General purpose (1st layer use)

3rd Layer EXINF as Knowledge-based system
acting as “intelligent” parser.

Inferred grammar

Sequence of
positive
examples

(By human
expert)

 Facts Rules

2nd Layer
EXINF Used as knowledge-based
system for “crude” parsing.

1st Layer

EXINF acting as first-order logic
(FOL) shell for general purpose.

ILSGInf

Use EXINF to infer a grammar
“intelligent” parser (3rd layer use)

3rd layer boundary

Chapter 5 – Inferences through EXINF : intelligent parsing issues

Thèse de Doctorat d’État – The ESLIM Project 97

5. EXINF - KBS used for parsing

5.1 EXINF as a knowledge-based system (KBS)

As a knowledge-based system (KBS) for parsing, EXINF is composed of:

1. Knowledge base which consists of :

1.1. A fact base that contains the generated grammar and the sentence to be

parsed.

1.2. A rule base which contains the declarative form of Earley’s algorithm.

2. Inference engine relying on:

2.1. Forward chaining as far as parsing is concerned.

2.2. Backward chaining, for other problems.

5.2 Declarative Earley’s algorithm: rule base

EXINF rule base is built on Earley’s algorithm ALGO41 described in Chapter 4 Section

6.2. The idea is to translate this algorithm into a declarative form.

5.2.1 Summarized Earley’s algorithm

Let G = (N, Σ, P, S) be a CFG. Let w = a1a2…an, be an input string, n >= 0, and ai ∈ N for

1= <i =< n.

Compute the least (n + 1)* (n + 1) table E such that the following conditions hold:

[S → • α] ∈ E0,0 for each (S → • α) ∈P, and

1. [A → • γ] ∈Ej,j . if [B → α • Aβ] ∈ Ei,j , (A → γ) ∈ P ;
2. [A → α aj • β] ∈ Ej,j if [A → α • aj β] ∈ Ei,j-1 ;
3. [A → αΒ • β] ∈ Ej,j if [A → α • B β] ∈ Ei,k , [B → γ •] ∈Ek,j

Write an algorithm that undertakes this task declaratively.

5.2.2 Declarative Earley’s algorithm

The solution is the declarative Earley’s algorithm as described in Algorithm 5.1 below.

Chapter 5 – Inferences through EXINF : intelligent parsing issues

Thèse de Doctorat d’État – The ESLIM Project 98

/* Algorithm 5.1 */

/* ALGO51 */
/* Declarative Earley’s algorithm */

RULE 1 /*construction of list l 0*/
IF (RULE ?symbol &part)

(initial_symbol ?symbol)
THEN ADD (I 0 [?symbol → • &part , 0])

RULE 2 /*construction of list l 0/
IF (I 0 [?symbol1 → &- • , 0])

(I 0 [?symbol2 → &- • ?symbol1 &- , 0])
THEN ADD (l 0 [?symbol2 → &- ?symbol1 • &-, 0])

RULE 3 /* construction of list l 0 */
IF (I 0 [?symbol1 → &-• ?symbol2 &-, 0])

(rule ?symbol2 &part)
THEN ADD (I 0 [?symbol2 → • &part, 0])

RULE 4 /* going from I p-1 to l p : a character is recognized*/
IF (I ?p-1 [?symbol1 → &part1 • ?a &part2, ?q])

(string ?a ? string_remainder)
THEN EXECUTE (?p ?(p -1) + 1)
ADD (I ?p [?symbol1 → &part1 ?a • &part2, ?q])
DELETE (string ?a &string_remainder)
ADD (string & string_remainder)

RULE 5 /*Filling list l p */
IF (I ?p [?symbol1 → &- • , ?q])
(I ?q [?symbol2 → &part1 • ?symbol1 &part2, ?k])
THEN ADD (I?p [?symbol2 → &part1?symbol1 • &part2,?k])

RULE 6 /* Filling list l p */
IF (I ?p [?symbol1 → &- • ?symbol2 &-, ?q])
(RULE?symbol2 &part)
THEN ADD (I ?p [?symbol2 → • &part, ?p])
RULE 7 /*Parsing of complete string*/
IF (string)
(length ?n)
(I ?n [?symbol → &part •, 0])
(initial_symbol ?symbol)
THEN ADD (write ("parsing is successfully achieved"))
DELETE (string)

Algorithm 5.1 - ALGO51 Declarative Earley’s algorithm

5.3 EXINF reasoning mechanism

Once parsing characteristics have been settled, we now introduce the inference engine

reasoning mechanism, based on forward chaining. This process handles parsing based

on the declarative approach.

Chapter 5 – Inferences through EXINF : intelligent parsing issues

Thèse de Doctorat d’État – The ESLIM Project 99

5.3.1 Forward chaining implementation

The following steps, describing the forward chaining, are a standard method of

reasoning. For instance refer to [Win93].

/* Algorithm 5.2 */

/* ALGO52 */
 /* Implemented forward chaining */

UNTIL no rules produces new assertions,

/* Detection : Conflict Resolution Set (CRS) Const ruction */
FOR each rule

Try to match the first antecedent with a n existing assertion.
Create a new binding set with variable bindings est ablished by
the match.

 Using the existing variable bindings, try to match the next
antecedent with an existing assertion. If any new v ariables appear
in this antecedent, augment the existing variable b indings.

/* Conflict Resolution Phase or Execution Phase */

 REPEAT the previous step for each antecedent , accumulating

variable bindings incrementally
UNTIL

• There is no ma tch with any existing assertion using the binding
set established so far. In this case, back up to pr evious match
of an antecedent to an assertion, looking for an alternative
match that produces an alternative, workable bindin g set.

• There are no antecedents to be matched. In this cas e,
- Use binding set in hand to instantiate the conseque nt,
- Determine if the instantiated consequent is already

asserted. If not, assert it.
- Back up to the most recent match with unexplored bi ndings,
looking fo r an alternative match that produces a workable
binding set

/* Termination Test */
• There are no more alternative matches to be explore d at any

level.

Algorithm 5.2 - ALGO52 Implemented forward chaining

Chapter 5 – Inferences through EXINF : intelligent parsing issues

Thèse de Doctorat d’État – The ESLIM Project 100

5.3.2 Example

Assume we have the following knowledge base, given in Figure 5.9 below:

/* Application 5.1 */
/* APPL51 */

/* Fact base */

R(a)
F(b)

/* Rule Base */

Rule1 IF R(?x)
 AND F(?y)
 THEN M(?x)

Rule2 IF A(?x)
 AND R(?x)
 THEN print ("end of program")

Figure 5.9 APPL51 Example of facts and rules

In this case, we can see that RULE1 is a potential candidate for triggering. Indeed, all its

premises are satisfied by the fact base. But RULE2 is not a candidate since the condition

A(?x) cannot be bound with any fact in the fact base. The construction of the conflict

resolution set (CRS) is based on the variables that can actually be instantiated. In our

case, two types of variables are considered.

- The first type is called simple variable and is preceded by “?”, e.g. ?x . It captures one

simple item of the data.

- The second, called commentary variable, is preceded by “&”, e.g. &y. It incorporates a

list of items.

Consider the following filter: R(?x, ?y, a, &z).

Consider the following data: R (This is a good example).

Chapter 5 – Inferences through EXINF : intelligent parsing issues

Thèse de Doctorat d’État – The ESLIM Project 101

After filtering, the simple variables ?x , and ?y are respectively instantiated by “This”

and “is”. The constant “a” is identical to the given constant. The variable &z is

instantiated by “good example”. The overall result is: “This is a good example”.

6. Applications

We incrementally use all layers of EXINF to solve the problems described below.

6.1 Problem 1: regular language

We have a regular language of the form L1 = { w = (ab)n, n>=1}. Use EXINF as a “crude”

parser based on a grammar introduced as facts and on the rules embodied in

declarative Earley’s algorithm. The grammar is to be introduced manually by the user.

6.1.1 EXINF first and second layers

Since we are concerned with parsing, only the second layer is of interest to us. A

possible grammar for L1 is:

G1 = (N1, Σ1, S, P1)

Σ1 = {a, b }

N1 = {A, B, S}

P1 = { A → a

 B → b

 S → AB

 S → SS }

 (1) Filling the fact base

EXINF stores this grammar as facts as shown in Figure 5.10 below:

/* Application 5.2 */

/* APPL52 */

/* Fact Base for Tested Example 1*/

/* Production rules stored as facts */

FACT RULE A a // Fact1 //
FACT RULE B b // Fact2 //

Chapter 5 – Inferences through EXINF : intelligent parsing issues

Thèse de Doctorat d’État – The ESLIM Project 102

FACT RULE S A B // Fact3 //
FACT RULE S S S // Fact4 //
FACT initial_symbol S // Fact5 //

/* Sentence to be parsed and its length */

FACT string ababab // Fact6 //
FACT length 6 // Fact7 //

Figure 5.10 APPL52 Fact base for regular language L1 = { w = (ab)n, n>=1}

EXINF represents each production rule in the grammar as a fact (Fact1, 2, 3, 4, 5). The

sentence to be parsed and its length are also introduced in the fact base (Fact6, 7).

Parsing is processed by EXINF as a sequence of forward chaining inference cycles.

(2) EXINF Typical Inference Cycle

1st Step: Detection

As described in Algorithm 5.2 above, this step involves the so-called detection or

construction of conflict resolution set CRS.

CRS(0) = {RULE1}. In this special case, only RULE1 has all its premises instantiated

with some facts and therefore RULE1 is the only candidate for eventual triggering.

We use RULE1 for instantiation, i.e., we use the description given in Figure 5.11

below:

/* Application 5.3 */

/* APPL53 */

RULE1 /*construction of list l 0*/

IF (RULE ?symbol &part)
(initial_symbol ?symbol)
THEN ADD (I 0 [?symbol → • &part ,0])

Figure 5.11 APPL53 Construction of list l0*

2nd Step: Execution / conflict resolution

(i) Matching

Chapter 5 – Inferences through EXINF : intelligent parsing issues

Thèse de Doctorat d’État – The ESLIM Project 103

First premise (RULE ?symbol &part) can be matched by FACT 1,2,3,4.

The second premise can be matched with FACT5.

(ii) Heuristics for premise choice

Now the obvious question is: “which premise to evaluate at this step”? Consider

this question as a constraint satisfaction problem (CSP). All CSP search algorithms

generate successors by considering possible assignments for only a single variable

at each node in the search tree. The so-called minimum remaining value (MRV) is

a common heuristic used in CSP. Like any heuristics, its aim is to reduce the search

space. MRV heuristic chooses an unassigned variable that has the minimum

number of remaining values, at some stage of the assignment process. Here the

number of values assignable to a given premise has to be minimum. MRV heuristic

is also called the most constrained variable (MCV) or fail-first heuristic; the latter

because it picks a variable that is most likely to cause a failure soon, thereby

pruning the search tree. If there is a variable X with zero legal values remaining,

the MRV heuristics will select X and failure will be detected immediately—

avoiding pointless searches through other variables which always will fail when X

is finally selected.

(iii) Instantiation

 Here the variable ?symbol is instantiated with value S.

(iv) Propagation

The last instantiation is then propagated in the entire rule.

The first premise will be (RULE S &part).

After propagation, the only facts that can be instantiated with this premise are now

FACT3 and FACT4. Choose the first fact in list which is FACT3 and the variable

&part is instantiated with A B.

(v) Conclusion execution

Now all premises of the rule are instantiated, therefore the system executes the

rule’s conclusion which is the insertion of the fact:

I0 [?symbol → • &part , 0] as I0 [S → • A B, 0] in the fact base.

Chapter 5 – Inferences through EXINF : intelligent parsing issues

Thèse de Doctorat d’État – The ESLIM Project 104

(vi) Rule saturation

EXINF is based on rule saturation, i.e. it explores all possible inductions. It

therefore tries to match the second premise with FACT4. So &part is instantiated

with SS and the fact I0 [S → •S S,0] is inserted in the fact base. Now there is no

other choice and the first cycle is finished.

(vii) Termination

This basic cycle is repeated until no other new derivations are available.

(3) Parsing final result

The final result is presented in Table 5.1.

Table 5.1: TAB51 Progressive construction of sub-lists for L1 = { w = (ab)n, n>=1}.

 sub-list 0 sub-list 1 sub-list 2 sub-list 3 sub-list 4 sub-list 5 sub-list 6
Sentence
ababab

I01

S →•SS, 0
S →•AB, 0
A → • a, 0

I11

A → a •, 0
S →A•B, 0
B → • b,1

I21

B → b •,1
S → AB •,0
S → S •S,0
S → •AB,2
S → •SS,2
A → •a,2

I31

A → a •,2
S →A •B,2
B → •b,3

I41

B → b •,3
S →AB •,2
S →SS •,0
S →S •S,2
S →S •S,0
S →• AB,4
S → •SS,4
A → • a,4

I51

A → a •,4
S→A •B,4
B → • b,5

I61

B → b •,5
S→AB •,4
S →SS •,2
S →SS •,0
S → S•S,4
S → S•S,2
S → S•S,0
S → •SS,6
S →• AB,6
A → • a, 6

Discussions and decisions

Decision: The introduced sentence ababab is accepted because in sub-list 6, we find the
item S → SS •,0.

6.1.2 EXINF third layer

The issue is to automatically classify any unknown sentence using EXINF as

“intelligent” parser. This phase is not treated here since it relies on the learning module

ILSGInf.

6.2 Problem 2 : context-free language (CFL)

6.2.1 EXINF 2nd layer

Use EXINF 2nd layer in order to parse a CFL of the form:

Chapter 5 – Inferences through EXINF : intelligent parsing issues

Thèse de Doctorat d’État – The ESLIM Project 105

L2 = { w = anbn, n>=1}

A possible grammar for L2 is:

G2 = (N2, Σ2, S, P2)

Σ1 = {a, b }

N2 = {A, B, C, S}

P2 = { A → a

 B → b

 S → AB

 C � AS

 S → CB

 }

 (1) Filling the fact base

EXINF stores this grammar as facts as explained in Figure 5.12 below.

/* Application 5.4 */

/* APPL54 */

/* Fact Base for Tested Example 2*/

/* Production rules stored as facts */

FACT RULE A a // Fact1 //
FACT RULE B b // Fact2 //
FACT RULE S A B // Fact3 //
FACT RULE S C B // Fact4 //
FACT RULE C A S // Fact5 //
FACT initial_symbol S // Fact6 //

/* Sentence to be parsed and its length */

FACT string aaabbb // Fact7 //
FACT length 6 // Fact8 //

Figure 5.12 APPL54 Fact base for the CFL L2 = { w = (a nbn, n>=1}

EXINF represents each production rule in the grammar as a fact (Fact1, 2, 3, 4, 5, 6). The

sentence to be parsed and its length are also introduced in the fact base (Fact7, 8).

(2) Inference Cycles

Chapter 5 – Inferences through EXINF : intelligent parsing issues

Thèse de Doctorat d’État – The ESLIM Project 106

As in Problem 1 above

(3) Parsing final result

Table 5.2 describes the final result

Table 5.2: TAB52 Progressive construction of sub-lists for L2 = { w = (a nbn, n>=1}

 sub-list 0 sub-list 1 sub-list 2 sub-list 3 sub-list 4 sub-list 5 sub-list 6
Sentence
aaabbb

I0

S →•CB, 0
S →•AB, 0
C →•AS, 0
A → • a, 0

I1

A → a •, 0
S →A•B, 0
C →A•S, 0
B → • b,1
S → •AB,1
S → •CB,1
A → •a,1
C → •AS,1

I2

A → a•,1
S → A•B,1
C → A•S,1
B → •b,2
S → •AB,2
S → •CB,2
A → •a,2
C → •AS,2

I3

A → a •,2
S →A •B,2
C → A•S,2
B → •b,3
S → •AB,3
S → •CB,3
A → •a,3
C → •AS,3

I4

B → b •,3
S →AB •,2
C → AS•,1
S →C•B,1
B → •b,4

I5

B → b •,4
S→ CB •,1
C → AS •,0
S → C •B,0
B → •b,5

I6

B → b •,5
S→ CB •,0

Discussions and decisions

Decision: The introduced sentence aaabbb is accepted because in sub-list 6, we find the
item S →CB •,0.

6.2.2 EXINF with counter example

Let’s consider the same language L2 as above but with a counter example of the form

aabbb.

