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ABSTRACT 
 

 
Source coding is expected to remove the redundancy from a signal in order to 

make the transmission more efficient. On the other hand, channel coding adds back some 

redundancy to the signal, in order to make it possible to correct the errors occurred during 

the transmission. As these two coding schemes act contrarily, the idea of doing them 

jointly gets meaning. The considered problem in this thesis is the design of a joint source 

channel (JSC) image coder within the context of multiple description coding (MDC).   

Transmitting images via a variety of communication networks is both common 

and important to today’s increasingly technology driven society. As such, there is 

growing demand for high speed, error-free transmission of these images. Unfortunately, 

with increasingly congested networks and long distance links, this is not always possible. 

Ideally, image data would be split into packets and sent to a destination with all packets 

arriving intact at the receiver’s end. However, a packet is invariably dropped or 

scrambled due to congestion or error on its path through the network, necessitating a 

resend of the lost packet. This puts an even larger load on an already congested network, 

as the receiver must first send a message back to the sender indicating packet loss, 

followed by a retransmission by the sender. As such, it could take an unacceptable length 

of time before all image packets are received intact. The problem is magnified when the 

communications link is very long (e.g. from Earth to a satellite orbiting Mars) or the 

backwards link from receiver to sender is non-existent. 

The proposed solution is to encode image data with multiple description coding 

which is a technique that can be considered a JSC coding for erasure channels. It is 

recognized as an effective method to protect multimedia information transmitted over 

networks subject to erasures. In the MDC approach, the source data is encoded into two 

or more correlated bitstreams called descriptions. The correlation/redundancy introduced 

between descriptions helps to minimize the distortion of the recovery image when only a 

subset of descriptions is received. Here, the case of four descriptions is considered. Using 

all descriptions, high quality reconstruction level is obtained. In case of channel failure, 

 iv



lower but still acceptable quality reconstruction can be obtained from any subset of 

received descriptions. 

The purpose of this thesis is twice. First, a current Multiple Description 

Transform Coding (MDTC) is deeply studied and a different way in forming the different 

descriptions is proposed. It is shown that the employed technique leads to an 

improvement in performance in terms of rate/distortion. 

Second, is to propose a new and simple MDTC scheme based on the Discrete Wavelet 

Transform (DWT) instead of the Discrete Cosine Transform (DCT) as it is the case in 

other prevalent works. It is shown that the new proposed MDTC coding scheme, when 

applied to image coding, outperforms the existing MDTC image coder in terms of the 

distortions and quality of the reconstructed images and complexity of implementation. 
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RESUME 
 

Le codage de source est sensé réduire la redondance d’un signal, afin de diminuer 

la quantité de données. D’autres part, le codage de canal rajoute de la redondance au 

signal pour le rendre plus robuste vis-à-vis des erreurs de transmission. Comme ces deux 

schémas de codage agissent de manière contraire sur la redondance, il serait 

probablement bénéfique de faire les deux actions conjointement. Dans cette thèse, la 

conception conjointe source-canal(Joint Source Channel Coding :JSCC) d’un codeur 

d’images  est considérée dans le contexte  du codage par descriptions multiples (Multiple 

Description Coding :MDC). 

La transmission des images sur des réseaux de transmission est à la fois commune 

et importante pour une société de plus en plus menée par la technologie. Ainsi,  il y a 

demande croissante en transmission à grande vitesse et sans erreur de ces images. 

Malheureusement, avec des réseaux de plus en plus encombrés et des liaisons  de grande 

distance, ce n'est pas toujours possible. Dans le meilleur des cas, des données image 

seraient partagées  en paquets et envoyées à une destination avec tous les paquets arrivant 

intact au récepteur. Cependant, un paquet est invariablement perdu pour une raison de  

congestion du réseau ou d'erreur sur son chemin à travers le réseau, rendant nécessaire un 

renvoi du paquet perdu. Ceci met une charge encore plus grande sur un réseau déjà 

encombré, car le récepteur doit d'abord envoyer un message de nouveau à l'émetteur 

indiquant la perte de paquet, suivi d'une retransmission par l'émetteur. En tant que tels, il 

pourrait prendre une durée inacceptable avant que tous les paquets d'image soient reçus 

intacts. Le problème devient pus sévère pour des communications très distantes (par 

exemple de la terre à un satellite) ou lorsque la boucle de rétroaction du récepteur à 

l'émetteur est inexistante.   

La solution proposée est de coder les données image avec le codage par descriptions 

multiples (MDC) qui est considéré comme un codage conjoint source-canal pour des 

canaux à effacements. Le codage par descriptions multiples consiste à créer deux ou 

plusieurs représentations distinctes mais corrélées, d'une même source, qui ont la 

 vi



propriété de se raffiner mutuellement. La corrélation/redondance introduite entre les 

descriptions aide à améliorer la qualité de reconstruction de l’image lorsque seulement 

certaines descriptions (et non pas toutes) sont reçues. Dans cette thèse, le cas de quatre 

descriptions est considéré. La qualité optimale est obtenue, quand toutes les quatre 

descriptions sont reçues. Sinon, une qualité de reconstruction inférieure mais acceptable 

peut être obtenue à partir de n'importe quel sous-ensemble de descriptions reçues.
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CHAPTER 1 

