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Introduction 

The brain is the most complex fascinating portion of the human body. It has been a 

topic of interest for several centuries for both neuroscientists and philosophers. However, 

it is viewed until now as incomprehensible and needs further investigation to reveal its 

hidden secrets and to provide better understanding of its structure and function. 

Localizing the brain function has been developed in the mid of 1800's by several 

clinicians such as Jackson and Broca (Finger, 2009). Typically, almost all the obtained 

information on the human brain was from subjects who had experienced severe head 

injuries, or who had a medical condition like mental disorders. Identifying to what extent 

the brain has been damaged and the degree of lost body function was a key element in 

deducing which area of the brain was in charge for which function. Sometimes, brutal 

neurological disorders were treated by taken away the brain areas. For instance, severe 

epilepsy was treated by splitting the corpus callosum which bonds the right and left 

cerebral hemispheres.  

The recent advances in neuroimaging techniques have paved the way to better 

localize the extent of damage in patients’ brain. Basically, the most common techniques 

used in exploring the brain are categorized into two main classes: (i) structural imaging 

modalities and (ii) functional imaging modalities. The earliest technique for imaging the 

brain structure was Computerized Tomography (CT) and recently a very useful tool has 

been developed, known as Magnetic Resonance Imaging (MRI). A variety of noninvasive 

functional neuroimaging techniques have been introduced to better examine the function 

of particular areas of the brain. Electroencephalography, known as (EEG), has been 

developed to provide a detailed study of the brain with new data on anatomical and 

functional correlation. EEG has gradually become a useful tool in revealing the secrets of 

the healthy brain functionality. Also, the emergence of Positron Emission Tomography 

(PET), Single Photon Emission Computed Tomography (SPECT), functional Magnetic 

Resonance Imaging (fMRI), and magnetoencephalography (MEG) has provided a shift in 

studying the brain and greatly improved our knowledge of brain function.  
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In the literature of exploring brain activity, both EEG and fMRI techniques have 

gained a considerable attention. These techniques have clearly shown their ability in 

measuring different attributes of brain function. On the one hand, EEG relies on 

measuring the electrical signals on the scalp of the patient resulting from responding to a 

stimulus. This technique provides high temporal resolution. On the other hand, fMRI 

depends on the principle of Blood Oxygenation Level Dependent, referred to as BOLD 

contrast, where the detection of the signal from desoxy-haemoglobin of venous blood 

enables to depict the brain active areas during the performance of a particular task. Due to 

the high spatial resolution it provides, fMRI has gradually become a useful tool in 

revealing a better insight to the brain activity and has been widely employed in various 

fields such as psychology, medicine...etc.  

Although both fMRI and EEG separately have received a great attention of 

scientists, each of them suffers from some limitations. As regards fMRI, it is difficult to 

estimate the neural activity from homodynamic response because fMRI data analysis 

relies on slow mechanisms such as blood flow, oxygen consumption and metabolism 

which yield only an indirect measure of evoked BOLD signals. Likewise, fMRI suffers 

from an ill-posed temporal inverse problem. On the other hand, the EEG modality suffers 

from spatial inverse problem. Besides, noise that results due to the unavoidable artefacts 

raised during the course of the experiment can completely obscure the signals detected by 

EEG and degrade the quality of the obtained images. 

 By combining fMRI and EEG modalities together, it has become possible to exploit 

the strengths and flaws of each modality. In line with this scope, several studies have been 

conducted on simultaneous EEG and FMRI data to provide a powerful technique capable 

to address the knowledge gap in the brain function research. 

Simultaneous EEG-fMRI recording provides complementary information about the 

human systems, cognitive, and activities. EEG-fMRI applications are fast becoming a 

powerful paradigm to better understanding the nature of the cerebral activity with the 

enhanced spatiotemporal resolution it provides. More specifically, EEG-fMRI integration 

aims to pinpoint the neural sources activity for both diagnosis and presurgical planning. 

Primarily, both EEG and fMRI data measures the activity of neurons where the EEG is 

typical for the electrical activity and fMRI is concerned with the hemodynamic signal. It 

is worth to note that the evoked electromagnetic and metabolic responses which are 



Introduction 
 

3 
 

detected by both EEG and fMRI, are not essentially the result of the same primary 

neuronal processes.  

In line with this scope, the focus of this thesis has been placed on EEG-fMRI fusion 

methods and techniques based on correlation. This work concentrates on how to fuse the 

different modalities and its application in times series dataset. It reveals what 

neuroimaging can provide to scientist and why simultaneous EEG-fMRI presents a 

challenge in EEG-fMRI fusion to explore brain functions and activities. 

Thesis Overview 

The aim of this body of work is to produce a better understanding of the brain 

activity using simultaneous EEG-fMRI information fusion and data analysis. This 

knowledge is then employed in combining EEG and fMRI in such a way to obtain high 

quality results which in the future will allow yielding detailed exploration of neural 

activity and brain function. This project focuses on the EEG and fMRI modalities 

separately and combined EEG-fMRI data. The thesis is split into five chapters: 

Chapter one aims to provide the reader with a brief review on the complex structure 

of the human brain. Also, it introduces the essential high functions of the brain in addition 

to the different measures of the brain functional activity. At last, it describes briefly the 

most common brain imaging techniques that have been developed so far in the literature. 

Chapter two explores, in detail, the electroencephalography modality. At first, it 

sheds the light on the emergence of the EEG signals recordings to provide the unfamiliar 

reader with information background. Then, it describes how EEG experiments are 

conducted and how signal are recorded during the course of these experiments using 

different techniques. Also, this chapter considers rhythmic activity. The evoked potentials 

with its main types including the Visual Evoked Potentials (VEP), the Auditory Evoked 

Potentials (AEP), Somatosensory evoked potentials (SEPs) and Cognitive Evoked 

Potentials will be also discussed in this chapter. Beside it reviews the different types of 

electrodes; this chapter also introduces the way electrodes are positioned. Furthermore, 

EEG principles will be depicted as a separate section in this chapter. At last, brain 

electrical activity and modelling will be last focus of the chapter. 

Chapter three is designed to describe the principles of Magnetic Resonance Imaging 

(MRI) and to introduce Blood Oxygen Level Dependent BOLD effect and a brief history 

of fMRI technique. The chapter illustrates in details the BOLD signal on which fMRI is 
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based. After this, the basic model to generate fMRI signal is described. Finally, the 

components of an fMRI experiment are discussed where the focus –in particular- has been 

placed on data analysis. 

Chapter four describes the state of the art of EEG -fMRI data fusion techniques 

both asymmetric and symmetric approaches.  

 Chapter five describes the contribution of this work that consists of proposing a 

new framework based on Dempster Shafer theory of evidence in order to explore brain 

activity. The first contribution is about fMRI modality while the second is about a model 

of information fusion EEG and fMRI based on symmetric technique. These contributions 

are exposed in details with experiments and results. 

The final conclusion includes concluding discussions and directions for future work. 

It provides a summary and the findings of the work presented on the issues tackled in this 

research. 
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I.1 Introduction  

The essence of analyzing the brain activity or the neuronal connectivity lies in 

understanding how the brain is structured. In the early of the19th century, the brain’s 

anatomy played an ambiguous role in the works designed to explore and understand how 

the human brain functions with the phrenology of Gall (Changeux, 1983), (Hämäläinen, 

Hari, Ilmoniemi, Knuutila, & Lounasmaa, 1993),(Hari & Kujala, 2009) . Thus, It enables 

to understand the brain functioning and then partition it into regions where each region 

controls some tasks (perception, emotion, etc) (Figure I.1). In this context, several 

imaginary assumptions have been conducted. 

In fact, Gall et al. have explained in their mapping the existence, since that time, of a 

reluctance that is still lasting today in establishing correlations between morphological 

cortical anatomy and function. Nevertheless, observing patients with focal brain lesions 

(Broca, 1861) and electrical stimulation of the cortex in animals (Ferrier, 1875) and then 

in humans during certain neurosurgical operations gave birth to establish the first 

functional maps. However, cerebral function that associates each cognitive process with 

neural activity allows localizing the functional regions (Van Essen & Deyoe, 1995).  

It is worth noticing that the invasive observation techniques that have been applied 

on animals are not transferable to human beings only in exceptional neuro-chirugical 

contexts. With the gradual advance in science, the neuroscientists have become able to 

conduct cognitive experiments on healthy subjects based on the functional imaging 

techniques and combine the various tools aiming to study the neuronal, hemodynamic and 

metabolic activity simultaneously, as will be closely illustrated. Such studies have opened 

unexpected horizons in the field of exploring the brain activities. 

This chapter is designed to give a brief introduction to the structural anatomy of the 

brain aiming to provide a general knowledge about the brain and basically to introduce the 

unfamiliar reader of the thesis’ subject to the most common terminology used in the field 

of neurology. Then, metrics of the cerebral activity are briefly introduced where the neural 

activity together with metabolic activity are illustrated. After that, metabolic activity and 

the cerebral blood flow are briefly discussed. This is followed by providing an overview 

about the several exploration techniques that have been developed so far in the literature 

to yield an insight to the brain structure and function. The most common characteristics of 
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each functional exploration technique will be introduced at the end of this chapter to 

provide a clear comparison. 

 
Figure I-1 Localization of human higher mental functions as phrenology 

 ( http://www.bc.edu/bc_org/avp/cas/fnart/phrenology/ ) 

I.2  Brain structure 

With its high complexity and its vital functions, a considerable analytical effort is 

required in order to exhibit the most important processes and their diverse interactions. In 

this scope, several works have been currently arranged seeking to shed the light on the 

different brain structures, either architecturally or cognitively.  

The human brain is contained within the skull, which protects it. It contains as many 

as 100 billion nerve cells called neurons that are divided into 100 to 1000 types. Each 

neuron has the ability to establish to 10,000 connections and has a weight around 1300 to 

1400 grams. The communication between these neurons forms the basis of all brain 

functions. The brain is composed of Glial cells with a number of 10 to 50 times greater 

than neurons. These Glial cells play a vital role in facilitating the exchanges between 

neuron by establishing connections, both among themselves and with neurons. 

 Given that, the brain is a highly complex system with two complete networks 

working in parallel and interaction (Khotanlou, 2008). Basically, the central nervous 

system, referred to as (CNS), is built up from the brain and the spinal cord which is 

protected by the vertebral column and communicates with muscles and the sense organs 

below the head. The central nervous system represents a very large interactive processor 

that is able to process a diverse body of sensory inputs and to save data either for short or 

long periods. 

http://www.bc.edu/bc_org/avp/cas/fnart/phrenology/
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In this section, we will briefly describe the complex structure of the brain that 

consists mainly of three parts: the cerebrum, cerebellum and brainstem. Each part has 

different functions to perform and consists of different substructures.  

I.2.1 The cerebrum  

 As illustrated in figure I.2, the cerebrum forms the most dominant part of the brain. 

It is divided into two cerebral hemispheres, a right hemisphere and a left hemisphere (see 

figure I.2). Despite the split, the two hemispheres communicate with each other via the 

corpus callosum that is a large bundle of nerve fibers connecting them together. Below the 

corpus callosum lie the basal ganglia. One thing to note is that the right cerebral 

hemisphere controls the left side of the body. It has a perception of more spatial world, 

global and intuitive and permits recognizing shapes and faces. The right hemisphere is the 

one that enables us to understand and appreciate art, music, or the beauty of nature. 

Conversely, the left hemisphere participates in the operation of the right part of the human 

body. It controls speech, writing, calculating, and reasoning, etc. The most essential 

functions of the two cerebral hemispheres are illustrated in the figure which follows: 

 

 

Figure I-2 The two cerebral hemispheres and their functions 

Each hemisphere is organized into four distinct parts that are connected together in a 

specific and amazing way. Each part is called a lobe and has specific main functions to 

perform. These lobes are: Frontal lobe, parietal lobe, temporal lobe and occipital lobe. In 
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what follows, an illustrative table (table I.1) describes briefly the four lobes of each 

hemisphere with their essential functions. 

Table I-1: The principal functions of the four lobes 

Lobe Function  Figure 

F
ro

n
ta

l 
L

o
b

e
 

C
o

n
tr

o
l 

Speech and language, complex thoughts, reasoning, 

memory, making decision, problem solving, 

prediction, judgment, planning and organizing, 

associations and social thinking, personality and 

behavior, initiating and coordinating motor 

movements 

  

R
em

a
rk

 • Occupy the top part of the brain. 

• The right frontal lobe controls the movements of the left side of the body. 

• Conversely, the left frontal lobe controls the movements of the right side. 

 

P
a

ri
et

a
l 

L
o

b
e 

C
o

n
tr

o
l 

Reading, helping us form words and thoughts, 

attention, perceptions, location in space, sensory 

processes (making senses of the world), arithmetic. 

  

R
em

a
rk

 

• Located in the middle top of the brain 

• The right parietal lobe controls the sensibility of the left side of the body and vice versa 

• If the right side of the parietal lobe is damaged, a difficulty in exploring the familiar spaces 

will result.  

• A damage to the left side results in reducing the ability to understand spoken and/or written 

language. 

O
cc

ip
it

a
l 

L
o

b
e
 

C
o

n
tr

o
l 

Vision: It processes all visual information (shapes 

and colors, images…) 

  

R
em

a
rk

 

• Located in the extreme back of the brain 

• Damage to the occipital lobes can result in blindness 

T
em

p
o

ra
l 

L
o

b
e
 

C
o

n
tr

o
l 

Language, short-term memory, understanding and 

emotions, processing auditory information and 

integrating information from the other senses. 

 

R
em

a
rk

  • Located in front of the visual areas and lie under the parietal and the frontal lobes 
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In addition, we can distinguish three fissures (sulci) in the brain surface from these 

morphological structures. The first fissure is known as (Ronaldo fissure); it separates the 

two cerebral hemispheres. The second fissure is the one that vertically divides the two 

hemispheres. The third lateral fissure (Sylvian fissure) is a horizontal fissure passing 

through the centres of each hemisphere (see Figure I.3.) These three fissures are involved 

in the presentation and separation of the four anatomic lobes of the brain that have been 

discussed previously.  

 

 

Figure I-3 The subdivisions of the cortex 

I.2.2 Brainstem  

Beneath the cerebrum lays one of the most sensitive components of the brain the 

brainstem. The latter extends from the top of the spinal cord to the centre of the forebrain, 

i.e., it is situated between the deep structures of the cerebral hemispheres and the spinal 

cord. As clearly shown in figure 1.4, the brainstem is divided into different main sections: 

the diencephalon, the midbrain (mesencephalon), the pons (metencephalon), and the 

medulla oblongata (myelencephalon). An illustrative table of the brainstem structure with 

a brief description of the specific functions of each part is given below to facilitate to the 

unfamiliar reader. In fact, the brainstem controls vital body functions and any simple 

damage to that part will result in severe effects. It should be noted that all the pathways 

between the cerebrum and cerebellum stream through the brainstem. The most important 

neural structures that are involved in both motor and sensory functions are contained 

within this small section of the brain. Figure I-4 depicts the basic structure of the 

brainstem. 
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Figure I-4 : The brainstem structure(http://www.princetonbrainandspine.com/brain/brain-anatomy/) 

Table I-2: The structure of the brainstem 

The brainstem 

Component Description  

D
ie

n
ce

p
h

a
lo

n
 

 

Thalamus 

The main part of the brain; it contains the gray matter. Most sensory 

inputs pass on to the cerebral cortex through it after helping to prioritize it. 

 

Hypothalamus 

A small region located in the heart of the brain. It is involved in body 

temperature regulation and balancing sleep, thirst and hunger functions. It 

is also in charge of the sexual behavior and emotions.  

M
id

b
ra

in
 A short segment of the brain stem connected to the brain, located between the pons and the 

diencephalon. It integrates sensory information and transmits it. 

 

P
o

n
s 

It is located in the central part, surrounded by the midbrain and the medulla oblongata. It is a 

major route made up of tracts that connect the spinal cord with higher brain levels, and it also 

contains cell groups that transfer information from the cerebrum to the cerebellum. It plays 

various roles in motility, facial sensitivity, autonomic functions (eye movement, chewing, 

facial expressions, urination, swallowing and secretion of saliva and tears, hearing, equilibrium, 

taste,), sleep, respiration, and posture. 

M
ed

u
ll

a
 

o
b

lo
n

g
a
ta

 The lowest portion of the brainstem and connected by the Pons to the midbrain. All nerve 

fibers that connect the brain to the spinal cord pass through the medulla. it controls the rate and 

depth of breathing, heart rhythm moderation, regulation of arterial smooth muscles , coughing, 

sneezing, swallowing, vomiting, salivation, sweating, movements of tongue and head. 
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I.2.3 The cerebellum 

The cerebellum is an important section in the brain and plays a critical role in 

coordinating sensory input with muscular responses. Typically, it is situated just behind 

the brainstem, below the cerebral hemispheres and above the medulla oblongata. Similar 

to the cerebrum, the cerebellum is split into two lateral hemispheres that are joined by a 

medial part called the vermis (see figure I.5). Mainly, each of the hemispheres is made up 

of three lobes with different functions to accomplish. First, the flocculonodular lobe 

serves to receive sensory input from the vestibules of the ear. Second, the anterior lobe 

receives sensory input from the spinal cord. Third, the posterior lobe receives nerve 

impulses from the cerebrum. To illustrate more, a general view of the cerebellum is given 

in the following figure: 

  

(a) (b) 

Figure I-5 : (a) The cerebellum  (b) Poster inferior view 

I.3 Basic Functions of the brain 

As previously mentioned, the brain is a vital organ that defines the centre of 

movement control and behaviors. Mainly, it has three basic functions. On the one hand, it 

acts a receptor where it receives signals through nerves from the different regions of the 

human organism. On the other hand, it is considered an interpreter that makes a response 

operation on the basis of integrating the received electrical signals. So, the brain serves as 

a centre of transmission of signals interpreted by creating responses or reactions to the 

environment. To sum it up, the major functions of the brain are reception, integration, and 

transmission of signal processes that involves sensations, movement, memory and 

consciousness at the same time, (Berthoz, 2002).  

http://www.britannica.com/science/vermis
http://www.britannica.com/science/flocculonodular-lobe
http://www.britannica.com/science/spinal-cord
http://www.britannica.com/science/cerebrum
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To better accomplish its complex task, the brain is organized into functional 

subsystems that use neurons to communicate. Avery important information for the study 

of its activity is that the brain mainly uses glucose and oxygen as energetic substrates. 

However, the energy consumption of the brain is not particularly variable, however  the 

active regions of the cortex consume more energy than the non-active areas.  

To understand the activity or the brain connectivity, we should recognize the 

different measures of the brain functional activity. These measures are the subject of the 

following sections.  

I.4 Metrics of the cerebral activity 

 During the performance of certain tasks like movement, perception, cognition and 

emotion, a specific region in the brain that is made up of set of neurons, controls this kind 

of tasks. This fact refers to the process of the neural activity. Given that, three types of 

signals need to be measured as will be discussed below:  

I.4.1 Electrical activity 

As regards the nervous system, the developed brain imaging techniques have 

permitted depicting the neuronal activity. Before we describe the process of the electrical 

activity, the basic morphological characteristics of a typical neuron need to be described. 

Neurons, also called nerve cells represent the primary functional unit of the nervous 

system; i.e. they are the basic information-processing unit of the brain. Various types of 

Glial cells, including ependymal, astrocytes, and oligodendrocytes, cells act as a support 

for the nerve cells. Neurons are connected to each other to establish different neural 

networks. They are characterized by their particular structure and chemical activities. In 

fact, neurons can’t regenerate however  they are very well preserved by Glial cells; and 

the older human beings are, the smaller number of neurons they have. 

In the following, we describe the basic structure of a typical neuron to facilitate the 

understanding for the unfamiliar reader with neuroscience. This short description aims to 

introduce a basic comprehension of the neuronal information-processing on which brain 

mapping techniques rely. 

Typically, each neuron is composed of three organs: a cell body, dendrites and an 

axon (see Figure I.6). The cell body (Soma) is the body of a neuron; it contains nucleus 

where most of the required molecules for a neuron to survive and function are 
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constructed. Similar to the branches of a tree, the dendrites extend out from the cell body 

and serve to transmit information received from other neurons to the cell body. The 

branching of dendrites can be extensive and adequate to receive as many as 100,000 

inputs to a single neuron. The axon, also known as nerve fiber, is another expansion of the 

cell body, however it is longer than the dendrites. Typically, the function of an axon is to 

deliver the messages to different neurons, muscles and glands. Depending on where it 

connects to the central nervous system, the axon may be very short or very long reaching 

for instance from the spinal cord down to a toe. Some neurons have no axon and convey 

signals from their dendrites. However, no neuron has more than one axon.  

In fact, the main role of the neuron is to receive, to process and to transmit the 

information (see Figure I.7). This process is performed via the synapses, the place where a 

signal passes from a neuron to another cell. Parts of the neuron situating before the 

synapse and convey the signal are known as presynaptic. Conversely, postsynaptic refers 

to the parts of the neuron receiving the signal. It should be noticed that presynaptic and 

postsynaptic parts are located on another/second neuron; either its dendrites or its soma. 

