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1.1 Overview

1.1.1 Data mining and optimization

Knowledge extraction from data bases, also called data mining, denotes the pro-
cess of discovering useful, new and understandable information and knowledge
from large data bases, data warehouses or others kinds of data repositories . Gen-
erally speaking, data mining techniques are classified into two main categories: de-
scriptive techniques and predictive techniques [Fayyad 1996]. In the first category,
the aim is to make explicit some information that is present but hidden in data.
Methods of this category include: clustering algorithms, association rules, visual-
ization techniques and factorial methods. The second category consists in the ex-
trapolation of new information and predicts unknown information. Among tech-
niques of this type, we find classification algorithms: decision tree, the k-nearest
neighbor algorithm and the bayesian classification; estimation algorithms such as
neural networks, regression methods in addition to prevision algorithms such as
temporal series.

It is worth noticing that the knowledge discovery task performed either by
descriptive or predictive techniques may be modeled in some cases as a discrete

optimization problem and in other cases as a continuous one. Among data mining
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tasks where the nature of information extraction process may be seen as an opti-
mization process, we can cite: association rules, feature selection, clustering and

decision trees.

The knowledge generated by association rules is of the form (A — B) where
A and B present the values of two subsets of features. This knowledge exhibits
the links between the values of features in data bases. The process of extracting
association rules is often done in two steps: the discovery of the set of frequent
itemsets and the extraction of association rules. The first step consists in finding
the set of frequent itemsets of size from 1 to k and whose support is greater than
or equal to some threshold given by an expert. The problem of finding the set of
frequent itemsets may be by modeled as an optimization problem which consists
in exploring the search space of 2" candidate subsets of itemsets where n is the

number of items in the data base to find the frequent itemsets [Hipp 2000].

A very similar situation is encountered with feature selection problem. Indeed,
feature selection consists in finding the subset of relevant features in a search space
of 2" candidate subsets of features. Similarly, grouping task done in clustering
algorithms may be as well modeled as an optimization problem. The question
is then how to find the best groups of homogeneous or similar individuals in a
population of individuals and what the number of optimal groups is. This problem

belongs to the class of NP-complete problems. The number of possible subsets of

a set of n individuals is given by the following formula: B, = . Y o where k is
the number of classes that may be generated [Dahl 2009]. '

After this brief survey;, it is clear that the nature of some problems of knowledge
extraction makes possible to model them as discrete optimization problems. Ac-
cordingly, we need fundamental approaches different from classical exact extrac-
tion approaches. In this thesis, we have chosen metaheuristic approaches based
on collective intelligence of a set of agents to extract knowledge and overcome the

complexity difficulty in finding the new information.

1.1.2 Metaheuristics methods for discrete optimization

In this section, we present discrete optimization problems and their resolution
methods. More precisely, we are interested in recent metaheuristics based on col-
lective intelligence of a swarm. We present in particular particle swarm optimiza-
tion, ant colony optimization and firefly algorithm with more detail. Moreover, we
present basics of quantum computing and bio-inspired algorithms integrating the

concept of this new computer science trend in solving optimization problem.
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1.1.2.1 Swarm intelligence methods

Combinatorial optimization is a research domain that is interested in proposing
effective methods to find the best possible solutions to a problem in a search space
of potential solutions [Martello 2011]. Unfortunately, most of the problems issued
from real contexts are intractable and are at least NP-Complete. Thus, solving such
problems by exhaustive approaches that examine the whole search space is very
expensive (in space and/or in time) and is often impractical as soon as the size of

the problem becomes relatively important.

Hence, a number of methods have been proposed in operation research and
in artificial intelligence in order to overcome this difficulty. Roughly speaking,
these methods can be classified into two main categories [Jourdan 2009]: exact
methods and approximate methods. Unlike exact methods that explore the whole
search space [Neapolitan 2004], approximate methods explore only a part of the
search space to produce good (not necessarily the best) solutions in reasonable
time [Eiben 2003].

Among the approximate methods, we find a class of metaheuristics based on
the collective swarm intelligence [Krause 2013]. We can cite two popular methods
of this class: The first one is the ant colony optimization method proposed by
[Dorigo 2005]. It is inspired from the collaboration of a set of ants by using the
pheromone (a chemical substance) and that is used to find the optimal path in a
graph. This method has been applied to a wide range of discrete optimization

problems (see [Dorigo 1999]).

The second method is the particle swarm optimization method (PSO) devel-
oped by Kennedy and Eberhart [Kennedy 1995]. To look for the optimal solutions
of a problem, this method simulates the flight of a bird’s swarm or the move-
ment of insects. Originally, this method has been applied to solve continuous op-
timization problems. Then, several variants of PSO have been proposed to solve
discrete combinatorial optimization problems [Kennedy 1997] including the trav-
eling salesman problem [Hoffmann 2011], the permutation flowshop scheduling
problem ([Marinakis 2013]; [Chen 2014]), the data clustering ([Kuo 2011]; [B 2014])
as well as the quadratic assignment problem (QAP) ([Congying 2011]).

During the last years, several other swarm intelligence algorithms have ap-
peared [Yang 2010a]. The functioning principles of these algorithms are in-
spired from the social behavior of certain living beings such as ants, termites,
birds and fishes. Examples of such recent algorithms are: the fish schools algo-
rithm [Neshat 2014], the bat algorithm [Yang 2010c], the cuckoo search algorithm
[Yang 2009a], the firefly algorithm ([Yang 2010a], [Yang 2009b]), the bee algorithm
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[Karaboga 2014], etc. However, almost all these algorithms have been designed to
deal with continuous optimization problems.

The firefly algorithm proposed by ([Yang 2010a], [Yang 2009b]) is based on the
light behavior of fireflies. In this approach, each firefly represents a potential solu-
tion of the problem so that its brightness is proportional to the value of its objective
function. The attractiveness of a firefly depends both on its brightness and its dis-
tance from other neighbors. The search space is explored thanks to the dynamics
of a collection of fireflies according to the following general rule: the less bright
tirefly moves towards the brighter one (see [Yang 2010a], [Yang 2009b]). The rel-
ative simplicity of the firefly algorithm and its efficiency in exploring the search
space have attracted much attention of many researchers who applied it to several
optimization problems (see for example [Chatterjee 2012]; [Hassanzadeh 2011];
[Yang 2010b]; [Horng 2012]).

As stated above, the firefly algorithm, as most of the other meta-heuristics, has
been proposed originally to deal with continuous optimization problems. Some
methods to adapt the firefly algorithm to the discrete context have been proposed,
namely, the use of the sigmoid function which transforms the continuous space
value into a binary one [Sayadi 2010]; [Falcon 2011]; [Palit 2011]; [Banati 2011];
the definition of a firefly’s position in terms of changes of probabilities that will
be in one state or the other [Sayadi 2013]; the modification of the movement for-
mula of a firefly [Jati 2011]; the use of the smallest position value which allows
the creation of an integer vector of solutions indexed by all the positions of the
tireflies” population [Yousif 2011] and the use of the random-key method which
translates the firefly position in the continuous space to a value in a combinatory
space [Fister Jr 2012].

1.1.2.2 Bioinspired algorithms based on quantum computing

Besides, quantum computing theory provides capacities of parallel treatments
and exponential storage of data thanks to the principles of quantum mechanics
such as, state superposition, quantum measure, entanglement and quantum gate
[Benioff 1980]; [Akama 2015]. Accordingly, quantum computing has become an
important source of inspiration in designing efficient tools to solve NP-Complete
problems.

Among the most famous quantum algorithms in this domain, we can evoke
that of Shor which allows a polynomial time resolution of the well-known NP-
Complete problem of number factorization (see [Shor 1994]) and the quantum
algorithm of Grover [Grover 1996] which finds a given searched element in a
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database in a quadratic time.

Since the early 2000s, a new and promising research area has appeared. It is
motivated by the question: How to integrate the quantum computing principles
with the optimization meta-heuristic algorithms in order to ensure a good trade-
off between their capacities of search space exploration and exploitation, to keep
a better diversity of the population throughout the search and to reduce the size
of the population (since, as we will see later, each quantum solution will be the
superposition of an exponential number of concrete solutions). Some works is-
sued from this research line include: the quantum evolutionary algorithm pro-
posed by [Han 2000], [Han 2002]; the quantum-inspired particle swarm optimiza-
tion ([Wang 2007c]; [Tazuke 2013]); the quantum-inspired differential evolution
([Pat 2011]; [Hota 2010] and the quantum-inspired tabu search [Chiang 2014].

1.2 Motivation

After the presentation of the nature of different knowledge extraction problems,
and the presentation of our problematic below, we need to provide meta-heuristics
based on the advantages of metaphors of Swarm intelligence and the advantages
offered by the principles of quantum computing for solving the various problems
of knowledge extraction. We summarize the motivations of our work in the fol-

lowing points:

e The exploitation of the advantages of the approach of swarm intelligence
such as: the parallelism, the decentralization and the cooperation of the
swarms of particles to solve complicated combinatorial optimization prob-

lems.

e Using the concepts of quantum computation such as the superposition of
Q-bits states and quantum observation in the discretization of bio-inspired
algorithms originally proposed in the literature for solving continuous opti-

mization problems.

e Taking advantage of the superposition notions of Q-bit states in improving
the population’s diversity of solutions and reducing the population size of
meta-heuristics methods based on the evolution of a population of solutions

admissible for combinatorial optimization problem.

e The exploitation of meta-heuristics advantages has been proposed to de-
velop hybrid meta-heuristics and effective in solving the Np-hard optimiza-

tion problems as presented and shown in my two proposed metaheuris-
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tics. The first proposed meta-heuristic is cooperative between the differ-
ential evolution and the PSO while the second meta-heuristic is cooperative
between the "firefly algorithm" and the PSO.

1.3 Majors contributions

To solve knowledge extraction problems using bio-inspired metaheuristics, our

contribution is made in two phases:

e The first phase consists of designing bio-inspired meta-heuristics to solve

combinatorial optimization problems in a general manner.

e The second phase is to apply the proposed meta-heuristics to knowledge

extraction problems.

In the first phase, we have proposed two bio-inspired algorithms, the first al-
gorithm is called QDEPSO that hybridizes between DE and PSO, and the second
algorithm is called QIFAPSO that cooperates between firefly and PSO algorithm.
Both proposed algorithms use the concepts of quantum computing to solve com-
binatorial optimization problems. In the second phase, we applied the QIFAPSO
algorithm to solve the problem of selection of attributes.

The first proposed algorithm is called QDEPSO (Quantum inspired Differen-
tial Evolution with Particle Swarm Optimization) combines differential evolution
(DE), particle swarm optimization method (PSO) and quantum-inspired evolu-
tionary algorithm (QEA) in order to solve the 0-1 optimization problems. In the
initialization phase, the QDEPSO uses the concepts of quantum computing to rep-
resent and generate the diversity of the initial solutions. The second phase is an
alternation between the DE operations (mutation, crossover and selection) and the
adapted version of the formula used in the PSO algorithm for the velocity and the
position of a particle. The result of this step is to determine the rotation quantum
angle to explore the search space of solutions.

The second proposed algorithm is called “Quantum-inspired Firefly Algorithm
with Particle Swarm Optimization (QIFAPSO)”. Among other things, it adapts the
tirefly approach to solve discrete optimization problems. The proposed algorithm
uses the basic concepts of quantum computing to ensure a better control of the
solutions diversity.

Moreover, we use a discrete representation for fireflies and we propose a vari-
ant of the well-known Hamming distance to compute the attractiveness between

them. Finally, we combine two strategies that cooperate in exploring the search
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space: The first one is the move of less bright fireflies towards the brighter ones
and the second strategy is the PSO movement in which a firefly moves by tak-
ing into account its best position as well as the best position of its neighborhood.
Of course, these two strategies of fireflies’ movement are adapted to the quantum
representation used in the algorithm for potential solutions.

The third contribution of this thesis is the proposition of an approach for the
feature selection problem based on QIFAPSO algorithm. The proposed algorithm
QIFAPSO-FS explores the search space constituted of 2V possible subset of at-
tributes where N stands for the number of input features. The aim is to find the
best subset of features thanks to the synergy between the two following strategies:
the movement strategy of fireflies as defined in a firefly algorithm and the particle
swarm optimization (PSO) strategy.

During the search process, the fireflies change their positions by applying ei-
ther the FA movement strategy where a less bright firefly moves towards a more
brighter firefly or the PSO movement where a firefly changes its position by taking
into account its best position up to the current iteration together with the global
best position in the whole firefly swarm. This approach uses the concepts of quan-
tum computing, namely qubit superposition in the representation of the probabil-
ity of selecting features. The evaluation of feature selection is based on the position
region concept issued from rough set theory and which allows one to evaluate the

relevance of subsets features.

1.4 Thesis organization

Chapter 2 presents the theoretical background of the thesis. It gives a brief review
of both bio-inspired algorithms and the feature selection based on such algorithms.
It starts with a definition of bio-inspired algorithms and introduces a brief defini-
tion for the mains algorithms. It reviews typical related work in feature selection
using swarm intelligence techniques and evolutionary computation methods.

Chapter 3 presents the first proposed algorithm QDEPSO for solving knapsack
problem. First, it gives a brief introduction to the 0-1 knapsack problem. After
that, a detailed description of QDEPSO algorithm is presented. Finally, a summary
of an extensive experimental evaluation is given.

Chapter 4 is devoted to the description of the proposed algorithm QIFAPSO.
Again, all the relevant issues related to our algorithm are discussed, namely: The
binary as well as the quantum representation of fireflies, the initialization of the
population, the quantum measure, the method of computing the distance between
discrete fireflies, the two movement strategies used (firefly and PSO strategies) and
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finally the complete pseudo-code of our algorithm. Finally, it presents and dis-
cusses a synthesis of various experimental tests done on the 0-1 knapsack problem
both in its one dimensional and its multidimensional variants.

Chapter 5 is devoted to the description of the approach of feature selection
based on QIFAPSO algorithm. All the relevant issues related to our algorithm are
discussed, namely: the quantum representation for selection feature, the move-
ment strategies, and the evaluation of the feature selection which is based on the
region position of the rough set theory and allows one to evaluate the relevance of
subsets of subset features.

Chapter 6 summaries the work and attractions overall conclusions of the thesis.
Main research ideas and the contributions of the thesis are established as well. It

also suggests some possible future research directions.
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2.1 Introduction

In the classification task, two major problems are encountered. The first one relies

on the great number of condition features present in the database to explain the de-

cision feature. This problem may generate high computational complexity in find-

ing the classification model and also, the generated model is often very complex
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as it is the case for instance for classification using neural networks where the ob-
tained model contains a huge number of nodes ([Amaldi 1998]; [Cover 1977]). The
second problem is the presence of features that are redundant or not sufficiently
relevant, which diminishes the quality and performance of the classification.

Feature selection consists in finding the subset of condition features that is the
less redundant and the most relevant with respect to the decision feature among
all the feature present in the information system. For that purpose, the feature se-
lection task is a crucial task for classification and is done at a preliminary stage.
The results of the feature selection task allow one to diminish the complexity of
the construction of a classification model and in some cases, to increase the perfor-
mance of classification.

This chapter gives a brief review of both bio-inspired algorithms and the fea-
ture selection based on such algorithms. It initiates with a definition of bio-
inspired algorithms and introduces a brief definition for the mains algorithms. It
reviews typical related work in feature selection using swarm intelligence tech-

niques and evolutionary computation methods.

2.2 Bio-inspired algorithms

Biologically inspired computing, referred to as Bio-inspired computing, is an area
of study that loosely join together subfields linked to the subjects of connection-
ism, social behavior and emergence. Mainly, it is strongly related to artificial in-
telligence and can be associated with machine learning as well. Also, Bio-inspired
computing depends a lot on computer science, biology and mathematics. To sum
it up, it implies using computers to model the living phenomena and studying
life for improving the use of computers at the same time. Biologically inspired
computing is considered as a main subset of natural computation.

Accordingly, the computational methods inspired by evolution, by nature, and
by the brain are being widely employed to solve many complex problems in engi-
neering, computer science, robotics and artificial intelligence. In the following, we
present only the bio-inspired algorithms employed in the development and design

of our meta-heuristics.

221 Quantum inspired computation

Quantum computing is a recent field in computer science which is interested in
quantum computers using phenomena of quantum mechanics such as state super-

position, entanglement and quantum gate [Benioff 1980, Akama 2015]. The fun-
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damental information unit in quantum computing is the Q-bit. A Q-bit may be
in the state |0 >, in the state |1 > or in a superposition of the states [0 > and |1 >
simultaneously. According to Dirac notation, the Q-bit may be represented as a
combination of the states |0 > and |1 > as follows:

|0 >=a|0> +B|1 > suchthat |a* +|B]* =1 (2.1)

where « and f3 are complex numbers. ||? (resp. |3|?) is the probability to find the
Q-bit in state O (resp. in state 1). A quantum register of size n is then constituted
from a set of n Q-bits. It represents a superposition of n Q-bits, i.e., it contains up
to 2" possible values simultaneously. A quantum register is represented by the

following notation:

n

2"—1
¥=) Cxlx > (2.2)
x=0

The amplitudes C, satisfy the following propertyA :

2"—1
Y [Cx]P=1 (2.3)
x=0

The state of a Q-bit can be changed by a quantum gate (Q-gate). A Q-gate is
a reversible gate and can be represented as a unitary operator U acting on the Q-
bit basis states satisfying UTU = UU™, where U™ is the Hermitian adjoint of U.
There are several Q-gates, such as the NOT gate, controlled NOT gate, rotation
gate, Hadamard gate, etc.[Manju 2014].

