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The fascination for solid state chemistry and the more applied field of material science not 

only arises from the structural diversity and the curiosity driven research but also from the 

often exciting physical properties of the compounds. In general solid state chemistry is truly 

interdisciplinary as it borders solid state physics, crystallography, quantum theory, metal 

science and inorganic chemistry. 

Exploration of the alkali metal, alkaline-earth metal systems has revealed a vast array of new 

chemistry and novel structure types. The structures and properties of these new materials have 

been studied in an attempt to understand the chemistry of these and other related systems. 

Most of these materials possess a metallic luster indicative of an intermetallic compound, 

which is correct in some cases, but upon further analysis, a majority of these compounds 

exhibit closed shell bonding along with the corresponding semiconducting and diamagnetic 

properties [1-3]. 

Alloys and intermetallic compounds are among the oldest and most important man made   

materials, being subject of constant interest for inorganic chemists, physicists and material 

scientists [4-10]. Intermetallics are phases composed of two or more metallic or semi-metallic 

elements with stoichiometry that displays little or no phase width. Unlike alloys, they are 

typically formed by elements with significantly different sizes and electro-negativities which 

results in atoms with preferred crystallographic sites, limiting site mixing between elements. 

There is an electronegativity difference which results in some charge transfer; however, the 

valence electrons are still largely delocalized resulting in metallic or semi-conducting phases 

and most do not follow electron-counting rules. Intermetallics then are in a middle ground 

between localized, charge balanced salts and conducting delocalized metals which can lead to 

interesting magnetic and electronic properties. 

Today, the important research areas of intermetallic compounds are very broad and range 

from refractory high-strength super alloys [11-13], magnetic compounds [14-16] and 

superconductors [17-18], to metallic glasses for possible applications in fuels cells [19], 

Furthermore, the possibility of functional intermetallic materials has been validated by several 

discoveries of polar intermetallics and Zintl phases that display complex combinations of 

structural, electronic, thermal, magnetic, and transport properties.[20-21]. 

A large number of new intermetallic compounds have been synthesized, and their structural 

and electronic characterizations have given tremendous information about their structure 

property relationship [22-29], e.g. Yb3CoSn6 and Yb4Mn2Sn5, La11Li12Ge16, and Zr3Co, InPd, 

 A3In2Ge4 and A5In3Ge6 (A=Ca, Sr, Eu, Yb), U34Fe4−xGe33 and Yb3Pd2Sn2.  
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The properties are typically more consistent with valence (salt-like) compounds and therefore 

these materials can be viewed as a link between typical intermetallic phases on one hand, and 

normal valence compounds on the other. This category of materials has become known as 

Zintl phase. It is the merit of Eduard Zintl (1930) [4-6], and others that some easily applicable 

rules exist for this subgroup of intermetallic compounds. 

Zintl phases are a special class of intermetallic compounds in which one of the components is 

far more electropositive than the other(s). They are at the extreme polar end of intermetallics, 

featuring complete or nearly complete charge transfer between atoms resulting in a charge 

balanced structure with localized electrons similar to a salt.  

The structural peculiarities of Zintl phases are explained by assuming the presence of both 

ionic and covalent parts in the bonding picture. Within the Zintl-Klemm concept [30], all 

valence electrons can be assigned, at least formally, to the electronegative main group 

elements. The electrons are then localized either in two-center-two-electron (2c-2e) bonds 

between post-transition metal atoms or in the form of lone pairs located at these atoms. In that 

sense, the fundamental difference between Zintl phases and all other intermetallic phases is 

the role played by the electronegative components, which accept the electrons from their more 

electropositive partners to form polyanions. Between Zintl phases and intermetallic phases a 

further class is situated, which is denoted as “polar intermetallic compounds”. 

Interest in the study of these compounds has increased markedly in recent decades, deriving 

mainly from the rich structural variety shown by these compounds, as well as the evident or 

prospective simplicity of their bonding schemes among polar intermetallic compounds. 

Examples include K2ACdSb2 (A= Sr, Ba), Ba3T2As4 (T=Zn, Cd), A21Zn4Pn18 (A=Ca, 

Eu; Pn=As, Sb), Na2ACdSb2 and K2ACdSb2 (A=Ca, Sr, Ba, Eu, Yb), KBa2Cd2Sb3, 

AM2Sb2 (A=Ca, Sr, Ba, Eu, Yb; M=Zn, Cd), Ba3Al3P5 and Ba3Ga3P5 [31-37] and the specific 

ternary Zintl compound mentioned in this work is KAsSn which despite being isoelectronic, 

adopts the structure of KSnSb and crystallizes in the space group P 63/mc (No. 186) [38]. 

From the crystal structure, it is known that KSnAs contains three bonded Sn and As /Sb atoms 

which consist of puckered sheets with the potassium cations between the sheets. The 

structures KAsSn can be interpreted in terms of the Zintl concept [39-40] which is isovalent 

and isostructural with KSnSb [38]. Using the Zintl concept to interpret the chemical bonds in 

KAsSn, the arrangement of the atoms in this compound suggests that the almost free valence 

electrons of K are transferred to the Sn/As substructures to form saturated covalent bonds 

between Sn and As according to the octet rule. 

http://www.sciencedirect.com/science/article/pii/S0925838814025432#b0125
http://www.sciencedirect.com/science/article/pii/S0925838814025432#b0120
http://www.sciencedirect.com/science/article/pii/S0925838814025432#b0115
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The fundamental basis of understanding the different properties of materials and phenomena 

relies upon understanding their electronic structure. Indeed, developing theoretical approaches 

that can accurately describe a system of   interacting particles, electrons and nuclei, emerged 

as a serious challenge encountering theoretical physics. An exact theory for a system of ions 

and interacting electrons is intimately quantum mechanical based on solving a many body 

Schrödinger equation which is evidently complex. 

The large computational complexity of calculations involving modified structures does not 

permit a comparable progress in the field of modeling as in the experimental counterpart. This 

complexity arises from the need to include a large number of atoms in the computer 

simulation, as well as from the accuracy required to treat systems in a realistic manner.  

Ab-initio calculations have become an efficient tool to understand characteristic properties of 

materials and which provides interpretation for experimentally observable phenomena. In the 

framework of density functional theory [41] it is now possible to calculate the geometry, the 

electronic structure, and the excitations of systems with hundreds of electrons starting from 

first principles. No empirical parameters have to be included, in principle, in these numerical 

simulations and the results can be directly compared with experiment.  

There is an abundance of program packages to calculate the properties of materials from first 

principles. The DFT ( Density Functional Theory) tool chosen for this work was the CASTEP 

(Cambridge Serial Total Energy Package) [42] simulation package codes which is an 

electronic minimization code that uses calculates optimal geometry, total energy, force, stress 

as well as band structures and optical spectra, etc... In particular it has a wide range of 

spectroscopic features that link directly to experiment, such as infra-red, Raman 

spectroscopies, and core level spectra. 

In the context of investigating the realization of specific structural patterns and changes of 

chemical bonding in solids, high pressure is one of the fundamental state variables which can 

be varied in order to uncover factors governing stability fields of structure and bonding types 

as well as to separate electronic effects from packing aspects. Simultaneously, it is a useful 

parameter in quantum chemical investigations since the compression can be easily simulated 

in the calculations by a corresponding reduction of unit cell parameters. 

The main objective of this thesis is a study of optical, electronic and structural properties of 

ternary Zintl phase KAsSn compound using density-functional theory (DFT) method within 

the generalized gradient approximation developed by Wu-Cohen (GGA-Wc). 

https://www.google.dz/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&cad=rja&uact=8&ved=0ahUKEwiNvozU_tbJAhWDjnIKHfuqBTAQFggyMAI&url=http%3A%2F%2Fchemistry.stackexchange.com%2Fquestions%2F33764%2Fis-density-functional-theory-an-ab-initio-method&usg=AFQjCNEn6ClG029zGKzUj6yHdmEmcvNMmQ
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Layout of the Dissertation 

In what follows, this PhD work is presented, firstly, a brief introduction to intermetallic and 

Zintl phase compounds is given, followed by a discussion of Ab-initio calculations, within the 

framework of density functional theory (DFT) using the  CASTEP code. 

This dissertation consists of three chapters with one appendix, all of which include 

experimental and theoretical studies as well as physical properties of the Zintl phases KAsSn. 

A brief summary of each chapter is described below: 

In Chapter I, we describe the progress of studies on intermetallic compounds especially Zintl 

phase. We show the remarkable success of the Zintl concept in rationalizing crystal structure, 

stoichiometry, and chemical bonding of the main group intermetallics. 

The experimental and theoretical studies of structural and electronic properties of Zintl phase 

KAsSn, are presented in Chapter II. We summarize previous theoretical works on these 

compounds. Then, we present our contribution to investigate physical properties of Zintl 

phase KAsSn and the method of calculation used in this work.  

The last chapter (Chapter III) is devoted to the presentation of our results for the ternary Zintl 

phase KAsSn compound including structural, electronic, elastic and optical properties. 

Finally, we give conclusions of this work. This manuscript is completed by an annex on the 

Density Functional Theory DFT 
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Preamble  

Since the Zintl phase is the main chemical compound around which this doctoral thesis is 

developed, it is appropriate to devote a chapter to describing their most physical properties. 

To cope with this work, we present first an overview of concepts and developments revealing 

the potential of intermetallic and Zintl phase compounds in fundamental as well as applied 

research. After briefly discussing the generalized 8-N rules, the Zintl-Klemm model and related ideas 

are discussed. Then the progress in the field of Zintl phases from Zintl’s original ideas to the 

application of these compounds in materials science is outlined. We have also shown the remarkable 

success of the Zintl concept in rationalizing crystal structure, stoichiometry, and chemical bonding of 

many main group intermetallics. Finally this study has shown that Zintl phase compounds exhibit a 

rich diversity of crystal structures like cluster, clathrate, etc.  

 

I.1 Introduction 

 

     In recent decades, a large number of inorganic compounds have been synthesized and their 

study has given much information about structure - property relationships in the field of 

semiconductor cluster or Zintl compounds. On the other hand, the structures and properties 

associated with main group intermetallics found in the boundary region between metals and 

non metals have generated interest within the solid state community [1]. In the course of time, 

intermetallic chemistry has become what it is today, namely one of the most diverse research 

areas which can be viewed as the staging area of different scientific fields; mainly chemistry, 

physics, metallurgy, material science and engineering (Fig I.1) 

 

Fig I.1 Components of intermetallic chemistry 
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Intermetallic phases comprise a realm of staggering structural diversity. One of the best 

compasses for navigating this realm is the grouping of compounds according to the 

electronegativity differences of their component elements.  At one extreme are the Zintl 

phases, whose large electronegativity values allow for the conceptual division of their 

structures into cationic and anionic components, which individually satisfy molecular bonding 

schemes [2-3]. At the other extreme are the Hume-Rothery phases in which the low 

electronegativity value result in the vanishing of clear charge assignments or localized bonds 

[4].  Nevertheless, we still know much less about structure and chemical bonding in Zintl 

phases and intermetallic compounds than in other classes of chemical compounds. However, 

the chemical bonding exhibited by these compounds is complex and cannot be classified 

according to classical bonding theories. 

A representation of the correlation between classes of chemical compounds, electron counts, 

and structural elements can be seen in Fig. I.2. Among the earliest systems to be understood 

electronically were the salt-like compounds, in which cationic and anionic components attain 

a complete octet or an 18-electron shell [5-7].   

 

Fig I.2 Relations between classes of chemical compounds through the comparison of 

structural elements, electronic properties, and electron-counting rules [8].   
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The Zintl phases, with their various anion frameworks, now form a large family of 

compounds whose electron structures mostly conform to the 8-N rule. They are a special class 

of intermetallic compounds, which are composed of the alkali, alkaline-earth metals, and rare 

earth metals in combination with the early post-transition metals and semi-metals [9]. In that 

sense, the fundamental difference between Zintl phases and all other intermetallic phases is 

the role played by the electronegative components, which accept the electrons from their more 

electropositive partners to form polyanions. Borderline cases of Zintl phases, that is, those 

exhibiting "locally delocalized electrons" and not conforming to either the 8-N rule or the 

Zintl-Klemm concept, mark the transition to the intermetallic phases. With the great 

expansion of Zintl concept and intermetallic compounds recently, a large number of these 

compounds are synthesized and these diverse structures also bring abundant physical 

properties, such as, magnetism [9-13] semiconducting, [15-16] mixed-valence [14] and so on. 

Since Zintl phases provide structural and electronic connections among the traditional classes 

of metallic, covalent, and ionic compounds, these three classifications can be demonstrated 

using a van Arkel–Ketelaar triangle, illustrated in Fig. 1.3 [17-18]. This triangle is constructed 

quantitatively, using as the horizontal coordinate the sum of configuration energies [19-21], 

and as the vertical axis, their difference for binary compounds. The classical metals are found 

around the lower left vertex of the triangle. Here, both the average CE and ΔCE are small, and 

the valence electrons are largely delocalized. 

In reciprocal space, valence electrons populate continuous energy bands without band gaps 

around the Fermi level. As we deviate from the metallic region, valence electrons tend to 

localize. At the top vertex, around which ionic compounds are found, ΔCE is large, and the 

valence electrons tend to localize around the atoms with higher CE. Toward the lower right 

vertex, the average CE increases while ΔCE remains small, and, thus, valence electrons tend 

to localize between atoms. Along the base of the triangle, therefore, metals transform to 

covalent crystals.  Due to the different behaviors of valence electrons in metallic, ionic, and 

covalent solids, each of them typically employs its own structural rationalization. Zintl phases 

can be assigned to a region between the metallic and ionic corners, but they merge with the 

covalent region as well. Recently, significant research effort has focused on so-called polar 

intermetallics, which show many features of Zintl phases except that their structures typically 

do not follow the 8-N rule [22-23].  
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Fig I.3 Van Arkel–Ketelaar triangle for binary compounds. The base of the triangular map 

consists of elements ranging from Cs to F and the apex is the most “ionic” compound, CsF 

[17-18]. 

 

I.2 Electron Counting Rules 

I.2.1 Generalized 8-N Rule 

The octet principle can be expressed as a formula by the generalized 8-N rule according to E. 

Mooser & W.B. Pearson [24-25]. We restrict our considerations to binary compounds MmXx, 

and propose the following: 

1. X is element of 4
th

 to 7
th

 main group of the periodic table. An X atom has e(X) valence 

electrons. 

2. The electrons needed to fill up the electron octet at X are supplied by the more 

electropositive M electron. An M atom has e (M) valence electrons. 

The compound MmXx can be called a normal valence compound if the number of valence   

electrons of cations e (M) and anions e(X) correspond to the relation: 

  m. e(M) + x . e(X) = 8x    (normal valence compound rule, octet rule)                    (I.1) 

If covalent bonds exist between M atoms, then not all of the e(M) electrons of M can be turned 

over to X, and the number e(M) in equation (I.1) must be reduced by the number b(MM) of 

covalent bonds per M atom. If the M atoms retain nonbonding, then e(M) must also be 

reduced by the number E of these electrons. On the other hand, the X atoms require fewer 
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electrons if they take part in covalent bonds with each other; the number e(X) can be increased 

by the number b(XX)of covalent bonds per X atom: 

M [e(M) -b(MM) - E] + x [e(X) +b (XX)] = 8x                              (I.2) 

In several compounds, the so-called Valence-Electron Concentration (VEC) proved to be a 

parameter relevant to their composition, structure and stability [26-27]. 

For a compound MmXx, the VEC parameter is defined by: 

VEC = (m. e (M) + x. e(X))/ (m+ x)                                           (I.3) 
 

We define the valence electron concentration per anion, VEC(X), as the total number of all 

valence electrons in relation to the number of anionic atoms: 

VEC(X) = [m .e(M) + x. e(X)]/ x                                                 (I.4) 

 

I.2.2 Tetrahedral structures: In a more limited field than that of the previously considered 

general octet rule, it may be useful to mention the ‘tetrahedral structures’ which form a subset 

of the general valence compounds. According to Parthe [28-29], if each atom in a structure is 

surrounded by four nearest neighbours at the corner of a tetrahedron, the structure is called 

normal tetrahedral structure.   

The general formula of the normal tetrahedral structure, for the compound MmXx is: 

 

(m. e (M)  + x. e(X)) = 4(m +x)                                                 (I.5) 

That may be considered a formulation of the so-called Grimm and Sommerfeld Rule [30]. 

The following specialized cases are of importance: 

 Elements. For pure elements that belong to the right side of the Zintl line, we have m = 0, 

VEC(X) = e(X) = N, and equation (I.2) becomes:  

b (XX) = 8-VEC(X) = 8-N                                                          (I.6) 

This is other than the simple 8-N rule.  

 Polyanionic compounds. The M atoms lose all their valence electrons to the X atoms, no 

cation–cation bonds occur and no nonbonding electrons remain at the cations, b(MM) = 0 and 

E = 0. Equation (I.2) then becomes: 

b (XX)= 8-VEC(X)                                                               (I.7) 

This is again the 8-N rule, but only for the anionic component of the compound.  

According to this concept, put forward by E. Zintl and further developed by W. Klemm and 

E. Busmann [31], the more electronegative partner in a compound is treated like that element  
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which has the same number of electrons. This statement is therefore a specialized case of the 

general rule according to which isoelectronic atom groups adopt the same kind of structures. 

 Polycationic compounds. Provided that no covalent bonds occur between the anionic 

atoms, b(XX)=0, equation (I.2) becomes: 

b(MM) +E = (x/m) (VEC(X)-8)                                     (I.8) 

When applying this equation, we can note that for the calculation of VEC(X) according to 

equation (I.4) all valence electrons have to be considered, including those that take part in M–

M bonds. 

 Simple ionic compounds: compounds having no covalent bonds, b(MM) = b(XX)=  E = 0. 

Equation (I.2) becomes: 

                                VEC(X) = 8,        this is the octet rule. 

According to the conventional simple chemical definition, the valence compounds are those in 

which individual atoms are assumed to reach a ‘filled valence shell’ by accepting, donating or 

sharing electrons. This definition was first applied to the compounds (normal valence 

compounds) where the cations may donate the exact number of electrons to complete the 

valence shells (particularly the octet shells) of every anion. 

We thus deduce the criterion: 

VEC(X) = 8, simple ionic (normal valence compound) 

This concept was then extended to include compounds having anion-anion or cation-cation 

bonds, that is, the so-called polyanionic or polycationic valence compounds, assuming: 

                                VEC(X) < 8 (polyanionic valence compounds) 

        and 

                                VEC(X) > 8 (polycationic valence compounds) 

I.3 Intermetallic compounds 

    Distinguishing between metals and non-metals is one of the first things that pupils learn in 

chemistry. Intermetallic compounds are materials composed of two or more metallic 

elements, with optionally one or more non metallic elements, which exist as homogeneous, 

composite substances and differ discontinuously in structure from that of the constituent 

metals. They are also called, preferably, intermetallic phases.  Their properties cannot be 

transformed continuously into those of their constituents by changes of composition alone, 

and they form distinct crystalline species separated by phase boundaries from their metallic 

components and mixed crystals of these components. It is generally not possible to establish 

formulas for intermetallic compounds on the sole basis of analytical data, so formulas are 
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determined in conjunction with crystallographic structural information. In most cases, 

intermetallic compounds solidify at a fixed temperature and composition, and have thus a 

narrow domain of existence. Under this definition the most important intermetallic phases are 

[26-32]: 

- Electron (or Hume-Rothery) compounds.  

- Size packing phases. e.g. Laves phases, Frank–Kasper phases and  Heusler phases.  

- Zintl phases 

Often, intermetallic compounds are hard, i.e. they exhibit high hardness, brittleness and 

strength and usually have a relatively high chemical resistance. Moreover, they are 

characterized by a high melting point and high electrical conductance which is generally 

one order of magnitude greater than that of pure transition metals.  

There are intermetallic compounds with stoichiometric compositions according to the usual 

metal valencies and there are intermetallic phases having more or less extensive ranges of 

homogeneity in the phase diagram.  

Intermetallic phases could be classified following the most important factor which controls 

their crystal structure (Pearson 1958, Girgis 1983, Hafner 1989, Westbrook and Fleischer 

1995, Cahn and Haasen 1996) [33-36]. As a recapitulation of these points we may again refer 

to Pearson (1972), who underlined the role of the following factors in the classification of 

intermetallic phases: 

- Geometrical factor, Size factor 

-  Chemical bond factor. 

-  Electrochemical factor (electronegativity difference). 

-  Energy band factor (electron concentration). 

     According to W.B. Pearson [37], there are five groups of intermetallic phases depending 

on their building principles and physical properties: 

1. Intermetallics with geometrical close packing: These include most intermetallic phases. 

Compounds exhibit dense packing and the volume of the unit cell is less than the sum of the 

elemental atomic volumes of the atoms in the cell. Accordingly, inter-atomic distances are 

closer than those expected from the number of valence electrons available. 