Signal transmission operation has a biochemical and electrical nature that is characterized 

by the transport of sodium ions between the intra and extracellular environment, creating 

an electrochemical impulse called the action potential or postsynaptic potential. This 

potential is transmitted from the dendrite to the soma. If the internal potential exceeds a 

threshold of activation, an electric shock will occur. (Berthoz, 2002)  

 

 

Figure I-6 Basic structure of a typical neuron (Sanei & Chambers, 2013) 
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Figure I-7 : Function of neurons(F.wendling,2008) 

According to Maxwell laws, all the currents that flow in the cerebral nervous tissues 

produce a potential distribution in the adjacent conductor volumes. This potential 

distribution can be measured on the scalp thanks to the different brain diagnostic 

techniques.  

I.4.2 Metabolic activity  

The chemical activities of neurons naturally depend on the use of energy. Basically, 

the main energy source is obtained from converting the Adenosine Triphosphate (ATP) 

molecules in nerve cells that have only small reserves. This results in glucose and oxygen 

metabolism. Thus, the electrochemical activity of the neurons corresponds to a metabolic 

activity. All these activities are linked with a hemodynamic activity.(Aubert, Costalat, & 

Valabrègue, 2001)  

In fact, the supply of glucose and oxygen is carried by the blood, and moves in the 

capillary system within the tissues of the nervous system. Regulating the amount of blood 

flow to the brain allows increasing the amount of energy necessary to the activity of the 

nerve cells. The increase of Cerebral Blood Flow (CBF) that results in the increase in the 

amount of oxygen and glucose introduces the hemodynamic activity. In contrast, the 

decrease of (CBF) is called the des-activation. And more specifically, the hemodynamic 

activity goes though different stages that are illustrated as follows:(Buxton & Frank, 

1997)  
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The oxygen is retrieved from the local system by the cells of blood vessels whose 

electrochemical activity consumes large quantities of (ATP).  

• The (CBF) experience a strong increase in the region and the important 

contribution of the red blood cells containing the hemoglobin (Hb). This results in 

over-concentrating the oxygen of the region. The concentration of 
Hbo2

dHb
 is caused 

by strong fluctuations at the beginning. Because of the oxygen extraction, in the 

second phase it has been caused by the increase in blood flow and the set of the 

following operations called the hemodynamic response. 

Note that the hemodynamic response depends highly on other factors than the local 

electrical activity. More particularly, its extent as its temporal reduction are dependent, 

among other things, on cell metabolism, control of blood flow, the local density of the 

capillary network, membrane permeabilities and possibly on the pathological character of 

the tissue (Heeger 2002). Therefore, it seems appropriate to explicitly recall that the 

hemodynamic activation is an indirect marker of the neuronal electrical activity, which 

itself is associated with the brain information processing. 

 

Figure I-8:the deferent measures of brain function 
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I.4.3 Metabolic activity and the cerebral blood flow  

The metabolic activity is realized by a regional adjustment known as Regional 

Cerebral Blood Flow that characterizes the hemodynamic activity or the vascular in 

correlation with the considered cognitive activity. As previously mentioned, neurons have 

a high demand for ATP, and therefore, oxygen and glucose that is the only source of 

energy used by the brain to sustain its functions. So, a constant glucose supply through the 

blood is crucial to the nervous system. Thus, any interruption of this supply then would 

result in a failure of brain functions. In the case of hypoglycemia, interruption of blood 

flow may cause impaired consciousness or loss of consciousness when the brain is no 

longer irrigated. However, this condition is not sufficient to establish a correlation 

between blood flow and energy consumption at regional level.  

This issue has been extensively studied using the autoradiography method developed 

by (Sokoloff, 1977). Based on this technique, several authors have established a strong 

correlation between the regional CBF (RCBF) and glucose consumption better in animals 

than in humans. Similar studies have shown the existence of a coupling between the blood 

flow and metabolism at the global level and then at the regional level.  

I.4.4  Couplings between different activities  

The couplings between these different activities are applied at different levels. At a 

synaptic level, numerous data exist about the characteristics of the neuro-chemical 

transmission. On the contrary, couplings between the electrical, energetic, metabolic and 

hemodynamic activities are less well known in this level. The situation turns out to be 

complicated at the macroscopic level where the various activities can be regulated at 

different levels of integration. Much remains necessary to gain a better understanding of 

what exactly the synaptic signals (an Excitatory Postsynaptic Potential (EPSP), 

an Inhibitory Postsynaptic Potential (IPSP)) are significantly contributing to signals 

registered in MEG. The same question arises when it is about coupling between electrical 

activity and hemodynamic and metabolic response. At this stage, we are faced with a real 

inverse problem when the "indirect" modalities such as PET and fMRI are implemented; 

and that the electrical activity should be detected again from the measured signals.  

In particular, there is a difference between the electrical activity areas and 

hemodynamic and metabolic response areas (Malonek & Grinvald, 1996) . On the one 

hand, it raises an important question about the mediators of this coupling. On the other 
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hand, it encourages to a certain caution on the resolution and interpretation of cognitive 

maps that technique such as fMRI that can achieves better results.  

Yet, the coupling between the hemodynamic and metabolic activities is not fully 

clarified. It was previously reported that references in the literature have established a 

close relationship between the changes in the neural activity and the changes in blood 

flow and glucose consumption. However, a nonlinear relationship links these two 

quantities and the local oxygen consumption. The increases in blood flow exceed a lot of 

the oxygen requirements of the tissues of the neuronal activities and vice versa. This 

situation is called decoupling. It does not permit to plot because it is opposed to the 

principle of parsimony on one hand; and it suggests on the other hand that the replacement 

of the ATP would be carried out by anaerobic pathway of glycolysis that is almost 20 

times less productive than the aerobic pathway. In this vision, the astrocytes, barriers 

between vessels and neurons, play a key role.  

The energy input in glucose is carried through blood. The heart controls blood 

circulation and pumps it to the arteries and cerebral arteries. These arteries have nerve 

fibers that permit to control its relaxation and contraction. In the brain tissue, the arterioles 

join into pre-capillaries and then into capillaries. It is worth noticing that the number of 

capillaries in a region appears closely linked to the number of synapses in that region and 

not to the number of cell bodies (Brooks, 1992). Frequently, the capillaries dilate and 

constrict to ensure a reasonable distribution of oxygen and glucose to the brain tissues. In 

the case of a brain activity, the expansion of capillaries results in increasing the RCBF. 

This increase creates an opening of more capillaries and the volume of the transported 

blood increases.  

I.5  Exploration techniques of the brain activity 

A clear understanding of the basic brain functions requires knowledge about the 

important information processes. Thus, extensive studies with different brain mapping 

techniques have been conducted to achieve better insight of the brain. The existing brain 

exploration methods are classified into structural and functional imaging techniques. 

Computerized Tomography (CT) is the earliest paradigm that has been developed for 

imaging the structure of the brain. Recently, Magnetic Resonance Imaging (MRI) has 

become a dominant technique for brain structure imaging. With the development of 
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functional techniques, neuroscientists are able to examine the function of the human brain 

while performing a particular cognitive task. Mainly, functional techniques are classified 

into two main types. The first class consists of methods that directly measure the electrical 

activity, such as electroencephalography (EEG) and magnetoencephalography (MEG). 

The second consists of methods that measure the neuronal activity indirectly given that 

neural activity is sustained by an increase in local blood flow which refers to the 

metabolic activity. Examples of these techniques include Positron Emission Tomography 

(PET) and functional Magnetic Resonance Imaging (fMRI). In these subsections, we 

briefly introduce the most common of the previously noted techniques employed in 

investigating the brain.  

I.5.1 Magnetic Resonance Imaging (MRI) 

MRI is a very dominant medical imaging technique figure I.10. It is used to make an 

accurate diagnosis on the structural anatomical plan and allows obtaining a 2D view with 

possibly a 3D effect of a portion of the body, particularly the brain. MRI is based on the 

principles of the Nuclear Magnetic Resonance (NMR). In other words, it is to detect 

variations of the macroscopic magnetic moment in a material under the action of a static 

magnetic field and an electromagnetic wave of an appropriate frequency. This modality 

was an important revolution in medical imaging in view of its excellent spatial resolution 

that is of the order of a millimetre and an average time resolution of the order of seconds 

(Daunizeau et al., 2005).  

The basic researches on the interactions between the nucleus of the atom and the 

magnetic fields have started between 1930 and 1940. The physical principles of the 

magnetic resonance imaging technique have been included since 1950. In addition, the 

researchers Lauterbourg, Damadian and Mansfield have shown that this idea is feasible 

using the physical theories of the nuclear magnetic resonance. However, the first reviews 

by this technique emerged in the early 1970. Regarding medical applications, they have 

been developed in laboratories and medical centres between 1983 and 1993. Figure I-09 

presents the MRI apparatus and a sample of images obtained by the MRI scan. 
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(a)MRI scan image                           (b) MRI apparatus 

Figure I-9 Magnetic Resonance Imaging 

I.5.2 EEG (Electroencephalography) 

The EEG is a non-invasive technique that has been widely used to capture different 

aspects of neuronal activity. It measures a difference of electric potentials generated by 

the bioelectric activity of neurons. This difference is of the order of micro volts; however 

the collected signals are amplified. The employed apparatus is called the 

electroencephalograph and consists of several electrodes placed on the scalp as the 10/20 

electrode system as will be discussed in detail in the following chapter, building what is 

called the EEG headset. At the time, the detected waves are picked up by electrodes and 

transmitted to the device to translate them by tracing on graph paper. Today, the 

techniques have evolved and the tracings appear on a computer screen, and have to be 

saved on physical media (Figure I.10). The measurements obtained by EEG can be 

frequencies, amplitudes or specific waves. EEG modality will be extensively discussed in 

the second chapter.  

 

Figure I-10 : Electroencephalography 
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I.5.3 Magneto encephalography (MEG) 

 MEG is a new non-invasive examination technique that records the magnetic 

signals emitted from the nerve cells of the brain. Particularly, it helps scientists to measure 

brain activity in real time. More specifically, MEG allows the investigation of brain 

function in all that is related to taste, touch, speech and vision.  

The magnetic fields measured on the scalp surface are in the order of 10 femto-tesla, 

(1ft = 10-15 Tesla). They are very small compared with the terrestrial magnetic field that 

is greater than 10 billion. For magnetic field measurement, the MEG uses an apparatus 

based on the SQUID magnetometers, "Superconducting Quantum Interference Devices”, 

and placed in a room isolated magnetically by mu-metal that are cooled with helium. 

Although the MEG technique is mainly used for functional mapping, it has also been 

employed in neurology for a patient passing a clinical examination; especially for the 

epilepsy disease; as well as in the cognitive neuroscience area of research. In addition, 

MEG has been used to the study of the developmental, psychiatric and neurodegenerative 

diseases such as schizophrenia, dyslexia, Parkinson and Alzheimer. 

In MEG, we measure the variations in the magnetic fields that are produced by the 

ionic currents primarily generated by the postsynaptic potentials of pyramidal cells of the 

cerebral cortex where the magnetic fields inside the brain are very low, in a very 

important condition that must be isolated from external magnetic fields which are carried 

out at the sensor. The reel receiving the flow is usually a gradiometer that is formed by 

two or more reels assembled in phase opposition and permits to measure the gradient of 

the magnetic field in the tangential direction or the radial. This one acts as a filter that 

permits to eliminate the magnetic fields of small variations. That is useful in the case of 

external interference parasitic fields. These disturbances affect cerebral magnetic fields 

that decrease according to the distance from the source. This implies using supplementary 

correction systems during the measurement of the external field at sensors taken away 

from the head. The most effective solution is to place the entire measurement system in a 

shielded room formed of metal walls that strongly diminishes external magnetic fields 

(see figure I.11). Although MEG is similar to the EEG, it does not require any electrodes. 

Unlike the EEG, MEG can also record signals from deeper regions of the brain. 
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Figure I-11:MEG machine 

I.5.4 Functional Magnetic Resonance Imaging (fMRI) 

With the development of data acquisition and processing techniques in the MRI 

medical field, it has become possible to produce magnetic resonance images in a 

reasonable time. We can say that MRI has become "functional", i.e. exploring the 

functional activity of the brain in the course of time.  

 Functional MRI is a technique that permits detecting the functional activity of the 

brain when a human being performs certain defined tasks. For instance, it is employed 

during those exercises that require mental calculation, recall of a face, or the observation 

of a picture or making a movement ... etc. Some areas in the brain are activated in order to 

control the performed task. This activation causes an increase in local blood flow in the 

concerned brain regions which causes the magnetization of the haemoglobin contained in 

the red blood cells. In particular, this technique is a quantitative measure of the brain 

activity during the execution of behavioural tasks.  

The blood flow is observed by functional MRI permitting to identify the brain areas 

that are involved in these exercises. In other words, fMRI consists in measuring Blood 

Level Dependent, referred to as BOLD signal. The latter reflects local and transitory 

variations in the amount of oxygen carried by the haemoglobin according to the need of 

the neuronal activity of the brain. In particular, it consists to record local hemodynamic 

changes of brain areas (i.e., changes of blood flow properties) when these regions are 

stimulated.  

Although fMRI was introduced in 1990, it has become gradually a promising 

technique that permits detecting the functional areas of the brain in the course of time in a 

non-invasive way. fMRI has a spatial resolution of 3 to 4 mm and a temporal resolution of 
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the order of one second. A detailed description of fMRI modality will be the subject of 

chapter 3. 

I.6 Characteristics of the different functional exploration techniques  

The different medical imaging techniques are differentiated from each other on the 

basis of three criteria: (i) their spatial resolution (ii) their temporal resolution and (iii) the 

degree of invasiveness.  

I.6.1  Spatial resolution  

Regarding the criterion of spatial resolution, MRI has a high resolution of 3 to 5 mm 

that provides a good brain anatomical description. Also, its spatial resolution is in the 

order of a few mm3 allowing yielding a good localization of functional brain areas. Both 

EEG and MEG techniques have low spatial resolution of about ~ 10mm; and it can be 

improved by increasing the number of the used electrodes if we get to 256 electrodes for 

EEG. However, in EEG and MEG, several difficulties are encountered to accurately 

locate the functional brain regions originally from the measured signals and such precision 

can only be achieved if a single small region contributes to the EEG or MEG data, which 

is rarely the case.  

I.6.2 Temporal Resolution 

The different medical imaging techniques have a very long temporal resolution 

comparing to the duration of cognitive phenomena, although it is possible to obtain best 

temporal resolutions by selecting a limited region of interest (ROI). On the one hand, MRI 

and fMRI do not allow monitoring the precise changes in the brain activity. On the other 

hand, EEG and MEG which present the dynamic brain imaging techniques have a high 

temporal resolution in the order of a millisecond. This permits following the chronology 

of cognitive processes in a real time. However, MEG and EEG facilitate the dynamic 

study of brain function. 

I.6.3  Invasiveness degree 

The degree of invasiveness corresponds to the negative consequences that the 

measuring method can have on the subject. Among the major advantages of the EEG and 

MEG, they are totally non-invasive techniques (Spinelli, 1999). In comparing those with 

other techniques such as PET (Positron Emission Tomography) or scanner, there is an 
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injection of radioactive tracers and contrast products. For the MRI and fMRI, they do not 

necessarily require the introduction of this product however the presence of a significant 

magnetic field that prohibits the use for subjects with a metal part in the body that can 

disrupt the magnetic or the electric signal. This implies that the use of MRI always 

remains limited. The level of invasiveness degree is illustrated in figure I.12 by the gray 

colour where more highly invasive techniques are shown in darker gray. 

 

 

Figure I-12 A comparative diagram of the different functional brain imaging techniques. The level of 

invasiveness of each technique is indicated by a grayscale; more highly invasive techniques are shown 

in darker gray. Adapted from Cohen and Bookheimer (1994)  

I.7 Conclusion  

In this chapter, we briefly discussed the brain anatomy by giving a brief description 

of the main brain parts. We also provided a short introduction to the basic functions of 

brain. It is important to notice that studying the structure of the brain plays a vital role in 

deducting the electrical and hemodynamic changes and their relation to the brain activity. 

This chapter also gives a general view about the most common techniques that have been 

widely used in brain data acquisition.  

 Scientists sought to get an accurate brain activity mapping with different 

neuroimaging techniques. However, combining data obtained by these techniques such as 

the coupling between fMRI and EEG has gradually become an important task. It aims to 

take advantage from the several imaging modalities in order to better characterize 
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neuronal population networks involved in brain information processing. Therefore, the 

multimodal neuroimaging takes its place in the recent research of neuroscientists due to its 

ability to provide direct and precise information of neuronal activity. EEG/fMRI fusion 

technique will be the subject of the fourth chapters. 



 

 

II Chapter II 

EEG Electroencephalogram 
 

 
Right: German psychiatrist Hans Berger 

Left: EEG Recording Equipment, 1926 

Bottom: First recorded EEG by Hans Berger
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II.1 Introduction  

One of the major issues in neuroscience is finding ways to accurately study the 

dynamic activity of the human brain or what is happening inside the brain; that is to 

examine the basic functions of the brain while people are thinking, acting, and feeling, etc. 

In this scope, several techniques have been developed seeking to see the brain at work. As 

previously mentioned in the first chapter, Electroencephalography (EEG) is used to 

measure the electrical activity of the brain. It is compatible with synaptic events that occur 

at the millisecond level. This temporal modality has gradually become an important tool 

in investigating how the brain functions. EEG has been widely used by 

neurophysiologists, cognitive scientists, cognitive psychologists, and other researchers 

interested in exploring the brain. 

This chapter is intended to provide a comprehensive overview of EEG modality. At 

first, it describes a simplistic historical background of electroencephalography and targets 

the unfamiliar reader with neuroscience. Then, a clear illustration of how to conduct an 

EEG experiment is illustrated with the EEG recording technique that exists in the 

literature. The current chapter also describes rhythmic activity. Next, it depicts the evoked 

potentials where its main types, the Visual Evoked Potentials (VEP), the Auditory Evoked 

Potentials (AEP), Somatosensory evoked potentials (SEPs) and Cognitive Evoked 

Potentials, are separately discussed. The current chapter also reviews the different types of 

electrodes before it moves to introduce positioning of the several electrodes. Then, 

principles of EEG are the subject of this chapter as well. The last focus of this chapter 

concerns brain electrical activity and modelling. 

II.2 Historical background 

Electrophysiology EEG is the oldest functional brain imaging technique. It has been 

introduced in 1786. Particularly, the researcher Galvani has observed a movement of a 

frog after a contact with two metal plates by the accidental experience. Additionally, he 

has found that the muscle was capable of generating an electric current in the absence of 

any metal (Goodwin & Hall, 1939). About a century after, no discovery has been 

witnessed in the field. 

In fact till 1875, the biologist Richard Catton has detected the presence of electrical 

currents in mammals (monkeys and rabbits) through the use of electrodes placed on their 
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skulls confirmed by galvanometer oscillations (fluctuating electrical activity on the 

surface of the cerebral cortex).(Caton, 1875). Thus, the history of the EEG has 

started. After, Hans Berger has applied this technique to the human being when he first 

recorded the EEG signals in 1929 as a potential variation. He has published his discovery 

of two types of quasi-sinusoidal electrical brain activity that he called "alpha rhythm" and 

"beta wave" (Berger, 1929) Figure II.1. These works have been resumed and completed 

by Edger Douglas Adrian who has been awarded the Nobel Prize where it would be very 

easy to visualize these electrical activities on paper. The survey basics are still being 

applied today. It has become the common method applied in current medical practice and 

diagnostic tool especially in epileptology practice (Adrian, 1934),(PIDOUX, 2007). 

 

 

 

 

Figure II-1: The first EEG recorded by Hens Berger and published in 1929(Berger, 1929) 

However, the first recorded seizures date back to 1938 by (Gibbs & Gibbs, 

1946). The first intrusive methods using depth electrodes have been established after the 

Second World War, precisely in the late of 1940s. It took until the 1950s for the EEG to 

be commonly used in medical practice, especially in the diagnosis of epilepsy. A sample 

of recorded EEG signals is depicted above in Figure II.2.  

a- EEG cask  b- The recorded signals 

Figure II-2 : EEG technique 
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This pathology requiring exploration by the EEG is a consequence of an original 

synaptic or cellular imbalance that causes a sudden change in brain electrical activity. This 

activity arises when neurons sets synchronize abnormally. The result often corresponds to 

discharges, called critical discharges, of high frequency and variable amplitude. It is the 

centre of the discharge and its propagation depends on the clinical aspect of crises. There 

are two types of seizures (Caparos, Louis-Dorr, Wendling, Maillard, & Wolf, 2006).  

1. Generalized seizures cause the appearance of unconsciousness or bilateral motor 

signs. During this crisis, electroencephalographic abnormalities are bilateral, 

symmetrical and diffused to the entire cerebral cortex.  

2. Partial seizures result of clinical focal signs, and do not produce loss of 

consciousness as to the generalized epilepsies. In this type of epilepsy, electrical 

abnormalities are limited to a well defined area of the cerebral cortex. 

The primary means for transmitting information along the nervous system is the 

movement of ions across the cell membranes of neurons. This would result in producing 

an electrical current which provokes voltage changes that extend over a large area of 

neural tissue. Measuring these potential changes is the basis of EEG. To simplify, EEG 

signals recordings are measures done on the scalp surface and arise from the large 

dendritic currents generated by a diverse body of neurons. To perform EEG 

measurements, it is necessary to model head as a conductive volume and apply the 

electromagnetism laws to estimate the volume distributions of current sources (Crouzeix-

Cheylus, 2001).  