2.2.2 Particle swarm optimization method

Particle swarm optimization is a meta-heuristic developed by R. Eberhart and J.
Kennedy [Kennedy 1995]. This method is based on the cooperation between par-
ticles. Each particle represents a potential solution of the problem. Initially, the
particles are put randomly in the search space of the objective function. At each
iteration, the particles move by taking into acount their best positions as well as
the best positions of their neighbors. The new position of a particle x; is computed

by the following equations:
VI = wal e (ph— ) +epm (g — ) (2.4)

A= ot (2.5)

where:
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e vt and V™! denote the velocities of the particle i at the iterations ¢ and ¢ + 1

respectively.
e plis the best position of the particle i at iteration 7.
e g’ is the best position of the neighborhood of particle i at iteration ¢.

e xl and ¥/"!' denote the positions of the particle i at the iterations ¢ and ¢ + 1

respectively.
e w is the inertia weight.
e cj and c; are the learning factors.

e r; and r, are random numbers in the interval [0, 1].

The pseudo-code of the PSO algorithm is shown in the algorithm 2.1.

Algorithm 2.1 Particle Swarm Optimization

1:
2:
3:
4:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:

# initialize all particles
Initialize
repeat
for each particle x! in S do
# Update the particle’s best position
if £(x) < /(p}) then
pi i
end if
# Update the global best position
if f(x}) < f(g') then
g’
1
end if
end for
# Update particle’s velocity and position
for each particle x} in S do
for each dimension d in D do
vﬁdl — w.vid +c1.1 .(pﬁ’d —xﬁ’d) +cp.r2.(g —xﬁ’d)
)‘ftzl “xigt "itzl
end for
end for
until it > MAX_ITERATIONS

2.2.3 Differential Evolution

Differential evolution (DE), a stochastic population-based metaheuristic, was orig-

inally introduced by Storn and Price [Storn 1997] for solving continuous optimiza-

tion problems. DE’s evolution operator is composed of a differential mutation
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aiming at creating a trial vector, which is then used to create one offspring by

the crossover operator. Mutation phase sizes can be computed as the weighted

differences between randomly selected individual vectors. To create a new pop-

ulation, DE’s evolution operators are applied to individuals at each generation.

The pseudo-code of the DE is shown in the algorithm 2.2. More precisely, DE’s

reproduction operators for a minimization problem can be described as follows:

1)

2)

Mutation

For each solution vector like X! = (x;,x5,-- ,xi5), Vi=1,--- NP, in the D-
dimensional search space, a mutant vector X" = (x{', x4, --- ,x}}}) is created
according to the following equation:

X' =X g+ F(X),g—X!,4),¥d=1,--- D (2.6)
with random mutually different indices ry,r,r3 € 1,2,...,N, and F > 0. The
randomly selected integers ri, r» and r3 are also selected to be different from
the running index i, so that NP need to be greater or equal to 4 to allow for
this condition. F stands for a real and constant factor that is included in the
interval (0,2] which controls the intensification of differential variations. The
superscript ¢ indicates the number of generation. In [Storn 1997], we can see
5 strategies to mutate the X/ vector:

DE/rand/1: X" = X] +F (X}, —X,).
DE/best/1: X" = X;

best

+F(X! —XL).

DE/current to best/1: X" =X/ +F(Xj,,, — X]) +F (X}, —X.).

DE/best/2: X" = X!, +F(X! —X')+F (X!, —X).

est

o DE/rand/2: X" = X! +F(X!, = X!,)+F(X!, - X.).

Where X, . represents the individual with the best fitness in the population.

est

Crossover
Basically, crossover is introduced in order to augment the diversity among
the perturbed mutant vectors. Thus, the trial vector X" = (x{f,x%,--- ,x5)),

Vi=1,---,NP,is formed as follows: :

(2.7)

1

Xt — {X{Zz" if rand() <CRord=J,¥d=1,---,D

t .
X, otherwise,

In equation(2.7), rand() is a random number related to d"" dimension drawn

from a uniform distribution with range [0,1]. The crossover constant in-
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cluded in [0,1] is presented by the notation CR. J is a randomly selected
index from 1,---,D.

3) Selection
To take the decision whether the trial vector X" should be passed through
the next generation (generation 7 + 1) or not, it is compared to X/ using the
following equation:

X = {X,-“ if FXE) < f(X)) 28)

X! otherwise,

Algorithm 2.2 Differential Evolution Algorithm

Input: F: differential weight, C: crossover probability, n: population size
1: Initialize the initial population.
2: while stopping criterion not met do
3: fori=1tondo
For each x; randomly choose 3 distinct vector x,1, x,2 and x,3
Generate a mutant vector x}" using equation 2.6
Generate a random index J € {1,2,...,d}
Generate a randomly distributed number r; € [0, 1]
Obtain X{] by crossover operation using 2.7
Select and update the solution X! ™! by equation 2.8
10:  end for
11: end while

R AN L

2.2.4 Firefly algorithm

The firefly algorithm has been proposed by X.S. Yang [Yang 2010a, Yang 2009b]. It
is based on the light behavior of a population of fireflies. The interaction between
tireflies is governed by the following rules [Yang 2010a]:

o All the fireflies are unisex and are attracted by other fireflies independent
from their sex.

e The attractiveness of a firefly is proportional to its brightness. The brightness
degree of a firefly perceived by another firefly is inversely proportional to the
distance between them. In this context, the less bright firefly moves towards
the brighter one. If no firefly is brighter than a given firefly, than the later

moves randomly.

e The brightness of a firefly is determined by the value of the objective function

to optimize.
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Thus, the firefly algorithm is based on four main factors [Yang 2010a]:

e Brightness. It depends on the objective function. In simple optimization

problems, the brightness of a firefly x is reduced to the objective function for

x:I(x) = f(x).

e Attractiveness. The attractiveness of a firefly is proportional to the bright-
ness perceived by the other neighbors. The attractiveness function may be
any function which is monotonically decreasing with respect to the real dis-

tance r. A general form of such a function may be:
B =Poe " (2.9)

where r is the distance between two fireflies, f is the attractiveness for r =0

and 7y is a constant (bright absorption coefficient).

e Distance. We consider simply the Euclidean distance to measure the distance

between two fireflies x; and x;: r;; = \/ ):f:1 (xix — xjx)*> where x; stands for the
k" component of the ' firefly.

e Movement. The movement of a firefly i attracted by another one j which is
brighter is determined by:

A =t Boe (X, — ) + o] (210)

The first and the second terms are due to the attractiveness. The third term
is a randomization: ¢; is a random parameter which may be constant and €/

is a vector of random real numbers uniformly distributed in [0, 1].

Algorithm 2.3 gives the pseudo-code of the firefly algorithm.

2.3 Feature selection

2.3.1 Definition

Feature selection is usually a search problem for finding an optimal subset of n
features out of original N features. Feature selection is essential in some classifica-
tion problems for rejecting redundant and irrelevant features. It permits reducing
system complexity and running time and frequently progresses the classification
accuracy [Blum 1997]. The whole search for the best subset of 2" possible subsets

is infeasible for large number of features.
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Algorithm 2.3 Firefly Algorithm

Input: o,y

1:

10:
11:
12:
13:

Create an initial population of n fireflies within d-dimensional search: xy, i =

1,..,nand k=1, ..,d;

Evaluate the fitness of the population (f(x;) is directly proportional to bright-
ness I;);
while (not termination condition) do

for (i =1: n: all fireflies) do
for (j = 1: n: all fireflies) do
if (I, < IJ) then
Move firefly i toward j in d-dimension using Eq.2.17;
end if
Attractiveness varies with distance r via exp[-rz] ;
Evaluate new solutions and update brightness;
end for
end for
end while

14: Rank the fireflies and find the current best;

2.3.2 Feature selection process

In feature selection algorithm, there are five basic phases [Dash 1997]:

1.

The first phase of a feature selection algorithm is the initialization procedure
and it is founded on all the original features in the problem.

A search procedure to generate candidate feature subsets. It can start with no
features, the entire features, or a random subset of features. Several search
methods are applied in this feature subset search phase to the exploration for

the finest subset of features.
An evaluation function to measure the relevance of feature subset.

Stopping conditions can be founded on the search procedure or the evalua-
tion function. Conditions based on the search procedure can be whether a
predefined number of features are selected and whether a fixed maximum

number of iterations have been done.

A validation procedure aims to check whether the subset is valid. The valida-
tion procedure is not part of the feature selection process itself, but a feature
selection algorithm obligation will be validated. The selected feature subset
will be validated on the test set.
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Subset Subset Subset

Tnitialization .
> Evaluation

Discovery

N

Gooduness of the Subset

Results
Yes > validation

Stopping
Criterion

Figure 2.1: Feature selection process [Dash 1997].

2.3.3 Classification of feature selection approaches

Mainly, the existing feature selection methods are grouped into two classes: filter
approaches and wrapper approaches [Dash 1997]. A filter feature selection algo-
rithm is independent from any classification algorithm unlike wrappers which use
a classification algorithm in the evaluation function. The principle of filter feature

selection algorithm is presented in figure 2.2. Figure 2.3 illustrates the principle

———— e —

| Feature subset search |:

-
!
: L i Selected
Training : :—P feature subset
set i ! _ _
I I Classification
i v !
- Pedormance
: Subset evaluation :
i i i
I
y
Data Classification
Test # transformation 7| algorithm
set feature subset

Figure 2.2: A filter feature selection algorithm [Xue 2014].

of wrapper feature selection algorithms. In this second class, the feature selec-
tion algorithm occurs as a wrapper about a classification algorithm. To evaluate
the quality of feature subsets and guide the exploration, the performance of the
classification algorithm is employed in the evaluation function.

2.4 Entropy, mutual information

Information theory offers a means for measuring the information of the random

variables. It is related to mathematics and many other fields such as computer sci-
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———— ey

|| Feature subset search |i
i

: [ i Selected
Training ; v E—P feature subset
set :| Subset evaluation |: Classification
: :: : Performance
(Classification al gorithm |i
e ) i
Data Classification
Test # transformation > al gorithm
set feature subset

Figure 2.3: A wrapper feature selection algorithm [Xue 2014].

ence, bioinformatics, and electrical manufacturing. Originally, the central grounds
of information theory were first introduced by Shannon in 1949 [Shannon 2015].
The entropy is a quantity of the uncertainty of random variables. Let X be a ran-
dom variable with discrete values, its uncertainty can be measured by entropy
H(X), which is given by:

H(X)=—Y p(x)log, p(x) (2.11)

xeX

where p(x) = Pr(X = x) stands for the probability density function of X. For two
discrete random variables X and Y with their probability density function p(x,y),

the joint entropy H(X,Y) is defined as:

HX,Y)=— Y p(xy)log,p(x,y) (2.12)
xeX,yeY

In the case when a certain variable is identified and others are unidentified, the
residual uncertainty is measured by the conditional entropy. Shoulder that vari-
able Y is given; the conditional entropy H(X|Y) of X with respect to Y is presented
by equation:

HX[Y)=— Y plxy)log,p(xly) (2.13)
xeX yey

In the equation above, p(x|y) presents the posterior probability of X given.
Thus, If X totally depends on Y, H(X|Y) is zero. This implies that no addi-
tional information is needed to define X when Y is already identified. Moreover,
H(X|Y) = H(X) means that knowing ¥ has nothing to do with the probability of
observing X. The common information between two random variables is defined

as mutual information [Cover 2012]. Given variable X, how abundant information
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one can gain around variable Y , which is mutual information /(X;Y).

I(X:Y) = H(X) — H(X|Y)

= (Y) H((Yp;) (2.14)
= — x,y)log, 2%
- XGXZ,yEY R ) p(x)p(y)

In the equation above, if two variables X and Y are strictly related, then the
mutual information /(X;Y) is high. Yet, I(X;Y) = 0 holds in the case where X and
Y are completely independent. Filter feature selection has widely employed infor-
mation theory, especially mutual information for measuring the link between the
selected features and the class variable.

2.5 Basic notions on Rough set theory

Rough set theory is a mathematical approach proposed by Zdzislaw Pawlak
[Pawlak 1982] to analyze uncertain, ambiguous and imprecise data. In this sec-
tion, we introduce some concepts of rough set theory in the context of incomplete
information systems that will be used in this chapter. These concepts are: infor-
mation system, indiscernibility, set approximation, neighborhood rough sets and
features dependency.

2.5.0.1 Information system

An information system is defined by the tuple (U,A = CUD,V, fa), where U is
a finite non empty set of objects, C is a non-empty set of features called the set
of condition features, D is a non-empty set of features called the set of decision
featuresand CND = @; V = U,eaV,, with V, is the set of values or the feature domain
a€A; f,:U—V,isan information function defined from U towards V, .

2.5.0.2 Indiscernibility

For every subset of condition features B C C, there is an associated equivalence
relation IND(B) = {(x,y) € U?|Va € B, f,(x) = fu(y) or fu(x) = *or f,(y) = x}, where
IND(B) is called B-indiscernibility relation [Pawlak 2007]. This relation means that
couples of objects (x,y) € U? are indiscernible by the set of features B. However,
this definition is valid just for incomplete information system containing a set of
qualitative features. However, in real applications, the information systems are

generally heterogeneous, i.e., contain a mixture of qualitative continuous features.
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In this case, the indiscernibility of a subset of condition features B C C and B=B; U
B, where B; is a subset of qualitative features and B, is a subset of continuous
features, is given by the following formula:

IND(B) ={(x,y) € U*|Va € Br, fu(x) = fa(y) }U{(x,3) € U*|Va € Ba, | falx) = fa(y)| < €}

(2.15)
where ¢, is a non negative real number corresponding to the feature a € B2. The
relation IND(B) generates a partition U/IND(B) = {[x]g|x € U} over U, where [x]p

denotes the equivalence classes.

2.5.0.3 Object neighborhood

The neighborhood of an object x is the maximal set of objects that are possibly

indiscernible by the subset of features B with the object x.

S()s = {¥/(x.y) € IND(B),y € U} (2.16)

2.5.0.4 Set approximation

Let B C C be the set of condition features, S(x)p be the neighborhood of each object
x € U by the subset of features B. The approximation of the set of object X C U by
using the neighborhood S(x)z is given by the lower BX and the upper approxima-
tion BX. The lower approximation of X is defined by:

BX ={xeU|S(x)p C X} (2.17)

The upper approximation of X is defined by:
BX ={xeU|S(x)pNX # ¢} (2.18)
The positive region of X is represented by the lower approximation and denoted

by POSB(X).

2.5.0.5 Dependency of Attributes

Let I = (U,A=CUD,V,f,) be an incomplete information system. The partition-
ing of the universe U by the indiscernibility relation of the decision feature D is:
U/IND(D) ={Dy,D3,--- ,Dy} with U = Uiy, ... 1y Di, BD; is the lower approximation
of each partition D; by the set of condition features B. The positive region of the

decision feature D which respects the set of set of condition features B, denoted by



2.6. Background of approaches for feature selection 21

POSp(D) is given by:
POSp(D) = Up,cu/inpp)yPOSB(D;) (2.19)

with POSg(D;) = BD; = {x € U|S(x)g C D;} The dependency degree between the
set B of condition features and the set decision feature is given by the following

formula:
~ POSp (D)

2.6 Background of approaches for feature selection

2.6.1 Mutual information based approach

The mutual information is an efficient tool in evaluating the relevance and redun-
dancy between features. The MIFS feature selector algorithm, developed by battiti
[Battiti 1994], used such theory to join between inputs features and outputs fea-
tures for the problems of classification. MIFS selects the feature that maximizes the
information of the class feature, and corrected by subtracting a measure propor-
tion to the average MI with the previously selected features. The method MIFS-U
[Kwak 2002], is introduced by Kwak and Choi for increasing MIFS in solving non-
linear problems, which in general, makes a better estimation of the MI between
inputs attributes and outputs classes than MIFS. Another variant of MIFS is the
min-redundancy max-relevance [Peng 2005], MRMR for short. The latter presents
two-steps for feature selection algorithm. In the first step, the mRMR uses incre-
mental selection method to find a candidate feature set. In the second step, the
backward and forward selection is used to find a compact feature subset from the
candidate feature set.

However, the major drawback of such methods is that they selects one feature
with maximum criterion in each pass, without taking into account the interaction
between groups of features. Thus, numerous methods have been proposed in this
scope to avoid this inconvenience, among which we cite: Conditional Likelihood
Maximisation [Brown 2012] , Low bias histogram-based estimation of mutual in-
formation [Hacine-Gharbi 2012] and Joint Mutual Information Maximisation Fea-
ture selector [Hacine-Gharbi 2012].

2.6.2 Rough set based approaches

In general, rough set methods for feature selection are classified into two groups;

greedy methods and stochastic methods. The first type usually employs rough set
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attribute significance as heuristic information. It starts off with an empty set or
attribute core and then adopts forward selection or backward elimination. In for-
ward selection, it begins with an empty set and adds features. Backward elimina-
tion is the reverse; it begins with a full set and deletes features incrementally. Hu
developed a reduction algorithm employing the positive region-based attribute
significance just as the guiding heuristic knowledge ([He 2006], [Wang 2007a]).
Using conditional entropy-based attribute significance, Wang proposed a condi-
tional information entropy based reduction algorithm [Wang 2004]. Approximate
reducts and approximate entropy reducts were also the focus of research stud-
ies. Hu and other researchers proposed reduction algorithms using the discerni-
bility matrices-based attribute significance as the guiding heuristic information
([Wang 2001],[Hu 2003], [Li 2010]). The positive region and conditional entropy-
based methods choose a minimal feature subset that fully describes all concepts
in a given dataset. The discernibility matrix-based method is to select a feature

subset with great discriminatory power.

2.6.3 Metaheuristics approaches based on rough set for feature selection

In the feature selection problem, two major issues are essential. The first one is
how to explore the search space of the candidate subsets of features to search for
the optimal subset of features. How to evaluate the relevance of a given candidate
subset of features is the second issue. According to the exploration strategy and
the evaluation criterion, feature selection methods are grouped into two categories;
the filter and the wrappers approaches [Langley 1994].

