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Chapter |: Introduction and Overview

In recent years, numerous studies have been carried out to find lighter structures with better
mechanical performance. Composite sandwiches are an excellent compromise when an
optimal tradeoff between light wight and high performance is required. Consequently these
structures are being increasingly used in many industrial fields such as shipbuilding,
automotive, aerospace and civil structures [1, I8].particular, the sandwich structure
provides more bendingtiffness and longer fatigue life cycles and is excellent in insulating
applications 8, 4]. The use of these structures offers advantages in terms of reduction of the
weight of transit, improvement of the speed, and increased energy efficiency.

A typicd sandwich structure, as shown in Figure 1.1, is made of two thin, stiff and strong
outer skins that are adhesively bonded and separated by a lightweight core. The skins are
usually aluminum plates or fibeeinforced composite laminates. Core material ban
classified as being cellular, corrugated or honeycomb. By separating the skins through a low
density core, the moment of inertia of the panel is increased so increasing bending stiffness. In
fact, the geometric features and the mechanical propertiee obre play an important role in
depicting the loading capacity and energy absorption capability of sandwich structures. The
core mainly ensures that a higher bending rigidity of the skins is maintained acting like the
web in a structural-lbeam- while the skins, being relatively stronger and stiffer, carry most

of the impact load. The bending rigidity of the structure is directly proportional to the
thickness of the core. However, the maximum thickness is often dictated by the core's shear
failure.By varying the cell geometry, density and mechanical properties of honeycombs,
different combinations of curvature can be producatliminum honeycomb sandwich
structures having open cell structures are lighter than foam and balsa cores, but their impact
chamcteristics are inadequatg].[While polymeric foams have been applied for many years,
currently there is a significant and growing interest in sandwich structures with aluminum
foam core[6, 7] and with honeycomb core [Bloneycomb cores with hexagonalls are

widely used in the aeronautics, aerospace and shipbuilding industries and are the subject of

this study A good alternative is the sandwichrels, made of aluminum alloys.
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Face sheet

Adhesive
layer

Honeycomb

core .
Fabricated

sandwich

Face sheet panel

Figure 1.1: Sandwich structure with honeycomb core.

Theoretical analsis of sandwich panels has been developed by several authb8 y@th

general agreement on the formulation to be used, especially for linear behavior of sandwiches.
Non-linear analysis of threpoint bending of sandwich panels has also been described by
Goutos et al. [13]. As a consequence of the capability of FEM codesdelingsandwich
structures, this has been the main focus of research topics on the analysis of failure of
sandwich panels [143].

Sandwich structures are commonly subjected to sewepacts, such as those from runway

and space debris, hailstones and birds. This can result in partial penetration or complete
perforation of a structure. Although the impact event is a highly dynamic event, statistically
determined contact laws can bedsn the impact dynamics analysis of leelocity impacts,
because strain rate and wave propagation effects are negligible with commonly used material
systems [14]Many researchers have studied the mechanical properties of sandwiches with
aluminum foam ore and with honeycomb core. Gibson and Asfith] gave a thorough
overview of the literature on cellular materials.

Many researchers have investigated the relationship between the failure mechanisms, the type
of material used and the geometrical confitjoraof sandwich structures when subjected to
bending, compression, quasatic indentation and impact. Steeves and Fleck [16] devised a
systematic procedure to compare the performance of sandwich beams with various
combinations of materials. They idergd the operative failure mechanisms apdimized

the geometry of the sandwich structuresmimize the mass for a given lodmkaring

capacity. Petras and Sutcliffe [17] studied the failure mechanisms for GFRP skins/
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honeycomb core sandwich beams urtieze points bending. They then constructed a failure
mode map showing the dependence of failure mode and load on skin thickness to span length
ratio and honeycomb density.

Yamashita and Gotoh [18] studied the impact behavior of honeycomb structuresmotis

cell thicknesses and branch angles. They showed the effects of the cell shape and thickness on
the crush strength by numerical simulations and experiments.

The strength of aluminum honeycorabred sandwich panels was evaluated in the same year
by Paik et al[19]in different loading conditions: thrgeint bending, axial compression and
lateral crushing loads. Analytical and numerical (Finite Element) approaches have been used
for the modeling of an aluminum honeycomb sandwich panel during a Itypigapoint
bending tesf20].