II.3 Conducting and performing an experiment EEG 

The electroencephalogram (EEG) measures the electrical signals of brain activity. It 

is obtained by using a set of electrodes; usually silver coated with silver chloride, placed 

on the scalp surface. The contact of these electrodes with the skin is made by using a 

conductive paste and they are held in place by an elastic headset. The measured 

information corresponds to differences in electrical potential between two electrodes. In 

fact, the amplitude of the received signals is low. Thus, they must be amplified using 

differential amplifiers and care must be taken to reduce the interference from the external 

sources that might degrade the quality of the signals such as eye movement and muscle 

activity. EEG signals are alternative, more or less sinusoidal, entering the low frequency 

band: from 0.5 to 60 Hz. The signal recording stage takes some minutes (~ 10mn). This is 
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generally made in the following conditions: (i) the subject in a state of rest and (ii) the 

subject with eyes closed (iii) the subject with eyes opened followed by two stimulation 

tests: In the first test, the subject breathes for a period of 3 to 5 minutes with a highly 

accelerated rate of breathing. This deep breathing is repeated continuously in order to 

provoke discomfort sensation with nausea sometimes. This technique is used because it 

can increase the EEG abnormalities in several types of epilepsies and it can cause a 

complex partial seizure. However, the second test submits the subject to light flashes with 

a rotation frequency between 1 and 30 turns per second. In addition, it allows identifying 

photosensitivity that is the cause of some epilepsy forms. It is worth to note that this test 

can be performed sometimes with closed eyes. 

The previously mentioned techniques have emerged due to the technological 

development. Several EEG recording techniques exist in the literature and have a 

noticeable impact in the field of electroencephalography. Among these several types, we 

state the following: 
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Table II-1: Types of EEG recordings 

Type Features 

N
u
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er

ic
a
l 

E
E

G
 

 

Once the EEG signals are amplified and filtered, they are converted to numerical 

signals which allow visualization on a screen in the form of drawing changes 

over time, and the possibility of recording these signals by the use of IT 

support. Other advantages come to a post-processing of signals, data storage and 

archiving, remote transmission in a real time by telecommunications. 

P
o
ly

so
m

n
o
g
ra

p
h

y A medical exam performed during sleep. It involves recording physiological 

changes such as breathing rhythm and cardiac rhythm or electroencephalogram in 

order to determine certain problems related to sleep. The EEG recording in this 

case is carried out in a long period of time that permits better following the 

subject. 

H
o
lt

er
 E

E
G

 EEG signal recording on mobile equipments allows recordings even at home 

especially for handicapped. 

 

E
E

G
 v

id
eo

 Coupling EEG with monitoring systems, such as video recording, allows better 

interpreting the marked events. 

 

II.4 The rhythmic activity 

The term rhythm refers to the activity or waves whose period and morphology are 

almost constant. Rhythms are obtained from the recording of an EEG. They allow 

defining frequency bands. Thus, it is possible to identify and differentiate rhythmic 

electrical brain activities and classified according to their frequency band. Figure II.3 

shows the diagram of each of the existing types of brain waves. Two types of regularities 

can be described: 

• Rhythms (called basic) which characterize the cerebral state on variable temporal 

periods varying from a few seconds to several minutes or even an hour. 

• An approximately circadian cyclicality of behavioral and electrical events, grouped 

under the generic name of state of vigilance. 
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As previously noted, the brain is also defined by its rhythmic activity. In fact, 

several types of activity exist at the cerebral cortex level. For better illustration, we will 

introduce closely two illustrative tables to briefly summarize the main features and 

frequencies of each of these different types. 

 

 

 

 

 

Figure II-3 : Types of Signals 

Table II-2: Typical Frequencies and Amplitudes of Synchronized Brainwaves 

Rhythm Frequencies (Hz) Amplitude (uV) 

Alpha 8-13  20-200 

 Beta 13-30  5-10 

Delta 1-5 20-200 

Theta 4-8 10 

Gamma 30-100 5-10 

Mu 7 – 11 100 

 

Table II-3: Types of Cerebral Rhythmic Activity 

Type Location Normally Pathologically 

Delta 

• frontally in adults, 

• posteriorly in 

children;  

• high-amplitude 

waves 

• adult slow-wave sleep 

• in babies 

• found during some 

continuous- attention tasks 

• subcortical lesions 

• diffuse lesions 

• metabolic encephalopathy hydrocephalus 

• deep midline lesions 

Theta  

Found in locations not 

related to task at hand 

• higher in young children 

• drowsiness in adults and 

• focal subcortical lesions 

• metabolic encephalopathy 

    

  Alpha   Beta   Delta 

     

  Theta   Mu  Gamma 

 

 

https://en.wikipedia.org/wiki/Theta_wave
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teens 

• idling 

• Associated with inhibition 

of elicited responses (has 

been found to spike in 

situations where a person is 

actively trying to repress a 

response or action). 

• deep midline disorders 

• some instances of hydrocephalus 

Alpha posterior regions of head, 

both sides, higher in 

amplitude on dominant 

side. Central sites (c3-c4) 

at rest 

• relaxed/reflecting 

• closing the eyes 

• Also associated with 

inhibition control, 

seemingly with the purpose 

of timing inhibitory activity 

in different locations across 

the brain. 

• Coma 

Beta both sides, symmetrical 

distribution, most evident 

frontally; low-amplitude 

waves 

• range span: active calm -> 

intense -> stressed -> mild 

obsessive 

• active thinking, focus, hi 

alert, anxious 

• benzodiazepines 

 

Gamma Somatosensory cortex • Displays during cross-

modal sensory processing 

(perception that combines 

two different senses, such 

as sound and sight) 

• Also is shown during short-

term memory matching of 

recognized objects, sounds, 

or tactile sensations 

• A decrease in gamma-band activity may 

be associated with cognitive decline, 

especially when related to the theta band; 

however, this has not been proven for use 

as a clinical diagnostic measurement 

Mu Sensorimotor cortex • Shows rest-state motor 

neurons. 

• Mu suppression could indicate that 

motor mirror neurons are working. 

Deficits in Mu suppression, and thus in 

mirror neurons, might play a role 

in autism. 

 

II.5  Evoked Potentials 

An evoked potential refers to the brain activity generated by the stimulus. It is an 

electrical event collected at the surface of the scalp. In other word, it is a response of the 

brain to a specific stimulus which may be external such as sound and light or internal like 
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decision making and motor preparation. When stimulations occur, changes occurred in the 

captured signals. These changes, known as evoked potentials, summarize in a series or 

succession of waves with appearance latency, defined as the time it takes sensory 

stimulation to be received by a receiver and the time of its transmission to the brain. 

Evoked potentials test the integrity of visual, auditory systems and motors. They allow the 

detection of lesions in the spinal cord or the brain. 

The evoked potential test has been widely used to evaluate the neurons functional 

state in the brain. Typically, evoked potentials have slight intensity stimulus. That is 

stimulus -evoked signals are in the range of a few micro-volts, which implies that the 

signal-to-noise ratio is much smaller than 1. Evoked signals are superimposed to 

spontaneous brain activity with much larger amplitude. This therefore requires the use of 

specialized equipment to bring out these repetitive responses (i.e. these evoked potentials) 

to the stimulus among the spontaneous electrical activities. 

Two categories of evoked potentials can be distinguished. Particularly, the first type 

is exogenous evoked potentials, called "mandatory". There exist three types of exogenous 

evoked potentials: (i) Auditory Evoked Potentials (AEP), (ii) Visual Evoked Potentials 

(VEP) and (iii) Somatosensory Evoked Potentials (SEP). The second category is the 

endogenous evoked potentials considered as “cognitive” or eventual or ERP (event related 

potential) relatively to the active processing of information regardless of the type of 

stimulation. In the following, we describe each of the previously mentioned types of 

evoked potentials. 

II.5.1 The visual evoked potentials (VEP) 

In this experiment, the subject undergoes visual stimuli. For instance, the subject is 

exposed to a sequence of images that periodically reverses and let him recall or 

remember. Usually, the image of a black-white checkerboard that periodically 

reverses. However, potentials are obtained as a result of these visual stimuli. These VEP 

are recorded using electrodes placed on the scalp surface at the occipital region as shown 

in Figure II.4. 

Usually, this test is used to assess the integrity of the visual pathways from the eye 

to the corresponding brain areas. Also, VEP is a powerful tool used in the investigation of 

the following pathologies: atrophy and optic neuritis, tumors in the path of the visual 

pathways, plate sclerosis, etc. 
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Figure II-4: Study of visual evoked potential 

II.5.2 The Auditory Evoked Potentials (AEP) 

Auditory Evoked Potential of the brain is among the clinical analyzed evoked 

potentials. During these experiments, the subject puts a headphone on his ears. However, 

the AEP are caused by a loud click to stimulate the ear cochlea, the responsible area for 

receiving the sound message and transcoding into nerve signal. Also, they are the nervous 

endings of the inner ear (see Figure II.5). In this test, electrodes are placed on the surface 

at the top of the skull and on the lobes of the left and right ears. 

The brain AEPs are used for diagnosing auditory and nerve problems. Also, they 

provide more information in cases of hearing loss or problems. Brain AEPs are applied as 

supplementary examination in the audiogram. Furthermore, they are very useful in 

nervous problems, the brain AEPs permit to assess the function of structures or profound 

auditory pathways in the brain that are difficult to record otherwise. However, it would be 

possible to detect via the signals picking up electrical potentials from the left and right 

auditory areas, and so get to discover some abnormalities and accordingly interpretations 

may be possible. 
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Figure II-5 Study of auditory evoked potential 

II.5.3 Somatosensory evoked potentials (SEPs) 

Somatosensory is the system responsible for somatic and deep-rooted sensations 

from the skin. Diagnostic on this system is carried out using an electrical device placed on 

a point of the subject nerve. This device generates electrical impulses that cause the 

SEP. As illustrated in Figure II 6, for recording the reaction, response is presented by a 

valid signal for the study of nerve conduction. The SEPs are used in the exploration of 

sensory pathways lesion in the periphery (nerves) and also in the central level (spinal cord 

and brain). They are also used during certain surgical interventions. 

 

Figure II-6 Study Of Somatosensory Evoked Potential 

Using the SEP, physiologists can acquire knowledge about the function of peripheral 

sensory nerve pathways in different areas: cervical, thoracic, lumbar or sacral and also the 

spinal sensory nerve pathways and intra-cerebrals. 
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The collected signals during the examination (figure II.6) depend on certain factors 

such as the age and size of the subject, for example. When variations are produced at 

latency and amplitude of the somatosensory evoked potentials, this indicates the existence 

of problems in the sensory pathways. Also, the SEP permits to measure the degree of such 

damage (lesion) according to the type of change. In addition, the use of SEP enables to 

acquire information on the cognitive function problems during the appearance of 

dementia. Besides, the electrophysiological explorations have as a goal being non-

invasive; they are used in the diagnosis of Alzheimer's disease. 

II.5.4 Cognitive Evoked Potentials: 

The Cognitive Evoked Potentials are known as "Events Related Potentials", denoted 

as (ERP). It consists in the difference of exogenous evoked potentials caused by external 

stimuli. They are interpreted as being a reflection of the information processing related to 

the psychological reaction of the subject in relation to the stimulation. ERPs are 

successions of waves; their appearance latency measures the time it takes for the brain to 

carry out the recognition work based on the stimulation (words, geometric shapes, sounds 

...). It allows a chronometer of some cognitive functions. 

ERPs play a significant role in understanding the cognitive functioning system of the 

subject in close interaction with its physiological state. Indeed, they have been the interest 

of several researches for over half a century. They are recognized as physiological signs 

of a particular psychological activity and specific to each individual. Mainly, two types of 

ERP can be distinguished: 

• The so-called ERP (early): They indicate the perceptual processing of physical 

characteristics of the stimulus. They occur from approximately 100ms after the 

simulation. 

• The so-called ERP (late): they are recognized as an indicator of a deeper 

processing of information involving a level of sustained attention and often taking 

decision. They occur beyond 150ms 

However, from these two types of ERP and according to their polarity (positive or 

negative), we can distinguish different ERPs considered waves as N100, N170, N200, 

N400, N600,P100, P200, P300, P600, P800. Variation Factors, in these waves, are 

numerous: age, degree of deterioration, the level of vigilance. 
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II.6 Types of electrodes 

The electrodes are of 3 types: 

• Conventional electrodes or pad electrodes: (Grey Walter-type electrodes): 

They have the form of a small dome of 2 cm2 at the base, chlorinated silver 

covered with a soaked material pad of a saline solution. They are placed 

directly on the scalp after degreasing the scalp and applying a conductive 

paste. They are maintained by a helmet made of crossed rubber straps that 

married the skull of the subject. 

• Needle electrodes or subcutaneous: They have the form of a silver 

hypodermic needle or stainless steel. Their end is stuck into the thickness of 

the scalp. Thus, they provide an electrical contact of good quality and a skin 

resistance / electrode substantially constant, without increasing the risk of 

infection. Their use is essential when it is imperative to collect an EEG signal 

in optimal technical conditions. 

• Cups electrodes: They have the form of a silver disc with a diameter of 5 mm 

, the cup is filled with conductive paste and stuck directly on the 

scalp. These electrodes are connected to a recording apparatus using simple 

isolated wires. To ensure electrical continuity and good quality of the 

electrochemical interface (electrolyte-electrode-skin), the electrode resistance 

has to be measured. This measurement is made, according to the apparatus, 

relative to a reference electrode (so-called ground electrode) or with respect 

to all other electrodes placed on the scalp surface. These electrodes are used 

for extended recordings. 

II.7 Position of electrodes 

The number of electrodes used for recording brain activity can be very variable. The 

most famous assembly, defined in 1958, is the 10/20 system as it is shown in figure 

II.7. With the improvement of electrodes and recording technologies, the number of 

electrodes has increased significantly to reach sometimes 64, 128 or 256. More recent 

standards exist, such as that of Gilmore in 1994 (Gilmore, 1994) however all arise from 

the 10/20 system. The 10/20 system meets strict rules: 
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• The depart line is that brings together nasion and the union in passing 

through the vertex 

• This line is divided into 6 parts: 10% of the length is carried above the nasion 

to form the frontal plane and 10% above the union for the occipital plane, the 

rest is divided in equal four parts representing 20% of the total length. 

• The symmetry must be perfect 

The 10/20 system is altered in children; the number of electrodes depends on the 

head circumference. In premature infants and newborn, the device includes four 

electrodes that are arranged on each hemisphere in the frontal regions, parietal, occipital 

and temporal (Fp1, Fp2, C3, C4, O1, O2, T5, T6) and an earth electrode, and optionally 

two vertex electrodes: Cz, Pz. The number of electrodes increases with the age of the 

child up to 21 electrodes in young adults (Gilmore, 1994). 

As mentioned earlier, EEG measures the potential differences between electrode positions 

on the scalp. The EEG can be observed and detected by the following montages (Ernst 

Niedermeyer & da Silva, 2005),(Fisch & Spehlmann, 1999): 

• Bipolar montage: A channel is usually made up by one pair of electrodes where 

each channel (waveform) represents the difference between two adjacent 

electrodes. The whole montage comprises of a series of these several channels. For 

instance, the channel "Fp1-F3" depicts the difference in the voltage between the 

Fp1 electrode and the F3 electrode. The next channel in the montage, "F3-C3," 

stands for the voltage difference between F3 and C3, and so on, through the entire 

array of electrodes. 

Figure II-7 position of electrodes in 10/20 system (http://www.bem.fi/book/13/13.htm) 
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• Referential montage: In this montage, each channel reveals the difference between 

a certain electrode and a designated reference electrode. It is worth noticing that 

there is no standard position for this reference. Thus, it is at a different position 

than the "recording" electrodes. Given that midline positions do not amplify the 

signal in one hemisphere versus the other, they are widely used. Also, "linked ears" 

is another common reference. Basically, it is a physical or mathematical average of 

electrodes attached to both earlobes and mastoids. 

• Average reference montage: The outputs of all of the amplifiers are summed and 

averaged. Then, the obtained averaged signal is employed as the common 

reference for each channel. Average reference montage is ideal for focal activity, 

particularly from the temporal lobe and it can be improved by excluding affected 

electrodes.  

• Laplacian montage: It is an example of a local average reference where each 

channel is referenced to an average of the electrodes surrounding it.  To simplify, 

each channel represents the difference between an electrodes and a weighted 

average of the surrounding electrodes.  

Basically, all signals are usually digitized and stored in a particular (generally 

referential) montage with digital EEG. Given that any montage can be constructed 

mathematically from any others, the EEGs can be seen by an EEG machine in any wanted 

display montage  

II.8 EEG principales 

Continuous recording of brain activity is of recent appearance monitoring 

method. It has numerous indications in the field of resuscitation and anaesthesia. 

The number and positioning of the electrodes depend on the purpose of 

monitoring. Abnormal electrical phenomena may be present on some derivations, 

reflecting focal dysfunction of the central nervous system, or across the scalp in the case 

of generalized dysfunction or drug impregnation. A compromise must be found between 

the initiation of simplicity and sensitivity of the system. The purpose of monitoring in the 

resuscitation is not to locate a source with precision, and the establishment of a complete 

10-20 system consuming. Most often, monitoring of an assembly of seven or eight scalp 

electrodes is enough in intensive care. 
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The monitoring of only 2 channels by 5 electrodes can detect only 12 from 38% of 

"electrical seizures" identified by a 10-20 conventional system. In contrast, using a 

monitoring of 7 electrodes (frontal, temporal, vertex, inion) allows detection of 93% of 

"electrical seizures" (Shellhaas, Soaita, & Clancy, 2007). 

The type of electrodes is also variable. In most cases, it is about cup electrodes. In 

this case, before being put in place, the stratum cornea must be greased even abraded to 

optimize the electric conduction. It is then highly recommended to check the electrode 

resistance. It must be low to ensure sufficient quality for interpretation. Thus, the 

resistance must be performed several times a day, usually twice, to ensure the quality of 

the plot and its interpretation. 

II.9 Conclusion  

EEG technique has gradually become one of the most prominent tools for revealing 

the secret of the brain functionality due to the fact that EEG has a high temporal 

resolution. 

The current chapter provided a detailed description of EEG technique. It introduced 

the historical background of the EEG modality. Then, it depicted the way an EEG 

experiment is performed. This chapter also introduced the several EEG recording 

techniques that exist so far in the literature and described the rhythmic activity. The 

evoked potentials were discussed with referring to its main types. Then, the different types 

of electrodes and their positioning were presented as well as the principles of EEG 

technique. 
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III Chapter III  

Functional Magnetic 

Resonance Imaging 

 

Blood Oxygen Level Dependence (BOLD) 

contrastpublished in 1990 by Seiji Ogawa of Bell 

Laboratories and colleagues at the University of Minnesota 
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III.1 Introduction  

The brain, similar to any other body organ, involves a constant amount of oxygen to 

sustain its activity. The oxygen serves to provide energy after metabolizing glucose. It is 

worth noticing that hemoglobin is the component of blood that is in charge of supplying 

oxygen. Mainly, the magnetic properties of hemoglobin are related to the amount of 

oxygen it carrie . Given this, an exciting technique evolved in the twentieth century for 

measuring brain activation. This method is known as functional Magnetic Resonance 

Imaging (fMRI).  

With the advance in fMRI, the study of the human brain has entered a new era with 

new insights into neurology, psychiatry, psychology. As previously mentioned in chapter 

one, fMRI has gradually established its place as one of the most successful techniques in 

studying brain function. Basically, fMRI provides brain mapping in vivo in a non-invasive 

way by measuring the changes in oxygen level in the brain. In fMRI, data acquisition is 

commonly achieved by measuring Blood Osxygen Level Dependent (BOLD) signal 

changes. 

The development of the BOLD contrast fMRI tools has yielded a considerable 

advancement in detecting the brain activity and connectivity. However, it is still far from 

giving accurate responses about the mechanisms involved in the functionality of the brain. 

Based on these tools several investigations, experiments and studies have been conducted 

on brain exploration. In fact, they have become one of the main knowledge sources about 

brain function that we have today and considered as an important means of knowing even 

more.  

An fMRI experiment depends on various factors. Basically, fMRI experiments are 

composed of three main steps: (i) data acquisition in scans (ii) Experimental tasks defined 

by the paradigm design and finally (iii) data analysis. All these steps involve the use of 

different tools and methods. Mainly, the apparatus of data acquisition, fMRI data 

preprocessing methods, analysis and theories of the brain function are important for 

understanding all these concepts in order to extract valid knowledge from the information 

obtained in fMRI studies. 
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In this chapter, an overview of the principles of functional Magnetic Resonance 

Imaging (fMRI) signal is given. And, Blood Oxygen Level Dependent (BOLDeffect) is 

introduced. The chapter starts by giving a brief history of fMRI technique. Then, it 

illustrates in details the BOLD signal on which fMRI is based. After this, the basic model 

to generate fMRI signal is described. Finally, the chapter ends with a discussion of the 

components of an fMRI experiment where the focus –in particular- has been placed on 

data analysis. This chapter serves only as an outline of the basic principles of fMRI. For 

more detail, we encourage the reader to refer to other references for a broader view of 

fMRI in general. 