2. Intermetallics which only occur for certain valence electron concentrations (VEC):  

 (VEC = valence electrons/number of atoms). Examples include the α, β, and γ phases of the 

group B metals of copper, silver, and gold. According to Hume-Rothery rules [26-37, 38]: the 

http://en.wikipedia.org/wiki/Laves_phase
http://en.wikipedia.org/wiki/Frank_Kasper_phases
http://en.wikipedia.org/wiki/Nowotny_phase
http://en.wikipedia.org/wiki/Zintl_phase
http://www.giessereilexikon.com/en/foundry-lexicon/?tx_contagged%5Bsource%5D=default&tx_contagged%5Buid%5D=3915&tx_contagged%5BbackPid%5D=3&cHash=2a8d5dae248fa8b0424e1bede3e01706
http://www.giessereilexikon.com/en/foundry-lexicon/?tx_contagged%5Bsource%5D=default&tx_contagged%5Buid%5D=4573&tx_contagged%5BbackPid%5D=3&cHash=b84b8e6f426db26f637aa308da671601
http://www.giessereilexikon.com/en/foundry-lexicon/?tx_contagged%5Bsource%5D=default&tx_contagged%5Buid%5D=4237&tx_contagged%5BbackPid%5D=3&cHash=fe81203f329e458090df2cb728d03687
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phase (fcc) occurs for VEC = 1.40; β -brasses (bcc) occur for VEC = 1.50 and the γ -brasses 

(defect bcc) occur for VEC = 1.61 [39-40]. 

3. Intermetallics with framework structures: In these compounds, all atoms form a 

common framework in which the distances to the nearest neighbors adhere to Pauling's 

formula [41]:                 

dn = d1 - 0.3 log n                                                       (I.9) 

 

n: bond order (n = valence/coordination number), 

d1: the single-bond length. 

 

4. Intermetallics with hybrid framework structures:  Examples of these compounds are 

BaAl4 [42-43] or ThCr2Si2, [44-46] in which atoms on certain sites form a framework and the 

remaining atoms are accommodated in the large voids according to the geometrical packing 

principles. 

5. Intermetallics that follow the valence rules. Valence compounds include Zintl phases 

such as NaPb[47] and normal valence compounds like Mg2Sn [48-49] with stoichiometric 

compositions, these phases are usually insulating or semiconducting, while non stoichiometry 

may result in a metallic behavior. 

 

I.4 Zintl Border 

      Many published periodic tables highlight distinction between metals and nonmetals with a 

bold faced zigzag line as demarcation between metals lying to the left and nonmetals to the 

right. The Zintl border, which represents the limits of the Zintl concept, lies between group 13 

and 14 of the periodic table when combined with the electropositive metals, post-transition 

elements of groups 13 and 14 provide structures that generally differ greatly in physical 

behavior (shown as a red line in Fig. 1.4). Along the border, the Zintl phases can be viewed as 

intermediate in bonding, situated between the electron precise valence compounds and the 

normal intermetallic compounds. Compounds of group 13 elements adopt numerous 

compositions and follow no simple chemical rules. Whereas those involving group 14 

elements resemble salts and normally adhere to the simple octet or Zintl rule. Attention has 

therefore been dedicated to compounds of alkali metals with the elements of the 13th, 14th 

and 15
th 

groups (without B, Al, C, N and P) [26-50].   
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However, Klemm points out that some compounds to the right of the Zintl border show 

metallic properties and suggests that crystal structures are a more useful tool in separating 

metallic from non-metallic elements [51-52]. 

We turn our attention to the classification introduced by Klemm, and based on the tetra-

partition of the elements into metals (true metals), meta-metals, semimetals and non-metals. 

True metals (alkali, alkaline earth metals, Al, Cu, Ag, Au, etc.) having a high specific 

electrical conductivity and crystal structures of high coordination numbers.  Whereas Non-

metals (N, O, S, Se, Halogens, etc) have a lower coordination number, While Meta-metals 

(Be, Zn, Cd, Hg, In, TI, Pb, etc.) have crystal structures with small deviations from high 

symmetry. 

Thus Klemm has called the group 12 metals, as well as In, α-Tl, and ß-Sn, meta-metals [51], 

some others named them metalloids. To the right of the meta-metals the semimetals and 

semiconductors are found, to the left the classical metals [53]. 

Elemental tin occupies the borderline position between semiconductors and meta-metals due 

to the occurrence of both α (grey)-Sn (diamond structure; semiconducting) and ß (white)-Sn 

(tetragonal distortion of diamond; metallic). In fact, the ß modification may be considered as a 

border case between semimetals and meta-metals. Furthermore, Al mostly resembles the 

normal metals, but, like all of the meta-metals, it becomes superconducting at temperatures 

below 10 K. Gallium behaves in many compounds like a semimetal but melts at 28°C. 

 

Fig I.4 Various boundaries in the periodic table. The metalloids are shown in blue; the 

distinction between metals and non-metals according to Zintl (-); the distinction between 

metals and non-metals according to Klemm (-); the metals Klemm designated meta-metals (-). 
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Alloys are formed when two or more metallic elements are mixed whilst molten and then 

cooled to form a solid which also exhibits metallic properties. Such alloys can be divided into 

two classes, those which are homogeneous solid solutions and those which have a definite 

composition and internal structure. Those in this second class are called intermetallic 

compounds and have a clear structure, usually unrelated to that of the individual metals.  A 

compound formed from a metal with a much higher electronegativity than the second metal is 

defined as a Zintl phase. Following are some examples of Zintl phases and intermetallic 

compound. 

 

Fig. 1.5 Crystal structure of:  a) The Zintl Phase LiB [54] 

                                                      b)  The Intermetallic PdGa [55]  

 

I.5 Zintl Klemm concept and Zintl phases 

The term "Zintl phases" entered the chemists' vocabulary more than 60 years ago to reflect the 

merits of Edward Zintl, who had discovered and studied a large number of substances which 

in a way may represent a bridge, a transition, between the valence compounds (molecule and 

salt) on the one hand and the intermetallic compounds on the other hand [56-58]. 

They are especially interesting because of their extraordinary structural variety. Upon 

examination of the atomic volumes of the elements, Zintl observed significant contractions in 

the unit cell volumes that did not follow the Hume-Rothery rule [4-57]. Rather than evaluate a 

total valence electron concentration (VEC), Zintl proposed electron transfer from the 

electropositive component to the electronegative component.  
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In these phases, covalent polyanionic networks are formed if the electrons received from the 

electropositive atoms do not fulfill the octet requirements of the electronegative elements.  

Hence the terms Zintl phases and Zintl concept were introduced.  

In binary compounds AB consisting of electropositive cations A and post-transition elements 

B, the cation A transfers its electrons to the element B, which thus achieves a closed electron 

shell. The electron octet of element B appears due to the formation of two electron covalent 

B-B bonds and localization of lone electron pairs. A significant consequence of the fulfillment 

of the octet rule is the appearance of properties typical of most of Zintl phases. The fact that 

element B reaches a closed-shell electronic configuration implies that all the bonding and 

nonbonding (lone electron pairs) states in the covalent anionic sublattice are occupied, while 

all the anti-bonding states are vacant. As the number of electrons provided by element A 

strictly correlates with the number of B-B bonds and lone pairs of element B, the Zintl phases 

possess a very narrow homogeneity region. Consequently, it was clear that it is more 

convenient to apply the term Zintl phases to intermetallic compounds which display a 

pronounced heteropolar bonding construction and agreement with an ionic formulation in 

their anion partial lattices that obey the (8-N) rule [2]. Klemm and Busmann took this one step 

further. They pointed out a relationship between the anion structure and the electron count 

[31].  

W. Klemm and E. Busmann (ZKB) stated: "In Zintl's idea the formally negatively charged 

atoms that possess the same electron number as the neutral atoms of the next group elements, 

form polyanions with similar structures to the corresponding elements". The strength of the 

concept is the connection between structure and electron distribution; if the structure is 

known, the atomic charges can be estimated [51-31].  

Another important refinement of the Zintl phase concept was made by Schäfer and 

Eisenmann, where it was going beyond the concept of isostructural relationship to structure 

of the elements with the same number of valence electrons [2] 

On the other hand, there exists a vast group of compounds formed by electropositive elements 

and Group 13-15 elements that exhibit properties characteristics of Zintl phases but, have an 

electronic structure not conforming to the octet rule.  As an example, note metal-rich lithium 

silicides and germanides, whose electronic structures and properties are due to the occupation 

of the "cage" orbitals of Li clusters, as well as alkali and alkaline earth metal aluminides. 

Furthermore there are a number of liquid alloys (K–Pb, Rb–Pb, Cs–Pb, K–Sn, Rb–Sn, Cs–Sn, 
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K–Te) that behave as if all the anions were in the form of perfect simple Zintl anions like 

tetrahedra and dumbbells.  

For example in Fig I.6, the structure NaSi contains regular tetrahedra of Si atoms between 

which the Na atoms are situated. So we have the overall composition Na
-
Si

-
 in which, 

however, the silicon ions have a discrete (molecular like) tetrahedral isoelectronic structure 

Si4
4-

. The NaSi structure may also be compared with that of NaGe in which tetrahedra of Ge 

atoms are contained (and Na in the intervening space) even if there is a somewhat different 

arrangement of the tetrahedra. 

 

 

 

Fig I.6 Crystal structure of NaSi with Si4
4- tetrahedra [60] 

More complex examples of Zintl phases are given by ternary compounds in which the anionic 

part of the structure may be compared for instance to molecular halides. This point is 

illustrated by Ba4SiAs4 which can be described as (Ba
2-

) 4(SiAs4)
8-

 in which the (SiAs4)
8-

group 

is isostructural to the tetrahedral molecule SiBr4.  

In recognition of the work done by Zintl, Corbett et al [61-63] named the anions Zintl ions, 

later defining them as “homo-polyatomic anions of the post-transition metals” [64]. Corbett 

suggested two conditions; ‘(empty) clusters and related polyhedral species, often with non 

classical bonding, of the character first broadly illuminated by zintl’ and polyanionic clusters 

and rings that require some unusual care or condition for their stabilization. The second 

condition proposes that in order to retain the ions in solid state, complexing of the cations or 

special organic solvents have to be utilized. This has been referred to as ‘anti-coordination 

chemistry’. Just as for the Zintl phases the group of Zintl ions has been extended and several 

definitions coexist [21-65]. Parallel to the work of Corbett et al. on the Zintl anions, different 

groups strived to rationalize the topology of boranes (boron-hydrides) based on the number of 
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valence electrons included in the bonding and together these efforts resulted in what has 

become known as the Wade’s rules [66].  

As the close relationship between boranes and post-transition metal clusters already had been 

noticed, the Wade’s rules could easily be extended to Zintl anions as well. Therefore, the 

structure of the polyanions can in many cases be predicted by counting the valence electrons. 

In addition, compounds containing transition metals in which the octet rule cannot be fulfilled 

but so-called completed electron configurations can be formed are classified as nontraditional 

Zintl phases. A specific case of nontraditional Zintl phases is represented by compounds that 

we call "inverted" Zintl phases [21-65]. In these compounds, the cationic sub-lattice consists 

of post-transition elements having an electron octet and transferring excess electrons to 

electronegative elements, usually halogens. As examples, one can cite BiTeCl7 isotypical to 

the traditional Zintl phases KSnAs  and K8Sn44  respectively.  

The term Metallic Zintl phase is not being used uniformly. In general in such metallic salts, 

the connectivity of the atoms forming the anionic substructure can be well rationalized by the 

(8–N) rule. However, on one hand few extra electrons are present that occupy the conduction 

band. Those extra electrons are often delocalized across the whole anion or in cation–anion 

bonding states. The appropriate term ‘submerged continent’ by Nesper [5] can be understood 

as polyanions buried in a sea of electrons. Prominent examples are the phases A5Pn4 (A = K, 

Rb, Cs; Pn = As, Sb, Bi), K3Bi2, Ba3Sn4As6. On the other hand metallic conduction can also 

be obtained by electron deficiency in polar intermetallics at the Zintl boundary, such as Sr3In5, 

leading to an open and incompletely filled valence band.  

I.5.1 Example of traditional Zintl phase NaTI 

A traditional example of a Zintl phase is represented by NaTI which may be considered as a 

prototype of the Zintl rules.  Zintl observed a curious arrangement of Na and TI atoms in the 

crystal structure which has also been observed in several other element combinations such as 

LiAl, LiGa and NaIn. The structure of this compound can be described as resulting from two 

interpenetrating diamond type lattices corresponding to the arrangements of the Na and Tl 

atoms respectively (see Fig I.7). NaTI assumes complete electron transfer from the more 

electropositive sodium (Na) to the more electronegative thallium (TI), just as in real ionic 

salts such as NaCl.   

The difference is that the resulting anions do not necessarily achieve an electronic octet as 

isolated species but may rather bond to each other in order to do so. Each TI atom forms four 

homo nuclear bonds with a tetrahedral arrangement of neighbors. Thus, the TI atom forms an 
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electron octet.  The Na
-
 ions, owing to their small dimensions can be considered isolated and 

inserted in the holes of the TI framework. Since the TI-TI bond is two electrons, to form four 

bonds, the TI atom must acquire one more electron, which is provided by the Na atom. TI
-
 in 

Na
+
TI

-
 behaves like an element of the group to the right, group 14, and forms  a diamond 

network, typical for the elements of that  group, that is stuffed by the Na
+
 cations. Thus, the 

characteristic ionic character of such phases, Na
+
TI

-
, gave them the name polar intermetallic 

phases. 

 

Fig I.7 Crystal structure of NaTI [21] 

 

I.5.2 Characteristics of Zintl phases 

In a more detailed description and according to Nesper (1990), the criteria for defining the 

Zintl phases may be summarized in the following points [5]: 

1. The Zintl phases can be described within the group of normal valence compounds and a 

well-defined relationship can be assumed within their electronic and chemical structures 

(certain aspects of their structures satisfy electron counting rules). 

2. Zintl phases are closed-shell compounds, for most of these compounds short interatomic 

contacts represent two centers two electrons bonds and the octet rule is fulfilled for both 

isolated cations and polyanions.  

3. Zintl phases are semiconductors. The band gap limit is taken at 2.0 eV, or, at least, they 

show increasing electrical conductivity with increasing temperature. 

4. Most Zintl-phase compounds are brittle.  

5. Zintl phases are mostly diamagnetic, but can be paramagnetic. However, they should not 

show temperature independent Pauli paramagnetism, as is observed for normal metals. 
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Criteria (1) provide the connection to the general class of intermetallics. Requirement (2) 

needs to be explained in some more detail, especially the meaning of number of electrons 

needed for covalent bonding. For structures with normal 2- center-2-electron localized bonds 

all atoms follow the octet rule.  While for compounds with delocalized bonding, on the other 

hand, the valence rules are different. The bonding electrons in compounds with deltahedral 

clusters are calculated by Wade's rules [66] that have been developed for the borane cages but 

also work equally well for naked main-group clusters. Moreover, there are combinations of 

the two compounds that contain networks of deltahedral clusters bonded to each other via 

localized bonds, and the sum of bonding electrons for such systems will include the electrons 

for cluster bonding, those for inter-cluster bonding, and the lone pairs. 

In addition to the “observable” criteria, the calculated electronic structures of Zintl phases 

typically show that the bonding and nonbonding states are completely occupied and separated 

from the empty, anti-bonding states by not more than 2 eV. As the electronegative component 

progresses from the right to the left of the Zintl border, this energy gap approaches zero, but 

the chemical system retains important characteristics of Zintl phases, “metallic Zintl phases” 

[50]. See Fig I.8 

 

Fig I.8 Idealized density of states (DOS) of metals, conventional intermetallic phases and 

Zintl phases.  Shaded regions represent occupied states [50]. 

 

I.5.3 Different groups of Zintl phases 

Sevov [86] presented typical groups of Zintl phases, these are: 

 Zintl phases with delocalized bonding 

 Zintl phases with interconnected (Homo- and hetero-atomic) clusters 

 Zintl phases with localized bonding 
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I.5.3.1 Zintl phases with delocalized bonding:  

  Isolated Clusters: corresponding to isolated deltahedral clusters, mainly of the elements of 

the 13
th

 and 14
th

 groups, associated with the borane cages and their derivatives type B12H
-2

12, 

B10H
-2

10 (see Fig I.9) [67-68].  

 

Fig I.9 Structures of B12H10
2-

 and B12H
2-

12 famous boron hydride clusters [68] 
 

The bonding electrons in such species are delocalized. Consequently, the electronic 

requirements in such species cannot be rationalized with simple 2-center-2- electron bonds 

but rather that it is achieved through delocalized electrons that follow Wade’s rules. This 

resulted in the structural characterization of E9
3-

, E9
4-

, and E5
2-

 (E = Ge, Sn, Pb), As7
3-

, Sb7 
3-

, 

As11
3-

, Sb11
3-

, Sb4
2-

, and Bi4
2-

, as well as several other species (Fig I.10). 

 

 

Fig I.10 Some of the main-group anionic clusters crystallized from solutions with sequestered 

alkali-metal cations: (a) E9
3-

and E9
4-

 for E =Ge, Sn, Pb; (b) E5
2-

 for E =Ge, Sn, Pb; (c) As7
3-

 

and Sb7
3-

 ; (d) Sb4
2-

 and Bi4
2-

. Clusters of silicon with shapes that correspond to those in (a) 

and (b) were isolated recently [69-71]. 

As shown in Fig I.11, the relation between the total electron count and the number of skeletal 

electrons require 2n+2 (closo "cage"), 2n+4 (nido "nest"), and 2n+6 (arachno "spider web") 

electrons for bonding, respectively, where n is the number of vertices of the cluster. For 

example, E9
4- 

species are nido clusters with 2n+4 = 22 cluster-bonding electrons (each group 
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14 vertex provides 2 electrons) that can be described either as monocapped square antiprisms 

or as distorted tricapped trigonal prisms [72-74]. 

 

Fig I.11 Borane-type clusters held together by 13 electron pairs have shapes based on the 

icosahedron. This is complete (closo) with 12 skeletal atoms, as in C2B10H12or [B12H12]
2−

: 

nest-like (nido, one vacancy) with 11 skeletal atoms, as in [C2B9H11]
2−

; and cobweb-like 

(arachno, two vacancies) with 10 skeletal atoms, as in [B10H14]
2−

 [72-74]. 

 

 Example: Elements of group 14: 

As shown in Fig I.12, structure Cs4Ge9, was the first zintl phase with isolated 9-atom 

deltahedral clusters. The clusters Ge9
4- 

are mono-capped square anti-prismatic, nido 

deltahedra. It combines the largest cation, Cs, and the smallest element of this group, Ge, for 

which a 9-atom cluster has been characterized from solution [75].  

E9
4-

 clusters cannot exist in neat solids due to the mismatch of large clusters and small cations, 

and therefore the best chance for formation of such species had the smallest clusters combined 

with the largest cations. With the knowledge that at least Ge9
4-

 exist in neat solids it was more 

than logical to test the possibilities for similar clusters of the heavier analogs Sn and Pb. Zintl 

phase Cs4Pb9, Rb4Ge9, and K4Pb9 are Zintl cluster anions of the same type and geometry [76-

80]. 
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                                           (b)                                                      (a)          

Fig I.12  a- The structure of Cs4Ge9.              b-The clusters Ge9
4- 

are nido delta-hedra with the 

shape of mono-capped square anti-prisms [71-75]. 

 

Fig I.13 General view of the structure of zintl phase  K4Pb9, showing the two type of Pb9
4-

 

clusters: (a) the A-type, a monocapped square antiprism, and (b) the B-type, an elongated 

tricapped trigonal prism [80].  

 Example: elements of group 13: 

The first cluster of this group was found in a phase which is not exactly a true Zintl phase 

('almost Zintl phases' or 'metallic Zintl phases) and the cluster itself is not of borane-type 

geometry. The important entrée into new hypoelectronic clusters that are achieved through 

distortion, and the most common example among the trielides, is In11
-7

. It is an 11 atom 
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cluster of indium, In11
7-

 found in the compound K8In11, shown in Fig I.14 [69-84]. A general 

view (Fig I.13) of the structure of zintl phase K4Pb9, showing the two type of Pb9
4-

 clusters: (a) 

the A-type, a monocapped square antiprism, and (b) the B-type, an elongated tricapped 

trigonal prism [95].  