The failure mode and the damaged structure of the honeycomb panels have been also
investigated by a Computed Tomography (CT) system, which allows adimeasional
reconstruction of thanalyzedobject [21] and to obtairhé data for Finite Element models of
opencell aluminum foam specimens [28tatic and dynamic bending tests were carried out

on AFS panels and simplified collapse models were developed [23] to explain the
experimental observations. The failure mode amel damaged structure of the impacted
panels have been also investigated by a Computed Tomography (CT) system [24]. An
extensive series of experimental tests has been carried out by the auttaralyaingthe
mechanicalbehaviorand collapse failure ofhe aluminum honeycomb sandwiches under
static bending and lowelocity impact loading. Simplified collapse models were developed

for honeycomb panels in order to define the bending collapse loads as a function of the
support span values and a good agree¢rbetween predicted and experimental limit loads
was achieved. The failure mode and the damaged structure of the impacted panels have been
also investigated by a Computed Tomography (CT) system that allows a three dimensional
reconstruction of the analyzembject. The CT system can detect the damage and internal
flaws, including delamination and microcraking, in fivemforced polymeric matrix
composites 25]. Core deformation and failure are decisive factors for the energy absorption
capability of sandwah structures. In the case of sandwiches, with aluminum honeycomb
cores, damage consists of Abucklingo of <cell
while, in foam cores, damage looks more like a crack fordoergy impacts [225].

[26] Simuldion of the water impact (slamming) loading of sandwich boat structures has been
presented. A weighted elastomer ball was dropped from increasing heights onto rigidly

supported panels until damage was detected. Results from this test indicated thatrhloneyco

3
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core sandwich panels, the most widely used material for racing yacht hulls, start to damage
due to core crushing at impact energies around 550 J. Sandwich panels of the same areal
weight and with the same carbon/epoxy facings but using a novel foameodogced in the
thickness direction with pultruded carbon fibre pins, had not show signs of damage until
above 1200 J impact energy. This suggests that these will offer significantly improved
resistance to wave impact. Quasatic test results cannog lused to predict impact resistance

in their study as the crush strength of the pinned foam was more sensitive to loading rate than
that of the honeycomb core.

An extensive study of the dynamic enftplane indentation of aluminum honeycombs at a
range ofdifferent loading velocities. Dynamic and quagtic mechanical properties of
honeycombs were comparatively analyzed to investigate the strain rate effect on both mean
plateau stress and energy absorption. Indentation and compression tests of thre¢ types
HEXCELL-5052H39 aluminum hexagonal honeycombs were tested. The tearing energy was
calculated as the difference in energy dissipated in indentation and compression of the same
type of honeycomb. It was found that tearing energy was affected by sti@iand nominal
density of honeycomb. Empirical formulae were proposed for tearing energy in terms of strain
rate. [27]

Deformation of the sandwich panels has been studieahblyzingthe deformation and the
failure modes of the face sheetsd the coredr different coreconfigurations, while the
resistance of the sandwich panels has been studied by measuring tfiecbagéflection of

the panels. The badhice deflection of the sandwich panels has also been compared with
monolithic plates of equivalemhass and air sandwich panels. The air sandwich panel has a
structure which consists of only two parallel plates (without core) at a distance similar to the
core thickness of honeycomb sandwich panels. Finally the-faaekdeflection histories of

the sandich panels have been compared with the deflection histories of monolithic plates of
equivalent mass to determine the benefit of using sandwich panels in reducing elastic spring
back. The histories of the bat&ce deflection have been captured experimbnigl using a

laser displacement sensor. The advantages and limitations of using sandwich panels in
absorbing impact energy of foam projectile impact have been disdzsjed

They purpose in their research the characterization of honeycomb sandwichvptnélso

kinds of defects (Brinell ball, and drilling hole) on two types of honeycomb eduen{num

and aramiddibre) under fatigue loading. First, fatigue results of tharacterizatiorwere
compared to fatigue results afuminum alloy skin which isthe referencecase. Second,

Wohler curve in the term of (load versus number of cycles) of honeycomb sandwich panels

4
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with and without defects have been presented and discussed. Finally, damage and failure of
sandwich panels with and without defects havenbieported29].