INTRODUCTION 

1.1 Problem statement 

With the rapid development of Internet applications, transmitting images has become 

both common and important. As such, there is growing demand for high speed, error-free 

transmission of these images. Unfortunately, with increasingly congested networks and due to 

the heterogeneous aspect of such networks, this is not always possible. A typical scenario 

might require data to move from a fiber link to a wireless link, which necessitates dropping 

packets to accommodate the lower capacity of the latter. Also, packets are invariably dropped 

or scrambled due to congestion or interference on their path through the network. The most 

common way to communicate an image over the internet is to use a progressive encoding 

system and to transmit the coded image as a sequence of packets with a protocol known as 

TCP [1] (Transmission Control Protocol). When there are no packet losses, the receiver can 

reconstruct the image as the packets arrive; but if a packet is lost, the whole reconstruction 

stops until that packet is resent and finally received. For a TCP-based network, the delay for 

resending a packet is often much longer than the time between the arrivals of packets. If one 

packet is lost, all packets after it become useless for the reconstruction of the image until the 

retransmitted lost packet is received. Therefore, the use of unreliable channels, such as 

wireless networks or the current Internet, implies that error-free delivery of data packets can 

only be achieved by allowing retransmission of lost or damaged packets, through error control 

mechanisms such as Automatic Repeat reQuest (ARQ) [2].   

If packet loss is unavoidable and their retransmission is not an option (e.g., due to a 

delay constraint or a lack of feedback channel), one has to devise a way of making the 

received data meaningful despite the loss. This problem finds its natural solution in the so-

called multiple description framework [1]. This thesis addresses the problem of transmitting 

data images over erasure channels within the context of Multiple Description Coding (MDC). 
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Generally, the goal of error control is to make the data bitstream resilient to 

transmission errors. The channel noise can occur in the form of random bit errors, burst bit 

errors or packet losses. To make such bitstream resilient to transmission errors one must add 

redundancy to the stream, so that it is possible to detect and correct errors. Typically, this is 

done at the channel by using Forward Error Correction (FEC) [3, 4, 5, 6, 7, 8]. The classical 

Shannon information theory [9] states that one can separately design the source and channel 

coders, to achieve error-free delivery of a compressed bitstream, so long as the source is 

represented by a rate below the channel capacity. Therefore, the source coder should 

compress a source as much as possible (below the channel capacity) for a specified distortion, 

and then the channel coder can add redundancy through FEC to the compressed stream to 

enable the correction of transmission errors. The standard FEC presents high performance 

when developed for constant channels and channels that do not present burst errors. 

Unfortunately, this is not the case in many situations where channels have a highly variable 

quality. 

In fact, the typical error control techniques, ARQ, FEC or even both together [10], 

cannot be easily adapted to real time transmissions. Therefore, Joint Source-Channel Coding 

(JSCC) is often preferred. Such kind of scheme allocates a total amount of redundancy 

between source and channel coding to recover from erroneous or missing bits. 

1.2 Joint source-channel coding 

 Source coding and channel coding are essential functions in any communication 

system. The source coding block is designed to remove as much redundancy as possible from 

the source while the channel coding block adds control redundancy to the compressed source. 

For practical and existing systems, these two blocks are separately optimized. This was 

motivated both by Shannon “separation theorem” [9] and by the conceptual simplicity of 

considering only one or the other. However it is well known that the Shannon theorem 

requires codes of infinite lengths (and hence infinite complexity and delay) for both source 

coder and channel coder.  

The limitations of separate source and channel coding have lead to the problem of 

designing joint source-channel coding (JSC) coders. JSC coding can lead to performance 

gains under complexity and/or delay constraints and offer robustness against channel 

variation. 
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1.3 Multiple description coding 

 Multiple description coding is a technique which can be considered a JSC code for 

erasure channels. It is recognized [11] as an effective method to protect multimedia 

information transmitted over networks subject to erasures. In the MDC approach, two or more 

correlated descriptions of the same data are generated which can be independently decoded, 

and yield mutually refinable information. Therefore, the quality of the recovered signal is 

dependent only on the number of received descriptions, and not on the specific loss pattern. 

In MD coding, the signal is encoded into more than one description and each 

description is packed into one packet. Each packet can have equal importance.  When all 

packets are received, a signal with high fidelity is reconstructed.  When one or more packets 

are lost, the quality of the reconstructed signal will degrade gracefully.  

Many MD coding methods have been developed.  The most popular ones are: MD 

quantization, MD correlation transform, and MD coding with frames.  There is no obvious 

best choice from these methods.  The complexity of these methods is often high and 

considerable research has been undertaken to improve these methods and to apply them to 

signal coding. 

The purpose of this thesis is twice. First, a current Multiple Description Transform 

Coding (MDTC) [12, 13] is deeply studied and a different way in forming the different 

descriptions is proposed. It is shown that the employed technique leads to an improvement in 

performance in terms of rate/distortion. 

Second, is to propose a new and simple MDTC scheme based on the Discrete Wavelet 

Transform (DWT) instead of the Discrete Cosine Transform (DCT) as it is the case in the 

work of Goyal et al. [12, 13]. It will be shown that the new proposed MDTC coding scheme, 

when applied to image coding, outperforms the existing MDTC image coder in terms of the 

distortions and quality of the reconstructed images and complexity of implementation.  

 

1.4 Thesis overview  

The remainder of this thesis is organized as follows. Chapter 2 describes a digital 

communication system and provides necessary background on image coding, information 

theory, quantization and source coding. Chapter 3 is dedicated to the presentation of the 

principle image coding transforms and their properties. In chapter 4, we address the problem 
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of multiple description transform coding and its application to image coding. Based on the 

work of [12, 13], we propose a new technique in forming the descriptions, and then a new 

wavelet based MDTC scheme is developed. This chapter also presents the experimental 

results which include the objective and subjective qualities of reconstructed images using the 

two proposed coders. Finally chapter 5 summarizes the results of the study and provides 

suggestions for future work. 
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CHAPTER 2 

BACKGROUND 

In this chapter we provide some of the necessary background aimed at keeping this thesis self-

contained. 