Mainly, these two kinds of approaches differ in the use of classification algo-
rithm by the wrappers approaches to evaluate the relevance of a subset of features
during the feature selection process. In contrast, the search of subsets of features
and the evaluation of their relevance, in filter approaches, are done independently
from the classification algorithm. On the whole, wrapper approaches perform bet-
ter than filter approaches in terms of quality. Yet, they are more expensive in terms
of computations [Dash 1997]. A variety of decision theories dealt with evaluating
the relevance of a feature or a subset of features in filter approaches. Among these
approaches, we can cite: distance measures [Kwak 2002], dependency measures
[Yu 2004], consistency measures [Yuan 1999], mutual information [Estévez 2009],
rough set [Pawlak 1982], fuzzy rough set [Wygralak 1989] and Dempster Shafer
theory [Dempster 1967].

It should be noted that feature selection is a difficult task to solve due to the

difficulty of exhaustively exploring the search space whose size is 2" combina-
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tions for n decision features. It is worth noticing also that the results of the search
strategy impact explicitly the quality of solutions and the complexity of their com-
putation. In the literature, several search strategies exist such as greedy selection
[Caruana 1994], backward selection [Marill 1963] and metaheuristics approaches.

Rough set theory, a mathematical approach proposed by Pawlak
[Pawlak 1982], is viewed as an effective technique for feature selection, ex-
traction of association rules and knowledge discovery from categorical data
([Degang 2007], [Pawlak 2007], [Slowinski2000], [Swiniarski2003] ). Several
metaheuristic approaches have been proposed to solve the feature selection
problem and they have clearly proven to be more efficient in exploring the search
space, i.e., finding the global solution while avoiding the premature convergence
problem.

The most popular metaheuristics in this domain are: particle swarm opti-
mization (PSO) [Kennedy 1995], ant colony optimization (ACO) [Dorigo 2005] as
well as genetic algorithms [Holland 1992]. A great number of works existing in
the literature are concerned with the hybridization of metaheuristics approaches
and rough set theory. To address feature selection problems, Jensen and Shen
[Jensen 2005] apply ACO in order to find a small reduct in rough set theory. After-
ward, Ke et al. [Ke 2008] and Chen et al.[Chen 2010] also successfully use ACO and
rough set theory to solve feature selection problems. However, the datasets used
in these papers have a relatively small number of features (the maximum number
is 70), Wang et al.[Wang 2007b] propose a filter feature selection algorithm based
on an improved binary PSO and rough set, and fnding rough set reducts with fish
swarm algorithm [Chen 2015].

2.7 Chapter summary

This chapter reviewed the theoretical background of the thesis. It provides a brief
review of both bio-inspired algorithms and the feature selection based on such
algorithms. It starts with a definition of bio-inspired algorithms and introduces
a brief definition for mains algorithms. This chapter reviewed the main concepts
of feature selection, process of feature selection, classification of feature selection
methods, entropy and mutual information, rough set theory. Finally, this chapter

also reviewed the related work about the approaches for feature selection.
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3.1 Introduction

Evolutionary algorithms represent a very efficient meta-heuristics that is widely

used for global optimization problems. However, these meta-heuristics demand

large memory to represent the population of solutions as well as large compu-

tational time in order to find the optimal solution. The emergence of quantum

computing [Benioff 1980, Feynman 1982] , offers treatment capacities and expo-

nential storage thanks to the principles of quantum theory such as superposition

of quantum states, entanglement and quantum interference. Several researchers

studied the effect of introducing inspired operations by quantum computing in
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evolutionary algorithms to maintain a good balance of exploration and exploita-
tion ([Han 2000], [Han 2002], [Talbi 2004], [Chou 2011], [Chang 2010]).

Han and Kim were the first to propose a new quantum inspired evolutionary
algorithm (QEA) combining classical evolutionary algorithm with the quantum
computing’s concepts such as the quantum bit and the quantum rotation gate
[Han 2000], while others modified QEA algorithm to enhance its performance.
The addition of the mutation operation [Zhou 2006], the crossover operation
[Xiao 2008], the new termination criterion and the new rotation gate [Han 2004]
were introduced in order to avoid the problem of premature convergence.

Particle swarm optimization (PSO) algorithm proposed by Kennedy and Eber-
hart is a stochastic optimization method consisting of a candidate solutions” pop-
ulation known as particles [Kennedy 1995]. These particles are displaced in the
search space to find an optimal solution. The movement of each particle is guided
by its best known position (pbest) and neighbor best position (gbest). Motivated by
the success of QEA algorithm and the excellent ability of PSO in global optimiza-
tion, many algorithms have introduced the quantum computing in PSO in order to
guarantee the global convergence. Wang et al presented a novel quantum swarm
evolutionary algorithm (QSE) which uses update formula of velocity and posi-
tion to update quantum solutions [Wang 2007c]. Further, to increase the diversity
of the population’s solutions and to improve the exploration of the search space
by PSO, the mutation [Liu 2006], the artificial immune [Dong 2009], the crossover
[Lin 2010] operators and modified formulae of PSO [Wang 2011] were introduced.

The differential evolution (DE), introduced by Storn and Price [Storn 1997], is
based on vector solutions” population for global optimization. The DE algorithm
uses simple operations which include mutation, crossover and selection to explore
the search space. As will follow closely, there are several algorithms which hy-
bridize DE algorithm with quantum inspired to increase the global search ability
of DE. Hota and Pat [Hota 2010] proposed an adaptive quantum-inspired differen-
tial evolution algorithm for 0-1 Knapsack problem (AQDE) which uses the quan-
tum representation, the measurement introduced by QEA algorithm for adapting
operations of mutation, the crossover and the selection operators of DE to quan-
tum individuals. Further, the quantum interference operator [Draa 2011] and the
mutation operation of genetic algorithm [Su 2008] were introduced in QDE too.

This chapter proposes a new hybrid algorithm combining the differential evo-
lution algorithm (DE), the particle swarm optimization method (PSO) and quan-
tum evolutionary algorithm (QEA) to solve the knapsack 0-1 problem. In this algo-
rithm, we introduce the concepts of quantum representation, quantum measure-

ment and rotation angle to update quantum individuals. We adapt the operations
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of DE (mutation, crossover, selection) to quantum individuals. Finally, we use PSO
formula to determine the quantum angle rotation.

The rest of the chapter is organized as follows: A brief introduction to the 0-1
knapsack problem is presented in section 3.2. The proposed QDEPSO algorithm
is described in section 3.3. Section 3.4 summarizes extensive experimental evalua-

tion.

3.2 Knapsack Problem

The 0-1 knapsack problem is a classical combinatorial optimization problem. It
is studied in several fields like decision making, complexity theory, cryptogra-
phy, budget controlling; etc. This problem was demonstrated to be NP-hard
[Pisinger 2005]. The Knapsack 0-1 problem may be formulated as follows:

e Given a set of m items: X = (x1,x2,X3, ..., %)
e Each item x; has a weight wi and a profit p;.

The problem is to select a subset from set of m items without exceeding a given
weight capacity C where the overall profit is maximized.

We can formulate mathematically the problem as follows:

n
Maximize Z DiXi (3.1)
i=1

Subject to

n
ZaixiSC, x; €{0,1} where 1 <i<n (3.2)
i=1

With x;: can take either the value 1 (selected) or the value 0 (not selected).

3.3 The proposed algorithm

In the following, we present the proposed algorithm QDEPSO which hybrids dif-
ferential evolution, particle swarm optimization and quantum evolutionary algo-
rithm for the knapsack problem. The QDEPSO architecture contains three essential
modules. The first module includes the generation of quantum individual, the ob-
servation operator and the objective function. The second module is composed of
two main operations of DE (mutation, crossover) and quantum observation. Fi-

nally, the third module contains the selection operator of DE.
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The selection operator selects the better one among the current individual and
the trial individual created by the mutation and crossover operations. In the case
where the trial individual is worst performing compared to individual of the cur-
rent population, the QDEPSO injects the formula of PSO and the interference of
QEA to maintain the diversity of the population of solutions as well as to accel-
erate the search for the global optimal solution. Figure 3.1 summarizes the global
architecture of the QDEPSO algorithm.

Initialize quantum individuals
Cuantum chservation
Ewaluate fitness

stop

Operations of DE

® Make routation quartumn individuals by mutation eperator
o Make trial quantiam individuals by cross over operator

o Make trial indiwiduals by quantum observation eperator

" Selection of DE

Tual individuals better
c cmpared to cuttent

mndimduals

Tes Mo

(Update formulas of PSO
Bpphes update tormulas of P30 to
determine the quantum rotahon angle

!

()-gate of JEA
Bpphes -gate of JEA to
update quantum cutrent

individuds

* Selects the tnal indnncdoals
* Selects the tnal quantum mdwiduals

Store the best solutions }1

Figure 3.1: The global architecture of the QDEPSO algorithm.
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3.3.1 Binary representation of items selection

The choice of a representation for individuals is a very important and a crucial
issue in evolutionary algorithms. The QDEPSO which uses the binary coding is
the most suitable for the items” selection. Each individual X is represented as a
vector of length m (m is the individual size): X = (x1,x2,...,x,), where n is the

number of items.

{ x;i =1 if the item x; is selected

xi =0if the item x; is rejected

The following example illustrates the binary representation of the items’ selection
x1 and x4 from the items set V: V = (x1,x2,x3,x4) — X = (1,0,0,1).

P(t) = {X{,X},...,X}} is the individual population based on classical bit at the
1'h generation, where n is the size of population; m is the length of individual X’/

3.3.2 Quantum representation

We adopt the representation of AQDE [Hota 2010], where each quantum individ-
ual ¢ corresponds to a vector gg.
ge'is a string of variables 6;(1 <i < m),with 6; € [0,27]

q0 = (61,02, ,6y) (3.3)
Each quantum individual g is a string of quantum bits:

cos(6y) |cos(62) | ... | cos(6y)
9= . , , (3.4)

sin(6y) |sin(62) | ... | sin(6n)
The probability amplitude of one quantum bit is defined with a pair of num-
bers (cos(6;),sin(6;)). |cos(6;)|* represents the probability of rejecting item x; and
|sin(6;)|? represents the probability of selecting item x;. Of course cos(8;) and sin(6;)

satisfy (3.4):

|cos(6;)|* +|sin(6;)]> = 1 (3.5)

0(r) =1{4\.4, - .4, }: is the quantum population at the r'h generation, where n is
the size of the population, and m is the length of the qubit quantum individual.
3.3.3 Initialization

In the initialization step, a quantum individual population represents the linear

superposition of all possible states with equal probability. In the case of knapsack
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problem, a quantum individual represents a superposition of all possible combi-

nations of selected items. For this, each vector gy, is initialized by:

v/ [ v/

q0] = (()-rins ()rizy e () Fim) (3.6)

Where r;j: is an odd integer generated randomly in the set r;; € {1,3,5,7} cor-
responding to 6 € {Z,3% 3% X} The qubit ¢;; corresponding to 6;; is probably
located in one of the four quadrants of the unit circle as described in Figure 3.2.

This initialization provides higher diversity in initial population of quantum indi-

viduals.
= C(.)s(9§) ‘C?S(ei)%) | C(.)s(eéfn) (3.7)
sin(07) |sin(03) | ... | sin(6;,)

With: |COS(98')|2 = % and |sin(98-)|2 = %

3.3.4 Quantum observation

In this operation, quantum individuals are transformed by the projection qubits
into binary individuals. Each qubit transforms a binary bit. In the knapsack prob-
lem, we propose to make the observation and the reparation of individuals simul-

taneously (see the algorithm 3.1).

Algorithm 3.1 Observe and repair (X: binary individual) from (g: quantum indi-
vidual)
I Xjefy,.. my < 0; #Initializes the bits of individual X to zeros
2: totalw < 0; # the weights’ total of the individual X is initialized to zero
3: while (rotalw < C) do
J < rand[1,m]; #generation of the random integer j € {1,--- ,m}
5. if (x; = 0) then
6 r < random(0,1);  #add the weight a; of the selected item to the total
weights totalw

>

7: if (r > |cos(6;)|?) then
8: Xj 4= 1

9: totalw < totalw +a;
10: end if

11:  endif #the end of the loop, the total weight exceeds capacity C. For this,
we extract the item x; from the selected items list

12: end while

13: xj < 0;

14: totalw < totalw —wj;
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3.3.5 Mutation operation

The mutation operation is used to differentiate the population of solutions. There
are two important factors in the mutation of solutions vectors. The first one is the
random selection of parent’s vectors to explore the search space and the second
factor is the coefficient F' of controling differentiation. In the algorithm QDEPSO,
we adapt the strategy of selecting parent vectors proposed by K. Price and R.
Storn (Scheme DE/best/2) [Chang 2010] . In this strategy, the mutation vector
gei is generated by making the difference between two target vectors gg,1 and g2,
randomly selected. Then, this difference is weighted by a factor of differentiation’s
control F € [0,2]. These differences are then added to a third vector ggp.;; which
corresponds to the current best individual X .

49 = Govest +F.(qor1 — qor2) (3.8)

g!" is the mutation quantum individual which corresponds to the mutant vector

gyt , itis given by:

mt_[cos(ei”f’) lcos(02) | ... | cos(6M™) 59)

sin(0) [sin(0%") | ... | sin(6))

3.3.6 Crossover operation

The trial vector gg;; is generated by crossover between the target vector ¢p,;; and

the mutant vector gp;;. The formula of crossover operation is presented as follows:

(3.10)

. { gyt if (rand;(0,1) < CR') or (j = Luna(1,m))
0ij —

ql9ij lf (I”Cll’ldj(o, 1) > CRt) or (] 7& Ir(md(l,m))

with CR € [0,1] is randomly generated in each generation . The trial quantum
individual ¢ which corresponds to the trial vector gj; is given by:

(3.11)

ct __ Cos(eiclt) |COS(65) | | COS(Q;,Z)
~ |sin(8§) |sin(6g) | ... | sin(65)

3.3.7 Selection operation

The result of the observation of the population of trial quantum individuals g
gives a population of trial individuals P“ = {X{*, X§",--- ,X:'}. The selection oper-

ation operates on the current individuals and the trial individuals respectively in
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the following manner:

X< i X X!
Xl_t+1 — i lf (f( i ) > f( 1)) (312)
X! otherwise
o [ ) > 1) .
' update gy, by formulae of PSO and AQE , otherwisee

3.3.8 Quantum rotation gate

A quantum rotation gate U(A#;) is used to update the values of the Q-bits of each
quantum individual as follows [Feynman 1982] :

(3.14)

U(A6) = (cos(AOi) —sin(AO,))

sin(A6;)  cos(A6;)

Where, A6; is a rotation angle of each qubit to the state 0 or 1 depending on its sign.

3.3.9 Adaptation of the PSO formula

In order to determine the rotation angle of each qubit, we adapt the formulae of
updating the velocity and position of PSO which are expressed as Eqs. ?? and ??,
respectively :

Aei’;rl = AG{,- —+ rlAO(’xl_j’bij) + C2’"2A9(tx,-,,hg) (315)
ot} = doij+106]" (3.16)

e AB;; : is the rotation angle of the previous generation #, with AGZ% initialized

to 0.

. A%ﬁ by 1 determined by the qubit j of quantum individual ¢;, the bit j of
individual x; and the bit j of the local optimal solution b;, as shown in table
3.1.

o AB(’xi’__hg) : is determined by the qubit j of quantum individual ¢;, the bit j of
individual x; and the bit Jj of global optimal solution bg, as illustrated in table
3.1.

e r; and r, are random numbers in the interval [0, 1].

e ¢; and c; are the learning factors.
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Table 3.1: Lookup table of the rotation angle (x: binary individual, b: best local
solution, bg: best global solution, f(.): fitness function )

xj bj bgi f(x)>f(b) f(x)>f(bg) Abub,) A e
0 1 1 false false 0.01x 0.01n
1 0 O false false -0.01x -0.01xm
0 1 1 false true 0.01n 0

1 0 O false true -0.01x 0

0 1 1 true false 0 0.01n
1 0 O true false 0 -0.01xm
0 1 0 false true or false 0.01x 0

1 0 1 false true or false -0.01xw 0

0 0 1 true or false false 0 0.01n
1 1 0 true or false false 0 -0.01x

3.3.10 Outlines of QDEPSO algorithm

The algorithm 3.2 summarizes how the Quantum-Inspired Differential Evolution
Particle Swarm Optimization (QDEPSO) algorithm works.

Algorithm 3.2 Pseudo code of QDEPSO
1: t+0

2: Initialize Q(0) by equations 3.6 and 3.7.
3: Make and repair P(0) from Q(0)
4: Evaluate fitness of P(0)
5: while (t < Max_generation) do
6: t<t+1
7. Make and repair P(t) from Q(r — 1)
8:  Apply mutation on Q(z) by equations 3.8 and 3.9.
9:  Obtain Q'(r) by crossover operation using equations 3.10 and 3.11.
10:  Make and repair P'(r) from Q'(¢)
11:  Evaluate fitness of P'(r)
12:  if selection criterion met then
13: Update P(r+1) and Q(r + 1) by equations 3.12 and 3.13.
14:  else
15: Update Q(r + 1) using by formulae of PSO and QEA (equations 3.14-3.16).

16:  end if
17: end while

3.4 Experimental results

In order to evaluate the performance of the proposed QDEPSO algorithm, we
make two experiments. All computational experiments are conducted using Mat-
lab7. In the first experiment of 0-1 knapsack problem, weights a; and respective

profits p; were calculated as follows [Han 2002] :
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e a; = rand|[l,10] generates an integer in 1,2, ..., 10 uniformly at random.
e p; =a;+5 and the knapsack capacity C used is: C = %Z;":l ax;

e We have used various size items of N ranging from 50 to 3000. And the

maximum number of generations in all cases was chosen as 1000.