As described above, many studies have been conducted on the impact characteristics of the
existing honeycomb sandwich panel with respect to the material quality, variation of
thickness, and other parameters related to thedlaeet and # core. Therefore, this study is
attempted to identify and investigate responses of these structures under static and dynamic
loading and their damage mechanism according to the change of sum key parameters.

The goal of this present research is the expantal, analytical and numerical investigation of
response of honeycomb panels under different loading (compressionsttiasindentation

and low velocity impact). Otherwise, we try to understand how geometrical configuration
affects failure mechanissnfor honeycomb sandwich structures subjected to different
loadings. All structures tested in this work had an aluminum skin and honeycomb core (AHC
and NHC) . By varying the geometri cal par an
geometry); core materigAHC and NHC) and loading conditions (velocity of solicitation)
experimental tests were carried out. To optimize the use of the honeycomb sandwiches
composites as structural elements, a theoretical approach was developed whadbwiuilgy
parametric studies to be performed. In addition, the enebglance model is used in
conjunction with the law of conservation of momentum to solve for the impact load and
deflection histories under lowelocity impacts. The theoretical results tallied with the
experimaétal ones and consequently it was shown that the theoretical model is a reliable
predictor of failure mechanisms in composite sandwiches with defined geometry. The critical
buckling loads and failure modes of the sandwich panels have been determinedyimg app
guastistatic and dynamic tests on these structures. A -lireensional geometrically finite
element model of the honeycomb sandwich plate and a rigid impactor is developed using the
commercial software, ABAQUS. By adopting a discrete modeling appreghere the
cellular walls and thdace sheetsare explicitly modeledusing shell elements, accurate
prediction of the damage mechanisms and failure are possible. The obtained numerical

buckling loads have been compared with the experimental resultsesshied in tables.
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Chapter Il : Literature Review

A literature review on composite sandwich construction is developed in this chapter. The
review will begin with general exposure of the sandwich structure: the different components,
the interest ashadvantages of its use and the different application areas. Secondly, the focus is
seton experimental, theetical and numerical results pfevious works. Indeed, the term
"buckling” is defined and the main damage mechanisms of a sandwich structure are
presented. Finally, the influence of different structural parameters related to the core material
of the sandwich structure and the influence of the experimental parameters related to the static
and dynamic tests are explained.
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1.1. Definition of compositesandwich panels
In the aircraft industry every extra kilogram of structural mass taken off, means an increase in
payload mass as well as a decrease in fuel mass, which trickles down to an increase in profit.
Thus honeycomb sandwich pds were one of the outcomes of research into decreasing
structural mass. Sandwich construction results in lower lateral deformations, higher buckling
resistance and higher natural frequencies than monocoque constructions.
Amongst all possible design comts in composite structures, the idea of sandwich
construction has become increasingly popular because of the development of manmade
cellular materials as core materials. Sandwich structures consist of (Figure 2.1) 1) a pair of
thin stiff, strong skins (fees, facings or covers), 2) a thick, lightweight core to separate the
skins and carry loads from one skin to the other; and 3) an adhesive attachment which is
capable of transmitting shear and axial loads to and from the core [ 9]. The separation of the
skins by the core increases the moment of inertia of the panel with little increase in weight,
producing an efficient structure for resisting bending and buckling loads.
Figures 2.1 and 2.2 show the honeycomb sandwiches structure, which is used extemsively i

this thesis.

Aluminum surface plate

Adhesive film

Aluminum Aluminum reverse plate

honeycomb lamination

Adhesive film

Figure 2.1: Honeycomb sandwich structure.
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Out-of-plane (T-Direction)

In-Plane (L-Direction) In-Plane (W-Direction)

Figure 2.2: Schematic diagram of hexagonal honeycomb.

