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Introduction

Accurate measurements are very important in the development of science and 

engineering. Optical measuring methods have proved to be very useful especially 

interferometry [1,2,3,4]. The resulting fringe pattern, called interferogram, is closely 

related to phenomenon under inspection and useful information can be retrieved.

The analysis of the interferogram is the key to obtaining the needed information. 

Several techniques of analysis have been devised, some of the more known are the 

phase-shifting and the Fourier transform techniques [5,6,7]. These techniques give 

very good results but they have some serious drawbacks: they lack the time-frequency 

localization and they need at least three interferograms to retrieve the phase 

information. 

To circumvent these inconveniences, several techniques have been proposed. One of 

the most promising is the use of the continuous wavelet transform [8,9,10]. It is still a 

matter of intensive research and progress is made continuously.

Our work focuses on the use of the continuous wavelet transform to extract the phase 

distribution from simulated interferograms.

In the first chapter, devoted to the basic laws of optics, we discuss the nature of light 

and the interference and diffraction phenomena.

In chapter 2 we delve into the interferometers and the ways to obtain the fringe 

pattern. We discuss holography as a special experimental technique that is based on 

both interference and diffraction. 

The techniques of fringe analysis are reviewed in chapter 3. An emphasis is done on 

the phase shifting technique and the Fourier transform and its main drawbacks.

The fourth chapter which represents the main part of our work deals with the 

definition, properties and the use of the continuous wavelet transform to extract the 

phase distribution from simulated interferograms. It begins by reviewing the time-

frequency concept, the Heisenberg boxes, the Fourier and Gabor transforms, then we 
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focus ourselves on the wavelet transform technique where we present the 

mathematical justification of its adequacy to fringe analysis, then the procedure of 

extraction of the phase from the simulated interferogram. In order to check our results, 

we use the phase shifting method.

We finish with a general conclusion.
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Chapter 1

The nature of light

1.1  Introduction

Light is all known but mysterious. Its very nature has been the subject of long discussion 

between scientists for long periods of time. Sometimes it behaves like a wave, other times 

like a particle. It can be described as rays. It is accepted that it is all of this and depends 

only on the way we measure it.

1.2  The particle nature of light

The particle nature of light was established by the photoelectric effect explained by 

Einstein in one of his famous papers of 1905 [11], the annus mirabilis (miraculous year) 

where he also laid the principles of special relativity [12]. The light is considered to be a 

grain of energy characterized by a frequency. The relationship between the frequency 

of the photon and its energy W is [13]:

                                                            W h ,                                                                 (1)

where h is Planck’s constant with 

                                                     346.63 10 Jsh   .                                                         (2)

1.3  The wave nature of light

The wave nature of light is revealed by phenomena like interference and diffraction. In 

the middle of the 19th century J.C Maxwell gave a framework that could encompass its 

electromagnetic wave nature.

1.3.1  The electromagnetic spectrum

Electromagnetic waves encompass a large spectrum of radiation. They extend from the 

cosmic rays (the more energetic) to the radio waves (the less energetic) including the 
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ultra-violet, the x and gamma rays, the infra-red and the radar and TV rays andvisible 

light.

Figure 1.1 shows the electromagnetic spectrum with the place that visible light occupies 

in it.

Figure 1.1 The electromagnetic spectrum.

1.3.1  Maxwell’s equations

Maxwell could summarize electromagnetic phenomena and light in a set of elegant and 

compact equations that are in differential form [14]:
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                                                                div D                                                          (3a)

                                                                div B 0                                                           (3b)

                                                               curl
t


 


B

E                                                     (3c)

                                                               curl
t


 


D

H j                                                  (3d)                

These equations are supplemented by three material equations:

                                          D E ,  B H   ,   j E                                                  (4)                       

where  E   : is the electric field vector,

B   : is the magnetic induction vector,

H  : is the magnetic field vector,

D  : is the displacement vector,

  : is the electric charge density,

  : is the electric permittivity constant,

  : is the magnetic permeability constant,

              : is the specific electric conductivity.

Light can be considered consisting of an electric vector field E and a magnetic 

vector H (figure 2.2) propagating perpendicular to each other and to k , the direction of 

propagation (in an isotropic medium). 

Figure 1.2 An electromagnetic wave.

By combining these equations one can obtain for the electric field vector, the wave 

equation in a homogeneous, isotropic medium:
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2

2 2

1
0

v t


  


E

E                                                    (5)

where v is the velocity of light in the medium.

v is related to the velocity of light in free space c by:

                                                                     v =
c

n
,                                                         (6)

with                                                     8 13 10 msc   .                                                    (7)

Here n is the refractive index of the medium.

A solution of the wave equation is the plane wave (see figure 1.3) given in complex form

by:

                                                          j te    k rE A .                                                        (8)

Figure 1.3 A plane wave.

where: 

  t k r : is the phase of the wave.

            k : is the wave vector, with 
2

k



 ,  being the wavelength of the wave.

A : is the amplitude.

 : is the angular frequency. It is related to the frequency  by:

                                                         2  .                                                         (9)
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Knowing that 
v


 , the relation between the wavenumber and the angular frequency is

                                                             vk  .                                                               (10)                 

A plane wave is also called a harmonic wave and can be represented by:

                                                      cos t  E A k r .                                                 (11)

In the remainder we will use the symbol U (or U in scalar form) to denote either the 

electric field E or the magnetic field H .

Another solution to the wave equation is the spherical wave:

                                                        ( ) j kr tA
U r e

r
  ,                                                    (12)

where r is the distance from the source. Figure 1.4 shows converging and diverging 

waves.

Figure 1.4 Converging (right) and diverging (left) spherical waves.

1.3.2  Phase velocity and group velocity

1.3.2.1  Phase velocity

Let’s assume that a monochromatic light propagates in the z direction.

The equation of the electromagnetic perturbation will be [15,16,17]:

                                            ( , ) ( , ) cos( )U z t A z t kz t  .                                               (13)
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from which:

                                                           v p k


 .                                                               (14)

is the phase velocity.

1.3.2.2  Group velocity

Now, let’s assume that we have the superposition of two waves with slightly different 

values of k and . The first one is characterized by a wavenumber k and an angular 

velocity , the second with corresponding k k  and     respectively. The total 

electromagnetic perturbation will be

                                                       1j kz t j kz tU e e       ,                                        (15)

The total electric field will be

                                                ( ) cos( )
2

j kz t k z t
U e        
 .                                     (16)

The cosine factor is an envelope function that modulates the traveling waves (figure 2.5). 

The envelope travels at the velocity of:

                                                                     vg k





                                                     (17)

called the group velocity. In the case where 0  and 0k  the group velocity will 

be the derivative

                                                                vg

d

dk


 .                                                         (18)

Phase and group velocities are related by

                                                            
v

v v p
g p

d
k

dk
  .                                                  (19)

1.3.4  Interference of light

The Maxwell’s equations as well as the wave equation are linear. This leads to the 

possibility of application of the superposition principle.
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1.3.4.1  Principle of superposition

It states that if two waves whose amplitudes 1U and 2U exist in the same portion of space 

it results a wave whose amplitude U is simply:

                                                              1 2U U U  .                                                      (23)

1.3.4.2  The interference equation

When two monochromatic waves are superposed, the result is a monochromatic wave of 

the same frequency [22,23,24,25].

We will consider the addition of waves of the same frequency, the consequence of which 

is the observation of bright and dark bands of light called fringes. In every day life these 

fringes are commonly observed for example in soap bubbles or on oil films in wet 

roadways.

Obtaining the interfering waves is generally done by dividing one beam of light into two 

or more beams. The way of dividing the light beam provides a basis for classifying the 

arrangement used to produce interference.

In one, the beam is divided by passage through apertures placed side by side. This 

method, called wavefront division, is only useful with sufficiently small pieces.