The proposed algorithm QDEPSO is compared with the quantum inspired
algorithms to solve the knapsack problem named: QEA [Han 2002] , AQDE
[Hota 2010] and QSE [Wang 2007c] to present the hybridization utility of the three
algorithms (DE, QEA and PSO) in the global optimization. The used parameters
for the preceding algorithms are presented in the following table where the pop-
ulation size is 10. The average, the best and the worst profits, as well as, the re-
spective standard in deviations of 30 independent runs are presented in table 3.3,
figures 3.2-3.4 and 3.5-3.7.

Table 3.2: The parameters of algorithm.

QEA QSE AQDE QDEPSO
Quantum ro- 0.0lx / / 0.01x
tation angle
Parameters of / w=0.7298, / w=0.9, cl=c2=1
PSO cl= 142,

2=1.57

Differentiation /
Control (F)

random(0,1) X
random(0,1) x 0.1

random(0,1) X
random(0,1) x 0.1

Crossover /
control (CR)

rand(‘norm’,0.5,
0.0375):  gener-
ates a random
number from
the gaussian
distribution.

rand(‘norm’,0.5,
0.0375):  gener-
ates a random
number from
the gaussian
distribution.

In order to provide the performance of the injection of formulae of PSO and
Q-gate of QEA in the selection operation of DE, we have compared the QDEPSO
algorithm in the three cases; with the DE selection, without the DE selection, and
with the roulette wheel selection of genetic algorithm (GA). Table 3.4 and figures
3.8-3.9 show the results of the QDEPSO comparison.

In order to present the utility of the injection of PSO formulae and Q-gate of
QEA in the selection operation of DE, we have compared the QDEPSO algorithm
in the three cases; with the DE selection, without the DE selection, and with the
roulette wheel selection of genetic algorithm (GA). The results of the comparison
are presented in table 3.4 and figures 3.8- 3.9.

In order to show the importance of the crossover operation of the DE in ex-

ploring the search space, we have performed a comparison between the QDEPSO
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Table 3.3: Experimental results of the 0-1 knapsack problem (experiment 1).

Item size QEA QSE AQDE QDEPSO
50 Best 302 297 292 302
Average 300.63 29426 2872 302
Worst 297 290 282 302
Std 2.23 241 2.97 0
250 Best 1517 1446 1417 1552

Average 15029 14277 1397.6  1548.5
Worst 1496 1412 1382 1542
Std 44562  8.204 73178  2.6749
500 Best 2946 2799 2772 3078
Average 29173 2783 2732 3068.2
Worst 2907 2763 2717 3058
Std 8.8198  9.2364  11.3304 4.8215
1000 Best 5695 5460 5382 6091
Average 56625 54422 53644  6071.9
Worst 5633 5422 5342 6048
Std 127028 11.2975 10.1018 10.3636
1500 Best 8464 8128 8198 9079
Average 84394 8082.8 8178.7 9032
Worst 8414 8039 8149 8990
Std 15.1535 20.6722 13.6188 20.5552
2000 Best 11217 10813 10951 12020
Average 11191 10781 10900 11980
Worst 11164 10747 10865 11931
Std 147202 16.2827 24.6167 23.348
2500 Best 13907 13466 13569 14910
Average 13866 13394 13523 14837
Worst 13839 13342 13482 14751
Std 19.0504 24.5971 23.5438 34.7997
3000 Best 16604 16071 16221 17773
Average 16550 16033 16176 17673
Worst 16506 15995 16128 17583
Std 20.2286 20.5269 22.0621 51.5802

Profit

== smm Ayerage of QDEPSO
= = = Average of QSE
=== pverage of AQDE
e Average of QEA

Figure 3.2: Average profits (250 items).

algorithm with the crossover operation (where the crossover control parameter

CR = 0.5) and without the crossover operation (CR = 0). Moreover, we have com-
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Figure 3.3: Average profits (500 items).
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Figure 3.5: Best profits (250 items)

pared the DE crossover with other types of crossover, namely the one point and
the two points crossover commonly used in genetic algorithms. The average, the

best and the worst profits, the average time as well as the respective standard in
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Figure 3.7: Best profits (1000 items)
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Figure 3.8: Average profits of QDEPSO algorithm with selection of DE, without
selection of DE and with selection of GA (100 items).

deviations of 30 independent runs are presented in table 3.5. In experiment 2, we
have used:
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Table 3.4: The results of QDEPSO algorithm with selection of DE, without selection
of DE, and with selection of GA on the 0-1 knapsack problem (experiment 1).

Item size QDEPSO with se- QDEPSO without QDEPSO with se-
lection of DE selection of DE lection of GA
100 Best 625 600 595
Average 624.5 588.3333 590.9667
Worst 620 580 585
250 Best 1544 1439 1444
Average 1536 1422.3 1422
Worst 1529 1409 1414
500 Best 3046 2716 2736
Average 3038.8 2691.5 2696.2
Worst 3031 2671 2671
1000 Best 6126 5426 5446
Average 6111 5394.3 5405.7
Worst 6096 5361 5381
1500 Best 9142 8072 8067
Average 9109.3 8028 8044.8
Worst 9087 7982 8012
2000 Best 12080 10725 10705
Average 12035 10658 10669
Worst 11990 10610 10645
it
22
?.-_ 12~ Wit B
-g 118 AT
$ 1l e '
< e --+=- QDEPSO without selction of DE
1 +++ QDEPSO with selection of DE
120 _,.-"" —— QDEPSO with selection of GA
C“‘.
- o
o
L1 1S
106 p-
1M | | | | | | | | | J
b 100 M M 40 500 500 ] 80 0 1000
Gemeration

Figure 3.9: Average profits of QDEPSO algorithm with selection of DE, without
selection of DE and with selection of GA (2000 items).

e The weights a;, respective profits p; and the knapsack capacity C =2 ¥ | a;x;
defined by [Layeb 2013].

e Different size items of N varying from 50 to 3000.

e The maximum number of generations in all cases was chosen as 1000.

In order to prove the performance of the proposed algorithm in the global opti-
mization compared to another class of the quantum-inspired algorithm, we have
compared the QDEPSO algorithm with the quantum inspired harmony search al-
gorithm (QIHSA) to solve the knapsack problem. The optimization results includ-
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Table 3.5: The QDEPSO algorithm without crossover of DE, with DE crossover,
with single point crossover of GA and with two point crossover of GA.

Items With  DE With ~ DE With Single- With
crossover crossover point two-point
(Cr=0) (Cr=0.5) crossover of crossover of
GA GA
500 Average 2990.3 3039.5 3038.8 3038.3
Best 3001 3046 3046 3046
Worst 2981 3031 3031 3031
Std  6.1752 3.5111 3.6397 3.1506
Average time(s) 10.0748 11.4595 11.1594 11.5139
1000 Average 5893.8 6110.9 6102.5 6091.6
Best 5926 6126 6121 6111
Worst 5851 6096 6081 6076
Std  18.0843 7.0091 9.0429 9.1142
Average time(s) 19.9584 20.7725 21.3223 19.7728
1500 Average 8707.7 9112.8 9090.9 9063.2
Best 8752 9137 9126 9112
Worst 8647 9077 9042 9027
Std  23.2206 15.7467 18.439 22.9071
Average time(s) 29.8826 32.0788 30.6023 29.2978

ing the success rate (SR) and the best profit are presented in table 3.6 and figure
3.10.
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Figure 3.10: Success rate versus items’ size.

The obtained results are discussed in the following points:

e The algorithm QDEPSO is more efficient for the high-dimensional 0-1 knap-
sack problems compared with QEA [Han 2002] , QSE [Wang 2007c], AQDE
[Hota 2010] and QIHSA [Layeb 2013], the QDEPSO is the most efficient in
the case where the number of items is too large. We illustrate, as an example,

the cases where the size of items equals 2500 or 3000.

e Rapid exploration of the search space solutions: The QDEPSO converges
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Table 3.6: The Results of QDEPSO and QIHSA on the 0-1 knapsack (experiment 2).

Test Size Optimal solution QIHSA QDEPSO
Knapinst50 50 1177  SR% 99.83 99.83
best 1175 1175
Knapinst100 100 2466 SR% 99.27 100
best 2448 2466
Knapinst200 200 4860 SR% 97.83 99.97
best 4755 4859
Knapinst300 300 7137 SR% 96.88 99.91
best 6915 7131
Knapinst500 500 11922 SR% 93.72 99.62
best 11174 11877
Knapinst700 700 17107 SR% 90.02 98.79
Best 15400 16901
Knapinst900 900 21269 SR% 88.62 98.48
best 18850 20947
Knapinst1000 1000 24356 SR% 87.97 97.93
best 21427 23854
Knapinst1200 1200 28617 SR% 87.91 98.2
best 25160 28102
Knapinst1500 1500 35891 SR% 86.31 96.92
best 30978 34787
Knapinst1700 1700 40609 SR% 86.18 96.09
best 34998 39025
Knapinst2000 2000 49007 SR% 85.8 95.88
best 42052 46990
Knapinst2500 2500 60613 SR% 83.43 94.72
best 50570 57418
Knapinst3000 3000 72371 SR% 83.28 94.27
best 60273 68229

rapidly to global optimal. For example, the algorithm converges after the
400 iterations in the case of 250 items.

High exploitation of the search space solutions: The algorithm continues the
search around the global optimum i.e. the exploitation. For instance in the
case of the 250 items, the QDEPSO converges to the optimal solution after
iterating 400, but continues the research till the 600 iterations.

According to the results of the average profits presented in figures 3.8-3.9,
the tendency of the global convergence of QDEPSO algorithm including the
DE selection is clearly increased. But, QDEPSO algorithm without the DE
selection or with the roulette wheel selection of GA maintains a nearly con-

stant profit due to its premature convergence.

According to the comparison results presented in table 3.5, we conclude that
the crossover operation plays an important role in exploring efficiently the

search space. However, it is worth noticing that despite this importance, the
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QDEPSO algorithm is not very sensitive to the kind of the used crossover.
Indeed, in all cases, DE crossover gives slightly better results than the two
other crossover operations in terms of best solution. This is interpreted by
the fact that, in exploring the search space, the role of PSO remains the most
decisive one even if it needs crossover to improve its outcome. Finally, the
obtained results show the efficiency of the collaboration between the op-
erations of mutation, DE crossover as well as the PSO update formulae in

exploring the search space.

3.5 Chapter summary

In this chapter, we have proposed a new algorithm called QDEPSO to solve the
global optimization problems. The proposed algorithm is a hybrid of three meta-
heuristic methods that are Differential Evolution Algorithm, Particle Swarm Opti-
mization and Quantum-Inspired Evolutionary Algorithm. The QDEPSO uses the
concepts of quantum computing such as the superposition state of the qubit and
the quantum gate. Moreover, it uses the differentiation operations of the differ-
ential evolution algorithm such as mutation, crossover and selection. To better
balance between the exploration and exploitation of the space of solutions’ search,
the algorithm adapts update formulas of the PSO in updating the population of
solutions.

In order to validate the performance of our algorithm, we tested it for resolv-
ing the knapsack problem. The obtained results are better comparing with QEA
[Han 2002] , AQDE [Hota 2010], QSE [Wang 2007c] and QIHSA [Layeb 2013] es-
pecially in the cases high dimensional instances of the 0-1 knapsack problem. The
quality of the obtained results encourages us to implement the QDEPSO for other
more complicated global optimization problems in the future.
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4.1 Introduction

This chapter presents a new quantum-inspired firefly algorithm integrating the
particle swarm movement to solve discrete combinatorial optimization problems.
Potential solutions are represented in the quantum paradigm. We use then the
key notions of this paradigm including superposition of Q-bit states, quantum
measure and quantum gate. Moreover, the main idea that allows us to obtain a
discrete variant of the firefly algorithm is that the movement of fireflies will no

longer carried out directly on the “concrete fireflies”, but rather by performing an
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appropriate change in the rotational angle of the quantum solutions. This means
that it is the probability to move in a given direction which will be subject of the
movement changes.

Moreover, in order to determine the rotation angle, the algorithm may use,
according to the context, either the movement formula of the original fire-
fly algorithm ([Yang 2010a], [Yang 2009b]) or that used in the PSO algorithm
[Kennedy 1995]. Finally, the proposed algorithm uses a variant of the Hamming
distance to compute the distance between two discrete solutions. This measure is
then used to update the attractiveness of fireflies.

The rest of the chapter is organized as follows. A brief recall about the multidi-
mensional knapsack problem in section 4.2. Section 4.3 is devoted to the descrip-
tion of our algorithm QIFAPSO. All the relevant issues related to our algorithm are
discussed, namely: the binary as well as the quantum representation of fireflies,
the initialization of the population, the quantum measure, the method of comput-
ing the distance between discrete fireflies, the two movement strategies used (fire-
fly and PSO strategies) and finally the complete pseudo-code of our algorithm. In
section 4.4, we present and discuss a synthesis of various experimental tests done
on the 0-1 knapsack problem both in its one dimensional and its multidimensional

variants.

4.2 0-1multidimensional knapsack problem: overview and

related work

The multidimensional knapsack problem (MKP) is a constrained combinato-
rial optimization problem belonging to the class of NP-Complete problems
[Kellerer 2004]. It is used to model several practical problems in which the aim is to
maximize a profit whithin a limited number of resources, like the capital budget-
ing problem [Pendharkar 2006], project selection [Tavana 2013] and cryptography
[Desmedt 2011]. Formally, the MKP is modelled as follows:

Maximize Z DjXj (4.1)
j=1

Subject to

n
Zaijxjgc,-, xj€{0,1} where 1 < j<n, 1<i<m (4.2)
=1

withpj20f0r1Sjgnandogaij<b,-, bi>0for1<i<m,1<j<n

N ={l1,...,n} is the set of items, M = {1,...,m} is the set of available resources
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with limited quantities, p; is the profit brought by item j, a;; is the consummation
quantity of resource i by item j, b; is the total quantity available of resource i. The
objective of MKP is to select a subset of items that maximize the total profit while
respecting the availability of each resource.

The multidimensional knapsack problem is the exemplary problem in con-
strained combinatorial optimization. Several resolution methods of the MKP
have been proposed. Meta-heuristics are among the most successful approxi-
mated methods in solving the MKP since they found the best solutions in rea-
sonable time. We can cite the genetic algorithm developed by [Chu 1998], the
tabu search algorithm [Hanafi 1998], the ant colony optimization [Ke 2010] and
the particle swarm optimization with repairing of infeasible solutions (PSO-R)
[Liang 2010]. Recently, different discrete hybrid PSO methods have been pro-
posed to solve the MKP including a modified binary particle swarm optimization
(MBPSO) [Bansal 2012], particle swarm optimization with time-varying accelera-
tion coefficients (BPSOTVAC) [Chih 2014] and binary accelerated particle swarm
algorithm (BAPSA) [Beheshti 2013].

4.3 The proposed algorithm

In this section, we present our algorithm called Quantum-Inspired Firefly algo-
rithm with Particle Swarm Optimization (QIFAPSO). We will use it to solve the
multidimensional knapsack problem. The global architecture of the QIFAPSO al-
gorithm is constituted of four main modules. The first module concerns the gen-
eration of the initial population of quantum fireflies (see section 4.3.3). The binary
tireflies” solutions are constructed from the quantum ones by means of the quan-
tum measure (see section 4.3.4) and they correspond to feasible solutions of the
MKP.

After the binary fireflies are obtained from the quantum ones by quantum mea-
sures, the algorithm considers in turn each binary firefly and compares its bright-
ness with that of all the other binary fireflies. The algorithm uses the second mod-
ule in case the current binary firefly solution is less bright than the other one. This
module corresponds to the quantum movement of a firefly towards a brighter fire-
fly (see section 4.3.6). In the opposite case (the current binary firefly solution is
brighter than the other one), the algorithm uses the third module. This module
corresponds to the quantum movement of the firefly according to the movement
strategy of particles used in the PSO approach, i.e., by taking into account the best
position of the firefly as well as the best positions of the fireflies of its neighbor-
hood (see section 4.3.7). Notice that both kinds of movements (FA and PSO) do
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not operate directly on the current binary firefly but on the corresponding quan-
tum firefly (the quantum firefly that has been used to construct the current binary
firefly by a quantum measure). Then, the new quantum firefly resulting from the
movement is used in the fourth module in order to construct a new binary firefly
by quantum measure. This module contains also the evaluation of the objective
function and the brightness update of the new binary firefly. Figure 4.1 depicts the
global architecture of the proposed algorithm.

It is worth mentioning that our algorithm uses a star neighbor relation to co-
ordinate between the different fireflies. Indeed each firefly is compared to all the
other fireflies in terms of brightness. The result of this comparison determines
whether a FA or a PSO movement strategy is applied. Moreover, when the PSO
movement strategy is chosen, we consider again (at a lower level) a star neighbor
relation since to determine the new position of the current firefly, we take into ac-
count both the position of the better solution found so far for this firefly and the
position of the best solution known for the whole set of fireflies.

In summary, our algorithm is build on an interaction between the quantum and
the binary representation levels of fireflies: the quantum fireflies are used initially
to produce binary fireflies. Then the binary fireflies are compared between each
others in terms of brightness. The result of the comparison between each couple
of binary fireflies leads either a firefly or a PSO movement to be performed ! .
However, this movement is done first on the quantum level before using the new
quantum firefly to produce a new binary firefly. After a movement, what is first
updated is not the binary firefly but the probability to select each of its items in the
next observation and consequently, the probabilities to select each of the possible
binary fireflies superposed in the quantum firefly. Thus, using a quantum level
allows one to preserve the population diversity. In addition, completing the FA
movement by another kind of movement issued from the PSO approach, makes
the new algorithm able to take advantage from both of these strategies and hence
have a better exploration / exploitation of the search space.