In structural sandwiches, fasheets are mostly identical in material and thickness and
they primarily resist the Hplane and ending loads. The faegheets are strong and stiff in
tension and compression compared to the low density core material whose primary purpose is
to keep the facsheets separated in order to maintain a high section modulus. These structures
are called symetric sandwich structures. However, in some special casesliaets may
vary in thickness or material because of different loading conditions or working environment.
This configuration is named as asymmetric sandwich structures. In general sandwich
strudures are symmetric; the variety of sandwich constructions basically depends on the
configuration of the core. The core of a sandwich structure can be almost any material or
architecture, but in general they are classified in four types; foam or solidhcoreycomb
core, web core and corrugated or truss core (figure 2.3). The adhesion-siiéate and core
is another important criterion for the load transfer and for the functioning of the sandwich
structure as a whole (ASM Handbook 1987). The core mahteas relatively low density
(e.g., honeycomb or foam), which results in high specific mechanical properties, in particular,
high flexural strength and stiffness properties relative to the overall panel density. Therefore,
sandwich panels are efficient carrying bending loads. Additionally they provide increased

buckling resistance to shear panels and compression members.

10
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Ame en balsa

Figure 2.3: Sandwich panels with (a) corrugated (b) foam and (c) honeycomb core.

The relative separation of the stable faceest result in high stiffness to weight ratios.
Essentially the honeycomb was used as a shear web between two upper and lower skins, with
the early honeycomb sandwiches made of balsa wood as the core and plywood as the skins.
With the development of Epoxyesin, it was possible to bond aluminum skins to an
aluminum honeycomb core. Since then, much advancement has been made in honeycomb
studies, with the most commonly used honeycomb for aircraft structuresdh@mgumand
Nomex Honeycomb whichave beendentified as one of the potential candidate protective
structures as they have a high strength to weight ratio and have a good energy absorption
capacity.

A sandwich structure operates in the same way with the traditidsedrh, which has two
flanges andh web connecting the flanges (Figure 2.4). The connecting web makes it possible
for the flanges to act together and resist shear stresses. Sandwich structure -apdnan |
differ from each other that, in a sandwich structure the core and laminates farentlif
materials and the core provides continuous support for the laminates rather than being

concentrated in a narrow web. When the structure subjected to bending the laminates act

11
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together, resisting the external bending moment so that one laminaades! lm compression

and the other in tension. The core resists transverse forces, at the same time, supports the
laminates and stabilizes them against buckling and wrinkling.

Allen [9] and Plantema [10] presented the fundamental models of sandwich suctur
assuming that the core is incompressible in theobplane direction and does not have any
bending rigidity, the skins only have bending rigidity, and the core has only shear rigidity.
This approach is good for sandwich structures with incompressioes, which are Anti

plane, like honeycomb cores.

Adhesive r\
| \A\\._ S
T TRS— e
| . S —— rp——,
\
Core ‘ ‘ ‘ L
: ‘ Flanges
Material | 1 | Web s
] ,
o, \\‘ el L
Facesheet Nl
. \ — —
Sandwich Panel I - Beam

Figure 2.4: Sandwich structure in comparison withlalneam.

Sandwich structures should be designed to meet the basic structural criteria such as the
facesheets should be thick enough to withstandtéimsile, compressive and shear stresses
and the core should have sufficient strength to withstand the shear stresses induced by the
design loads. Adhesive must have sufficient strength to carry shear stress into core. The core
should be thick enough andve sufficient shear modulus to prevent overall buckling of the
sandwich under load to prevent crimping. Compressive modulus of the core and the face
sheets should be sufficient to prevent wrinkling of the-foeets under design load. The core
cells shold be small enough to prevent the fateeet dimpling under design load. The core
should have sufficient compressive strength to resist crushing design loads acting normal to
the panel facsheets or by compressive stresses induced through flexure. Téicgdan
structure should have sufficient flexural and shear rigidity to prevent excessive deflections
under design load (ASM Handbook1987).

12
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.2. Advantages of Sandwich Composites

Sandwich structures utilize eachnte its ¢
sheetsd high stif fdensitg sorescgivend sandevidh stnuicttirén of high w
stiffness to weight ratio when compared with a face sheet beam of same weight, and a high
bending strength to weight ratio. In addition to the efficiency betvetifness and strength,
honeycomb sandwich panels are fairly fatigue resistant, great insulators or radiators
depending on the core material selection, highly serviceable and have smooth aesthetically
pleasing surfaces.