(1) Fact Base

The fact base is described in Figure 5.13 below:

/* Application 5.5 */
/* APPL55 */

/* Fact Base for Tested Counter Example 1*/

/* Production rules stored as facts */

FACT RULE A a // Fact1 //
FACT RULE B b // Fact2 //
FACT RULE S A B // Fact3 //
FACT RULE S C B // Fact4 //
FACT RULE C A S // Fact5 //
FACT initial_symbol S // Fact6 //

/* Sentence to be parsed and its length */

FACT string aabbb // Fact7 //
FACT length 5 // Fact8 //

Chapter 5 – Inferences through EXINF : intelligent parsing issues

Thèse de Doctorat d’État – The ESLIM Project 107

Figure 5.13 APPL55 Fact base for the CFL language L2 with counter example

(2) Inference cycles

As in Problem 1 above

 (3) Parsing final result

Table 5.3: TAB53 Construction of sub-lists for language L2 with counter example

 sub-list 0 sub-list 1 sub-list 2 sub-list 3 sub-list 4 sub-list 5
Sentence
aabbb

I0

S →•CB, 0
S →•AB, 0
C →•AS, 0
A → • a, 0

I1

A → a •, 0
S →A•B, 0
C →A•S, 0
B → • b,1
S → •AB,1
S → •CB,1
A → •a,1
C → •AS,1

I2

A → a•,1
S → A•B,1
C → A•S,1
B → •b,2
S → •AB,2
S → •CB,2
A → •a,2
C → •AS,2

I3

B → b•,2
S →AB •,1
C → AS•,0
S → C•B,0
B → •b,3

I4

B → b •,3
S →CB•,0

I5

empty

Discussions and decisions

Decision: The introduced sentence aabbb is NOT accepted because sub-list 5 is empty.

6.2.3 EXINF third layer for CFL

As for the regular case, the issue relies on the learning module ILSGInf and is treated in

Chapter 6. The processes described above remain exactly the same, but when using

ILSGInf, the grammar is not introduced by the user but automatically generated by

ILSGInf.

7. Conclusion

We have described the design, development and test of a rule-based deductive system,

called EXINF and its coupling with a learning module capable of helping in

grammatical inference. Although the developed system can be used as a general-

purpose first-order logic programming environment, implementing both forward

chaining and backward chaining, its main use here is in parsing. In this regard, at the

most basic or “crude” level, it can parse sentences of a given language. But its most

important aspect is that it is used as an “intelligent” parser i.e. as a grammar constructor

Chapter 5 – Inferences through EXINF : intelligent parsing issues

Thèse de Doctorat d’État – The ESLIM Project 108

in conjunction with the learning module ILSGInf. Advanced integration of first-order

logic (FOL) and grammar inference (GI) represents an early step towards truly

intelligent parsers. In Chapter 6, we describe ILSGInf as a useful contribution towards

this distant end.

Chapter 6 – ILSGInf : an inductive learning system for GI

Thèse de Doctorat d’État – The ESLIM Project 109

CHAPTER 6 ILSGInf

AN INDUCTIVE LEARNING SYSTEM FOR
GRAMMATICAL INFERENCE11

1. Introduction

In Chapter 4, we described the building blocks of a grammatical inference system or the

so-called GASRIA system. These building blocks mainly involve an FOL-based system,

EXINF, used for parsing, coupled with an inductive learning system for grammatical

inference, called ILSGInf. Both systems collaborate with each other. While Chapter 5

described EXINF in detail, this chapter describes the learning solution provided by

ILSGInf. Here, we are concerned with the learning aspect in the proposed GI system.

As an in-depth description of the work presented in the previous chapters, principally

Chapter 4, we now discuss the details of how GASRIA operates through its learning

module ILSGInf, ending up with an induced grammar from positive examples.

11 Part of this chapter has been published under the title “ ILSGInf : Inductive learning system for grammatical inference” In
WSEAS Trans. on Comp., ISSN: 1991-8755, 6(6):991-996, July 2007, http://www.wseas.org

Chapter 6 – ILSGInf : an inductive learning system for GI

Thèse de Doctorat d’État – The ESLIM Project 110

Some machine learning systems attempt to eliminate the need for human intuition in

the analysis of the data, while others adopt a collaborative approach between human

and machine; this latter is what interests us in this chapter. This is so, because human

intuition cannot be entirely eliminated since the designer of the system must specify

how the data is to be represented and what mechanisms will be used to search for a

characterization of the data. This aspect of machine learning can be viewed as an

attempt to automate parts of the scientific method.

The chapter is structured as follows. The problem is formulated in Section 2 while

Section 3 deals with some related works. The proposed solution is described in Section

4, and implemented in Section 5. Our solution is based on the novel partial parsing

algorithm (PPA) and its implementation. Tested examples are treated in Section 6. The

chapter ends with a conclusion reporting the main advantages of the method with

possible future extensions.

2. Related works

2.1 ML and human interaction

Broadly speaking, machine learning (ML) is a field that attempts to develop algorithms

that not only helps in taking the proper action at the actual step but also in improving

future actions. In addition, it is true that many efforts were also provided with an aim to

bring closer machine learning methods and grammars [CK03], or to integrate these last

two topics within expert systems framework. In spite of the panoply of methods which

exist in the attempt to mimic human knowledge by the machine [Lar02] and to integrate

learning and reasoning [KR97], or to theorize the dynamics of acquisition of languages

by evolution equations [KNN01], a problem still remains open. We specifically mean

the automatic acquisition of the knowledge required by GI. In this attempt, our primary

interest is to study GI from positive data, following [KMT00] and [Sak97].

Chapter 6 – ILSGInf : an inductive learning system for GI

Thèse de Doctorat d’État – The ESLIM Project 111

2.2 Algorithm types

The computational analysis of machine learning algorithms and their performance is a

branch of theoretical computer science known as computational learning theory.

Because training sets are finite and the future is uncertain, learning theory usually does

not yield absolute guarantees of the performance of algorithms. Instead, probabilistic

bounds on the performance are quite common.

In addition to performance bounds, computational learning theorists study the time

complexity and feasibility of learning. In computational learning theory, a computation

is considered feasible if it can be done in polynomial time. There are two kinds of time

complexity results. Positive results show that a certain class of functions is learnable in

polynomial time; negative results show that certain classes cannot be learned. Machine

learning algorithms are organized into taxonomy, based on the desired outcome of the

algorithm. We report the main algorithm types.

• Supervised learning, in which the algorithm generates a function that maps inputs to

desired outputs. One standard formulation of the supervised learning task is the

classification problem: the learner is required to learn (to approximate) the

behavior of a function which maps a vector],,...,,[21 nXXX into one of several

classes by looking at several input-output examples of the function.

• Unsupervised learning, in which an agent which models a set of inputs has no

knowledge of labeled examples because they are not available.

• Semi-supervised learning which combines both labeled and unlabeled examples to

generate an appropriate function or classifier.

• Reinforcement learning, in which the algorithm learns a policy of how to act, given an

observation of the world. Every action has some impact in the environment, and

the environment provides feedback that guides the learning algorithm.

• Transduction, similar to supervised learning, but does not explicitly construct a

function. Instead, it tries to predict new outputs based on training inputs,

training outputs, and test inputs which are available while training.

Chapter 6 – ILSGInf : an inductive learning system for GI

Thèse de Doctorat d’État – The ESLIM Project 112

• Learning to learn in which the algorithm learns its own inductive bias based on

previous experience.

 3. ILSGInf objectives

ILSGInf is an inductive learning system for GI based on the partial parsing algorithm

(PPA). The main idea behind the PPA is to take full advantage of the syntactic structure

of available sentences. It is based on Earley’s algorithm but divides the sentence into

sub-sentences using partial derivative (PaDes). Given a recognized sentence as

reference, PPA is able to recognize part of the sentence (or sub-sentence(s)) while

rejecting the other unrecognized part. Moreover, PPA contributes to the resolution of a

difficult problem in inductive learning and allows additional search reduction in the

partial derivatives space which is to equal to the length of the sentence, in the worst

case.

4. ILSGInf learning solution

4.1 Basic properties

Inductive learning is a bottom-up process. The process of learning begins with specific

instances and constructs a generalization. Therefore, in order to learn inductively, we

parse all that is parsable in a global sentence. Like most inductive systems, ILSGInf

receives the training instances (here through a human expert), then builds a sufficient

knowledge stored in EXINF facts base, to infer one possible grammar. Thus, ILSGInf

constructs a CFG capable of generating and/or recognizing all possible sentences

produced by the language under consideration. As an example from the literature, the

task undertaken by SubdueGL [Jon04] follows a somewhat similar technique and

attempts to discover common structures in graphs from examples. In our case, it is

useful to consider the following points, as stressed above:

Chapter 6 – ILSGInf : an inductive learning system for GI

Thèse de Doctorat d’État – The ESLIM Project 113

• ILSGInf relies on a human expert who sequentially introduces chosen instances. In

our actual work, we obviously suppose that the human expert acts as a

cooperative teacher, i.e. that the teacher avoids giving, on purpose, examples that

make the system wander away from the solution.

• ILSGInf gradually constructs a grammar that generates these examples.

• An initial grammar is generated and eventually updated until the most general

grammar is obtained.

• For the validation of the learning process, our learning system relies on an inference

mechanism. Thus, ILSGInf uses EXINF - a first-order general-purpose inference

engine, developed as a stand-alone system.

• We take advantage of the fact that rules are written in the form A → BC, or A → a.

Search is undertaken in the space of rules in order to infer a grammar capable of

generating these instances and eventually other similar ones.

4.2 ILSGInf architecture

By receiving a series of examples chosen by the expert and using the knowledge

available, ILSGInf improves the facts i.e. the grammar of the language. So it builds the

CFG that generates all the examples. Figure 6.1 shows its block diagram. The class

diagram of ILSGInf is depicted in Appendix 2.

Chapter 6 – ILSGInf : an inductive learning system for GI

Thèse de Doctorat d’État – The ESLIM Project 114

Figure 6.1 DIAG61 - ILSGInf block diagram

Example is accepted

Human Expert

EDITOR

Example to be analyzed by EXINF
Syntactic analysis

String not accepted
Partial derivatives construction

 String accepted

Learning - Generalization
Partial Parsing Algorithm

(PPA)

Fact base
Incremental grammar

construction

Rules space

Modification
of fact base

Generation of new
examples using new
grammar

ILSGInf

Training examples
Introduction

Examples to be validated
Introduction

Chapter 6 – ILSGInf : an inductive learning system for GI

Thèse de Doctorat d’État – The ESLIM Project 115

4.3 General structure of ILSGInf learning strategy

4.3.1 Strategy overview and complexity

At the beginning of the learning process, when no syntactical knowledge about the

language is available, the system makes a direct memorization of the information

provided in the form of initial grammar that is automatically generated. Then it is

refined with the presentation with new sentences. Algorithm 6.1 below shows the steps

involved in ILSGInf learning process. The time complexity of ILSGInf is O(n3) as shown

in Appendix 3.

/* Algorithm 6.1 */

/* ALGO61 */

/* Learning Strategy */
BEGIN
Learning system receives a sentence

initial grammar construction (ALGO64)

 WHILE system receives a sentence DO

Refinement cycle (ALGO62)

 ENDWHILE

Give improved grammar of the language
 END

Algorithm - 6.1 ALGO61 - ILSGInf learning strategy

Chapter 6 – ILSGInf : an inductive learning system for GI

Thèse de Doctorat d’État – The ESLIM Project 116

4.3.2 Refinement cycle

The refinement cycle is summarized in Algorithm 6.2 below.

/* Algorithm 6.2 */

/* ALGO62 */

/* Refinement cycle */

BEGIN
/* Partial Parsing Algorithm (PPA) */

CALL PPA (ALGO65)

 IF sentence is positive

AND analysis gives failure THEN

Generalization of G (ALGO68)

IF sentence is negative AND analysis gives success
THEN

Specialization of G (left as perspective)

END

Algorithm 6.2 - ALGO62 ILSGInf refinement cycle

Algorithm 6.2 describes the refinement cycle. When a given sentence (sentence) is

received, the PPA is called using the current grammar (grammar). The result of the

analysis is placed in the variable analysis. Two cases might occur which are:

1. First case: failure to recognize a recognizable sentence. We are then dealing with

a grammar which does not recognize a correct sentence. This grammar should be

generalized so that it can generate more sentences than currently done.

2. Second case: recognize a counter-example. This requires a specialization of the

grammar since it recognizes more than needed.

Note that both generalization and specialization represent difficult and current

problems. Here, we are only concerned with generalization, since specialization deals

Chapter 6 – ILSGInf : an inductive learning system for GI

Thèse de Doctorat d’État – The ESLIM Project 117

with counter-examples, not considered in our work. On the other hand, no counter-

examples are generated by our system.

/* Algorithm 6.3 */

/* ALGO63 */

/* Main steps in Partial Parsing Algorithm (PPA) */

FOR each recognizable sub-sentence

PARSE sub-sentence using Earley’s algorithm

Construct the PaDe’s using each parse tree ALGO67

ENDFOR

Algorithm 6.3 - ALGO63 Main steps in partial parsing algorithm (PPA)

4.4 Validation procedure

The grammar built is then used to generate a series of sentences that are validated by

the human expert. This validation constitutes a guarantee that the integration of the

new rule in the grammar does not conflict with its consistency. The system rejects the

new rule as soon as the verification process detects an incorrect string. If no counter-

example is generated, the grammar is considered correct. Otherwise, the level of

generalization is reduced. This represents a form of specialization.

5. ILSGInf implementation

ILSGInf implementation is based on the requirements for obtaining partial parsing for a

given global sentence. We start with the PPA and describe the heuristics for sorting

partial derivatives (PaDe's) and conclude with the generalization process.

5.1 Initial grammar construction

Initial grammar is of the form : G0 = (N0, Σ0, P0, S) where :

Chapter 6 – ILSGInf : an inductive learning system for GI

Thèse de Doctorat d’État – The ESLIM Project 118

N0 = {A / A non-terminal of derivative tree}

Σ0 = {a / a is a symbol of input character string}

P0 = {/ R rule of the form A → BC ; or A → a } with A, B, C non-terminals in derivation
tree.

S = initial symbol.

/* Algorithm 6.4 */
/* ALGO64 */

/* Algorithm for the construction of initial grammar G0 = (N0, Σ0, P0, S) */

Begin

string[i] /* table containi ng the string example */

n /* length of initi al global string */

Initial_symbol:="S" /*creation of init ial symbol, by convention "S"*/

i:=1, k:=1 /*indices*/

/* Associate to each terminal one non-terminal */

/* create the set of initial rules as follows */

for i=1 to n do

 if string[i] is not yet associated with a non-terminal

 then create_the_rule non-terminal(k) → string[i]

 k:=k+1

 endif

endfor

if n<= 2 /* Derivation from S* /

 then create_rule S → <non-terminal(1)> <non-terminal(2)>

 else /*Construction of derivation tree from bottom to top */

 create_the_rule non-terminal(k) → <non-terminal(1)> <non-terminal(2)>

 i:=3; k:=k+1

 while i<n do

 create_the_rule non-terminal(k) → <non-terminal(k-1)> <non-terminal(i)>

 k:=k+1; i:=i+2

 endwhile

/* For string to be recognized, it must derive from root * /

 create_rule S → <non-terminal(k-1)> <non-terminal(i)>

endif

end

Chapter 6 – ILSGInf : an inductive learning system for GI

Thèse de Doctorat d’État – The ESLIM Project 119

Algorithm 6.4 - ALGO64 Algorithm for initial grammar construction

5.2 Partial parsing

The detailed steps of the partial parsing algorithm are described in Algorithm 6.4

below.

/* Algorithm 6.5 */

/* ALGO65 */

/* Partial Parsing Algorithm */

FinalParse := empty /*a global sentence to be parsed*/

i:=1 /* index for spanning the global sentence */

head := 1 /* head of a sub-sentence to be parse d */

read (car) /* read character car to be parsed */

while car <> end of sub-sentence do

/* for delimiting the sub-sentence to be parsed */

while car <> end of sub-sentence and car accepted do

sub-sentence = sub-sentence + car

 /* generation of sub-sentence sub-sentence */

i:=i+1

read (car)

endwhile

if car refused then

/* Result is complete parsing of sub-sentence */

Earley (sub-sentence (head , i-1), result)

Concatenate (FinalParse, result, car [refused])

head := i+1 /*Start over with sub- sentence following refused

character*/

i:=1 /*Consider another sub-sentence */

 else /* it is the end of global sentence*/

Earley (sub-sentence (head, i-1), result)

Chapter 6 – ILSGInf : an inductive learning system for GI

Thèse de Doctorat d’État – The ESLIM Project 120

Concatenate (FinalParse, result, empty);

 endif

endwhile

Algorithm 6.5 - ALGO65 Partial parsing algorithm

5.3 Detailed refinement cycle

5.3.1 Generalization

In our context, we follow [Mug99] for defining generalization as corresponding to

induction and specialization to deduction. The generalization algorithm is described in

Algorithm 6.6 below.

Definition 1: A hypothesis HG is more general than a hypothesis HS if and only if HG

entails HS. We also say that HS is more specific than HG.

Example

For search algorithms, the notion of generalization and specialization are

incorporated using inductive and deductive inference rules.

Definition2: A deductive inference rule r maps a conjunction of clauses CG onto a

conjunction of clauses CS such that CG entails CS; r is called a specialization rule.

Examples

Resolution is a deduction rule.

Dropping a clause from a hypothesis realizes a specialization.

Definition3: An inductive inference rule r maps a conjunction of clauses CS onto a

conjunction of clauses CG such that CG entails CS; r is called a generalization rule.