4.3.1 Binary representation of fireflies

The choice of a representation for individuals is a crucial issue in any meta-
heuristic. The QIFAPSO algorithm uses the binary coding which is the most suit-
able for the selection of items. Each binary firefly solution Bf; (the i firefly of

n addition to the use of quantum representation, this constitutes a main point on which our
algorithm differs from a classical firefly algorithm. Whilst the latter does not do any movement in
case the current firefly is brighter than the other one, our algorithm suggests to use in this case a
movement similar to that used in the PSO approach.
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Initialize quantum fireflies
Make binary fireflies by Quantum measure
Evaluate fitness of binary fireflies

N

> Stop ?

brightness of binary
firefly Bf, < brightness
of binary firefly Bf
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Update formulas of PSO Apply FFA movement

Apply the PSO formulas to Apply the FFA formulas to

update the quantum firefly update the quantum firefly
solution Of, solution Of,

A A
Make binary firefly solution Bf, by quantum measure from quantum firefly solution Qf;
Evaluate the fitness and update the brightness of binary firefly solution Bf,.

A 4 ]
4‘ Store the current best binary firefly solution J:

Figure 4.1: Global architecture of QIFAPSO algorithm

the binary population) is represented as a vector of length m (m is the size of the
solution): Bf; = (Bfi1,---,Bfim)-

Bfij=1if the item x; of Bfj is selected
Bfij=0if the item x; of Bf; is rejected

For example, the binary representation of the selection of the first and the fourth

item from the items set: X = {x,x2,x3,x4} is the vector: (1001).

BF(t) = {Bf{,...,Bf,} denotes the population of n binary fireflies” solutions at
the ' generation, where 7 is the size of the population; m is the length of each
binary firefly solution Bf} for 1 <i <n.
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4.3.2 Quantum representation of fireflies

We use the rotation angle in the Q-bit representation, where each quantum firefly
solution Qf; (the i"" quantum firefly in a quantum population) corresponds to a
vector ©; = (61,..., 0;,) of variables 6;; with 6;; € [0,7] for (1 < j <m).

sin(@)F >

/}A
(er]
v
o
\%

Figure 4.2: Q-bit representation by the unity circle

Each quantum firefly solution Qf; is a string of quantum bits, calculated as
follows:

cos(6i1) |cos(6p) | ... | cos(6m)

= Gnen) Isin(0) | ... | sin(6u)

The probability amplitude of one quantum bit is defined with a pair of num-
bers (cos(6;;),sin(6;;)) where |cos(6;;)|* represents the probability of rejecting item
x;j and |sin(6;;)|* represents the probability of selecting item x; (in the i binary fire-
fly). Of course cos(6;;) and sin(6;;) satisfy :

|cos(6;;) >+ |sin(6;;) > =1.

4.3.3 Initialization of quantum fireflies” population

In the initialization step, a quantum fireflies” population represents the linear
superposition of all possible states with equal probability. In the case of knapsack
problem, a quantum firefly represents a superposition of all possible combinations

of selected items. For this, each vector 0 is initialized by:

o= (5)-(2) =

The Q-bit Qf;; corresponding to 6;; is probably located in the first quadrant of
the unit circle. This initialization provides sufficiently high diversity in the initial

population of quantum fireflies” solutions and gives an initial equilibrium between
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the probability to select an item and the probability to reject it.

Qf‘it:() — COS(Qﬂ) ’cos(elg) ‘ | Cos(ei(r)n) (44)

sin(Gﬂ) ‘Sin(ez%) | ... | sin(6),)

for 1 <i <n, where n is the number of quantum fireflies and m is the length of
each quantum firefly solution Qf;. Notice that we have, for | <i<nand 1 < j<m,

lcos(69)[2 = 1 and [sin(69)[? = 1.

4.3.4 Quantum measure

In this operation, a quantum firefly solution is used to generate a binary firefly
solution by Q-bits projection. For each Q-bit, represented by an angle ®, we gen-
erate a random number r in the interval [0, 1]. The corresponding bit in the binary
firefly solution receives the value 1 if |sin(98-) |> > r, else the bit receives the value
0. Thus, a quantum solution encodes several binary solutions thanks to the super-
position of qubit states. However, each qubit encodes a probability to select or to
reject the corresponding item. At the quantum measure step, only one particular
binary solution is extracted from the quantum one and this choice is guided by the
probabilities encoded in qubits.

In the case of MKP, we distinguish two methods. The first one consists in ob-
serving all the Q-bits, then repairing the resulting sequence of bits to obtain a fea-
sible solution. The second method allows one to create directly binary feasible
solutions by quantum measure without repairing.

The construction of feasible binary fireflies” solutions by quantum measure is
performed in two phases. In the first phase (ADD), the algorithm does not have
initially any selected item. Then, it repeats several passes of measure operations
until it finds an infeasible solution and in the last pass of the first phase, removes
the item so that the solution stays feasible. In each pass, the algorithm browses
randomly all the items and applies the quantum measure to each item which had
not been yet selected in the precedent passes. In the second phase (ADD-2), the
algorithm gives an additional chance to each item which respects the constraints
but is not selected during the first phase to be observed again. Algorithm 4.1.
below, constructs a feasible solution Bf by observing a quantum firefly Qf.

4.3.5 Distance between two binary fireflies

The QIFAPSO algorithm uses a variant of the Hamming distance. In general, the
Hamming distance [Hamming 1950] allows one to quantify the difference between

two sequences of symbols. In the case of the knapsack problem, the used distance
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Algorithm 4.1 Observing a quantum firefly and constructing a feasible solution

Input: A;: the accumulated resource of constraints.
Input: Qf: quantum firefly solution.
Output: Bf: the binary firefly solution.

1: Intialization:
2: A0 VieM={1,...,m};
3: Add phase 1:
4: while (Al' < b,‘) do
5. #feasibility satisfied yet Vie M = {1,...,m}
6: R+« randpermut(n); #Ris a vector resulting from the random permutation
of the set {1,...,n} where n is the number of items
7. j+1;
8: while ((A;i < bj)and(j <n))) do
o if (BfIR]/]) = 0)and(rand() > cos(Qf[R[j]})?)) then
10: Bf[R[j]] < 1, #the selection of an item not selected in the precedent
pass by the quantum measure
11: A; eA,‘+a,-Rm;
12: end if
13: j—Jj+1

14:  end while

15: end while

16: Bf[R[j —1]] < 0;  #remove the last (j — 1) item so that the solution stays
feasible

17: A;j <+ A;— aAiRlj—1)s

18:

19: Add phase 2:

20: for (j:=1:n) do

21:  if ((Bf[R[j]] =0) and (A; +ai; < b;) and (rand() > cos(Qf[R[j]])?)) then

22: Bf[j] < 1; #the selection of an item not selected in the precedent pass and
respecting all the constraints

23: A; <—Ai+al-j;

24:  end if

25: end for

represents the number of distinct bits between two binary solutions. The proposed
distance gives the ratio between the Hamming distance and the number of items

that are not selected in the two binary fireflies” solutions.

1 if Bfix # Bfjx

] 4.5)
0 otherwise

d(Bfi,Bfjr) = {

DHamming(Bf;,Bfj) = Z Bf,k,Bka (4.6)
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DHamming(Bf;,Bf;)
2m— (Lp— Bfu+ X3 Bfjx)

where m is the size of a binary firefly solution.

Distance(Bf;,Bf;) = 4.7)

Two binary fireflies” solutions Bf; and Bf; are said to be identical if and only
if Distance(Bf;,Bf;) = 0 and Bfj = Bfj for 1 <k < m. Accordingly, they are said
to be completely different if and only if Distance(Bf;,Bf;) = 1 and Bfj # Bfj; for
1<k<m.

The following example shows the utility of the distance proposed compared
with the classical Hamming distance. Consider two binary fireflies Bf; and Bf; of
length 6 (containing six bits) where four couples of bits are different and two cou-
ples of bits are identical (see figure 4.3). The classical Hamming distance does not
distinguish between the two following configurations: The two identical couples
equal 1 or equal 0, i.e., the attractiveness is considered identical in the both cases.
However, the proposed distance distinguishes between these two cases. Indeed,
the proposed distance considers that the attractiveness is greater in the case where
the two identical couples equal 0 than in the other case.

Case 1. The two identical couples equal 1 Case2. The two identical couples equal 0
Fireflyd[ 1 [ 1 [ o [ [ o[ 1] Fieflyi[ 0 [ 1 [ o[ 1 o] o]
Fiefly; [ 1 [ o [ 1 [0 [ 1 [ 1] Fieflyj| 0 [ o [ 1 [ o1 0]

Dhamming ( B[ | B//' )=4 Dhamming ( B/’ | B/,' )=4
Distance ( Bf". Bf, )=1 Distance ( Bf", Bf/’ )=05

Figure 4.3: Discrete distance between two binary fireflies” solutions

4.3.6 Quantum movement according to the firefly algorithm strategy

Let Of; and Qf; be two quantum fireflies” solutions such that Qf; is the current
quantum firefly solution and Qf; is brighter than Qf;. Then, Qf; is attracted by
Qf;. Its movement is determined as follows:

— 2 .
6;}:,.1 _ { eltk + BOe 7ij (ejtk - 6ztk) + a't'gitk if B i[k # Bf]tk (48)

0! otherwise

e 0/, 0" are the angles of the k' Q-bit for the quantum firefly Qf; at the itera-
tions r and ¢ 4 1 respectively.

e fBoe " represents the attractiveness between the two binary fireflies” solu-
tions Bf{ and Bf] at the iteration 7.
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e o is arandom parameter which may be constant and ¢’ is a vector of random

numbers uniformly distributed in the interval [0, 1].

The effect of the quantum movement of a Q-bit of a firefly is to increase or
decrease the selection probability of the corresponding item in the binary firefly.
In order to explore the search space in an efficient way, this quantum movement is
guided as follows : if the k" bit of the binary firefly Bf; is different from that of the
firefly Bf; then we replace the value of the corresponding Q-bit of firefly Qf; by the
new value resulting from the movement, else we conserve the state of the Q-bit of

tirefly Qf;.

1+1

The new quantum firefly Qf

is created by changing the rotation angle ac-
cording to the FFA movement strategy (presented in equation 4.8). This change is

given by:

cos(O"") leos(8™) | ... | cos(Bl)

sin(O7") Isin(85) | . | sin(6)

offt! = (4.9)

Let us take an example to illustrate the quantum movement according to the fire-
fly algorithm strategy. Suppose that the current binary firefly considered in the
algorithm is Bf; = (0,1, 1,0,1) and that this firefly is compared to the binary firefly
Bfj = (1,1,0,0,0) to decide what kind of movement has to be used at this stage.
Suppose that Bf; turns out to be less bright than B; (recall that the brightness of
a firefly depends on the value of its objective function). Then, the FA movement
strategy is used. Notice that in the opposite case (if Bf; was brighter than B)), it is
the PSO movement strategy that would have been used. Now, the variant of the
Hamming distance as well as the attractiveness between Bf; and Bf; are calculated
giving the values : r;; = 0.6 and B = 0.9646 respectively. These values are then
used to apply the movement formula given in equation 4.8. on the two quantum
vectors ©; = (0.017,0.037,0.57,0.47,0.017) and ®; = (0.17,0.157,0.17,0.017,0.37)
corresponding to quantum fireflies Qf; and Qf; from which the binary fireflies
Bfi and Bf; have been observed respectively. The new obtained vector for ©; is
(0.0757,0.177,0.147,0.027,0.317). Thus, the quantum movement is guided by the
values of the two binary fireflies but it affects the quantum fireflies. For each qubit
of the quantum firefly, the effect of the movement consists in possibly increasing
or decreasing the probability of selecting the corresponding item in next observa-

tions.
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4.3.7 Quantum movement according to the PSO strategy

Let Of; and Qf; be two quantum fireflies” solutions such that Qf; is the current
quantum firefly solution and Qf; is brighter than Qf;. In this case, the movement
of the quantum firefly solution Qf; is performed according to the PSO strategy. It
is done by changing the rotation angle from ), to 85" for each Q-bit. To determine
the rotation angle of each Q-bit, we adapt the equations 2.19 and 2.20 for the up-
date of velocity and position of a particle as presented by equations 4.10 and 4.11
below (note that m is the size of a solution and 1 < k < m):

Aet'tlc+1 = wAetk +cir (ebik - eltk) + C2r2<9g;{ - 1tk) (410)

1

o1 — { 0! + A0, if Bfy # Fgl or Bfy # Fbl, @iy

0/ otherwise

e AQ and AB;'" are the rotation angles of the k" Q-bit for the quantum firefly
solution Qf; at the iterations ¢ and 7 4 1 respectively, with A8/ is initialized to
0 fort=0.

e Bf} is the k' bit of the binary firefly solution Bf! at the iteration ¢.
e Fb, is the k' bit of the best binary firefly solution F&! at the iteration ¢.

e Fgi is the the k" bit of the best binary firefly solution of the binary fireflies’
population at the iteration ¢.

e 0/ and 0/ are the rotation angles of the k" Q-bit of the quantum firefly
solution Qf; at the iterations # and ¢ + 1 respectively.

e Ob!, is the rotation angle of the k' Q-bit of the best quantum firefly solution
Ofi-

e Og is the rotation angle of the k" Q-bit of the best quantum firefly solution

in the population at the iteration ¢.
e r; and rp are random numbers in the interval [0, 1].

e w is the inertia weight, ¢; and ¢, are the learning factors.

The new quantum firefly Q fi’+1 is created by changing the rotation angle ac-
cording to the PSO movement strategy (presented in equations 4.10 and 4.11). This
change is given by:
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cos(8™) leos(85) | ... | cos(6l)

4.12
sin(04)  [sin(05) | ... | sin(64) *12)

ofi! =

4.3.8 QIFAPSO algorithm

Now, we are ready to give the pseudo-code of the algorithm QIFAPSO (see Algo-
rithm 4.2.).

4.4 Experimental results

In this section, the performance of QIFAPSO algorithm is assessed with a large
number of experiments. These experiments are carried out on a laptop equipped
with an Intel Core (TM) I5-3230M processor and implemented in MATLAB. To
check the efficiency of our algorithm in solving constrained combinatorial opti-
mization problems, we applied QIFAPSO to solve the knapsack problem both in
its simple and multi-constraint (multi-dimensional) versions.

4.4.1 0-1 Simple Knapsack Problem

In this experiment, we have used test instances of simple knapsack that are ran-
domly generated. The weights a; and the profits p; are computed as follows
[Han 2002]:

e g, is a random integer value generated uniformly in the set {1,...,10}.

e The profit p; is given by p; = a; + 5 and the knapsack capacity b is given by:

1yn
b == jzlzl a;x;.

e We have used various sizes (n) ranging from 1000 to 3000. The maximum

number of generations is put to 1000.

QIFAPSO algorithm is compared with the quantum inspired algorithms: QEA
[Han 2002], AQDE [Hota 2010] and QSE [Wang 2007c] in solving the knapsack
problem. We have chosen the comprison with the class of quantum inspired al-
gorithms in order to verify the relevance of integrating the concepts of quantum
computation to the firefly algorithm.The parameters used for the preceding algo-
rithms are presented in the following table where the population size is 10. The
average, the best and the worst profits, as well as, the respective standard in devi-

ations of 30 independent runs are presented in table 4.2 and in figures 4.4-4.7.
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Algorithm 4.2 QIFAPSO Algorithm

1:
2:

Initialize the parameters of the algorithm: By, 7, ci, ¢2 and .

Initialize the quantum fireflies’ population: QF (0) = {Qf?,...,0f°} by equa-
tions 4.3 and 4.4.

Construct the binary fireflies’ population: BF (0) = {Bf?,...,Bf’} from QF (0)
by algorithm 4.1.

Evaluate the fitness of the binary fireflies” population BF(0) which is directly
proportional to brightness.

Store the best binary fireflies” solutions among BF (0) into BFB(0) and the best
quantum fireflies” solutions among QF (0) into QFB(0).

Store the current best binary firefly solution among BFB(0) into Fg and the
current best quantum firefly solution among QF B(0) into QF g.

7 t:=1;
8: while (r < Max_generations) do
9:  for (i=1:n:all quantum fireflies) do
10: for (j = 1:n: all quantum fireflies) do
11: if (I(Bf}) <I(Bfj)) then
12: # is the brightness of a binary firefly solution
13: Compute the discrete distance between binary fireflies” solutions Bf;
and Bf} (equations 4.5 and 4.6).
14: Compute the attractiveness between binary fireflies” solutions Bf;
and Bf} (equation 2.16).
15: Compute the new position of the quantum firefly solution Qf ! by
moving the quantum firefly Qf/ towards the quantum firefly Qf} by
applying the formulas 4.8 and 4.9.
16: else
17 #(1(Bf!) > 1(Bf7))
18: Construct the new position of the quantum firefly solution Qf! ™! by
applying the PSO formulas (equations 4.10-4.11).
19: end if
20: Construct the new binary firefly solution Bf! ™! from the quantum firefly
solution Qf/™! by algorithm 4.1.
21: Evaluate the fitness of the new binary firefly solution Bf'™! which is
directly proportional to its brightness.
22: #Store the best binary firefly solution Bfb!™! and the best quantum fire-
fly solution Qfb' "
23; if I(Bfb) <I(Bf*') then
24: Bfbit! « Bfit!
25. be§+l — intJrl
26: end if
27: #Store the current best binary firefly solution Bf gﬁ“ and the current best
quantum firefly solution Qfg!*!
28: if I(Bfgl) <I(Bf'"!) then
29: Bfgit! « Bfit!
30: ofgit! < off*!
31: end if
32: end for
33:  end for
34: t—t+1
35: end while
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Table 4.1: Parameters of the algorithms

Algorithm Parameters

QEA
QSE

AQDE

QIFAPSO

Quantum rotation angle A8 = 0.01x

Quantum rotation angle A6 = 0.01z, w = 0.7298,
c1=142,¢, =157
Differentiation Control (CF) =
random(0,1) x random(0, 1) x 0.1,
Crossover control (CR) = rand('norm’, 0.5, 0.0375):
generates a random number from the Gaussian
distribution, 4 = 0.5, 0 = 0.0375
a=02,6=1,7y=01,w=09,¢c1=c,=1

Table 4.2: Comparison of QIFAPSO with QEA, QSE and AQDE on the 0-1 knap-

sack problem.

item size QEA QSE AQDE QIFAPSO
Best 5695 5460 5382 6151
1000 Ave 5662.5 54422 53644 61345
Worst 5633 5422 5342 6116
Std 12.7028 11.2975 10.1018 7.6733
Best 8464 8128 8198 9217
1500 Ave 84394 80828 8178.7 91984
Worst 8414 8039 8149 9177
Std 15.1535 20.6722 13.6188 9.2083
Best 11217 10813 10951 12305
2000 Ave 11191 10781 10900 12276
Worst 11164 10747 10865 12245
Std 147202 16.2827 24.6167 14.0367
Best 13907 13466 13569 15364
2500 Ave 13866 13394 13523 15314
Worst 13839 13342 13482 15278
Std 19.0504 24.5971 23.5438 18.9084
Best 16604 16071 16221 18384
3000 Ave 16550 16033 16176 18334
Worst 16506 15995 16128 18284
Std 20.2286 20.5269 22.0621 27.1565

From table 4.2 and figures 4.4-4.7, we can point out that the results obtained

by QIFAPSO algorithm are clearly better than those obtained by the quantum-
inspired algorithms: QEA, QSE and AQDE, particularly in the case where high
dimensional instances of the 0-1 knapsack are used. This shows that comparing

with these algorithms, QIFAPSO ensures a better equilibrium between exploration

and exploitation of the search space.