Honeycomb sandwich panels are agalus to beams or plates. The use of honeycomb
prevents buckling of the thin skins by providing the amount of shear strength to do so.
Honeycomb panels are lightweight, easy to work with, and not labor intensive. By increasing
the thickness of the coreeth composi te panel s strength and
like increasing the height of a beam, but without the weight increase shown in Table 2.1. This
is due to an increase in the panel sd moment
tha failure occurs in the core of the panel, thus shear strength is the main factor in design,
which is the corebés predominant materi al pr o
application requirements. They have the same normal strengths thaasites have, due to
the face sheets being constructed from mat
compared with the core) like fibeesin mixtures, metal alloys and plastics. The cores have
low elastic moduli that yield without failure in theghi deflection regimes. Cores usually
consist of metallic and fibrous honeycomb structures to opened and closed cell structured
foams.There are many standards, manufacturing techniqgues and accepted methods for
constructing and testing materials such as Imetas sandwich composite structures are
relatively new, there are not nearly as many standards for manufacturing and testing,
particularly with the inclusion of honeycomb. Quality control thus is difficult to ensure
correct integration into the strict dgs requirements of the aerospace industry. This results in
a much higher safety factor when constructing the sandwich design, which is

counterproductive to the main goal of reducing weight.

13
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Solid Metal Sandwich Thicker
Sheet Construction Sandwich
A
+ 4t
| [ e I
Relative Stiffness 100 %, 700 % 3700 %
7 times more rigid 37 times rmore rigid!
Relative Strength 100 % 350 % 925 %
3.5 times as strong 9.25 times as strong!
Relative Weight 100 Y% 103 % 106 %
3% increase in weight | 6% increase in weight

.3. Application Areas of Sandwich Structures

The use of compositeasdwich structures in aeronautical, automotive, aerospace,
marine and civil engineering applications is getting wider as these structures have excellent
stiffness to weight ratios that lesml weight reduction and fuel consumption. Also they have
high strictural crashworthiness because they are capable of absorbing large amounts of
energy in a sudden collision. Various combinations of core anesfaaet materials are being
studied by researchers worldwide in order to achieve improved crashworthiness.

Thus sandwich panels are popular in high performance applications where weight
must be kept to a minimum, for example aeronautical structuresspegd marine craft and

racing cars (Fig2.5).
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620mm long tapered
carbon fibre braided
composite tubes

Frontal impact
composite crash
structures installed
on vehicle chassis

Figure 2.5 MclarenMercedesSLR bumper tule.

The application of composites is in high demand due to their favorable mechanical
characteristics and material properties to current materials used, especially in the aerospace
industry. In aerospace applications various honeycomb cored sandwichrssugere used
for space shuttle constructions also they are used for both military and commercial aircrafts.
The U.S. Navy and the Royal Swedish Navy has used honeycomb sandwich bulkhead to
reduce the weight of the ship and to withstand underwater eaptofr more than 20 years.
Moreover, locomotives are designed in order to resist the pressure waves occurring during the
crossing of two higfspeed trains in tunnels. More recently, sandwich constructions are
commonly used in civil engineering projecteluas bridge decks, wall and roof claddings for
buildings because of their low cost and thermal performance. Also, railcars for rapid transit
trains, busses, sailboats, racing boats, racing cars, snow skis, water skis and canoes are all
employing sandwicltonstructions [12].

Composite sandwich structures have revolutionized the aerospace industry because of
their high stiffness and lightweight attributes when compared with aluminum, the aviation
standard. Sandwich structures have proven particular advantemethe latest spacecratft,
automobiles, airplanes and racing yachts to name a few. In the civil industry, sandwich
composites have revolutionized bridge and flooring structures. In the auto industry,
companies have shifted to the use of fiberglass amboa fiberto dramatically decrease

weight, and thus directly increase performance. These advancements are accounted mostly to
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the large weight reduction sandwich structures and composites offer over traditional
materials. The aerospace and military iridusas had the most dramatic advancements due

to the use of sandwich composites. Aircraft performance, for the most part is directly affected
by weight. Sandwich structures can be almost as stiff as steel whilst the low core density
maintains the sandwicktructure weight at a fraction of that compared with a comparable
steel beam. Sandwich structures can be integrated into such aircraft parts as the wings, floor,
ceiling, fuselage and cargo compartment paneling, and even control surfaces. Figure 2.4
showsthe Boeing 787: the most recent aircraft to be constructed out of mostly composite
materials, allowing for a 20% increase in fuel efficiency and 40% increase in engine

efficiency over itsoO6 replacement, the Boeing

(ERcEEANNES

: g

Figure 2.6: Over 50% comosite commercial planeB o e i 78@ Breamliner.