The discrepancy between charge and number of cations means that there is an extra electron 

per formula. So, it is not a true Zintl phase. Nevertheless, the cluster is deltahedral and 

exhibits delocalized bonding. Another example is K8 [In10Hg] with the same 11-atom cluster 

as in K8In11, but with one indium atom substituted by Hg [81].  Due to the substitution the 

cluster [In10Hg]
8- 

assumes charge 8-, and the compound is a true Zintl phase. Another 

example, the substituted, hetero-atomic, 11-atom clusters represented by [Tl9Au2]
9-

, 

[Tl8Cd3]
10-

  

 

Fig I.14 [110] section of the rhombohedral structure of K8In11 [82-83] 

 

I.5.3.2 Zintl phases with interconnected (Homo- and hetero-atomic) clusters:  

Mainly given by alkali metals and 13
th

 group elements. Generally in these compounds two 

types of bonding are combined: delocalized within the clusters (endo-bonds) and localized 

(2c,2e exo-bonds) between them.  The intercluster bond distances (ero-bonds) are shorter than 

those within the clusters (endo-bonds) since the former are 'normal' 2-center-electron bonds 

while the latter is delocalized bonding. Many of the network compounds have a few extra 

electrons (or holes) relative to those needed for the bonding. Such compounds can be referred 

to as 'metallic Zintl phases'. 

  Exemple of elements Group 13 

A good example of a gallium network is the structure of KGa3, which contains 8-atom 

clusters of gallium, each with 8 exo-bonds, and isolated 4-bonded gallium atoms, the two 
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species in equimolar ratio; see Fig I.15. The clusters are of the closo-type and therefore 

require 18 electrons for skeletal bonding. As well each exo-bond is a normal (2c, 2e) bond, 

half of the electrons needed for them. The total number of electrons required for the endo- and 

exo-bonding of the cluster is therefore 26. The eight gallium atoms of the cluster bring 24 

electrons and the charge of the cluster is - 2 (Ga8
2-

). The 4-bonded isolated gallium is in 

tetrahedral coordination and therefore has a formal charge of 1 -, (Ga
-l
), in order to achieve an 

octet [84].   

 

 

Fig I.15 The structure of KGa3 made of interconnected gallium (dark spheres) 8-atom cioso 

deltahedra and isolated atoms [84]. 

More complex structures Rb2ln3, are also indium networks made up of interconnected 

deltahedral clusters, layers of 4-bonded octahedra made of indium (Fig I.16). The electron 

count is straight forward: 14 for skeletal bonding, 4 for lone pairs on the two non-exo-bonded 

vertices, and 4 for the 4 exo-bonds. This totals 22 electrons required for bonding while the 6 

indium atoms of the cluster provide only 18 electrons. The additional 4 electrons come from 

the 4 rubidium atoms, and the compound is electronically balanced [85]. 
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Fig I.16 The structure of Rb2ln3 made of layers of 4-bonded closo octahedra of indium and 

separated by the rubidium cations (isolated spheres) [85-86]. 

 

I.5.3.3 Zintl phases with localized bonding:  

The compounds in this category contain only regular 2-center-2-electron bonds between the 

p-elements. The majorities of compounds involve at least two p-elements of different groups 

and alkali metals, and are therefore mostly ternaries. Many of the compounds contain 

tetrahedral units made of one of the p-elements and centered by the other, and often share 

corners or edges with each other. The basic structural feature of these compounds is the 

composition of weakly coupled SnSb4 tetrahedra and intercalated alkali or alkaline earth 

cations as shown in Fig I.17-a. For example, isolated Sn centered tetrahedra of antimony, 

[SnSb4]
8-

, are found in Na8SnSb4.  Chains and higher dimensional motifs of corner sharing 

tetrahedra are found in many compounds like Na5SnSb3 (Fig I.17-b). All these compounds 

have simple bonding, are easily understood by simple octet rule consideration. 
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Fig I.17 Crystal structures of Zintl-phase compounds containing SnSb4 tetrahedra [87]: 

                        a- Na (K)8 Sn Sb4                                                           b- Na5SnSb3.  

 

The Sn atoms (blue spheres) sit at the centers of the tetrahedra formed by Sb atoms (red 

spheres). The interstitial Na, K cations are all depicted as smaller light spheres. For Na5SnSb3, 

the Na cations are not shown for clarity and the SnSb4 tetrahedra are vertex shared to form 

chain like structures.  

 Exemple Group I4 

Most known clathrate compounds are based on the group 14 elements Si, Ge and Sn (Tetrel 

or Tt) and predominantly crystallize into two structure types [88]. These Tt-framework atoms 

are tetrahedrally coordinated and can be substituted by group 13 and 12 elements, as well as 

late transition metals (M), and the resulting cages are partially or fully occupied by guest 

atoms (A), such as alkali metals, alkaline-earth metals, or the rare-earth metals Ce and Eu 

[96]. The most common structure for the clathrates is type-I with the nominal composition A8 

(M, Tt)46 followed by type-II with the general formula A24(M, Tt)136. 

The structure of type-I boasts 20 and 24 atom cages (Fig I.18-b), while the structure of the 

type-II clathrates is based upon 20 and 28 atom polyhedral (Fig I.18-a). Due to these 

differences in their frameworks, for the type-I compounds, a complete occupation of all cages 

can be achieved either with one or two kinds of guest atoms, e.g., (K or Rb)8Ga8Si38 [90],  

K6Eu2(Zn or Cd)5Ge41 [91], and (Rb,Eu)8InxGe46–x [92], while two types of different guest 

atoms will be preferred for the complete and ordered filling of both cavities in the type-II 

compounds. Some examples, illustrating this type of clathrates  are (Cs or Rb)8Na16(Si or 

Ge)136[89,93], Cs8Na16Ga21Si115 [94], Cs8Na16Ag6.7Ge129.3 [95-96], and Cs8Ba16Ga39.7 

Sn96.3 [97]. Four bonded atoms of group 14 should have zero formal charge, and therefore 

https://www.mdpi.com/2304-6740/2/1/79/htm#B1-inorganics-02-00079
https://www.mdpi.com/2304-6740/2/1/79/htm#B10-inorganics-02-00079
https://www.mdpi.com/2304-6740/2/1/79/htm#B12-inorganics-02-00079
https://www.mdpi.com/2304-6740/2/1/79/htm#B14-inorganics-02-00079
https://www.mdpi.com/2304-6740/2/1/79/htm#B6-inorganics-02-00079
https://www.mdpi.com/2304-6740/2/1/79/htm#B16-inorganics-02-00079
https://www.mdpi.com/2304-6740/2/1/79/htm#B17-inorganics-02-00079
https://www.mdpi.com/2304-6740/2/1/79/htm#B18-inorganics-02-00079
https://www.mdpi.com/2304-6740/2/1/79/htm#B20-inorganics-02-00079
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both clathrates should be `metallic Zintl phases' considering a full transfer of electrons from 

the alkali metal atoms to the framework atoms. 

 

 

                                 -a-                                                                -b- 

Fig I.18 a- View of the polyanionic framework of clathrates with type-II structure (yellow: 

pentagonal dodecahedra; red: hexakaidecahedra). 

               b- View of the polyanionic framework of clathrates with type-I structure (yellow: 

pentagonal dodecahedra; purple: tetrakaidecahedra). 

 

I.6 Conclusion 

The Zintl phases form the link between classical valence compounds and intermetallic phases, 

the gradual change of chemical bonding passing from one chemical family to the other can be 

studied experimentally and theoretically in Zintl phases. At the border between Zintl phases 

and intermetallic compounds the typical properties of Zintl phases diminish smoothly and 

metallic conductivity appears. Brittleness, however, seems to be a good criterion for a Zintl 

phase. In other words, in a brittle substance most, if not all valence electrons, take part in 

chemical bonding according to the Zintl-Klemm concept. Hence, metallic conductivity based 

on a small number of charge carriers (electrons or holes) would not contradict the general 

chemical description of these compounds. Even if metallic properties occur and the basic or 

extended Zintl-Klemm concept do not apply exactly, most of the corresponding phases show 

electron counts very close to the Zintl-Klemm concept. Both the true Zintl phases and the 

'metallic Zintl phases' are classes of fascinating compounds, some with clusters presenting 

delocalized bonding and some with normal localized bonds. The variety and structural 



Chapter I                                                                                                            Zintl Phases  
 
 

31 
 

richness is quite obvious, and this is only a small percent of all possible combinations to be 

explored, so there are definitely many new and more exciting compounds to be found. 
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Preface 

     In this chapter we present the theoretical and experimental study of physical properties of 

Zintl phases KAsSn. We expose, firstly the previous experimental works dealing with KAsSn 

compounds; especially those for structural properties of KAsSn, and then we displayed 

theoretical study about electronic properties. Furthermore we discuss our contribution which 

concentrates on the fundamental properties of Zintl phase KAsSn.  In the end of this chapter 

we give a description of the calculated technics used in our work. 

 

II.1 Introduction 

     Although about three quarters of all elements are metals or semimetals, the binary and 

ternary compounds of such elements have not attracted the same degree of attention.  

Chemists have, over many years, given an interest to compounds containing nonmetals. One 

of the major goals of solid state chemists has been to achieve a comprehensive understanding 

of the interrelationships among stoichiometry, crystal structure, and physical properties of 

solid state compounds [1-3]. Based on fundamental understanding of these relationships, we 

can create intermetallic materials which exhibit precisely designed crystal structures with 

properties specifically tuned for certain purposes. The synthesis of intermetallic compounds 

of the type AxBy, where A is an electropositive metal from group I or II and B is main group 

IV or V metal or semimetal, was initiated by Eduard Zintl and gave rise to a range of 

materials called Zintl phase. Zintl postulated that the stoichiometries and structures of these 

deeply intermetallic phases which sometimes have metallic luster can be interpreted by an 

ionic concept whereby the electropositive metals A lose their valence electrons to the 

semimetals B, which gain as many electrons as are necessary to complete their octets.  

In recent years, new techniques have been developed to synthesize Zintl phases in the solid 

state. Since the X ray diffraction studies of Zintl et al [4-5], these members of the family of 

intermetallic compounds have been of special interest because some of their chemical 

properties are unusual for intermetallic phases. Many experimental investigations have been 

reported for binary and ternary compounds. Besides the crystal structure, the thermodynamic 

behavior, electrical conductivity, magnetic susceptibility, elastic constants have been studies.  

Zintl phases are those intermetallic compounds which crystallize in typical non-metal crystal 

structures, one such example is Ternary Zintl phases KSnX (As, Sb) [6-7]. The crystal 

structures of KAsSn exhibit the same structure configuration as KSbSn , where it includes 

three-bonded pyramidally Sn and As atoms which consist of corrugated layers isostructural to 

elemental As with alternating Group IV and V elements. The potassium (K) cations were 
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located between them. KSnSb crystallizes in a hexagonal structure with two formula units in 

the unit cell, see Fig II.1 and II.2. 

The resulting electronic configuration, ns2np3, indicates As
0
 and Sn

-
 (pseudo element 

isostructural to arsenic). Due to the lower electronegativity of (Sn), the description of the 

distribution of formal oxidation states as K
+
Sn

-
As

0
 appears unfounded. An alternative 

description of the electronic structure is based on the ionic approach to the Sn-As bond. With 

this extreme polarization, the electronic configurations are 4s
2
4p

6 
for As and 5s

2
5p

0
 for Sn. 

However, the slight difference between the electronegativities of tin (Sn) and arsenic (As) 

rules out the possibility of the ionic configuration K
+
Sn

2+
As

3-
. The real distribution of 

oxidation states is intermediate between these two extreme schemes; the description K
+
 (Sn 

As)
 –

 [8-9] is the most reasonable. Also the isostructural compound KSnSb can be represented 

as K
+
 (SnSb)

- 
. These structures can be interpreted in terms of the Zintl concept [4,10,11] 

assuming a charge transfer of the valence electrons of the alkali/alkaline earth atoms to the Sn 

atoms, so giving anionic substructures [SnAs]∞
2 -   

and
  [SnSb]∞

2 -   
in which the elements follow 

the octet rule.  

   

(a)                                                                           (b) 

 

Fig II.1  a- A perspective view of the KAsSn structure.  

               b- A projection of the KAsSn structure on to the (112̅0) plane. 
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Fig II.2 Fragment of the crystal structure of KAsSn, the corrugated layers of Sn and As atoms 

separated by K atoms are shown. 

 

II.2 Previous works  

     Several theoretical and experimental works which discussed the physical properties of 

KAsSn have been cited in the literature. We mention the most important contributions, as 

follows; Lii & Haushalter [8] and Asbrand et al [12] determinated the crystal structure of 

KAsSn and the distance between atoms by X ray powder diffraction. Schmidt et al [9] 

calculated the electronic properties of KAsSn included band structure and density of states 

using LDA approximation according to Hedin and Lundquist [13], and the ASW method [14]. 

We clarify the contributions of these authors, considering the structural and electronic 

structure properties of zintl phase KAsSn. 

II.2.1 Practical experience 

     Structural properties of KAsSn were studied by Lii & Haushalter [8]. The compounds 

KAsSn was prepared in two steps.  

1-  KSn was prepared by reacting potassium metal with tin metal  in an alumina crucible at 

about 280°C for 1 h under 1 atm He.  

2-  KAsSn was prepared by heating a mixture of KSn and As in an alumina crucible at 

590°C for 24 h under 1 atm He.  

Lii & Haushalter [8] found that KAsSn crystallized as shiny metallic plates. Therefore, the 

crystal structure and purity of the compounds was established by X-ray powder patterns using 

a Philips powder diffractometer and CuKα1 radiation [8]. Silicon powder was mixed with all 

samples for calculating the observed d-spacings and the unit cell parameters. The X-ray 

http://www.sciencedirect.com/science/article/pii/S0196890408002999#bib13
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powder diffraction investigations indicate that the tin and arsenic atoms in KAsSn are ordered 

in hexagonal structure, the tin and arsenic atoms were assumed to be at 2a and 2b special 

positions of the space group P63mc (No.186) respectively [15]. The observed bond lengths d 

(Sn-As) (2.715 A°), d (As-As) = 2.517 A° [8] can be confirmed by the earlier findings in [16]. 

Various practical considerations associated with these techniques have been also considered 

in more detail by Klein & Eisenmann [15] and Asbrand et al [12] and carried out similar 

studies for determining the structure properties of Zintl phase KAsSn. 

Tin 119 Mössbauer spectroscopy measurements recorded from Zintl phase KSnAs would be 

very informative either on the problem of disorder or in obtaining the experimental evidence 

of the oxidation states of Sn in this compound. Asbrand et al [12] studied the nature of the 

banding using Tin 119 Mössbauer spectroscopy [12].  He suggested that the shorter tin arsenic 

distances give raise to a more distorted octahedral array around tin of three pnictogen and 

three potassium neighbors. So he concluded that the bonding is more metallic in character. 

The hexagonal unit cell parameters, the atomic positions and some selected interatomic 

distances are displayed in Table II.1. 

 

 

 

TABLE II.1 The unit cell parameters for KAsSn 

 

II.2.2 Theoretical aspect 

    Theoretically, few works were interested in the electronic properties of the Zintl phase 

KAsSn. They evaluate the band structure and density of the state at zero pressure.  

II.2.2.1 Electronic properties 

     Schmidt et al [9] have used the local density functional approximation (LDA) [13]. 

According to Hedin and Lundquist [14], together with the augmented spherical wave (ASW) 

method (II) for the numerical computations to obtain the self-consistent energy band 

structures, the partial density of states and covalent, ionic contributions to the chemical bonds 

for ternary Zintl phase KAsSn.   

The unit cell 

parameters  

Interatomic 

Distance 

 

Position parameters  

Hexagonal 

P63mc 

Sn-As     2.715 A° atom x y z 

a = 4.1032   A° K’-As     4.227  A° K 1/3 2/3 0 

c = 12.845   A° K’-Sn’   4.245 A° Sn 0 0 0.2742 

V = 187.30  A
3
 K-As    3.230   A° As 1/3 2/3 0.6709 

http://www.sciencedirect.com/science/article/pii/S0003687007000142#tbl1
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II.2.2.1.1 Band structure, partial and total density of states of KAsSn 

     Schmidt et al. [9] calculated the partial and total density of states (DOS) of KAsSn on one 

hand and band structure on the other hand; the calculated results are shown in Fig II.3 and 

II.4.  

In Fig II.4 we can see the band structure of the Zintl phase KAsSn.  He found that the 

occupied valence bands below the Fermi energy EF (sAs to PSn-As) are separated by a small 

band gap of about 0.1 eV from the unoccupied conduction bands, so it was concluded that this 

compound has small band gap with electron transfer from potassium to tin-arsenic. 

As was pointed in his work, the nature of the energy bands can be deduced from the partial 

densities of states nv,l (E) which are shown for KSnAs in Fig. II.3. As it is remarked the two 

lowest lying valence bands labeled SAs correspond to the atomic 4s electrons of As, because 

the partial density of the 4s-like states nAs,s (Fig. II.3.d) is the main contribution to n (E) for 

these states. While the two sAs-like bands are separated by an energy band gap of about 1.5 eV 

from the other valence bands. Both this energy separation and the dominance of nAs,s 

indicate that the s electrons of As do not contribute significantly to the chemical bond in 

KSnAs. The same finding holds for the bands above the sAs-like bands, which are the two 5s-

like bands of Sn, labeled sSn.   

Furthermore, we can observe from Figs (II.3. c) and (II.3 .d) that both nSn,p and nAs,p contribute 

significantly to the total density of states. As a result the maxima nSn,p and nAs,p are at the same 

energy values and the bonding mechanism corresponding to these energy bands can be 

described by strong covalent bonds between Sn and As. 

From the calculated partial density of states (DOS) for the K atom, we can see from Fig. II.3b 

a small contributions of nK,l(E) within the pSn-s,-like bands, so no covalent or metallic bonds 

exist between K and Sn or As.  The occupation of the 4s-like states of K is low and the 

potassium substructure should have cationic character. However, the ionic character is much 

less pronounced than in a typical ionic crystal, because the band gap between the valence and 

conduction bands is distinctly smaller than in ionic crystals.  

Consequently, the mentioned studies yield fairly accurate band gap energies. It is noted that, 

for better study of the electronic properties it is very important to obtain best band structure. 
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Fig II.3 Density of states as a function of E for the valence energy bands of KAsSn [9]  
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Fig II.4 Electronic band structure of the valence states of KSnAs [9] 

 

The calculated results [9] will be compared with the results found for NaTI [17] and our 

obtained results for the electronic properties of Zintl phase KAsSn. 

 

II.3 Comparison with NaTl  

     Schmidt et al [9] have compared the results for KAsSn with those found for NaTI in 

Reference [17], which is the prototype of the B32-type Zintl phases. He found that the density 

of states shows a sharp minimum at the Fermi level EF. Furthermore, the partial density of 

states of Na is distinctly smaller than expected for covalent bonded sodium. Therefore in both 

cases, NaTI and KAsSn compounds have two common properties: a charge transfer from the 

alkali/ alkaline earth substructure to the more electronegative elements and, additionally, n/2 

(almost) fully occupied valence bands separated from the (n/2 + 1)
th

 energy band by (nearly) a 

band gap. It is concluded that there is no band gap between the occupied and unoccupied 

electronic states. He thought that this metallic character is due to interlayer interaction of the 

As atoms. Therefore the layer structure forms for large interlayer distances saturated bonds. 

The occupied and unoccupied p-like band states of As are separated, and the bonding 

mechanism is similar to the bonding mechanism in [SnAs]∞
2  layers. 
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II.4 Our contribution about physical properties of Zintl phase KAsSn 

     On the theoretical and experimental side, few works were interested in structural and 

electronic properties of this compound, our understanding of electronic properties and their 

behavior under external pressure effect is satisfactory and accurate. 

To the best of our knowledge no experimental or theoretical studies are available in the 

literature for the elastic and optical properties of KAsSn compound.  

Therefore, the goal of this work is to give an important information concerning fundamental 

properties of Zintl phase KAsSn, and then to show the effective use of this compound in 

technological applications especially in optoelectronic devices. 

II.5 Calculation inputs  

     In our study first-principles calculations on KAsSn were performed by CASTEP code [18] 

within the framework of density functional theory (DFT). The exchange and correlation 

functional was treated by generalized gradient approximations developed by Wu-Cohen 

(GGA-WC) [19]. The interactions between ions and electrons are described by employing the 

Vanderbilt ultrasoft pseudo-potential [20]. All atomic positions in our model have been 

relaxed according to the total energy and force using the Broyden-Fletcher-Goldfarb-Shanno 

(BFGS) [21] scheme, based on the cell optimization criterion (the maximum ionic Hellmann–

Feynman force within 0.01 eV.Å
-1

, maximum stress of 0.02 GPa, maximum displacement of 

5˟10
-4 

Å and self-consistent convergence of the total energy of 5˟10
−6 

eV/Atom. The K 3p
6
 

4s
1
, Sn 5s

2
 5p

2 
and As 4s

2
 4p

3
 electron states are explicitly treated as valence electron states. 