III.2 History of fMRI  

Functional Brain Imaging signals measured from brain activity, specifically those 

obtained with fMRI and PET (Positron Emission Tomography), are imaging technologies 

based on local changes of blood flow (Raichle & Mintun, 2006) and metabolism (glucose 

utilization and oxygen consumption) (Buzsáki, Kaila, & Raichle, 2007). It is known that 

these changes result from cellular activity in the brain, at astrocytes and neurons level. 

Relating blood flow and brain activity is not a so recent idea. In the 19th century, it 

was first introduced by Angelo Mosso, an Italian physiologist. Recording the pulsations of 

the human cortex in patients with skull defects, during mental activity, Mosso observed 

that these pulsations increased locally (de Oliveira Jordao, 2010) . It was in 1890 when the 

physiological relation between blood flow and neural activity has been explored by 

Charles Roy and Charles Sherrington (Roy & Sherrington, 1890) setting the base theories 

behind fMRI. During the 20th century, many contributions have been done in this area. 

Due the lack of tools, it was very difficult in the beginning to develop these ideas. For a 

more detailed review of the history of brain mapping, the reader is invited to see (Raichle, 

2009). 

In the two past decades, the development of fMRI has been the fruit of many 

discoveries and researches. Thus, fMRI has increasingly become a popular imaging tool in 

neuroimaging experiments for the investigation of brain functional areas that are 

responsible on specific tasks such as mental processes, including memory formation, 

language, pain, learning and emotion (Cabeza & Nyberg, 2000). fMRI has received this 
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considerable attention due to its various advantages. fMRI is a non-invasive technique that 

can provide a high spatial resolution. Also, it is relatively easy to use in neuroscience.  

Two main events have paved the way for the development of fMRI: (i) the 

emergence of the MRI (Magnetic Resonance Imaging) technology, followed by (ii) the 

establishment of the basis of fMRI blood oxygen level dependent (BOLD) by Sieji Ogawa 

and colleagues in 1990 (Ogawa, Lee, Kay, & Tank, 1990). Since then, fMRI has been 

developed into the most prominent method used in functional brain imaging (Horwitz, 

Friston, & Taylor, 2000). 

III.3 Magnetic resonance imaging (MRI) 

Magnetic Resonance Imaging (MRI) is a widely used technique to probe the 

anatomical and functional localization tool in neuroscience. MRI has been traditionally 

employed for structural analysis found in medicine seeking to enable the visualization and 

analysis of detailed internal structure of the body by producing pictures of soft tissues, 

organs and other internal structures. 

Mainly, this technology is based on the fact that magnetic resonance signals are 

created by atomic nuclei from certain atoms (such as hydrogen, sodium, and phosphorous) 

when excited by radiofrequency (RF) (van Geuns et al., 1999). MRI provides a large 

number of flexible contrast parameters. This provides an excellent soft tissue contrast. 

MRI brain imaging technique was first implemented by (Lauterbur, 1973). Several 

more years later, an imaging hardware has been developed for producing high-quality 

diagnostic images of the human body. After this, MRI has become a vital tool to use in 

diagnostics and facilitated the work of neuroscientists. Since the early 1980s, MRI has 

revolutionized diagnostic imaging in medicine because it provides unique contrast 

between soft tissues and high spatial resolution. Also, MRI has increasingly become 

indispensable technique in several research fields such as biology, engineering, as well as 

materials science. 

The physical principles behind MRI rely on the phenomenon of Nuclear Magnetic 

Resonance (NMR). They were discovered independently in 1946 by two different groups 

of investigators. The first was in (Harvard) and the second was in (Stanford). In their 

work, they have developed methods for determining with precision magnetic nuclear 
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measurements (Bloch, 1946)(Purcell, Torrey, & Pound, 1946). More recently, NMR has 

been employed in exploring more complex structures such as living tissues. Thus, 

numerous applications have been applied nowadays in the clinic thanks to its potential to 

yield images of the body (through MR imaging) due to the spatial resolution at a 

millimetric scale.  

MRI technology uses hydrogen proton nuclei, by far the most abundant in the 

human body where present in great concentration in water and macromolecules, to 

generate the images (Sands & Levitin, 2004). The hydrogen atoms absorb energy by the 

form of RF pulses and re-emit it as magnetic resonance which is perceived as a small 

voltage in a receive coil. Two mechanisms, known as T1 and T2 relaxation, bring the 

hydrogen nuclei back to a relaxed state. The relaxation time depends on molecule size and 

binding to other molecules (McKie & Brittenden, 2005). It should be noted that all tissues 

(e.g. muscle, bone, ligaments and tendons) have different T1 and T2 relaxation times. 

Based on this principle, it is possible to represent the tissues with different intensities in 

the scan images, measuring the energy emitted by the hydrogen atoms and applying 

different times of detection (TE, time to echo) and repetition of the RF pulse (TR, time to 

repetition). The obtained images have a good spatial resolution (in the millimetre scale) 

with a good contrast resolution (i.e. the ability to distinguish between two different 

tissues).  

For more detail about the history and physical principles of the MRI technique, we 

invite the reader to see (Lauterbur, 1973). The interest of this chapter is to give a much 

more simplistic perspective of MRI in order to give just an overall understanding of its 

mechanisms. This is essential and necessary in view of the fact that MRI is the base of 

fMRI. A relatively new imaging technique (fMRI) , relying on sensitivity of the NMR 

signal from brain tissue to the different magnetic properties of oxygenated and 

deoxygenated blood, has revolutionized research in functional brain mapping. To simply 

explain this relation, we say that fMRI functionality maps into the brain structure obtained 

by MRI uses the same principles of magnetic resonance. The fundamental principles of 

Blood Oxygenation Level Dependent (BOLD), on which fMRI rely, are described in 

detail in the following section. 
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III.4 Blood oxygen level dependent (BOLD) 

The most common approaches towards fMRI use the Blood Oxygenation Level 

Dependent (BOLD) contrast. In 1990, Seiji Ogawa first demonstrated that by measuring 

the blood-oxygenation-level-dependent (BOLD) signal in rats. He observed that the 

intensity of the vascular signal in gradient-echo (GE) images decreased when blood was 

deoxygenated, and increased when the flow of freshly oxygenated blood increased. It was 

hypothesized that this effect, which later was termed as Blood Oxygenation Level 

Dependent (BOLD) contrast, would be used to visualize brain function (Ogawa et al., 

1990).  

In addition, several works have been developed in this context such as the work of 

(Kwong et al., 1992) that made functional mapping using the BOLD contrast. 

Furthermore, they have used long blocks of sustained visual stimulation followed by rest. 

The authors reported a sharp increase of the fMRI signal in relevant brain areas that 

remained for the whole stimulation period. The result was also demonstrated by (Ogawa 

et al., 1992) . In this case, (Bandettini, Wong, Hinks, Tikofsky, & Hyde, 1992) made an 

experiment using a motor task to reveal brain activation and obtained similar results. 

Later, Blamire and colleagues performed a visual experiment cortex reported that even 

short duration stimuli gave rise to the same kind of MR signal increase (Blamire et al., 

1992). However, they reported that there was a small delay, of approximately 3.5 seconds, 

between stimulus onset and the observable signal increase. To sum it up, we can say that 

the BOLD of fMRI was introduced by (Bandettini et al., 1992; Blamire et al., 1992; 

Kwong et al., 1992; Ogawa et al., 1992). 

The BOLD fMRI technique is designed to measure primarily, changes in the 

inhomogeneity of the magnetic field that result from changes in blood oxygenation. It 

allows measuring the ratio of oxygenated (HbO2) to deoxygenated hemoglobin (dHb) in 

the blood. In other words, it doesn’t measure neuronal activity directly. Instead, it 

measures the metabolic demands (oxygen consumption) of active neurons, figure III-1 

illustrates the BOLD mechanism of fMRI figure III.1.  

 fMRI measures changes in cerebral hemodynamic which provide an indirect 

measure of neuronal activity. The dynamical properties of fMRI signals highly depend on 



Chapter III Functional Magnetic resonance imaging fMRI 
 

47 

the neurovascular coupling that relates vascular changes to neural activity (K. J. Friston, 

Mechelli, Turner, & Price, 2000).  

 

Figure III-1 BOLD mechanism of functional MRI 

Blood-oxygen level-dependent signal mechanism (see figure III-1 (B)) 

oxyhaemoglobin and deoxyhaemoglobin blood flow during rest and activation. 

 Several research groups have repeated and extended their experiments. These 

experiments have been used to answer research question about brain activity and they 

helped them in investigating human brain function. Nowadays, fMRI is the standard tool 

for functional neuroimaging and it is capable of performing functional imaging due to the 

high availability of MR scanners. This has resulted in an explosion of fMRI studies and it 

has implied increase in the number of publication about fMRI field as illustrated in Figure 

III.2. The most common clinical application of fMRI is perhaps pre-surgical mapping of 

eloquent areas and evaluation of hemispheric language dominance prior to temporal 

lobectomy of certain epilepsy patients. 
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Figure III-2 the number of fMRI publications by year (Stelzer, Lohmann, Mueller, Buschmann, & 

Turner, 2014) 

III.5 Hemodynamic Response Function 

The major aim for all fMRI conducted experiments is to gain a better understanding 

to neural activity. As previously mentioned, neurons require energy, which is supplied by 

blood flow, in order to function. However, BOLD fMRI does not measure the activity of 

neurons directly. Instead, it measures the metabolic demands of active neurons. Giving 

this, reaching the above fMRI objective is waiting for further study.  

To address this gap, the fMRI evoked response needs to be modelled using the so-

called Hemodynamic Response Function which is a nonlinear function. In other words, 

we have to model the BOLD response into an impulse input. The box-car standard, the 

Gaussians and the canonical model proposed in (K. J. Friston, Jezzard, & Turner, 1994), 

(Aguirre, Zarahn, & D’esposito, 1998) are some of the several HRF models that have 

been developed. They have an essential role to play in characterizing the onset of the 

stimulus.  

The hemodynamic response is the basis for the BOLD (Blood Oxygen Level 

Dependent) contrast in fMRI. Mainly, the hemodynamic response occurs within seconds 

of the presented stimuli. In the current section, we focus on the study of the canonical 

HRF model. As presented figure III-3, this model is divided into two parts; the first part 

describes the peak whereas the second one is employed to model the undershoot. A good 

model for the canonical HRF is obtained by the function whose peak is situated between 
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4-6 seconds (Gjedde, 2001). The relationship between the stimulus and BOLD response, 

denoted by y(t), is typically modelled as the convolution of the stimulus function with an 

impulse response ( HRF) as presented in the following equation: 

y(t) = s(t) ⊗ h(τ) =  ∫ s(t − τ)h(τ)dτ
T

0
   (III.1)  

where h(t), y(t) and s(t) denote HRF , the result and the unprocessed fMRI signal 

respectively. 

The convolution result is known as epochs in SPM (Statistical Parametric Mapping) 

(K. J. Friston, Holmes, et al., 1994). The canonical HRF performs well in many 

experiments. However, some activated voxels are ignored due to the fact that the real HRF 

varies in different people and in different brain regions of the same person as well (Penny, 

Holmes, & Friston, 2003) .  

 

Figure III-3 Model of Canonical hemodynamic response 

III.6 Guidelines and Design for fMRI experimental studies  

Generally, the study of fMRI time series is related to the activity of neurons in 

response to an input stimulus during the course of an experiment. Various fMRI analysis 

methods derived from methods of processing and statistical analysis have been used. They 

can be classified into two main groups: (i) the hypothesis-based methods, such as the 

general linear model (GLM), and (ii) the data-driven methods including clustering 

methods, Principal Component Analysis (PCA) and Independent Component Analysis 

(ICA). In fact, ICA has proven to provide a powerful method for the exploratory analysis 

of temporal and spatial fMRI data. All methods have, as common factor, the ability to 

identify more meaningful areas of brain activation in a patient (Bogorodzki, Rogowska, & 

Yurgelun-Todd, 2005). 
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Developing successful fMRI experiments requires careful attention to experimental 

design, data acquisition techniques, and data analysis. The fMRI data analysis greatly 

depends on cerebral hemodynamic changes, known as Hemodynamic Response Function. 

Thus, it is necessary to take into account the spatial and temporal resolutions of these 

hemodynamic effects. The spatial characteristics resulting from cerebral vasculature and 

the temporal characteristics relate to the inherent delay of signal changes in response to 

neural activity and the hemodynamic changes resulting dispersion over time.  

Within fMRI methodology, there are three different ways typically used to present 

the stimulus based on the temporal characteristics of the hemodynamic phenomena. As 

illustrated in figure III-4, the three kinds of design are blocked, event-related or mixed 

(Petersen & Dubis, 2012) . 

 

Figure III-4 (a) bloked design (b) Event-Related design (c) Mixed design fMRI experiments 

(http://thoughtsfromanisland.tumblr.com/post/61730578866/fmri-experimental-designs). 

III.6.1 Blocked design:  

This category of paradigm is based on segregating different cognitive processes by 

presenting stimuli sequentially within a condition into distinct time periods. In other 

words, the experience is performed in continuous mode in blocks of time (typically lasting 

20-30 sec). The measurements are done following injection of radioactive bolus. 

Alternating these with other moments (epochs) is when a different condition is presented. 

The alternation of two conditions is known as an ‘AB block’ design. In this case, a boxcar 

designs with alternating activation and rest have been used in which a ‘cycle’ corresponds 
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to two epochs of each condition whose purpose is to create a "steady state" of neuronal 

and hemodynamic changes. This is an excellent way for determining small changes in 

brain activity.  

At the beginning, blocked design (see figure III.4 (a)) has gained a considerable 

attention in the fMRI experimentation. According to Matthews and Jezzard (Matthews & 

Jezzard, 2004), the most efficient design for the BOLD fMRI data analysis is the block 

design. The later uses long alternating periods, during each of them a discrete cognitive 

state is performed. Furthermore, these two different states alternating during the 

experiment serve to prevent that patient, related artifacts or scanner sensitivity result in 

different impacts on the signal responses from both states. Block designs are well suited to 

localize functional areas and study steady state processes (e.g. attention). They are 

powerful in terms of detection and determination of which voxels are activated. (Chee, 

Venkatraman, Westphal, & Siong, 2003) On the other hand, block designs have a poor 

estimation power because of summation of the hemodynamic responses in time, i.e. a 

weak ability to determine the time course of the response.  

III.6.2 Event-related design  

Event-related designs are based on the assumption that neural activity will occur for 

short and discrete intervals. Experimentation based on Event-related designs have become 

increasingly very popular in fMRI research (Dale, 1999)(K. J. Friston, Zarahn, Josephs, 

Henson, & Dale, 1999) (Buračas & Boynton, 2002). Basically, Event-related designs 

(figure III.4 (b)) allow different trials or stimuli to be presented in arbitrary sequences, 

thus eliminating potential confounds, such as habituation, anticipation, set, or other 

strategy effects. Data may be recorded to monitor the BOLD response following a marked 

(pre-determined) event such as a single stimulus or task. In this type, each event is 

separated in time by an Inter-Stimulus Interval (ISI) ranging from few second to 20s. 

Temporal response patterns and the hemodynamic response characteristics associated with 

the linear application of multiple stimuli are used. Event related designs are based on the 

assumption that neural activity will occur for short and discrete intervals. These last are 

applied individually and in random order and measure the hemodynamic response to each 

of them. This method may be further divided into:  



Chapter III Functional Magnetic resonance imaging fMRI 
 

52 

• Design of spaced single study with long intervals between stimuli and used in 

order to allow that in the end of each stimulus the hemodynamic response 

returns to its resting state);  

• Design of fast single study takes advantage of the property of linearity and 

superposition of the hemodynamic response.  

One of the major important points for these studies is to know how to recognize the 

key variables to consider such as spatial resolution, temporal resolution, and cerebral 

coverage and signal to noise ratio (SNR). Thus, they can be conveniently manipulated to 

obtain the desired results. To obtain a very high spatial resolution, it is essential to reduce 

the temporal resolution, limit the coverage and reduce cerebral SNR.  

Concerning the event-related designs, the estimation power (how does its activity 

change over time) is often good. They permit inquiring the hemodynamic shape for each 

condition and comparing parameters such as the amplitude or the timing between 

conditions. Event-related designs are able to randomize and mix different types of events. 

This ensures that one event is not influenced by others and not affected by the cognitive 

state of an individual. So, there is no predictability of events. 

 However, the detection power is relatively weak when compared with blocked 

design. This is due to the fact that experimental power depends on the number of events 

that are averaged. Furthermore, other important aspects associated with these techniques 

must be considered, such as the extremely high financial costs and restrictions on patient 

safety (Cox & Savoy, 2003).  

III.6.3 Mixed designs 

Several researchers have recognized the need to take into account two distinct types 

of neural processes during fMRI tasks that use a combination of block and event-related 

designs which will be able to provide information relating to ‘sustained activity ‘versus 

‘transient activity’ during paradigm performance . This technique is an interesting mixture 

of the characteristic block design measurement of repetitive sets of stimuli and the 

transient responses detected by event-related designs. It allows extracting brain regions 

exhibiting an item-related pattern of information processing (transient), or a task-related 

information processing (sustained). In doing so, mixed designs (figure III-4 (c)) have 
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added a new perspective to psychologists to explore fMRI in understanding ‘what’ is the 

role of certain node of a network subsiding a task.  

The mixed design has been used in a large number of studies over the intervening 

years since its inception. Although it has been applied successfully in memory studies, it 

involves more assumptions than other designs, and the researcher will have to tackle 

issues associated with poorer HRF shape estimation, and post hoc analysis of behavior 

correlated activation.  

To sum it up, the following table highlights the main limitations and strengths of the 

three types of fMRI experimental designs 

Table III-1: Comparison of fMRI designs 

 Blocked Design Event- related design Mixed design 

A
d

v
a
n

ta
g
es

 • Powerful for detecting 

activation 

• Useful for examining 

state changes 

• Powerful for estimating 

time course of activity 

• Allows determination 

of baseline activity 

• Best for post hoc trial 

sorting 

• Best combination 

of detection and 

estimation 

• Much more 

complicated analyses. 

li
m

it
a
ti

o
n

s 

• Sensitive to head motion, 

especially when only a few 

blocks are used. 

• Many tasks cannot be 

conducted repeatedly 

• Poor choice of baseline 

may preclude meaningful 

conclusions 

• Very sensitive to signal 

drift 

• Difficult to estimate the 

HDR 

• Long intervals do not 

optimally increase stimulus 

variance 

• Short intervals may 

result in refractory effects 

• Length of “event” may 

not be known  

• Detection ability 

dependent on form of HDR 

• requires power 

considerations different 

from both block 

designs and event-

related designs 

• Consideration of 

the number of subjects 

is necessary when 

designing mixed design 

experiments. 

III.7 The Principle of The General Linear Model 

The general linear model (GLM) has the following form: 

yi = β
0

+ xi1β
1

+ ⋯ + xikβ
1k

+ ⋯ + xipβ
p

+ εi i = 1,2,3 … . , n  (III.2) 

where yi stands for activate value of voxel in the Ith scan, i.e, the measure in time ti. 

Our interest focuses on the temporary evolution of a voxel which is represented by a 

column vector with a length n corresponding to n instants of images’ acquisition. Let m be 
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the total number of voxels in a cerebral volume. Column (yi) vectors are collected in a 

matrix denoted by Y with a size (n×m) in order to present the evolution of times series. 

The matrix becomes as follows: 

Y = Xβ + ε         (III.3) 

where X denotes the design matrix which contains prior information on the protocol 

including a set of tasks carried out by the subject, or a set of stimulus to which the subject 

is submitted. Assuming that p is in general very inferior to (n and m), The design matrix 

has a size of (n×p). It is important to note that the dimension is proportional to the factors’ 

number (types of stimulus, of tasks) considered in the study. As aforementioned above, 

our work aims to generate this design matrix from the already known information about 

the experiment. Let Β be the vector that contains parameters βi which we seek to estimate 

and let ε be the vector which contains the residues (errors) εi that we suppose to be 

independent and identically distributed according to a normal law: N(0, σ2).  

Once the model is constructed, we seek to find for each voxel of cerebral volume the 

linear combination of the model functions which better describes the temporal signal 

corresponding to a voxel i.e. it adjusts data to model. Given this, we search to reach the 

exact following linear decomposition:  

Y = Xβ         (III.4) 

Therefore, the sum of errors will be minimized as (∑ ε2) 

The estimation of β obtained by the method of least squares is given as follows: 

 β̂ =  (XTX)−1XT          (III.5) 

It is worth to note that computing of β parameters requires the calculation of the 

inverse matrix  (XTX)−1 However, this one is badly scaled, in the sense that its 

determinant value is close to zeros (det(XTX)−1 ≈0) and yet can result in producing errors 

in calculation. To overcome this problem, we will resort to the use of Pseudo-inverse (X)+ 

de Moore-Penrose [5] for the estimation of β. 

β̂ =  (X)+Y  (III.6) 
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While certain parameters will be important such as the effect of a particular sensory 

motor, cognitive state or the coefficient of regression of hemodynamic responses on the 

time of reaction, other parameters will be with no significance and they are connected 

with corresponding effects.  