1.4, Summary of Literature Review

The buckling collapse of a honeycomb was analyzed in their study. A novel large
deformation theory using a stiffness method has been introduced to compute the collapse
surface for a honeycomb under 4plane biaxial stresse$30]. Otherwise, extensive
experiments on a wide range of Nomex honeycombs have been reported, and the results
compared with the model. It was founded that the magnitude of the buckling stress depends
strondy on the density of the honeycomb and weakly on the shape of the unit hexagonal cell.
On the other hand, the shape of the collapse surface depends strongly on the cell geometry
and may be thought of as independent of the density of the honeycomb.

Figure 2.7 shows the dependence of the uniaxial collapse stfessiormalized by
E.(p/p,}, on the anisotropy ratio, R. The ratio, R, is defined by R = 0.581+h U) (itc o s U
measures the deviation of the cell shape from a regular hexagon, for whidh). Rhe solid

line in the figure shows the prediction from this study while the dashed line shows the
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prediction from Gibsoret al. [15]. The diagram clearly shows that the ladgformation

model agrees better with the experimental data.
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Figure 2.7: The graph shows the dependence of try on cell geometry. The solid line shenexdicton from
the largedeformation model, and the dashed line shows the results from the small deformation model. The
anisotropy ratio r = 0.58 (1 + sinU)/c

[31]The mechanical behavior and failure mechanism of honeycomb composite
consisting ofNomex honeycomb core and 2024Al alloy fateets were investigated in their
work. The compressive and shear deformation behaviors of honeycomb composite were
analyzed at temperatures rangedi2® 0 U C. The compressive and
honeycombcompsi t e decreased continuously with i nc¢
stressstrain curves obtained from the compressive and shear tests showed that the stress
increased to a peak value and then decreased rapidly to a steady state value, whigh is nearl
constant up to failure with increasing strain. The compressive deformation behavior (figure
2.8) of honeycomb composite was progressed by an elastic and plastic buckling of cell walls,
debonding fracture at the interfaces of cell walls, and followed fobgcture of resin layer on

cell walls.
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Figure 2.8: Typical stressstrain curve obtained from the compressive test: (a) typical sthess curve, (b)

schematic microstructural change during the compressive deformation of specimen [31].

Figure 2.9 shws the variation of compressive strength calculated from the maximum
value in stresstrain curve with increasing temperature. The measured compressive strengths
of 1.7 MPa were compared with the calculated compressive strengths of 1.97 MPa based on
Zhangand Ashbydés model [ 30] .

2.0

s
—~
-
-~
z
1]
S @
7 10
-l
>
‘g
= 05
=]
(=]
o
0.0 1 1 1
0 100 200 300

Temperature("C)

Figure 2.9: Variation of compressive strength of honeycomb composites with increasing temperature [31].

[32] In their work several numerical techniques for modelling the transverse crush
behaviorof honeycomb core maialts have been developed and compared with test data on
aluminum and Nomex honeycomb. The methods included a detailed honeycomb
micromechanics model, homogenizedmaterial model suitable for use in FE code solid
elements, and Bomogenizedliscrete/finiteelement model used in a seadaptive numerical
coupling (SAC) technique. The micromechanics model has shown to be suitable for

honeycomb design, since it may be used to compute crush energy absorption for different

18



Chapter Il Literature Review

honeycomb cell sizes, cell wall thicksses and cell materials. However, the very fine meshes
required have been making it unsuitable for analysis of large sandwich structures. The
homogenized~E model may be used for such structures, but gives poor agreement when
failure is due to core cruslgnThe SAC model has shown to be most appropriate for use in
structural simulations with extensive compression core crushing failures, since the discrete
particles are able to model the material compaction during local crushing. Figure 2.8 shows
the typicad stages of the quastatic compression test on aluminium honeycomb material.
Three different regimes can be observed: at low strains a linearly elastic region and buckling,

followed by progressive folding and final densification.

a b

Figure 2.1Q Stages of quagtatic compression test of aluminum honeycomb: (a) initial state, (b) buckling

initiation, (c) progressive folding and (d) densification [32].