In the other, the beam is divided at one or more partially reflecting surfaces at each of 

which part of the light is reflected and part transmitted. This method is called amplitude 

division. It can be used with extended sources and the effects may be of greater intensity 

than with wavefront division.

It is convenient to consider separately the effects which result from the superposition of 

two beams (two-beam interference) from those which result from the superposition of 

more than two waves (multiple-beam interference).

Let us consider two coherent monochromatic waves 1
1

iU Ae   and 2
2

iU Ae  .

The intensity of the resulting wave will be:

  **
1 2 1 2I UU U U U U   
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                                             * * * *
1 1 2 2 1 2 1 2I U U U U U U U U                                           (24) 

And finally after replacing each quantity by its expression we get:

                                               1 2 1 22 cosI I I I I                                                      (25)

where              *
1 1 1I A A : is the intensity of the first wave.

                      *
2 2 2I A A : is the intensity of the second wave.

                    2 1    : is the phase difference between the two waves.

This is the fundamental equation of the interference phenomena. It shows that the 

resulting intensity is not simply the sum of the interfering intensities but a third term 

1 22 cosI I  , intervenes. It is called the interference term. The intensity variation with 

respect to the phase is shown in figure 1.6.

Figure 1.6 Intensity distribution with respect to the phase.

Some particular cases are worth mentioning:

- If the phase difference is an integral number of 2 rd  then the intensity is at its 

maximum and we have a bright fringe:        2m   , 0, 1, 2,...m   

                                                 2

max 1 2 1 2 1 22I I I I I I I                                  (26)                          
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- If the phase difference is an odd integral number of rd
2


 then the intensity is at its 

minimum and we have a dark fringe:    
2 1

2

m 
  , 0, 1, 2,...m   

                                                  2

min 1 2 1 2 1 22I I I I I I I                                  (27)

- If the interfering waves have the same intensity 1 2 0I I I  , the visibility of the fringes 

will get its maximum value and the intensity will be                              

                                                             2
04 cos

2
I I

   
 

.                                                (28)                                   

In this case the intensity of the resulting wave varies from 0I  to 04I  (and not 

from 0I to 02I ) as shown in figure 2.7:

Figure 1.7 Intensity distribution in the case the interfering waves are amplitude equal.

1.3.5  Diffraction of light

It has been defined by Sommerfeld as any deviation in the path of light rays that cannot 

be explained as a reflection or refraction.

However, there is no substantive difference between diffraction and interference. The 

separation between the two subjects is historical in origin and is retained for pedagogical 

reasons[26]. Interference may be associated with the intentional formation of two or more 

light waves. Diffraction may be associated with the obstruction of a single wave, by a 
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transparent or an opaque obstacle, resulting in the obstruction casting shadows (or 

forming light beams) that differ from the size predicted by geometrical optics. This 

distinction between interference and diffraction is, however, arbitrary (figure 1.7).

Figure 1.7 Simlarity between diffraction and interference.

1.3.5.1  The Huygens-Fresnel principle

The application of the rigorous theory is very difficult and for most problems an 

approximate scalar theory is used. The approximate scalar theory is based on Huygens’ 

Principle that states:

Each point on a wavefront can be treated as a source of a spherical wavelet called a 

secondary wavelet or Huygens' wavelet. The envelope of these wavelets, at some later 

time, is constructed by finding the tangent to the wavelets. The envelope is assumed to be 

the new position of the wavefront.
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Figure 1.8 Huygens-Fresnel principle.

Diffraction effects are a consequence of the wave nature of light. Even if the obstacle is 

not opaque and presents variations in amplitude or phase of the wave front, diffraction is 

present. Imperfections in the glass produce diffraction patterns too when transmitting 

light.

1.3.5.2 The Fresnel-Kirchhoff diffraction formula

In the study of diffraction (figure 1.9), Kirchhoff made some assumptions [27,28]:

- Across the surface  , the field distribution U  and its derivative 
dU

dn
 are exactly the 

same as they would be in the absence of the screen. 

- Over the portion of 1S  that lies in the geometrical shadow of the screen, the field 

distribution U  and its derivative 
dU

dn
 are identically zero.

Figure 1.9 Fresnel-Kirchhoff diffraction by a planar aperture.

When the distance from the aperture to the observation point is usually many optical

wavelengths the Fresnel-Kirchhoff diffraction formula can be derived:
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                                        
     

0

cos , cos ,

2

jk r sA e
U P dS

j rs






 

n r n s
                        (29)

1.3.5.3  Fresnel diffraction

In the study of diffraction approximations are made to simplify the task. If either or both 

aperture or observing screen are close enough so that the curvature of the wavefront has 

to be taken into account (figure 1.9), we are in the case of Fresnel diffraction or near-field 

diffraction.

Figure 1.10 Layout of Fresnel diffraction.

The approximation is based on the binomial expansion of 1   where   is very small 

towards unity. We have:

                                                    
2 4

1 1
2 8

       .                                             (30)

The distance r from the aperture to the observation screen can be written:                       

                                                 

   

   

   

2 2 2

2 2

2

2 2

1

1
2 2

r x y z

x y
z

z

x y
z

z z

 

 

 

    

  
 

  
   

  

                                        (31)

Replacing in the Fresnel-Kirchhoff formula we finally get:
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                                     2 2 2 2 2

2 2, ,
k kjkz j x yj x y j

zz z
e

U x y e U e e d d
j z

   
   




  



 
  

 
  .    (32)

This is known as the Fresnel diffraction integral.

Aside from the multiplicative constants, we that it is the Fourier transform of the product 

of the complex field just to the right of the aperture and a quadratic phase exponential.

1.3.5.3  Fraunhofer diffraction

There exists a more stringent approximation that makes the calculations much easier. It is 

the Fraunhofer approximation, or the far field diffraction. If in addition to the Fresnel 

approximation, we add that

                                                        
 2 2

max

2

k
z

 
 ,                                                 (33)

then the quadratic phase factor under the integral sign is approximately unity over the 

entire aperture, and the observed field strength can be found by

                                       2 2 2

2, ,
kjkz j x yj x y

zz
e

U x y e U e d d
j z

  
   




 



   .                    (34)

This is simply (aside from the multiplicative term before the integral sign) the Fourier 

transform of the aperture distribution.
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Chapter 2

Interferometry

2.1  Introduction

After having viewed the characteristics of light, we see now how its wave nature is used 

in some setups, called interferometers. The devices studied here, are based on the 

interference phenomenon.

Interferometric devices can be considered in two categories: those based on optical 

interferometry and those based on the more recent holographic interferometry that 

appeared after the invention of the laser and the development of holography. 

2.2  Optical interferometry

Interferometric measurements require an optical arrangement in which two or more 

beams, derived from the same source but traveling along separate paths, are made to 

interfere. Interferometers can be classified as two-beam interferometers or multiple–beam 

interferometers according to the number of interfering beams[29].

2.2.1  Two beam interferometers

2.2.1.1  Michelson interferometer  

This instrument is shown schematically in figure 2.1. A partially silvered mirror allows a 

single beam of light to fall on two mirrors, M1 and M2. The mirrors are adjusted to 

recombine the resulting two beams in a line with the observer's eye.
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Figure 2.1  The Michelson interferometer.

Looking into the beam splitter, we seem to see both M1 and M2 in approximately the 

locations of figure 2.2 .

The mirrors are apparently separated by

2 1d l l                                                                 (1)

and interference maxima occur when

2 cosd m                                                         (2)

Figure 2.2 Meanings of 1 2, ,l l d and  .
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Because two beams are involved, the interference pattern is described by 2cos  fringes. 