2.1 Digital communication systems 

Digital communication consists of the transmission of information from a source that 

generates the information to one or more destinations through a communication channel. In 

the following, we describe the basic elements of a generic digital communication system, 

which are illustrated in Figure 2.1. 

Information Source 
encoder 

Channel 
encoder 

 

Figure 2.1: Block diagram of a generic digital communication system. 

• Source encoder: The source encoder efficiently converts the output of the information 

source into a stream of binary digits called bitstream. In this context, efficiently means 

that the size of the bitstream that represents the source output is minimized. This is 

source 

Modulator 

Destination Source 
decoder 

Channel 
decoder 

Demodulator

ChannelNoise
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why the term compression is usually used as a synonym for source coding. There are 

two general classes of compression: lossless compression and lossy compression. We 

talk about lossless compression if the original signal can be perfectly recovered from 

the information bitstream that represents the compressed data. Otherwise, the 

compression is said to be lossy 

• Channel encoder: The purpose of a channel encoder is to protect the information 

bitstream against errors introduced by a noisy communication channel. This can be 

achieved by inserting, in an intelligent manner, additional bits, called redundancy, into 

the information bitstream. The redundancy can be used at the receiver to detect and 

possibly correct errors. The bitstream at the output of a channel encoder is organized 

in binary strings called code words. 

 

• Digital modulator: The digital modulator serves as the interface of the communication 

channel. It converts the code words outputted by the channel encoder into a waveform, 

which is the appropriate form for transmission through nearly all practical 

communication channels. 

 

• Digital demodulator: The digital demodulator reconverts the waveform upon arrival 

from the communication channel into a digital signal that can be processed by the 

channel decoder. 

 

• Channel decoder: The purpose of a channel decoder is to reconstruct the original 

information bitstream using the protection bits inserted by the channel encoder. Both 

the channel encoder strategy and the channel noise characteristics are taken into 

consideration in the design of the channel decoder. 

 

• Source decoder: The aim of a source decoder is to reconstruct the signal originally 

sent from the information source and to deliver it to its destination. 

 

It is worthwhile to indicate that error control in the above described system, which is a one-

way system, is achieved using forward error correction (FEC). However, if a feedback 

channel is available, the data lost during the transmission may be retransmitted using 

Automatic repeat request (ARQ) schemes. 
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We note also that the system can be further simplified by combining the modulator, the 

physical channel, and the demodulator in one box called discrete channel or coding channel 

[14]. In fact, these three elements are usually jointly modeled using a unique mathematical 

model. 

A key issue in evaluating the performance of a digital communication system concerns the 

efficiency with which information from a given source can be represented. Another key issue 

pertains to the rate at which information can be transmitted reliably over a noisy channel. The 

fundamental limits on these key aspects of system performance have their roots in information 

theory, which was originally known as the mathematical theory of communication. 

Information theory deals only with mathematical modeling and analysis of a communication 

system rather than with physical sources and physical channels.  

2.2 Information theory 

This section involves an overview of information theory and its importance in data 

transmission. Using these theories, a good understanding of what conditions are required for 

data representation can be gained and the theoretical limits of signal representation fully 

comprehended. Specifically, given an information source and a noisy channel, information 

theory provides limits on the minimum number of bits per symbol required to fully represent 

the source, and the maximum rate at which reliable communication can take place over the 

channel [15]. Information theory also serves in giving a quantitative measure of entropy (i.e. 

information content) of a digital signal. The Father of information theory was Claude E. 

Shannon, who during the late 1940s and the 1950s developed a theory of source coding in 

order to quantify the optimal achievable performance in data representation systems. 

 2.2.1 Uncertainty, Information, and Entropy 

Suppose that a probabilistic experiment involves the observation of the output emitted by 

a discrete source. The source output is modeled as a discrete random variable, X , which takes 

on symbols from a fixed finite alphabet 

{ }110 ,...,, −= Kxxxϕ                                                   (2.1) 

With probabilities 

( ) 1,...,1,0 −=== KkpxXP kk                                    (2.2) 

where the set of probabilities must satisfy the condition 
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The symbols emitted by the source are assumed to be statistically independent. A source 

having the properties just described is called a discrete memoryless source, memoryless in the 

sense that the symbol emitted at any time is independent of previous symbols. 

How much information is produced by such a source? The idea of information is closely 

related to that of “uncertainty” and “surprise”. 

Consider the event kxX = , describing the emission of symbol  as defined in Equation 2.2. 