 In order to ensure convergence of the computed structures and energetics, the cut off energy 

of plane wave is set at 330 eV for KAsSn. The Brillouin zone integration uses Monkhorst–

Pack scheme [22] method for hexagonal structure optimization of 12124 mesh for 

optimizing the geometry, the elastic constants and  the density of states (DOS), while 

24×24×8 mesh is used for calculation of the optical properties. The elastic constants were 

determined by applying a set of given homogeneous deformation with a finite value and 

calculating the resulting stress with respect to optimizing the internal atomic freedoms [23].  

 

II.6 Conclusion 

We have cited in this chapter previous theoretical and experimental investigation concerning 

the fundamental properties of the Zintl phase KAsSn. In these previous works using the Zintl 

concept to interpret the chemical bonds in KAsSn, the arrangement of the atoms in this 

compound suggests that the almost free valence electrons of K are transferred to the Sn/ As 
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substructures to form saturated covalent bonds between Sn and As according to the octet rule. 

This compound can be understood within the Zintl formalism.  If this picture is correct, we 

expect distinct nonmetal or semimetal behavior for this compound concerning properties like 

conductivity, magnetic susceptibility. The band structure results support these assumptions. 

First, the electronic valence states in the compounds are fully occupied energy bands 

separated by a small energy gap from the unoccupied energy bands. Second, a charge transfer 

is indicated by the finding that the partial density of states of Sn and As are exclusively the 

dominant contributions.  
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CHAPTER   III 

RESULTS AND DISCUSSION 

          Nothing amuses more harmlessly than computation and nothing is oftener applicable to real 
business or speculative enquiries.  A thousand stories which the ignorant tell, and believe, 
die away at once, when the computist takes them in his grip.             

Samuel Johnson 
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Preface 

    In this chapter, a first-principles study of ternary Zintl phase KAsSn compound using 

density-functional theory (DFT) method within the generalized gradient approximation 

developed by Wu-Cohen (GGA-Wc) has been performed. Based on the optimized structural 

parameter, the electronic structure, elastic and optical properties have been investigated. The 

calculated lattice constants agree reasonably with the previous results. The effect of high 

pressure on the structural parameters has been shown. The elastic constants were calculated 

and satisfy the stability conditions for hexagonal crystal. These indicate that this compound is 

stable in the studied pressure regime. The single crystal elastic constants (Cij)  and related 

properties are calculated using the static finite strain technique, moreover the polycrystalline 

elastic moduli such as bulk modulus, shear modulus, micro-hardness parameter Hv, Young’s 

modulus and Poisson’s ratio were estimated using Voigt, Reuss and Hill’s (VRH) 

approximations. The elastic anisotropy of the KAsSn was also analyzed. On another hand the 

Debye temperature was obtained from the average sound velocity. Electronic properties have 

been studied throughout the calculation of band structure, density of states and charge 

densities. It is shown that this crystal belongs to the semiconductors with a narrow gap of 

about 0.34eV. Furthermore, in order to clarify the optical transitions of this compound, linear 

optical functions including the complex dielectric function, refractive index, extinction 

coefficient, optical reflectivity, absorption coefficient and loss function were performed and 

discussed. 

 

III.1 Crystal structure and lattice constants 

III.1.1 Study at zero pressure 

    The ternary zintl compound potassium arsenide tin, KAsSn, has an KSrSn type structure 

and crystallizes in the hexagonal space group P 63/mc (No.186), with a=b=8.6374 Å and 

c=9.7209Å. Its structure has been determined through X-ray diffraction analysis [1].  As 

shown in Fig III. 1, the conventional unit cell of KAsSn contains 6 atoms (Z=2, K=2, Sn=2 

and As =2), the K atoms occupy at 2b Wyckoff site (1/3, 2/3, 0), the Sn atoms at 2a site (0, 0, 

zSn), and As atoms on 2b site (1/3, 2/3, zAs). The structure is thus defined by two lattice 

parameters a and c, and the internal structural parameter z, for the Sn and As atoms 

respectively.  
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Fig III.1 The unit cell of the hexagonal KAsSn lattice. 

 

 

The geometry optimized structural parameters at zero pressure   (a0, c0, V0, (c/a)0, z0As, z0Sn), 

bulk modulus B and its pressure derivative B’ were presented and compared with 

experimental data in Table III.1, where they are shown to agree with the available 

experimental values [1-2]. A small difference could be observed between calculated and 

experimental lattice parameters. The computed lattice constants a0, c0, V0, z0 (As), z0 (Sn), on 

the other hand show a reduction of 0.87%, 1.63%, 0.06%, 0.51%, and 0.24% respectively. 

Our results show excellent agreement with previous experimental [1-2] data, which 

demonstrates the accuracy of our simulation. 
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KAsSn Our work Experiments 

a0 (Å) 4.138 4.103 
(1)

 

4.102 
(2)

 

c0 (Å) 12.602 12.845 
(1) 

12.816 
 (2)

 

(a/c)0 0.3283 0.319 
(1) 

0.320 
(1)

 

V0 (Å3) 186.886 187.30 
(1) 

186.76 
(2)

 

Z0(As) 0.676 0.6709 
(1) 

0.6795
(2)

 

Z0(Sn) 0.283 0.2742 
(1)

 

0.2823
(2)

 

B(GPa) 30.5 - 

B
’
 3.08 - 

Sn– As 2.745 2.715 
(1) 

271.0
(2)

 

K-Sn 3.64 3.745 
(1) 

366.0
(2)

 

K-As 3.246 3.230 
(1) 

330.2
(2)

 

 

Table III. 1: Summary of calculated structural parameters (a0, c0, (c/a)0, z0 and V0), bulk 

modulus B (GPa), as well as the pressure derivative B (GPa) for KAsSn compared with 

available previous experiment and other theoretical results. 

 

III.1.2 Study under pressure effect (equation of state construction) 

    The theoretical equilibrium bulk modulus B and its first order pressure derivative B’ are 

determined by fitting the calculated unit cell volume at fixed values of applied hydrostatic 

pressure in the range from 0 to 20 GPa to the  Birch–Murnaghan equation of state (EOS) [3].  

However, no experimental or theoretical studies on the B and B’ of this compound are 

available in the literature so far. 

In Fig III.2 (a) we exhibit the pressure dependence of normalized lattice parameters (a/a0, 

c/c0) and volume V/V0 for KAsSn. It can easily be seen that the relative parameters decrease 

with the pressure increasing from 0 GPa to 20 GPa. The changes of the ratios of (c/a)0 for 

KAsSn keep almost constant with the pressure change. Therefore, it is seen that the c-axis is 

the most compressible and the a-axis is the least compressible under pressure actions, that is 

to say, the effect of pressure on c-axis is much more larger than  a-axis. 

 The a/a0, c/c0 and the normalized cell volume V/V0 as functions of pressure can be well 

described as third order polynomials:  
𝑋(𝑃)

𝑋0
= 1 + 𝛽𝑥𝑃 + ∑ 𝐾𝑛

3
𝑛=2 𝑃𝑛 
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(
𝑎

𝑎0
) = 0.9994 − 0.0078𝑃 + 2.851 × 10−4𝑃2 − 4.140 × 10−6𝑃3 

(
𝑐

𝑐0
) = 1 − 0.0174𝑃 + 7.5136 × 10−4𝑃2 − 1.5934 × 10−5𝑃3 

(
𝑉

𝑉0
) = 0.9994 − 0.0324𝑃 + 0.001 × 10−4𝑃2 − 2.7954 × 10−5𝑃3 
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Fig III.2 (a) The normalized a/a0, c/c0, V/V0 and the axial ratio (a/c) 0 as a function of 

pressure at T = 0. 

               (b) Variation of the normalized bond lengths between the atoms with pressure. 

 

The bulk modulus for the hexagonal crystal may be estimated from the linear 

compressibilities βx along the a- and c-axes as follows B=1/ (2βa+β) [4]. Meanwhile using the 

volume compressibilities, the bulk modulus can be obtained by B=1/β. The calculated results 

are 32.25 GPa and 31.25 GPa respectively. These values are in good agreement with those 

obtained by Birch-Murnaghan equation of state (EOS).  

Selected interatomic distances from KAsSn crystal structure under ambient conditions are 

also given in Table III.1. The observed bond lengths Sn-As, K-Sn and K-As can be 

successfully estimated based on previous experimental and theoretical data [1, 2, 5] by the 

following distances: 2.745Å, 3.64 Å and 3.246 Å for Sn-As, K-Sn and K-As respectively. In 

this structure the K atoms are coordinated by three Sn atoms and together by three As atoms 

in a distorted octahedral geometry, and it is of interest to compare bond lengths in these 

different environments [5]. Moreover, according to Fig III.2 (b), the normalized values of the 

bond lengths LSn-As, LK-Sn and LK-As have been plotted as function of pressure. By fitting the 

calculated data (L–P) to the third order polynomial, we obtain their relationships: 

(
𝐿

𝐿0
)

As−Sn

= 0.99914 − 0.00529𝑃 + 2.02483 × 10−4𝑃2 − 3.96427 × 10−6𝑃3 
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(
𝐿

𝐿0
)

K−As

= 1.00126 − 0.01343𝑃 + 4.89192 × 10−4𝑃2 − 8.17488 × 10−6𝑃3 

(
𝐿

𝐿0
)

K−Sn

= 0.99929 − 0.01789𝑃 + 8.75249 × 10−4𝑃2 − 1.90863 × 10−5𝑃3 

Increasing pressure reduces the K-Sn bond length more than the K-As bond. However, The 

As–Sn bond length decreases gently under pressure. As a consequence, As–Sn bond is 

slightly less compressible than the K-As bond, whilst K-Sn bond has greater compressibility 

than K-Sn bond. 

 

III.2 Elastic properties 

III.2.1 Elastic constants (Cij), bulk modulus (B) and shear modulus (G) at zero pressure 

    The elastic constants of solids provide a link between the mechanical, physical and 

dynamical behavior of crystals and give important information concerning the nature of the 

forces operating in solids. Elastic constants can be calculated by applying small strains to the 

equilibrium unit cell and determining the corresponding variations in the total energy. In order 

to study the mechanical properties of KAsSn, we have calculated the elastic constants Cij, 

bulk modulus B, shear modulus G, Young’s modulus E and Poisson’s ratio ν from the 

obtained elastic constants according to the Voigt–Reuss–Hill approximation [6-8].  

Elastic properties of hexagonal KAsSn crystal can be described using five independent elastic 

constants (C11, C12, C13, C33, C44) since C66 = 0.5(C11 - C12). The calculated results at 0 K and 

zero pressure are illustrated in Table III.2.  It can be seen that the value of C11 is higher than 

C33 and C13 is slightly smaller than C12, this means that the resistance to the applied stress are 

high in the [1 0 0] direction than in the [0 0 1]. This signified that the KAsSn compound is 

more compressible along the c-axis than along the a-axis.  This is in accord with the response 

of a and c under pressure, shown in Fig III.2 and discussed above in section III.1. At present, 

no experimental or theoretical data for the elastic constants of KAsSn are available to be 

compared to our present theoretical estimation.  

 

Compound C11 C12 C13 C33 C44 C66 

KAsSn 59.11 19.49 18.60 46.60 16.21 19.80 

 

Table III. 2: The calculated elastic constants (Cij in GPa) for single cristal KAsSn at zero 

pressure. 
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The values of C12, C66, C13 and C44 are far smaller than that of C11, which reflects the weak 

resistance to shear deformation for the crystal. Essentially the crystal is elastically anisotropic. 

The requirement of mechanical stability for hexagonal crystals leads to the following 

restrictions on the elastic constants [9]:  

                            C11 > 0,  (C11 - C12) > 0, C44 > 0,  (C11 + C12) C33> 2C
2
13                     (III.1)      

                 

Within the pressure considered, the elastic constants obey these stability criteria indicating 

that KAsSn is mechanically stable. To the best of our knowledge, this study reports for the 

first time the elastic constant of this compounds. Once the single-crystal elastic constants are 

computed, the related properties of polycrystalline aggregates can be evaluated.  

The bulk modulus, shear modulus, Young’s modulus and Poisson’s ratio are the most 

interesting elastic properties for applications and are often measured for polycrystalline 

materials while investigating their hardness. 

The Voigt (V) and Reuss (R) bounds of the bulk modulus and shear modulus (BV, BR, GV, GR) 

in terms of the elastic constants Cij’s for an hexagonal structure are [10-11]: 

𝐵𝑣 =
2

9
(𝐶11 + 𝐶12 +

𝐶33

2
+ 2𝐶13)                                                                  (III. 2) 

𝐵𝑅 =
(𝐶11 + 𝐶12)𝐶33 − 2𝐶13

2 )

(𝐶11 + 𝐶12 + 2 𝐶33 − 4𝐶13)
                                                                   (III. 3) 

𝐺𝑣 =
1

30
(7𝐶11 − 5𝐶12 + 12𝐶44 + 2𝐶33 − 4𝐶13)                                           (III. 4) 

𝐺𝑅 =
5

2
{

[(𝐶11 + 𝐶12)𝐶33 − 2𝐶13
2 ]𝐶44𝐶66

3𝐵𝑣𝐶44𝐶66 + ((𝐶11 + 𝐶12 ) 𝐶33 − 2𝐶13
2 ))(𝐶44 + 𝐶66)

}                       (III. 5) 

The VRH mean values are obtained by BH = 1/2(BV +BR) and GH =1/2 (GV +GR).  

The Young’s modulus E is a measure of the stiffness of an elastic material and the Poisson 

ratio v reflects the stability of a crystal against shear. They can be obtained by using the bulk 

modulus and shear modulus [12]:  

𝐸 =
9𝐵𝐺

3𝐵 + 𝐺
                                                                                                                 (III. 6) 

𝑣 =
3𝐵 − 2𝐺

2(3𝐵 + 𝐺)
                                                                                                             (III. 7) 

The calculated results are shown in Table III.3. 
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It should be noted that the calculated bulk moduli of KAsSn is in accordance with those 

obtained through the fit to a Birch Murnaghan EOS. It is seen that BH>GH, which indicates 

that the parameter limiting the stability of hexagonal KAsSn is the shear modulus.  

 

Compound BR  BV  BH  GR  GV  GH G/B E v 

KAsSn 30.50  30.91  30.71  17.44  17.66  17.55 0.57 44.22 0.26 

Table III. 3: The elastic modulus B (GPa), shear modulus G (GPa), Young’s modulus E 

(GPa) and G/B, Poisson’s ratio (ν) for KAsSn using Voigt, Reuss and Hill’s approximations. 

The value of the Poisson’s ratio is indicative of the degree of directionality of the covalent 

bonds. The value of the Poisson’s ratio is small (v = 0.1) for covalent materials, whereas for 

ionic materials a typical value of v is 0.25 [13].  The calculated value of v for KAsSn is about 

0.26 at 0 GPa, indicating a considerable ionic contribution in intra-atomic bonding. The 

calculated results demonstrate that KAsSn is more stable against shear owing to its smaller 

value of Poisson’s ratio. The ductile or brittle nature of the materials may be distinguished on 

the basis of the Poisson’s ratio [14]. For a material to be brittle v must be ≤ 0.33, else the 

material is ductile. It is observed from Table III.3 that our calculated value of v lies above 

critical value showing that our compounds are brittle at ambient conditions. Another index of 

brittle nature can also be known from the GH/B ratio, which is presented in Table III.3. 

According to Pugh’s criteria, the high (low) GH/B ratio is associated with the brittle (ductile) 

nature of the materials [15]. The critical value separating ductility from brittleness is about 

0.57. This ratio is around 0.571 for KAsSn which clearly implying the slightly brittle nature 

of this material. As well as the calculated value of G/B for KAsSn is 0.571, which also 

indicate that the ionic bonding is suitable for this compound.  

III.2.2 Elastic constants, bulk modulus under pressure effect 

We further study the high pressure elastic behavior of the KAsSn by computing the elastic 

constants Cij, bulk modulus B and their variations with pressure, as shown in Fig III.3. 

The elastic constant C11 (C33) represents the elasticity in length. The elastic constants C12 (C13) 

and C44 (C66) are related to the elasticity in shape. C11 can change with the longitudinal stain. 

It is found that, C11, C33, C12, C13, C44 are susceptible to pressure (Fig III.3). Also it can be 

seen that the elastic constants, C11, C12, C13, C44 and C33, increase monotonically with the 

increasing pressure, but with different slopes. As well it can be seen that C33 < C11 in the 

whole range of pressure which implicates that the atomic bonds along the (1 0 0) planes 

between nearest neighbors are stronger than those along the (0 0 1) planes. As pressure 
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increases C11 varies largely under the effect of pressure as compared with the variation in C33, 

C12, C13, C44 and B. So C11, C33 and C44 are more sensitive to the change of pressure compared 

to B, C12 and C13. 

 

 

Fig III.3 Elastic constants Cij, bulk modulus B versus pressure for KAsSn 

 

Noticeably, Fig III.3 exhibits a quasi linear dependence between the elastic constants and 

hydrostatic pressure as the applied hydrostatic pressure ranges from 0 to 25 GPa. The second 

order polynomials describing the pressure dependence of the elastic constants and bulk 

modulus for KAsSn are given by the following expressions: 

C11 = 57.28396 + 6.12493𝑃 − 0.06891𝑃2 

C33 = 45.54261 + 4.92599𝑃 − 0.07907𝑃2 

𝐵 = 29.113 + 4.6235𝑃 − 0.0425𝑃2 

C44 = 19.2998 + 3.7635𝑃 − 0.00157𝑃2 

C12 = 20.4358 + 3.34615𝑃 − 0.01159𝑃2 

C13 = 16.7479 + 3.32917𝑃 − 0.025427𝑃2 

 

III.2.3 Anisotropy factor (A), hardness (Hv) 

    It is important to calculate elastic anisotropy in brittle materials in order to hopefully find 

the mechanisms which will improve their durability. The elastic anisotropy arises from both 

shear anisotropy and the anisotropy of linear bulk modulus. The shear anisotropic factors on 
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different crystallographic planes supply a measure of the degree of anisotropy in atomic 

bonding in different planes. The shear anisotropic factors for hexagonal structure are written 

as follows [16-17] A1= A2= 4C44/(C11+C33−2C13) for the (100) (010) plane directions and 

similarly due to the crystal symmetry, A3=4C66/(C11+C22−2C12) for the (001) direction 

(C66=(C11−C12)/2). For an isotropic crystal, the factors A1, A2 and A3 should be equal 1, while 

any deviation from 1 indicates the degree of the shear anisotropy. The shear anisotropic 

factors obtained from our theoretical studies are also listed in Table III.4. KAsSn is elastically 

isotropic for the (001) shear plane and weak elastically anisotropic for the (100) (010) shear 

planes.  

 

compound C13/ C12 C33/ C11 C44/C66 AB (%) AG (%) A1 A2 A3 A
U
 ABc ABa 

KAsSn 0.954 0.788 0.818 0.66 0.62 0.94 0.94 1 0.07 0.67 1 

 

Table III.4: The shear anisotropic factors Ai with i=1,2,3, the anisotropies linear bulk 

modulus ABc , ABa, the percentage of anisotropy in the compression AB and shear AG (%) and 

universal elastic anisotropy index A
U
. 

 

The universal anisotropy index A
U
 that represents a measure to quantify the single crystal 

elastic anisotropy can be written as [18]: A
U
=5(GV/GR)+(BV/BR)–6.  A

U
 is zero for locally 

isotropic single crystal. The deviation of A
U
 from zero reflects the extent of single crystal 

anisotropy. Table III.4 indicates that the hexagonal KAsSn is slightly anisotropic. In addition 

to evaluate the elastic anisotropy of KAsSn, we calculated the percentage of anisotropy in 

compression and shear [19] for polycrystalline material, which are defined as 

AB=(BV−BR)/(BV+BR) and AG=(GV−GR)/(GV+GR), respectively. Table III.4 lists also the 

percentage of anisotropy in compression and shear for KAsSn and also the anisotropy factors. 

It can be seen that this material exhibits small anisotropy in shear and compression. 

Interestingly, AB shows that KAsSn has better isotropy in compression, while AG indicates that 

is more isotropic in shear. We also investigated the contribution of linear bulk modulus to the 

elastic anisotropy ABa, ABc, and the results are displayed in Table III.4. The anisotropy of the 

bulk modulus along the a- and c- axes with respect to the b-axis can be written as [17-20]:  

𝐴𝐵𝑎 =
𝐵𝑎

𝐵𝑏 
 , 𝐴𝐵𝑐 =

𝐵𝑐

𝐵𝑏 
=

1

𝛽
 =

(𝐶33 − 𝐶13)

(𝐶11 + 𝐶12 − 2 𝐶13)
                                                (III. 8) 

   𝐵𝑎 = 𝑎
𝑑𝑝

𝑑𝑎
=  

ᴧ

2 + 𝛽
  , 𝐵𝑐 = 𝑐

𝑑𝑝

𝑑𝑐
=  

𝐵𝑎

𝛽
                                                                (III. 9) 
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Where    ᴧ = 2(𝐶11 + 𝐶12) + 4𝐶13𝛽 + 𝐶33𝛽2  

ß is defined as the relative change of the c-axis as a function of the deformation of the a-axis.  