Example

Absorption rule is an inductive inference rule. In the absorption rule the conclusion

entails the condition. Note that applying the absorption rule in the reverse direction,

i.e. applying resolution, is a deduction rule.

Chapter 6 – ILSGInf : an inductive learning system for GI

Thèse de Doctorat d’État – The ESLIM Project 121

/* Algorithm 6.6 */

/* ALGO66 Generalization */

For each sub-sentence

- Construct the list of partial derivatives (PaDe’s)

 - sort these PaDe’s by increasing order of generality

 - choose as hypothesis the rule S → D g, where S is the initial symbol and Dg the

most general concatenation of all sub-sentences

 - add this rule to the set P of current grammar rules

 - use this grammar to generate a set of sentences called test sentences

 - if this generated set is accepted by a human expert

 then accept this new grammar

 - else start again with rule S → D g’ , where Dg’ is less general than Dg

 - if no PaDe has allowed acceptance of this generated set

 then consider it in the same way as an initial grammar

Algorithm 6.6 - ALGO66 Generalization

5.3.2 Partial derivatives (PaDe’s) construction

The basics of partial derivatives (PaDe’s) have been treated previously. Construction of

the PaDe’s for a given string reduces this latter. Thus, it replaces the parsed parts by the

corresponding non-terminals. The steps of the construction of a PaDe are described in

Algorithm 6.7 below.

/* Algorithm 6.7 */

/* ALGO67 PaDe’s construction */

/* This technique is based on the use of lists produced by the syntactic analyzer */

 • if partial parsing algorithm (PPA) generates k sets of sub-lists

 t hen we have k sub-strings(s) analyzed separately

 • each sub-string of length m is analyzed by a sub-list I 0...I m

 • in each sub-string, we have:

Chapter 6 – ILSGInf : an inductive learning system for GI

Thèse de Doctorat d’État – The ESLIM Project 122

 • the list I 0 is always present

 • if I 1 is empty

 then symbol a1 of sub-string is not recognized, therefore, the

length of sub-string is equal to 1.

 • if the sub-list contains at least I 0 and I 1,

 then we have found part of the string that is recognized and

which contains at least one symbol.

Algorithm 6.7 - ALGO67 PaDe’s construction

5.3.3 One PaDe construction for a sub-sentence

For each given sub-string, we need the construction of a PaDe. We proceed using

Algorithm 6.8 as follows:

/* Algorithm 6.8 */

/* ALGO68 PaDe’s construction for a given sentence */

For each sub-list do

 if I 1 is empty, then the character is not recognized and no

transformation is needed.

 if I k exists for a sub-string of length k ,

 and if item "S →α•,0" is in it,

 then sub-string is totally recognized and transformed i nto S.

 if I max for the string of length k exists,

 and if 0 <max <=k then we proceed as follows :

 for j max to j = 1

 Consider the items of the form "A →α•,i" for increasing i

 Treat these items starting from the most sp ecific α to the most

general

Algorithm 6.8 - ALGO68 PaDe’s construction for a given sub-sentence

5.3.4 Heuristics for sorting PaDe's

There are two levels when sorting PaDe’s, as explained in Algorithm 6.9 below.

Chapter 6 – ILSGInf : an inductive learning system for GI

Thèse de Doctorat d’État – The ESLIM Project 123

/* Algorithm 6.9 */

/* ALGO69 Heuristics for PaDe’s sorting */

/* Level 1 local sorting */

for all sub-sentences

order in a decreasing fashion of generality all PaDe’s

/* Level 2 global sorting */

order in increasing fashion of length all sub-sentences of global sentence

/* Heuristics search for the adequate rule */

initially choose rule whose RHS is the concatenation of the most general

PaDe’s for all sub-sentences produced in Level l above

test this new grammar by generating new sentences

if all generated sentences are accepted

 then new rule is accepted

 else modify RHS of the rule by considering the followin g PaDe of

the following sub-sentence

Algorithm 6.9 - ALGO69 Heuristics for PaDe’s sorting

6. Tested example

6.1 PPA use

Given the following CFG: G = (N, Σ, P, S), where :

N = {S, A, B}, Σ ={a, +}, P = {S → A B, A → a, B→+ A}

Let w= (a+a)+(a+a) be a global sentence to be parsed. The sub-sentences are:

C1 = (, C2 = a + a, C3 =), C4 = +, C5 = (, C6 = a + a, C7=)

Our partial parsing algorithm gives the following results of sub-lists and sub-sentences:

Chapter 6 – ILSGInf : an inductive learning system for GI

Thèse de Doctorat d’État – The ESLIM Project 124

Table 6.1 TAB61 Progressive construction of sub-lists

 sub-list 0 sub-list 1 sub-list 2 sub-list 3

sub-

sentence 1

I01

S → •AB, 0

A → • a, 0

I11 empty I21 empty I31 empty

sub-

sentence 2

I02

S →• AB, 0

A → • a, 0

I12

A → a • , 0

S →A•B , 0

B →• +A, 1

I22

B →+•A, 1

A → • a , 2

I32

A → a • , 2

B →+A•, 1

S →AB•, 0

sub-

sentence 3

I03

S →•AB, 0

A → • a , 0

I13 empty I23 empty I33 empty

sub-

sentence 4

I04

S →•AB, 0

A → • a , 0

I14 empty I24 empty I34 empty

sub-

sentence 5

I05

S →•AB, 0

A → • a , 0

I15 empty I25 empty I35 empty

sub-

sentence 6

I06

S →• AB, 0

A → • a, 0

I16

A → a • , 0

S →A•B , 0

B→•+A,1

I26

B→ +•A, 1

A→ • a , 2

I36

A → a • , 2

B →+A•, 1

S →AB•, 0

sub-

sentence 7

I07

S →•AB, 0

A→ • a , 0

I17 empty I27 empty I37 empty

6.2 Discussions

For the sub-sentences 1, 3, 4, 5 and 7, we note that:

(i) I1x (x=1,3,4,5,7) is empty. In this case, while no classical algorithm (eg Earley-like)

proceeds further, the PPA looks for other PaDe’s. Because sub-sentences are refused,

then no transformation is needed.

(ii) In sub-sentences 2, 6 all I3x (x=2,6) are accepted. In each of these, we find an item of

the form "S→α•,0" which is "S→AB•,0". Then respective sub-sentences are totally

accepted and transformed as S.

Chapter 6 – ILSGInf : an inductive learning system for GI

Thèse de Doctorat d’État – The ESLIM Project 125

(iii) PaDe’s of the global sentence “(a+a)+(a+a)” have the form : “D = (S)+(S)” Other

PaDe’s of "a+a" are :

 a+A from item A→a•,2 in I3x, (x=2,6)

 aB from item B→+A•,1 in I3x, (x=2,6)

 A+a from item A→ a•,0 in I1x (x = 2,6)

 AB from item A→a•,0 in I1x and I3x, (x=2,6)

(iv) Local sorting is done as follows: S, AB, aB, a+A, A+a.

7. Conclusion

We have designed, developed and tested an inductive system for grammar inference.

The central idea is the so-called partial parsing algorithm (PPA) that can parse sentences

not parsed by traditional methods. Comparatively, inductive logic programming (ILP)

requires a prohibitive number of hypotheses to construct a grammar. Our method

suggests a drastic reduction in the number of relevant hypotheses to be considered

while inferring a grammar. Moreover, in our approach, at each step, the system takes

advantage of the syntactic knowledge contained in the global sentence. In this way, the

system avoids the construction of redundant rules and thus improves the quality of the

inferred grammar. In this regard, our implemented and tested system addresses a

difficult issue while proposing a real application with tangible results.

Chapter 7 – GASRIA/ILSGInf interactions with systems control

Thèse de Doctorat d’État – The ESLIM Project 127

CHAPTER 7

GASRIA/ILSGInf INTERACTIONS WITH SYSTEMS
CONTOL12

1. Introduction

In this chapter, we report a framework for inductive learning as used in two different

fields of applications, very far away from formal languages, namely control of machine

drives and robotic self-assembly. We present an alternative method for tackling the

control problem using GI, instead of control law generation using traditional state-space

methods such as state-feedback or adaptive control methods, for instance. We fully

describe one example issued from the first field and give the methodological steps for

solving inference problems for the other field. We rely on graph grammars for robotic

12 - Part of this chapter has been published under the title “Grammatical inference for robotic self assembly – basic methodology”,

Invited conference paper In: Recent Advances in Artificial Intelligence, Knowledge Engineering and Database
(AIKED’09)”, Cambridge, UK, February 21-26, 2009, pp. 447-452, ISBN: 978-960-474-051-2, ISSN: 1790-5109,
http://www.worldses.org/online/2009.htm, http://portal.acm.org/citation.cfm?id=1554004

- Above article extended under the title “Grammatical inference methodology for control systems”, WSEAS Trans. on Comp.,
ISSN: 1991-8755, 8(4):610-619, April 2009, http://www.wseas.us/e-library/transactions/computers/2009/29-113.pdf
 http://portal.acm.org/citation.cfm?id=1558760

Chapter 7 – GASRIA/ILSGInf interactions with systems control

Thèse de Doctorat d’État – The ESLIM Project 128

self-assembly applications. We further propose a four-level methodology for addressing

the issue of GI-based control and self-assembly ending with graph grammatical

inference.

The Chapter is organized as follows. In Section 2, the issue of controlling a physical

system, namely machine drives, is addressed with concentration on the integration of

GI within the control loop. Section 3 discusses the self-assembly issue. Section 4

describes the methodological steps to follow in order to solve the GI-based control

problem and robotic self-assembly problem using graph grammars, as an ultimate

result of the actual work.

2. ILSGInf and control systems interaction

2.1 The basic control methodology

Before considering tackling self-assembly issues using graph grammars, we describe a

simple control problem related to machine drives. For that, we need an introductory

account of control systems and their interplay with grammars.

2.1.1 Negative feedback dynamic control

Control is an interdisciplinary branch of engineering and mathematics, which deals

with the behavior of dynamical systems. The desired output of a system is taken as a

reference to be attained or maintained at a specific value. When one or more output

variables of a system need to follow a certain reference over time, a controller generates

the control law (or strategy) necessary to obtain the desired effect on the output of the

system. This is usually done using negative feedback, i.e. a procedure whereby the

actual value is subtracted from the desired value to create the error signal which is

amplified by the controller to allow correction to be undertaken at subsequent stages.

This procedure is therefore done in closed-loop form.

A thermostat is a simple example for a closed-loop negative feedback control system: it

constantly measures the actual temperature and controls the heater's valve setting to

Chapter 7 – GASRIA/ILSGInf interactions with systems control

Thèse de Doctorat d’État – The ESLIM Project 129

increase or decrease the room temperature according to the user-defined setpoint. A

simple method, called control law or control strategy, switches the heater either

completely ON, or completely OFF, and an overshoot or undershoot of the controlled

temperature is to be expected, dictated by the physical inertia of the system. A more

expensive method varies the amount of heat provided by the heater depending on the

difference between the required temperature, or setpoint and the actual temperature.

This minimizes over/undershoots.

An anti-lock braking system (ABS) used in vehicle braking technology is a more

complex example, consisting of multiple inputs, conditions and outputs. The aim of the

system is to avoid the brakes from locking irrespective of the external conditions such

as speed of the vehicle, weather conditions, road surface, among others.

2.1.2 Control laws construction

Whatever control strategy is used, the resulted control system must first guarantee the

stability of the closed-loop behavior, i.e. preventing that the system state or output take

unacceptable values. For linear systems, this can be obtained by directly placing the

poles of the closed-loop transfer function. For multiple-input multiple output (MIMO)

systems, pole placement can be performed mathematically using a state space

representation of the open-loop system and calculating a feedback matrix assigning

poles in desired location of the s-plane for continuous systems or the or z-plane for

discrete systems. This is usually done by computer aided control systems design

(CACSD) methods and tools and capabilities [Ham94].

Whatever methods are used for linear systems, one cannot always ensure robustness,

i.e. the ability in coping with small differences between the true system and the nominal

model used for design. Furthermore, all system states cannot in general be measured

and so estimators must be included and incorporated in pole placement design. The

estimators are either observers of Luenberger type for deterministic control or Kalman

filters for stochastic control.

Chapter 7 – GASRIA/ILSGInf interactions with systems control

Thèse de Doctorat d’État – The ESLIM Project 130

2.2 Motivations for grammatical control approach

By grammatical control, we mean the use of GI to, either generate the control law or to

detect faulty operating conditions through the detection of abnormal input-output

pairs. GI as applied to control systems at large is relatively a new area of research. As an

indication, a rapid search in IEEE site (http://www.ieee.org) using ieeexplore search

engine and keywords (formal language control + dynamical systems + grammatical

inference) hits one journal paper [MDP01] and two conferences papers. Subsequent

efforts remain quite isolated, [HH09a], [HH09b], [CKR10].

Any grammar codes for the class of all possible syntactical patterns that belong to the

language produced by the grammar. The basic idea is to design a parser (or classifier)

that recognizes strings accepted by the grammar. There is a mapping signals-to-strings.

Each signal is quantized and each value is given a terminal symbol. Under normal

operations, signals are compatible with the grammar. Once the grammar is learnt, it is

used as a reference by the nominal system. If at a later time, there is some faulty output

from the dynamical system then the faulty generated signals are translated as “odd”

strings, reporting abnormal behavior resulting in anomaly detection. An input of non-

terminals is used for both the nominal and actual dynamical systems. An error is

evaluated between the strings generated by both systems. Two modes are possible. In

the open-loop mode, the grammar generates the working patterns imposed by the

external input command. If this error exceeds some threshold, a fault is reported. A

closed-loop control is used when the control U is generated for an output y to be within

some prescribed values [Ham10]. The basic procedure is described in Figure 7.1 below.

Chapter 7 – GASRIA/ILSGInf interactions with systems control

Thèse de Doctorat d’État – The ESLIM Project 131

Figure 7.1 DIAG71 - Grammatical control used in open-loop/closed-loop modes

As exposed in Chapter 6, ILSGInf classifies negative examples correctly (i.e. as negative)

but does not take them into account for improving the grammar it generates. In other

words, the positive examples help ILSGInf in improving the generated grammar, but

the negative ones do not contribute to this improvement. Now, we discuss the

application of GI to a context-free language (CFL) as a prelude to a grammatical-based

control. We must notice that, although the control system under consideration is simple,

it requires a context-sensitive grammar inference. This is obviously outside the scope of

ILSGInf. Therefore, we need additional knowledge in the form of p-production as

explained below.

2.3 Using grammars to control machine drives

Before discussing self-assembly, we describe the interaction between a simpler control

problem and GI, namely the control of machine drives. Control of machine drives is a

specialized subject in its own right, usually studied within traditional disciplines such

as electrical and / or mechanical / industrial engineering. Based on mathematical

models, this subject encompasses a tremendous body of knowledge since the early days

of cybernetics going back to the late 1940’s. To dynamically control a machine drive is to

let it follow an imposed behavior, automatically calculated in real-time. The main

methodology of dynamic control is therefore to produce the so-called prescribed

feedback control law on the basis of output observations, as and when needed. If the

Nominal
dynamical
system (inferred
grammar)

Actual
dynamical
system

Parser =
Comparator and
Error Threshold

Decision=
Fault
Detection

Non
terminal
 input

+

-

output
terminal
word

Actual
output
terminal
word

Feedback

Chapter 7 – GASRIA/ILSGInf interactions with systems control

Thèse de Doctorat d’État – The ESLIM Project 132

environment is unknown, we use adaptive control. For the purpose of this specific

application, we are only concerned with control, using grammars as a methodology. So

far in this thesis, by GI, we intended only deterministic finite automata FA, equivalent

to regular grammars, on the one hand and some context-free grammars (CFGs), on the

other hand. If we refer to Chomsky hierarchy, only type-3 and subclasses of type-2

grammars, respectively, are concerned; as described in Chapter 2. Now, in order to

control drives, these classes of grammars are not sufficient. We need to include larger

classes of grammars such as context-sensitive grammars or type-1. This is a real

challenge since there remain many obstacles in inferring DFAs, let alone context-

sensitive grammars. Because of the difficulty in handling this type of problems,

supplementary human-supplied expert codification is needed in order to account for

this kind of induction.

2.4 Steps for using GI in control systems

To develop a grammatical description and a GI algorithm for controlled dynamical

systems three steps are required [MDP01].

2.4.1 Quantification of the variables

Quantification refers to the creation of alphabets for the output (controlled) variable y

and the control variable U. The objective is to generate the control U in order to

maintain the output y within some prescribed values. A terminal alphabet Σ is

associated to the output variable y and the nonterminal alphabet N to the control

variable U. The feedback control law generates the required value of the input U so as

to keep the output y within a specified range. For so doing, a quantification of the

variables is made, in a discrete way, dividing the variables range into equal intervals

and associating each interval to a symbol in the alphabet.

2.4.2 Production rules

p-type productions are defined by the human expert to be some substitution rules of a

given form. This human-supplied codification is necessary. A p-type production codes

Chapter 7 – GASRIA/ILSGInf interactions with systems control

Thèse de Doctorat d’État – The ESLIM Project 133

the evolution of the output variable, depending on its p past values and on the value of

the control variable U. There is, therefore, a functional relationship between the

dynamics of the system and the p-type productions. Note that p-type productions as

described here are not the Proportional-control or P-control action.