The interference pattern appears the same as that brought about by two nearly parallel 

surfaces with low reflectance. In the interferometer, however, the separation and 

orientation of the mirrors are adjustable. If the mirrors are tilted slightly with respect to 

one another, the fringes are nearly straight and parallel to the line of intersection of the 

mirror planes and are called fringes of equal thickness. If the mirrors are parallel, but 

separated somewhat, symmetry dictates circular fringes whose maxima occur at certain 

angles   that depend on the value of d; these are called fringes of equal inclination. 

Michelson used the interferometer to measure the wavelength of light in terms of a 

material standard of length, which ultimately became the standard meter.

2.2.1.2  Mach-Zehnder interferometer

This instrument is shown in figure 2.3. Although not truly a relative of the Michelson 

interferometer, it is nevertheless a two-beam interferometer that works by division of 

amplitude. Because it is a single-pass interferometer, the Mach-Zehnder has only half the 

sensitivity of the Michelson or Twyman-Green interferometers. Like the latter, it may be 

used for testing optics for flatness, thickness variation and so on; it has also been used for 

measuring the index of refraction of gases.

Figure 2.3  Mach-Zehnder interferometer
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The interferometer consists of two mirrors and two beam splitters. The first beam splitter 

divides the beam into two parts, whereas the second combines the parts after reflection 

from the two mirrors. In the figure, a test piece is located in the lower arm. The upper 

arm contains a compensator that is needed when the source has limited temporal 

coherence; the compensator has roughly the same optical thickness as the specimen and 

ensures that the two arms have nearly equal optical path length. If the source is a laser, 

the compensator is superfluous.

2.2.1.3  Twyman-Green interferometer

This instrument is closely related to the Michelson interferometer and resembles a 

Michelson interferometer illuminated with collimated light (figure 2.4). It is used to test 

flat optical windows and other optics whose transmission (as opposed to reflection) is 

important. 

Figure 2.4 Twyman-Green interferometer

The Twyman-Green interferometer is set up with collimated light; the mirrors are 

adjusted sufficiently parallel that a single fringe covers the entire field. A test piece, say 

an optical flat, is inserted in one arm. Any fringes that appear as a result of the flat's 
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presence represent optical-path variations within the flat. For example, if the flat is 

slightly thicker on one side than on the other, it is said to have a wedge. Looking through 

the flat makes the mirror appear slightly tilted and results in nearly straight fringes. 

Similarly, if the surfaces are not flat, but slightly spherical, the fringes will appear 

circular. 

The Twyman-Green interferometer is also used for testing lenses. One mirror is replaced 

by a small, reflecting sphere, and the lens is positioned so that the center of the sphere 

coincides with the focal point of the lens. Plane waves thus return through the lens if the 

lens is of high quality. Aberrations or other defects in the lens cause the returning 

wavefronts to deviate from planes and result in a fringe pattern that can be used to 

evaluate the performance of the lens.

2.2.1.4  The Sagnac interferometer

In the Sagnac interferometer, as shown in figure 2.5, the two beams traverse the same 

closed path in opposite directions. Because of this, the interferometer is extremely stable 

and easy to align, even with an extended broadband light source.

Figure 2.5 The Sagnac interferometer.
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Modified versions of the Sagnac interferometer have been used for rotation sensing. 

When the interferometer is rotated with an angular velocity   about an axis making an 

angle   with the normal to the plane of the interferometer, a phase shift   is introduced   

between the beams given by the relation

                                                    
cos

8
A

c

 


                                                              (3)

where A is the area enclosed by the light path,   is the wavelength , and c is the speed of 

light .

2.2.1.5 The Fizeau Interferometer 

 In the Fizeau interferometer, as shown in figure 2.6, interference fringes of equal 

thickness are formed between two flat surfaces separated by an air gap and illuminated 

with a collimated beam. If one of the surfaces is a standard reference flat surface, the 

fringe pattern is a contour map of the errors of the test surface. Modified forms of the 

Fizeau interferometer are also used to test convex and concave surfaces by using a 

converging or diverging beam.

Figure 2.6 The Fizeau intrferometer.
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2.2.1.6  Polarization interferometers

Polarization interferometers have found their most extensive application in interference 

microscopy. The Nomarski interferometer, shown schematically in figure 2.7, uses two  

Figure 2.7  The Nomarski interferometer.

Wollaston (polarizing) prisms to split and recombine the beams.  If the separation of the 

beams in the object plane (the lateral shear) is small compared to the dimensions of the 

2.2.1.7  Wavefront division interferometry

Young’s double slit is the first interferometric setup. It is shown in figure 2.8.

Figure 2.8 Young’s double slit experiment.
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Two of the most famous wavefront division interferometers, Fresnel’s biprism and 

Lloyd’ s mirror are shown below in figures 2.9 and 2.10.

Figure 2.9 Fresnel’s biprism.

Figure 2.10 Lloyd’s mirror.

2.2.2  Multiple-wave interferometers

2.2.2.1  Fabry-Perot interferometer

The Fabry-Perot interferometer consists of two parallel surfaces with highly reflecting, 

semitransparent coatings (figure 2.11).

Figure 2.11  The Fabry-Perot interferometer.
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The Fabry-Perot interferometer consists of two highly reflecting mirrors maintained 

parallel to great precision. As we found before, a given wavelength is transmitted 

completely only when 

                                                            2 cosm t                                                           (4)

Like a diffraction grating, a Fabry-Perot interferometer is thus able to distinguish 

between wavelengths. It can be used in one of two ways. If the value of d is fixed and the 

interferometer illuminated with a slightly divergent beam, a given wavelength will be 

transmitted at several particular values of  only. Another wavelength will be 

transmitted at other values of  ; the difference between the two is easily calculated. 

Often, only the difference is of interest; otherwise, a known wavelength must be 

introduced to calibrate the interferometer. 

A Fabry-Perot interferometer is also used in a mode in which t is varied, generally with 

0  . Scanning may be accomplished by placing the entire instrument in a vacuum 

chamber and slowly lowering the pressure. This changes the optical thickness nt of the air 

between the plates, because n varies very nearly in proportion to the density or pressure 

of the air. Data collection by this method is relatively slow. Most modern instruments 

have one mirror fixed to a piezoelectric crystal (whose thickness varies with applied 

voltage) or to a magnetic drive similar to a loudspeaker. This mirror is rapidly driven 

back and forth through a few wavelengths, and the transmitted intensity is displayed on 

an oscilloscope or digitized by a computer.

2.2.2.2  Three-beam Interferometers

Zernike’s three-beam interferometer, shown schematically in figure 2.12, uses three 

beams produced by division of a wavefront at a screen containing three parallel, 

equidistant slits. In this arrangement, the optical paths of all three beams are equal at a 

point in the back focal plane of the lens 2L . The two outer slits provide the reference 

beams, while the beam from the middle slit, which is twice as broad, is used for 

measurements.
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Figure 2.12  Zernike’s three-beam interferometer.

The intensity at any point in the interference pattern is then given by the relation

                                       0 3 2cos 2 4cos cosI I                                                     (5)

where  is the phase difference between the two outer beams, and  is the phase 

difference between the middle beam and the two outer beams at the center of the field.

2.3  Holographic interferometry

With the method of holography now at hand, we are able to realize a type of experiment 

by storing the wavefront scattered from an object in a hologram. We then can recreate 

this wavefront by hologram reconstruction, where and when we choose. For instance, we 

can let it interfere with the wave scattered from the object in a deformed state. This 

technique belongs to the field of holographic interferometry [30,31,32].

In the case of static deformations, the methods can be grouped into two procedures, 

double-exposure and real-time interferometry.