4.4.2 Multidimensional Knapsack Problem

In this section the performances of QIFAPSO algorithm are evaluated on the multi-

dimensional knapsack problem in order to show its efficiency in dealing with con-

strained combinatorial optimization. We have conducted for that purpose several



4.4. Experimental results

57

10
124
L2 e
w 12 e -
= =
=18k e
S P - QADE
St S o
= /
SR AT S —QEA
S S e QIFAPSO
=i
=
=1,
[ \ \ \ \ \ \ \ |
200 300 400 500 500 700 800 900 1000
Generation
Figure 4.4: Average profits (2000 items)
10’
124
B e e
= b T
- "
£ 1181 - -QSE
= LT e AQDE
=S i1k e —GEA
S A e QIFAPSO
b Y ”:
_:;_‘ 1
stk
= ] 7—‘—_’_J_'_'_,_,__—4
-
| | | | | | | |
0 100 200 30 400 500 600 70 800 900 1000
Generation
Figure 4.5: Best profits (2000 items)
x1
185
T | s
C i
@ il
=
2175 i e QSE
= - AQDE
S . —— QEA
R wimimee QIFAPSO
E A
=
5
s
5
2
=
i | \ \ | \ \ | \ \ |
0 100 200 300 400 500 600 700 800 900 1000
Generation

Figure 4.6: Average profits (3000 items)

experiments using instances of the benchmark library: OR-library [Beasley 2005].

In the first experiment, we have performed an (internal) comparison between
three versions of QIFAPSO algorithm: QIFAPSO without the repairing opera-
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tion, QIFAPSO without the PSO movement and QIFAPSO with repairing and PSO
movement.

For the repair operator, we have used that presented in [Horng 2012]. This
operator is based on the profit density ratio of every item given by : u; = Z%;au
This operator is performed in two phases: in the first phase (DROP phase), the
items with the lowest profit density are removed in turn until a feasible solution
is found. Then, in the second phase (ADD phase), items with the highest profit
density are added until one constraint is violated.

We have done five running tests both for the maknapcbl benchmark (100 items
and 5 constraints) and for maknapcb4 benchmarks (100 items and 10 constraints). To
assess the performance of the three versions of the proposed algorithm, we have

used the average error criteria defined in [Beheshti 2013]:

1 & -y
AE=—Y 200 (4.13)

izl

where N is the number of used benchmarks, #; is the maximum profit known
for benchmark i and y; presents the best, the average or the worst result obtained
for benchmark i by the three versions of QIFAPSO algorithm. The best, the worst
and the average profit as well as the average error are depicted in table 4.3 and
figures 4.8 and 4.9.

According to table 4.3 and figures 4.8 and 4.9, we can remark that QIFAPSO
algorithm with the repairing operation and the PSO movement outperforms QI-
FAPSO without repairing or without PSO. Indeed, with (complete) QIFAPSO, the
average error of the best profit we obtain is minimal (AE = 0.09%). Moreover,
QIFAPSO without repairing gives an important improvement between the initial
solution and the final one. Finally, we conclude that injecting the PSO movement



4.4. Experimental results 59

22

r~
=
T

= QIFAPSO with reparation operation and with PSO
----- QIFAPSO without reparation operation and with PSO
s QIFAPSO  with reparation operation and without PSO

o

05

Average Profitof mknapch1-5.
o
= —0———T-._L.

s
T

| | | | | | | J
100 200 300 400 500 600 700 800 900 1000
Generation

Figure 4.8: Performances of QIFAPSO algorithm without repairing, without PSO
and with repairing and PSO on mknapcb 1-5.100-05

>

—— QIFAPSO with reparation operation and with PSQ
e QIFAPSO with reparation operation and without PSO
2054 T QIFAPSO with reparation operation and with PSO

pebd-10.100

fmina

Average profito

=

| | | | J
100 200 300 400 500 600 700 800 900 1000
Generation
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in the Firefly algorithm improves the performance of the algorithm in exploring
the search space.

Another experiment is performed to compare QIFAPSO algorithm with PSO-
based algorithms, namely: MBPSO [Bansal 2012], BPSOTVAC [Chih 2014] and
CBPSOTVAC [Chih 2014] for solving the multidimensional knapsack problem. We
have used for that the five evaluation criteria proposed in [Chih 2014]: The success
ratio (SR), the mean absolute deviation (MAD), the mean absolute percentage of
error (MAPE), the minimal error (LE) and the standard deviation of the solution
(SD). As stated in [Chih 2014], SR refers to the number of runs that produce the
optimum solution within the termination criterion. MAD is the average of the
absolute difference between the simulation data and the given optimal solution.
MAPE is obtained by dividing MAD by the corresponding optimal solution. It
expresses the accuracy as a percentage. LE is the least error obtained by the mini-
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Table 4.3: Performances of QIFAPSO algorithm without repairing, without PSO
and with repairing and PSO (mknapcb1, mknapcb4).

Benchmark Best Max' QIFAPS CPIFI.“,)SO witho.ut QIFAPSO without
profit repairing operation PSO movement
mknapcb1- Best 24381 24329 24381
5.100- 24381 Ave 24312 24116 24248
01 Worst 24104 23422 24062
mknapcb1- Best 24274 24225 24274
5.100- 24274  Ave 24206 23946 24201
02 Worst 24116 23308 24054
mknapcb1- Best 23538 23551 23523
5.100- 23551  Ave 23513 23378 23497
03 Worst 23444 23153 23422
mknapcb1- Best 23484 23390 23484
5.100- 23534  Ave 23451 23225 23370
04 Worst 23354 23016 23201
mknapcb1- Best 23991 23947 23966
5.100- 23991  Ave 23924 23805 23888
05 Worst 23793 23485 23782
mknapcb4- Best 23057 23044 23025
10.100- 23064 Ave 22954 22749 22839
01 Worst 22788 22262 22689
mknapcb4- Best 22750 22678 22743
10.100- 22801  Ave 22649 22368 22589
02 Worst 22508 21707 22477
mknapcb4- Best 22131 21942 22044
10.100- 22131  Ave 21977 21717 21895
03 Worst 21783 21185 21707
mknapcb4- Best 22772 22635 22631
10.100- 22772 Ave 22566 22373 22487
04 Worst 22339 21990 22261
mknapcb4- Best 22654 22499 22693
10.100- 22751  Ave 22555 22249 22495
05 Worst 22320 21786 22321
Avg. error of best profit (%) 0.09% 044 % 0.21 %
Avg. error of Ave profit (%) 050 % 144 % 0.76 %
Avg. error of worst profit (%) 117 % 341% 1.41 %

mum of absolute difference between the optimum solution and final solution. SD

is the standard deviation of final solutions over runs.

We have compared QIFAPSO algorithm with the three algorithms: MBPSO,
BPSOTVAC and CBPSOTVAC on two classes of MKP benchmarks: A first class of
low-dimensional knapsack problems containing instances of SENTO, WEING and
WEISH and a second class of high dimensional knapsack problems containing in-
stances whose size is ranging from 250 to 500 items and the number of constraints
is between 5 and 10. The results of the comparison are presented in tables 4.4-
4.6 and figures 4.10-4.11. The results show that our algorithm is more efficient
than the binary PSO algorithms for the first class of low-dimensional knapsack in-

stances. Indeed, our algorithm outperforms the other algorithms on the different



4.4. Experimental results

61

Table 4.4: Comparison between QIFAPSO algorithm and MBPSO, BPSOTVAC and
CBPSOTVAC algorithms on low-dimensional knapsack instances (Sento, Weing).

Problem #Benchs #Items Algorithm SR MAD MAPE LE SD
MBPSO 0.16 4481 00058 229 4323
Sentol 30 60 BPSOTVAC 057 874 00011 34 11.52
CBPSOTVAC 039 13628 0.021 3146  357.78
QIFAPSO 1 0 0 0 0
MBPSO 003 2485 00029 81 18.8
Sentoz 30 60 BPSOTVAC 027 9.42 0.001 38 7.04
CBPSOTVAC 02 5353 00063 633 101.03
QIFAPSO 044 18 0.0002 1 3.2814
MBPSO 0.82 11079 00008 801 250.43
) BPSOTVAC 1 0 0 0 0
Weingl 2 28 CBPSOTVAC 092 5125 00004 1961  281.98
QIFAPSO 1 0 0 0 0
MBPSO 065 11745 00009 1700  314.08
) BPSOTVAC 1 0 0 0 0
Weing2 2 28 CBPSOTVAC 0.88 123.19 00009 3341 5455
QIFAPSO 1 0 0 0 0
MBPSO 011 10532 00112 3500  876.78
Weings 2 . BPSOTVAC 092 6.42 0.00007 160 2553
CBPSOTVAC 075 173.07 00019 3789  672.42
QIFAPSO 1 0 0 0 0
MBPSO 076 5706 00049 4001  1270.8
. BPSOTVAC 1 0 0 0 0
Weingd 2 28 CBPSOTVAC 097 4283 00004 3774  378.58
QIFAPSO 1 0 0 0 0
MBPSO 052 162921 0.017 4778 19235
. BPSOTVAC 1 0 0 0 0
Weing5 2 28 CBPSOTVAC 094 8562 00009 4728  572.82
QIFAPSO 1 0 0 0 0
MBPSO 036 3102 00023 1340 3224
Weings 2 . BPSOTVAC 097 117 0.00009 390 66.86
CBPSOTVAC 0.87 9171 00007 2460  343.45
QIFAPSO 097 117 0.00009 390 66.86
MBPSO 002 66086 00006 6111 11306
Weing? 2 105 BPSOTVAC 0 28123 0.00026 2069  383.74
CBPSOTVAC 0 112729 0.011 154486 30020
QIFAPSO 045 70.67  0.000064 63 285.6132
MBPSO 0.03 58247 00095 44731 47043
Weings 2 105 BPSOTVAC 035 1872.44 0.003 6463 2000.9
CBPSOTVAC 02 271284 137 623862 75169
QIFAPSO 098 5176  8.290 1943  375.5081

evaluation criteria with a significant difference. For the class of high-dimensional

knapsack instances, according to anova statistical test, we remark clearly that our
algorithm is more efficient than the other algorithms BPSOTVAC and CBPSOT-

VAC.

Table 4.7 gives the best results obtained for mknapcb1-5.100 and mknapcb1-

5.500 knapsack benchmarks by QIFAPSO and the PSO methods :

self-adapted

check repair operator-based PSO (SACRO-BPSO-TVAC, SACRO-CBPSO-TVAC)
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Table 4.5: Comparison between QIFAPSO algorithm and MBPSO, BPSOTVAC and
CBPSOTVAC algorithms on low-dimensional knapsack instances (Weish).

Problem #Benchs #Items Algorithm SR MAD MAPE LE SD
MBPSO 082 109  0.0024 114 26340
) BPSOTVAC 1 0 0 0 0.000
Weishl 5 30 CBPSOTVAC 094 545  0.0012 248 32810
QIFAPSO 1 0 0 0 0.000
MBPSO 055 839  0.0018 123 18.010
) BPSOTVAC 064 1.8  0.0004 5 2.410
Weish2 5 30 CBPSOTVAC 0.66 412  0.0009 231 23.120
QIFAPSO 096 02  0.00044 5 0.9847
MBPSO 063 2054 0.0051 141 34.980
Weichs 5 20 BPSOTVAC 099 063 000015 63 6300
es CBPSOTVAC 095 921  0.0024 394 52,690
QIFAPSO 1 0 0 0 0.000
MBPSO 096 176  0.0004 56 8.990
. BPSOTVAC 1 0 0 0.000
Weishd 5 30 CBPSOTVAC 099 859  0.0023 859  85.900
QIFAPSO 1 0 0 0 0.000
MBPSO 099 054 000012 54 5400
. BPSOTVAC 1 0 0 0.000
Weish5 5 30 CBPSOTVAC 098 811  0.0021 742 74.450
QIFAPSO 1 0 0 0 0.000
MBPSO 032 1536 0.0028 56 14.390
Weiche 5 10 BPSOTVAC 059 668 000121 18  8.190
es CBPSOTVAC 053 2321  0.0044 518 79.280
QIFAPSO 08 26 000046 13  5.226
MBPSO 064 102  0.0018 122 18920
. BPSOTVAC 096 0.7 000013 18  3.450
Weish7 5 40 CBPSOTVAC 078 19.17  0.0036 511 71.950
QIFAPSO 1 0 0 0 0
MBPSO 044 724 00013 72 13.070
. BPSOTVAC 079 042  0.00008 2 0.820
Weish8 5 40 CBPSOTVAC 0.68 884  0.0016 418 42.810
QIFAPSO 1 0 0 0 0
MBPSO 078 10.61 0.0021 200 25.650
. BPSOTVAC 1 0 0 0 0.000
Weish9 5 40 CBPSOTVAC 085 13.01  0.0027 641  65.700
QIFAPSO 098 0.68  0.000129 034 4.784
MBPSO 056 10.84 0.0017 83 22170
. BPSOTVAC 091 143  0.0002 68  9.560
Weish10 5 50 CBPSOTVAC 0.67 57.16 0.0102 1394  188.630
QIFAPSO 099 027  0.0000425 27 2.7

[Chih 2015] and the memetic binary particle swarm optimization (BHTPSO)
[Beheshti 2015]. The obtained results globally show that QIFAPSO is more efficient
and more robust than these methods, in particular in the case of high diemensional

instances of the multi-dimensional knapsack problem.

In the last experiment, we have done a comparison between our algorithm and
other PSO-based methods developed recently, namely: BAPSA [Beheshti 2013],
BAPSAL [Beheshti 2013] and BPSOL [Liang 2010] on difficult MKP instances
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Figure 4.10: Comparing MBPSO, BPSOTVAC, CBPSOTVAC and QIFAPSO wrt
anova test for the multidimensional instances sento, and weing.

Table 4.6: Comparison between QIFAPSO, BPSOTVAC and CBPSOTVAC algo-
rithms on high-dimensional knapsack instances (mknapcb3-5-500).

Problem Algorithm SR MAD MAPE LE SD
mknapcbs_BPSOTVAC 0 1414 0.0119 2160 315.67
5.500-1 CBPSOTVAC 0 1213 0.0102 1906 311.97
QIFAPSO 0 1077 0.00089639 43 37.3734
mknapcbs_BPSOTVAC 0 1304 0.0112 1800 236.66
5.500-2 CBPSOTVAC 0 1220 0.0105 1693 185.68
QIFAPSO 0  245.8333 0.0021 134  63.8144
mknapcbs_BPSOTVAC 0 1332 0.0111 2126 2622
5.500-3 CBPSOTVAC 0 1225 0.0102 1928 273.89
QIFAPSO 0  188.5333 0.0016 71 73.2543
mknapcbs_BPSOTVAC 0 1418 0.0119 1982 2455
5.500-4 CBPSOTVAC 0 1292 0.0108 1730 213.22
QIFAPSO 0 2725333 0.0023 114 91.3843
mknapcb3_BPSOTVAC 0 1400 0.0116 2080 323.44
5.-500-5 CBPSOTVAC 0 1211 0.01 1928 320.16
QIFAPSO 0  164.2333 0.0013 80 40.1391
mknapcb3_BPSOTVAC 0 1206 0.0099 1852 232.95
5.500-6 CBPSOTVAC 0 1065 0.0088 1725 250.14
QIFAPSO 0  187.2333 0.0015 63 79.218
mknapcbs_BPSOTVAC 0 1358 0.0115 1799 239.13
55007 CBPSOTVAC 0 1243 0.0105 1998 281.14
QIFAPSO 0 1427 0.0012 59 52.7186
mknapcbs_BPSOTVAC 0 1164 0.0097 1717 234.55
5.500-8 CBPSOTVAC 0 1124 0.0094 1944 245.54
QIFAPSO 0 162.4 0.0013 68 49.892
mknapcbs_BPSOTVAC 0 1358 0.0113 1775 252.88
5.500-9 CBPSOTVAC 0 1268 0.0105 1976 248.89
QIFAPSO 0  462.2333 0.0038 278  130.106
mknapcbs_BPSOTVAC 0 1266 0.0106 1630 241.13
5.500-10 CBPSOTVAC 0 1222 0.0102 1824 283.69
QIFAPSO 0 2559 0.0021 156  66.226

whose sizes are ranging from 100 to 500, with a number of constraints between
5 and 30. Table 4.8 presents the best, the average and the worst profit as well as
the average error based on 30 independent runs and figure 4.12 depicts the result
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Table 4.7: Comparison between QIFAPSO algorithm and SACRO-BPSO-TVAC,
SACRO-CBPSO-TVAC and BHTPSO.