2.4.3 Learning

A learning algorithm is necessary to extract the productions from the experimental

data. To obtain a sample of the language, a sequence of control signals is applied to the

system in such a way that the output variable y takes values in a sufficiently wide

region. The signal evolution is then quantified as described above, and a learning

procedure is followed.

2.5 EXINF/ILSGInf in control of machine drives

Since we are at the beginning of the applied work, results mainly concern the

applicability of GI to machine drives as an introductory application of GI-based control

methodology.

In GI control systems, GI is used as an algorithm through which a grammar is inferred

from a set of sample words produced by the dynamical system considered as the

linguistic source. Therefore in order to apply GI, a dynamical system must be

considered as a linguistic source capable of generating a specific language. The set of

productions encodes the dynamics of the system that generates the language. Any word

that can be derived from the start symbol S followed by a sequence of productions of

the grammar is said to be within the language generated by the dynamical system.

Chapter 7 – GASRIA/ILSGInf interactions with systems control

Thèse de Doctorat d’État – The ESLIM Project 134

/* Methodology 7.1 */

/* METH71 */

/* GI Control systems drive */

1. Pre-processing phase

1.1 Quantification of variables

1.2 Production rules

Call first level of EXINF (see Fig. 5.9)

/ * instead of manually-introduced expertise * /

2. Learning using GI

Call ILSGInf

/* Third level of EXINF is implicitly used */

Figure 7.2 DIAG 71 - Adapted GI control system methodology

From quantification, we derive the alphabet of the language. The operation of the drive

system gives the words that are classified by the human expert as correct, for the case of

positive examples only. Based on these elements, ILSGInf, with the help of a knowledge

base in EXINF, as described in Chapter 6, automatically generates the grammar from

the given examples.

2.6 Comparing GI-controlled systems with other methods

A useful methodological comparison can be made between grammatical methods and

other methods such as observer-based methods of control and soft computing, e.g.

fuzzy control [Hag07].

3. Self-assembly issue

3.1 Self-assembly as a process

Chapter 7 – GASRIA/ILSGInf interactions with systems control

Thèse de Doctorat d’État – The ESLIM Project 135

In addition to the use of GI in machine drives, GI can be used in self-assembly. Self-

assembly is the process in which a disordered system of preexisting shapes or

components forms an organized structure or pattern as a consequence of specific, local

interactions among the components themselves, without external direction. It is a

phenomenon in which a collection of particles spontaneously arrange themselves into a

coherent structure. In nature, self-assembly is ubiquitous. For example, cell membranes,

and tissues are self-assembled from smaller components in a decentralized fashion. It is

common to encounter, in the natural world members of decentralized systems that self-

organize in response to environmental stimuli and to each other to produce complex

global behaviors. This is referred to as flocking. Birds and bacteria group behavior are

among the most common examples. Flocking has been used as a metaphor for the study

and development of artificial swarm intelligence-based systems. Self-assembly, as a

facet of flocking is beginning to find its way into science and engineering, through

various disciplines ranging from molecular application encountered in bioinformatics

[Win00], to robot reconfiguration, and stochastic self-assembly, among others.

Assembling geometrical shapes into whatever desired shape is still considered as a

challenging control problem. Assembling shapes into a given pattern can be seen as a

language where the individual shapes are the words and the obtained pattern correspond

to a sentence obeying some specific rules or grammar for generating grammatically

correct sentences. The process of self-assembly can therefore be seen as the automatic

generation of a language. One of the central questions for robotic self-organized

systems is to know whether it is possible to synthesize a set of local controllers that

produce a prescribed global behavior that is sufficiently robust to uncertainties about

the environmental conditions. Since assembling geometrical shapes into some desired

shape can be viewed as a set of sentences of a language, it is therefore not surprising to

address this issue from the standpoint of grammars. More precisely, we propose to

make use of GI. Ultimately, graph grammars are considered as an emerging field that is

believed promising [Kla07].

Chapter 7 – GASRIA/ILSGInf interactions with systems control

Thèse de Doctorat d’État – The ESLIM Project 136

3.2 Modes of self-assembly

Self-assembly, as defined above, comes in two modes, passive and active. In passive

self-assembly, particles interact according to their geometry or surface chemistry and

stay in a thermodynamic equilibrium, once this steady-state is reached. Particles

behavior in chemical reactions can be classified in this mode. The geometrical patterns

in the natural world give a clear indication that self-organized systems are omnipresent,

from leaves to snowflakes, all governed by emergence of global patterns based on

smaller patterns or fractals. In active self-assembly, each particle may use energy to

accept some interactions with other particles while rejecting others, according to a

controlling program. Typical examples are multi-robot systems, where small groups of

robots determine the outcome of encounters according to their internal programming

[Kla07]. In our work, we focus on this latter mode of self-assembly.

3.3 Self-assembly central issue

As stressed above, the main question in programmed self-organization concerns the

ability to design rules that govern the global behavior of a system by means of local

rules. In a wide variety of settings, we can design local rules that yield a specified

behavior, with the ability to reason about the correctness of the result. In some

circumstances, we can provide algorithms that automatically generate such a set of

rules. Recent results are obtained in diverse areas ranging from algorithmic self-

assembly of DNA [Win00], to the formation stabilization of multiple agents using

decentralized navigation functions [TK05]. These results indicate that the emergent

behavior of a self-organizing system can be precisely predicted and controlled, although

there is much work to be done to understand the physics, dynamics, and

implementation of self-organization. Progress in this area promises to open up new

vistas for a completely new era of bottom-up engineering of systems, ranging from

programmable nano-scale molecular machines to controlled swarms of interacting

autonomous robots [KGL06].

Chapter 7 – GASRIA/ILSGInf interactions with systems control

Thèse de Doctorat d’État – The ESLIM Project 137

3.4 Graph grammars

3.4.1 Definition of graph grammar

Graphical structures of various kinds, like graphs, diagrams, visual sentences are very

useful to describe complex structures and systems in a direct and intuitive way. Graph

grammars have been invented in the early seventies in order to generalize Chomsky’s

(string) grammars. This generalization consists in gluing graphs instead of

concatenating strings. Graph grammars are evolving graphs from some starting graph,

and whose evolution follows specified production rules.

A graph is a pair (V, E) where:

• V is a finite set called vertices

• E is a finite set with elements in V×V, called edges.

A graph grammar is a pair (Gr0, P) where:

• Gr0 is called the starting graph

• P is a set of production rules

Similarly to a language generated by string grammars, a language generated by a graph

grammar is the set of graphs that can be derived from the starting graph and applying

rules in P. Mathematical accounts of graph grammars are based on algebraic

representation [Ehr79].

3.4.2 Application of graph grammars in self-assembly

From the point of view of graphical programming languages, graph grammars are

useful especially in the storage level. Thus, instead of storing all these graphical

structures as individual objects, we store only their grammar for reasons of compact

size and generative power. While earlier mathematical work focused on string

grammars, more interest is recently based on tree and graph grammars [Hof00]. In self-

assembly applications, graph grammars are used to model the physics of the particles

by describing the outcomes of interactions among them. When used to program the

desirable outcomes of interactions among particles, a graph grammar represents a

description of a communication protocol and is thus intended to be coupled with a

Chapter 7 – GASRIA/ILSGInf interactions with systems control

Thèse de Doctorat d’État – The ESLIM Project 138

physical model of the environment that mediates the interactions. In particular, a

suitably designed graph grammar can precisely describe and direct the changing

network topology of a self-organizing system [MKE07].

4. From string GI to graph GI

4.1 Four methodological levels for solution

We propose here a set of steps we believe can handle the issue of GI-based control

starting from string grammars to graph grammars.

1. Level 1: Extension of known techniques used in GI to graph grammars

1.1 State of the art in GI for regular languages and CFLs

1.2 Concentration on on structural methods such as tree and graph grammars

1.3 Graph grammars and their algebra

1.4 Investigation of the use of inference in graph grammars

2. Level 2: Formal languages for systems control

The main issue here is to consider how formal languages can help in developing novel

techniques in system control. It can be structured as follows:

2.1 Current methods for system control based on formal languages

2.2 Control methods based on (string) grammar inference

 2.2.1 Extend and apply ILSGInf-EXINF to control drives

 2.2.2 Extend ILSGInf-EXINF application to robot control

Level 3: Robotics self-assembly and graph grammars

The main issue here is to study the phenomenon of self-organizing systems and robotics

self-assembly using graph grammars. It is structured as follows:

3.1 Graph grammars for robotic self-assembly

3.2 Inference in graph grammars for robotics self-assembly

Level 4: GI-based control vs. other control methods

4.1 GI-based vs. state-feedback control methods (e.g. observer-based)

4.2 GI-based vs. soft computing-based control (e.g. neural nets and genetic-based)

Chapter 7 – GASRIA/ILSGInf interactions with systems control

Thèse de Doctorat d’État – The ESLIM Project 139

4.3 Recommendations and feasibility study

5 Conclusion

The present chapter paves the way towards an objective evaluation and an introductory

study of the effectiveness and usefulness of GI as applied in control systems settings. It

represents an early contribution as far as graph grammars inference integration is

concerned. A unification of the diversified works dealing with robotic self-assembly

while concentrating on graph grammars as an alternative control method is made

possible. This is done using an incremental methodology for control and self-assembly,

starting with string grammatical inference and ultimately leading to inference in graph

grammars. However, the results report only a tiny aspect of the overall issue, since

these describe only the case of context-free language (CFL) inference as (an incomplete)

part of the control of machine drives. Much work is still required on both sides, i.e.

control and formal languages, for the development of fully-integrated systems that

scale up to real-life applications that use context-sensitive grammars.

Conclusion

Thèse de Doctorat d’État – The ESLIM Project 141

CONCLUSION

1. First-order logic (FOL) and grammatical inference (GI)

In this research, we investigated an early attempt in bridging the gap between

inferences as produced by first-order logic (FOL) and machine learning processes as

undertaken by grammatical inference (GI). The aim is programming languages

improvement with a learning layer. For the purpose of integrating the inferential or

declarative approach, as exemplified by Prolog-like logic programming, with machine

learning methods such as those used in GI, we have designed, fully implemented and

tested various algorithms. Specifically, we studied, from design to testing and

debugging, an inductive learning environment ILSGInf supported by, and coupled with

a rule-based deductive reasoning environment, called EXINF. The result of this

integration is the so-called GASRIA system that has been designed and developed as a

GI system for the induction of some CFG’s from positive examples using heuristics.

Thus, the proposed system behaves as a parser with the ability to learn a grammar by

induction, supported by the learning environment ILSGInf, and reasoning through

EXINF, a FOL-based programming environment. As a result, GASRIA takes a set of

sentences from a human teacher and generates a grammar from it. The overall system

Conclusion

Thèse de Doctorat d’État – The ESLIM Project 142

has been successfully applied to various artificial formal languages ending with a class

of context-free languages (CFLs).

2. Inferences and “intelligent” parsing

Parsing according to a specified grammar is a field of many practical applications. Both

programming and natural languages parsing represent the most obvious examples. One

of the major characteristics of grammars is that they have the ability to generalize over a

specific language. This characteristic is very useful, since it offers the possibility to learn

a grammar based on a set of sample sentences without the need to specify every

sentence of a language. This is accomplished by all machine learning algorithms since

they seek to generalize over a set of examples in order to obtain a more general model.

In our case, the general model or inferred grammar is obtained using two

environments; one deductive and the other inductive. Although the deductive

environment EXINF can be used as a general-purpose FOL programming environment,

implementing both forward chaining and backward chaining, its main use here is in

parsing. In this regard, at the most basic or “crude” level, EXINF can parse sentences of

a given language. But its most important role is that it is used as an “intelligent” parser

i.e. as a grammar constructor in conjunction with the inductive environment ILSGInf.

Further integration of FOL and GI represents an important step towards truly

intelligent parsers. Chapter 6 described ILSGInf, a useful contribution towards this

distant end.

3. Partial parsing algorithm

In our parsing approach, the central idea is the so-called partial parsing algorithm (PPA).

In this work, the PPA contributes to infer a CFG and is capable of parsing sentences

that, in our learning settings, are not parsable by existing methods. This is done through

the use of partial derivatives, representing the different items that can be isolated in the

Conclusion

Thèse de Doctorat d’État – The ESLIM Project 143

derivation tree of the sentence under analysis. The PPA, which is designed and

described in detail, is validated using a set of experiments.

4. Performance criteria

In evaluating results of this kind, we can rely on criteria that are traditionally

considered important.

- How efficient and incremental the method/system is?

- How precisely and naturally its generalization process is, after the introduction of

any additional example.

- How well it obtains correct identification in the limit.

- How natural and useful the inferred grammatical rules are.

As shown in the results, the answers to all these questions are satisfactory. Indeed, the

developed overall system is both efficient and incremental. Our method suggests a

drastic reduction in the number of relevant hypotheses needed for inferring a grammar.

Moreover, in our approach, at each step, the system takes advantage of the syntactic

knowledge contained in the global sentence with the help of partial derivatives. In this

way, the system avoids the construction of redundant rules and thus improves the

quality of the inferred grammar.

On the other hand, some methods suffer from the “curse of dimensionality”. For

instance, inductive logic programming (ILP) requires a prohibitive number of hypotheses

to construct a grammar. In our case, the tested languages required a reduced number of

examples for induction, not exceeding five to six examples attesting that the

generalization is realized quite rapidly with no generation of counter examples. It is

shown that this leads, in polynomial time, to correct identification in the limit of the

regular languages and some CFLs, as detailed in the examples treated in the text. On

the other hand, the generated language is not empty since it contains at least the

introduced examples. In this regard, the proposed approach successfully addresses a

Conclusion

Thèse de Doctorat d’État – The ESLIM Project 144

difficult issue. Our additional asset is the use of FOL within the declarative approach in

parsing. Avenues for other applications such as control systems is also made possible.

5. GI, control and self-assembly

In addition to intelligent parsing through the integration of FOL and GI, we studied

also applications that are usually considered far from formal languages, namely control

systems and self-assembly. For GI-based dynamical control systems, original

knowledge in the form of signal from sensors is translated into rules and facts in the

form of grammar to be induced. For self-assembly systems, graph grammars are used

instead, because they are more suitable to describe geometrical patterns. In both cases,

we are in face of context-sensitive grammar whose inference is not possible by existing

methods. We therefore need additional human expertise. In GI-based control systems,

for instance, we need the humanly-supplied p-type productions. These have to be

coded, updated and used in the inference process. Hence, the use of the declarative

approach in handling this kind of knowledge. We have taken advantage of the

integration of GI and FOL to contribute to the development to GI-based control systems

and self-assembly, as described in Chapter 7.

6. Prospects

6.1 Parsing

Prospectively, much effort is still needed in order to address the difficult issue of

intelligent parsing so as to scale up to real life applications such as development of a

new type of compilers. The combination of GI and FOL can be regarded as one

important step towards the design of intelligent compilers.

6.2 GI-based control and self-assembly

GI-based control is still in its infancy. For the time being, this approach does not

compare well with the so-called soft computing approach, which is based on

Conclusion

Thèse de Doctorat d’État – The ESLIM Project 145

methods such as neural networks, fuzzy systems, genetic algorithms, and similar

methods. However, the integration of GI and FOL can open new vistas for novel

algorithms on the basis that FOL-based declarative environments are very powerful

in the manipulation of knowledge and its update through inference.

7. Further… for the future

The results obtained can be taken as a good starting point for contributions towards

the following directions of research:

7.1 Computer algebra system (CAS) improvement

In today’s CASs, any problem (integration, differentiation, solution of algebraic

equations…) is solved in the same fixed way irrespective of the number of times it

solves it. A learning layer will make the system solve problems differently on the

basis of previous problems.

7.2 Semantic level of programming languages

So far, we only considered the syntactic level of languages. A good line of research

would be to devise methods that address the semantic level as well. GI helps us to

identify hierarchical structures in programs. These structures identify not only

different units but also how these units interact. Understanding how interaction

between parts of a program helps in adding learning to programming, as one

possible future line of research.

7.3 Grammars and bioinformatics

An interesting theme concerns the interaction between GI and gene expression in

the human cell. Blending methods from control systems and GI will improve our

knowledge of gene regulatory networks (GRNs) whose faulty functioning is

responsible for many devastating human diseases, such as cancer, to cite but one.

Conclusion

Thèse de Doctorat d’État – The ESLIM Project 146

How much knowledge in GI, control systems, and other computerized medical

fields with their various interactions do we need in order to eradicate just one of

these human diseases?

Obviously, this is another story.