Clearly, if the probability and

kx

1=kp kipi ≠=  allfor  0 , then there is no surprise and therefore 

no information when symbol is emitted. If, in the other hand, the probability is low, 

then there is more surprise and therefore more information when symbol is emitted by the 

source than when symbol , with higher probability is emitted.  

kx kp

kx

kixi ≠,

The amount of information gained after observing the event kxX =  which occurs with 

probability is given by [14] kp

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

k
k p

xI 1log2                                                    (2.4) 

The unit of information called the bit (a contraction of binary unit). When 2
1=kp , we 

have bit. Hence, one bit is the amount of information that we gain when one of two 

possible and equiprobable events occurs. Indeed, 

( ) 1=kxI

( )kxI is a discrete random variable that 

takes on the values ( ) ( ) ( )110 ,...,, −KxIxIxI with probabilities , respectively. The 

mean value of over the source alphabet

110 ,...,, −Kppp

( )kxI ϕ is given by 

( ) ( )[ ]kxIEH =ϕ  

                                                                      ( )∑
−

=

=
1

0

K

k
kk xIp

∑∑
−

=

−

=

−==
1

0
2

1

0
2 log)1(log

K

k
kk

K

k k
k pp

p
p            (2.5)   

The important quantity, ( )ϕH , is called the entropy of  a discrete memoryless source with 

source alphabet ϕ . It is a measure of the average information content per source symbol. 
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Note that the entropy ( )ϕH  depends only on the probabilities of the symbols in the alphabet 

ϕ of the source. 

2.2.2 Source coding 

An important problem in communication is the efficient representation of data generated by a 

discrete source. The source by which this representation is accomplished is called source 

encoding. For the source coding to be efficient, we require knowledge of statistics the source. 

In particular, if some source symbols are known to be more probable than others, then this 

feature could be exploited in the generation of a source code by assigning short code words to 

frequent source symbols, and long code words to rare source symbols. Such source code is 

referred to as a variable-length code. Two functional requirements should be satisfied by this 

source code: 

• The code words produced by the encoder are in binary form. 

• The source code is uniquely decodable, so that the original source sequence can be 

reconstructed perfectly from the encoded binary sequence. 

Consider then the arrangement shown in Figure 2.2 that depicts a discrete memoryless source 

whose output  is converted by the source encoder into a stream of 0s and 1s, denoted by . 

The source has an alphabet of

kx kb

K different symbols, and the  symbol occurs with 

probability . 

kth kx

kp

 

Figure 2.2: Source encoding. 

 

Let the binary code word assigned to symbol  by the encoder have length , measured in 

bits. The average code word length,

kx kl

L , is defined as 

∑
−

=

=
1

0

K

k
kk lpL                                                           (2.6) 

The parameter L  represents the average number of bits per source symbol used in the source 

encoding process. Let denote the minimum possible value ofminL L . The coding efficiency of 

the source encoder is defined as 

kbDiscrete 
memoryless 

source

kx Source 
encoder

Binary 
sequence
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L
Lmin=η                                                              (2.7) 

With minLL ≥ , the minimum value is defined in Shannon’s first theorem: the source-

coding theorem [14] stated as follows: 

minL

Given a discrete memoryless source of entropy ( )ϕH , the average code word length L for any 

source encoding is bounded as 

( )ϕHL ≥                                                             (2.8) 

Accordingly, the entropy ( )ϕH  represents a fundamental limit on the average number of bits 

per source symbol, L , necessary to represent a discrete memoryless in that L  can be made as 

small as, but no smaller than, the entropy ( )ϕH . 

2.2.3 Entropy coding 

A variety of coding schemes have been developed over the years, these coding 

schemes play a very important part in the compression process as they relate the theoretical 

entropy to the practical entropy achieved after compression of the data. Two major entropy 

coding systems will be presented from a practical perspective namely Huffman and 

Arithmetic coding. 

 

2.2.3.1 Huffman coding 

 Huffman coding was developed by D. A. Huffman [16] in 1952. This particular 

method of entropy coding yielded a performance quite close to the fundamental limit set by 

the entropy of a discrete memoryless source, namely ( )ϕH . The Huffman code is optimum in 

the sense that no other uniquely decidable set of code words has a smaller average code word 

length for a given discrete memoryless source [17]. We illustrate this encoding algorithm 

through an example. 

Consider a discrete memoryless source with seven possible symbols having the 

probabilities of occurrence illustrated in Figure 2.3. The source symbols are ordered in 

decreasing order of probabilities, i.e.,

610 ,...,, xxx

( ) ( ) ( )610 ... xPxPxP >>> . We begin the encoding 

process with the two least probable symbols and . These two symbols are tied together 

with the upper branch assigned a 0 and the lower branch assigned a 1. The two symbols are 

5x 6x
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regarded as being combined into a new symbol with probability equal to the sum of the two 

original probabilities. Therefore, the list of source symbols is then reduced in size by one. The 

probability of the new symbol is placed in the list in accordance with its value. The procedure 

is repeated until we are left with a final list of source symbols with only two for which a 0 and 

a 1 are assigned as shown in Figure 2.3(a). The code words of the Huffman code for the 

source are tabulated in Figure 2.3(b).  

(a) 00.35 

0

 

                                                   (b) 

Symbol Probability Code word 

0x  0.35          00 

1x  0.30          01 

2x  0.20          10 

3x  0.10          110 

4x  0.04          1110 

5x  0.005          11110 

6x  0.005          11111 

 

Figure 2.3: Example of the Huffman encoding algorithm 

The average code word length is therefore 

1

0.65

0.15

0.05 

0.01 

1 
1 

1 

1

1

0.30 

0
0.20 

0 
0.10 

0 0.04 

0.005 

0.005 
0 

0.35
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21.2)5(005.0)5(005.0)4(04.0)3(10.0)2(20.0)2(30.0)2(35.0 =++++++=L  

Using Equation 2.5, the entropy of the specified discrete memoryless source is: 

( ) 11.2=ϕH   

 2.2.3.2 Arithmetic coding 

A major problem with Huffman coding is that the codes it generates are only an 

integral number of bits long. For example if the probability of a character is 1/3, the optimum 

number of bits to code the character is 1.6 as per Shannon's entropy equation (Equation 2.4). 