ABc is calculated to be 0.67, which indicates that the compressibility for KAsSn along c-axis is 

smaller than along a-axis. We can conclude that the atomic bonding strength along the a-axis 

is stronger than that along c-axis from the large C13/C12 and small C33/C11 anisotropic 

parameters values. 

In order to get a better understanding of stiffness for the KAsSn, the micro-hardness 

parameter Hv has been calculated. However, there are many correlations between Vickers 

hardness (Hv) and bulk, shear, Young’s moduli, Poisson’s ratio and G/B to obtain the value of 

micro-hardness parameter H, as following [21-22]: 

𝐻𝑣 =
(1 − 2𝑣)𝐸

6(1 + 𝑣)
                                                                   (III. 10) 

Hv = 0.1475G                                                               (III. 11) 

Hv = 0.0608 E                                                               (III. 12) 

Hv = 0.0963B                                                                   (III. 13) 

𝐻𝑣 = 2((𝐺/𝐵)2𝐺)0.585 − 3                                                      (III. 14) 

 

The calculated Hv values are listed in Table III.5. It is found that Eq. (14) and (13) obtain the 

lowest and the highest values, respectively. Therefore, the Vickers hardness of KAsSn should 

be near 2.7 GPa. 

 

 

Table III. 5:  The microhardness parameter Hv (in GPa) for the KAsSn 

 

III.2.4 Acoustic wave velocities, Debye temperature 

    Acoustic wave velocities in a material can be obtained from the Cristoffel equation [23]. 

Moreover, the velocities of the longitudinal (vl) and transversal waves (vT1 and vT2) along [1 0 

0], [0 0 1] and [1 2 0] directions have been calculated for hexagonal crystal using the elastic 

constants Cij, and following the relations: 

𝑣𝐿
[100]

= 𝑣𝐿
[120]

= √
𝐶11

𝜌
  , 𝑣𝑇1

[100]
= 𝑣𝑇1

[120]
= √

(𝐶11−𝐶12)

2𝜌
 , 𝑣𝑇2

[100]
= 𝑣𝑇2

[120]
= √

𝐶44

𝜌
      (III.15) 

𝑣𝐿
[001]

= √
𝐶33

𝜌
 ,    𝑣𝑇1

[001]
= 𝑣𝑇2

[001]
= √

𝐶44

𝜌
                        (III.16) 

Compound Eq. (10) Eq. (11) Eq. (12) Eq. (13) Eq.(14) 

KAsSn 2.80 2.588 2.688 2.957 2.53 
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Where ρ is the density of material, T and L represent transverse and longitudinal wave 

polarization. The values of acoustic wave velocities for KAsSn reproduced from the elastic 

constants Cij at zero pressure along [1 0 0], [1 2 0] and [0 0 1] directions are listed in Table 

III.6.  

 

Compound ν L
(100,120) 

ν T1
(100,120)

 ν T2
(100,120)

 νL
(001)

 νT1
(001)

 νT2
(001)

 

KAsSn 3780 2188 1979 3356 1979 1979 

 

Table III. 6: Acoustic wave velocities (in m/s) for different propagation directions for KAsSn 

compound 

 

We can observe that there is nuance between the values of the longitudinal velocities along 

the a-axis and c-axis.  Furthermore the longitudinal wave along the [1 0 0] direction travel 

faster than shear wave since the square root of C33 is generally larger than C44 and C11.  

Debye temperature θD may be estimated from the average wave velocity vm using the 

following equation [24-25]  

 

𝜃𝐷 =
ℎ

𝑘𝐵
[
3𝑛

4𝜋

𝑁𝐴𝜌

𝑀
]

1
3

𝑣𝑚                                                                                   (III. 17) 

 

Where h is the Plank’s constant, kB is the Boltzmann’s constant, n is the number of atom ni a 

molecule, NA is the Avogadro’s number, ρ is the density and M is the molecular weight. The 

sound velocity vm is given by [26-27]:  

 

𝑣𝑚 = [
1

3
(

2

𝑣𝑡
3 +

1

𝑣𝑙
3)]

(
1

−3
)

                                                                                  (III. 18) 

 

Where vl and vt are the longitudinal and shear elastic wave velocities, respectively, which can 

be obtained from [28]: 

 

𝑣𝑙 = [(
3𝐵 + 4𝐺

3𝜌
)]

(
1
2

)

                  𝑣𝑡 = (
𝐺

𝜌
)

1/2

                                                    (III. 19) 
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The calculated wave velocities, Debye temperature as well as the density of nSsAi at zero 

pressure are given in Table III.7. As far as we know, there are no experimental data available 

for comparison. 

 

dpuopmic  ν L ν T νm D 

nSsAi 4.135 3610 2060 2289 216 

 

Table III. 7: The calculated density ρ (g/cm
3
), density longitudinal, transverse and average 

wave velocity (vl, vt, vm in m/s) and the θD (unit in K) 

 

 

III.3 Electronic properties 

III.3.1   Electronic band structure 

     The calculated electronic band structure of the crystal KAsSn at zero pressure along the 

principal symmetry directions of the Brillouin zone are shown in Fig III.4. The top of the 

valence band whose mostly formed by the combination of As-s, Sn-s,  p (Sn-As) states is 

chosen to be the Fermi level (EF   = 0 eV), while the bottom of the conduction bands is mainly 

derived from the p Sn (5s+5p) and As (4s+4p) states and small contribution from K-3p states. 

The upper valence band maximum and the lower conduction band minimum occur at G point, 

making KAsSn a direct band narrow gap material; it appears along the Gv-Gd direction with 

energy of 0.341 eV.  As there is no experimental data for the band gap therefore the calculated 

value is close to the previous ones obtained by LDA (Eg=0.1eV) [29]. However, the indirect 

band gap appears at (G-L), (G-K), (G-H) transitions are 0.93eV, 1.31eV, 1.18eV respectively. 

Our results elucidate that KAsSn is a semiconductor with narrow band gap. 
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Fig III.4 Bande structure of KAsSn 

  

 

III.3.2   Total and partial density of states 

    For the sake of clarity and ease of guidance, the total density of states TDOS is also plotted 

in Fig III.5 along with the PDOS densities of states diagrams at ambient pressure. It is shown 

that the total density of states extended from about -35 eV to 10 eV. In the total DOS curve of 

KAsSn there are six main peaks (A, B, C, D, E and F). Evidently, the peaks A and B in the 

lower energy part of the TDOS curve are derived from K-3s and 3p states respectively, which 

are localized and contribute little to the bonding of KAsSn. For the peak C, the TDOS mainly 

made of the occupied Sn-5s states with less contribution from As-4p mixing with a minor 

presence of As-4s. The energy decreased in total TDOS at the peak C implies that there are s-

p interactions in As. Moreover, the peak D, originates from As-4s hybridize with Sn - 5p 

mixing with a small existence of Sn-5s states.  Furthermore, for the peak E, the Sn-5p states 

strongly hybridize with the As-4p states, together with small contributions from As-4s states. 

Crossing the peaks E and F, the strong hybridization of the Sn-5p and As-4p can lower the 

energy of the bonding states and increase the energy of anti-bonding states, which produce the 

presence of a valley near the Fermi level, and this is referred to as a narrow gap.  Above the 
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Fermi level, anti-bonding As-4p states dominate with hybridizations bonding between Sn-5p 

and fewer contributions from K-3p states. 

 

Fig III.5 Calculated total and partial densities of states (TDOS and PDOS) 

 

III.3.3   Bond length, Mulliken population 

     To further understand interatomic bonding behaviors of this crystal, the calculated atomic 

populations, bond length and charges via the Mulliken population analysis are listed in Table 

III.8. Generally, a high value of positive population indicates a high degree of covalency in 

the bond [30]. As seen from Table III.8, two different bonding characters take place in the 

atomic interactions of the considered systems, As–Sn, K-K bonds are covalent and  K–As, K–
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Sn, Sn–Sn, As–As are ionic. We may observe also that the bond population of the K–Sn bond 

is clearly much larger than that of the K–As and As–Sn. 

 

 

Band Mulliken Population Bond length 

As - Sn 2.73 2.74555 

K - As -1.92 3.24617 

K - Sn -0.96 3.64336 

Sn - Sn -0.12 6.30121 

K -  K 2.39 6.73892 

As - As -0.54 6.73892 

 

Table III. 8: Mulliken atomic population and Bond lengths of KAsSn 

 

 

Now, we report the calculated Mulliken atomic population for KAsSn. The Mulliken charges 

are determined to be 0.32e for K atoms, -0.25e for As atoms, and -0.07e for Sn atoms, 

respectively. We can see that electrons run from n to As and Sn with gaining a total of 0.32 

electrons per atom, these propose a valence state of K
+0.32

(As
-0.25

) (Sn
-0.07

). The value of K 

Mulliken charges is representative of the concurrent ionic and covalent bonding in KAsSn. 

To visualize the nature of the bonding character of the solids, we have obtained the charge 

density distributions map for KAsSn in Fig III.6. 

 For the sake of simplicity, only the charge density distribution for a slice of the (1 1 0) plane 

is plotted with a contour lines from 0 to 0.39 eV/Å
3
. Higher density region corresponds to the 

core electron distribution of K, Ss and Sn atoms, and it contributes relatively little to the 

bonding. Moreover the value of the charge density between As-K and Sn-K is larger than that 

between As-Sn, so As–Sn bonding is relatively stronger than the Sn-K and K-As bonding in 

KAsSn. The figure reveals that a significant overlapping can be observed between Sn and As 

bonding due to As-4p and Sn-5p hybridization,  indicating covalent bonding between As and 

Sn, while the bonding between K–Sn and K-As atom is mainly ionic. Then, also, due to the 

difference in the electronegativity between the comprising elements, some ionic character can 

be expected.  
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Fig III.6 The bonding charge density plots in the (110) plane of the KAsSn 

 

III.3.4   Energy band gap 

     Fig III.7 shows the variation of the direct band gap energy G-G with applied hydrostatic 

pressure in the range 0-19 GPa. As one can see, the band gap manifests an unusual increase 

with pressure initially up to 2 GPa and then decreases nonlinearly when the pressure is 

enhanced. More interestingly, when the application pressure is greater than 19.01 GPa, the 

band gap almost disappears and the resultant compound becomes metallic. The calculated 

values for the band gaps are fitted to the third order function: 

Eg= 0.347+0.0565P-0.0117P
2
+ 4.9552˟10

-4
P

3
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Fig III.7 Energy band gap of KAsSn versus the pressure 

 

 

III.4 Optical properties 

     Generally, the optical properties are mainly studied through many physical parameters 

including the refractive index n(ω), extinction coefficient k(ω), optical reflectivity R(ω), 

absorption coefficient α(ω), and energy-loss spectrum L(ω). It is known that the optical 

response can be described by a complex frequency dependent dielectric function ε(ω): 

ε(ω)=ε1(ω)+i ε2(ω) which is mainly connected with the electronic structures.  The imaginary 

part of the dielectric function ε2(ω) which arises from interband transitions, depends on 

density of states can be calculated from the momentum matrix elements and by considering 

all the possible transitions between the occupied and unoccupied electronic states with the 

equation [31-33]: 

𝜀2(𝜔) =
2𝑒2𝜋

Ω𝜀0
∑ ∫|𝛹𝑘

𝑐 < �̂�𝑟 > 𝛹𝑘
𝑣|2𝛿(𝐸𝑘

𝑐
𝑘,𝑐,𝑣 -𝐸𝑘

𝑣 − 𝐸)                                                  (III. 20) 

Where the integral is over the first Brillouin zone, ω is the frequency, e is the electronic 

charge, Ω ∝ m2 𝜔2, m is the electron effective mass, 𝛹𝑘
𝑐  and 𝛹𝑘

𝑣  are the conduction and 

valence band wave functions at k, ε0 is the dielectric function of free space. The real part ε1(ω) 

can be attracted from Kramers-Kroning relationship [34-36] 
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𝜀1(𝜔) = 1 +
2

𝜋
𝑀 ∫

𝜔′𝜀2(𝜔′)

𝜔′
2 − 𝜔2

∞

0

𝑑𝜔′                                                                      (III. 21) 

 

Where M is the principal value of the integral. Other optical constants such as the absorption 

coefficient α(ω), the electron energy loss spectrum L(ω), the refractive index n(ω), extinction 

coefficient k(ω) and optical reflectivity R(ω) can be computed from the complex dielectric 

function ε(ω), through the following relations [31-32]: 

𝑛(𝜔) = [√𝜀2
1(𝜔) + 𝜀2

2(𝜔) + 𝜀1(𝜔)]

1
2

/√2                                                (III. 22) 

𝑘(𝜔) = [√𝜀2
1(𝜔) + 𝜀2

2(𝜔) − 𝜀1(𝜔)]1/2/√2  
 

𝑅(𝜔) = |
(𝜀(𝜔)

1
2 − 1)

(𝜀(𝜔)
1
2 + 1)

|

2

                                                                                   (III. 23) 

 

                                               𝐿(𝜔) =
𝜀2(𝜔)

𝜀2
1(𝜔)+𝜀2

2(𝜔)
          

 

𝛼(𝜔) = √2𝜔[√𝜀1(𝜔) + 𝜀2
2(𝜔) − 𝜀1(𝜔)]1/2 

 

From here, some of the optical properties at the equilibrium lattice constant have been 

computed and are plotted (Figs III. 8-10) in the energy range 0-20 eV. To date there are no 

experimental or theoretical optical spectra available for this compounds. 

 

III.4.1 Dielectric function, Refractive index 

    The real and imaginary parts of dielectric function curves are oersrierc in Fig III.8. It can 

be seen that in a high energy area, the values of the imaginary part are very small, while the 

real part changes very little.  The curve of ε2(ω) indicate that the main peak around 2.85 eV 

originates predominantly from the direct optical transitions along the (G–G) direction between 

the highest valence electrons (Sn-5p states) and the lowest first conduction band (As-4p 

states). The static dielectric constant ε1 (0) which is the electronic part, strongly depends on 

the bandgap and is given by the low energy limit of dielectric function ε1(ω) and is equal to 

12.75. All the components of dielectric tensor for the hexagonal crystals are anisotropic 

(εx=εy≠εz) so the KAsSn exhibits birefringence. 
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Fig III.8   Real part ε1 (ω) and imaginary part ε2 (ω) of the dielectric function for kAsSn 

 

A calculated spectrum of refractive index and extinction coefficient for kAsSn are displayed 

in Fig III.9 is also related to ε(0) by the relation 𝑛(0) = √𝑅𝑒𝜀(0). From the real dielectric 

function the calculated refractive index is 3.57. While from Fig III. 9, the static refractive 

index is found to have the value 3.52, this value increases with increasing energy and reaches 

peak in the visible region at about 1.87eV.  It then decreases to a minimum level at 10.8 eV 

with a value 0.057. For the extinction coefficient the maximum arises at 4.87 eV. 
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Fig III.9 The calculated refractive index and extinction coefficient for KAsSn 

 

III.4.2 Extinction coefficient, optical reflectivity, absorption coefficient and energy-loss 

spectrum  

Fig III.10 (a), (b) and (c) show the calculated results of the linear absorption spectrum α(ω), 

reflectivity function R(ω) and electron energy loss function L(ω) for KAsSn. The energy loss 

of a fast electron traversing the material is manifested in the energy loss spectrum. The 

prominent peaks in energy loss spectra represent the characteristic associated with the plasma 

frequency ωp. In the energy loss spectrum (Fig III.10 (c)), we see that the plasma frequency 

ωp corresponds to the abrupt reduction of the reflection spectra and appears at about 12 eV. 

Also this figure shows the absorption spectrum with a large broaden peak between 5 and 6.5 

eV (5.52) which rises and then decreases rapidly in the high energy region. The absorption 

edge start from the energy value of 0.34eV, which could possibly be due to transitions across 

the direct band gap at G point, this arises from Sn-5p/As-4p electronic transitions. The figure 

also shows some structures in the ultraviolet region at 20.24 eV and 16.9 eV respectively.  
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As can be seen in Fig III.10 (a), the absorption spectrum started at 1.09 eV and decreased 

rapidly in the low energy region. In the range from 0 to 1.09 eV, the reflectivity is lower than 

35%, which indicates that KAsSn material is transmitting for frequencies less than 1.09 eV. 

From Fig III.10 (c), the maximum reflectivity occurs in the energy of 10.7 and has a value of 

approximately 85 % in the ultraviolet region. 
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Fig III.10 Reflectivity, Absorption and electron energy-loss function of KAsSn under 0 GPa. 
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III.4.3 Pressure dependence of the static dielectric constant 

    The pressure dependence of the static dielectric constant and the static refractive index of 

the KAsSn compound are plotted in Fig III.11. We remark that these parameters decrease 

monotonically with increasing pressure in the range from 0 to 20 GPa. The pressure 

coefficients displayed in Fig III.11 are obtained by fitting the calculated values to a quadratic 

polynomial as follows: 

𝑛(0) = 3.54418 − 0.02871𝑃 + 0.00128𝑃2 

𝜀1(0) = 12.61816 − 0.21258𝑃 + 0.00939𝑃2 

Where P is the pressure in GPa unit. 
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Fig III.11 Pressure dependence of the static dielectric constant ε1(0) and static refractive 

index n(0) for KAsSn 
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GENERAL CONCLUSION 

We have studied in this thesis, the properties of the hexagonal esahp ltniz nSiAa using the 

first principles pseudo-potential method based on the density functional theory, within the 

generalized gradient approximation developed by Wu-Cohen (GGA-Wc). On the basis of the 

reasonable structural results, the electronic structures, elastic, optical properties, and the 

relationship among these properties we can conclude that: 

1. The calculated structural characteristics including equilibrium lattice constants and 

bond length agree well with the available experimental and other theoretical data. The 

bulk modulus B of about 30.5 GPa is obtained by fitting the computed P–V relation to 

the Birch–Murnaghan equation of state. 

2. The calculation provides an excellent description of the band structures of KAsSn, 

which could be useful for further theoretical investigation. Analysis of the DOS 

revealed that the conduction band is mainly composed of p-Sn (5s+5p) and As (4s+4p) 

states, whereas the valence band is essentially dominated by As-s, Sn-s and  p (Sn-As) 

states.  The calculated band gaps of this zintl phase suggested that this crystal belongs 

to the semiconductors with narrow gap of about 0.34eV.  

3. The calculation of the complete set of zero pressure elastic constants has been 

performed and satisfied the mechanical stability criteria, highlighting the fact that the 

KAsSn structure is mechanically stable. The polycrystalline elastic parameters (B, G, 

E, A and v) have been further calculated within the scheme of Voigt–Reuss–Hill 

(VRH) approximation. The ductility and plasticity, especially elastic anisotropies 

including the shear anisotropy factors, percentage of bulk and shear anisotropies and 

the linear bulk modulus, micro-hardness parameter Hv are discussed in details. Our 

analysis of the predicted elastic moduli shows that KAsSn is predicted to be brittleness 

and characterized by a weak elastic anisotropy. Furthermore, we have derived the 

sound velocity and the Debye temperature for the KAsSn. 

4. Mulliken charge population analyses show the charge transfer during the geometry 

optimization and the presence of concurrent ionic and covalent bonding in the KAsSn 

structure. Moreover the analysis of the Mulliken charge populations and bond length 

population shows that K–Sn bond possesses the stronger covalent bonding strength 

than K-As and As–Sn bonds.  

5. The imaginary and real parts of the dielectric function of this compound have been 

calculated. From this the other optical properties such as refractive index, extinction 
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coefficient, optical reflectivity, absorption coefficient and loss function are derived in 

a wide energy range. Using the band structure, we have analyzed the interband 

contribution to the optical response functions. The direct band gap and high absorption 

power in the ultraviolet energy range show the effective use of this compound in the 

optoelectronic devices. 

We hope that our results are reliable reference to further experimental and theoretical 

investigations. 
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 DENSITY FUNCTIONAL THEORY 

"If you can’t explain it simply, you don’t understand it well enough." 
Albert Einstein 
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Preamble 

    The purpose of this appendix is to explain in a mathematical way what density functional 

theory is and what it is used for. A brief introduction is to be made of problems in quantum 

mechanics and the formally exact solution provided by the Kohn-Sham formulation of density 

functional theory. Therefore DFT is characterized by the use of functionals of the electron 

density and is among the most popular and versatile methods available in condensed matter 

physics. The plane wave pseudo-potential method of performing DFT calculations was 

discussed. Ab-initio techniques, such as the CASTEP method, attempt to solve the quantum 

mechanical equations of systems composed of up to thousand of atoms. In practice, the exact 

solution of these equations is an unsolvable analytic problem and several approximations 

must be made. These approximations are described and justified in the description of 

CASTEP code.   