Inference on the estimation of parameters is realized by using its estimated variance 

i.e. we estimate the residual variance, σ̂2
 , for each voxel j. For better clarification, σ̂2

 

refers to the variance of errors and it is calculated by: 

σ̂
2 =

1

N−p
(y − Xβ̂)T(y − Xβ̂)  (III.7) 

where N and p are the dimensions of the design matrix (X).  

In order to detect the functional activity, a t-test T (t-test student)[6] has been 

employed to make a test of the null hypothesis (H0) . In this test, we intend to introduce 

line vector C called contrast. C=[1 0 0 ..00]) is an example of such contrast. 

By the t of t-test, we mean the contrast of parameters estimated on the root of the 

estimated variance. This one denotes a distribution of student in (N-P) degree of freedom 

whose statistic value is calculated by: 

t =
CTβ̂

√σ2CT(XTX)−1C

  (III.8) 

As a final point, a Comparison of (t) calculated with a distribution (tα) of Student to 

(N-P) degrees of freedom is performed to turn the hypothesis (H0) out to be true.  

Supposing that tα =1.96, we get α =0.05 if |t| > tα, then we say that the voxel is 

significantly active. We trace the absolute value of t in the site of the treated voxel. The 

performed process is repeated in the same way for each voxel. 

III.8 Conclusion 

In recent years, functional Magnetic Resonance Imaging has become the most 

dominant technique to reveal better insights of the brain function due to its high spatial 

resolution. The focus of the current chapter was placed on introducing fMRI basics to the 

widest possible audience.  
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 At first, the chapter briefly provided a brief history about fMRI. And then, it 

presented the BOLD effect in details. The latter is an essential element in the next chapter. 

After this, the basic model to generate fMRI signal was described. Also, the components 

of an fMRI experiment were discussed. At last, we highlighted the principles of the 

General Linear model. 



 

 

IV Chapter IV  

State of the art of EEG/ 
fMRI information fusion 

 

The figure shows the EEG electrode placement on the scalp when 
the subject is placed in the MRI head coil. From Bergen fMRI Group, 
GE 3.T Signa MR scanner with NNL Inc. LED goggles, and 
BrainProducts EEG amplifiers.
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IV.1 Introduction 

 Brain imaging techniques such as Functional Magnetic Resonance Imaging and 

(fMRI) and electroencephalography (EEG) provide complementary spatio-temporal 

information about the brain function. Each modality has its own advantages. For example, 

EEG reflects the brain changes on timescale of millisecond (Eichele et al., 2008), which 

means that it can capture the brain dynamic changes very well. However, it has poor in 

spatial resolution due to being recorded from a limited number of electrodes. On the other 

hand, fMRI is powerful in investigating the brain function however it is slow in following 

the brain activities because it relies on the brain blood flow response rather than electrical 

activities(Steinberg, Bowman, & White, 1999). Given this, the integration of information 

obtained from these two modalities promises to provide a better understanding of brain 

function(Calhoun & Adali, 2009).Various methods have been developed to combine high 

spatial resolution data provided by fMRI with high temporal resolution generated by EEG 

(Bonmassar et al., 2001) (Calhoun, Adali, Pearlson, & Kiehl, 2006). The volume of papers 

and number of applications are steadily increasing (see Figure IV-1).  

This chapter is devoted to shed the light on EEG/fMRI integration. At first, we begin 

with a description of state of the art of EEG-fMRI fusion techniques by providing the 

contribution about EEG and fMRI fusion data and especially their complementary natures 

based on a systematic technique. 

 

Figure 0-1: Number of papers per year for EEG, fMRI, and their fusion (https://scholar.google.fr) 



Chapter IV State of the art of EEG-fMRI information fusion 
 

58 

IV.2 State of the art of fMRI-EEG fusion methods 

 In the investigation of brain processes, both EEG and fMRI techniques have clearly 

shown their ability as non- invasive techniques to measure different attributes of brain 

activity. Therefore, the high temporal resolution and spatial resolution that can be 

separately acquired by EEG and fMRI respectively have received considerable attention 

during the past decade.  

However, it is difficult to estimate the neural activity from homodynamic response 

since fMRI data analysis relies on slow mechanisms such as blood flow, oxygen 

consumption and metabolism which yield only an indirect measure of the evoked BOLD 

signals. Likewise, it has been clearly observed that fMRI suffers from an ill-posed 

temporal inverse problem. On the other hand, the EEG modality suffers from spatial 

inverse problem beside noise raised due to the unavoidable artifacts during the course of 

the experiment which can strongly degrade the EEG signals quality.  

 Based on the fact that strengths and weaknesses of fMRI and EEG complete each 

other, simultaneous EEG-fMRI acquisition applications are fast becoming a key technique 

to provide a more comprehensive understanding of the nature of the cerebral activity with 

its enhanced spatiotemporal resolution. More specifically, the aim of this technique is to 

pinpoint the neural sources of epileptogenic EEG activity for both diagnosis and 

presurgical planning (Ives, Warach, Schmitt, Edelman, & Schomer, 1993). Primarily, both 

EEG and fMRI data measures the activity of neurons where the EEG, revealing the Event-

Related Potentials (ERP) for investigating the psychophysiological states and information 

processing, is typical for the electrical activity and fMRI data are concerned with the 

hemodynamic signal. It is worth to note that the evoked electromagnetic and metabolic 

responses which are detected by both EEG and fMRI are not essentially the result of the 

same primary neuronal processes (Pflieger & Greenblatt, 2001). This will be the focus of 

this chapter. As will closely follow, this approach is categorized into symmetrical fusion 

(model or data) driven (Lei, Valdes-Sosa, & Yao, 2012). In figure IV-1, a brief summary 

to the EEG-fMRI fusion approaches is given. 

During the past decade, a great effort has been devoted to develop EEG-fMRI 

integration procedures to take full advantage of the complementary data available from 

both modalities. Mainly, the existing potential approaches can be divided into two 
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categories. First, the asymmetric methods are divided into two influential approaches, 

fMRI informed EEG and EEG-informed fMRI analysis. The second category is the EEG-

fMRI symmetric method. In the asymmetric approaches for EEG- FMRI analysis, prior 

information of one modality is considered as a cause or a predictor of the other. That is, it 

serves as a guide for the analysis of the other modality. 

Assuming that “Neuronal activity” , denoted as ζ, can be divided into two related 

sub-spaces, EEG ζ and fMRI ζ that correspond to the parts of ζ that contribute to EEG and 

fMRI signals, respectively (Daunizeau et al., 2007). As will be illustrated in figure IV.2, 

the intersection 1 ζ describes a “common substrate” of neuronal activity. In contrast, 2 ζ 

(respectively 3 ζ) stands for the subspace of neuronal activity detected by EEG 

(respectively fMRI) that does not contribute to fMRI (respectively EEG) measurements. 

 

  

 

 

 

 

 

IV.2.1  Asymmetric approaches 

fMRI informed EEG, known as fMRI-constrained EEG imaging, employs spatial 

information from fMRI signal for reconstructing the source of the EEG signal (Dale et al., 

2000) (Trujillo-Barreto, Martinez-Montes, Melie-Garcia, & Valdes-Sosa, 2001) (Lei, Qiu, 

Xu, & Yao, 2010). This approach has proven to be of high utility by providing a high and 

clear spatiotemporal resolution particularly in the neural generators of scalp EEG 

phenomenon. Nevertheless, it does not consider the variability in neural events which 

occur during the course of the experiment. However, EEG-informed fMRI technique is 

concerned with modelling the fMRI signal with features from EEG convolved with the 

hemodynamic response function (HRF) (Mart\inez-Montes, Valdés-Sosa, Miwakeichi, 

Figure 0-2: Formalization of the EEG/fMRI coupling-uncoupling 

(Daunizeau, Laufs, & Friston, 2009) 
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Goldman, & Cohen, 2004) (Eichele et al., 2008). Using this technique, analysts are able 

not only to establish a link between the physiological measures of several modalities, also 

to reveal the relationship linking physiology and differences in perception, behavior ad 

cognition. However, the symmetric approach implies the use of a common forward or 

generative model to explore and to explain EEG and fMRI data jointly. (Daunizeau, 

Laufs, & Friston, 2009)(Deco, Jirsa, Robinson, Breakspear, & Friston, 2008), (Valdes-

Sosa et al., 2009).  

 In the context of asymmetrical approach, several methods have been proposed to 

fuse EEG and fMRI. In this technique, one modality is based on the assumption of another 

modality to detect neuronal activity (Pflieger & Greenblatt, 2001). As mentioned in 

(Baillet, Mosher, & Leahy, 2001) there are two models for source structure: The first is 

equivalent current dipole and the second is distributed source.  

The Equivalent Current Dipole (ECD) method (Scherg & Von Cramon, 1986) is 

employed to limit the location of the dipoles in order to be within fMRI active region 

(George et al., 1995) . Likewise, the ECD method is also used by employing Markov 

Chain Monte Carlo sampling and a Baysian formulation for fMRI mappings (Jun et al., 

2008). Despite the popularity of ECD methods in practice, they suffer from major 

drawbacks. The number of dipoles is specified by the user. In addition, the optimization 

algorithm is not capable of finding the optimal dipole due to a local minimum, (Yao & 

Dewald, 2005). 

 Distributed Source Model (DSM) allocates a large number of dipoles with fixed 

locations which are dispersed over the cortex (Hämäläinen et al., 1993). Using dipoles 

with fixed locations implies that the forward problem is linear and the source localization 

can be regarded as solving an underdetermined linear system of equations.  

Recently a Gaussian Source Model, referred to as GSM, has been introduced to 

integrate both ECD and Distributed Source Model (Lei et al., 2010). According to (Lei et 

al., 2012), GSM is mainly based on the parallel array of pyramidal neuron and the 

propagate property of cortical activity. In contrast, an alternative technique depends on the 

data in order to automatically extract sparse or distributed model (K. Friston et al., 2008). 

It is worth to note that both models are integrations of previous extreme source models 
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and are physiologically reasonable for EEG source reconstruction. The method relies on 

an adaptive Wiener filter and it is supposed that the energy of the electrical activity at 

every location on the cortex is proportional to the magnitude of the BOLD response at the 

same location (Liu & He, 2008). Phillips et al. introduced an approach based on a 

Bayesian EEG source localization method which can automatically choose priors from a 

set of candidate priors (Phillips, Mattout, Rugg, Maquet, & Friston, 2005),(Mattout, 

Phillips, Penny, Rugg, & Friston, 2006). Location priors can be derived from fMRI 

activation maps when using such a method for EEG/fMRI fusion (Mattout et al., 2006). 

The prominent methods that have shown their ability in the analysis of combining 

EEG and fMRI data such As Principal Component Analysis (PCA) and Independent 

Component Analysis (ICA) can be used to explain the information observed from both 

modalities EEG and fMRI (Brookings, Ortigue, Grafton, & Carlson, 2009). Other 

methods based on multiple regressions of the BOLD on all EEG frequency bands or entire 

decomposed features(Laufs et al., 2003), (Eichele et al., 2008) have emerged  from  

studies of EEG rhythm and have also shown that the relationship between EEG and fMRI 

is accordingly misled by high correlation between different frequency-band EEG signals 

(De Munck et al., 2007). 

 In this context, numerous studies based on convolution of both EEG features with a 

standard HRF (Lange & Zeger, 1997) have been conducted. In this case, hemodynamic 

response correlates with EEG rhythms (Goldman, Stern, Engel Jr, & Cohen, 2002), (Laufs 

et al., 2003) and adaptive modulations of event related responses (Debener, Ullsperger, 

Siegel, & Engel, 2006). However, several reports have shown the variability in the shape 

of the HRF as a function dependent on regions, subjects, age, task, sex, and sessions 

(LeVan, Tyvaert, Moeller, & Gotman, 2010), (Masterton et al., 2010). Other reports have 

interested in an intricate EEG phenomenon in epilepsy (Salek-Haddadi et al., 2003) . HRF 

is stochastic model. Then this model is dependent on a specific shape of BOLD response 

may be an attractive alternative (Sturzbecher et al., 2008)(Sato, Rondinoni, Sturzbecher, 

de Araujo, & Amaro, 2010). However, these approaches have common problems which 

are the large number of parameters and lack in statistical inference. 
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IV.2.2 EEG/fMRI SYMMETRICAL FUSION 

As noted above, the main focus of this work lies on symmetrical approach wherein 

we introduce a new method based on Dempster-Shafer theory in order to fuse EEG and 

fMRI analysis. Explaining and analyzing both modalities (EEG/fMRI) simultanuosly in 

symmetrical fusion approach entails using a so- called forward model (or generative 

model) that specifies the relationships between data and its sources. In contrast, the 

asymmetrical approaches refer to one modality (EEG / fMRI) privileged status as a prior 

knowledge for the other modality (Mart\inez-Montes et al., 2004). Including model-driven 

and data-driven fusion (Lei et al., 2012), as will be closely described with more details, 

symmetrical fusion techniques do not necessitate prior understanding. Regardless of the 

fact that each of data and model is individual, it seems obvious that the combination and 

interaction of data and model would be promising in the future for the simultaneous 

EEG/fMRI techniques figureIV.3. 

IV.2.2.1 SYMMETRICAL MODEL-DRIVEN 

 Model-driven symmetric fusions, such as GLM, require a precise biophysical model 

that shows pos-synaptic potentials to EEG on one hand and BOLD signals on the other 

hand(Valdes-Sosa et al., 2009),this means that, Model-driven symmetric fusion is 

predicated on basis of the activity of an ensemble of postsynaptic potentials. This has two 

effects that translates into net primary current densities and then to EEG; and alternatively 

translates into vasomotor feed forward signal and then to BOLD. However, simultaneous 

EEG and FMRI recordings engages multivariate spaces and several essential specific 

actions, which in its turn gives raise to several problems for the model driven fusions. As 

a consequence, further investigation on model driven is required.  

IV.2.2.2 SYMMETRICAL DATA-DRIVEN 

Data-driven fusions are well-known for neuroimaging data study and most work 

conducted on them has measured the relationship or difference between the EEG and 

evoked BOLD signal. In brief, these techniques employ a symmetric method to mutually 

assess information provided by both modalities and allow the user to ignore the exact 

form of the response depending on an assumption of independence or orthogonality. 

Using the advantages of each modality, the ultimate objective of symmetric data fusion 

approaches is to reveal the common neuronal sources producing both EEG and fMRI 

signals with high accuracy. Taken joint ICA as an example (Lei et al., 2012), data-driven 
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fusion is typical for specific hypotheses on spatial and temporal relationships are lacking, 

or ill-specified . A fine example for such hypothesis is the traditional inference tests (K. J. 

Friston, Jezzard, et al., 1994) when they are neither demonstrated nor sensitive due to 

conservative significance thresholds. Data-driven fusion proves its ability to eliminate 

noise from the data, localize the generators of EEG phenomena and provide empirical 

constraints for model-driven methods. Also, Aspects of brain function that are previously 

unrevealed or seems difficult to model can be detected via data driven techniques. 

Examples of such aspects are those faced by neurovascular transformation function 

estimation (Deco, Jirsa, McIntosh, Sporns, & Kötter, 2009). 

 

Figure 0-3: Integration of data- and model-driven fusions. Despite the individuality between them, the 

integration and interaction of data and model might be promising for EEG/fMRI fusion. 

IV.3 EEG FMRI INFORMATION FUSION APPLICATIONS  

Since the first simultaneous acquisition of fMRI-EEG in humans (Ives et al., 1993), 

this non-invasive method is gaining a considerable attention in several research areas.  

IV.3.1  fMRI-EEG in epilepsy  

The initial motivation for EEG-fMRI was in the field of epilepsy research 

(Bonmassar et al., 2001), and in particular the study of interictal epileptic discharges (IED 

or interictal spikes), and their generators, and seizures. The Freedom from Distractibility 

Index FDI are random events and subclinical patients with epilepsy that cannot be 

observed using the EEG (or MEG). Therefore EEG recording during fMRI acquisition 

allows us to study hemodynamic changes correlated in the brain during seizures. (Gotman 

& Pittau, 2011) The method can reveal hemodynamic changes associated with IED 

attacks, and it has proved to be a powerful scientific tool.  
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Figure 0-4: the approaches of EEG-fMRI techniques fusion 

IV.3.2  fMRI- EEG for sleep study  

Several studies have used fMRI- EEG during sleep. Activation of the occipital lobe 

and deactivation of frontal lobe could be detected during paradoxical sleep (Lövblad et al., 

1999). fMRI / EEG has also been used to characterize different types of areas during sleep 

and compare their location (Schabus et al., 2007) . Other studies have been conducted 

regarding the auditory stimulation (Czisch et al., 2004), (Portas et al., 2000) and visual 

stimulation (Born et al., 2002) during sleep. However, this type of study is faced to the 

noise generated by the acquisition that can disturb sleep despite the use of quieter 

sequences (Lövblad et al., 1999). The second difficulty is the length of acquisitions that 

can reach 5-7 hours to make recordings during paradoxical sleep. 

IV.3.3  fMRI-EEG and evoked potentials  

Because of their low amplitude which requires excellent quality of the EEG signal, 

the study of evoked potentials (EP) in fMRI-EEG is quite delicate. EP obtained in MRI 

appear similar to those obtained outside of the MRI (Kruggel, Wiggins, Herrmann, & von 

Cramon, 2000). Most dedicated Evoked Potentials fMRI / EEG studies have investigated 

a spatial location thereof. The first study of PE performed simultaneously with fMRI 
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concerned visual evoked potentials (Bonmassar, Anami, Ives, & Belliveau, 1999). It 

showed that the electrical sources of evoked potentials corresponded to the fMRI 

hemodynamic activations. However, the various components of evoked potentials may be 

associated with either activation or deactivation of a hemodynamic point of view. (Kevin, 

Doug, Matthias, & Gerhard, 2008). 

IV.3.4   fMRI-EEG and spontaneous rhythmic activity  

some studies have examined the localization of alpha rhythm using fMRI- EEG 

(Goldman et al., 2002), (Moosmann et al., 2003). This rate appears on the EEG, especially 

in the posterior regions, when the subject closes his eyes.(E Niedermeyer, 1997) Those 

studies have demonstrated the activation of the thalamus and sometimes the occipital lobe 

accompanied by deactivation of the parietal and frontal regions corresponding the active 

regions during the conscious resting state, called "default mode". (Raichle & Snyder, 

2007) This state corresponds to the periods during which the brain works without specific 

instruction. 

IV.4  CONCLUSION  

We presented a state of the art of information fusion. It is remarkable that a variety 

of different methods have already proposed the concurrent analysis of EEG and fMRI 

data. The chosen methods will strongly depend on the research question addressed 

interested (applications) in the neural generators of scalp EEG phenomena; fMRI 

informed EEG is the method of choice. Analysis based on EEG informed fMRI has 

already shown the ability not only to link physiological measures of different modalities 

with each other but also to expose associations between physiology and variations in 

cognition, perception and behavior. It is also clearly observed that the EEG-fMRI data 

fusion in human systems, cognitive and clinical neuroscience is rapidly evolving and has 

received substantial attention. 



 

 

V Chapter V  

Contribution: Dempster 

Shafer theory in EEG/ 

fMRI information fusion  
 

“Andrea : La science ne connaît qu'une loi : la contribution scientifique.” 

― Bertolt Brecht 

Source: La Vie de Galilée, Bertolt Brecht (trad. Éloi Recoing), éd. L'Arche, 1990 (ISBN 

2-85181-248-3), scène 14, p. 129 - Scène 14
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V.1 Introduction 

This chapter is concerned primarily with the works realized in studying brain 

activity by both EEG and fMRI modalities signals. First, two contributions on fMRI data 

are presented.  

Basically, an accurate decision that a voxel is activated depends on the choice of 

both the metric and the clustering algorithm. Given this, a new framework for 

investigating the brain activity has been introduced in the first work. Dynamic Time 

Warping (DTW) has been used as a metric whereas the Potential-Based Hierarchical 

Agglomerative (PHA) has been employed as a clustering method. Firstly, DTW between 

all voxels have been computed to get the square matrix of DTW distance, denoted as 

DTWD. Then, PHA method uses the DTWD matrix for building clusters. Experiments 

with both real auditory and artificial simulation data have been conducted to evaluate the 

performance of the proposed approach. Then, false and positive activation rate (FAR, 

TAR) and false discovery rate (FDR) have been employed to establish a comparison 

between the new paradigm and both General linear method (GLM) and t-test method.  

Although an extensive research has been carried out on EEG-fMRI fusion, there has 

been no reliable technique until recently able to deduce exactly what is meant by neural 

activity. However, EEG-fMRI fusion needs a common theoretical framework to analyze 

and combine information sources which have different nature. Seeking to enhance the 

accuracy of the combined EEG-fMRI activation detection, the second contribution 

introduces a new approach based on symmetric fusion using Dempster Shafer theory (DS) 

to explore fMRI data. In this work, Basic Belief function and combination rule have been 

employed. More precisely, our approach aims to capture the activity of neurons which 

process and convey information through peak detected by HRF (K. J. Friston, Holmes, et 

al., 1994). However, the main hypothesis of this study is that (DS) theory can be used in 

the fusion of spatiotemporal information and can detect activate areas in the brain. 