Huffman coding has to either assign a 1 or 2 bit code, with either choice leading to a longer 

compressed message than the theoretical optimum. A clever way to get around this problem is 

to employ Arithmetic coding. Arithmetic coding doesn't generate individual codes for each 

character but performs arithmetic operations on a block of data, based on the probabilities of 

the next character. Using this method it is possible to encode characters with a fractional 

number of bits, thus approaching the theoretical optimum. This comes from Shannon's second 

idea of information theory which states that data can always be encoded more efficiently if 

coded in vector (i.e. block) form. Arithmetic coding achieves this amazing feat by basing its 

coding on the fact that from any arithmetic coding process a single number is produced that is 

less than 1 and greater than or equal to 0.  

10 <≤ n                                                             (2.9) 

Where  is the output number. n

This single number n can be uniquely decoded to create the exact stream of symbols 

that went into its construction. To construct the output number n, the symbols are assigned a 

set of probabilities. A low and high value between 0 and 1 is then allocated to these symbols 

based on their probabilities. For example, if it is to encode the random message "BILL 

GATES", it would have a probability distribution that looks like this [18] 

Character SPACE A B E G I L S T 

Probability 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.1 

 

Once the character probabilities are known, the individual symbols need to be 

assigned a range along a "probability line", which is nominally 0 to 1. It doesn't matter which 

characters are assigned which segment of the range, as long as it is done in the same manner 

by both the encoder and the decoder. The nine character symbol set use here would look like 

this 
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Character SPACE A B E G I L S T 

Probability 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.1 

Range 0.0 - 0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.8 0.8-0.9 0.9-1.0 

 

Each character is assigned the portion of the 0-1 range that corresponds to its 

probability of appearance. Note also that the character "owns" everything up to, but not 

including the higher number. So the letter 'T' in fact has the range 0.90 - 0.9999.... 

The most significant portion of an arithmetic coded message belongs to the first symbol to be 

encoded. When encoding the message "BILL GATES", the first symbol is "B". In order for 

the first character to be decoded properly, the final coded message has to be a number greater 

than or equal to 0.20 and less than 0.30. What we do to encode this number is keep track of 

the range that this number could fall in. So after the first character is encoded, the low end for 

this range is 0.20 and the high end of the range is 0.30. 

After the first character is encoded, we know that our range for our output number is 

now bounded by the low number and the high number. What happens during the rest of the 

encoding process is that each new symbol to be encoded will further restrict the possible 

range of the output number. The next character to be encoded, 'I', owns the range 0.50 through 

0.60. If it was the first number in our message, we would set our low and high range values 

directly to those values. But 'I' is the second character. So what we do instead is say that 'I' 

owns the range that corresponds to 0.50-0.60 in the new subrange of 0.2 - 0.3. This means that 

the new encoded number will have to fall somewhere in the 50th to 60th percentile of the 

currently established range. Applying this logic will further restrict our number to the range 

0.25 to 0.26. 

The algorithm to accomplish this for a message of any length is shown below: 

Set low to 0.0 

Set high to 1.0 

While there are still input symbols do 

    get an input symbol 

    code_range = high - low. 

    high = low + range*high_range(symbol) 

    low = low + range*low_range(symbol) 

End of While 

output low 
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 Following this process through to its natural conclusion with our 

chosen message looks like this: 

New character Low value High value 

 0.0 1.0 

B 0.2 0.3 

I 0.25 0.26 

L 0.256 0.258 

L 0.2572 0.2576 

SPACE 0.25720 0.25724 

G 0.257216 0.257220 

A 0.2572164 0.2572168 

T 0.25721676 0.2572168 

E 0.257216772 0.257216776 

S 0.2572167752 0.2572167756 

So the final low value, 0.2572167752 will uniquely encode the message "BILL GATES" 

using our present encoding scheme. 

Given this encoding scheme, it is relatively easy to see how the decoding process will 

operate. We find the first symbol in the message by seeing which symbol owns the code space 

that our encoded message falls in. Since the number 0.2572167752 falls between 0.2 and 0.3, 

we know that the first character must be "B". We then need to remove the "B" from the 

encoded number. Since we know the low and high ranges of B, we can remove their effects 

by reversing the process that put them in. First, we subtract the low value of B from the 

number, giving 0.0572167752. Then we divide by the range of B, which is 0.1. This gives a 

value of 0.572167752. We can then calculate where that lands, which is in the range of the 

next letter, "I".  

The algorithm for decoding the incoming number looks like this: 

get encoded number  

Do  

    find symbol whose range straddles the encoded number  

    output the symbol  

    range = symbol low value - symbol high value  
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    subtract symbol low value from encoded number  

    divide encoded number by range  

until no more symbols 

2.3 Quantization 

Digital transmission of information has come to dominate the design of 

communications systems to such an extent that information has become synonymous with 

bits. The generation of bits from a continuous valued source inevitably involves some form of 

quantization, which is simply the approximation of a quantity with an element chosen from a 

discrete set. Assuming the interface between a source encoder and a channel encoder is 

discrete, a finite-rate source coder is synonymous with a quantizer. 

 The communication of any information, continuous or discrete, through quantized 

values seems very natural today. However, this idea was rather new in Shannon's time. Pulse-

Code Modulation (PCM), which is nothing more than quantization for subsequent digital 

communication, was patented in 1939 [19]. The first fully deployed use of PCM was for a 

military communication system used in 1945 [20] and described openly in 1947 [21]. 