 

A.1   Introduction and Basics 

     Atomic scale computational materials sciences have become an interdisciplinary subject 

that straddles physics, chemistry, biology, and geophysics. One of the basic problems in 

theoretical physics and chemistry is the description of the structure and dynamics of many-

electron systems. These systems comprise single atoms, the most elementary building blocks 

of ordinary matter, all kinds of molecules, ranging from dimers to proteins, as well as 

mesoscopic systems, for example clusters or quantum dots, and solids, including layered 

structures, surfaces and quasi-crystals [1].   

The quantum mechanical wave function contains, in principle, all the information about a 

given system. For the case of a simple 2D square potential or even a hydrogen atom we can 

solve the Schrödinger equation exactly in order to get the wave function of the system. We 

can then determine the allowed energy states of the system. Unfortunately it is impossible to 

solve the Schrödinger equation for an N-body system. Evidently, we must involve some 

approximations to render the problem soluble albeit tricky.  

Density functional theory (DFT) provides a powerful tool for computations of the quantum 

state of atoms, molecules and solids, and of ab-initio molecular dynamics. It was conceived in 

its initial naïve and approximative version by Thomas and Fermi immediately after the 

foundation of quantum mechanics, in 1927. In the middle of the sixties, Hohenberg, Kohn and 

Sham on one hand established a logically rigorous density functional theory of the quantum 

ground state on the basis of quantum mechanics, and on the other hand, guided by this 
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construction, introduced an approximative explicit theory called the local-density 

approximation, which for computations of the quantum ground state of many-particle systems 

proved to be superior to both Thomas-Fermi and Hartree-Fock theories.  From that time on, 

density functional theory has grown vastly in popularity, and a flood of computational work in 

molecular and solid state physics has been the result. Motivated by its success, there has been 

always a tendency to widen the fields of application of density functional theory, and in these 

developments, some points which were left somewhat obscure in the basic theory, were 

brought into focus from time to time. This led in the early eighties to a deepening of the 

logical basis, essentially by Levy and Lieb, and finally Lieb gave the basic theory a form of 

final mathematical rigor. Since that treatment, however, is based on the tools of modern 

convex functional analysis, its implications only gradually became known to the many people 

who apply density functional theory [2]. 

The original density functional theory has been generalized to deal with many different 

situations: spin polarized systems, multi-component systems such as nuclei and electron hole 

droplets, superconductors with electronic pairing mechanisms, relativistic electrons, time-

dependent phenomena and excited states, molecular dynamics, etc.  

 

A.2   Schrödinger equation 

The Schrödinger equation was discovered in 1926 by Erwin Schrödinger, it is an important 

equation that is fundamental to quantum mechanics. Many of the physical and chemical 

phenomena surrounding us today are governed by this equation. Indeed, the Schrödinger 

equation can be viewed as a form of the wave equation applied to matter waves. The 

Schrödinger equation has two ‘forms’, one in which time explicitly appears, and so describes 

how the wave function of a particle will evolve in time. In general, the wave function behaves 

like a wave, and so the equation is often referred to as the time dependent Schrödinger wave 

equation. The other is the equation in which the time dependence has been ‘removed’ and 

hence is known as the time independent Schrödinger equation and is found to describe, 

amongst other things, what the allowed energies are of the particle. These are not two 

separate, independent equations – the time independent equation can be derived readily from 

the time dependent equation. 

The fundamental equation governing a quantum system is the time dependent Schrödinger 

equation [4]: 

�̂�𝜓(𝑟, 𝑡) = 𝑖ℏ
𝜕

𝜕𝑡
 𝜓(𝑟, 𝑡)                                                     (A.1) 

http://en.wikipedia.org/wiki/Schr%C3%B6dinger_equation
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where i is the imaginary unit, ħ is the Planck constant divided by 2π, the symbol ∂/∂t indicates 

a partial derivative with respect to time t, Ψ is the wave function of the quantum system, 

and Ĥ is the Hamiltonian operator . 

Very important special case of the Schrödinger equation is the situation when the potential 

energy term does not depend on time. As the name implies, this is the situation when the 

potential depends only on position (It is only used when the Hamiltonian itself is not 

dependent on time). The time independent Schrödinger equation is the equation describing 

stationary states (wave functions can form standing waves, called orbitals, as in atomic 

orbitals or molecular orbitals). 

The properties of any time independent quantum system can be determined by solving the 

Schrödinger equation [5]: 

�̂�𝜓(𝑟1 , 𝑟2 , … , 𝑟𝑁 ) = 𝐸 𝜓(𝑟1 , 𝑟2 , … , 𝑟𝑁 )                                             (A.2) 

Where �̂�, 𝜓(𝑟1 , 𝑟2 , … , 𝑟𝑁 ) and E are the Hamiltonian, many body wave function and total 

energy of the system. Matter consists of electrons and nuclei interacting with each other 

coulombically, consequently the Hamiltonian for any such system is given by: 

�̂� = − ∑
ℏ2

2𝑚𝑍𝑖

𝑀

𝑖=1

∇Ri
2 − ∑

ℏ2

2𝑚𝑒

𝑁

𝑖=1

∇ri
2 +

1

4πϵ0
∑ ∑

𝑍𝑖𝑍𝑗

|𝑅𝑖 − 𝑅𝑗|

𝑀

𝑗>𝑖

𝑀

𝑖

−
1

4πϵ0
∑ ∑

𝑍𝑗𝑒

|𝑟𝑖 − 𝑅𝑗|

𝑀

𝑗=1

𝑁

𝑖=1

+
1

4πϵ0
∑ ∑

𝑒2

|𝑟𝑖 − 𝑟𝑗|
                                                                (A. 3)

𝑁

𝑗>𝑖

𝑁

𝑖

 

Where M and N are the number of nuclei and electrons in the system, mZ, Z and R are the 

mass, charge and position of the nuclei, me and e are the mass and charge of an electron, 

and r represents the position of the electrons. 

The first two terms in (A.3) are the kinetic energy contributions from the nuclei and the 

electrons respectively, and the rest are Coulombic potential energy terms arising from the ion-

ion repulsion, ion-electron attraction and the electron-electron repulsion respectively.  

Though in principle everything is known exactly, the Schrödinger equation (A.2) with this 

Hamiltonian is simply too difficult to solve directly. Hence, the quantum many-body problem 

is centered up on finding intelligent approximations to the Hamiltonian (A.3) and the many 

body wave function ψ, which retain the correct physics and are computationally tractable to 

solve.  

 

 

 

http://en.wikipedia.org/wiki/Imaginary_unit
http://en.wikipedia.org/wiki/Planck_constant
http://en.wikipedia.org/wiki/Partial_derivative
http://en.wikipedia.org/wiki/Wave_function
http://en.wikipedia.org/wiki/Hamiltonian_(quantum_mechanics)
http://en.wikipedia.org/wiki/Operator_(physics)
http://en.wikipedia.org/wiki/Hamiltonian_(quantum_mechanics)
http://en.wikipedia.org/wiki/Standing_wave
http://en.wikipedia.org/wiki/Atomic_orbital
http://en.wikipedia.org/wiki/Atomic_orbital
http://en.wikipedia.org/wiki/Molecular_orbital
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A. 3 Theoretical background  

A.3.1 Born-Oppenheimer Approximation 

The Born-Oppenheimer approximation [6] is a way to simplify the complicated Schrödinger 

equation for a molecule. The nucleus and electrons are attracted to each other with the same 

magnitude of electric charge, thus they exert the same force and momentum. While exerting 

the same kind of momentum, the nucleus, with a much larger mass in comparison to 

electron’s mass, will have a very small velocity that is almost negligible. Born-Oppenheimer 

takes advantage of this phenomenon and makes the assumption that since the nucleus is way 

heavier in mass compared to the electron, its motion can be ignored while solving the 

electronic Schrödinger equation; that is, the nucleus is assumed to be stationary while 

electrons move around it. The motion of the nuclei and the electrons can be separated and the 

electronic and nuclear problems can be solved with independent wave functions. 

By means of this approximation the total wave function can be decoupled in two parts, one 

concerning the electrons ψ electrons of the system and second one ψ nuclei that deal merely with 

nuclei description: 

𝜓 𝑠𝑦𝑠𝑡𝑒𝑚 =  𝜓𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑠  ⊗ 𝜓𝑛𝑢𝑐𝑙𝑒𝑖  

This involves the following assumptions: 

- The electronic wave function depends upon the nuclear positions but not upon their 

velocities, i.e., the nuclear motion is so much slower than electron motion that they can be 

considered to be fixed. 

- The nuclear motion (e.g., rotation, vibration) sees a smeared out potential from the speedy 

electrons. 

Within this approximation the complexity of the full many-body Hamiltonian (A.3) reduces to 

that of an electronic Hamiltonian: 

�̂� = − ∑
ℏ2

2𝑚𝑒

𝑀

𝑖=1

∇i
2 −

1

4πϵ0
∑ ∑

𝑍𝑖𝑒

|𝑟𝑖 − 𝑅𝑗|

𝑀

𝑗=1

𝑁

𝑖=1

+
1

4πϵ0
∑ ∑

𝑒2

|𝑟𝑖 − 𝑟𝑗|

𝑁

𝑗>𝑖

𝑁

𝑖

                    (A. 4) 

 

The Born Oppenheimer approximation is certainly not universally valid. It is well known that 

the Born Oppenheimer approximation will break down when there are multiple potential 

energy surfaces close to each other in energy or crossing each other (dissociative adsorption 

of molecules on metal surfaces). More caution must be exerted when dealing with systems 

such as those of [7-9]. 

http://cmt.dur.ac.uk/sjc/thesis_ppr/node5.html#eq.H_full
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Devising accurate schemes to approximate the many electron problems has been an important 

goal since the founding of quantum mechanics in the early 1900s. Several notable advances 

have been made, initially Thomas and Fermi (TF) in the 1920s suggested describing atoms as 

uniformly distributed electrons around nuclei in a six dimensional phase space (momentum 

and coordinates). This is an enormous simplification of the actual many body problems. It is 

instructive to consider the basic ideas of the TF approximation before starting with a more 

accurate theory: the DFT. In1930 came Hartree-Fock theory [10,11] which builds upon the 

single-particle approximation proposed earlier by Hartree [12]. A significant leap in electronic 

structure theory was made in 1964 with the remarkable theorems of density functional theory 

(DFT), proved by Hohenberg and Kohn [13]. DFT allows the ground-state properties of a 

many-electron system to be determined exactly through the electron density n(r), and 

therefore in a computationally tractable manner, however DFT is only a proof of existence, it 

does not give details of how this can be achieved in practice. In 1965 Kohn and Sham [14] 

devised an ingeniously practical single-particle scheme for performing DFT calculations, 

which is still exact, in principle. The price to be paid for the benefits of Kohn-Sham DFT is 

that the single-particle Hamiltonian is only partly known in practice - approximations must be 

made for a single unknown component that accounts for electron many-body effects, known 

as exchange and correlation. 

A.3.2 Thomas Fermi Theory 

Thomas-Fermi theory marks a change in approach from Hartree and Hartree-Fock theory, as 

it was the first method to propose using the electronic charge density as its fundamental 

variable instead of the wave function. It is thus the earliest form of density functional theory. 

Although the charge density is that of a non-uniform electron gas, the number of electrons in a 

given element, dr, can be expressed as n(r)dr, where n(r) is the charge density for 

a uniform electron gas at that point. It is then possible to express the total energy of a system 

as a functional E
TF

 [n(r)] [15-16].  

𝐸𝑇𝐹 [𝑛(𝑟) ] = 𝐴k ∫ 𝑛(𝑟)5/3𝑑𝑟 + ∫ 𝑛(𝑟)𝑣𝑒𝑥𝑡(𝑟)𝑑𝑟 +
1

2
 ∬

𝑛(𝑟)𝑛(𝑟′)

|𝑟 − 𝑟′|
 𝑑𝑟𝑑𝑟′             (A. 5) 

The Thomas-Fermi energy functional is composed of three terms, the first term is the 

electronic kinetic energy associated with a system of non interacting electrons in a 

homogeneous electron gas. This form is obtained by integrating the kinetic energy density of 

a homogeneous electron gas t0 [n(r)] [17-18]. 

𝑇𝑇𝐹 [𝑛(𝑟) ] = ∫ 𝑡0[𝑛(𝑟)]𝑑𝑟                                                          (A. 6) 

http://cmt.dur.ac.uk/sjc/thesis_ppr/node130.html#Fock
http://cmt.dur.ac.uk/sjc/thesis_ppr/node130.html#Slater
http://cmt.dur.ac.uk/sjc/thesis_ppr/node130.html#Hartree
http://cmt.dur.ac.uk/sjc/thesis_ppr/node130.html#DFT1
http://cmt.dur.ac.uk/sjc/thesis_ppr/node130.html#DFT2
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Where t0 [n(r)] is obtained by summing all of the free electron energy states ε =k
2
/2, up to the 

Fermi wave vector 𝑘𝐹=[3𝜋2𝑛(𝑟)]1/3 ,  

𝑡0  [𝑛(𝑟)] =
2

(2𝜋)3
∫

𝑘2

2
𝑛𝑘𝑑𝑘 =

1

2𝜋2
∫ 𝑘4

𝑘𝐹

0

𝑑𝑘                                 (A. 7) 

Where nk is the density of allowed states in reciprocal space, and the coefficient 𝐴𝑘 =

3

10
(3𝜋2)2/3 . The power-law dependence on the density can also be established on 

dimensional grounds [19]. 

 The second term is the classical electrostatic energy of attraction between the nuclei and the 

electrons, where vext (r)  is the static Coulomb potential arising from the nuclei,  

𝑣𝑒𝑥𝑡 (𝑟) = − ∑
𝑍𝑗

|𝑟 − 𝑅𝑗|

𝑀

𝑗=1

                                                       (A. 8) 

The third term in (A.5) represents the electron-electron interactions of the system, and in this 

case is approximated by the classical Coulomb repulsion between electrons, known as the 

Hartree energy. 

To obtain the ground state density and energy of a system, the Thomas-Fermi equation (A.5) 

must be minimised subject to the constraint that the number of electrons is conserved. This 

type of constrained minimisation problem, which occurs frequently within many body 

methods, can be performed using the technique of Lagrange multipliers. In general terms, the 

minimisation of a functional F [f], subject to the constraint C [f], leads to the following 

stationary condition,  

𝜎(𝐹[𝑓] − 𝜇𝐶[𝑓] = 0)                                                    (A. 9)  

 

 𝜇  is a constant known as the Lagrange parameter. Incorporates this in the equation (A.6) 

leads to the Thomas Fermi equations that can be solved directly to obtain the ground state 

density, 

5

3
𝐴𝑘𝑛(𝑟)2/3 + 𝑣𝑒𝑥𝑡(𝑟) + ∫

𝑛(𝑟′)

|𝑟 − 𝑟′|
𝑑𝑟′ − 𝜇 = 0                                     (A. 10) 

This approach is extremely simple, and is qualitatively correct for atoms. However it does not 

give a binding energy for molecules, and the proof is not rigorous [20-22]. To overcome these 

problems it is necessary to move on to the work of Hohenberg, Kohn and Sham. 

A.3.3 Hartree-Fock Theory: 

Hartree was one of the first scientist who attempted to solve this problem by simplifying the 

problem by making an assumption [12]: the form of the N-electron wave function ψ is just the 
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product of a set of N single particle orbitals,  ψi (ri si),  which would take the form of simple 

plane waves in a homogeneous system: 

Ψ(𝑟1𝑠1, 𝑟2𝑠2, … . , 𝑟𝑁𝑠𝑁 ) =
1

√𝑁
Ψ1(r1s1)Ψ2(r2s2) … … ΨN(rNsN)                         (A. 11)  

Where ψi (risi)  is composed of a spatial function ɸi(ri) , and an electron spin function 

σ(si)  such that: 

 Ψi(𝑟𝑖) = 𝜙𝑖(𝑟𝑖)𝜎(𝑠𝑖)                                                       (A. 12)  

and σ = α, β represent up-spin and down-spin electrons respectively. However, the Hartree 

approximation does not account for exchange interactions since (A.12) does not satisfy Pauli 

exclusion Principle [23]: 

Ψ(𝑟1𝑠1, … , 𝑟𝑖𝑠𝑖, … , 𝑟𝑗𝑠𝑗 , … . 𝑟𝑁𝑠𝑁 ) = −Ψ(𝑟1𝑠1, … , 𝑟𝑗𝑠𝑗 , … 𝑟𝑖𝑠𝑖, … 𝑟𝑁𝑠𝑁 )                     (A. 13) 
 

Unfortunately, the Hartree approximation does not give particularly good results since, for 

example, it predicts that in a neutral uniform system there will be no binding energy holding 

the electrons in the solid. 

An improvement over the Hartree's framework is the Hartree-Fock's (HF) approach [10-12] in 

that the N-electron wave function is constructed from the single-electron wave function is 

required to be antisymmetric.  

The Hartree-Fock wave function ψHF amounts to a linear combination of the terms in (A.12), 

which includes all permutations of the electron coordinates with the corresponding 

weights ±1, i.e.  

ΨHF =
1

√𝑁!
[Ψ1(r1s1)Ψ2(r2s2) … … ΨN(rNsN)  

− Ψ1(r2s2)Ψ2(r1s1) … ΨN(rNsN) … ]                                                              (A. 14) 

Instead of using a simple product wave function, a Slater [11] determinant is used, 

Ψ𝐻𝐹 =
1

√N!
|⋮

Ψ1(r1s1) ⋯ ⋯ ⋯ Ψ1(rNsN)
⋮
⋮

ΨN(r1s1) ⋯ ⋯ ⋯ ΨN(rNsN)

⋮|                                       (A. 15) 

Where the orbitals are subject to the orthonormal constraint,  

∫ Ψi
∗ (𝑟)Ψj(r)dr = 〈Ψi/Ψj〉 = 𝛿𝑖𝑗                                                  (A. 16) 

The Slater determinant can also be written in shorthand notation as,  

ΨHF =
1

√𝑁!
det [Ψ1(r1s1)Ψ2(r2s2) … … ΨN(rNsN)]                                  (A. 17)  
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Thanks to this new assumption the Hamiltonian equation (A.4) for the system can be deduced 

through the variational principle: 

𝐸𝐻𝐹 = ∑ ∫ Ψi
∗ (𝑟)(−

1

2

𝑁

𝑖

∇2 + 𝑣𝑒𝑥𝑡(𝑟))Ψi(r)dr +
1

2
∑ ∑ ∬

|Ψi(r)|2|Ψi(r′)|2

|𝑟 − 𝑟′|
 𝑑𝑟𝑑𝑟′

𝑁

𝑗

𝑁

𝑖

           

−
1

2
∑ ∑ ∬

Ψi
∗(𝑟)Ψi(r′)Ψj

∗(𝑟)Ψj(r′)

|𝑟 − 𝑟′|
 𝛿𝑠𝑖𝑠𝑗

𝑁

𝑗

𝑁

𝑖

𝑑𝑟𝑑𝑟′                                   (A. 18) 

The last term is of significant interest since it arises from the anti-symmetric nature of the 

Hartree-Fock wave function, it vanishes when 𝑠𝑖 ≠ 𝑠𝑗  , which is an artefact of the Pauli 

principle. 

The Hartree-Fock approximation corresponds to the conventional single electron picture of 

electronic structure: the distribution of the N electrons is given simply by the sum of one 

electron distributions |𝜓|2 . But it must be remembered that this is an artifact of the initial 

ansatz and that in some systems modifications are required to these ideas.  Hartree-Fock 

theory, by assuming a single determinant form for the wave function, neglects correlation 

between electrons. The electrons are subject to an average non local potential arising from the 

other electrons, which can lead to a poor description of the electronic structure. Although 

qualitatively correct in many materials and compounds, Hartree-Fock theory is insufficiently 

accurate to make accurate quantitative predictions. 

A.3.4 Density Functional Theory (DFT) 

In recent years Density Functional Theory (DFT) has become the most popular method in 

quantum chemistry, accounting for approximately 90% of all calculations today. The reason 

for this preference is the extreme computational cost required to obtain chemical accuracy 

with multiple determinant methods. This difference in speed is heightened by the fact that 

multiple determinant calculations require very large basis sets, with high momentum basis 

functions, whereas DFT can produce accurate results with relatively small basis sets. 