This thesis extracted a very tiny drop from the vast ocean of knowledge that can

hopefully help in elucidating this question – for the welfare of all…

References

Thèse de Doctorat d’État – The ESLIM Project 147

REFERENCES

[Adl94] Adleman, L. M. “Molecular computation of solutions to combinatorial
problems”, Science, ISSN (print): 0036-8075, ISSN (online):1095-9203, 266(5187):1021-
1024, 1994

[ALS07] Aho, A.V., M. S. Lam, R. Sethi, & J. D. Ullman “Compilers: Principles, Techniques,
& Tools”, 2nd Edition, Addison-Wesley, ISBN: 9780321547989, 2007

[Ang80] Angluin, D. “Inductive inference of formal languages from positive data”
Inform. and Control, ISSN: 0019-9958, 45:117-135, 1980

[Ang81] Angluin, D. “A Note on the number of queries needed to identify regular
languages”, Inform. and Control, ISSN: 0019-9958, 51:76-87, 1981

[Ang82] Angluin, D. “Inference of reversible languages”, J. ACM, ISSN: 0004-5411,
29(3):741-765, 1982

[Ang87] Angluin, D. “Learning k-bounded CFGs”, Yale Tech. Rept. RR-557, 1987
[Ang88] Angluin, D. “Identifying languages from stochastic examples”, Technical Report

YALEU/DCS/RR-614, Yale University, March 1988
[ASV01] Amengual, J.-C., A. Sanchis, E. Vidal & J.-M. Benedi, “Language simplification

trough error-correcting and grammatical inference techniques, Machine Learning,
ISSN (print): 0885-6125, ISSN (online): 1573-0565, 44(1-2):143-159, 2001

[AS83] Angluin, D. & C. Smith, “Inductive inference: theory and methods”, ACM
Computer Surveys, ISSN (print): 0360-0300, ISSN (online): 1557-7341, 15 (3):237-269,
1983

[AV02] Adriaans, P. & M. Vervoort, “The EMILE 4.1 grammar induction toolbox”, Proc.
of ICGI02, LNAI, Springer, 2484: 293-295, 2002

[BA08] Bacerra, L., A. Angluin, “Learning semantics before syntax“, Proc. of ICGI08,
LNAI, pp. 1-14, Springer, Berlin, 2008

[BGB04] Benenson, Y., B. Gil, U. Ben-Dor, R. Adar, E. Shapiro, "An autonomous
molecular computer for logical control of gene expression". Nature 429 (6990):423–
429, 2004

[BH01] Bernard, M. & C. de la Higuera, ”Apprentissage de programmes logiques par
inférence grammaticale”, Revue d’Intelligence Artificielle, Hermes-Lavoisier Edition,
Paris, France, ISSN: 0992499X, 14(3):375–396, 2001

[Bos98] Boström, H. “Predicate Invention and Learning from Positive Examples Only”,
Proc. of the Tenth European Conference on Machine Learning, Springer Verlag, pp. 226-
237, 1998

[BJ99] Bshooty, N. & J. Jackson, “Learning DFA over the uniform distribution using a
quantum example oracle”, SIAM J. Comput., ISSN (electronic): 1095-7111, 28(3):1136-
1153, 1999

References

Thèse de Doctorat d’État – The ESLIM Project 148

[Cas90] Casacuberta, F. “Some relations among stochastic finite state networks used in
automatic speech recognition”, IEEE Trans. PAMI, ISSN: 0162-8828, 12(7):691-695,
1990

 [Chi01] Chidlovskii, B., “Schema Extraction from XML data: a grammatical inference
approach”, Proc. 8th Int. Worksh. on Knowledge Repres. Meets Databases (KRDB’01)
CEUR Worksh. Proc., CiteSeerX 10.1.1.2.4760, vol. 45, 2001

[Cho59] Chomsky, N. “On certain formal properties of grammars”, Inform. and Control,
ISSN: 0019-9958, 137-167, 1959

[CK02] Cicchello, O. & S. Kremer, “Beyond EDMS”, Proc. of ICGI00, LNAI, 2484:28-48,
Springer, Berlin 2002

[CK03] Cicchello O., Kremer S. C., “Inducing grammars from sparse data sets: a survey
of algorithms and results”, JMLR, ISSN (online):1533-7928, 4:603-632, 2003

[CKR10] Chakraborty, S., E. Keller, A. Ray, J. Mayer, “Symbolic identification of
dynamical systems: theory and experimental validation”, American Control
Conference, Baltimore, MD, USA, June 30-July 02, 2010

[CMZ05] Črepinšek, M., M. Mernik, & V. Žumer, “Extracting grammar from programs:
brute force approach”, ACM SIGPLAN Notices, ISSN: 0362-1340, 40(4):29-38, 2005

 [CN89] Clark, P., & T. Niblett, “The CN2 induction algorithm”, Machine Learning, ISSN
(print): 0885-6125, ISSN (online): 1573-0565, 3:261-283, 1989

[Coh04] Cohen, J., “Bioinformatics - an introduction for computer scientists”, ACM
Computing Surveys, ISSN (print): 0360-0300, ISSN (online): 1557-7341, 36(2): 122–158,
June 2004

[deH97] de la Higuera, C. “Characteristic sets for polynomial grammatical inference”,
Machine Learning, ISSN (print): 0885-6125, ISSN (online): 1573-0565, 27:125-137, 1997

[deH05] de la Higuera, C. “A bibliographical study of grammatical inference”, Pattern
Recognition, ISSN: 0031-3203, 38:1332-1348, 2005

[deH10] de la Higuera, C. “Grammatical Inference - Learning Automata and Grammars”,
Cambridge University Press, ISBN 978-0-521-76316-5, 2010

[deH96] de la Higuera, C., J. Oncina & E. Vidal, “Identification of DFA: data-dependent
versus data-independent algorithm”, Proc. of ICGI96, LNAI, Springer, 1147:313-325,
1996

[deH02] de la Higuera, C. & J. Oncina, “On sufficient conditions to identify in the limit
classes of grammars from polynomial time and data”, Proc. of ICGI96, LNAI,
Springer, 2484:134-148, 2002

[DLT01] Denis, F., A. Lemay & A. Terlutte, “Learning regular languages using RFSA”,
“Proc. of ALT2001”, LNCS, Springer, 2225:348-363, 2001

[DBK92] Dean, T., K. Basye, L. Kaelbling, E. Kokkevis, O. Maron, D. Angluin & S.
Engelson, “Inferring finite automata with stochastic output functions and an
application to map learning”, Proc. of the 10th Nat. Conf. on AI, pp. 208–214, 1992

[DMV94] Dupont, P., L. Miclet & E. Vidal, “What is the search space of the regular
inference?”, Proc. of ICGI94, LNAI, Springer, 862:25-37, 1994

[Ear70] Earley, J., “An efficient context-free parsing algorithm” Comm. ACM, ISSN:
0001-0782, 13(2):94-102, 1970. {url : www.acm.org}

References

Thèse de Doctorat d’État – The ESLIM Project 149

[Ehr79] Ehrig, E., “Introduction to the algebraic theory of graph grammars”, In V.
Claus, H. Ehrig, and G. Rozenberg, (Eds.), “Graph-Grammars and Their Application to
Computer Science and Biology”, Springer-Verlag, pp. 1–69, 1979.

[ERS97] Erlebach, T., P. Rossmanith, H. Stadtherr, A. Steger & T. Zeugmann, “Learning
one-variable pattern languages very efficiently on average, in parallel and by asking
queries”, Proc. of ALT97, LNCS, Springer, 1316:260-276, 1997

[Eyr06] Eyraud, R., “Inference Grammaticale de Langages Hors-Contexte“, PhD Thesis,
Faculté des Sciences et Techniques de Saint-Etienne, 2006

[Fu74] K. S. Fu, “Syntactic Methods in Pattern Recognition”, Academic Press, New York,
1974.

[Gdd08] Goddard, W. “Introducing the Theory of Computation”, Jones and Bartlett
Publishers Inc., ISBN: 9780763741259, 2008

[Gol67] Gold, E. M. “Language identification in the limit”, Inform. and Control, ISSN:
0019-9958, 10(5):447-474, 1967

[Gol78] Gold, E. M. “Complexity of automata identification from given data”, Inform.
and Control, ISSN: 0019-9958, 37:302-320, 1978

[Hag07] Hagras, H. “Type-2 FLCs: a new generation of fuzzy controllers”,
Computational Intel. Mag., IEEE, ISSN: 1556-603X, 2(1):30-43, Feb. 2007

[Ham94] Hamdi-Cherif, A. “The CASCIDA Project - A computer-aided system control
for interactive design and analysis”, Proc. of IEEE / IFAC Joint Symposium on CACSD
(CASCD’94), Tucson, AZ, USA, p.247-251,1994

[Ham10] Hamdi-Cherif, A. “Towards robotic manipulator grammatical control”,
Invited Book Chapter In: Suraiya Jabin (Ed.) “Robot Learning”, SCIYO Pub., ISBN
978-953-307-104-6; pp. 117-136, October 2010

[HH07a] Hamdi-Cherif, C., & A. Hamdi-Cherif, “Apprentissage inductif de
grammaires: Le système GASRIA. (Inductive learning for grammars: The GASRIA
System)”, Revue d’Intelligence Artificielle, Hermes-Lavoisier Edition, Paris, France,
ISSN: 0992499X, 21(2):223-253, March-April 2007

[HH07b] Hamdi-Cherif, C. & A. Hamdi-Cherif, “ILSGInf : Inductive learning system for
grammatical inference”, WSEAS Trans. on Comp., ISSN: 1991-8755, 6(6):991-996, July
2007, http://www.wseas.org

[HH09a] Hamdi-Cherif, A. & C. Hamdi-Cherif, “Grammatical inference methodology
for control systems”, WSEAS Trans. on Comp., ISSN: 1991-8755, 8(4):610-619, April 2009

[HH09b] Hamdi-Cherif, A., C. Kara-Mohammed (alias Hamdi-Cherif), “Grammatical
inference for robotic self-assembly: basic methodology”, Recent Advances in Artificial
Intelligence, Knowledge Engineering and Database (AIKED’09)”, Cambridge, UK,
February 21-26, 2009, ISBN: 978-960-474-051-2, ISSN: 1790-5109, pp. 447-452, 2009

[HH11] Hamdi-Cherif, A., C. Kara-Mohammed (alias Hamdi-Cherif), “Evolutionary
multiobjective optimization for medical classification”, 2011 IEEE GCC Conference &
Exhibition, "For Sustainable Ubiquitous Technology", Dubai, United Arab Emirates, pp.
441-444, 19-22 February 2011

[Hof00] Hoffmann B. “Hierarchical graph transformation” Int. J. of Comp. and Syst. Sci.,
ISSN (print): 1064-2307, ISSN (online): 1555-6530, pp. 98-113, 2000

References

Thèse de Doctorat d’État – The ESLIM Project 150

[Hor72] Horning, J. J. “A procedure for grammatical inference” Information Processing
ISSN: 0162-8828, 71:519-523, 1972

[Ish90] Ishizaka, H. “Polynomial time learnability of simple deterministic languages”,
Machine Learning, ISSN (print): 0885-6125, ISSN (online): 1573-0565, 2(2):151-164,
1990

[Jon04] Jonyer, I. “MDL-based context-free graph grammar induction and applications”,
Int. J. on AI Tools, ISSN: 1793-6349, 13(1):65-73, 2004

[KC07] Kendal, S.L. & M. Creen, “An Introduction to Knowledge Engineering”, ISBN 13:
978-1-84628-475-5, 2007

[KGL06] Klavins, E., R. Ghrist, D. Lipsky, “A grammatical approach to self-organizing
robotic systems”, IEEE Trans. Automat. Contr., ISSN: 0018-9286, 51(6):949-962, June
2006

[Kla07] Klavins, E. “Programmable self-assembling”, IEEE Control Syst. Mag., ISSN:
0272-1708, 27(4):43-56, Aug. 2007

[KMT00] Koshiba T., Mäkinen E., Takada Y., “Inferring pure context-free languages
from positive data”, Acta Cybernetica, ISSN: 0324-721X, 14(3):469-477, 2000

[Kan98] Kanazawa, M. “Learnable classes of categorial grammars”, CSLI Publications,
Stanford, CA, 1998

[KNN01] Komarova N.L., Niyogi P., Nowak M.A., “The Evolutionary dynamics of
grammar acquisition”, J. theor. biology, ISSN: 0022-5193, 209(1): 43-59, 2001

[Kos95] Koshiba, T., “Typed pattern languages and their learnability”, Proc. of Euro
COLT95, LNAI, Springer, 904:367-379, 1995

[KR07] Kermorvant, C., & A. Rafrafi, “Automata learning for numerical entities
extraction from OCR output”, Proc. of the ICML Worksh. on Challenges and App. of
Grammar Induction, 2007

[KR97] Khardon R., Roth D., “Learning to reason”, J. of the ACM, ISSN: 0004-5411,
44(5):697-725, 1997

[KW97] Kondas, A. & J. Watrous, “On the power of quantum finite state automata”,
Proc. of 38th of IEEE Conf. on Foundations of Computer Science (FOCS97), ISBN: 0-8186-
8197-7, pp. 66 – 75, 1997

[Lan92] Lang, K. “Random DFA’s can be approximately learned from sparse uniform
examples”, Proc. of COLT, pp. 45-52, 1992

[Lar02] Larichev O.I., “Close imitation of expert knowledge : the problem and
methods”, Int. J. of Inf. Tech. &Decision Making (IJITDM), ISSN (print): 0219-6220.
ISSN (online): 1793-6845, 1(1):27-42, 2002

[Knu94] Knuutila, T. & M. Steinby, “Inference of tree languages from a finite sample: an
algebraic approach”, Theoret. Comput. Sci., ISSN: 0304-3975, 129:337-367, 1994

[LPP98] Lang, K.J., B.A. Pearlmutter & R.A. Price, “Results of the Abbadingo One : DFA
learning competition and a new evidence-driven state merging algorithm”, Proc. of
ICGI98, LNAI, Springer, 1433:1-12, 1998

[Lan00] Langley, P. & S. Stromsten, “Learning context-free grammars with a simplicity
bias”, Proc. of ECML2000, 11th Eur. Conf. on Machine Learning, LNCS, Springer,
1810:220-228, 2000

References

Thèse de Doctorat d’État – The ESLIM Project 151

[Lee92] Leermakers, R., “Recursive ascent parsing: from Earley to Marcus”. Theoret.
Comp. Sc., ISSN: 0304-3975, 104:299-312, 1992

[Lee96] Lee, L. “Learning of context-free languages: a survey of the literature”,
Technical Report RT-12-96, Center for Research in Computing Technology, Harvard
University, Cambridge, MA, 1996

[Luc94] Lucas, S., E. Vidal, A. Amari, S. Hanlon & J.C. Amengual, “A comparison of
syntactic and statistical techniques for offline OCR”, Proc. of ICGI94, LNAI, Springer,
862:168-179, 1994

[LN03] Laxminarayana J. A. & G. Nagaraja, “Inference of a subclass of context-free
grammars using positive examples”, ECML Worksh. on Learning Context-Free
Grammars, pp. 29-40, 2003

[Mäk96] Mäkinen, E. “A note on the grammatical inference problem for even linear
languages”, Fundam. Inf., ISSN: 0169-2968, 25(2):175-182, 1996

[MB95] Morgan, N. & H. Bourlard, “Continuous speech recognition”, IEEE Sig. Process.
Mag., ISSN: 0018-9294, 12(3):25-42, May 1995

[MDP01] Martins, J. F., J.A. Dente, A.J. Pires, and R. Vilela Mendes “Language
identification of controlled systems: modeling, control, and anomaly detection”,
IEEE Trans. On Syst. Man and Cyb. – Part C: Appl. And Rev. ISSN: 1094-697731,
(2):234-242, 2001

[MGZ03] Mernik, M., G. Gerlic, V. Zumer, & B.R. Bryant, “Can a parser be generated
from examples?” Proc. ACM Symp. On Appl. Comp., pp. 1063-1067, 2003

[MHB09] Mernik, M., D. Hrnčič, B.R. Bryant, A.P. Sprague, J. Gray, Q. Liu & F. Javed,
“Grammar inference algorithms and applications in software engineering”, XXII Int.
Symp. on Inf., Comm. and Automation Tech., ICAT, Print ISBN: 978-1-4244-4220-1, pp. 1
– 7, 29-31 October 2009

[Mit97] Mitchell, T.M. “Machine Learning”, McGraw-Hill, New York, ISBN 10: 0-07
042807-7, 1997

[MKE07] McNew, J. M., E. Klavins, & M. Egerstedt, “Solving coverage problems with
embedded graph grammars”, In A. Bemporad, A. Bicchi, and G. Buttazzo, (Eds.),
“Hybrid Systems: Computation and Control”, Springer-Verlag, pp. 413-427, 2007

[Moo00] Moore, C. et al., “Quantum automata and quantum grammars”, Theoret.
Comput. Sci., ISSN: 0304-3975, 237:275-306, 2000

[MR11] Mikut, R. & M. Reischl, “Data mining tools”, Wiley Interdisciplinary Reviews Data
Mining and Knowledge Discovery, ISSN: 1942-4795, 1(5):431–443, Sept./Oct. 2011