The simplest form of quantization is fixed-rate quantization of a scalar source. Here a 

real-valued source is mapped to one of a finite number of values. Symbolically, the quantizer 

is a mapping  where CRQ →:

{ } KK yyyRyyyC <<<⊂= ...  ,,...,, 2121                            (2.10) 

is called the codebook. This can be decomposed into encoding or “quantization” 

{ }, ..., K, R 21: →ε                                                   (2.11) 

and decoding or “inverse quantization” 

{ } C, ..., K, d →21:                                                  (2.12) 

operations, though this is usually not necessary. Each inverse image ( )iyQ 1−  is called a cell, 

and the cells together form the partition induced by the quantizer. 

Except in the degenerate case where the source takes on no more than K values, the 

input and output of the quantizer will differ. This difference is called the quantization error. 

Naturally, this error should be made small, so we minimize a nonnegative measure of the 

error. The most common distortion measure is the mean-squared error (MSE), defined for the 

random variable X and the quantizer Q by 

( )[ ]2)(XQXED −=                                            (2.13) 
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where  denotes expectation. [ ].E

 With the MSE distortion measure, there are two simple necessary conditions for an 

optimal quantizer: 

• Nearest neighbor encoding: Consider the codebook to be fixed. In encoding a source 

sample x, one should choose the codebook element closest to x. This is written as 

( ) i
Cy

yxxQ
i

−=
∈
minarg                                              (2.14) 

In this case the cell is called a voronoi cell. 

• Centroid condition: With the encoder mapping fixed, the decoder minimizes the 

distortion by decoding to the average value of the cell: 

 

( ) [ ]ii yxQxEyd == )(/(                                            (2.15) 

Except for a few examples with simple probability density functions, optimal quantizer design 

cannot be done analytically. Lloyd [22] and Max [23] independently suggested that a 

quantizer be designed iteratively by alternating enforcements of the above conditions. A 

quantizer designed in this manner is called a Lloyd-Max quantizer. 

 The output of a Lloyd-Max quantizer is a random variable taking values in a discrete 

set of size K. The average number of bits required to transmit such a random variable can 

usually be reduced by entropy coding. There is no reason to believe that cascading a Lloyd-

Max quantizer and an entropy coder would give the best trade-off between average rate and 

distortion [24]; in fact, a joint design of the quantizer and entropy coder is beneficial. The 

result of a joint design is called an entropy-constrained scalar quantizer. Its first numerical 

investigation was by Wood [25]. Optimality conditions for MSE distortion were provided by 

Berger [26]. 

 Vector quantization is merely the extension of scalar quantization to 

multidimensional domains, but the implications of this extension are profound. The source 

coding of any discrete domain source like an image, audio segment, or video segment can be 

considered a single vector quantization operation. This is in contrast to having many scalar 

quantization operations, say one for each sample of an audio signal. Vector quantization is by 

definition the ultimate coding scheme because it includes all forms of source coding. 

Vector Quantization (VQ) is actually the structure used by Shannon [27] in his 

theoretical studies of coding with a fidelity criterion, thus it is as old rate-distortion theory. 

Interest in VQ rose in the 1980's as the use of digital computers made its implementation 

more practical. It should be noted, however, that unconstrained VQ is feasible for vectors of 
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much lower dimension than an entire source realization (image, audio segment, video 

segment) described above. 

The two scenarios for scalar quantization considered above, optimum for a fixed 

codebook size and entropy-constrained, have been addressed for VQ as well. For the first 

problem, a design algorithm which generalizes the Lloyd-Max iteration was given by Linde, 

Buzo, and Gray [28]. It is called the generalized Lloyd, or LBG for the authors, algorithm. An 

algorithm for entropy-constrained VQ (ECVQ) design was given by Chou, Lookabaugh, and 

Gray [29]. The main drawback of VQ is its complexity, both in time (number of operations) 

and space (amount of memory). Unless some structure is imposed on the codebook, each 

codeword must be stored independently. For a codebook of size K, the nearest neighbor 

encoding process requires K distance computations and the selection of the smallest of the K 

distances. Table 2.1 summarizes a complexity comparison between scalar and vector 

quantization for an N-dimensional source coded at R bits per component. It is assumed that 

the scalar codebooks used for each component are distinct but equal in size [24]. 

 Scalar quantization Vector quantization 
Space complexity: 
    Codebook size 

 
RN2  

 
NR2  

Time complexity: 
   distance calculations 
   complexity of distance calculation 
   overall 

 
RN 2  
)1(O  

( )RNO 2  

 
NR2  

)(NO  
( )NRNO 2  

 
Table 2.1: Complexity comparison between scalar and vector quantization. N represents the 
dimensionality of the source and R the rate in bits per source component. It is assumed that 
different scalar quantizers are used for each vector component; otherwise, codebook size is 
reduced from N2R to 2R. 
 

Many techniques for reducing time and space complexity by placing constraints on the 

codebook design (using a suboptimal codebook) or by replacing the nearest neighbor 

encoding rule (using suboptimal encoding) have been proposed. The most important variants 

are described in [30], a very interesting text on VQ. 

 The design of optimal quantizers can rarely be completed analytically. While this is a 

practical problem in its own right, it poses distinct difficulty in the design of systems 

consisting of more than just a quantizer. It is useful to be able to model the quantization 

process in a general way. Several approaches that lead to tractable analysis are to assume the 

quantization is fine, uniform, non-uniform or dithered [24]. 
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2.3.1 Fine quantization approximation 

Consider first, Lloyd-Max quantization, i.e., scalar quantization without entropy coding. If the 

size of the codebook is large and the probability density function (p.d.f.) of the source is 

smooth, then the p.d.f. is approximately constant over each quantization cell. This 

approximation, attributed to Bennett [31], facilitates analytical approximations of the 

distortion as a function of the size of the codebook K and point density function of the 

quantizer [30]. In any cell, the point density function is approximately the width of the cell 

divided by K. 