The overall structure of the study takes the form of six sections, including this 

introductory section. In section 2  we describe the first method based on DTW and PHA 

method. Then  section 3, we describe the basics of Dempster Shafer theory. Besides the 

brief review of the hemodynamic response model, the proposed model by using Dempster 

Shafer is introduced in section three. Then, we put the proposed approach for fMRI data 
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analysis in details in section four. Together with the findings of the research, the 

conducted experiments on real and simulation data are discussed in section five. Section 

six describes the contribution of EEG-fMRI fusion with experiments and result. At last, a 

conclusion is given. 

V.2 An Efficient fMRI Data Clustering Method using PHA Algorithm and 

Dynamic Time Warping 

Recently, functional Magnetic Resonance Imaging has established its position as a 

prominent and significant subject of research. However, an accurate decision that a voxel 

is activated is a challenge that relies on the choice of both the metric and the clustering 

algorithm. Given that, this paper proposes a new framework for investigating brain 

activity where Dynamic Time Warping (DTW) has been used as a metric and the 

Potential-Based Hierarchical Agglomerative (PHA) has been employed as clustering 

method. Mainly, this technique seeks to detect activated areas by using a hybrid approach 

that implies to take into consideration the power or the advantage of these two methods 

that are described in details in what follows closely.  Thus, an extensive study of the 

method has been conducted to evaluate the influence of the parameters of the method on 

the overall performance. 

V.2.1 Dynamic time warping 

This section is designed to give a brief introduction about Dynamic Time Warping 

(DTW) that has been used for comparing and computing the distance and aligning the 

time series data as well. DTW was originally developed for speech recognition (Sakoe & 

Chiba, 1978). Furthermore, it has been widely applied in different fields such as 

econometrics,  bioinformatics, data mining, signal processing, handwriting recognition 

and time series (Niennattrakul & Ratanamahatana, 2007),(Gu & Jin, 2006),(Bahlmann & 

Burkhardt, 2004).  In the current study, time series represent fMRI signals (voxels). Given 

two sequences of voxels vi and vj represented by the values (x1,x2…..xm) and y1,y2…..ym) 

respectively, two principal steps are necessary in this technique. The first is time warping 

whereas the second step is to determine the best path. After performing these steps, the 

DTW distance (DTWD) is obtained.  

In this case,   (m×m) distance matrix (M) is constructed where each cell M[i,j] of 

this matrix represents the distance between the (xi, yj) elements of both sequences vi and 
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vj denoted by d(xi, yj)=(xi-yj)2. The best path built by DTW  that conducts to the DTWD 

metric is a sequence of points P=(p1,p2,  pk) called the warping function  with pl=(pi,pj) ϵ 

[1..m]×[1..m] for l  in  [1..k] which must satisfy the following constraints: 

1. Boundary condition:  

The alignment begins at p1(1,1)i.e.  it is situated in the bottom at left and ends  at 

pk(m,m) in the top at right. 

2. Monotonicity condition:  

It consists to preserve the time ordering of elements so that xi is after xi-1 and so on. 

In  other word, we can note this by x1<x2<x3…..<xm for sequence vi and 

y1<y2<y3…<ym for vj  

3. Continuity:   

This constraint is to ensure that important features are not omitted; so does not jump 

the alignment in time index whereas aligning sequences. In other word, the warping path 

is composed by adjacent cells. 

 

Figure V-1: The optimal warping path aligning time series 

The dynamic programming is an optimal solution for finding the warping path 

where the cumulative distance dtw[i,j] used is defined as:  

dtw[i,j] = d[i,j] + min{dtw[i-1,j-1], dtw[i-1,j], dtw[i,j-1]}  
DTW(vi, vj, D) // vi and vj are the two sequences . 

 D refers to the distance matrix, each d[i,j] in D is the distance  between xi and yj. 

The algorithm of DTW can be summarized as follows: 
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dtw[ ]= new double [n,m];           // initialize matrix dtw 
 dtw[0,0]= 0;  

for i = 1: n;  
dtw[i,1]= dtw[i-1,1] + d[i,1];  

 for j= 1:m;  
 dtw[1,j]= dtw[1,j-1] + d[1,j];  

 for i = 1: n;  
 for j= 1: m;  

 dtw[i,j]= d[i,j]+min{dtw[i-1,j-1], dtw[i-1,j], dtw[i,j-1]}  
return dtw distance; 

  

V.2.2 PHA algorithms  

Clustering methods are one of the important steps used to separate activated voxels 

from non-activated voxels in fMRI data analysis. Seeking to find an efficient clustering 

algorithm with a high performance, the potential-based hierarchical agglomerative (PHA) 

clustering method has been used (Lu & Wan, 2013). This method can separate data into 

groups based on certain similarities. There are two kinds of clustering methods; partitional 

and hierarchical. However, PHA method is classified into hierarchical types that give a 

nested clustering result in the form of dendrogram. So that, several levels of partitions can 

be obtained. PHA method produces the potential field. For two points i and j, if ri,j is the 

distance between them, the potential at point i from point j is given by the formula:  

∅i,j(ri,j) = {
−

1

ri,j
 if ri,j ≥ δ

−
1

δ
 if ri,j < δ

  (V.22) 

Where δ is used to avoid the problem of singularity when ri,j becomes zero 

The total potential at point i is the sum of potentials from all the data points and 

described as follows: 

∅i = ∑ ∅i,j(ri,j)j=1..N   (V.23) 

where N stands for the total data points. 

 In the PHA method, both the potential field produced by all the data points and the 

distance matrix are used to define a new similarity metric. In potential field model, 

different distances have being used such as Euclidian distance and Euclidian squared 

distance which are not useful to find distance between time series. For that reason, we use 
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in this work dynamic time warping as a distance between two voxels because it is an 

efficient technique in aligning and analyzing time series. 

Once the potential field model is constructed, PHA proceed to build edge weighted 

tree by using function to compute for each point the weighted and parent node. Finally, 

these metrics are used to build dendrogram. For more details about PHA method, we 

invite the reader to see (Lu & Wan, 2013). The PHA clustering algorithm is as follows: 

PHA_Clustering(Dist[1..N,1..N] { 

 δ← the value computed from Dist[1..N,1..N]  

(parent[1..N], weight[1..N])←Build_Edge_Weighted_Tree(Dist[1..N,1..N], δ) 

(dendrogramRoot,dendrogramParent[1..2×N-2])←Build_Dendrogram(parent[1..N], 
weight[1..N]) 

Rturn(dendrogramRoot,dendrogramParent[1..2×N-2]) 

} 

 

The algorithm described above has time complexity O(N2) and allows to choose a 

max number of clusters , denoted as (k). However, generating automatically a number of 

clusters that is less than or equal to the selected max number (k) is done by using 

CLUSTER function provided by Matlab. The CLUSTER function constructs clusters 

from a hierarchical cluster tree. Among these clusters, we show the target cluster and 

more information like the number of voxels by cluster and the centroid of cluster denoted 

by (c) as well. 

V.2.3 Proposed approach   

This section provides details about the introduced framework to explore and analyze 

fMRI time series by using DTW and PHA clustering methods to accurately mapping brain 

activated areas.  The approach consists of three principal steps.  We consider a group of 

voxels and corresponding time series.  First, we compute the DTW distance between all 

times series and we get a matrix n-by-n of DTW distance denoted as vdDTW (voxels 

distances DTW). Second, we use the vdDTW as an input to PHA algorithm in order to 

obtain a hierarchical clustering. Third, as mentioned above, PHA calls for a function 

CLUSTER which has parameters in input which is max number of cluster K. So that, to 

determine the target cluster, we perform to vary this parameters K at each experiment and 
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we observe the generated clusters. We repeat this till no new cluster is generated and at 

the end we show the target clusters.  Figure V.2   shows a block diagram that illustrates 

the principle of our approach.  

 

Figure V-2: flowchart of the proposed approach 

V.2.4 Experiment and result 

This section examines the accuracy and effectiveness of the proposed method. It 

also aims to validate and compare the introduced approach that relies on DTW and PHA 

algorithm with both GLM and t-test methods. Thus, synthetic and real data have been 

used.  

The new framework and t-test method are implemented in Matlab code. The code of 

GLM method used in this study is available in(http://www.l.ion.ucl.ac.uk/spm) . The conducted 

experiments are run on a laptop with an Intel 2.16 GHz Dual-Core CPU and 2 GB of 

RAM.  

To analyze the performance of the proposed approach, too metrics need to be 

defined herein: (i) True activation rate (TAR) stands for the ratio between the number of 

time series correctly identified as activated and the total of truly activated time series. (ii) 

False activation rate (FAR) refers to the ratio between the numbers of time series 

incorrectly identified as activated and the total number of truly non-activated time series. 

Also, these two ratios serve to establish a comparison between the previous conducted 

studies like the GLM and t-test. To study the influence parameters K of PHA clustering 

method, the TAR and FAR have been computed at different K values. For the GLM and t-

test methods, the false activation rate provided by p-value is the probability used to 

identifying the TAR and FAR.  

V.2.4.1 Artificial dataset:  

        The introduced method has been first tested on the artificial dataset constructed 

by simulating the same process with real data. fMRI data have been simulated as 

described in(http://mlsp.umbc.edu/simulated_fmri_data.html). This dataset contains eight 

sources denoted as (Si, i=1to 8) where each simulated source is of 60 × 60 image with 100 
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point courses. However, some modifications have been made in the current experiment 

where the virtual source for fMRI was created into a two dimensional spatial map of 53 × 

63 voxels for each source, as depicted in figure V.3, as the same size of the real fMRI 

data.  

 
Figure V-3 simulated fMRI data 

 

The introduced method has been applied on synthetic data that are described above. 

First, the vdDTW distance has been computed. After, the PHA clustering method has been 

applied to get a hierarchical clustering. Since we perform in input the k parameter of PHA 

method by using the values between [3..10] three and ten and at each value of k, the 

metric FAR has been computed and TAR and so on.  Figure V.4 presents the plots of 

TAR and FAR obtained by the proposed method. It is clearly noticed that there is a loss of 

some activated voxels whereas the number of non activated voxels increases when k is 

small. In contrast, the number of activated voxels increases with a decrease in the number 

of non-activated voxels in the case where k is great.  
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Figure V-4:FAR and TAR on regions started by K= 3 regions to K= 10 

To evaluate the achieved results, t-test method has been used. In this method, time series 

have been divided in two groups: the series called on activation and the series called off 

activation, denoted as (XON) (XOFF) respectively. To determine these both groups for all 

time series, hemodynamic response function (HRF), introduced in (K. J. Friston, Jezzard, 

et al., 1994) as kernel, has been employed. Then, t-test statistic has been applied between 

XON and XOFF. Detecting activated voxel depends on using a p-value. Finally, TAR and 

FAR metrics have been computed at each p-value between 0.001 and 0.05.  The plot in 

figure V.5 depicts the TAR and FAR obtained results by t-test. Table1 presents the mean 

of TAR and FAR for the proposed method and t-test method 

 
Figure V-5: true and false activation rates by t-test method 

The obtained results have clearly shown that when the more the p-value is smaller, the 

more we get nearer to the activated areas and the number of false activation rate increases. 
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Where p-value is nearer to 0.05, more precision is obtained in activation rate with low 

false activation rate 

 

Table V-1: Average of true activation rate and false activation rate obtained by applying the proposed 

method and  t-test method to the artificial data set 

 AVG of TAR AVG of FAR 

Our method 0.796 0.160 

t-test 0.733 0.150 

 

Accordingly, these results have obviously shown the ability of the presented approach to 

detect true activation rate better than t-test method. However, the t-test performs better 

than the new approach in terms of false activation rate.  

Figure (V.6a) presents the mixed active areas detected by the proposed method. As clear 

in slice one and three, in the left, the active regions are clearly shown in source (S1, S5 

and part of S4).  Slices in the right show the activated areas in (S6 and S8).  

In figure (V.6.b), the active regions are depicted in slices one and three on the left of the 

sources (S1, S3 and S6) whereas the active areas of sources (S6 and s8) are shown in slice 

seven and eight on the right slices  

 

 
(a)                                               (b) 

 

 

 

To sum it up, the TAR used in the presented method is very motivating to identifying 

more activated regions. In other word, it performs better than the t-test in detecting more 

accurate activation however the t-test outperforms regarding identifying FAR.  
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Figure V-6: :(a) activated areas of simulated data by proposed approach. (b) 

Activated areas of simulated data by t-test 
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V.2.4.2 Real fMRI Dataset 

 

 The current section reports the obtained results of the new paradigm that has been 

tested on a real fMRI dataset related to an auditory stimulus. This dataset was collected by 

Geriant Rees et al.  (http://www.l.ion.ucl.ac.uk/spm/ ). The whole brain BOLD/EPI 

images were acquired on a modified 2T SIEMENS MAGNETOM Vision system.  Each 

acquisition is composed of 64 contiguous slices (64x64x64 3mm x 3mm x 3mm voxels) 

where any acquisition occurs in 6.05s, with the scan to scan repetition time (TR) set 

arbitrarily to 7s. So that, 96 acquisitions were made (TR=7s), in blocks of 6, giving 42s 

blocks. Starting with rest, the condition for successive blocks alternated between rest and 

auditory stimulation which was bi-syllabic words presented binaurally at a rate of 60 per 

minute. In this experiment, the authors mentioned that the functional data start at 

acquisition 4. 

To apply the proposed approach, the vdDTW distance has been computed and then the 

PHA method has been applied. PHA method consists of two components: 

build_Edge_Weighted_tree and   Build_Dendrogram. By using PHA clustering method, a 

change in the max number of cluster (k) has been done by increment. Then, FAR and 

TAR measures have been calculated in each k. This process has been repeated till no new 

cluster will be generated. The first step in this experiment is fixing K at (k=3) and then 

computing both FAR and TAR metrics. It has been obviously observed that the process is 

becoming at stationary state when   (k = 15) that is presented by the plots in figure V.7. 
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(b) 

Figure V-7: (a) the various false activation rate. – (b) The true activation rate 

 

   It is clearly noticed in these plots that the proposed method detects a high accurate 

activation map when k is smaller than eight. However, false activation rate decreases with 

the increment in the number of max cluster k  

 

V.2.4.3 Comparison with GLM method and t-test 

 

The following section provides a comparison between the obtained results by GLM and 

t-test method and the results of the presented method. Firstly, the GLM results realized by 

SPM tools assumes that the fMRI time series correspond to the realization of an 

identically independent stochastic process and divides data into two groups, obtained 

during on (activation) and off (no activation) periods. This separation is done by p-value 

(0.05) and (0.001). This is for computing the TAR but for the FAR; False Discovry Rate 

(FDR)(Chumbley & Friston, 2009) has been used. FDR plays an important role as well as 

FAR. It is a proportion of activated voxels that are false positives . Then, p-value between 

0.001 and 0.05 has been employed by using SPM tools that provides the results of  FDR 

and the number of  voxels detected as activated in the regions used to compute the TAR 

measures. Figure V. 8 presents the result of this experiment. 

Figure V. 9 presents the TAR and FAR provided by p-value of t-test. After, changing 

the p-value at each experiment starting by 0.001 to 0.05, the TAR and FAR measures has 

been computed. These plots show that t-test method detects true activation with high false 

activation however the false activation are decreasing were p-value goes nearer to 0.05 
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Figure V-8: false discovery rate and true activation rate obtained by GLM method 

 

Figure V-9: true and false activation rate obtained by t-test method 

Table V-2 :Average of true activation rate and false activation rate obtained by applying the proposed 

method and t-test and GLM to the real data set. 

 AVG( TAR) AVG( FAR) 

Our method 0.902 0.068 

GLM 0.887 0.071 

t-test 0.848 0.114 

 

Table V.2 depicts the average of FAR, TAR measures provided by the presented 

method, GLM and t-test method  
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As illustrated in figure V.10, some slices that show the activated areas by GLM, t-test 

and proposed method are presented. 
 

 
(a) (b) 

  

 
(c) 

 
Figure V-10: Some slices illustrate the activated regions: a) activated areas by t-test method  b) the 

result is generated by GLM method;  c)the result obtained by proposed method 

Finally, this approach addresses a new paradigm to detect activation areas in fMRI time 

series. In addition, the suggested method is registered within the context of unsupervised 

classification (clustering) methods. 

 Mainly, this approach is divided into two principal steps. To compare all voxels to each 

other, DTW has been used as a metric to measure the similarities between them. The PHA 

algorithm has been employed to portion the fMRI data. The performance of the proposed 

approach has been evaluated on both real and synthetic data sets related to an auditory 

stimulus. A detailed comparison has been provided between the proposed method, GLM 

and t-test using the metrics (TAR FAR and FDR) to make performance analysis with 

artificial and real data sets. The findings have clearly shown that the proposed method is 

promising and can usually produce more satisfying results. 

V.3 Approaches based on  Dempster-Shafer Theory of Evidence 

In this part, a new approach based on Dempster Shafer theory of evidence is 

suggested to improve extracting brain activity. Particularly, the emphasis of this work has 

been placed on developing a method that is able to provide an analytical framework for 



Chapter V- contribution: Dempster shafer theory in EEG/ fMRI information fusion 
 

80 

detecting the brain active regions.  These subsections describe in details the proposed 

method including a brief simplified description of the hemodynamic response model and 

the basics of Dempster-Shafer theory. Experiments and results on both simulation and real 

data are also discussed. 

V.3.1 The Dempster-Shafer Theory of Evidence 

In the following, we introduce the fundamentals of the Dempster-Shafer (DS) theory 

of belief function that has been proven to be an efficient tool in representing uncertain 

knowledge. This theory has paved the way for many researchers to study various aspects 

related to uncertainty and lack of knowledge and has shown its ability to solve real 

problems (Dempster, 1967). In fact, Dempster-Shafer theory can be considered as a 

generalization of the probability theory (Cuzzolin, 2008). The references (Shafer & others, 

1976) (Schocken & Hummel, 1993),(Smets & Kennes, 1994),(Yager, 2001) provide 

further information about this theory. In what follows closely, a brief introduction to the 

basic notions of the theory of evidence is given.  

Let θ = {θ1, θ2, … . , θk} be a finite set of possible hypotheses. This set is referred to 

as the frame of discernment, and its power set is denoted by 2θ where: 

2θ = {∅, {θ1}, {θ2}, … . , {θk}, {θ1 ∪ θ2}, {θ1 ∪ θ3}, … . θ} (V.1) 

A key point of the evidence theory is known as Basic Belief Assignment (BBA). It 

is defined as: 

A basic belief assignment m is a function that assigns a value in [0, 1] to every 

subset Ai of ʘ and satisfies the following: 

m(∅) = 0, and ∑ m(Ai) = 1Ai⊆⊖    (V.2) 

The BBA (m) is associated with the belief function, denoted by bel (). The definition 

of belief function is given. A belief function assigns a value in [0, 1] to every nonempty 

subset D of ʘ. It is called degree of belief in D and is defined by 

bel(Ai) = ∑ m(Ai)Ai⊆D    (V.3) 
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The function, pl (.), associated with the BBA m(.) is a function that assigns a value 

in [0, 1] to every nonempty subset D of ʘ. It is called “degree of plausibility in D” and is 

defined by 

pl(Ai) = ∑ m(Ai)Ai∩D≠⊘    (V.4) 

Furthermore, a BBA can also be viewed as determining a set of probability 

distributions over ʘ so that bel(A) ≤ P(A) ≤ pl(A). It can be easily seen that these two 

measures are related to each other as follows: 

pl(A)  =  1 −  bel(A̅) (V.5) 

 Therefore, one needs to know only one of the three values of m, bel, or pl to derive 

the two other ones, where A̅ stands for the negation of a hypothesis A shown in Figure 

V.11 

 
 
 
 
 

 

Figure V-11: Basics measures of Dempster-Shafer Theory of Evidence 

The interest of this work has been also placed on employing the combined rule for 

pooling of evidence from two belief functions, Bel1 and Bel2, over the same frame of 

discernment, however it induced by different independent sources of information. The 

Dempster’s rule of combination for combining two sets of masses, m1 and m2 is defined 

as: m12(∅) = 0 

m12(A) =
1

1−k
∑ m1(B)m2B∩C=A≠∅ (C) (V.6) 

where k denotes a measure of the amount of conflict between two evidences. If k = 1 

the two evidences cannot be combined because their cores are disjoint. This rule is 

commutative, associative, but not idempotent or continuous. k is calculated as follows: 

k = ∑ m1(B)m2B∩C=∅ (C) (V.7) 

In what follows, the notations mfMRI (.), mEEG (.) and mEEG,fMRI (.) have been used to 

refer to BBA (fMRI), BBA (EEG) and the rule of combination respectively. 
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V.3.2 Proposed Method 

V.3.2.1 Overview :  

Figure V.12 illustrates the proposed scheme for fMRI data analysis and detection of 

activated area that is composed of five stages: i) data preprocessing and dimensionality 

reduction ii) HRF modeling iii) convolution with fMRI signal, iv) computation of the m(), 

the belief function bel() for each voxel and v) separation of the activated voxels from non-

activated ones using threshold by using OTSU thresholding method because it permits to 

get a threshold automatically .  