[Mug99] Muggleton S., “Inductive logic programming: issues, results and the challenge
of learning language in logic”, Artificial Intelligence, ISSN: 0004-3702, 114:283-296,
1999

[NS72] Newell, A., & H. A. Simon, “Human Problem Solving” Prentice-Hall, 1972
[NW97] Nevill-Manning, C., & I. Witten, “Identifying hierarchical structure in

sequences: a linear-time algorithm”, J. Artif. Intell. Res., ISSN: 1076-9757, 7:67-82,
1997

References

Thèse de Doctorat d’État – The ESLIM Project 152

[OG92] Oncina, J. & P. Garcia, “Inferring regular languages in polynomial updated
time”, In P. de la Blanca, Sanfeliu & E. Vidal (Eds.), “Pattern Recognition and Image
Analysis”, World Scientific, ISBN: 9789812797902, 1992

[Onc98] Oncina, J. “The data driven approach applied to the OSTIA algorithm”, Proc. of
ICGI98, LNAI, Springer, 1433:50-56, 1998

[PV96] Parekh, B. & V. Honavar, “An incremental interactive algorithm for grammar
inference”, Proc. of ICGI03, LNAI, Springer, pp. 238-249, 1996

[PW93] Pitt, L., M. Warmuth, “The minimum consistent DFA problem cannot be
approximated within any polynomial”, J. ACM, ISSN: 0004-5411, 40(1):95-142, 1993

[Qui93] Quinlan, J. R. “C4.5: Programs for Machine Learning”, Morgan Kaufmann, ISBN:
1558602380, 1993

[RG01] Rocco, A., S. Servedio & J. Gortler, “Quantum versus classical learnability”, 16th
Annual IEEE Conf. on Computational Complexity (CCC'01), ISBN: 0-7695-1053-1, pp.
138-148, 2001

[RPW04] Rothemund, P. W. K., N. Papadakis & E. Winfree, “Algorithmic self-assembly
of DNA Sierpinski triangles”, PLoS Biology, ISSN (print): 1544-9173, ISSN (online):
1545-7885, 2(12):e424, 2004

[RN03] Russell, S., P. Norving, “Artificial Intelligence, A Modern Approach”, Chapter 22
Communication, pp. 791-833, Prentice Hall, 3rd Edition 2003

[Ros97] Rosenberg, R. & A. Salomaa, “Handbook of Formal Languages, Vol. 1 Word,
Language, Grammar”, Springer 1997

[RZ01] Rossmanith, P. & A. Zeugmann, “Stochastic finite learning of the pattern
languages”, Machine Learning, ISSN (print): 0885-6125, ISSN (online): 1573-0565,
44(1):67-91, 2001

[Sai06] Saidi, A.S. “Using Grammatical inference in structure induction”, Proc. 15th Int.
Conf. On Computing (CIC06), ISBN: 0-7695-2708-6, pp. 92-104, 2006

[Sak92] Sakakibara, Y. “Learning context-free grammars from structural data in
polynomial time," Theoret. Comp. Sci., ISSN: 0304-3975, 76:223-242, 1992

[Sak97] Sakakibara Y., “Recent advances of grammatical inference”, Theoretical Computer
Science, 185:15-45, 1997

[Sak00] Sakakibara, Y. & H. Muramatsu, “Learning context-free grammars from
partially structured examples“, Proc. of ICGI00, LNAI, Springer, 1891:229-240, 2000

[Sav04] Savchenko, S. “Regular expression mining” Dr Dobbs Journal, ISSN 1044-789X,
29(2):46–48, 2004

[Seb03] Sebban, M., & Janodet, J., “On state merging in grammatical: a statistical
approach for dealing with noisy data”, 20th Int. Conf. on Machine Learning, pp. 688-
695, 2003

[SF01] Stanley, R. P. & S. Fomin, “Enumerative Combinatorics” Volume 2, Cambridge
University Press, 2001

[Sip06] Sipser, M. “Introduction to the Theory of Computation”, Thomson Course
Technology; 2nd Edition, ISBN-13: 978-0534947286, 2006

[Sol59] Solomonoff, R. J. “A new method for discovering the grammars of phrase
structure languages," Proc. Int. Conf. Inf. Process., New York, UNESCO, 1959

References

Thèse de Doctorat d’État – The ESLIM Project 153

[Tak88] Takada, Y. “Grammatical inference for even linear languages based on control
sets”, Inform. Process. Lett., ISSN: 0020-0190, 28:193-199, 1988

[Tan87] Tanatsugu, K. “A grammatical inference for context-free languages based on
self-embedding", Bull. Informatics and Cybernetics, ISSN: 0286-522X, 2(3-4):149-163,
1987

[Tho02] F. Thollard, A. Clark, “Shallow parsing using probabilistic grammatical
inference”, Proc. of ICGI00, LNAI, , Springer, 2484:269-282, 2002

[TK05] Tanner, H.G., A. Kumar, “Formation stabilization of multiple agents using
decentralized navigation functions,” In S. Thrun, G. Sukhatme, S. Schaal, and O.
Brock, (Eds.) Robotics: Science and Systems I, MIT Press, pp. 49–56, 2005

[TB73] Trakhtenbrot, B. & Y. Barzdin, “Finite Automata: Behaviour and Synthesis”, North-
Holland Pub. Co., ISBN 0-444-10418-6, 1973

[Val84] Valiant, L. G. “A theory of the learnable”, Comm. ACM, ISSN: 0001-0782,
27(11):1134-1142, 1984

[Vil00] Vilar, J. M. “Improve the learning of sub-sequential transducers by using
alignment and dictionaries”, Proc. of ICGI00, LNAI, Springer, 1891:298-312, 2000

[Win00] Winfree, E. “Algorithmic self-assembly of DNA: theoretical motivations and 2-
D assembly experiments,” J. Biomolec. Struct. Dyn., ISSN: 0739-1102, 11(2):263–270,
May 2000.

[Win93] Winston P.H. “Artificial Intelligence”, 3rd Edition, Addison-Wesley Series in
Computer Science, ISBN-10: 0201533774, ISBN-13: 978-0201533774, 1993

[WFH11] Witten, I.H., E. Frank, M.A. Hall, “Data Mining: Practical Machine Learning
Tools and Techniques”, 3rd Edition, Morgan Kaufmann, ISBN 978-0-12-374856-0,
January 2011

[Yok88] Yokomori, T. “Inductive inference of context-free languages based on context-
free expressions”. Int. J. Computer Math., ISSN (print): 0020-7160. ISSN (online):
1029-0265, 24, 115-140, 1988

[ZM96] Zelle, I. & R.I. Mooney, “Learning to parse database queries using inductive
logic programming”, Proc. Of the Thirteen Nat. Conf. on AI, 2:1050-1055, 1996

Glossary

Thèse de Doctorat d’État – The ESLIM Project 155

GLOSSARY

English Français ����

Alphabet Alphabet =ی#Gأ�
Alphabetical order Ordre alphabétique ي#Gأ� H�!�!
Automata Automates =I)!أ
Automaton Automate =I)!أ
Automaton, deterministic
push-down

Automate à pile =I)!س أ#*�

Automaton, finite
(deterministic)

Automate fini (déterministe) ودة#�� =I)!أ)=�<L� (

Automaton, finite (non
deterministic)

Automate fini non
déterministe

=�<L� ��N ودة#�� =I)!أ

Automaton, linear bounded Automate linéaire borné ودة#�� =�L6 =I)!أ
Automata, skeletal tree Automate d’arbre

squelettique
 =I)!ة ه�*��=�أ�G:

Background (or prior)
knowledge

Connaissance de fond (a
priori)

�= = ا�(>���Pا�(�3$=(ا�(

Backus Naur Form Forme de Backus-Naur 5ر - ش*� ��آ5س�
Character in a string Caractère dans une chaine ح�ف �� ��3�3=ا
Chomsky normal form Forme normale de Chomsky 3*�ا�:*� ا��5:� ���2�
Chaining Chainage �3�3!
Chaining, backward Chainage arrière ��6 �3�3!
Chaining, forward Chainage avant ���� !�3�3 أ
Chaining, hybrid Chainage hybride �3�3!��Gه
Cocke-Younger-Kasami
algorithm

Algorithme de Cocke-
Younger-Kasami

 -ی�5?� - 56ارزم آ5ك
�� آ�زا

Complement of a language Complément d’un langage =?�� �)ّ*�
Concatenation of positive and
negative evidence

Concaténation de preuves
positive et négative

 U�V�! ا8د�= ا�(�05= و
 ا����3=

Clause Clause ة�$�
Clauses, conjunction of Conjonction de clauses ات�$ و�V ا�
Clauses, disjunction of Disjonction de clauses �$ �ات<� ا�
Conflict resolution set Ensemble de résolution de

conflit
�G(�5= اI6;ال ا�I>�رض

Glossary

Thèse de Doctorat d’État – The ESLIM Project 156

Constraint satisfaction
problem

Problème à satisfaction de
contraintes

�3 �= !�$�� ا�$�5د

Control variable Variable de commande �*�Iا� ��?I�
Definite semantics Sémantique définie تCCد =��<�
Empty character Caractère vide رغ� ا���ف ا�
Emptiness Vide �اغا�
Entailment Implication ام;�I	ا
Equivalence Equivalence Iا�[��*
Evidence Preuve د���
“Fail-first” heuristic Heuristique du premier

échec
 �#ی��= أول ر	5ب

Finiteness Finitude =ودی#��
Grammar Grammaire 5�� ا�
Grammar, context-sensitive Grammaire à contexte

sensitif
 5�� ا���3س ����3قا�

Grammar, context-free Grammaire à contexte libre 5�� ا�(I3$� �� ا���3ق ا�
Grammar, formal Grammaire formelle 5�� ا�:*�� ا�
Grammar, hypothesis Grammaire hypothèse وض� ا���5 ا�(
Grammar inference (or
induction)

Inférence (ou induction)
grammaticale

) أو اC	I$�اء(اC	C#Iل
 ا���5ي

Grammar, regular Grammaire régulière 5��2� ا�I� ا�(
Grammar, size of a Grammaire, taille d’une 5��� ا�Gح
Grammar, stochastic context-
free

Grammaire stochastique a
contexte libre

 5��ا�(I3$� �� ا�>:5ا_� ا�
 ا���3ق

Grammar, target Grammaire cible #ف�5 ا��� ا�
Grammar, unrestricted (free) Grammaire, non restreinte

(libre)
 5�� �N� ا�($�#، ا���ا�

Inductive inference and
definite semantics

Inférence inductive et
sémantique définie

 دCCتا	C#Iل !�ا0>� و
�ّ<�=�

Inductive inference and
normal semantics

Inférence inductive et
sémantique normale

#I	ل !�ا0>� و اCتCCد
=���2�

Inductive inference rule Règle d’inférence inductive �<0ل !�اC#I	5ن ا���
Inductive logic programming Programmation logique

inductive
=��C#I	ا =�$L�� =G���

Inferred grammar at a given
stage of the inference process

Grammaire inférée à un
niveau donné du processus
d’ inférence

 5��`��5I3ى �I3#ل � ��
��ح�= اC	C#Iل �� ��<�

Information extraction Extraction d’information =� ا	PI�اج ا�(>�5
Information retrieval Recherche d’information =� ا	c<Iم �� ا�(>�5

Glossary

Thèse de Doctorat d’État – The ESLIM Project 157

Initial inferred grammar Grammaire initiale inférée `� ا���5 اI�C#ا_� ا�(I3#ل �
Knowledge base Base de connaissances =��<)ة ا�#���
Knowledge-based system Système à base de

connaissance
 ���#ة ا�(>��=�م �2

Language Langage =?�
Language, context-free Langage, à contexte libre ا���3ق �� =�$I3)ا��?= ا�
Language, domain-specific Langage spécifique au

domaine
 ا��?= ا�V�P= ���(�#ان

Language defined over an
alphabet

Langage défini selon un
alphabet

�>��= حH3 أ�G#ی= =?�

Language, formal Langage, formel =?ا�:*��=ا��
Language generated by a given
given grammar

Langage généré par une
grammaire donnée

��5#ة =?���<� 5���

Language, regular Langage, régulier =?2(=ا��I� ا�(
Language, recursive
enumerable

Langage énumérable récursif =?�،=5دی� #<�� =����

Language, target Langage cible #ف�ا��?= ا�
Learning Apprentissage ��<Iا�
Learning, machine Apprentissage automatique ��dا ��<Iا�
Learning, semi-supervised Apprentissage semi-

supervisé
 � e� �_;0ش�اف!>�

Learning, supervised Apprentissage supervisé ش�افe� ��<Iا�
Unsupervised learning Apprentissage non supervisé ��<Iإش�اف?�� �ا�
Left- and right-hand-side of a
production

Partie gauche et partie droite
de la production

و ا��(�% ىا�G�= ا��3�
 ��I�fج

Length of string Longueur de la chaine �3�3=�5ل ا�
Lexical order over strings Ordre lexical dans les

chaines
�	c3ا� �� �)G<� H�!�!

Logic Logique �L��
Logic, first order Logique du premier ordre %ا�#ر0= ا8و� �L��
Logic, propositional Logique des propositions �L�� ا�$�gی�
Membership query Requête d’appartenance ء�)I�Cم �� اc<I	ا
Membership problem Problème d’appartenance =� 3� اI�C(�ء
Minimum adequate teacher Enseignant adéquat minimal H	��� ��<� �?Vأ
Minimum remaining value Valeur minimale restante =�$�I� أ�� ��(=
Most constrained variable La variable la plus contrainte ً5د��ا8آ-� ��?I)اا�
Most general concatenation of
all sub-sentences

La concaténation la plus
générale de toutes les sous-
phrases

 �)Gا� �*� �ا�U�V�I ا�8
=�_;Gا�

Multiple derivation Dérivation multiple د#<I� اشI$�ق

Glossary

Thèse de Doctorat d’État – The ESLIM Project 158

Non-terminal Non terminal �_��� ��N
Number of character in the
string

Nombre de caractères dans
la chaine

 �#د ا���وف �� ا��3�3=

Operation Operation =��)�
Operation, complement Operation, complement =��)� �)*)ا�
Operation, intersection Operation, intersection =��)�h��$Iا�
Operation, product Operation, produit =��)ب��gا�
Operation, symmetric
difference

Operation, difference
symétrique

 =��)��i��I)ح ا��Lا�

Operation, union Operation, union =��)� د��!Bا
Output (controlled) variable Variable (commandée) de

sortie
�I?�� ا�(P�ج)`�� �k*�I)ا�(

Parsing Analyse syntaxique 5ي�� ا�����I ا�
Parsing, bottom-up Analyse syntaxique,

ascendante
 ا�����I ا�I<��#ي

Parsing, hybrid Analyse syntaxique, hybride ����Iا���G�ا�
Parsing, top-down Analyse syntaxique,

descendante
��ز��Iا� ����Iا�

Partial derivative Dérivée partielle �_;Gا� �I:)ا�
Partial parsing algorithm Algorithme à analyse

syntaxique partielle
56ارزم ا�����I ا���5ي

�_;Gا�
Posterior satisfiability
(consistency with negative
evidence)

Satisfiabilité a posteriori
(consistance avec l’évidence
négative)

ا�$����= ���I$� ا�(�َ��
)ا��G3م �h ا�#��� ا����3(

Posterior sufficiency (or
completeness with regard to
positive evidence)

 Suffisance a posteriori
(complétude vis-à-vis de
l’évidence négative)

آ(�ل �����3= (ا�*�ی= ا�(�َ�$=
)��#��� ا����3

Power set Ensemble puissance 5�ُ�5= ى)G�
Programming Programmation =G���
Programming, declarative Programmation déclarative =ی���>Iا� =G� ا���
Programming, imperative Programmation impérative ة��dا =G� ا���
Programming, functional Programmation fonctionnelle =G��= ا����i5ا�

Programming, procedural Programmation procédurale �ا��=G� ا0B�ا_�=
Programming, object-oriented Programmation orientée

objet
=G� ا�:��n= ا���

Prior necessity Nécessité a priori �3$ً�,�وري�
Prior satisfiability Satisfiabilité a priori �$�I�� =����$ا�(��3ا�
Probabilistic approximately
correct