2.3.1  Double-exposure interferometry

In this method, two exposures of the object are made on the same hologram. This might

be recordings before and after the object has been subject to load by, for instance, 

external forces or two other object states that are to be compared. By reconstructing the 

hologram, the two waves scattered from the object in its two states will be reconstructed 



29

simultaneously and interfere. This double-exposed hologram can be stored and later 

reconstructed for analysis of the registered deformation at the time appropriate for the 

investigator. If a lot of different states of the object (e.g. different load levels) are to be 

investigated, many holograms have to be recorded, which makes the method time-

consuming and elaborate.

2.3.2  Real-time interferometry

In this method, a single recording of the object in its reference state is made. Then the 

hologram is processed and replaced in the same position as in the recording. By looking 

through the hologram we are now able to observe the interference between the 

reconstructed object wave and the wave from the real object in its original position. Thus 

we are able to follow the deformation as it develops in real time by observing the changes 

in the interference pattern. These changes might be recorded on film for later playback 

and analysis. A disadvantage of the method is that the hologram must be replaced in its 

original position with very high accuracy. This can be overcome by developing the 

hologram in situ in a transparent cuvette or using a thermoplastic film. Also the contrast 

of the interference fringes is not as good as in the double-exposure method.
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Chapter 3

 Methods of fringe analysis

3.1  Introduction

The outcome of interferometry techniques is a set of fringes called interferogram. With 

development and decreasing cost of digital image processing equipment, a growth has 

come in the digital fringe pattern measurement techniques [33,34,35,36]. Its benefits are 

essentially:

- better accuracy,

- increasing speed,

- automated process.

Automatic fringe pattern analysis is now used, with appropriate interferometers, in areas 

such as optical testing, flow visualization, non-destructive testing, industrial inspection 

and medical imaging. There are image processing techniques which can be used as the 

building blocks for an automatic fringe analysis system.

The quantitative evaluation in interferometric metrology consists of two steps:

the first and crucial one is the determination of the interference phase distribution from 

the recorded and stored fringe pattern,

the second is the combination of the phase data with data describing the optical 

arrangement to yield the displacement vector field, the optical path difference, the surface 

heights  or the refractive index field, etc…

3.2  Intensity-based analysis methods

The fringe counting methods search for local brightness extrema, that correspond to 

phase values being integer multiples of . This method gives non uniform sampling, sub-

wavelength variations may be overseen.

Phase stepping point-wisely evaluates with high accuracy but requires a set of three or 

more interferograms, reconstructed with a constant mutual phase shift.
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They are the oldest in digital analysis of interferograms. They are used when:

- sometimes they are the only viable when interferograms are retrieved from 

photographic records;

- interferograms where it is impossible or impractical to use phase-based techniques;

- quantitative results are not needed.

For these techniques, it is very important to reduce noise including speckle noise.

Among these techniques are the prior knowledge and fringe tracking and thinning. 

3.3  Phase-measurement interferometry

With a digital image-processing system, it is possible to store an image of the 

interferogram in the computer memory and then perform manipulations on the individual 

pixels.

The general expression of the intensity distribution of an interferogram is:

                                            1 2 1 22 cos( )I I I I I     .                                             (1a)

We would expect to retrieve the phase simply by computing:

                                              1 1 2

1 2

( )
cos

2




  

   
 

I I I

I I
                 .                                  (1b)  

This supposes that we know the values of I , 1I , 2I  and   for each pixel. And thereby, by 

knowing the geometrical and optical arrangement of the interferometer we could evaluate 

the parameter under study for each pixel.

This assumption is unrealistic for most cases. Furthermore, even if we had that ideal 

interferogram, a complex optical system will induce uncontrollable noise.
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3.3.1  Principles of temporal phase-measurement interferometry

The general expression of the intensity of a recorded interferogram is:

                                      ( , ) ( , ) ( , ) cos ( , ) I x y a x y b x y x y                                      (2a)

                                      ( , )
( , ) ( , ) 1 cos ( , )

( , )


 
  

 

b x y
I x y a x y x y

a x y
                               (2b)

                                       ( , ) ( , ) 1 ( , ) cos ( , ) I x y a x y V x y x y                                 (2c)

I , a , b  and   are functions of the pixel coordinates.

( , )a x y  is the mean intensity.

( , )V x y  is the contrast or visibility.

( , ) x y  is the phase difference between the interfering waves.

Phase-Measurement Interferometry (PMI) is the most used technique today in classical 

interferometry. It has also been used successfully in holographic interferometry and 

moiré.

It can be divided into two main categories:

- TMPI Temporal phase-measurement interferometry which takes the phase data 

sequentially.

- SMPI Spatial phase-measurement interferometry which takes the phase data 

simultaneously.

3.3.1.1  Analytical methods

Integrated bucket phase-shifting: integrates the intensity while the phase is changed 

linearly.

Phase stepping: the phase is altered I steps between intensity measurements.
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Phase stepping

1 1cos( )   I a b

2 2cos( )   I a b

3 3cos( )   I a b

                       
     
     

2 3 1 1 3 2 1 2 31

2 3 1 1 3 2 1 2 3
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      

        
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If one chooses 1 4

  , 2

3

4

  , 3

5

4

   the relation becomes the simple equation:

                                                        1 2 3

2 1

tan   
   

I I

I I
.                                                   (4)

But the solutions are unstable. It is always recommended to over-determine the system.

3.3.1.2  Means of phase modulation

A phase shift or modulation in an interferometer can be achieved by:

- moving a mirror,

- tilting a glass plate,

- moving a grating,

- rotating a half-wave plate or analyzer,

- using acousto-optic (AO) or electro-optic (EO) modulator,

- using a Zeeman laser.

Figure 3.1  shows some means for phase shift modulation.
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Figure 3.1  Some means for phase shift modulation. (a) moving mirror; (b) tilting a glass plate; 

(c) moving a grating; (d) rotating a half-wave plate.

Moving mirror, tilting a glass plate, moving a grating, rotating a half-wave plate, can 

produce continuous or discrete phase shift between the object and reference beams.

The phase shifters may:

- either be placed on one arm of the interferometer,

- or positioned so that they shift the phase of one of two orthogonally polarized beams.

Three-frame technique
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Four-frame technique
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3.3.2  Errors in measurements

The most common origin of errors is vibrations and air turbulence. Other factors are also 

present: phase-shifter errors, nonlinearities due to detector, quantization of the detector 

signal.

So far we have seen powerful methods for measuring the phase rather than the intensity 

of an interferogram. Perhaps the biggest drawback of the phase stepping method is the 

requirement for a series of interferograms to be captured at different instants in time. The 

feature of phase measurement imposes a limit on the speed of the capture.

For those applications that require data to be captured in a single image, there exist a 

number of fringe analysis methods which rely on spatial versions of the temporal phase 

measurement. These spatial phase measurement methods retain many of the advantages 

of phase stepping while removing the need to capture a series of fringe patterns. The 

spatial methods however are only applicable to a subset of the interferograms which may 

be analyzed by the phase stepping method. In particular, spatial methods of phase 

measurement are unreliable if the data has a significant amount of noise and the phase 

values vary rapidly.

3.3.3  Spatial-carrier phase measurement:

Spatial-carrier methods are based on the idea of superposing a carrier fringe pattern onto 

the interferogram fringes. This can be achieved for example in holographic 

interferometry by tilting the reference wave in the second exposure.
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The fringe pattern will be given by:

                                0( , ) ( , ) ( , ) cos , 2     g x y a x y b x y x y f x                               (7)

3.3.3.1  The Fourier transform method

The Fourier transform method accurately determines the interference phase distribution 

from holographic or other interference patterns [13,14]. The method point-wisely 

calculates a phase distribution with sub-wavelength resolution from a single interference 

pattern. Disturbances like non-uniform background illumination, spurious diffraction 

patterns, and speckle noise may be filtered by properly defined band-pass filters.