The optimum point density function is proportional to the cube root of the p.d.f. and 

yields distortion of 

( )
3

3
1

212
1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≈ ∫

∞+

∞−

dxxf
K

D X                                             (2.15) 

For a Gaussian random variable with variance , this becomes  2σ

2

2

2
3
K

D πσ
≈                                                          (2.16) 

Upon relating the rate to the number of cells with KR 2log= , we obtain 

R
MaxLloydGaussianD 22

, 2
2
3 −

− ≈ σπ
                                         (2.17) 

Bennett's approximation can be used to analyze entropy-coded scalar quantization 

(ECSQ) as well. The results are rather startling: Gish and Pierce [32] showed that under weak 

assumptions on the source p.d.f. and on the distortion criterion, the asymptotically optimal 

point density is constant on the support of the source p.d.f. For a Gaussian source, one obtains 

ReD 22 2
6

−≈ σπ
                                                      (2.18) 

For comparison, the distortion-rate function for a memoryless Gaussian source with the same 

variance is 

( ) RRD 22 2−= σ                                                       (2.19) 

2.3.2 Uniform quantization 

 Uniform quantization is usually not optimal, but it is very common in practice 

because of its simplicity. A uniform quantizer is distinguished by having equally spaced 
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codewords. Two types of uniform quantizers are of interest: one with a finite number of 

codewords (a bounded quantizer) and one with a countably infinite number of codewords (an 

unbounded quantizer). 

A bounded uniform quantizer is characterized by the number of cells K, the quantization step 

size , and any single codebook value, say . The remaining codebook entries are given 

by . The interval 

∆ 1y

( )∆−+= 11 kyyk [ ]2 ,21
∆+∆−= Kgranular yyI  is called the granular 

region. Source samples in this interval will be approximated within 2
∆±  by their quantized 

values if midpoint reconstruction is assumed. Samples in the overload region 

\  face quantization error greater than overloadI = granularI 2
∆ in absolute value. Overload 

distortion and granular distortion refer to the expected value of each type of distortion. 

For a fixed value of K, there is a trade-off in selecting the value of . Decreasing ∆ ∆  

diminishes the granular distortion, but also contracts the granular region, enhancing the 

overload distortion. Similarly, attempting to minimize the overload distortion enhances the 

granular distortion. The size of ∆  can be described by a dimensionless quantity called the 

loading factor. The loading factor is the length of Igranular divided by twice the standard 

deviation of the source. For Gaussian and Laplacian sources, the optimal loading factor as a 

function of the bit rate is shown in Figure 2.4. The difference is due to the heaviness of the 

distribution tails [24]. 

An unbounded uniform quantizer is described by a quantization step size  and an 

offset

∆

)2 ,2[ ∆∆−∈a .  The quantization function is then given by 

( )

[ ]

,
1 1  if  ,  
2 2aQ x n a x n a n a

x a a

∆

∆

⎡ ⎞⎛ ⎞ ⎛ ⎞= ∆ − ∈ − ∆ − + ∆ −⎜ ⎟ ⎜ ⎟ ⎟⎢⎝ ⎠ ⎝ ⎠⎣ ⎠
= + −

                 (2.20) 

where represents rounding to the nearest multiple of[ ]∆. ∆ . This is most commonly used with 

equal to zero ora 2
∆− . An unbounded uniform quantizer only makes sense when followed 

by an entropy code. 

Except in the small ∆  limit, few analytical calculations can be made regarding the 

performance of entropy-coded unbounded uniform quantization (ECUQ). The use of Bennett 

approximations for small  yields the optimality of ECUQ mentioned previously. At high∆
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Figure 2.4: Optimal loading factors for bounded uniform quantization of Gaussian and 
Laplacian sources. 

rates, ECUQ performs within ( ) 255.06log
2
1

2 ≈eπ bits per sample of the rate-distortion 

function for any memoryless source [32]. A numerical study has shown that for a wide range 

of memoryless sources, ECUQ is within 0.3 bits per sample of the rate-distortion function at 

all rates [33]. 

2.3.2.1 Example of uniform scalar quantization 

An example of a uniform scalar quantizer is depicted in figure 2.5 where the 

quantization step size  is equal to 1. The granular region is divided into 

intervals . The output values  are typically chosen in the intervals . The set 

 and  are respectively the dictionary (codebook) and centroid. 

∆

[ iii xxI  ,1−= ] iy iI

{ }iy iy

 

Figure 2.5: Uniform scalar quantization. 
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Let a discrete-time signal uniformly distributed in the interval [ . It is 

considered as a realization of a centered random process (this signal is, in fact, a non 

realistic signal especially in the case of images, but it will help to simplify computations and 

give a concise formula of the quantization error power in terms of  signal power and 

resolution). The resolution  is a function of the number of intervals dividing 

the granular region [ ] . 

)(nx ]

⎤

ba  ,

)(nX

⎡ NR 2log= N

ba  ,

To define a uniform scalar quantizer, one should: 

1. divide the interval [ ]ba  ,  into distinct intervals of equal 

length

RN 2=

( )
R

ab
2

−=∆ ; 

2. associate a number to each interval; ""i

3. define a representing value   for each interval, for example the midpoint of 

the interval.  