Density functional theory (DFT) is primarily a theory of electronic ground state structure, 

couched in terms of the electronic density distribution n(r). It has become increasingly useful 

for the understanding and calculation of the ground state density, n(r), and energy, E, of 

molecules, clusters, and solids any system consisting of nuclei and electrons with or without 

applied static perturbations. It is an alternative, and complementary, approach to the 

traditional methods of quantum chemistry which are couched in terms of the many electron 

wave function ψ (r1,...,rN). 
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An early density functional theory was proposed by Thomas and Fermi. This took the kinetic 

energy to be a functional of the electron density, but in common with the Hartree and Hartree-

Fock methods, only incorporated electron-electron interactions via a mean field potential: as 

such it neglected both exchange and correlation; a subsequent proposal by Dirac [46], 

formulating an expression for the exchange energy in terms of the electron density failed to 

significantly improve the method. Both Thomas-Fermi and Hartree-Fock-Slater methods can 

be regarded as ancestors of modern DFT. But whereas those theories are intrinsically 

approximate, modern DFT is in principle exact.  Probably the most widely used theory for 

quantitative prediction in condensed matter physics is the density functional theory (DFT), 

originally developed by Hohenberg and Kohn. This theory has the advantage that it does not 

require adjustable parameters from experiments, in principle only fundamental constants as 

the speed of light in vacuum, Planck's constant, electron charge, etc. are taken from the 

experiment.  DFT allows calculating the ground state properties of materials: total energy, 

ground-state lattice constants, electronic structure etc. Authoritative and comprehensive 

discussions of DFT can be found in a range of excellent review articles [24-25] and text books 

[26-27]. 

A.3.4.1 Hohenberg-Kohn Theorems 

Modern density-functional theory was born in 1964 with the paper of Hohenberg and Kohn 

[13]. The two key results of this paper are: (i) a one to one mapping between external 

potential and electron density was established; (ii) it was shown that the ground state density 

can be found by using a variational principle. 

 

Theorem 1:   

The Hohenberg-Kohn theorem [13] states that if N interacting electrons move in an external 

potential vext (r), the ground state energy is a unique functional of the density n(r). Thus the 

ground state electron density is sufficient to construct the full Hamilton operator and hence to 

calculate - in principle - any ground state property of the system without the knowledge of the 

many electron wave functions. Alternatively formulated, this means that any ground state 

property can be expressed in terms of the ground state electron density n(r).   

The energy functional E [n(r)] alluded to in the first Hohenberg-Kohn theorem can be written 

in terms of the external potential vext (r) in the following way,  

𝐸[𝑛(𝑟)] = ∫ 𝑛(𝑟)𝑣𝑒𝑥𝑡(𝑟)𝑑𝑟 + 𝐹[𝑛(𝑟)]                                 (A. 19) 

http://cmt.dur.ac.uk/sjc/thesis_prt/node124.html#Dirac
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Where F [n(r)] is a universal functional of the electron density n(r) only, and the minimum 

value of the functional E is E0 the exact ground-state electronic energy. 

Correspondingly, a Hamiltonian for the system can be written such that the electron wave 

function ψ that minimizes the expectation value gives the ground state energy (assuming a 

non-degenerate ground state),  

𝐸[𝑛(𝑟)] = 〈Ψ|Ĥ|Ψ〉                                                           (A. 20) 

Such that,  

�̂� = �̂� + �̂�𝑒𝑥𝑡                                                                  (A. 21) 

Where �̂� is the electronic Hamiltonian consisting of a kinetic energy operator  �̂�  and an 

interaction operator  �̂�𝑒𝑒 ,  

�̂� = �̂� + �̂�𝑒𝑒                                                                  (A. 22) 

The electron operator �̂� is the same for all N electron systems, so that the  �̂� , and hence the 

ground states are completely defined by the number of electrons N, and the external potential 

vext(r). 

Proof by reductio ad absurdum assume that a second external potentials, v'ext, (r) give rise to 

the same density n0 (r). The corresponding Hamiltonians and ground state energy for wave 

functions, ψ and ψ' are �̂� and 𝐻′̂ and E, E’, respectively. It is at this point that the Hohenberg-

Kohn theorems, and therefore DFT, apply rigorously to the ground state only.   As ψ' is not 

the ground state of �̂� , we can say that [28]:  

𝐸〈Ψ|Ĥ|Ψ〉 = 〈Ψ′|H′̂|Ψ′〉 + 〈Ψ′|Ĥ − H′̂|Ψ′〉 = 𝐸′ + ∫ 𝑛0(𝑟)[𝑣𝑒𝑥𝑡(𝑟) − 𝑣′
𝑒𝑥𝑡(𝑟)]𝑑𝑟   (A. 23) 

So we have 

𝐸 < 𝐸′ + ∫ 𝑛0(𝑟)[𝑣𝑒𝑥𝑡(𝑟) − 𝑣′𝑒𝑥𝑡(𝑟)]𝑑𝑟                            (A. 24) 

If the unprimed and primed indices are reversed, we also have: 

𝐸′ < 𝐸 + ∫ 𝑛0(𝑟)[𝑣′𝑒𝑥𝑡(𝑟) − 𝑣𝑒𝑥𝑡(𝑟)]𝑑𝑟                            (A. 25) 

Addition of equations (A.24)  and (A.25) leads to the result:  

𝐸 + 𝐸′ < 𝐸′ + 𝐸 

Which is a contradiction, and as a result the ground state density uniquely determines the 

external potential vext (r).  

http://cmt.dur.ac.uk/sjc/thesis_dbj/node12.html#eq:ch1_hk_one_1
http://cmt.dur.ac.uk/sjc/thesis_dbj/node12.html#eq:ch1_hk_one_1
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Theorem 2:  

The total energy of a system, which is a functional of the ground state electron density 

through the first theorem, is minimised for the correct ground state energy. 

The proof of the second theorem is also straightforward: as just shown, n(r) determines 

vext (r), N and vext (r) determine Ĥ and therefore ψ. This ultimately means ψ is a functional 

of n(r) , and so the expectation value of  �̂� is also a functional of n(r), i.e.  

𝐹[𝑛(𝑟)] = 〈Ψ|�̂�|Ψ〉                                                  (A. 26) 

A density that is the ground state of some external potential is known as v-representable. 

Following from this, a v-representable energy functional Ev [n(r)] can be defined in which the 

external potential v(r) is unrelated to another density n’(r),  

𝐸𝑣[𝑛(𝑟)] = ∫ 𝑛′(𝑟)𝑣𝑒𝑥𝑡(𝑟)𝑑𝑟 + 𝐹[𝑛′(𝑟)]                                         (A. 27) 

 So, it follows from the variational principle that: 

〈Ψ′|Ĥ|Ψ′〉 = 〈Ψ′|F̂|Ψ′〉 + 〈Ψ′|Vext
̂ |Ψ′〉 > 〈Ψ|F̂|Ψ〉 + 〈Ψ|Vext

̂ |Ψ〉                      (A. 28) 

Where ψ is the wave function associated with the correct ground state n(r). This leads to,  

∫ 𝑛′(𝑟)𝑣𝑒𝑥𝑡(𝑟)𝑑𝑟 + 𝐹[𝑛′(𝑟)] > ∫ 𝑛(𝑟)𝑣𝑒𝑥𝑡(𝑟)𝑑𝑟 + 𝐹[𝑛(𝑟)]           (A. 29) 

Consequently the variational principle of the second Hohenberg-Kohn theorem is obtained,  

𝐸𝑣[𝑛′(𝑟)] > 𝐸𝑣[𝑛(𝑟)]                                                 (A. 30) 

Therefore the total energy functional gives the exact ground state energy only for the exact 

ground state density. If the universal functional F [n(r)] is known, then the total energy can be 

minimised with respect to n(r) and the exact ground state electron density and total energy 

would be found. Simple yet powerful as the Hohenberg-Kohn theorems are, they do not 

provide a route to construct functionals or a method to calculate the ground state density. 

Almost exactly a year after the Hohenberg-Kohn theorems were published, Kohn and Sham 

published [14] an approach that makes DFT feasible.  

A.3.4.2 Kohn-Sham Formulation 

The Kohn-Sham ansatz is that the exact ground state density can be written as the ground 

state density of a fictitious system of non interacting particles.  This then gives us a set of 

independent particle equations that can be solved numerically. Through the Hohenberg-Kohn 

theorems, these independent particle equations have their own ground state energy functional. 

We write the variational problem for the Hohenberg Kohn density functional, introducing a 

Lagrange multiplier μ to constrain the number of electrons to be N:  
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𝜎 [𝐹[𝑛(𝑟)] + ∫ 𝑣𝑒𝑥𝑡(𝑟)𝑛(𝑟)𝑑𝑟 – 𝜇 (∫ 𝑛(𝑟)𝑑𝑟 − 𝑁)] = 0                 (A. 31) 

⇒ 𝜇 =   
𝛿𝐹[𝑛(𝑟)]

𝛿𝑛(𝑟)
+ 𝑣𝑒𝑥𝑡(𝑟) 

Kohn and Sham separated F [n(r)] into three distinct parts, the first two of which are known 

exactly and constitute the majority of the energy, the third being a small unknown quantity,  

𝐹[𝑛] = 𝑇𝑠[𝑛] +
1

2
∫

𝑛(𝑟)𝑛(𝑟′)

|𝑟 − 𝑟′|
𝑑𝑟𝑑𝑟′ + 𝐸𝑋𝐶[𝑛]             (A. 32) 

In the condensed from equation (A. 25) has the following expression:  

𝐹[𝑛(𝑟)] = 𝑇𝑠[𝑛(𝑟)] + 𝐸𝐻[𝑛(𝑟)] + 𝐸𝑋𝐶[𝑛(𝑟)]                                      (A. 33) 

Ts [n(r)] is the kinetic energy of a non interacting electron gas of density n(r), EH [n(r)]   is the 

classical electrostatic (Hartree) energy of the electrons, and EXC [n(r)]   is an implicit 

definition of the exchange correlation energy which contains the non classical electrostatic 

interaction energy and the difference between the kinetic energies of the interacting and non 

interacting systems.  The aim of this separation is that the first two terms can be dealt with 

simply, and the last term, which contains the effects of the complex behavior, is a small 

fraction of the total energy.   

Consequently, equation (A. 26) can be rewritten:   

𝜇 =   
𝛿𝑇𝑠[𝑛(𝑟)]

𝛿𝑛(𝑟)
+ 𝑣𝐾𝑆(𝑟)                                      (A. 34) 

 

Where  

𝑣𝐾𝑆(𝑟) = 𝑣𝑒𝑥𝑡(𝑟) + 𝑣𝐻(𝑟) + 𝑣𝑋𝐶(𝑟)                                        (A. 35) 

 

and 

𝑣𝐻(𝑟) =   
𝛿𝐸𝐻[𝑛(𝑟)]

𝛿𝑛(𝑟)
= ∫

𝑛(𝑟′)

|𝑟 − 𝑟′|
𝑑𝑟′                                           (A. 36) 

 

In which the exchange-correlation potential 𝑣𝑋𝐶(𝑟) is  

𝑣𝑋𝐶(𝑟) =   
𝛿𝐸𝑋𝐶[𝑛(𝑟)]

𝛿𝑛(𝑟)
                                       (A. 37) 

Crucially, non interacting electrons moving in an external potential vKS(r) would result in the 

same equation(A. 26). To find the ground state energy, E0(r), and the ground state 

density, n0(r), the one electron Schrödinger equation  

 

http://cmt.dur.ac.uk/sjc/thesis_ppr/node8.html#eq.Hartree_Psi
http://cmt.dur.ac.uk/sjc/thesis_ppr/node8.html#eq.Hartree_Psi
http://cmt.dur.ac.uk/sjc/thesis_ppr/node8.html#eq.Hartree_Psi
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[−
1

2
∇2 + 𝑣𝐾𝑆(𝑟)] 𝜓𝑖(𝑟) = 𝜓𝑖(𝑟)𝜀𝑖                   (A. 38) 

 εi are Lagrange multipliers corresponding to the orthonormality of the N single particle 

states ψi(r). 

should be solved self-consistently with, 

𝑛(𝑟) = ∑|𝜓𝑖(𝑟)|2

𝑁

𝑖=1

                                              (A. 39) 

and equations (A. 34) and  (A. 37). A self-consistent solution is required due to the 

dependence of vKS(r) on n (r). 

The non-interacting kinetic energy TS [n(r)] is therefore given by,  

𝑇𝑇𝑆[𝑛(𝑟)] = −
1

2
∑ 𝜓𝑖𝑖

∗(𝑟)

𝑁

𝑖=1

∇2𝜓𝑖(𝑟)𝑑𝑟                         (A. 40) 

 

An implicit definition of exchange-correlation functional EXC[n(r)] can be given through 

(A. 34) as,  

𝐸𝑋𝐶[𝑛(𝑟)] = 𝑇[𝑛(𝑟)] − 𝑇𝑆[𝑛(𝑟)] + 𝐸𝑒𝑒[𝑛(𝑟)] − 𝐸𝐻[𝑛(𝑟)]                           (A. 41) 

  

Where 𝑇[𝑛(𝑟)] and 𝐸𝑒𝑒[𝑛(𝑟)] are the exact kinetic and electron-electron interaction energies 

respectively.  

Since vKS(r) depends on the density through the exchange-correlation potential, 

relations (A. 37), (A. 40) and(A. 41), which are known as the Kohn-Sham equations, must be 

solved self-consistently as in the Hartree-Fock scheme [1]. 

The above equations provide a theoretically exact method for finding the ground state energy 

of an interacting system provided the form of  𝐸𝑋𝐶[𝑛(𝑟)] is known. Unfortunately, the form 

of  𝐸𝑋𝐶[𝑛(𝑟)] is in general unknown and its exact value has been calculated for only a few 

very simple systems. In electronic structure calculations  𝐸𝑋𝐶[𝑛(𝑟)] is most commonly 

approximated within the local density approximation or generalised-gradient approximation. 

A.3.4.3 Exchange-Correlation Functionals 

Density functional theory is in principle exact! But, in practice approximations have to be made." 

W. Kohn 

To use the Kohn-Sham equations we must know what the form of the exchange- correlation 

energy functional is. However, the exact form of Exc is not known and may never be known. 

Thus since the birth of DFT some sort of approximations for Exc have been used. By now 
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there is an almost endless list of approximations with varying levels of complexity. Rather 

recently a useful way for categorizing the many and varied Exc functionals that exist has been 

proposed by Perdew [29]. In this scheme functional are grouped according to their complexity 

on rungs of a ladder which lead from the Hartree approximation on "earth" to the exact 

exchange-correlation functional in «heaven". A briefly discussion is to be made of the first 

few rungs of this ladder as a means to introduce some of the most common types of exchange-

correlation functionals in widespread use: 

1- Local Density Approximation (LDA): 

The simplest approximation is to assume that the density can be treated locally as an uniform 

electron gas; the exchange correlation energy at each point in the system is the same as that of 

an uniform electron gas of the same density. This approximation was originally introduced by 

Kohn and Sham [13] and holds for a slowly varying density. The LDA is only dependent on 

the local density, and the total energy is commonly written as,  

𝐸𝑋𝐶
𝐿𝐷𝐴[𝑛(𝑟)] = ∫ 𝑛(𝑟)𝜖𝑋𝐶 [𝑛(𝑟)]𝑑𝑟                                                     (A. 42) 

The exchange correlation potential vXC (r) then takes the form  

𝑣𝑋𝐶
𝐿𝐷𝐴[𝑛(𝑟)] =

𝛿𝐸𝑋𝐶
𝐿𝐷𝐴

𝛿𝑛(𝑟)
= 𝜖𝑋𝐶(𝑛(𝑟)) + 𝑛(𝑟)

𝜕𝜖𝑋𝐶(𝑛)

𝜕𝑛
|

𝑛=𝑛(𝑟)
                     (A. 43) 

Where 𝜖𝑋𝐶[𝑛(𝑟)]  is the exchange correlation energy density per particle of an uniform 

electron gas of density 𝑛(𝑟). The exchange correlation energy can be decomposed into 

exchange and correlation contributions,  𝜀𝑋𝐶[𝑛(𝑟)] = 𝜀𝑋[𝑛(𝑟)] + 𝜀𝑐[𝑛(𝑟)] 

𝜀𝑋[𝑛(𝑟)]  is given by the Dirac functional 

𝜀𝑋[𝑛(𝑟)] = −
3

4
(

3

π
)

1
3

𝑛(𝑟)                                                             (A. 44) 

While accurate values for  𝜀𝑐[𝑛(𝑟)] is determined from an interpolation formula [30,31] that 

connects the known limiting form of  𝜖𝐶[𝑛(𝑟)]  in the high [32] and low density limits [33]. A 

commonly used correlation formula is that of Perdew and Zunger [30] which uses accurate 

Quantum Monte Carlo (QMC) calculations of the homogeneous electron gas. 

The LDA is often surprisingly accurate and for systems with slowly varying charge densities 

generally gives very good results. Its use is justified a posteriori by its surprising success at 

predicting physical properties in real systems. The failings of the LDA are now well 

established: it has a tendency to favor more homogeneous systems and over binds molecules 

and solids.  

http://cmt.dur.ac.uk/sjc/thesis_dlc/node145.html#kohn1965a
http://cmt.dur.ac.uk/sjc/thesis_ppr/node130.html#Hubbard
http://cmt.dur.ac.uk/sjc/thesis_ppr/node130.html#Pines_Noz
http://cmt.dur.ac.uk/sjc/thesis_ppr/node130.html#PZ
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2. The Generalised Gradient Approximation: 

As the LDA approximates the energy of the true density by the energy of a local constant 

density, it fails in situations where the density undergoes rapid changes such as in molecules. 

An improvement to this can be made by considering the gradient of the electron density, the 

so called Generalized Gradient Approximation (GGA) which is currently the most popular 

exchange correlation functional in condensed matter physics. Symbolically this can be written 

as:  

𝐸𝑥𝑐 = 𝐸𝑥𝑐[𝑛(𝑟), ∇𝑛(𝑟)]                                          (A. 45) 

 

The vital steps that lead to the GGA were principally made by Perdew and co-workers [29] 

who devised a cutoff procedure. As a result of this procedure the GGA can be conveniently 

written in terms of an analytic function known as  the enhancement factor,  𝐹XC[𝑛(r), ∇ 𝑛(r)] , 

that directly modifies the LDA energy density,  

𝐸𝑋𝐶
𝐺𝐺𝐴[𝑛(𝑟)] = ∫ 𝑛(𝑟)𝜖𝑋𝐶

ℎ𝑜𝑚 [𝑛(𝑟)]𝐹𝑋𝐶[𝑛(𝑟), ∇𝑛(𝑟)]𝑑𝑟             (A. 46) 

Despite the crudeness of the real space cutoff procedure, the GGA gave improvement over the 

LDA in several instances. The most notable outcome was the significant reduction in the LDA 

over binding error for solids and molecules.  

While there is only one LDA there are several different parameterizations of the GGA. Some 

of these are semi-empirical, in that experimental data is used in their derivation. Others are 

found entirely from first principles. A commonly used functional is the PW91 functional, due 

to Perdew and Yang [34].  

Thus GGAs are "semi-local" functionals, comprising corrections to the LDA while (again) 

ensuring consistency with known sum rules. For many properties, for example geometries and 

ground state energies of molecules, GGAs can yield better results than the LDAs. Although 

for the properties of metals and their surfaces, GGA results are not necessarily superior to 

LDA results. The most widely used GGAs in surface physics are the PW91 functional, and its 

close relative PBE [35].  

PW91 is determined from exact quantum-mechanical relations. The exchange enhancement 

factor has the form,  

𝐹𝑋
𝑃𝑊91(𝑠) =

1 + 0.19645𝑠 𝑠𝑖𝑛ℎ−1 (7.7956𝑠) + (0.2743 − 0.15084𝑒−100𝑠2
 

1 + 0.19645𝑠 𝑠𝑖𝑛ℎ−1 (7.7956𝑠) + 0.004𝑠4
             (A. 47) 
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Until recently, PW91 was the sole GGA used by the physics community. It has now probably 

been superseded by a modified form devised by Perdew, Burke and Ernzerhof known as 

PBE [35], which uses a much simplified exchange enhancement factor of the form:  

𝐹𝑋
𝑃𝐵𝐸(𝑠) = 1 + 𝑘 −

𝑘

1 + 𝜇𝑠2/𝑘
                                       (A. 48) 

Where u=0.21951  and k=0.804 . PBE was designed to give a simpler functional form by 

retaining only the most energetically important conditions satisfied by PW91.  

3. The meta-GGAs (MGGA): These are the third generation functionals and use the second 

derivative of the density, ∇2𝑛(r), and or kinetic energy densities, as additional degree of 

freedom.  In gas phase studies of molecular properties meta-GGAs [36, 37] have been shown 

to offer improved performance over LDAs and GGAs. However, aside from some benchmark 

studies of bulk materials, these functionals have not yet been exploited to any great extend in 

the solid state. 

4.  The hybrid functionals: These fourth generation functionals add "exact exchange" from 

Hartree-Fock theory to some conventional treatment of DFT exchange and correlation. The 

most widely used, particularly in the quantum chemistry community, is the B3LYP [38, 40].  

A.4 Plane-Waves and Pseudopotentials 

One way of implementing the Kohn-Sham formulation of DFT is the plane wave pseudo 

potential method. As with the wave function based methods, when it comes to the practical 

application of DFT issues such as basis sets need to be considered. In calculations of solids or 

condensed matter, plane-wave basis set is a very common choice. In many cases, combined 

with plane-wave is the pseudo potential approach for treating the strong interactions between 

core electron and nuclei. 