In various optical measurements, we find a fringe pattern of the form:

                                       0( , ) ( , ) ( , ) cos[ ( , ) 2 ]I x y a x y b x y x y f x                            (8)

where the phase ( , )x y  contains the desired information and a (x, y) and b(x, y) 

represent unwanted irradiance variations arising from the non-uniform light reflection or 

transmission by a test object; in most cases a(x, y), b(x, y) and 0(x, y) vary slowly 

compared with the variation introduced by the spatial-carrier frequency 0f .The 

conventional technique has been to extract the phase information by generating a fringe-

contour map of the phase distribution. In interferometry, for which Equation (1) 

represents the interference fringes of tilted wave fronts, the tilt is set to zero to obtain a 

fringe pattern of the form

                                           ( , ) ( , ) ( , ) cos[ ( , )]I x y a x y b x y x y                                    (9)

which gives a contour map of O(x, y) with a contour interval 2 .

The input fringe pattern is rewritten in the following form for convenience of 

explanation:

                                      0 02 2*( , ) ( , ) ( , ) ( , )if x if xg x y a x y c x y e c x y e                       (10a)

with                                        ( , )1
( , ) ( , )

2
i x yc x y b x y e                                                 (10b)
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where * denotes a complex conjugate.

Next, Equation (10a) is Fourier transformed with respect to x by the use of a fast-Fourier-

transform (FFT) algorithm, which gives

                                 *
0 0( , ) ( , ) ( , ) ( , )G f y A f y C f f y C f f y                              (11)

where the capital letters denote the Fourier spectra and f is the spatial frequency in the x 

direction. Since the spatial variations of a(x, y), b(x, y), and ( , )x y are slow compared 

with the spatial frequency 0f , the Fourier spectra in Equation 11 are separated by the 

carrier frequency 0f , as is shown schematically in figure 3.2A. We make use of either of 

the two spectra on the carrier, say C(f - 0f , y), and translate it by 0f  on the frequency 

axis toward the origin to obtain C(f, y), as is shown in figure 3.2B. Note that the 

unwanted background variation ( , )a x y  has been filtered out in this stage.

Figure 3.2 (A) Separated Fourier spectra of a non-contour type of fringe pattern; (B) Single 

spectrum selected and translated to the origin. The y axis is normal to the figure.
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Again using the FFT algorithm, we compute the inverse Fourier transform of C(f, y) with 

respect to f and obtain c (x, y), defined by Equation 10b. Then we calculate a complex 

logarithm of Equation 10b:

                                                1
2log[ ( , )] log ( , ) ( , )c x y b x y i x y  .                           (12)

Now we have the phase q(x, y) in the imaginary part completely separated from the 

unwanted amplitude variation ( , )b x y  in the real part. The phase so obtained is 

indeterminate to a factor of 2w. In most cases, a computer-generated function subroutine 

gives a principal value ranging from   to .

Now to obtain the actual phase a phase unwrapping algorithm has to be used.

3.3.5.2  Errors in the Fourier transform method

Many of the errors in Fourier transform method are common to Fourier transform in 

general. The most serious is energy leakage. Also the fact that the Fourier transform has 

only frequency information without any time information, which is totally lost, 

constitutes another source of errors.
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Chapter 4

Phase extraction by continuous wavelet transform

4.1  Introduction

The continuous wavelet transform is a versatile tool that is used in several fields of 

science and engineering [37,38,39,40]. In this chapter we will review the origins of the 

wavelet transform and its suitability to fringe analysis and phase extraction.

4.2  Fringe analysis and signal processing

Detection and classification of material faults is a major task in industrial quality control. 

In nondestructive testing, several optical techniques-shearography, optical and 

holographic interferometry- are applied and still are a matter of investigation.

For these techniques, interferograms (interferometric fringe patterns) are one of the 

results of the inspection process. The data can be analyzed in a hybrid optoelectronic 

processor.

The analysis can be done in the frequency or time-frequency plane. The wavelet 

transform introduces the analysis in the time-scale plane.

4.2.1 Signals

A signal is a time-varying or space-varying process of any physical state of any object, 

which serves for representation, detection, and transmission of information [41].

4.2.1.1 Energy of a signal

The energy of a signal ( )f x can be calculated by:

                                                         
2

( )E f x dx




  .                                                     (1)

It is also the norm ( )f x of the signal.
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Integral transforms are very useful in analyzing signals. So the integral transform 

( )F  of a signal ( )f x is:

                                                     ( ) ,F f x K x dx 




  ,                                          (2)

where  ,K x is the kernel of the transformation.

Different kernels correspond to different transforms.

4.3  The Fourier transform

The Fourier transform (FT for short) is the most known technique in signal analysis. It 

gives the frequency content of the signals by [42,43,44,45]:

                                           ˆ ( ) j xf f x e dx






                                                              (3)

where    ( )f x : is the signal to be analyzed,

 f̂  : is the FT of the signal. It shows the frequency content of the signal ( )f x ,

      x : is the variable upon which the signal is measured. It can be time or a  

                        distance in the case of an image for example,

      :  is frequency (spatial frequency) in 1s  ( 1m ) if x is time (distance), and

              j xe  : is the kernel of the transform. The FT is the projection of the signal on a   

                       sinusoidal basis.

Fourier transforms are not applicable for the characterization of time-varying signals. For 

example, although Fourier analysis tells us that there are two frequencies present in the 

signal, it is unable to distinguish between the two signals (see figure 4.1).

                                   (a)                                                                     (b)
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                               (c)                                                              (d)

Figure 4.1 Spectral and wavelet analysis of two signals. The first signal (figure 4.1a) consists of 

superposition of two frequencies (sin10x and sin20x), and the second (figure 4.1b) consists of the 

same two frequencies, each applied separately over half of the signal duration. Figures 4.1c and 

4.1d show the Fourier spectra of the two signals (i.e., ˆ ( )f  versus  ).

Using the Fourier transform, we can have only time (space) information or frequency 

(spatial frequency) information, but not both as shown by figure 4.2. 

Remark: In the following the terms time and space will be used interchangeably, as will 

be frequency and spatial frequency.

    

                                                   (a)                                                      (b)

Figure 4.2 Schematic of time-frequency plane decomposition using different bases: (a) standard 

basis, (b) Fourier basis

4.3.1 Convolution

The convolution of two function ( )f x and ( )g x  is defined by:

                                  ( ) ( ) ( )f g x f u g x u du




                                                          (3a)
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4.3.2 Cross-correlation

The cross-correlation of two function ( )f x and ( )g x  is defined by:

                                    *( ) ( ) ( )f g x f u g u x du




                                                     (3b)

where * denotes the complex conjugation.

4.4  Time-frequency analysis

In many applications such as speech processing, we are interested in the frequency 
content of a signal locally in time. That is, the signal parameters (frequency content etc.) 
evolve over time. Such signals are called non-stationary. For a non-stationary signal, 

( )f x , the standard Fourier transform is not useful for analyzing the signal information 
which is localized in time such as spikes and high frequency bursts cannot be easily 
detected from the Fourier transform. 

Time-frequency signal transforms combine traditional Fourier transform signal spectrum 

information with a time location variable. There results a two-dimensional transformed 

signal having an independent frequency variable and an independent time variable. Such 

a signal operation constitutes the first example of a mixed-domain signal transform

[46,47].

4.4.1  Short-time Fourier transform (STFT)

Time-localization can be achieved by first windowing the signal so as to cut off only a 
well-localized slice of ( )f x and then taking its Fourier transform. This gives rise to the 
short time Fourier transform, (STFT) or Windowed Fourier Transform. The magnitude of 
the STFT is called the spectrogram.

The STFT consists of the analysis of the signal by a sliding window and using the FT. it 

can be computed by

                               ( , ) ( ) ( ) j xSTFTf u f x g x u e dx






  ,                                           (4)

where        ( )g x u : is the analyzing window, and

                          u : is the window’s shift.

We use the Matlab software to compute the STFT.