Probablement
approximativement correct

Cً�)Iاح o��>ا� �� Hا�$�ی

Glossary

Thèse de Doctorat d’État – The ESLIM Project 159

Pumping lemma Pumping lemma 56ذ � qgا�
Reversal of a string Inversion de chaine =�3�35س ا�*<�
Resolution principle Principe de résolution ال;I6Bأ ا#��
Sequence of characters Séquence de caractères ا���وف �� =���II�
Set of accepting states Ensemble des états

acceptants
�G(�5= ا8ح5ال �$I)ـا�r=�

Set of characters (terminals) or
alphabet

Ensemble de caractères
(terminaux) ou alphabet

 =�5)G�) ا����_�=(ا���وف
 أو أ�G#ی=

Set of hypotheses Ensemble des hypothèses ت��,��G(�5= ا�
Set of initial states Ensemble des états initiaux �5= ا8ح5ال)G� اI�C#ا_�=
Set of positive examples Ensemble des exemples

positifs
 =�5)G� ا8�-�= ا�(�05=

Set of negative examples or
counter examples

Ensemble des exemples
négatifs ou contre-exemples

 =�-�ا����3= أو �G(�5= ا8
 (�gدة ا��-�= ا8

Set of non-terminals or
variables

Ensemble des non terminaux
ou variables

 =�5)G�cأو ا� =�_���
 ا�(I?��ات

Set of positive (or negative)
examples of sentences

Ensemble des exemples
positifs (ou négatifs) de
phrases

 =�5)G�أو (ا8�-�= ا�(�05=
�� ا�G(�)ا����3=

Set of productions or rules Ensemble de productions ou
de règles

 =�5)G���GIت أو � ��
 �5ا���

Set of rejecting states Ensemble des états de rejet �5= ا8ح5ال)G�=gا��ا�
Set of states Ensemble des états �5= ا8ح5ال)G�
Set of symbols in the stack Ensemble des symboles dans

la pile
 =�5)G� ا���5ز �� ا�(*#س

Single derivation Dérivation simple #ق واح�$Iاش
Starting symbol Symbole initial �_ا#I�Cا ;� ا��
State with branch and read
from input

État de branchement et de
lecture des entrées

 ��ح��= �; و ��اءة
 تc#�6َُ(ا

State with branch and read
from stack

État de branchement et
lecture de pile

 ��ح��= �; و ��اءة
 ا�(*#س

State with no branching but
only with push

État sans branchement mais
avec empilement seul

tی#*I� �*� و ;� c� =ح��
u$�

Strings of terminals Chaine de terminaux �� =�3�	�_��� ت�ا�
Symbol Symbole ;� ر
Terminal Terminal �_���
Text mining Fouille de texte 5ص>��$�H �� ا�Iا�
Transition function Fonction de transition ل�$I�Cدا�= ا

Appendix 1 : Class of languages inferred by GASRIA

Thèse de Doctorat d’État – The ESLIM Project 161

APPENDIX 1

CLASS OF LANGUAGES INFERRED BY GASRIA

Table A1 below gives some of the grammars inferred by GASRIA. For each language,

the first row contains a description of the language, the second column contains the set

L+ of positive examples and the third column gives the most general grammar inferred

by the system. Then a number of rows follow containing the sequence of grammars

generated. For each grammar, we give only the set of productions. S is the initial

symbol. We can conclude that the subclass of languages learned by our algorithm is the

linear languages, which incorporate even linear and regular languages. For the search

space, the choice of Chomsky normal form for describing the grammar and the

collection of non-terminal two by two from left to right, we have reduced the search

space to only one possible grammar. Of course, it may not be the best one always.

Table A1 – TABA1: Class of languages inferred by GASRIA

Language L+ Most general grammar

anbn, n ≥ 1
ab, aabb, aaabbb

G

1

G
0

 = S → AB , A → a, B → b

G
1

= S → AB , A → a, B → b C → AS, S → CB

S� x
 | y
 | z
 | S+S
 | S*S
 | S-S
 | S/S
 | (S)

This grammar generates
arithmetic expressions
using x,y,z variables .

x, y, z, x+y, x-y,
x*y, x/y, (x),
(x+(x-y)/(z*y-x))

G

7

G
0

 = S → x

G
1

= S → x, S → y

Appendix 1 : Class of languages inferred by GASRIA

Thèse de Doctorat d’État – The ESLIM Project 162

G
2

= S → x, S → y, S → z

G
3

= S → x, S → y, S → z, S → BS, B → SA, A → +

G
4

= S → x, S → y, S → z, S → BS, B → SA, A → +,

C → -, D → SC, S → DS

G
5

= S → x, S → y, S → z, S → BS, B → SA, A → +,

C → -, D → SC, S → DS, E → *, F → SE, S → FS

G
6

= S → x, S → y, S → z, S → BS, B → SA, A → +,

C → -, D → SC, S → DS, E → *, F → SE, S → FS ,

G → /, H → SG, S → HS

G
7

= S → x, S → y, S → z, S → BS, B → SA, A → +, C

→ -, D → SC, S → DS, E → *, F → SE, S → FS, G

→ /, H → SG, S → HS, I → (, J →), K → IS, S → KJ

bnab2n n ≥1 babb, bbabbbb,
bbbabbbbbb,
bbbbabbbbbbbb

G
1

G
0

= A → b, B → a, C → AB, D → CA, S → DA,

G
1

= A → b, B → a, C → AB, D → CA, S → DA,

E → AS, F → EA, S → FA

bnabcb 3n n ≥ 0 abc, babcbbb,
bbbabcbbbbbbbbb

G
1

G
0

= A → a, B → b, C → c, D → AB, S → DC

G
1

= A → a, B → b, C → c, D → AB, S → DC,

E → BS, F → EB, G → FB, S → GB

aaabbbbb, aab aaabbbbb, aab G

1

G
0

= A → a, B → b, C → AA, D → CA, E → DB,

F → EB, G → FB, H → GB, S → HB

G
1

= S → CB

Appendix 2 : ILSGInf class diagram

Thèse de DE– The ESLIM Project 163

APPENDIX 2 – ILSGINF CLASS DIAGRAM

Figure A2 – DIAG A/2 : ILSGInf class diagram

Terminals

termnls <vector> : char;
nbr_trmnls : int;

terminals(int = 0);
setTerminals (int, char [
]);
getTerminals() : void ;
inTerminals (char) : bool;

Symbl_Initl

symbol : char;

symbl_Initl(char =‘S’)
:void;
setsymb(char) : void;
getsymbl() : char;

Non_Terminls

nonTerminals <vector> : char;
nbr_non_trmnls : int;

non_Terminls(int = 0) ;
set_n_termnls(int, char[]):
void ;
get_n_termnls() : void ;
inNonTermnls(char) : bool ;
add_n_terminls(char c): void;

Rule

iD_rule : int ;
pd : char ;
pg : char[maxpg];

rule () ;
setRule(int,char,char[]):
void ;
getlenPg() : int ;
getNumber() : int ;
printRule(int) : void ;
getPd() : char;
getPg(int) : char;

Grammar

terminaux : Terminals;
nonTerminaux : Non_Terminls;
initial_Symbol : Symbl_Initl;
r ules <vector> : Rule;

ilsginf() : void;
grammar();
grammar(int);
earley_Analyser(char *, List_Item * &):

Appendix 3 : Complexity of ILSGInf learning

Thèse de DE– The ESLIM Project 164

APPENDIX 3 COMPLEXITY OF ILSGINF LEARNING

ALGORITHM

For complexity calculation of ILSGInf, assume that n is the maximum size of examples

in the input sample, and x is the number of examples in it. The estimated time

complexity T(.) of the algorithm is polynomial with respect to the maximum length of

examples in the input sample. The cardinality of the input sample also increases the

time complexity until the most general grammar is found.

T(ILSGInf , n) =

constant+T(Generate_first_grammar , n)+(x-1)*(const+T(PPA_Parse , n) +

T(Generalize , n)) (1)

Where:

T(Generate_first_grammar, n) = O(3n) = O(n)

T(PPA_Parse , n)=max(T(Earley_algorithm , n),

}/],0[,{max(
11

3
∑∑

==

=∈
n

i
i

n

i
i nknkk + T(PaDe_sorting , n))) (2)

T(Earley_algorithm , n) = O(n3) (Earley algorithm known complexity)

T(PaDe_sorting , n) = O(n2) (sorting algorithm known complexity)

}/],0[,{max(
11

3
∑∑

==

=∈
n

i
i

n

i
i nknkk = O(n3)

Thus (2) gives

T(PPA_Parse , n) = max(O(n3), O(n3)+O(n2)) = O(n3)

T(Generalize , n) = O(n)

The final result giving the complexity of ILSGInf is given by:

T(ILSGInf , n) = O(n) + (x-1) * (O(n3) + O(n)) = (x-1) * O(n3) = O(n3)

Although, we have been successful in generating a subclass of CFLs in polynomial time,

the actual method cannot deal with more complex CFG’s such as ωωR. We are now

developing adequate heuristics to improve the proposed method to enlarge the set of

learned languages.