Problem Best known SACRO-BPSO-TVAC SACRO-CBPSO-TVAC BHTPSO QIFAPSO
mknapcb1-5.100-01 24381 24343 24343 24169 24381
mknapcb1-5.100-02 24274 24274 24274 24109 24274
mknapcb1-5.100-03 23551 23538 23538 23435 23538
mknapcb1-5.100-04 23534 23527 23527 23253 23484
mknapcb1-5.100-05 23991 23991 23966 23815 23991
mknapcb1-5.500-01 120148 119867 120009 114493 120105
mknapcb1-5.500-02 117879 117681 117699 112821 117744
mknapcb1-5.500-03 121131 120951 120923 114774 121060
mknapcb1-5.500-04 120804 120450 120563 115828 120690
mknapcb1-5.500-05 122319 122037 122054 115889 122239
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Figure 4.11: Comparing BPSOTVAC, CBPSOTVAC and QIFAPSO wrt anova test
for the multidimensional instances mknapcb3-5-500.

of Friedman statistical test. We have noted that the obtained results by our algo-
rithm are better than those obtained by algorithms BAPSA, BAPSAL and BPSOL.
Moreover, the result of Friedman statistical test is much better for our algorithm
than for the other PSO-based algorithms.

Best Known |-
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Figure 4.12: Comparing QIFAPSO, BPSOL, BAPSAL and BAPSA with Friedman
test for multidimensional knapsack instances of mknapcbl and mknapcb4.
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Table 4.8: Comparison between QIFAPSO algorithm and BAPSA, BPSAL and BP-

SOL.

Benchmark Best know Max profit BAPSA BAPSAL BPSOL QIFAPSO
mknapcb1- Best 24381 24298 24301 24381
5.100- 24381 Mean 242433 241549 24201 24314
00 Worst 24063 23981 23977 24146
mknapcb1- Best 24274 24173 24274 24274
5.100- 24074 Mean 24102.1 239842 23858 24206
01 Worst 23940 23813 23732 24116
mknapcb1- Best 23523 23523 23523 23538
5.100- 23551 Mean 23503.9 234822 23482 23513
02 Worst 23374 23402 23352 23444
mknapcb1- Best 23486 23486 23486 23484
5.100- 23534 Mean 23370.6 23333 23343.6 23451
03 Worst 23213 23236 23133 23354
mknapcb1- Best 23966 23939 23966 23991
5.100- 23991 Mean 23897.3 23860.7 238785 23921
04 Worst 23827 23734 23762 23780
mknapcb4- 23064 Best 23055 23055 23050 23057
10.100- Mean 22969.5 22976.8 22963 22954
00 Worst 22701 22846 22701 22788
mknapcb4- 22801 Best 22753 22739 22706 22750
10.100- Mean 22580.8 224774 22459 22649
01 Worst 22325 22363 22215 22508
mknapcb4- 22131 Best 22081 22065 22131 22131
10.100- Mean 219532 219165  21901.6 21977
02 Worst 21786 21792 21759 21783
mknapcb4- Best 22643 22587 22569 22772
10.100- 29779 Mean 225189 224827  22483.6 22566
03 Worst 22421 22355 22337 22339
mknapcb4- Best 22751 22751 22751 22654
10.100- 29751 Mean 22621.1 22627.5  22624.6 22538
04 Worst 22445 22475 22447 22380
mknapcb8- Best 149121 148915 148975 149335
30.250- Mean 148793 148694 148648 149130
29 150057.662 Worst 148529 148564 148349 148875
mknapcb8- Best 298838 298495 297428 300226
30.500- 301020.63 Mean 298482 298186 297029 299940
29 Worst 298320 297950 296443 299565
Avg. error of best profit (%) 023%  0.36 % 034% 014 %
Avg. error of mean profit (%) 0.67%  0.85% 092%  0.50 %
Avg. error of worst profit (%) 129% 133% 1.59%  1.05 %

4.5 Conclusion and perspectives

In this chapter, we have proposed a new algorithm called QIFAPSO to solve dis-

crete optimization problems. The proposed algorithm is based on the integration

into the firefly algorithm of two kinds of concepts: the basic concepts of quan-

tum computation such that the quantum superposition and the quantum measure

as well as the PSO formulas of updating position and velocity. The motivation

behind this integration is to adapt the firefly algorithm to the case of discrete prob-
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lems, to improve its performance in exploring and exploiting the search space and
to reduce the population size. We have tested the proposed algorithm on two
variants of the knapsack problem: the simple 0-1 knapsack and the multidimen-
sional knapsack problems. In order to validate the feasibility and the efficiency of
the proposed algorithm in solving discrete optimization problems, we have based
our evaluation on strict and robust criteria including: the average error, in addic-
tion to Anova and Friedman comparison statistical tests. QIFAPSO algorithm has
been compared to two classes of algorithms: quantum-inspired algorithms and
PSO-inspired algorithms in order to show the relevant and the efficiency of inte-
grating the quantum computation concepts and the PSO style strategy of move-
ment in browsing the search space. The results obtained from QIFAPSO algorithm
are very encouraging. Accordingly, we plan to apply it to optimization problems
issued from bioinformatics and data mining such as the multiple sequence align-

ment and the extraction of association rules problems.
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5.1 Introduction

In this chapter, we propose an approach for feature selection based on QIFAPSO
algorithm developed in [Zouache 2015]. This approach uses the concepts of quan-
tum computing [Manju 2014] including qubit superposition in the representation
of the probability of selecting a feature and the quantum measure as a bridge
between the quantum representation and the binary representation of selected
features (the value 1 indicates that the feature is selected and the value 0 indi-
cates the feature is not selected). In order to improve the search space exploration
and find the best subset of features, we propose cooperation between two move-
ment strategies; that of the fireflies swarm [Yang 2009a] and that of PSO particles
[Kennedy 1995].

These movements are called quantum movements because they are applied on
quantum fireflies represented by sequences of qubit. The impact of these move-

ments on the feature selection appears after the quantum measure of the new
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quantum fireflies that result from these movements. In this approach, the eval-
uation of the feature selection is based on the region position or the dependency
degree of the rough set theory and allows one to evaluate the relevance of subsets
of condition features (those that are less redundant between each other and more

relevant for the decision feature).

5.2 QIFAPSO for feature selection

In this section, we propose a quantum-inspired firefly algorithm based on particle
swarm optimization and rough set theory to select the optimal subset of features,
i.e., the best reduction of features in an information system. Each subset of fea-
tures represents a position or a point in the search space. The proposed algorithm
explores the search space constituted of 2V possible subset of attributes where N is
the number of input features.

The aim is to find the best subset of features thanks to the synergy between
the two following strategies: the movement strategy of fireflies as defined in a
tirefly algorithm and the particle swarm optimization (PSO) strategy. For that
purpose, we put a swarm of fireflies in the space of possible subsets of features.
Each firefly takes a position. The fireflies swarm explores this space to search the
best position, i.e., arriving to a firefly with the most possible brightness). During
the search process, the fireflies change their positions by applying either the FA
movement strategy where a less bright firefly moves towards a brighter firefly or
the PSO movement where a firefly changes its position by taking into account its
best position up to the current iteration together with the global best position in
the whole firefly swarm. Our approach uses the concepts of quantum computing
[Manju 2014], namely qubit superposition in the representation of the probability
of selecting features, and the quantum measure as a bridge between quantum rep-
resentation and binary representation of a feature selection (the value 1 indicates
the selection of the feature and the value 0 indicates its rejection). The evalua-
tion of feature selection is based on the position region or the dependency degree
concepts issued from rough set theory and allows one to evaluate the relevance
of subsets of condition features (those that are less redundant between each other
and more relevant for the decision feature).

5.2.1 Quantum representation for feature selection

Fireflies” positions are represented by a sequence of quantum bits of length N

where N is the total number of condition features: N = card(C). Each qubit en-
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Algorithm 5.1 The pseudo-code of QIFAPSO-FS

Input: An information table and the parameters of QIFAPSO algorithm
Input: A minimal feature reduct R, and its cardinality L,
Output: Ry, + C;
Output: L, < |C|;
1: iteration < 0;
2: while (iterationmaxcycle) do
3:  for each fireflie i do

4: for each fireflie j do
5: if I(Bf;)I(Bf;) then
6: R; < updating_mouvment of FA()
7: else
8: R; < updating_mouvment of PSO()
9: end if

10: end for

11:  end for
12: end while

codes the probability of selecting or not a feature. A qubit is represented by the
couple (cos(60),sin(0)) of a rotation angle 6 and is given by the following formula:

|0 >=cos(0)|0 > +sin(0)|1 >  such that |cos(8)[* + |sin(0)> = 1 (5.1)

{cos(@) |? represent the probability of the not selecting a feature c

|sin(6)|? represent the probability of the selecting a feature ¢
Accordingly, a position of a quantum firefly encodes indeed a state superposi-

tion of several binary solutions, i.e., several possible subsets of features. Thus, the
quantum representation ensures more diversity in the population of solutions and
does not require a great number of fireflies to find the optimal subset of features in

the search space.

5.2.2 Construction of feasible solution by Quantum observation

In QIFAPSO, we use the quantum measure operation to construct a binary solution
which corresponds to an effective selection of a subset of features. Each bit of the
binary solution is created by projecting a qubit of the quantum solution. For each
qubit, we generate a random number r in the interval [0, 1]. Then, the correspond-
ing bit of the binary solution takes the value 1, i.e., the corresponding feature is
selected if r > |sin(8)|?, otherwise it takes the value 0 and the corresponding fea-

ture is not selected.
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Algorithm 5.2 Quantum observation

Input: quantum firefly Qf, C = {c1,c2,--- , ¢, }the set of features
Output: binary solution Bf, subset of features R
1: R« &
2: for each qubitiof Qf do
3:  Generate random real value r between 0 and 1
if (r > cos(6;)?) then
Bfi+1
R < RUcg;
else
Bfi+0
9: endif
10: end for

5.2.3 Fitness function

To evaluate the relevance of a subset R of features of the reduction of the set of con-
dition features with respect to the decision feature D in an incomplete information
system, we propose to use the evaluation function defined by Xiangyang Wang in
[Wang 2007c] as follows:

(IC1 = IR])

fitness = ot X Yr(D) + B X C]

(5.2)
where k(D) is the dependency degree of the subset R of condition features with
respect to the decision feature D. |R| is the cardinality of the set R of selected fea-
tures with R C C, i.e., the number of 1 in a binary firefly solution. |C| is the total
number of condition features. & and 3 are two coefficients that correspond to the
impact of the dependency degree and the number of selected features.

From the optimization point of view, QIFAPSO algorithm tries to maximize the
titness function or to find an optimal solution (the best subset of features) having
a maximal value of the evaluation function, i.e., having a maximal dependency
degree and a minimal number of features. Thus, in the best solution, the selected
condition features are those that have the maximal influence on the decision fea-
ture D while minimizing the redundancy of the selected features between each

other.

5.2.4 The distance and attractiveness between two fireflies’ solutions

Let Bf;, Bf; be two binary solutions corresponding to two fireflies. We use the
variant of Hamming distance proposed in [Hamming 1950]. This distance is the

proportion of the number of different positions between two binary solutions (the
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number of 1 from Bf; XOR Bf;) and the number of zeros in these two binary solu-
tions.

Yoo (Bfiu® Bfix)
2XN-— (Zszl Bfik ‘1‘22\,:1 Bfir)
where @ is the addition modulo 2, 3r; Ar, € {1,--- ,N}|Bfiy1 # 0 and Bfj;o #0,0 <
Distance(Bf;,Bf;) < 1.

Distance(Bf;,Bf;) = (5.3)

The distance between two fireflies increases when the number of different po-
sitions in the two fireflies increases or when the number of identical positions con-
taining the value 1 between the two fireflies increases, and vice versa. The attrac-
tiveness between two binary fireflies is given by the following formula:

Att(Bf;,Bf;) = o~ YxDistance(Bf;.Bf;)? -

where 7 is a parameter indicating the environment absorption. The attractiveness
between two binary fireflies increases when the distance between the two fireflies
decreases and vice versa. Consequently, the higher is the attractiveness between
two fireflies Bf; and Bf; , the more is the importance of the movement of Bf; to-
wards Bf; (supposing that Bf; is less bright than Bf; ) and vice versa. The meaning
and the importance of this distance in exploring the search space to find the best
subset of features is that if a subset of features R; corresponding to a firefly bf; is
less performing than another subset of features R; corresponding to a firefly bf;.
(according to the objective function defined in section 5.3.3).

The following example illustrates the efficiency of this distance. Let C =
{c1,¢2,¢3,c4,c5,c6} be the set of condition features. Let us consider two feature
selection configurations for two binary fireflies Bf; and Bf;. In the first config-
uration, the value of the binary firefly Bf; is (0,1,0,1,1,1) which corresponds to
the subset of features R; = {c2,c4,cs5,c6} and the value of the binary firefly Bf; is
(1,0,1,1,1,1) which corresponds to the subset of features R; = {c1,¢3,cs,¢5,¢6}. In
the second configuration, the value of the binary firefly Bf; is (0,1,0,0,0) which
corresponds to the subset of features R; = {c,} and the value of the binary firefly
Bfjis (1,0,1,0,0,0) which corresponds to the subset of features R; = {ci,c3}. The
distance between the two fireflies Bf; and Bf; in the first configuration equals 1
whereas it equals 0.33 in the second configuration. The attractiveness between the
two fireflies in the first configuration is smaller than that in the second configura-

tion.

In summary, this distance favors solutions with less number of features and
avoids the premature convergence problem since the firefly is more attracted by

another firefly and moves towards it in the case where the number of identical
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attributes that are not selected by both fireflies is greater (this intuition gives more
freedom in the exploration of the search space by the swarm of fireflies and ensures
the preservation of the population diversity).

5.2.5 Quantum movements for updating the fireflies” solutions

The exploration of the search space of subsets of features is done thanks to the
cooperation of two movement strategies. The first strategy is inspired from the
movement of firefly swarms and the second one is inspired from the PSO move-
ment.

The first strategy is applied in the case where a binary firefly Bf; is less bright
than another binary firefly Bf; (i.e., the subset of selected features corresponding to
the firefly Bf; is less relevant than the subset of selected features corresponding to
the firefly Bf;). In this strategy, the binary firefly Bf; is attracted by Bf; and moves
towards it. The effect of this movement appears in the change of the subset of
selected features corresponding to binary firefly Bf; as presented in the algorithm
53.

The PSO movement strategy is applied in the case where the condition for the
application of the firefly movement strategy is not satisfied i.e., in the case where
the subset of features corresponding to firefly Bf; is more relevant than the subset
of features corresponding to firefly Bf; according to the objective function (the
dependency degree and the number of selected features). The firefly Bf; moves
to another position by taking into account its best position in its history and the
current in the swarm fireflies (see the algorithm 5.4).

The two movement strategies are applied on the set of quantum fireflies. These
movements allow increasing or decreasing the probability to observe the value 1
from the quantum state of each qubit of a quantum firefly. The effect of the quan-
tum movement on the feature selection is to change the probability of selecting a
feature. This effect in concretized on the set of binary solutions (the set of sub-
sets of attributes) after the application of the quantum measure on each qubit of a

quantum firefly.

5.3 Experimental results

In this section, the performances of our feature selection approach are proved. The
objective is to evaluate the QIFAPSO algorithm in terms of number of features and
accuracy of set classification of selected features. QIFAPSO-FS is run on twelve

discrete UCI datasets extracted from the repository of machine learning databases
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Algorithm 5.3 Updating quantum firefly solution by FA movement

Input: ©}, ©): two quantum fireflies i and j at iteration ¢,

Input: Bf/, B f]’.:two binary fireflies i and j at iteration z,

Input: C :the set of condition features.

Output: ®'"!: the new quantum firefly i at iteration ¢ + 1,

Output: Bf!*!: the new binary firefly i at iteration  + 1,

Output: R!"':the new subset of features corresponding to binary firefly B
1: R;-—H +— &d;
2: Computing the distance and attractiveness between the two current binary

fireflies Bf; and Bf;

3: for each bit k of binary firefly Bf} do

141
[

4 ifBf}, # ij’.k then
5 e « O +Attr(Bf},Bf;) (0 — ©) + & x rand();
6: else
1 .
% O O
8 end if
9:  if rand() > cos(®;"))? then
10 Bfi 1
i 1
11: R R Uy
12:  else
: +1
13: Bfi" «0
14:  end if
15: end for

[UCI 1998]. These datasets is presented in table 5.1. The column ‘feature” and the
column ‘“instance’ give respectively the total number of features and instances in
a dataset. The column ‘accuracy_Tree’ and the column ‘accuracy_KNN’ present
respectively the classification accuracy given by the decision tree algorithm and
the classification algorithm in an original dataset containing the complete set of

features.