Let’s consider a signal of the form 
2

2( ) 3
x

f x xe


 (figure 4.3). 
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We will apply the STFT and analyze the signal using rectangular window of width 
1

2
.

Figure 4.4 shows the application of the STFT on a signal ( )f x  rectangular window 

( )g x of width ½ for three values of the shift 0, 2, 1.u   

                                    Figure 4.3: The graph of f(x)=3x .exp(-x^2/2).

                                           Figure 4.4: Application of the STFT.
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The windowed Fourier transform replaces the Fourier transform sinusoidal wave by the 

product of a sinusoid and a window which is localized in time.

The windowed Fourier transform has a constant time-frequency resolution. This

resolution can be changed by rescaling the window g.

So the transform of the signal ( )f x is a two-dimensional function ( , )STFTf u that gives 

the frequency content   for every time (position) x . This would be ideal but there is the 

Heisenberg uncertainty principle that limits this usefulness. 

4.4.2 The spectrogram

The magnitude of the short-time Fourier transform ( , )STFT u is called the spectrogram

(figure). We can make two dimensional plots of the spectrogram with time on the 

horizontal axis, frequency on the vertical axis and amplitude of the STFT coefficients 

given by a gray-scale color. Alternately we can make three dimensional plots where we 

plot amplitude on the third axis (figure 4.5). The Matlab command specgram can be used 

to generate these plots.
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                      Figure 4.5: The 3D representation of the spectrogram of the STFT.
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4.4.3  Heisenberg’s uncertainty principle

It is not possible that the widths of 
2

( )f x  and   2
F   can both be made arbitrarily 

small. This fact underlines the Heisenberg uncertainty principle in quantum mechanics 

and the bandwidth theorem in signal analysis. If 
2

( )f x  and   2
F   are interpreted as 

weighting functions, then the weighted means (averages) x  and  of x and   are given 

by:

                                                   2

2

1
x x f x dx

f





  ,                                               (4a)

                                                  2

2

1
f d

F
   





  .                                               (4b)

Corresponding measures of the widths of these weight functions are given by the second 

moments about the respective means. Usually, it is convenient to define widths x  and 

 by:

                                                  22 2

2

1
x x x f x dx

f





   ,                                 (4c)

                                                    22 2

2

1
F d

F
    





                                  (4d)

The essence of the Heisenberg principle and the bandwidth theorems lies in the fact that 

the product x    will never be less than 
1

2
. Indeed,

                                                                           
   1

2
x   

,                                     (4e)

where equality holds only if ( )f x  is a Gaussian function i.e.

                                                          
2

( ) a xf x Ce , 0a  .                                             (4f)

The Heisenberg’s uncertainty principle dictates that one cannot measure with arbitrarily 

high resolution in both time and frequency. As it can be seen in figure 4.6 if we have 

good resolution on  that is  small then we get a bad resolution on x that is x will be 

large and vice-versa.
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    Figure 4.6 Heisenberg boxes in the time-frequency plane.

Furthermore, the STFT is suitable for the analysis of some signals more than others 

because of the fixed width of the sliding window.

4.5  Time-scale analysis  

Seismic signals contain many irregular and isolated transients. The drawback of the 

Fourier transform is that it represents signal frequencies as present for all time, when in 

many situations, and in seismic signal interpretation in particular, the frequencies are 

localized. The short-time Fourier transform (STFT), provide local frequency analysis but

the window size remains fixed. This is acceptable as long as the signal frequency 

eruptions are confined to regions approximating the size of the transform window.

However, in seismic applications, even the STFT becomes problematic. The problem is 

that seismic signals have many transients, and Grossmann and Morlet found the 

windowed Fourier algorithms to be numerically unstable. That is, a slight change in the 

input seismic trace results in a quite pronounced change in the decomposition 

coefficients. Grossmann and Morlet identified the fixed window size as contributing to 
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the difficulty. Their solution was to keep the same basic filter shape, but to shrink its 

time-domain extent. That is, they resorted to a transform based on signal scale [48].

4.5.1  The continuous wavelet transform

The continuous wavelet transform (CWT), has been developed by Morlet in the early 

1980s when he was analyzing seismic data for a petroleum company, though its 

mathematical bases go backward to the beginning of the 20th century.

The CWT consists of a mother wavelet that is scaled and shifted to analyze signals.

4.5.1.1  The mother wavelet

The analyzing function has to fulfill some conditions to be considered as a mother 

wavelet [49,50,51,52,53,54]. 

o- It has to be a wave, i.e. to be oscillatory. This happens when we ca have:

                                               
2ˆ ( )

C d

 








                                                      (5)

called the admissibility condition ,where  ̂   is the Fourier transform of  x ; this is 

equivalent to

                                                                ˆ 0   ,                                                           (6)

or

                                                              ( ) 0x dx




 .                                                      (7)

This implies that   has a zero mean;

o- to have a compact support, i.e. that it vanishes rapidly when x tends to infinity.

4.5.1.2  The wavelet transform

When the conditions are fulfilled by  the CWT can be computed by:

                                                  *
,( , ) ( ) ( )s uWf s u f x x dx





  ,                                           (8)
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where ,

1
( )s u

x u
x

ss
     

 
is the analyzing wavelet that is scaled by s and shifted by u.

* denotes the complex conjugate.

1

s
is a normalizing factor so that the magnitudes of the mother wavelet and those of the 

baby wavelets be equal, that is:

                                                           ,s u  .                                                           (9)

Note The transform of the one-dimensional function ( )f x is a two-dimensional function

( , )Wf s u .

The Fourier transform of the continuous wavelet transform is:

                                           *ˆˆ ˆ( , ) ( ) ( )Wf s s f s    .                                                 (10)

This can be used to compute the CWT of a function whom we know the Fourier 

transform. this permits to use the efficient algorithm of the FFT (fast Fourier transform).

We can think of the CWT in different ways: 

The CWT is the inner product or cross correlation of the signal ( )f x with the scaled and 

time shifted wavelet 
1 x u

ss
  
 
 

. This cross correlation is a measure of the similarity 

between signal and the scaled and shifted wavelet. 

For a fixed scale, s , the CWT is the convolution of the signal ( )f x with the time 

reversed wavelet
1 x

ss
   
 

.

The following figures show the analysis of the signal 
2

2( ) 3
x

f x xe


  by the Haar (figure 

4.7) and Morlet (figure 4.8) wavelets (see their definitions below).
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                  Figure 4.7 :The analysis with the Haar wavelet with (s,u)=(1,0),(0.5,2)     

                                                                         and(2,5).

     Figure 4.8: Analysis of a signal by the Morlet wavelet with the (s,u)=(0.5,-9);(1,0) and 

                                                                                (2,9).
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4.5.1.3  Examples of wavelets

The choice of the mother wavelet on the case at hand. Some of the most known and used 

are, the Haar, Morlet and Mexican hat wavelets.

4.5.1.3.1 The Haar wavelet

The Haar wavelet ( )H x is defined by (figure 4.9):

                                            

1 1
1

2 2
1

1 1
2

0

x

H x x

otherwise

   

   




                                                   (11)

                                                 Figure 4.9: The Haar wavelet

Its Fourier transform is:

                                                  
2sin

2ˆ

2

jH je 



 


 
 
                                                (12)
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 4.5.1.3.2 The Mexican hat wavelet

Let us consider a Gaussian function, that is a function of the form (figure 4.10 ):

                                                  
2

2( )
x

f x e


                                                                     (13)

                                             Figure 4.10: A Gaussian function.

The Mexican hat wavelet H is the second derivative of the Gaussian (figure 4.11), that is

                                      
22

2 2
( )

( ) 1
x

H

d f x
x x e

dx



    .                                               (14)
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                                          Figure 4.11: The Mexican hat wavelet.
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The Fourier transform of the Mexican hat is (figure 4.12):

                                                         
22ˆ ( )H e     .                                                    (15)

                             Figure 4.12: The Fourier transform of the Mexican hat wavelet.