Index

Thèse de DE– The ESLIM Project 165

INDEX

Abbadingo learning

competition, 36

absorption rule, 117

accepting strings, 19

Active learning, 28

adaptive control,
123, 128

adaptive control
methods, 123

AI, 6, 144, 146, 149

All types of queries,

29

alphabet, 5

antecedent , 83,

87, 96

approximately
correct, iii, 25, 30,

154

artificial
intelligence, II, 6,

41, 42, 56

automata, I, II, iii, 14,

15, 17, 32, 33, 36,

37, 38, 39, 41, 43,

46, 63, 145, 146,

147

automaton, i, ii, 14,

17, 18, 20, 32, 33,

34, 35, 49

background
knowledge, 57, 60

background theory,

58, 60

Backtrack
characteristics, 82

backward chaining,

3, 80, 82, 83, 87,

104, 138

BLUE*, 35

C4.5, 56, 148

CFG, II, i, xi, xii, 6, 13,

17, 20, 21, 22, 23,

38, 39, 40, 43, 47,

53, 62, 65, 66, 69,

73, 79, 81, 82, 94,

108, 109, 119, 137,

138, 160, 167

CFGs, II, xi, 1, 5, 6, 7,

9, 21, 23, 24, 25,

27, 32, 34, 37, 38,

39, 40, 41, 42, 43,

53, 72, 128, 143,

167

CFL, IV, i, v, 17, 20,

21, 22, 23, 101,

102, 103, 127, 135

CFLs, II, 17, 20, 21,

22, 23, 37, 38, 39,

40, 41, 134, 138,

139, 160

Chaining, 151

CHILL, 57

Chomsky hierarchy,

5, 17, 32, 37, 42,

128

class diagram, iv, 65,

90, 109

classes of
languages, 16

classification of
sentences, 63

Closed world
assumption, 82

closed-loop control,
126

CN2, 56, 144

CNF, i, 22, 39, 72, 78

commentary
variable, 97

complementation,

19, 22, 38

computer algebra
software, 2

concatenation, i, 11,

19, 42, 54, 73, 77,

117, 119, 153

conclusion , V, ix,

3, 9, 52, 68, 83, 87,

100, 106, 117

condition-action
rules, 83

conflict-resolution
procedure, 84

conjunction of
clauses, 116, 117

Constraint
satisfaction
problem, i, 152

constraint
satisfaction
problem (CSP), 99

Constructors , 84,

85

context free
grammars, xi, 5,

167

context-free
expressions, 42,

149

context-free grammar,

iii, 6, 13, 17

context-free
grammars, 1, 128,

146, 147, 148

context-free
language, IV, 17,

101, 127, 135

Context-free
language, i, 18

context-free
languages, 16, 18,

138, 146, 147, 149

context-sensitive, 7

context-sensitive
grammar, 13, 17,

127, 140

context-sensitive
language, 17

Context-sensitive
language, 18

context-sensitive
languages, 16

Contradiction
theorem, 86

control law, 123,

124, 125, 126, 127,

128

control of machine
drives, V, 123, 127,

135

control strategy, 125

control systems, V,

xi, 6, 7, 123, 124,

125, 126, 129, 135,

140, 141, 142, 145,

167

controlling
program, 132

counter-example,

30, 113, 114

counter-examples,

28, 113

data analysis, 56

data mining, III, 4,

56

Data-driven heuristic,

II

decision tree
learning, 56

decision-making
process, 4

declarative, 1, 2, 3,

8, 53, 69, 91, 94,

95, 98, 137, 140,

141, 154

Declarative
programming, I, 8

deduction, IV, 80, 83,

84, 86, 116, 117

Deduction theorem,

86

DeLeTe, 37

derivation, i, 23, 39,

43, 47, 52, 69, 73,

74, 114, 139, 153,

155

determinism, 15, 40

Determinism, 38

deterministic CFLs,

17

deterministic finite
automaton, 14, 63

DFA, ii, iv, 5, 14, 143,

144, 146, 148

DNA, III, 21, 26, 48,

56, 132, 148, 149

domain-specific
language, 50

Index

Thèse de DE– The ESLIM Project 166

domain-specific
languages, 8

DPDA, i, 15

DSL, i, 50

DTL, 56

dynamic control, V,

127

dynamical system,

126, 129

Earley’s algorithm,

III, IV, vii, 52, 69,

71, 72, 73, 91, 94,

95, 98, 108, 113

Earley’s parser, 67,

72, 80

ECML2003, 37

EMO, III, 50

empty string, 11, 71

entailment, 8, 57, 86

enumerative
algorithm, 42

Equivalence, 20, 22,

29, 37, 152

even linear
grammars, 34

evidence, i, 35, 36,

58, 59, 60, 61, 146,

151, 154

evidence-driven
state merging
(EDSM)
algorithm, 35

evolutionary
multiobjective
optimization, III,

50

exact hypothesis, 30

EXINF, III, IV, V, iv, v,

vi, vii, 8, 53, 63, 66,

67, 68, 69, 75, 77,

78, 79, 80, 81, 87,

89, 90, 91, 92, 93,

94, 95, 97, 98, 99,

100, 101, 102, 103,

104, 105, 108, 109,

129, 130, 134, 137,

138

expert systems, 2, 3,

4, 106

exploitation mode,

63, 66, 67, 68

extended equivalence
queries, 41

fact base, 6, 65, 66,

67, 69, 78, 82, 83,

84, 94, 97, 98, 99,

100, 102, 103

facts, v, 3, 4, 8, 9, 47,

61, 63, 66, 84, 86,

87, 88, 90, 97, 98,

99, 100, 102, 103,

108, 109, 140

Factual knowledge, 4

fail-first heuristic,

100

finite automata, II, 5,

13, 43, 45, 128, 144

finite language, 16

Finiteness, 20, 22,

152

firing , 84

first-order logic, xi,

6, 7, 8, 52, 53, 54,

66, 79, 80, 90, 104,

137, 167

FOL, I, IV, V, ii, xi, 6,

7, 8, 53, 63, 66, 79,

80, 81, 83, 90, 104,

105, 137, 138, 140,

141, 167

forward chaining,

IV, v, vii, 3, 66, 81,

82, 83, 86, 88, 89,

95, 96, 99, 104, 138

Forward chaining, IV,

ii, 82, 86, 94, 96

FSA, I, 14

functional
programming, 2,

8

GASRIA, III, IV, V, VI,

iv, v, vi, vii, 6, 8, 51,

52, 53, 63, 64, 65,

68, 75, 76, 79, 105,

123, 137, 145, 157

general problem
solving, I, 5, 6

generalization, 35,

73, 108, 113, 114,

116, 117, 133, 139

Generalization, V, vii,

77, 112, 117

genetic algorithms,

4, 41, 42, 56, 141

GI, II, III, IV, V, VI, ii,

iv, v, vi, vii, xi, 3, 5,

6, 7, 8, 17, 25, 26,

27, 36, 38, 40, 44,

45, 46, 47, 48, 49,

50, 51, 52, 58, 62,

79, 80, 104, 105,

106, 108, 123, 124,

126, 127, 128, 129,

130, 131, 134, 135,

137, 138, 140, 141,

142, 167

GIFT, 63

grammatical
inference, II, III, V,

xi, 3, 5, 6, 17, 24,

25, 45, 51, 53, 62,

80, 104, 105, 124,

126, 135, 137, 143,

144, 145, 146, 147,

148, 149, 167

graph grammar, V,

49, 133, 146

Graph grammars, V,

133, 134

graphs, 27, 108, 133

heuristic, 4, 34, 36,

42, 43, 88, 100, 152

hidden Markov
models, 46

hierarchy, I, vi, 16,

18

HMMs, 46

Horn clause logic
program, 57

hypotheses, ii, 27,

57, 58, 59, 60, 61,

62, 121, 139, 155

hypothesis, ii, 26, 27,

28, 30, 31, 35, 38,

59, 60, 61, 63, 85,

88, 116, 117, 152

ICGI, 5

identifiable in the
limit, 28, 38

identifiers, 67

ILP, III, ii, iv, 2, 51,

52, 54, 57, 60, 61,

62, 121, 139

ILSGInf, II, III, IV, V,

VI, iv, v, vi, vii, 9,

43, 44, 63, 65, 69,

75, 77, 78, 80, 81,

83, 89, 91, 101,

104, 105, 108, 109,

110, 111, 112, 114,

123, 124, 127, 129,

130, 134, 137, 138,

145, 159, 160

imperative, 1, 2, 154

imperative languages,

1

implementation, IV,

V, xi, 2, 3, 6, 7, 9,

50, 52, 72, 80, 81,

83, 106, 114, 132,

167

Inclusion queries, 29

inconsistency
clause, 59

incremental, 27, 34,

53, 66, 70, 135,

139, 148

induction, III, ii, 5, 7,

35, 76, 77, 79, 116,

128, 137, 139, 143,

144, 146, 148, 152

inductive learning,

7, 52, 53, 105, 108,

123, 137

inductive logic
programming, 2,

54, 56, 63, 121,

139, 149

inductive machine,

27, 28

inference, I, II, III, ii, iii,

iv, xi, 2, 3, 4, 5, 9,

26, 31, 32, 33, 34,

35, 37, 38, 39, 40,

41, 42, 43, 46, 50,

53, 58, 59, 60, 61,

63, 66, 80, 82, 84,

87, 95, 99, 104,

105, 109, 116, 117,

121, 123, 127, 134,

135, 140, 141, 143,

144, 145, 147, 148,

149, 152, 167

inference problem,

26, 34

Index

Thèse de DE– The ESLIM Project 167

Inference problem,

26

inferred grammar,

ii, 5, 121, 138, 139,

153

informant
presentation, 27

information
extraction, ii, 47,

48

information
retrieval, ii, 47

Initial grammar
generation, 77

initial state, 14, 15

input data, 5, 15, 33,

46

Integration, 83

intelligent agents, 4

intelligent system,

3, 82

intersection, 19, 22,

38, 51, 154

intractable problem,

37

KB, ii, 2, 4, 6

k-bounded, 41, 143

KBS, IV, ii, 4, 9, 94

KBSs, I, 4

Kleene star, 19, 22

knowledge, 2, I, IV, i,

2, 3, 4, 6, 8, 9, 38,

39, 47, 52, 56, 57,

58, 59, 60, 62, 63,

65, 66, 81, 82, 85,

87, 90, 91, 94, 96,

106, 107, 108, 109,

111, 121, 127, 130,

139, 140, 141, 142,

146, 151

knowledge base, 2, 6,

8, 82, 87, 91, 96,

130

knowledge
engineering, 2

language, III, i, iii, xi,

5, 6, 7, 8, 10, 11,

12, 13, 14, 16, 17,

18, 19, 20, 22, 23,

24, 27, 28, 32, 39,

40, 42, 45, 46, 47,

50, 53, 54, 55, 56,

57, 65, 66, 67, 68,

73, 77, 78, 79, 81,

82, 87, 103, 104,

108, 109, 111, 112,

126, 129, 130, 131,

133, 138, 139,

147,鬰151, 157,

167

Language defined
over an alphabet,
ii, 153

Language
generated by a
given grammar,

153

language theory, xi, 8,

167

lattice, II, 33, 35

LBA, ii, 17

learnability, 31, 36,

40, 43, 146, 148

Learning, II, III, IV, V,

VI, v, vi, vii, xi, 26,

34, 36, 37, 43, 50,

56, 65, 75, 77, 83,

89, 108, 112, 130,

143, 144, 145, 146,

147, 148, 149, 153,

160, 167

learning abilities, 49

learning from
examples, 6

learning function, 27,

28

learning heuristics,

6

learning
inductively, 6

learning layer, xi, 3,

5, 6, 137, 141, 167

learning mode, 63,

66, 83

learning process, xi,

36, 39, 52, 54, 57,

109, 111, 167

LIFO or stack, 15

linear-bounded
automaton, 17

local controllers, 131

local rules, 132

Logic, 153

logic programming,

III, ii, 1, 2, 8, 57, 81,

137, 147, 152

machine learning,

xi, 3, 5, 7, 8, 9, 51,

52, 54, 56, 106,

107, 137, 138, 167

machine learning
algorithms, 7, 56

matrix
environments, 2,

7

Membership, ii, 20,

22, 29, 153

membership query, 29

MERLIN, 62

Minimum adequate
teacher, ii, 29, 153

minimum
remaining value,

99

modus ponens, 86, 87

modus tollens, 87

most constrained
variable (MCV),

100

multiple-input
multiple output
(MIMO), 125

negative examples,

ii, 36, 38, 40, 48,

63, 127, 155

negative feedback
control system,

124

neural networks, 4,

46, 56, 141

NFA, II, ii, 14, 16, 17,

18, 20, 33, 37

Non deterministic
finite automaton, ii,

14

non-terminal, 7

non-terminal
symbols, 55

object-oriented
programming, 2

observation table, 34

observer-based
methods of
control, 130

one-counter
languages, 41

Only membership
queries, 29

OOP, 2

oracle, 29, 38, 61, 143

orders, 12

PAC, II, iii, 25, 30, 31

PaDe’s, IV, V, vii, 73,

74, 75, 77, 113,

117, 118, 119, 121

PaDe's, V, 114

parenthesis grammar,

43

parse tree, 23, 55, 113

parser, 57, 66, 67, 72,

77, 79, 80, 83, 91,

98, 101, 104, 126,

137, 138, 147

parsing, I, II, IV, V, VI,

iii, vii, xi, 6, 7, 8, 9,

22, 23, 24, 42, 45,

52, 53, 54, 55, 62,

63, 73, 74, 75, 77,

79, 80, 81, 83, 86,

89, 91, 94, 95, 98,

104, 105, 106, 108,

113, 114, 115, 116,

118, 120, 121, 138,

140, 144, 147, 149,

154, 167

parsing algorithms,

24

Partial derivative,

iii, vi, 154

partial parsing
algorithm, 52, 73,

138

Pattern languages,

42

PDA, I, i, iv, 14, 15,

18, 20, 21, 22, 38

PDAs, 17

pivot languages, 41

plausible reasoning, 4,

87

pole placement
design, 125

polynomial
identification from
given data, 36

positive examples,

ii, xi, 6, 38, 40, 43,

57, 63, 65, 77, 78,

79, 80, 81, 91, 105,

Index

Thèse de DE– The ESLIM Project 168

127, 130, 137, 147,

155, 157, 167

posterior satisfiability,

60

PPA, V, iii, 7, 8, 9, 52,

62, 73, 76, 77, 106,

108, 112, 113, 114,

118, 119, 121, 138,

160

p-production, 127

Pragmatics, 55

predicate logic, 57,

82

prefix tree acceptor,

34, 35

premises, 87, 88, 97,

99, 100

Prior necessity, 59,

60, 154

prior satisfiability, 59

Probably
approximately
correct, 30

programming
language, 10

programming
languages, VI, xi,

1, 3, 5, 10, 18, 21,

53, 133, 137, 167

Propagation, 100

propositional logic,

57

p-type production,

128

p-type productions,

128, 140

Pumping lemma, 20,

23, 155

Push-down automata,

14

query, ii, 29, 47, 57,

87, 153

Quotient, 19

Readers , 84, 85

reasoning, IV, 3, 4, 7,

81, 86, 87, 95, 96,

106, 137

Recognized sentence,

78

Recursive
enumerable
language, 18

recursive
enumerable
languages, 16

regular expression,

15, 18, 19, 20, 42

regular expressions,

13, 15, 16, 20, 27

regular grammar, 13,

16, 18, 19, 20, 23,

32, 33, 37, 40, 48

regular grammars,

II, 5, 25, 27, 32, 37,

39, 128

Regular inference,

35

regular language,

IV, 16, 18, 20, 22,

98

Regular language,

18

regular languages,

II, 16, 18, 19, 20,

23, 38, 40, 134,

139, 143, 144, 148,

157

Reinforcement
learning, 107

Reserved words, 67

residual finite state
automata, 37

Resolution principle,

82, 155

RFSA, 37, 144

robotics, 26, 45, 134

RPNI algorithm, II,

34, 48

rule base, III, IV, 6,

66, 67, 68, 69, 84,

88, 94

Rule saturation, 100

rules, V, ii, v, 3, 4, 6,

7, 8, 9, 13, 16, 17,

23, 26, 41, 47, 48,

49, 54, 55, 56, 58,

61, 62, 63, 65, 66,

67, 68, 75, 82, 83,

84, 85, 86, 88, 90,

91, 96, 97, 98, 102,

103, 109, 114, 116,

117, 121, 128, 130,

131, 132, 133, 139,

140, 155

satisfiability, 59, 60,

154

self assembly, 49,

123

self-assembly, V, VI,

6, 7, 9, 123, 124,

127, 131, 132, 133,

134, 135, 140, 145,

148, 149

Self-assembly, V,

130, 131, 132

semantics, III, iv, 42,

45, 55, 57, 59, 60,

61, 143, 152

Semi-supervised
learning, 107

sequence, i, 11, 12,

14, 23, 24, 45, 70,

73, 99, 129, 157

set of states, 14, 34

Set of symbols in
the stack, ii, 155

shells, 2

Simple deterministic
languages, 41

simple variable, 97

soft computing, 130,

134, 140

software
engineering, 2, 45,

50, 147

specialization, 76,

113, 114, 116, 117

Stand-alone
inferences
capability, 81

start symbol, 13, 55,

129

starting graph, 133

state-feedback, 123,

134

state-space
methods, 123

string, V, i, iii, xi, 5, 6,

11, 12, 14, 15, 16,

20, 21, 22, 23, 28,

29, 34, 41, 46, 54,

55, 67, 68, 70, 71,

72, 73, 74, 82, 83,

94, 95, 98, 102,

103, 113, 114, 117,

118, 133, 134, 135,

151, 153, 154, 155,

167

string-lengths, 5

Strong equivalence
query, 29

structural
completeness, 35

structural
membership, 43

structurally reversible
languages, 41

SubdueGL, 108

Supervised learning,

107

Symbol, i, ii, 68, 155

symbolic
environments, 3

symbolic
processing, 2

syntactic, III, 6, 7, 8,

23, 26, 32, 52, 56,

66, 68, 74, 108,

118, 121, 139, 141,

147

syntactic level, 6

syntax, III, iv, 5, 42,

45, 66, 68, 83, 143

target language, 28,

29, 30

Terminal, 155

terminal
distinguishable
CFGs, 43

terminal
distinguishable
CFLs, 41

terminal symbols, 54

terminals, i, ii, iii, 7,

13, 23, 39, 45, 55,

69, 73, 114, 117,

126, 155

text presentation, 27

Transduction, 107

Transition function,

i, 155

Traxbar algorithm,

II, 35

Turing machine, 17,

18

type-0, 16

type-1, 16, 128

type-2, 5, 16, 128

Index

Thèse de DE– The ESLIM Project 169

type-3, 5, 16, 128

union, 19, 22, 58, 154

Unrecognized
sentence, 78

unrestricted, 7, 17,

32, 152

unrestricted
grammar, 13, 17

Unsupervised
learning, 107, 153

variables, V, ii, 13, 42,

58, 67, 82, 96, 97,

100, 124, 128, 130,

155, 157

visual
programming, 2

Weak equivalence
query, 29

window-EDMS (W-
EDMS), 36

Abstract – Résumé - ����

����
���ط �5ا�# ا��?= و . إن ����N= �?�ت ا����G= !$5م ��% �5ا�# ��5ی= �I3$�= �� ا���3قI	5ي ه5 ا����إن ا�?�ض �� اC	C#Iل ا� �)Gا� �� =�6#� =�5)G�

=���V ��N 5 ا� .ا�<���= و أح��������� x+ه ��I	درا �� �I�� ����L= (و�(� أن ا�$5ا�# ا�:*��= ا�. �� ا���3ق (I3$�إ�I3 %�� u$� ی#ل C 5���� ه+ا ا��5ع �� ا�
 �)Gا� Hی$= !�آ��� %�= ا�(*G�� =�5(�= و ������I ی#��3 ��% ��� ا�(>�IP)ا�5ح#ات ا� ��� =�c<ا� %�� �� .

��ء ��% ���	 ���� ش ��� ��I$� ، =n�ح إ��Iج ،+��I� =�5�I�� ا�d !5ح�#�<Iإ��ر ا� �� =G����� =�IP)ا� H5ا�Gام . �ا�#PI	ح ه� ا�I$)ة ا�(�5ری= ��>(� ا��*إن ا�
` إ��رًV5� 5ي����ا �5حً#اC	C#Iل ا��*Iه+ا ا� ��$�I� ه5 . ا z��� ���� أن ا	PI#ام اC	C#Iل ا���5ي یُ أ	�ً	��(� أن أي �����e� ،�	c3ا� �� =�5)G� ،`� زی�دةْ(*

�G=، أن ����� =�IP)ا� H5ا�Gا� �� .ً�ـ� إ�% �C�Gت أ6�ى أو	�L� h�ی(I# أی�gً% ا�(�3ه(= �� !*�
 =���I5ر ا�>(� ح5ل ا�(�3ه(�ت ا��)Iی :

 ا����G=؛ ��?�تدرا	= �2�ی= •
 درا	= اC	C#Iل ا���5ي؛ •
�+و درا	= •��� ا�#ر0= ا8و�%؛ ! �L�� ا��d وا�(�<Iا� z�#! =n���
�+درا	= •���L ا�#ر0= ا8و�% C	I>(��` � و !� %�� �����دة أو ��I�C(���2م ���؛ ��%د � !���� ا�L� �)G�ی$= �<Iا�
� درا	= •��� ��% ا��#	��ت �5Pارزم+ و !��� �� إ��ر اC	C#Iل ا���5ي �<I��3 �(��= ا��I� `��)<I	ودو ا#�� �� . ، و �� ز
� ا��dاC	C#Iل ا�I#ا�6 ��� •*�I5ي و أ�2(= ا��� . ا�

�C�G وا�#ا ����~إن oI� اe���d,��= إ'�ا_�� � إ�%ًـه�د� G=،ا�(�3ه(= �� !*��� �?�ت ا���� �� إ��ر ه+ا ا�>(� ی�<I��� 5ى �6صI3� .

 ا�����ت ا��������
�، ا���5 و �)>I9 ا��?�ت، �?�ت ا���>!H���	أ ،�)Gا� ����! ،=��I*5ری=، ذآ�ء ا��?�ت ا�إ��دة ا�>����LVك ا�����Iج و ��ه�= ا�$5ا���، I	ل، اC#I	C�3ب ا��?=، اIاآ ،��<Iا�.

Abstract
Most programming languages are based on context free grammars (CFGs). The purpose of grammatical inference is to infer a grammar, in our situation a CFG,
from positive examples of sentences and possibly incorrect ones, for a given language. Based on these two fundamental definitions, we propose an
environment followed by an implementation unifying different aspects of programming in machine learning settings. The central idea of this work is to use
grammatical inference (GI) as a unifying framework for achieving this integration. Because any program can be considered as a string of characters, we show
that the use of grammatical inference can not only unify different aspects of programming but also extend to wider areas of applications. The work sums up the
following contributions:

• State of the art of language theory and of grammatical inference;
• Design and development of an environment integrating machine learning and first-order logic (FOL);
• Design and development of a FOL system for parsing sentences independently or with a learning module;
• Design and development of a heuristics-based polynomial-time complexity algorithm enhancing the learning process in grammatical inference.
• Interaction between grammatical inference and control systems.

The present work bears a promising line of research, contributing further to programming languages integration, aiming at the improvement of these languages
with a machine learning layer.

ACM Categories and Subject Descriptors
D.3.1 [Formal definitions and theory], D.3.2 [Language classifications], Design languages, F.4.2 [Grammars and other rewriting systems], Parsing, F.4.3
[Formal Languages], I.2 [Artificial intelligence], I.2.3 [Deduction and theorem proving], Inference engine, I.2.6 [Learning], Language acquisition.

Résumé
La majorité des langages de programmation est basée sur les grammaires à contexte libre (CFG). Le but de l’inférence grammaticale est d’inférer une
grammaire, en l’occurrence à contexte libre (CFG), à partir d’exemples de phrases correctes et éventuellement incorrectes, d’un langage donné. Partant de ces
deux définitions fondamentales, nous proposons un environnement suivi d’une implémentation unifiant des aspects différents de la programmation dans le
cadre d’apprentissage automatique. L’idée centrale du travail est donc d’utiliser l’inférence grammaticale comme trame unificatrice pour réaliser cette
intégration. Dans la mesure où tout programme peut être considéré comme une suite de caractères, nous montrons que l’utilisation de l’inférence grammaticale
peut non seulement unifier des aspects différents de la programmation mais aussi s’étendre à d’autres domaines plus vastes. Le travail s’articule autour des
contributions suivantes :
État de l’art de la théorie des langages ; État de l’art de l’inférence grammaticale ; Étude et développement d’un environnement intégrant apprentissage et
logique du premier ordre ; Étude et développement d’un système fonctionnant en logique du premier ordre agissant comme analyseur syntaxique autonome ou
en collaboration avec un module d’apprentissage ; Étude et implémentation d’un algorithme à complexité polynomiale, basé sur des heuristiques et destiné à
l’amélioration du processus d’apprentissage dans le cadre de l’inférence grammaticale ; Interaction avec les systèmes de commande automatique.
Le présent travail est porteur d’une ligne prometteuse de recherche, et contribue davantage à l'intégration des langages de programmation, projetant de les
enrichir par la caractéristique d’apprentissage qui leur fait actuellement défaut.

Catégories et descripteurs de sujets de ACM
D.3.1 [Définitions formelles], D.3.2 [Classifications de langages], conception des langages, F.1.1 [Modèles de calcul], F.4.2 [Grammaires et systèmes de
réécriture], analyse syntaxique, F.4.3 [Langages formels], I.2 [Intelligence artificielle], I.2.3 [Déduction et démonstration de théorèmes], moteur d'inférence,
I.2.6 [Apprentissage], acquisition de langages