Initial studies onmodeling the crushbehavior have showed that thesmicro
bucklingfailure problems have typically meshing sensitive, so that a mesh sensitivity analysis
was conducted. Three different mesh sizes have been chosen: 0.5, 1 and 2 mm, respectively.
Figure 2.11shows that the deformation modes at 30% and 60% change slightly with three

different mesh sizes. In experimental work, #leminumhoneycomb starts collapsing after
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buckling. The collapsdéehaviorwas a mixture of global and local deformation. At 30%
deformation the collapsed mode was the mixture of global (starts approxinratelytife
middle of the honeycomb) and local collapse from the upper side of the honeycomb. However

2 mm mesh size produces pure global collapse.

Figure 2.11: Stages of quasstatic compression of aluminum honeycomb at 30% and 60% compressive strain:

(a) experiment, an&E analysis with (b) 2 mm, (c) 1 mm and (d) 0.5 mm element size.

The numerical model with 2 mm mesh size was given higher load response than the numerical
models with 1 mm and 0.5 mm mesh sizes. The difference has been get higher when the
aluminum honeycomb has been get near to the densification region. This shows that the
number of elements through the core thickness can change the global and local deformation

responses and the ldgateformation history (figure 2.123).
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Figure 2.12 Numeical (three different mesh sizes) and experimentalildegplacement responses of aluminum

honeycomb under compression.
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Figure 2.13:Effect of cell size and cell wall thickness on crush response on aluminum honeycomb in

compression.
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Contact Force(kN)

[33]Their work desribes the results of experiments and numerical simulation studies
on the impact and indentation damage created byviacity impact subjected onto
honeycomb sandwich panels for application to the BIMODAL tram. The tested panels were
subjected to lowelocity impact loading using an instrumented testing machine at six energy
levels. Contact force histories as a function of time were evaluated and compared. The extent
of the damage and depth of the permanent indentation was measured quantitativel\3using a
dimensional scanner. An explicit finite element analysis based dDYI$A3D was focused
on the introduction of a material damage model and numerical simulation efeloaity
impact responses on honeycomb sandwich panels. Extensive material testoundiased
to determine the input parameters for the metallic and compositsliae¢ materials and the
effective equivalent damage model for the orthotropic honeycomb core material. Good
agreement was obtained between numerical and experimental resufpsrticular, the
numerical simulation was able to predict impact damage area and the depth of indentation of

honeycomb sandwich composite panels created by the impact loading.
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Figure 2.14:Forcd time histories with impact energy for the sandwich specim@ydodyshellsandwich
panels (GE/ABHl and (b) floor sandwich panels (AL/AL33].
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Figure 2.15: Comparison of impact damage areas for floor sandwich panels (al/ah) after impact loading. (a) 1.57
j» (b) 3.04 , (c) 4.49 j andd] 5.93 j [33].
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Figure 2.16: Comparison of posimpact damage for sectioned sandwichgdsmafter impact loading. (a) GE/AH
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[34]They pesented results from a test developed to simulate the water impact
(slamming) loading of sandwich boat structures. A weighted elastomer ball was dropped from
increasing heights onto rigidly supported panels until damage was detected. Results indicated
tha honeycomb core sandwich panels start to damage due to core crushing at impact energies
around 550 J. Sandwich panels of the same areal weight and with the same carbon/epoxy
facings but using a novel foam core reinforced in the thickness direction witindeal
carbonfiber pins, did not showed signs of damage until above 1200 J impact energy.

Two examples from the preliminary tests, shown in Figure 2.17, enable the influence of
sandwich thickness and density to be examined. The damage energy isrtheanwvhich
damage was observed, defined simply as E=mgh. Thinner cores may provide improved
impact performance due to improveeflection resultingn higher stored energy, Figure 2.14

a. Increasing density can improve the energy absorbed before dasnafpserved, as
resistance to local crushing is improved, but there may be a plateau to this improvement as
higher flexural rigidity results in lower deflection, Figure 2.17 b. It should be noted that the
thicker sandwich panels did not show the same damagchanism as thin panels. For the

latter core crushing was apparent, while thicker panels also showed skin/core delamination.
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Figure 2.171nfluence of core thickness and core density on energystodimage, honeycomb core, a) OX 64
kg/m3, b) OX20mmthick [34].