4.5.4.2 The Morlet wavelet

Another very renowned wavelet is the one introduced by Morlet in his work on seismic 

data for a petroleum company. This is a modulated Gaussian (figure 4.13):

                                                  
2

0 02

x

j x
M x e e 



                                                 (16)

where usually 0 5.5  .
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                                              Figure 4.13: The Morlet wavelet.
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In fact the Morlet wavelet does not fulfill the admissibility condition, but when 0 is 

chosen such that 0 5  , the error is negligible.

The Fourier transform of the Morlet wavelet ˆM is (figure 4.14):

                                        
  2

0 0

2
0

ˆ
M e

  

  
  

 .                                             (17)

Figure 4.14: The Fourier transform of the Morlet wavelet.

We will now introduce two important concepts that are crucial for the resolution of the 

problem at hand two very important concepts are crucial, instantaneous frequencies and 

the ridge of the wavelet transform.

4.5.1.3  The scalogram

The magnitude of the continuous wavelet transform is called the scalogram. We can 

make two-dimensional plots of the scalogram with time on the horizontal axis, scale on 

the vertical axis, and amplitude given by a gray-scale color. Alternately, we can make 

three-dimensional plots.

The continuous wavelet transform depends on the center frequency  of the wavelet:

                                       
2

,

1
ˆ ( )

2 s u d   






  .                                                        (18)



54

The time-frequency representation is obtained by the relation between the scale s and the 

frequency  where:

                                                                     
s

                                                            (19)

The scalogram is defined as

                                                      2
, ( , )WP f u Wf s u  ,                                             (20a)

whereas the normalized scalogram is defied by:

                                                    21
, ( , )WP f u Wf s u

s
  .                                            (20b)

4.5.2 Instantaneous frequencies

Let the complex representation of a signal be

                                                    ( )( ) ( ) j xf x A x e                                                           (21)

The real part is:

                                                    ( ) ( ) cos ( )f x A x x                                                    (22)

The instantaneous frequency ( )x is defined as the positive derivative of the phase:

                                                      
( )

( )
d x

x
dx

 
                                                            (23)

Instantaneous frequencies are the variations of local frequencies in time or in 

position[55,56,57].

4.5.3  Continuous wavelet transform and phase extraction

The instantaneous frequency is measured from the ridge defined over the wavelet 

transform [58,59,60,61,62].

The wavelet ridges are the maxima points of the normalized scalogram. They indicate the 

instantaneous frequencies within the limits of the transform's resolution. The latter is 

determined by the Heisenberg boxes which tile the time frequency plane.
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A path that follows max ( , )Wf s u  is termed a wavelet ridge and, as we shall show, 

values of ( )s u  along this path give the instantaneous fringe frequency. Since all methods 

that use wavelets to extract phase distributions from interference patterns exploit this fact 

in some form, we provide a brief justification of the method.

To illustrate the properties of the ridge, we construct an approximate analyzing wavelet

                                                            ( ) ( ) j xx g x e                                                      (24)

where ( )g x is an asymmetric window function with unit norm. We choose the 

modulation frequency    , the band-width of g so that, ideally, for all 0 

            ˆ ˆ( ) 1x g     .                                              (25)

The family of wavelets is constructed as usual, which, for notational convenience, will be

written as

                  
,

j x u
s u sg x u e    ,                                                (26)

where 

                                               
1

2( )s

x
g x s g

s

    
 

                                                           (27)

and

                                                      
s

  ,                                                                       (25)

as before.

Let ( ) ( ) cos ( )f x V x x  represent the AC component of a row or column of the fringe 

pattern ( , )I x y . f has a wavelet transform

 ( , ) ( ) cos ( ) ( ) j x u
sWf s u V x x g x b e dx


 



  .                           (28)

Substituting 

                                        ( ) ( )1
cos ( )

2
j x j xx e e                                                         (29)    

into the above equation and writing 

                      ( , ) ( ) ( )Wf s u I I                                                (30)

we have
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  ( )1
( ) ( ) ( )

2
j x uj x

sI V x e g x u e dx


 



                                               (31a)

 ( )1
( ) ( ) ( )

2
j xj x u

sI V x u e g x e dx






                                                 (31b)

If V and   have small variation over the support of ,s u , we may expand the amplitude 

and phase terms as a Taylor series to first order:

( ) ( ) ( )V x u V b xV u                                                                (32)

And

( ) ( ) ( )x u b x u                                                                   (33)

Substituting in Equation (31b) above yields:

         

 

 

( )( )

( )( )

1
( ) ( ) ( )

2

1
( ) ( )

2

jx uj u
s

jx uj u
s

I e V u g x e dx

e V u x g x e dx

 

 




 




 










                                     (34)

Since

                                ( ) ˆ( ) ( )jx u
sg x e dx sg s u   


 



    .                                        (35)

the Equation (32) becomes

     ˆ( ) ( )
2

j u s
I e V u g s u       .                                       (36)

A similar calculation for  I  yields

                  ˆ( ) ( )
2

s
I V u g s u       ,                                      (37)

which is negligible if 

                                                         ( )u
s

   .                                                            (38)

Another expansion  shows that the second order terms are negligible if

                  
2

2

( )
1

( )( )

V u

V uu







                                                               (39)
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and

                     2
2

( )
1

( )

u

u









 .                                                                   (40)

Calculating the normalized scalogram thus yields

                                  
2 2 2( , )

ˆ ( )
4

Wf s u s
g s u

s
     .                                                (41)

Since  ĝ  is maximum at 0  we find that the scalogram is maximum at

                         u u  .                                                                    (42)

Points   ,u u  for which the scalogram is a maximum are called wavelet ridges and 

values of 
s

   along the ridges yield directly the instantaneous fringe frequency.

4.5.4 Extraction of the phase information from simulated 

interferograms

We choose the Morlet wavelet because it has good resolution either in position space or 

frequency space.

4.5.4.1  Choice of scales

Once a wavelet basis is chosen, it is necessary to choose a set of scales to use in the 

wavelet transform. For an orthogonal wavelet one is limited to a discrete set of scales. 

For non-orthogonal wavelet analysis, one can use an arbitrary set of scales to build up a 

more complete picture. It is convenient to write the scales as fractional powers of two

[63]:

0 2 , 0,1,...,jj

js s j J                                                            (43a)

1
2

0

log
x

J j N
s

   
  

 
                                                                (43b)

where 0s  is the smallest resolvable scale, and J determines the largest scale. The 0s

should be chosen so that the equivalent Fourier period is approximately 2 t . The choice 
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of a sufficiently small j  depends on the width in spectral-space of the wavelet basis. 

For the Morlet wavelet a j of about 0.5 is the minimum necessary to adequately sample 

in scale, while for the other wavelet bases a larger value can be used. Smaller values of 

j  give finer resolution.

4.5.4.2 Extraction of the phase with the CWT method from straight 

interferogram

Using the IDEA software, we generate an interferogram with straight lines that can 

correspond to the case of fringes of equal thickness(figure 4.15) .

                        Figure 4.15: Simulated interferogram with IDEA software.

The steps followed, using the Matlab software, are

o- We enter the interferogram pixel by pixel in the computer memory.

o- We choose the values of the scales according to the discussion above

                            0 0.25; 500; 0.25; 1s N x j     .

o- For each line of the interferogram we compute the CWT coefficients using the Morlet 

     wavelet. The figure 4.16 shows the scalogram for the central line of the interferogram;
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                           Figure 4.16 : 2D view of the scalogram of the central line.

Figure 4.17 shows a 3D view of the same scalogram.