A.4 .1 Bloch's Theorem 

Thus far, the quantum mechanical approaches to solving the many body problems have been 

discussed. However, the correlated nature of the electrons within a solid is not the only 

obstacle to solving the Schrödinger equation for a condensed matter system: for solids, one 

must also bear in mind the effectively infinite number of electrons within the solid. One may 

appeal to Bloch's theorem in order to make headway in obviating this latter problem.  

Bloch's theorem [41] shows that the wave function of an electron 𝜓𝑗,𝑘, within a periodic 

potential, can be expressed as a combination of a lattice periodic part  𝑢𝑗 (𝑟)and a wavelike 

part 𝑒𝑖𝑘.𝑟 ,  

𝜓𝑗,𝑘(𝑟) = 𝑢𝑗 (𝑟)𝑒𝑖𝑘.𝑟                                                             (A. 49) 

http://cmt.dur.ac.uk/sjc/thesis_ppr/node130.html#ashcroft_mermin
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Where the subscript j indicates the band index and k is a continuous wave-vector that is 

confined to the first Brillouin zone of the reciprocal lattice [41]. This leads us to choose a 

plane wave basis set to describe the wave function within the periodic cell. Since 𝑢𝑗 (r) is a 

periodic function, we may expand it in terms of a Fourier series: 

𝑢𝑗(𝑟) = ∑ 𝑐𝑗.𝐺𝑒𝑖𝐺.𝑟                                            (A. 50)

𝐺

 

Where the G is reciprocal lattice vectors defined through 𝐺. 𝑅 = 2𝜋𝑚G, m is an integer, R is a 

real space lattice vector and the cj.G are plane wave expansion coefficients. The electron wave 

functions may therefore be written as a linear combination of plane waves: 

ψj,k(r) = ∑ cj,k + Gei(G+k).r

G

                                               (A. 51) 

Bloch's theorem allows us to take an infinite system but only calculate a finite number of 

electronic wave functions 

In practice, we need only to choose a sample of k-points as the wave function varies slowly 

over small regions of k-space. The electronic wave functions at k-points that are close will be 

nearly identical. Therefore a region of k-space can be represented by the wave function at a 

single k-point. Efficient k-point sampling schemes have been developed, such as the one 

given by Monkhorst and Pack [42]. The symmetry of the lattice can be used to reduce the 

number of k-points required. The Brillouin zone can be made irreducible by applying the 

point group symmetries of the lattice, leaving no k-points related by symmetry. 

Plane waves are a simple way of representing electron wave functions. They offer a complete 

basis set that is independent of the type of crystal and treats all areas of space equally. 

A.4 .2 Pseudo potentials approach 

It is well established that most physically interesting properties of solids are determined by 

the valence electrons rather than the core electrons. Meanwhile, the deeply bound core 

electrons within plane-wave basis sets require a huge amount of basis functions for their 

description.  Thus this leads to a contradiction that the less important core electrons will 

consume a lot of computational cost. To alleviate this problem, the pseudopotential 

approximation [43-46] replaces the strong ionic potential with a weaker pseudopotential. 

In general, there are two main purposes of the pseudopotential formalism. First, to use a much 

weaker pseudopotential to replace core electrons which due to their deep potential need to be 

described by many plane-wave basis functions.  Second, to eliminate the rapid oscillations of 

the valence electron wave function in the core region. These lead to large kinetic energies 

hence the need for large numbers of plane waves. Also a large number of plane waves are 
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needed to describe the tightly bound core states [47].  These issues are shown in Figure A.1. 

From this Figure, we can see the  pseudo-potential approximation replaces the strong ionic 

potential vion (r) in the core region, by a weaker pseudo-potential v
PS

ion (r). The corresponding 

set of pseudo wave functions ψ
PS

 (r) and the all-electron wave functions ψ
AE

 (r)   are identical 

outside a chosen cutoff radius rc  and so exhibit the same scattering properties, but 

ψ
PS

 (r)  does not possess the nodal structure that cause the oscillations inside rc, which means 

they can now be described with a reasonable number of plane waves.  

 

 

Figure A.1: Schematic illustration of the pseudopotential concept. The solid lines show the 

all-electron wave function, ψ
AE

 (r) , and ionic potential, v
AE

ion (r), while the dashed lines show 

the corresponding pseudo-wave function, ψ
PS

 (r), given by the pseudopotential, v
PS

ion (r) . All 

quantities are shown as a function of distance, r, from the atomic nucleus. The cutoff radius 

rc   marks the point beyond which the all-electron and pseudo quantities become identical. 

To ensure that a pseudo-potential calculation reproduces the same energy differences as an 

all-electron calculation it is necessary for the pseudo-wave functions to be identical to the all-

electron wave functions outside the core. This condition is called `norm-conservation'.  

 

There are a number of different methods for generating pseudo-potentials. The two most 

widely used methods are the norm conserving approach of Kleinman and Bylander [48] and 

the ultrasoft approach of Vanderbilt [49]. Norm-conservation refers to the constraint that the 

charge within the core radius for the true system is equal to the charge within the core radius 

for the pseudo wavefunction. With ultrasoft pseudopotentials this constraint is relaxed and 

therefore a more slowly varying pseudopotential can be chosen, further reducing the number 
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of plane waves required. Ultrasoft pseudopotentials also show better transferability between 

different condensed matter systems [49].  

 

A.4 .2.1 Ultrasoft Pseudo-potentials (USP) 

The idea of ultrasoft pseudopotentials (USP) as put forward by Vanderbilt [49] is that the 

relaxation of the norm conserving condition can be used to generate much smoother (softer) 

potentials. Therefore the pseudo-wave functions are allowed to be as soft as possible within 

the core region, so that the cutoff energy can be reduced dramatically. The total valence 

density n(r) is partitioned into so-called hard and soft contributions,  

𝑛(𝑟) = ∑ |∅𝑛(𝑟)|2

𝑛
+ ∑ 𝑄𝑖𝑗(𝑟)⟨∅𝑛|𝛽𝑗⟩⟨𝛽𝑖|∅𝑛⟩

𝑖𝑗

                               (A. 52) 

Where 𝛽𝑖 are projector functions that depend on the ionic positions and the augmentation 

function 𝑄𝑖𝑗(𝑟) is given by  

𝑄𝑖𝑗(𝑟) = 𝜓𝑖
∗(𝑟)𝜓𝑗(𝑟) − ∅𝑖

∗(𝑟) ∅𝑗(𝑟)                                    (A. 53) 

𝜓𝑖(𝑟) are the all-electron wave functions, and  ∅𝑖(𝑟) are ultrasoft wavefunctions constructed 

without satisfying the norm conservation condition .  

Typically, the cutoff energy Ecut when using ultrasofts is about half that of conventional norm-

conserving pseudopotentials, for simple estimates the number of plane-waves scales as 𝐸𝑐𝑢𝑡
3/2

, 

therefore approximately one third less plane waves are required in a given calculation.  

A.4 .2.2 Norm-conserving pseudopotentials 

The main requirement of the pseudo-potential approach is that it reproduces the valence 

charge density associated with chemical bonds. It has been shown [50] that for pseudo and 

all-electron wave functions to be identical beyond the core radius, rc, it is necessary for the 

integrals of squared amplitudes of the two functions be the same. This is equivalent to 

requiring norm-conservation from pseudo wave functions, i.e. that each of them should carry 

exactly one electron. This condition ensures that the scattering properties of the pseudo 

potential are reproduced correctly. 

Kleinman-Bylander pseudo potentials are norm-conserving, that is, outside the core, the real 

and pseudo wave functions generate the same charge density. This can be expressed formally 

as: 

∫ 𝜓𝐴𝐸
∗

𝑟𝑐

0

(𝑟)𝜓𝐴𝐸 (𝑟)𝑑𝑟 = ∫ 𝜓𝑝𝑠
∗

𝑟𝑐

0

(𝑟)𝜓𝑝𝑠 (𝑟)𝑑𝑟                           (A. 54) 
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Where 𝜓𝐴𝐸 (𝑟) is the all electron wave function (i.e. the Kohn-Sham orbital that would be 

obtained from a calculation involving all electrons), and 𝜓𝑝𝑠 (𝑟) is the pseudo wave function 

[51]. Relaxation of the norm conservation condition leads to Vanderbilt ultrasoft potentials 

[49]; instead, a generalised eigenvalue formalism is adopted. A non-local overlap operator is 

defined through 

𝑠 = 1 + ∑ 𝑄𝑖𝑗 |𝛽𝑖〉〈𝛽𝑖|                                         (A. 55)

𝑖𝑗

 

Where βi  are projector functions depending upon ionic positions and the Qij  are the matrix 

elements  

𝑄𝑖𝑗 = ⟨𝜓𝑖|𝜓𝑗⟩ − ⟨∅𝑖|∅𝑗⟩                                                        (A. 56) 

Where ψ are the all-electron wave functions, whilst 𝜙 are pseudo wave functions. The norm-

conservation condition is recovered when  𝑄𝑖𝑗 = 0. The non-local potential may then be 

written as:  

𝑉𝑛𝑜𝑛−𝑙𝑜𝑐𝑎𝑙 = ∑ 𝐵𝑖𝑗 + 𝜖𝑖𝑄𝑖𝑗 |𝛽𝑖〉〈𝛽𝑖|

𝑖𝑗

                               (A. 57) 

B is the matrix whose elements are formed from 

Bij = ⟨ϕi|χj⟩                                                               (A. 58) 

and  χ is a local wave function. The  ϕi are then solutions of the generalised eigenvalue 

problem 

(H−ϵiS| − ∅j〉                                                           (A. 59) 

So                               ⟨∅i|S|∅j⟩ = ⟨ψi|ψj⟩                                                                   (A. 60) 

and thus the pseudo and all electron wave function amplitudes are the same beyond the cut-off 

radius value. Relaxation of the norm conserving condition allows smoother wave functions, 

and hence lower cut-off energies. This is advantageous in reducing the size of the plane wave 

basis set used, and it is for this reason that Vanderbilt ultra-soft pseudo potentials are amongst 

the most widely used in the condensed matter community.  

A.4 .3 Pseudo-potential Generation 

Pseudo-potentials are usually generated from all-electron calculations by self-consistently 

solving the all-electron Schrödinger equation: 

(− 
1

2
∇2 + V) 𝜓l

AE = ϵl𝜓l
AE                                                      (A. 61)  

Where 𝜓l
AE is the all-electron wave function with angular momentum quantum number l. The 

resulting valence eigenvalues are then substituted back into the Schrödinger equation, but 
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with a parameterised pseudo wave function. Inversion of the Kohn-Sham equations with this 

pseudo wave function then yields the pseudo potential. 

Pseudo-potential is not unique: however, it must obey certain criteria: 

-  The pseudo wave function must be the same as the all-electron wave function outside a 

radius rcut. 

-  The core charge produced by both sets of wave functions must be the same. This norm 

conservation requirement can be relaxed though, as discussed earlier. 

-  The pseudo wave functions must be continuous at the cut-off radius, as must be the first and 

second derivatives. 

-  The valence all-electron and pseudo-potential eigenvalues must be equal. 

 

A.5 Computational Physics: Empirical versus ab initio Methods 

In order to investigate theoretically systems as complicated as molecular crystals, it is 

necessary to model the interactions as accurately as possible, whilst ensuring that the 

calculations remain computationally feasible. The simplest and crudest approaches to this 

problem rely upon the usage of empirical potentials; that is potentials which are obtained by 

fitting to various experimentally obtained properties, such as the lattice constant and bulk 

modulus. However, although empirical potentials can be of use, they are limited by the 

accuracy of the parameterisation, and correspondingly, their transferability to other 

environments can be poor. Further, empirical potentials optimised to accurately obtain 

quantities such as the lattice parameter accurately, may be inadequate for other properties 

such as lattice dynamical properties, for which they were not designed, leading to further 

problems of transferability.  

In order to derive an empirical potential, it is usual for some assumption to be made 

concerning the electronic structure of the system under consideration and the bonding 

mechanisms present. Modeling interactions with no a priori knowledge of the bonding present 

requires the use of sophisticated ab initio or first principles methodologies, in which one 

attempts to solve the Schrödinger equation governing the electronic dynamics. The 

methodology of choice for such calculations is the density functional theory (DFT). The ab 

initio approach, although more computationally intensive, does possess the advantage of 

being completely transferable, requiring only that the atomic constituents of the system under 

consideration be specified. It is thus more intellectually appealing, but moreover, this ensures 

that it may be used to calculate the properties of systems about which no a priori knowledge 

exists.  
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By solving the electronic structure of the system, a deeper understanding of the system's 

behavior may be gleaned; furthermore, knowledge of the electronic structure then allows a 

range of properties from equilibrium geometries to thermodynamic properties and equations 

of state to be obtained without recourse to experimental input. One may also use the output of 

high quality ab initio calculations to parameterise classical potentials allowing the 

computational restrictions associated with ab initio methods to be circumvented. It is for these 

reasons that in this work an ab initio approach is preferred to an empirical one. 

 

A.5.1 CASTEP Code 

The CASTEP programme [52-53] is a first principles quantum mechanical code for 

performing electronic structure calculations. Within the density functional formalism it can be 

used to simulate a wide range of materials including crystalline solids, surfaces, molecules, 

liquids and amorphous materials; the properties of any material that can be thought of as an 

assembly of nuclei and electrons can be calculated with the only limitation being the finite 

speed and memory of the computers being used. This approach to simulation is extremely 

ambitious, given that the aim is to use no experimental (empirical) data, but to rely purely on 

quantum mechanics. 

The calculations and methods developed in this thesis were performed using, and 

implemented in, CASTEP. CASTEP (CAmbridge Serial Total Energy Package) is a package 

for performing ab-initio quantum mechanical atomistic simulations. It employs density 

functional theory, pseudo-potentials and a plane-wave basis set. Electron-ion interactions are 

evaluated using ultra-soft (Vanderbilt) pseudo-potentials and the exchange-correlation energy 

was calculated using the GGA functional. 

CASTEP uses special k-points sampling for integration over the Brillouin zone, fast Fourier 

transforms (FFT) to evaluate matrix elements, and wave function summarization for crystals 

with point group symmetry higher than P1. For metallic systems CASTEP introduces partial 

occupancies for levels close to the Fermi energy (de Vita, 1992). 

A.5.2 CASTEP functionality 

CASTEP offers the following functionality: solve DFT equations for a given structure; 

calculate forces on atoms and stress tensor; optimize geometry of a given system, including 

cell relaxation; calculate electronic structure, including density of states and dispersion along 

high symmetry directions; calculate optical properties that are due to inter-band electronic 

transitions; calculate electron density difference maps; display 3D isosurfaces or contour plots 
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of density, density difference, electrostatic potential, orbitals, etc. CASTEP can treat metals, 

semiconductors, or insulators, can be used to study charged systems or to perform spin-

polarized calculations.  

A.6 Conclusion 

Density functional theory provides us with a relatively efficient and unbiased tool with which 

to compute the ground state energy in realistic models of bulk materials and their surfaces. 

The reliability of such calculations depends on the development of approximations for the 

exchange-correlation energy functional.  Significant advances have been made in recent years 

in the quality of exchange correlation functional as dependence on local density gradients, and 

nonlocal exchanges functional have been introduced. 

The local density approximation (LDA) is a very simple and remarkably reliable for the 

structure, elastic moduli, and relative phase stability of many materials but is less accurate for 

binding energies and details of the energy surface away from equilibrium geometries. The 

GGA has since become the accepted functional in DFT calculations within condensed matter 

physics. 

CASTEP is a leading code for calculating the properties of materials from first principles. 

Using density functional theory, it can simulate a wide range of properties of materials 

proprieties including energetics, structure at the atomic level, vibrational properties, electronic 

response properties etc. In particular it has a wide range of spectroscopic features that link 

directly to experiment, such as infra-red and Raman spectroscopies, NMR, and core level 

spectra. 
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    KAsSn  زنتل فيزس للمركبدراسة الخصائص البصرية والإلكترونية والهيكلية  طروحة :الأ

 مرابط عبد العالي:   المؤطر                  عبلةالإسم:                     قشي اللقب:

 

 :ملخص

 

 على الحسابات ھده واستندت. Zintl phase KAsSnللمركب  ئيةموضوع الأطروحة كان حول الدراسة النظرية للخصائص الهيكلية وفيزيا

 التوازن عند الشبكة ثابت, البنيوية الخواص حساب بغية CASTEP البرنامج  المعمم باستعمال الانحدار تقريب الإلكترونية  مع الكثافة نظرية دالية

 الخصائص علي الضغط تأثير بدراسة قمنا .التوالي   على ,a) c (V,    %0.06و  %1.63, % 0.87من أقل فجوة وجود عليهم مع المتحصل

الكريستالات     مرونة وحدات و (Cij)   المرونية الثوابت حساب تم بالمثل GPa 20 .بين ضغوط و T=0 أجل من المدروسة للمركبات البنيوية

(B), (G)   الموصلات أشباه ھي المركبات لهده ونيةالالكتر الفرقة ھيكل أن تشير حساباتنا . ھييل و رويس,  فويت من تقريبية أسس على وقدرت  

 معامل ,البصري الامتصاص,العازلة الدالة :مثل البصرية المعايير مختلف تباينفولط.  ن الكترو   0.34مع وجود فجوة مباشرة زائفة تقدر ب 
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Abstract: 
The thesis has been the subject of theoretical study on the structural and physic al properties of compound Zintl phase 

KAsSn. The structural, electronic, elastic and optical properties of KAsSn compound have been investigated by employing 

first principles method using the density-functional theory (DFT) method within the generalized gradient approximation 

developed by Wu-Cohen (GGA-Wc). The equilibrium geometries of the studied materials have been optimized at 0 K for 

different pressure values between 0 and 20 GPa by using the CASTEP package. The calculated lattice constants are in good 

agreement with experiments with a deviation less than 0.87%, 1.63% and 0.06% for a, c and V respectively. The single 

crystal elastic constants (Cij)  and related properties are calculated using the static finite strain technique, moreover the 

polycrystalline elastic moduli such as bulk modulus, shear modulus, were estimated using Voigt, Reuss and Hill’s (VRH) 

approximations. Electronic properties have been studied throughout the calculation of band structure, density of states and 

charge densities. It is shown that this crystal belongs to the semiconductors with a pseudo gap of about 0.34eV. Furthermore, 

in order to clarify the optical transitions of this compound, linear optical functions including the complex dielectric function, 

refractive index, extinction coefficient, optical reflectivity, absorption coefficient and loss function were performed and 

discussed. The direct band gap and high absorption power in the ultraviolet energy range show the effective use of this 

compound in the optoelectronic devices.   

Key words: KAsSn, Zintl phase, high pressure synthesis, CASTEP, optic, electronic, structural properties.     
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Résumé : 

Le travail de thèse a fait l’objet d’une étude théorique sur les propriétés structurales et physiques du composé phase zintl 

KAsSn. Les propriétés structurales, électroniques, élastiques et optiques du composé phase zintl KAsSn ont été étudiées. Les 

calculs ont été effectués par la méthode de calcul des ondes planes (PP-PW) avec l’approximation du gradient généralisé de 

Wu-Cohen (GGA-Wc) implémentée dans le code CASTEP qui se base sur La théorie de la fonctionnelle de la densité (DFT). 

Les géométries d’équilibres des systèmes étudiés ont été optimisées à T = 0 K pour des pressions entre 0 et 20 GPa via 

CASTEP.  Les paramètres des mailles calculés sont en bon accord avec les expériences avec un écart inférieur à 0.87%, 

1.63% et 0.06% pour a, c et V respectivement.  De même, les constantes élastiques (Cij) ont été calculées et les modules 

d’élasticité polycristalline (B et G) ont été estimés en fonction des approximations de Voigt, Reuss et Hill. Nos calculs de la 

structure de bandes électroniques suggèrent que ce composé est un semi-conducteurs de faible bande gap de l’ordre 0.34eV. 

La variation des différents paramètres optiques tels que: la fonction diélectrique, l’absorption optique, l’indice de réfraction, 

le coefficient d’extinction, la fonction de perte optique et la réflectivité à 0 GPa, pour nos composés, a été étudiée.  La 

variation des différents paramètres optiques tels que: la fonction diélectrique, l’absorption optique, l’indice de réfraction, le 

coefficient d’extinction, la fonction de perte optique et la réflectivité à 0GPa  ont été étudiée. La bande interdite directe et le 

pouvoir d'absorption élevé dans l’ultraviolet montrent  l'utilisation efficace de ce composé dans les dispositifs 

optoélectroniques. 

Mots clés :KAsSn, phase Zintl,  synthèse a haute pression, CASTEP, propriétés optique, électronique, 

structurale 
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