V.3.2.2 Data preprocessing  

Prior to analysis, fMRI data goes through a series of preprocessing steps to identify 

and remove the artifacts and to validate model assumptions as well. First, the fMRI slices 

have been spatially realigned. However, spatial smoothing may cause unforeseen changes 

to occur into the data. Thus, spatial smoothing has been avoided to ensure better 

performance. Then, the mean value has been subtracted from each of the time series and 

the variance has been normalized to a unit. The previous steps were realized via SPM 

tools (K. J. Friston, Holmes, et al., 1994). 

V.3.2.3 Modeling HRF by Dempster-Shafer method 

We model a peak and a subsequent undershoot of canonical hemodynamic response 

function by DS method using the sum of two gamma functions known by the density of 

probability function, as described above. 

The modeling process of the HRF function has been performed as follows: HRF 

function has been partitioned into two hypotheses(θi, θj). The hypothesis θi corresponds to 

both detecting neural activation and determining a peak (on activation) while θj is 

assigned for modeling undershoots (off activation). Each hypothesis is a sum of degrees of 

beliefs. In particular, the focus of this work lies on the first hypothesis. This latter is 

divided into two parts A and D, where A stands for degrees of belief included in D. (D-A) 

denotes the uncertainty part. Figure V.13 illustrates the proposed model. 

At first, we localize the interval of stimulus. In the example where the  repetition 

Time (TR=4), the peak is in the first interval [4..8] seconds (Chumbley & Friston, 2009). 

To find a second stimulus in this example, 16sc have been added. In the second step, we 

determine the next interval and so on. The same process has been repeated till the end of 
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fMRI signals. Finding these intervals is the focal aim of this conception. Figure V.14 

illustrates the projection of the proposed model with fMRI signal to extract all intervals. 

 

 

 

 

 

 

 

 

 

Figure V-12: Flowchart of the proposed model  fMRI analysis with DS 

 

 

V.3.3 Computing the basic belief assignments and the belief measure  

After the convolution process, the m() of each time (second) in fMRI times series 

must be first computed in order to compute the belief and the plausibility measures. Thus, 
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Figure V-13: Flowchart of the proposed model of HRF 



Chapter V- contribution: Dempster shafer theory in EEG/ fMRI information fusion 
 

84 

the formula that consists in a transformation of each fMRI signal into a density probability 

function is described below. The used integral has the form: 

α = ∫ |y(t)|dt
tn

0
  (V.8) 

In the above equation, the global surface is denoted as α. So, m() is calculated as 

follows :m(ti) =
1

α
∫ |y(t)|dt

ti

ti−1
 for i = 1 to n 

m(ti)=0 , i=0  (V.9) 

A vector of probability have been obtained where the sum of mass bribability 

function (m()) is 1 as mentioned above in section 3. To compute the belief and plausibility 

measures, the formulation described in (3) and (4) has been employed. 

 

Figure V-14: the projection of the introduced model with fMRI data 

 (where θ corresponds to a finite set of possible hypotheses) 

V.3.4 Separating the activated voxels from the non-activated ones 

To extract activated voxels, the belief measures have been employed in this stage. 

Each voxel of fMRI time series is presented by bel() value. At first, the histogram of 

belief measures has been used and an appropriate threshold denoted as λ has been chosen. 

The OTSU method (Otsu, 1975) was employed to choose (λ) threshold. It permits 

extracting an automatic threshold that minimizes the weighted within-class 
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variance σw
2 (t). This turns out to be the same as maximizing the between-class 

variance σB
2 (t). The algorithm is as follows: 

Step 1 compute the histogram of bel() measure and the probability at each i level of 

histogram 

Step 2 initialize the µ
i
(0) and qi(0) 

Step 3 Browse all possible thresholds t =1 to n 

Update µ
i
(t) and qi(t) Compute σB

2 (t) 

Step 4 λ = max ( σB
2 (t)  

where the weighted within-class variance is: 

σw
2 (t) = q1(t)σ1

2(t) + q2(t)σ2
2(t)  (V.10) 

And the between-class variance is: 

σB
2 (t) = q1(t)[1 − q1(t)][μ

1
(t) − μ

2
(t)]2  (V.11) 

The total variance is:  

σ2 = σw
2 (t) + σB

2 (t)    (V.12) 

where the class probabilities are estimated as:  

q1(t) = ∑ p(i)t
i=1    (V.13) 

q2(t) = ∑ p(i)n
i=t+1    (V.14) 

And the class means are given by:  

µ
1

(t) = ∑
ip(i)

q1(t)

t
i=1  (V.15) 

µ
2

(t) = ∑
ip(i)

q2(t)

n
i=t+1   (V.16) 

The individual class variances are:  

σ1
2(t) = ∑ [i − μ

1
(t)]2 p(i)

q1(t)

t
i=1   (V.17) 

σ2
2(t) = ∑ [i − μ

2
(t)]2 p(i)

q2(t)

n
i=t+1   (V.18) 

 And [0,n-1] is the range of intensity levels of the histogram. 

V.4  Evaluation metrics and proposed algorithm  

The following subsections describe the metrics of evaluating the proposed approach 

and the proposed algorithm based on DS theory. 

V.4.1 Evaluation metrics 

The threshold λ has been used to compute two metrics, the true and false activation 

rate. These two terms need to be defined herein: True activation rate (TAR) stands for the 

ratio between the number of time series correctly identified as activated and the total of 

truly activated time series. And the other one is false activation rate (FAR) referring to the 

ratio between the number of time series incorrectly identified as activated and the total 

number of truly non-activated time series. Also, these two ratios serve to analyze the 

performance of the proposed approach and to establish a comparison with the previous 

conducted studies like the GLM. It has been noticed in the presented work that the voxels 
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with belief measure more than or equal to λ have been considered to be true active voxels. 

And the voxels that are less than the selected threshold have been considered as false 

active voxels. This process leads to obtain the activated regions.  

V.4.2 Algorithm DS-fMRI analysis 

 To sum it up the proposed algorithm is illustrated as follows: 

INPUT: Tr : repetition time, h(t) : hemodynamic response function, 
 s(t): fmri signal with nb : size of signal 
[a,b] : First_intrval and T : period  
OUTPUT:  
Y(t) : fMRI signal convolved with HRF  
m(t) : Basic Belief Assignment  
bel(n) : belief measures 
λ : belief threshold for extracting activated voxels 
Description: 
 For each signal fMRI s(t) do  
 { 

   y(t) = conv(s(t), h(t))  
(*convolution fMRI signal with HRF*) 
} 
For every y(t) do 
{Compute m(t) by using equations (V.8) and (V.9)  
(*compute belief measures*) 
 s = 0 
 For k=0 to nb do 
 { 

  s = s + m((a + k × T): (b + k × T)) 
  (*from (a+k×T) to (b+k×T)*) 
 } 
   bel(t) = s (*extract activated voxels *) 
} 
{  
 Show histogram of belief measure  
 Choose λ OTSU method 
 show the activated region  
 } 
 

V.5 Results and Discussion  

This section describes fMRI data that have been used in the conducted experiments. 

Both artificial and real fMRI data have been employed to determine the identically 

activated areas. To test the performance of the presented approach, a comparison of the 

obtained results with the GLM and t-test results has been performed. It is worth 
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mentioning that the tests have been conducted on the same benchmark. This comparison 

has been done by using the true activation rate and false activation rate as defined above. 

However, we illustrate plots of true and false activation rates at different belief thresholds.  

V.5.1  Artificial data  

This section describes a form of artificial data used by Francois et al. (Meyer & 

Chinrungrueng, 2005). In general, fMRI signal is a stochastic process. So, a synthetic 

three-dimensional fMRI dataset (64, 64, 64) has been generated. The number of slices is 

64 and each signal is generated by the following formula: 

A(t) × eiʘ(t) + nc(t) (V.19) 

The above function is a complex signal where A(t) stands for the amplitude. Let M 

be the levels of activation and let φ be the Gaussian random delay distributed with zero 

mean and unit variance. Let ω be the frequency of the signal and selected to be π/10 

because the fMRI signal is relatively weak. The amplitude on such a basis is defined by a 

sinusoidal function as follows: 

A(t) = M × sin(ωt + φ) (V.20) 

We consider ʘ(t) = π/4 where the real and imaginary channels play a symmetric 

role and nc(t) are the complex Gaussian white noise centered with unit variance. The 

phase of this signal is not used, and we only consider the magnitude: 

s(t) = |A(t) × eiʘ(t) + nc(t)|  (V.21) 

We generate a set of signals in order to build sequences of fMRI time series as 

shown in Figure V.15 

 

Figure V-15: The fMRI artificial data 20 40 60
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After applying the proposed approach on this artificial data, the obtained results are 

presented in figure V.16 where brown areas stand for the activated voxels. 

 

Figure V-16: The activate voxels with fMRI artificial data by the proposed approach 

Figure V.17 presents some results using the simulated data described above. These 

results contain the TAR and FAR measures that have been obtained with bel() threshold. 

The t-test statistic method has been used in order to compare the introduced method. 

Basically, t-test statistic method has been used to compute the TAR and FAR metrics at 

each p-value between 0.001 and 0.05. At first, the fMRI time series are divided in two 

groups i.e. determine the fMRI time series called on activation denoted as (XON) and the 

fMRI time series called off activation denoted as (XOFF). To determine these both groups 

for all fMRI signals the box-car hemodynamic response function have been employed as 

kernel. The plots in Figure V.18 present the TAR and FAR obtained results with t-test 

method 

 

Figure V-17: The plots show the false activation rate and the positive activation rate using belief 

threshold. 
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These results show that when the p-value is smaller, we get nearer to the activated 

areas and the number of false activation rate increases. Where p-value is near to 0.05, 

more precision is obtained in activation rate with less false activation rate. Table V.3 

presents the mean of TAR and FAR for the proposed method and t-test method. 

Accordingly, these results have obviously shown the ability of the presented 

approach to detect true and false activation rate better than t-test method. 

 

Figure V-18: True and false activation rates by t-test method 

 

Table V-3:  Average of true activation rate and false activation rate of the DS method and t-test 

method to the artificial data set 

 AVG of TAR AVG of FAR 

DS method 0.766 0.063 

t-test 0.753 0.082 

V.5.2 Real fMRI Dataset 

 This section reports the result of proposed method tested on a real fMRI dataset that 

concern an auditory stimulus. These data were collected by Geriant Rees et al. and are 

available in http://www.fil.ion.ucl.ac.uk/spm/data. These whole brain BOLD/EPI images 

were acquired on a modified 2T SIEMENS MAGNETOM Vision system. Each 

acquisition is composed of 64 contiguous slices (64x64x64 3mm x 3mm x 3mm voxels) 

where any acquisition occurs in 6.05s, with the scan to scan. However the TR have been 

approximated to 7s. So that, 96 acquisitions were made (TR=7s), in blocks of 6, giving 
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42s blocks. Starting with rest, the condition for successive blocks alternated between rest 

and auditory stimulation that was bi-syllabic words presented binaurally at a rate of 60 per 

minute. In this experiment, the authors mentioned that the functional data starts at 

acquisition 4.  

After modelling the HRF by Dempster-Shafer method (DS), a basic belief 

assignment, denoted as m(vi), has been calculated for all subset Ai of θ (where vi stands 

for ith voxel). We have noticed that all fMRI signals have a similar pace with a difference 

in values of m() which plays a primordial role in computing belief measures. This latter 

has been used to characterize the voxel activity. Then, computing the belief measures 

enables to obtain the results at (TR = 7) which is in [0.2702, 0.3338]. 

To separate the activated voxels from non-activated voxels, the histogram described 

in Figure V.19 has been used and the threshold of belief measures (λ) by OTSU method 

has been selected automatically.  

 

Figure V-19: The histogram of belief measures 
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less FAR when bel() near to λ. And the number of true and false activation rate tends be 

lower when bel() threshold between 0.292 and 0.3 

 

Figure V-20: False and true activation rate obtained by DS method 

V.5.3 Comparaison with GLM method 

This section provides a comparison of the GLM results with the obtained results of 
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Figure V-21: The obtained result with GLM method 

However SPM tools provide the metrics true activation rate and False Discovry Rate 

(FDR) that play an important role as well as false activation rate. In other words, it is a 

proportion of activated voxels that are false positives (Chumbley & Friston, 2009). 

 However, we proceed to use p-value between 0.001 and 0.05 by using SPM tools 

that provides the results of FDR and the number of voxels detected activated in the 

regions used to compute the true activation rate measures. Figure V.22, shows the result 

of this experiment. 
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Figure V-22: False discovery rate and true activation rate obtained by GLM method 

To sum it up, Table V.4 presents the average of TAR and FAR measures by the 

presented method and GLM method  

Table V-4: Average of true activation rate and false activation rate obtained by applying the DS 

method and GLM to the real data set 

 AVG( TAR) AVG( FAR) 

DS method 0.896 0.056 

GLM 0.887 0.071 

This experiment shows that the proposed method based on DS theory outperforms 

the GLM method in identifying more true activation rate with low false activation rate. 

Figure V.23 presents some slices that show the activated areas by both method GLM and 

the proposed method 

 

(a)                                                      (b) 
Figure V-23: Some slices illustrate the activated regions: a) the result is generated by GLM method;  

b) the result is generated DS method 
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V.6 EEG fMRI fusion using Dempster shafer theory  

Since BOLD signal is usually considered to have the same time evolution as the 

EEG (Lei et al., 2012), this approach uses the HRF model as a key element for modelling 

both EEG and fMRI modalities by DS method to fuse spatio-temporal information and 

detect activated areas in the brain 

At first in the proposed approach, we compute the vectors of probability of m(ti) for 

each modality that are employed. For computing combination rule measures via the 

equations (3) and (4) that need to determine the intersection intervals A = B ∩ C which 

are different of empty set ∅ which are illustrated in figure V.24. 

 

 

V.6.1 JointICA method 

 JointICA has been introduced by (Calhoun et al., 2006). It is implemented in the 

Fusion ICA Toolbox(FIT), available at http://icatb.sourceforge.net. Joint ICA enables us 

to jointly analyze multiple modalities which have all been collected in the same set of 

subjects. In this work, we assume that the electrical activity (ERP) and the hemodynamic 

response to brain activity (BOLD signal) are generated by the same population of neurons. 

Hence, the amplitudes of the ERP wave (peak) and of the BOLD response invoked by an 

activated area will increase and decrease synchronously: a stronger ERP peak activation 

will yield a stronger BOLD response in this particular brain region, and vice versa. 

The basic steps of the Joint ICA are depicted in Figure V.25, and summarized as 

follows, (http://mialab.mrn.org/software/fit/ ):  

HRF 

fMRI 

signal 

EEG 

signal 

Intersection 

intervals 𝐴 

Figure V-24: Figure shows how to detect the interval A 
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Step 1: The features of each imaging modality are computed and collected.  

Step 2: For each task a normalization process is done on the collected features.  

Step 3: Principal Component Analysis (PCA) is used in reducing the dimensions of the 
normalized features. 

 Step 4: The spatially independent Components are extracted from the reduced data 
obtained by PCA, and as noted each component will share a common loading or 
mixing parameter between the tasks. 

 

Figure V-25: fMRI-EEG fusion using Joint ICA. 

Joint ICA fusion method offers several advantages in the context of brain 

exploration. Thus, it has received an increasing interest in recent years. Joint ICA fusion 

method serves to identify certain diseases such as Schizophrenia (SZ), a mysterious 

disease that requires further investigation, because it can provide similar activation 

patterns in multiple tasks from different brains images of patients suffering from 

Schizophrenia. Given that fMRI has a good spatial resolution and EEG has a good 

temporal resolution, Joint ICA enables to obtain a good spatial and temporal resolution 

when fusing fMRI and EEG modalities together (Mohammed, Taha, & Faragallah, 2014). 

V.6.2 The Proposed Method 

As will be illustrated in Figure V-26, the proposed scheme for EEG-fMRI 

symmetrical fusion is as follows: (i) pre-processing both fMRI and EEG data, (ii) 

generating HRF model by DS method, (iii) Calculating the mfMRI() for each voxel, (iv) 

computing mEEG() after extracting ERP from EEG signals and then, (v) mfMRI() and mEEG() 
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metrics have been used to compute mfMRI,EEG() measure. This combination rule measure 

(mfMRI,EEG()) has been used to extract activated voxels via clustering. To separate the 

activated voxels from non-activated voxels, the clustering methods have been used 

because they can separate data into groups based on certain similarities. In this step, the 

PHA has been employed. As mentioned above, PHA generates automatically a number of 

clusters which is less than or equal to the selected max number (K). Furthermore, among 

these clusters, we show the target cluster and more information like the number of voxels 

by cluster and the centroid of cluster denoted by (c) as well. The process is described in 

Dempster Shafer algorithm (algorithm DS) and consists of six steps as follows:  

Algorithm DS: 

IMPUT: fMRI data, EEG signals, HRF  

OUTPUT: mfMRI (.) , mEEG (.), mEEG,fMRI (.), activated areas 

step 1: first model HRF by using DS method, described in section 2 

step 2: project HRF model with fMRI signal and compute mfMRI() vector for each voxels 
using equations (5) and (6).  

step 3: from EEG to ERP  

step 4: the same process applied in step 2 has been repeated on ERP to compute vector of 
mEEG() 

step 5: compute the combination rule measure using the equations aforementioned in (3) 
and (4) 

step 6: use PHA method to cluster vector of mEEG,fMRI (.) combination measure in order to 
identify active areas . 
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V.6.3 Experiments and results 

The proposed method that relies on Dempster Shafer theory has been evaluated on 

both synthetic and real data. The performance of the introduced method has been based on 

statistical measurements. The MATLAB has been used for all implementations. At last, a 

comparison with jointICA has been provided to evaluate the efficiency of the proposed 

method. The evaluation metrics and experimental results are discussed below. 

V.6.3.1  Evaluation metrics 

This subsection describes the evaluating metrics serving to analyze the performance 

of the introduced approach and to establish a comparison with the jointICA method. 

Basically, two main metrics have been given in (Meyer & Chinrungrueng, 2005): (i) True 

activation rate (TAR) presents the ratio between the number of voxels correctly identified 

as activated and the total number of truly activated voxels and (ii) false activation rate 

(FAR) is known as the ratio between the number of voxels incorrectly identified as 

activated and the total number of truly non-activated voxels. A more comprehensive 

fMRI data 
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Compute combination rule 
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Figure V-26: flowchart of the EEG-fMRI data fusion based on DS methodThe chart is devided into 

three main parts. The blue part concerns preprocess and modelisation of fMRI data.The green part 

is about EEG data and contains three steps; preprocessing, extracting ERP and modelisation by DS. 

The red part denotes clustering extract activated voxels 
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description of these two metrics allows to correctly plotting the Receiver Operating 

Characteristics Curve ( ROC) (Sorenson & Wang, 1996)for comparing between methods.  

To compute these measures, it should be noted that jointICA has been performed on 

the basis of the t-test that uses a p-value or Z-threshold to map the activated voxels. The 

introduced method relies on the combination rule mEEG,fMRI ( ) to separate between 

activated and non-activated voxels. 

V.6.3.2 Artificial dataset 

First, the proposed method has been tested on artificial dataset basically developed 

with their simulation algorithm by Correa et al. (Correa, Adali, Li, & Calhoun, 2005) and 

it is available at (http://mlsp.umbc.edu/simulated_fmri_data.html) .This dataset contains 

eight sources where each simulated source is of 60 × 60 image with 100 point courses. 

However, in the current experiment, the virtual source for fMRI has been created into a 

two dimensional spatial map, as depicted in Figure V.27(a), as the same size of the real 

fMRI data. Given that the information obtained from the brain is a stochastic process, a 

collection of sinusoid signals of the ERP data has been considered.  

Let φ be the Gaussian random delay distributed with zero mean and unit variance 

and let d be the amplitude. Accordingly, ERP sources have been simulated by using the 

formula: 

x(n) = 100 × d
n

sin(2πfn + φ) , n = 1 … … 200 (v.24) 

This sinusoid signal is with a mixture of very low frequencies from [0.014- 0.811 Hz] 
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(a) 

 
(b) 

 
Figure V-27 : Artificial fMRI and ERP data(a) Artificial fMRI data contains eight sources where each 

simulated source is of 60 × 60 image with 100 point courses (b) the selected ERP simulation data 

generated by using( equa. V.24) 

The source S with a size of (8×3339) has been obtained by mixing the different 

FMRI sources. In the next step, the Demspter method has been applied on these data to 

get the mfMRI( ). Then, the same algorithm has been applied on ERP dataset to compute 

mEEG( ). Once both mEEG and mfMRI have been obtained, the mEEG.fMRI(.) have been 

computed by using the combination rule. The obtained mEEG,fMRI(.) has been clustered via 

PHA method. In this process, (K=8) has been chosen according to the number of 

simulated data sources. The obtained results are presented in Figure V.28 where different 

slices have been clearly shown (mixed areas) in different sources. This figure presents the 

mixed activated areas detected by the proposed method. As it is clear in the first four 

slices on the left, the activated regions of the different sources (S1, S2,S5 , S6 and part of 
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S4) are depicted in figure V.28 (a) . Slices on the right show the activated areas of each 

source in (S4, S6 and S8). Comparing our results with those obtained with jointICA, it can 

be seen that jointICA detects only (S3,S4,S5,S6) sources (see Figure V.28(b)). Thus, the 

proposed approach has obviously shown its ability to yield a clear distinction between 

areas in terms of activation. 