                         Figure 4.17 : 3D view of the scalogram of the central line.

o- We compute the ridge of the wavelet transform by finding the maximum values in 

     each scalogram. Thus we obtain the phase gradient.

o- We compute the phase distribution by integrating the phase gradient.

Figure 4.18 shows the phase distribution of the interferogram.
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         Figure 4.18: Phase distribution of the interferogram  obtained by the CWT.

We check the obtained phase distribution by comparing with that computed by the phase 

shifting method.

4.5.4.3  Extraction of the phase with the phase-shifting method from a 

straight interferogram

We now use the three-step phase shifting algorithm. It is the one that demand the least 

number of interferograms that is three.. This means that we have to generate of two other 

interferograms shifted by 120° (figure 4.19) and 240° (figure 4.20) respectively.

                         Figure 4.19:Straight interferogram phase shifted by 120°.
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Figure 4.20: Straight interferogram phase shifted by 240°.

The phase shifting algorithm is applied in the software IDEA (Interferometrical Data 

Evaluation Algorithms) developed at the Graz university, Austria.

We get a gray scale wrapped phase distribution (figure 4.21) that is a distribution where 

the phase undergoes 2 jumps.

                 Figure 4.21 The phase distribution obtained using the three-step phase-shifting 

                                           algorithm with the software IDEA.

A further step is needed to get finally the actual phase distribution (figure 4.22), this step 

being the phase unwrapping procedure.
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                Figure 4.22: Phase distribution obtained by the phase shifting technique (2D).

We use the software IPP (Image Pro Plus) to get a more explicit three dimensional 

representation (figure 4.).

               Figure 4.22: Phase distribution obtained by the phase shifting technique (3D).

4.5.4.4 Discussion

The phase distributions extracted by the CWT and the phase shifting technique are 

similar. However, only one interferogram was needed to attain this objective with the 

CWT, whereas at least three interferograms are needed to have the same result. 

Furthermore, in the phase shifting technique an extra step of phase unwrapping is needed

4.5.4.5 Extraction of the phase with the CWT method from a circular 

interferogram

We follow the same procedure as in 4.5.7.2 using a circular interferogram. This can 

correspond to the case of fringes of equal inclination.
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We generate the interferogram in IDEA (figure 4.23)

                                           

                                           Figure 4.23: Circular interferogram.

Following the same steps we obtain the phase distribution (figure 4.24):

                                   

                         Figure 4.24 : Phase distribution of the circular interferogram.

Here the obtained interferogram is subjected gradually to noise and the phase distribution 

is computed using the wavelet transform.



64

4.5.4.6 Extraction of the phase with the phase-shifting method from a 

circular interferogram

We take the same interferogram (figure 4.25) and use the three step phase shifting 

technique. 

We generate the phase shifted interferograms by 120° (figure 4.26) and 240° (figure 4.27)

                                                

                                             Figure 4.25: The original interferogram.

                                                 

                                       Figure 4.26: The interferogram phase shifted by 120°
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                                            Figure 4.27: The 240° phase shifted interferogram

We obtain the wrapped phase distribution (figure 4.28).

                                                

                                             Figure 4.28: The wrapped phase distribution.

And finally, we get the phase distribution in 2D representation (figure 4.29) with IDEA 

and a more explicit 3D one (figure 4.30) using IPP.
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Figure4.29: The phase distribution extracted from the circular interferogram (2D)

                               

                            Figure 4.30: The phase distribution of the circular interferogram (3D)

The extracted phase distributions are similar using the CWT or the phase shifting 

technique but the procedure and the number of interferograms are different.

4.5.4.7 The influence of noise

This done, we will now experiment the CWT algorithm above to extract the phase from

the one straight simulated interferogram but this time we apply noise to it. We increase 

the noise gradually using IDEA (Relative noise=25, 50, 75, 100) and then apply the CWT 

in Matlab. This experimentation is more qualitative than quantitative.
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The results are summarized in figures 4.31 to 4.34 where the noisy interferogram for each 

value of Relative ‘noise’ (in (a)) is near its phase distribution (in (b)).

The definition of the noise is quoted from IDEA’s help documentation:

“The value of relative noise, which is added to the pixels of the ideal interferogram  is 

generated by a random number generator. It is statistically distributed between (- noise 

amplitude) and (+ noise amplitude). The sum representing new pixel value may be out of 

range (0-255), so overflows are set to 255, underflows to 0. The amplitude can be given 

absolute or relative (see below). Define 0 for amplitude if you do not want to have noise 

added.”

    

                                                (a)                                       (b)

Figure 4.31: Relative noise =25.

    

                                           (a)                                              (b)                                                              

                                                      Figure 4.32: Relative noise =50.
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                                           (a)                                                    (b)                                

                                      Figure 4.33: Relative noise =75.

                

                                               (a)                                                     (b)

                                                 Figure 4.34: Relative noise =100.

We see from theses interferograms that to CWT stands very well to noise and begins to 

deteriorate only when the interferogram becomes very noisy.
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Conclusion

The aim of our work was to establish a simple technique which can extract the phase 

information from an interferogram using the continuous wavelet transform.

We are able to say that this goal has been achieved.

After the presentation of the underlying theory of optics, especially interferometry, and 

the existing fringe analysis techniques, the wavelet concept has been explored 

theoretically, its advantages over the Fourier transform and the STFT. Then the 

relationship between the CWT and the phase information has been demonstrated. Finally 

a procedure of phase extraction has been proposed

Our approach was applied on different simulated interferograms and the results were 

confronted to those obtained by an existing well established procedure that is the phase 

shifting technique (PST) which confirmed them. 

In each case, our phase extraction required only one interferogram while the PST 

demands at least three interferograms. It alsohase unwrapping step is required.

As a bonus, the CWT stands well to noise.

These results are encouraging, however the used interferograms were simulated. The next 

step is to apply the technique on experimental interferograms in laboratory environment

and corresponding to more different situations.
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Abstract

The basic properties of light are given. An introduction to interferometry along with 

the characteristics of some known interferometers are depicted.

The most used techniques of fringe analysis and phase extraction are reviewed.

The basic mathematical foundations of wavelet analysis are followed by its 

differences with regard to Fourier transform and short-time Fourier transform. Then 

its suitability to signal processing in general and fringe analysis in particular is 

explored. The proof to its relationship with fringe extraction is studied.

The feasibility of the technique is experimented on some simulated interferograms.  

  
  

  ملخص
  

  .خصائص الضوء الأساسیة و استعمالھا في مجال التداخل الضوئينبدأ بسرد  
  . المشھورة التداخلجھزة أءبعضكما تدرس 

  المستعملة بكثرة مع بعض مزایاھا   أھداب التداخل الضوئيض أسالیب معلجة تتبعھا لبع
  .و عیوبھا

  فوریي وتقنیة فوریيو مزایاھا بالنسبة لتقنیة ’الموجیات’تقنیة تعطى الأسس الریاضیة لثم 
  .لضوئيدراسة امكانیة استعمالھا في مجال استخراج الصفحة من أھداب التداخل ا تتبعھا .ذات النافذة المتحركة

  .داخل المحررة عن طریق الكمبیوترتتختبر ھذه التقنیة على بعض صور أھداب ال
  
  

Résumé

Les propriétés de la lumière sont données. Une introduction à l’interferometrie et les 

caractéristiques de certains interferomètres connus sont revues.

Les techniques d’évaluation de phase les plus utilisées sont passées en revue.

Les bases mathématiques de l’analyse en ondelettes sont données ainsi que ses 

qualités par rapport à la technique de la transformée de Fourier et de la transformée de 

Fourier à fenêtre glissante.

L’adéquation de la technique au traitement du signal et à l’analyse des 

interferogrammes sont étudiées.

La faisabilité de la technique est expérimentée sur des interferogrammes simulés.