The evaluation of the performance of the feature selection based on the pro-
posed algorithm in the classification task is proved by the cross validation method.
This method decomposes the training set into n samples and each sample con-
structs a classification model or a classifier according to the used classification al-
gorithm. Moreover, each model is tested and evaluated (n — 1) times on its clas-
sification accuracy by using the other (n — 1) samples. The accuracy rates of the
training set are given by the average of classification accuracy rates of the set of
models generated by the n samples. This method is more robust and more efficient
in the evaluation of the classification accuracy. More precisely, in our case, we use
the 10-fold cross validation method where the training set is decomposed into 10

samples. To generate the classification model for each sample, the two following
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Algorithm 5.4 Updating quantum firefly solution by PSO movement

Input: O}, ®/: the quantum firefly i and its best quantum until iteration ¢, @g: the
best quantum position of the set of fireflies at iteration ¢,
Input: Bf], BfI}: the binary firefly i and its best binary position until iteration z,
Bfg: the best binary position of the set of binary fireflies at iteration ¢,
Input: A6;: Vector of rotation angles, initialized to 0 at iteration r = 0.
Input: C: the set of condition features.
Output: ©/"': the new quantum firefly i at iteration ¢ + 1,
Output: Bf!"':the new binary firefly i at iteration  + 1.
Output: R'™': the new subset of features corresponding to binary firefly Bf!*'.
1: AB!™!: the new vector of rotation angles at iteration  + 1.
2: R?H — P;
3: for each bit k of binary firefly Bf} do

4 if (Bff ?é BfI})V (Bf! # Bfg') then
5: A% — vth.rAIOi’k + rand() x Cy x (@, —Ogh) + rand() x C, x (0 — OI);
. ‘.
6: O, + 0, +03;
7. endif
8 if raricf’r(l) > cos(©,71))? then
S
Ri™ + R, Uc
11:  else
. 141
12: Bfy" +0
13:  endif
14: end for
Table 5.1: Data description.
Feature Instances Accuracy_Tree Accuracy_ KNN
Lymphography 18 148 0.79+0.08 0.79+0.10
Mushroom 22 8124 1£0 1£0
Soybean-small 35 47 0.97+0.06 1+0
Zoo 16 101 0.8740.08 0.96+0.05
Dermatology 34 366 0.93+£0.03 0.94+0.05
Vote 16 300 0.9340.04 0.91£0.04
Lung 56 32 0.84+£0.16 0.65+0.19
Breast-cancer 9 699 0.93£0.02 0.95+0.02
DNA 57 318 0.36+£0.13 0.4811+0.05
Exactly 13 1000 0.7540.07 0.74 +0.0437
Exactly2 13 1000 0.68+£0.04 0.66+0.02
Led 24 2000 1+0 0.78 £0.01

Average  26.083 0.8440.06 0.824+0.05

classification algorithms are used: decision tree algorithm and KNN algorithm.

The experimental results of the proposed algorithm applied on twelve datasets
are summed up in table 5.2. In this table, the performances of QIFAPSO-FS algo-

rithm are presented in terms of the number of reduced features, the reduction rate
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of the total number features, the accuracy of the classification of the feature sub-
sets obtained by QIFAPSO-FS algorithm and finally, the optimal solution i.e., the

optimal subset of features.

Table 5.2: Performance comparison on discrete datasets.
Length Number Rate of Best Accuracy Best Accuracy Feature

of the of reducts Tree KNN selection
reducts reducts
Lymphography 7 11 61.11 0.7940.10 0.804+0.10 2,6,8,13,
14,15, 18
Mushroom 4 18 81.81 0.99+0.01 0.99+0.01 5, 12, 20,
22
Soybean-small 2 33 94.28 1+0 1+0 22,23
Zoo 5 11 68.75 0.94+0.05 0.94+0.05 3,4, 6,8,
13
Dermatology 10 24 70.58 0.87+£0.04 0.78 £0.04 1, 5,6, 9,
16, 19, 21,
26, 28,32
Vote 8 8 50 0.93+0.05 0.92+0.05 1,2,3,4,9,
11,13,16
Lung 4 52 92.85 0.84+0.17 0.84+0.17 3,9,24,42
Breast-cancer 4 5 55.55 0.94+0.01 0.95+0.01 1,5,6,8
DNA 5 52 91.22 0.36+0.09 0.33+0.05 5, 19, 22,
26,33
Exactly 6 7 53.84 1+0 1+0 1,3,5,7,9,
11
Exactly2 10 3 23.07 0.724+0.02 0.79+0.02 1, 2, 3, 4,
5,6,7,8,9,
10
Led 5 19 79.16 1+0 1+0 1,2,3,4,5
Average 5.81 0.868 :-0.04 0.86£0.04

According to the obtained results presented in table 5.2, figures 5.1-5.3, we ob-
serve that the proposed algorithm is more efficient in reducing of the number of
features. For instance, in the datasets Soybean-small and DNA, the reduction rate
is more than 90%. The rate of classification accuracy in feature selection obtained
by the decision tree or the KNN algorithms is almost equal to the rate of classifica-
tion accuracy of the complete set of features, in most datasets. In some cases, the
classification accuracy of the subset of selected features by QIFAPSO-FS algorithm
is better compared with the complete set of features as it is the case for instance for
Soybean-small, Exactly2 and Led datasets.

The process of search space exploration by QIFAPSO-FS algorithm for the fol-
lowing datasets: vote, mushroom, exactly2, DNA and dermatology are presented
in tables 5.3-5.7 respectively and in figures 5.4-5.8 respectively. In each table, the
‘best solution” presents the best subset of features found by QIFAPSO-FS algo-
rithm at each iteration. The ‘fitness value” denotes the evaluation criteria for the

relevance of a subset of features at each iteration. The fithess value combines two
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Figure 5.2: Accuracy classification given by tree decision for raw data and best
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evaluation criteria in order to assess a subset of features: The first one presents
the dependency degree (of rough set theory) with the decision feature; the second
criterion gives the number of reduced features. In our case, the coefficients of the
two criteria are fixed as follows: o = 0.9 and = 0.1, and the maximal number of
iterations is 20.

Table 5.3: QIFAPSO-FS exploration process on vote.
Iter Best solution Fitness value Feature subset length
1 3,4,56,7,10,11,13,15 09108 9
2 2,3,4,7,10,11,12,13,16  0.9287
3 3,4,7,9,10,11,12,13,16  0.9317
45 2,3,4,11,12,13,16 0.9413
67 1,2,3,4,11,12,13,16 0.944
8 1,2,3,4,9,11,13,16 0.95

Q| 00| | \©| \©

Table 5.4: QIFAPSO-FS exploration process on mushroom.

Iter Best solution Fitness value Feature subset length
1 1,3,4,5,10,11,20 0.9682 7
2 3,5,11,12,16,22  0.9727 6
3 5,11,12,19,22 0.9773 5
4 5,12,20,22 0.9783 4

Table 5.5: QIFAPSO-FS exploration process on exactly?2.

Iter Best solution Fitness value Feature subset length
12 1,2,4,6,7,8,9,11,12,13 0.7206 10
3 1,2,3,4,56,7,8,9,11,12,13  0.8636 12
4 1,2,3,4,5,6,7,8,9,10,12 0.9154 11
5 1,2,3,4,56,7,8,9,10 0.9231 10

Table 5.6: QIFAPSO-FS exploration process on DNA.

Iter Best solution Fitness value Feature subset length
1 3,4,5,11,12, 14, 16,18, 0.9649 15
21, 33, 36, 37, 39, 42, 46,
48,49, 50, 53, 57
2-3 2,3,9,10, 44, 52,55 0.9877 7
4 4,20,22,33,43,44 0.9895 6

According to tables 5.3-5.7 and figures 5.4-5.8, we can see that QIFAPSO-FS
algorithm is more efficient in the exploration and the exploitation of the search
space of the possible subsets of features thanks to the diversity of the set of solu-
tions provided by the concepts of quantum computation such as the superposition
of qubit states and quantum measure as well as the cooperation between the two

movement strategies issued from PSO and FA.
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Table 5.7: QIFAPSO-FS exploration process on dermatology.

Iter Best solution Fitness value Feature subset length
1 1,2,3,7,8,9,10,11, 16, 0.9431 17
17,19, 20, 16, 24, 28 ,30
,31
2-3 1,5,8,15,16,18,19,20, 0.9519 13
21,22,28,29,32
4 1,3,5,10, 14, 15, 16,18, 0.9588 15
19, 22, 25, 26, 14, 28, 32
5 1,2,3,5, 8 14,15, 19, 0.9618 13
21, 25,26, 28, 30
6 1,2,5 6,9 12,15, 16, 0.9647 12
18,19, 25, 26
7 1,3,5,14,15,16,19,21, 0.9676 11
26, 28, 32
8 1,5,6,9 16,19, 21, 26, 0.9706 10
28,32
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Figure 5.4: Evolution exploration process of the global best on dataset vote by
QIFAPSO-FS algorithm.
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Figure 5.5: Evolution exploration process of the global best on dataset mushroom
by QIFAPSO-FS algorithm.
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Figure 5.6: Evolution exploration process of the global best on dataset exactly2 by
QIFAPSO-FS algorithm.
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Figure 5.7: Evolution exploration process of the global best on dataset DNA by
QIFAPSO-FS algorithm.
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Figure 5.8: Evolution exploration process of the global best on dataset dermatology
by QIFAPSO-FS algorithm.
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The results of the comparison of QIFAPSO-FS algorithm with the algorithms
of feature selection based on rough set theory are presented in table 8. These
algorithms are: PSORSFS [Wang 2007c] , FSARSR[Chen 2015]. According to the
number of reduced features criteria, we observe that the our algorithm is more
competitive than the four considered algorithms in all the datasets used in this
comparison. In the case of ‘vote” dataset, QIFAPSO-FS gives a better feature selec-

tion than these algorithms.

Table 5.8: Reduct sizes found by feature selection algorithms.
Dataset features PSORSFS FSARSR QIFAPSOFS
Lung 56 4 4 4
Mushroom 22
Soybon small 35
Vote 16

D N

4 4
2 2
9 8

Another comparison is done with respect to the minimal number of iterations
to find the best solution. In this comparison, QIFAPSO-FS algorithm is com-
pared with the two following metaheuristics: Particle swarm optimization based
on rough set for feature selection (PSORSFES) [Wang 2007c] and finding rough set
reducts with fish swarm algorithm (FSARSR) [Chen 2015]. The results of this com-
parison are given in table 5.9 and show that for all datasets used in this compar-
ison, QIFAPSO-FS algorithm finds the best solution after a number of iterations
which is smaller than that for the two algorithms PSORSFS and FSARSR. These
results prove that QIFAPSO-FS algorithm is more efficient in the exploration and

the exploitation of the search space.

Table 5.9: Minimal number of iterations to find the best subset of features by meta-
heuristic algorithms.

Dataset PSORSFS FSARSR QIFAPSOFS
Lung 40 10 5
Mushroom 16 7 4
Soybon small 33 10 4
Vote 54 8 5

5.4 Chapter summary

In this chapter, we have applied quantum inspired firefly with particle swarm opti-
mization algorithm presented in the previous chapter for the feature selection task.
This task is crucial in improving the quality of grouping obtained by clustering al-
gorithms. Also, it increases the performance of classification algorithms. Further-

more, feature selection allows to reduce the grouping complexity and to construct
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the classification model. In this work, we have chosed to apply QIFAPSO-FS al-
gorithm for feature selection in order to improve the performance of classification.
We have used concepts form rough set theory to evaluate the relevance of the sub-
sets of features found during the process of search space exploration performed
by QIFAPSO-FS algorithm. The performances of QIFAPSO-FS algorithm are eval-
uated through the measure of the classification accuracy given by the cross vali-
dation method and the features reduction rate. The obtained experimental results
showed that the proposed algorithm outperforms the algorithms we have used for
the comparison both in terms of classification accuracy and in terms of reduction

rate.
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6.1 Conclusions

The focal point of this thesis is the development of bio-inspired algorithms to solve
data mining problems. We have exploited two main resources in developing two
proposed algorithms, namely QIFAPSO and QDEPSO: The first resource is the
collective intelligence of the stack of swarm intelligence algorithms and the sec-
ond resource is the concepts of quantum computing. We have adopted a strategy
which consists in developing bio-inspired algorithms to solve general optimiza-
tion problems before instantiating them for specific data mining problems.

The first proposed algorithm is called QDEPSO and is intended to solve global
optimization discrete problems. QDEPSO is a hybridization of three meta- heuris-
tic methods, namely: Differential Evolution Algorithm, Particle Swarm Optimiza-
tion and Quantum-Inspired Evolutionary Algorithm. QDEPSO uses the concepts
of quantum computing such as the superposition state of the qubit and the quan-
tum gate. Moreover, it uses the differentiation operations of the differential evolu-
tion algorithm such as mutation, crossover and selection. To reach a good tradeoff
between exploration and exploitation of the search space of solutions, the algo-
rithm uses adapts update formulas of the PSO in updating the population of solu-
tions.

In this thesis, we have also proposed a new algorithm called QIFAPSO to solve
discrete optimization problems. The proposed algorithm is based on the integra-
tion into the firefly algorithm of two kinds of concepts: the basic concepts of quan-
tum computation such that the quantum superposition and the quantum measure

as well as the PSO formulas of updating position and velocity. The motivation
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behind this integration is to adapt the firefly algorithm to the case of discrete prob-
lems, to improve its performance in exploring and exploiting the search space and
to reduce the population size.

In this thesis, we have chosed to apply QIFAPSO-FS algorithm for feature selec-
tion in order to improve the performance of classification. We have used concepts
form rough set theory to evaluate the relevance of the subsets of features found
during the process of search space exploration performed by QIFAPSO-FS algo-

rithm.

6.2 Future works

I believe that the objectives intended by this thesis have been reached. These ob-

jectives can be summed up as follows:

O Discovering the domain of knowledge extraction: its methods and its prob-

lems;

O Discovering the domain of bio-inspired algorithms: its philosophy in inspir-
ing algorithmic methods from nature, emergence and collective intelligence
and their use in modeling complex systems and solving difficult problems

within these systems;

O Integrating the new discipline of computer science which is based on quan-
tum physics as a main component in our approach of solving very difficult

optimization problems;

O Developing effective algorithms based on the domains evoked below to

solve optimization problems and adapting them to data mining applications.

Understanding in depth these research lines and propose numerous and sub-
stantial contributions in this field remains my long term objective. This thesis is
a first step in this investigation process which will need further efforts and years
of training and work. My short-term objectives consist in completing the works

initiated in the present thesis, namely:

O Inspiring new algorithms from nature in general and from animals and hu-

man beings life in particular, to solve optimization problems;

O Applying the two proposed algorithms QIFAPSO and QDEPSO in other
problems from data mining such as association rules and clustering among

others;
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O Using the new quantum gates and other quantum phenomena that have not

yet been used in the literature to solve optimization problems.
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Bio-inspired Algorithms for Data mining
Abstract

Knowledge extraction from data bases, also called data mining, denotes the
process of discovering useful, new and understandable knowledge from large
data bases. Among data mining tasks where the nature of information extraction
process may be seen as an optimization process. Consequently, we have needed
fundamental approach different conventional approaches of knowledge discovery.
This approach is based on inspiration, ideas and insights from the natural life to
solve the knowledge extraction problems. In this thesis, we propose two novel
bio-inspired algorithms to solve discrete optimization problems.

The first algorithm is called Quantum inspired Differential Evolution with Particle
Swarm Optimization ‘QDEPSO’ which combines differential evolution, particle
swarm optimization method and quantum-inspired evolutionary algorithm . In
the initialization phase, the QDEPSO uses the concepts of quantum computing as
the superposition state of qubits as well as the quantum measurement to represent
and generate the diversity of the initial solutions. The second phase is an alter-
nation between the DE operations and the adaptation of update formula of the
velocity and the position of PSO algorithm.

The second algorithm is called Quantum-inspired Firefly Algorithm with Particle
Swarm Optimization ‘QIFAPSO’. This proposed algorithm uses the basic concepts
of quantum computing such as superposition states of Q-bit and quantum mea-
sure to ensure a better control of the solutions diversity. Finally, the ‘QIFAPSO’
combine two strategies that cooperate in exploring the search space: the first one
is the move of less bright fireflies towards the brighter ones and the second strat-
egy is the PSO movement in which a firefly moves by taking into account its best
position as well as the best position of its neighborhood. Finally, we propose the
used QIFAPSO based on rough set for feature selection in classification.
Keywords: Data mining; Differential evolution; Quantum computing; Firefly
algorithm; Particle Swarm Optimization; Feature selection; Rough set; Discrete
problem optimization; Knapsack problem




Fouille de données basée algorithmes bio-inspirés

Résumé

L’extraction de connaissances dans les bases de données, également appelé
“data mining”, désigne le processus de découverte des informations et des
connaissances utiles, nouvelles et compréhensibles a partir d’'une base de
données de grande taille, d'un entrepot de données ou d’autres bases. La
majorité des problemes d’extraction de connaissances peuvent s’exprimer comme
des problemes d’optimisation combinatoire. Par conséquent, nous avons besoin
d'une approche fondamentale différente des approches d’extraction exactes
classiques. Cette approche est basée sur I'inspiration des idées et des intuitions a
partir de la nature et de la vie (biologique, physique, etc.) pour résoudre les
problemes d’extraction de connaissances.

Notre contribution est faite en deux phases : La premiere phase consiste a
concevoir des méta-heuristiques bio-inspirés pour résoudre des problemes
d’optimisation combinatoire d’une maniere générale et la deuxieme phase
consiste a réaliser et d’appliquer ces méta-heuristiques proposées aux problemes
d’extraction de connaissances.

Dans la premiere phase, nous avons proposé deux algorithmes bio-inspirés,
le premier algorithme appelé QDEPSO hybride entre le DE et le PSO. Le
deuxieme algorithme appelé QIFAPSO fait coopérer le firefly algorithm et le
PSO. Les deux algorithmes utilisent les concepts de l'informatique quantique.
Dans la deuxieme phase, nous avons appliqué l'algorithme QIFAPSO pour
résoudre le probleme de la sélection d’attributs.

Une évaluation expérimentale approfondie sur les différents jeux de
données disponibles dans la littérature montre que les algorithmes développés
sont performants et concurrents en terme de qualité de solutions comparant avec
d’autres algorithmes qu’'ont été développés pour résoudre des problémes
d’optimisation combinatoire ou bien dans la résolution de probléeme de la
sélection d’attributs.

Mots clés : Fouille de données ; Informatique quantique ; algorithme de luciole ;
Optimisation par essaime de particules; Sélection d’attributs; Probleme
d’optimisation discrete ; Probléeme du sac a dos
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