 
(a) 

 
(b) 

 
Figure V-28: a) The obtained results by proposed method that show the mixed area in each slice 

Table V.5 describes the quantitative comparison between the introduced method and 

jointICA using the true activation rate (TAR) and false activation rate (FAR). It’s clear 

from this table that each method achieves better result that is more than 90.25%. Also 

from this table the proposed method detects more accurately than jointICA for the sources 

(S1,S2, S6 ,S7, S8). Thus, jointICA outperforms the proposed method for sources 

(S3,S4,S5). Table V.6 shows the average of measures (TAR and FAR). 
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Table V-5: True and false activation rates by the proposed method and jointICA 

Source S1 S2 S3 S4 S5 S6 S7 S8 

Proposed 

method 

TAR% 97.25 93.50 98.25 90.75 98.50 96.75 92.75 91.75 

FAR 0.0275  0.0650 0.0175  0.0925  0.0150  0.0325  0.0725  0.0825 

jointICA TAR% 93.50 91.75 98.50 93.00 98.75 94.25 91.25 90.25 

FAR 0.0650  0.0825  0.0150  0.0700  0.0125  0.0575  0.0875  0.0975 

 

Table V-6: Average of TAR and FAR of the proposed method and jointICA to the simulated dataset. 

 AVG( TAR) AVG( FAR) 

Proposed method 94,93% 0.051 

jointICA 93.87% 0.061 

 

From the outcome, it can be concluded that the results are very motivating for 

identifying more activated areas. Thus, the introduced method can outperform better than 

the jointICA method in detecting more accurate activation for the simulated data. 

V.6.3.3 Real data 

Besides simulation data, the current method has been evaluated also on a real fMRI 

and EEG dataset to assess its performance. As described in (Calhoun et al., 2006), this 

data was collected while participants were performing an auditory oddball. Prior to 

analysis, data goes through a series of preprocessing steps to identify and remove artifacts 

and validate model assumptions as well. Therefore, the fMRI slices require to be spatially 

realigned at first. However, spatial smoothing may cause unforeseen changes to occur into 

data. Thus, for better performance, spatial smoothing has been avoided. Then, the mean 

value has been subtracted from each of the time series and the variance has been 

normalized to a unit. The previous steps have been realized via SPM tools (Statistical 

Parametric Mapping). Once EEG signals are obtained, we extract the ERP from EEG. We 

apply the proposed method on each voxel. In this case, we compute mfMRI and mEEG then 

we fuse both fMRI and EEG data by employing the combination rule in order to get 

mEEG,fMRI. This measure is used for extracting activated voxels. However, by using PHA 

clustering method, we proceed to change the max number of cluster (k) by increment and 

we observe the centroid (c) of cluster and the number of voxels in the target cluster. Then, 

we show the activated regions. The same process has been repeated till no new cluster will 

be generated. Table V.7 presents the results of mEEG,fMRI clustering by PHA method. The 

plots depicted in Figure V.29 present the various numbers of voxels by max number of 

clusters.  
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Table V-7: Result of mEEG,fMRI clustering by PHA method 

Number max 

of cluster (k) 

Number of 

voxels 

Centre c 

3 2235 0.0053 

4 2184 0.0051 

5 2184 0.0051 

6 2184 0.0051 

7 2184 0.0051 

8 2184 0.0051 

9 1378 0.0062 

10 822 0.0069 

11 783 0.0068 

12 783 0.0068 

13 783 0.0068 

14 783 0.0068 

15 783 0.0068 

 

Figure V-29: Variation in the number of voxels by number max of clusters k 

By varying the max number (K), false positive voxels may be obtained if k is small 

or some voxels may be neglected if (K) is great. Given this, a threshold should be selected 

for better distinction of activated voxels. Thus, the average of the centroids of the target 

clusters has been used. By computing the average of the centroids (c), we get 0.006. 

FigureV.30. (a) Illustrates slices that indicate activated regions while figure V.30. (b) 

depicts the activated areas for both components (red and blue). Qualitatively, it is clear 

that introduced method can detect activated region like jointICA method applied on the 

auditory data. For a quantitative comparison, the results obtained with the proposed 

0 2 4 6 8 10 12 14
600

800

1000

1200

1400

1600

1800

2000

2200

2400

number max of cluster

n
u
m

b
e
r 

o
f 

v
o
x
e
ls



Chapter V- contribution: Dempster shafer theory in EEG/ fMRI information fusion 
 

103 

approach have been compared with those obtained with jointICA that has been applied to 

analyze simultaneous EEG-fMRI data as illustrated in Figure V.31 and Figure  V.32. 

 
(a) 

 
(b) 

Figure V-30 :(a) Activated areas in some slices by proposed method (b) Activated areas in slices by 

jointICA method, provided in both coulor red and blue for each compenent 

As stated above in the current study, the proposed method depends on DS method 

that consists of two main components: The HRF model obtained by DS and mEEG,fMRI () 

measure. For selecting activated voxels, PHA method must be used for clustering this 

measure.  

To validate the efficiency of the introduced approach, a comparison between the 

proposed algorithm and jointICA has been performed. It should be noted that jointICA is 

performed on the basis of the t-test that uses a p-value or Z-threshold to map the activated 

voxels. Given that the definition of p-value is similar to that of the false activated position 
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rate in the jointICA, the p-value can be used as a metric for choosing thresholds. Thus, 

several plots have been generated for both true and false activation rates at different 

thresholds (mEEG,fMRI, p-value). Consequently, the experiment has been performed by 

changing thresholds for computing the metrics. Figure V.31 depicts the variation of true 

and false activation rates according to mEEG,fMRI() using the proposed algorithm. It seems 

obvious that the number of true activated voxels tends to be lower in true activation rate. 

However, the pace of false activation rate remains stable in the interval [0.001- 0.005], 

then it gradually decreases. 

 
(a) 

 
(b) 

Figure V-31 : Number of true positives (a) and false positives (b) using different thresholds 

(mEEG,fMRI). 
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(a) 

 
(b) 

Figure V-32 The number of (a) false activation rate (b) by using several p-values 

 
Figure V-33: ROC curves for the comparison of jointICA and the introduced method 
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Figure V.32 (a) shows that the true activation rate remains the same till the p-value 

reaches 0.05 where it starts to fall down gradually. Figure V.32 (b) illustrates that False 

Activation Rate continues to decrease gradually when the p-value increases and 

sometimes it remains fixed as in] 0.025, 0.035[. We have then specifically compared the 

obtained results with those yielded by using jointICA. The ROC curves for both methods 

are shown in Figure V-33 It is obviously observed that the ROC curve obtained by 

jointICA is much lower than that obtained by the proposed method. While joint-ICA 

provided few true positives with few false positives, the new method has detected more 

true positives without increasing the number of false position. However, the area under 

ROC curve for DS method is 0.877 and 0.733 for jointICA method. Therefore, this 

comparison reveals that the proposed algorithm provides a better performance in terms of 

identifying more true positives than jointICA. 

V.7 Conclusion  

This work introduces a new analysis based on Dempster-Shafer theory that better 

separates activated voxels from fMRI time series by using basic belief assignment 

functions. Also, a new framework to identify activation areas in simultaneous EEG/fMRI 

data taking into account the application of combination rule. 

For fMRI modality the proposed approach aims to extract activated areas from fMRI 

data sets. Mainly, information background is required about the hemodynamic response 

model at the beginning. The introduced method has been validated on a real auditory 

fMRI dataset as well as on an artificial dataset and its performance has been compared 

with GLM method. The obtained results have clearly shown the ability of belief measures 

to yield a better clustering of activated voxels.  

From the outcome of this investigation, it is possible to conclude that the proposed 

framework can be employed in most fMRI data analysis methods. Also, the findings 

suggest that the theory of evidence can serve to understand the nature of data and to obtain 

relevant results that can be used and interpreted by neuroscientists.  

The future work aims to use DS theory in analyzing fMRI-EEG data fusion to take 

advantage of both modalities in order to better study the brain activity and to reveal the 

mysterious secrets of this amazing organ. 
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Basically, the approach relies on DS theory and PHA method has been also 

employed to clustering the obtained measures. An extensive performance analysis has 

been provided with both artificial and real datasets. Compared to joint ICA, the obtained 

activation map confirmed the efficiency of the proposed algorithm for EEG-fMRI fusion 

in yielding a clear distinction between activated and non-activated areas. Although the 

focus has been placed on the analysis of auditory data, the introduced approach can be 

extended to explore various aspects of brain activity and to detect brain illnesses such as 

epilepsy. 
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Final conclusion 

Understanding the human brain activity requires knowledge about the temporal and 

spatial aspects of data processing. Functional Magnetic Resonance imaging (fMRI) and 

Electroencephalography (EEG) are the most pertinent techniques used for exploring the 

brain. In recent years, the combination of fMRI and EEG has become an issue of 

considerable interest in neuroscience and it has shown great promise for enabling the 

researchers to acquire a better comprehensive understanding of the neural activity. 

However, EEG/fMRI fusion is still a field of ongoing research. 

The work described in this thesis has been directed towards developing and applying 

new technique that is able to fuse both EEG and fMRI modalities to take the advantages 

of spatial and temporal resolution. The proposed approach based on DS theory method has 

been applied on fMRI or EEG-fMRI where the focus has been placed on the analysis of 

auditory data. 

At first, the current work provided a general description of the brain anatomy where 

the different main components of the brain were illustrated. Also, the different techniques 

used for analyzing brain function were briefly discussed in chapter one to give the reader 

a general view and introduce him to the subject of the thesis.  

The EEG-fMRI fusion methods involve understanding in details each of the EEG 

and fMRI modalities that are used in exploring the neural activity. Given this, each of 

EEG and fMRI modalities were discussed separately in chapter two and three 

respectively. The main idea behind studying EEG and fMRI techniques is to study brain 

function and the relative advantages and disadvantages of these methods. In particular, an 

information background about the hemodynamic response model which is the key of the 

proposed method is required at the beginning. Then, chapter four explored the 

complementary information that the two techniques provide.  

Finally, we introduced in chapter five our contribution to study brain activity that is 

based on Dempster-Shafer theory of evidence. First, we demonstrated that such theory 
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was applied on fMRI data (method & experimentation) starting by presenting the 

proposed model of HRF function and ending by detecting activated regions in brain. The 

experimental study clearly showed the ability of belief measures provided by DS theory to 

yield a better clustering of activated voxels.  

From the outcome of this investigation, it is possible to conclude that the proposed 

framework can be employed in most fMRI data analysis methods. Also, the findings 

suggest that the theory of evidence can serve to understand the nature of data and to obtain 

relevant results that can be used and interpreted by neuroscientists. Second, the use of the 

rule of combination provided by DS theory in information fusion data was illustrated 

together with how to apply it on data coming from EEG and fMRI techniques in order to 

take advantage of both modalities for better studying the brain activity. The obtained 

activation map confirmed the efficiency of the proposed algorithm for EEG-fMRI fusion 

in yielding a clear distinction between activated and non-activated areas. 

In the fascinating field of neuroscience, we seek to develop several methods to better 

explore the brain. As a future work, we focus on extending the introduced approach to 

explore various aspects of brain activity and to detect brain illnesses such as epilepsy. 

Also, we are conducting another research seeking to develop a new method based on 

information theory (mutual) for analyzing the EEG and fMRI data together.  
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Abstract:  

Electroencephalogram (EEG) and functional magnetic resonance imaging (fMRI) are two very effective 

noninvasive techniques for revealing a detailed mapping of brain activity. The fusion of such multimodal data 

has gradually become a major area of interest in many researches. Simultaneous EEG-fMRI recording has been 

extensively used in several fields, especially in the field of medical imaging and neuroimaging where researchers 

have developed numerous methods to study the brain activity. EEG-fMRI fusion permits to provide a better 

insight of the brain with a good spatiotemporal resolution.  

In this thesis, we are interested in the different models of exploration of the brain activity and EEG-

fMRI data fusion methods. Our research focuses on the development and application of new techniques that will 

be able to analyze EEG and fMRI data simultaneously. 

In line with this scope, we have developed a theoretical framework, for fusing these two modalities, 

based on Dempster shafer theory commonly known as belief theory or the theory of evidence. This theory 

permits; on the one hand, to study the cerebral activity by using fMRI data and on the other hand to develop a 

new approach based on symmetric methods for the analysis of the EEG-fMRI multimodal data. We can sum up 

the main contribution of this thesis as follows: 

1. To analyze the functional Magnetic Resonance Imaging (fMRI) data, we have proposed a new method 

based on Dynamic Time Warping (DTW) and where detestation of cerebral activities is made by a 

segmentation of the image by the so-called technique of PHA (Potential-Based Hierarchical 

Agglomerative).   

2. A second method has been proposed to map the brain bu using the Dempster-Shafer theory (DS) that is 

considered as an efficient theoretical framework for the analysis and representation of uncertain data. 

Dempster-Shafer permits to mark the activated voxels in fMRI images. The activated brain regions 

linked to a given stimulus are detected by using the belief measure (bel()) as a metric for evaluating the 

activity of voxels in question . The comparison of the proposed method with the t-test and the GLM 

method has clearly shown its ability to precisely detect the activated voxels. 

3. Finally, EEG-fMRI data fusion permits to obtain a better knowledge of the cerebral activity due to the 

high spatiotemporal resolution provided and for which we have proposed a theoretical fusion 

framework based on the Dempster Shafer theory allowing to take the two EEG and fMRI modalities 

simultaneously. In the simulation phase, artificial data and real auditory data have been used to assess 

the performance of the proposed approach. In addition, true and false activation rates (TAR, FAR) and 

Receiver Operating Characteristic (ROC) curves have been used to compare with the jointICA method. 

The obtained results have clearly shown the effectiveness of the introduced approach to reveal the 

activated areas of the brain. 
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Résumé  

L’électroencéphalogramme (EEG) et l'imagerie par résonance magnétique fonctionnelle (IRMf) sont 

deux techniques non invasives très efficaces servant à révéler une cartographie détaillée de l'activité cérébrale. 

La fusion des données multimodales est progressivement devenue un domaine d'intérêt majeur dans de 

nombreuses recherches. L’enregistrement simultané d’EEG-IRMf a été largement utilisé dans plusieurs 

domaines, en particulier dans le domaine de l'imagerie médicale et la neuroimagerie où les chercheurs ont 

développé beaucoup d'outils et de méthodes afin d’étudier l'activité cérébrale. La fusion EEG-IRMf permet une 

meilleure connaissance du cerveau avec une bonne résolution spatiotemporelle. 

Dans cette thèse, nous nous sommes intéressés aux différents modèles d’exploration de l'activité 

cérébrale ainsi qu’aux méthodes de fusion des données EEG-IRMf. Notre recherche concerne principalement le 

développement et l'application de nouvelles techniques qui seront en mesure d'analyser les données EEG et 

IRMf simultanément. Pour cela nous avons développé un cadre théorique, pour la fusion de ces deux modalités, 

basé sur la théorie Dempster Shafer appelée communément théorie des croyances ou théorie de l’évidence. Cette 

théorie nous a servie, d'une part, à l'étude de l'activité cérébrale en utilisant des données d'IRMf et d'autre part, à 

élaborer une nouvelle approche basée sur les méthodes symétriques pour l’analyse des données multimodales 

EEG-IRMf. Nous pouvons résumer les principales contributions de cette thèse comme suit : 

1- Afin d’analyser les données d'imagerie par résonance magnétique fonctionnelle (IRMf), nous avons 

proposé une nouvelle méthode basée sur la distance d’alignement temporel dynamique (Dynamic Time 

Warping : DTW) et où la détestation d’activités cérébrales se fait via une segmentation de l’mage par la 

technique dite dePHA (Potential-Based Hierarchical Agglomerative). 

2- Une deuxième méthode a été proposé pour cartographier le cerveau par usage de la théorie de 

Dempster-Shafer (DS) considérée comme cadre théorique efficace pour l'analyse et la représentation 

des données incertaines. Cette dernière nous a permis de marquer les voxels activés dans les images 

IRMf. Les zones du cerveau activées liées à un stimulus externe sont détectées en utilisant la mesure de 

croyance (bel()) comme une métrique pour évaluer l’activité des  voxels en question. La comparaison 

de la méthode proposée avec le t-test et la méthode GLM a clairement montré sa capacité à bien 

détecter correctement les voxels activés. 

3- Enfin, la fusion des données EEG-IRMf nous a permis d’obtenir une meilleure connaissance de 

l'activité cérébrale du cerveau en raison de la résolution spatiotemporelle élevée qui en découle et pour 

laquelle nous avons proposé un cadre théorique de fusion basé sur la théorie de Dempster Shafer 

permettant de prendre les deux modalités EEG et IRMf simultanément. Dans la phase de simulation, 

des données artificielles et données auditives réelles ont été utilisées pour évaluer la performance de 

l'approche proposée. En outre, les taux d'activation vrais et faux (TAR, FAR) et courbe ROC (Receiver 

Operating Characteristic) ont étés utilisés pour établir une comparaison avec la méthode de jointICA. 

Les résultats obtenus montrent clairement l’efficacité de l'approche introduite pour révéler les zones 

actives du cerveau. 

 



 

 

 

 :ملخص

تستعمل  جدا فعالة تقنيات هما( fMRI) الوظيفي المغناطيسي بالرنين والتصوير( EEG) الكهربائي للدماغ  تخطيطرسم 

 مجالات من رئيسيا مجالا تدريجيا الوسائط متعددة البيانات دمج أصبح. الدماغ لنشاط مفصلة خرائط رسم عن للكشف

 نطاق على الوظيفي المغناطيسي الرنين-EEG واحد وقت في تسجيل استخدم وقد. الدراسات من العديد في الاهتمام

 طور حيث للأعصاب التصويري والتشخيص الطبي التصوير مجال في وخاصة المجالات، من العديد في واسع

 أفضل معرفة الوظيفي المغناطيسي الرنين- EEG يوفر.  الدماغ نشاط لدراسة والأساليب الأدوات من العديد الباحثون

 .دقة تحديد المنطقة الناشطة مع لدماغل

 الرنين- EEG البيانات من دمج وطرق الدماغ نشاط استكشاف من مختلفة نماذج في مهتمون نحن الأطروحة، هذه في

 EEG تحليل على قادرة تكون أن شأنها من جديدة تقنيات وتطبيق تطوير أساسا تتعلق أبحاثنا. الوظيفي المغناطيسي

 على ، البيانات بين للاندماج نظري إطار بتطوير قمنا لهذا. واحد وقت في الوظيفي المغناطيسي الرنين والبيانات

 نشاط لدراسة أولا، لنا، النظرية هذه عملت. الأدلة نظرية أو الاعتقاد نظرية عادة يسمى شافر ديمبستر نظرية أساس

 لتحليل متناظرة أساليب إلى يستند جديد نهج لوضع وثانيا، الوظيفي، المغناطيسي الرنين بيانات باستخدام الدماغ

 على الرسالة لهذه الرئيسية المساهمات تلخيص يمكننا. الوظيفي المغناطيسي الرنين-EEG الوسائط المتعدد البيانات

 :التالي النحو

 اقترحنا ،(الوظيفي المغناطيسي الرنين) الوظيفي المغناطيسي بالرنين التصوير البيانات تحليل أجل من -1

 تجزئة خلال من مصنوعة الدماغ أنشطة يكره وحيث( دتو) واربينغ الديناميكي الوقت على تقوم جديدة طريقة

 ..PHA (Potential-Based Hierarchical Agglomerative) تقنيةب يسمى ما قبل من البيانات

 وتمثيل لتحليل فعال نظري كإطار( DS) شافر-ديمبستر نظرية باستخدام المخ لتخطيط ثانية طريقة اقتراح تم -2

. الوظيفي المغناطيسي الرنين الصور في تفعيلها فوزيلس للاحتفال لنا سمح الأخير هذا. المؤكدة غير البيانات

 لتقييم كمقياس قياس( ()Bel) بيل باستخدام الخارجي التحفيز المرتبطة النشطة المخ مناطق عن الكشف تم

 GLM وطريقة T-test– اختبار مع المقترحة الطريقة بين المقارنة وأظهرت. السؤال في فوزيلس نشاط

 .صحيح بشكل تفعيلها تم التي voxels  عن الكشف على قدرته بوضوح

 للدماغ أفضل فهم على للحصول لنا سمح الوظيفي المغناطيسي الرنين-EEG البيانات من مزيج وأخيرا، -3

 على نظريا إطارا اقترحنا والتي ذلك، عن الناتجة الدماغ نشاط من عال والزمانية المكانية القرار بسبب

 في الوظيفي المغناطيسي الرنين وطرق EEG اثنين لاتخاذ السماح شافر ديمبستر نظرية الاندماج أساس

 النهج أداء لتقييم حقيقية سمعية وبيانات اصطناعية بيانات استخدمت المحاكاة، مرحلة وفي. واحد وقت

 تشغيل ومنحنيات( TAR، FAR) وكاذبة صحيحة تفعيل معدلات استخدام تم ذلك، إلى بالإضافة. المقترح

 عليها الحصول تم التي النتائج و تبين. jointICA طريقة مع  لمقارنة منحنيات( ROC) الخصائص

 .الدماغ من النشطة المناطق عن للكشف أدخل الذي النهج فعالية بوضوح

 