Four fully instrumented panels were tested, two honeycomb, one pinned foam core and one

unreinforced core sandwich. Panels were loaded at drop height increments of one meter. In
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order to examine repeatability the two meter drop height testreyssated three times on

each honeycomb panel. Figure 2.18 summarizes the tests performed on the three materials.
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Figure 2.18:Impact tests performed; H@oneycomb. Grey indicates undamaged, black

indicates first panel damage noféd].

Figure 2.19 sbws the damage incurred. The first damage of the standard (64 kg/m3) material
was noted visually after a drop fromn®eters and sectioning revealed this to be permanent
crushing of the core (Figure 2.19 a). No skin debonding was noted. A second iqeartidal

was then tested to confirm this result and again first damage was notewtr8 Tests were
continued on this second panel up to final complete failure, which occurred at around 1.3 kJ.
Figure 2.20 presents the maximum loads and displacemeotsleel during the instrumented

test series. For the honeycomb, the displacements ware very similar initially but beyond the
energy required for core crushing there was a break in the plots of both force and
displacement, suggesting that the damage intexiutas modified the response of the

structure.
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Figure 2.20:Recorded data from tests versus impact enegfaximumloads (sum of four load cellsghdb)

central displacemen{84].

[35] Perforation response and failure of sandwich panels with composite face sheets
and aluminum foam core are investigated experimentally in their study. -Qassi
perforation and lowelocity impact tests were carried out by using a material ysstra and
a drop weight machine, respectively. The loligblacement response, energy absorption and
energyabsorbing effectiveness of sandwich panels were obtained and compared for quasi
static and impact tests. Effects of some key parameters on thdl @rexay absorption
behavior of the panels were explored, such as impact energy, face sheets and core thickness,
core density and indenter nose shape.
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Figure 2.21:Forcd displacement curves of sandwich specimens under conical indenter [35].
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energyabsorbing effectiveness (the error bars denote the standard deviations in replicate experiments)
[35].
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It is important to fully undestand the resistance of the sandwich panels subjected to
impact loading conditions. For this reason [28] were studied the resistance of sandwich panels
with differentaluminumhoneycomb cores, air sandwich panels (no core between the two face
sheets) and onolithic plates of equivalent mass subjected to impact from foam projectiles.
The deformation and the elastic sprimack of the honeycomb sandwich panels and the
monolithic plates have been compared and discussed. The resistance of the panels and plates
has been quantified by their bafdce deflection with respect to the projectile impulse. Five
different types ofluminumhoneycombs have been used as the core material. Thddoent
sheet and the badlce sheet of the honeycomb sandwich panels are owfaduminumplate
with 1 mm thickness. Cylindrical ALPORASuminumfoams with a relative density between
9% and 11% were employed as the metal foam projectiles. They have been fired at several
hundred meters per second towardsdéeterof the panelsrad plates using a gas gun. The
deflection histories of the badkce have been measured using a laser displacement sensor.
From the deflection histories, the maximum deflection and the final deflection of the back
face has been distinguished. Deformatiomdes and failure modes of the individual
component have been observed and classified into several categories. Moreover, the
deflections of the honeycomb sandwich panels have been compared with deflections from air
sandwich panels. It has been found thathbneycomb sandwich panels outperform both the
air sandwich panels and the monolithic plates within an impulse range of 2.25 kN&#D
kNsm2. Outside this operational range, the advantages associated with employing the
honeycomb sandwich panels as a protective structure upon impact of foam projectiles

diminishes.
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Figure 2.23:Photographs showing typical deformation(@¥ a monolithic plate (sample r2); (b) a

honeycomb sandwich panel (sample b4); (c) an air sandwich panel (sample g6) [28].

In order to study the deformation of the core, samples A2, B2, C2 and D2, which were tested

at similar impulses, were sectionddray the central axis as shown in figure 2.21.
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Figure 2.24:Four specimens showing core compression ratio reduces frozertetowards the edges of the

sandwich paneldzromtop to bottom: samples a2, b2, c2 and d2 [28].
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