"" iy

The coding operation consists of finding the interval to which belongs a given input 

value and associating the interval number )(nx { }Nni ...1)( ∈  to this value. The decoding 

operation consists of assigning to the number the corresponding from the dictionary. )(ni )(niy

( ) )(ˆ niynx =                                                     (2.21) 

Thus, the coding is a two-step operation: 

)()()( ni
decodingcoding yninx ⎯⎯⎯ →⎯⎯⎯ →⎯  

and the quantization error is given by 

 )(ˆ)()( nxnxn −=ε                                                     (2.22) 

where and are respectively the input and output of the quantizer. )(nx )(ˆ nx

 The quantizer performance is, generally, measured through the MSE which we often 

seek to minimize or in other sense maximizing the signal to noise ratio (SNR) 

[ ]2)(ˆ)( nxnXED −=                                                 (2.23) 

[ ]
[ ]2

2

)(ˆ)(
)(
nxnXE

nXESNR
−

=                                               (2.24) 

The quantization error )(nε  is a deterministic function of  with a uniform 

distribution [34]. The quantization error mean is zero and its variance is given by 

)(nx
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[ ] ∫
∆

∆− ∆
==

2

2

222 1 dxxE εσ ε                                               (2.25) 

For N intervals representing the whole interval [ ]ba  , , the variance  becomes 2
εσ

( ) ( )
R
ab

N
ab

2

2

2

22
2

212
1

12
1

12
−

=
−

=
∆

=εσ                                     (2.26) 

The variance of the signal is given by )(nX

[ ]
12

)()(
2

22 abnXEX
−

==σ                                             (2.27) 

then, the SNR in dB is 

[ ]
[ ] R

E
nXESNR R 02.62log10)(log10 2

102

2

10 ===
ε

                           (2.28) 

thus, the SNR of uniform quantization increases 6 dB for each increase of one bit/pixel. 

2.3.3 Dithered quantization 

Dithering is the addition of a random signal prior to quantization. The dither signal 

may or may not be subtracted after quantization, yielding subtractive and nonsubtractive 

dithered quantization, respectively.  The purpose of this operation is to manipulate the 

statistical properties of the quantization noise, e.g., to make them independent of the signal.  

In subtractive dithered quantization (SDQ), an unbounded uniform quantizer and a 

white dither signal uniformly distributed on )2 ,2[ ∆∆−  is assumed. This SDQ is equivalent 

to the use of Equation (2.20) with randomized offset . The quantization noise is signal-

independent, white, and uniformly distributed, regardless of the signal p.d.f. and∆ .  

a

The first use of SDQ was by Roberts [35] to improve the perceptual quality of PCM-

encoded images. Subtractive and nonsubtractive dithered quantization is surveyed in [36, 37]. 

2.4 Digital image preliminaries and distortion measures 

2.4.1 Preliminaries of digital images 

 In contrast with digital speech and audio data, image data spans over space rather than 

over time. The image signals are usually band-limited analog signals, which are converted to 
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digital form through sampling at or above the Nyquist sampling rate [38]. As images are two-

dimensional, discretisation is done in both dimensions. Each discretised point in an image is 

known as a picture element or a pixel. 

 For grayscale images, each pixel has a certain scalar quantized value which represents 

the luminance. For a b-bit grayscale images, the luminance goes from 0 (black) to 

(white). Therefore, for a one-bit image, luminance values are either 0 or 1. Such binary 

images are used commonly for facsimiles [38]. Grayscale images used in research are 

commonly 8-bit images, where each pixel has a luminance within the range of 0 to 255 and all 

values in between are a certain level of grey.  An example of an 8-bit image is given in Figure 

2.6. The rectangular arrangement of pixels in an image allows them to be represented as a two 

dimensional array. This representation allows the image to be specified as a data type for use 

in coding algorithms. Individual pixels can be quantized using scalar quantizers or differential 

pulse code modulation (DPCM), which exploits spatial redundancy from neighboring pixels. 

Rows and columns of an image can be extracted as one dimensional vector from the array. 

This allows direct manipulation by various algorithms such as subband and wavelet coding, 

where row and column filtering can be performed separately. Likewise, due to the two 

dimensional nature of image data, 

12 −b
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Figure 

2.6: A typical 8-bit grayscale image “Yosemite” with mapping between color and luminance 

value. 

statistical dependencies exist across both dimensions, which suggests that square or 
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rectangular blocks of pixels are a suitable atomic data representation for block-based 

quantization schemes, such as transform coding and vector quantization, to exploit these 

dependencies [39].  

 Assume an isotropic covariance function for image data [40] 

( )∑ +−=
222, jieji ασ                                                  (2.29) 

where is the variance of the image and is the distance away from the reference 

pixel. It can be shown, if the correlation is assumed uniform in both dimensions, that the 

covariance function of any pixel, which indicative of spatial correlation, decreases rapidly 

beyond the vicinity of 8 neighboring pixels [40]. Therefore, a popular block size used in 

block-based image coding is pixels, which form vectors of dimension 64.   

2σ ji  and 

8 x 8

2.4.2 Distortion measures for image coding 

 For images, the amount of compression is usually expressed as the bitrate which is 

measured in bits per pixel (bits/pixel or bpp). In other words it is the average number of bits 

required to represent one pixel. 

In general, distortion measurements are used on lossy compressed (whereas in lossless 

compression, no information is lost during compress and hence the distortion is zero) or 

transmitted images to try and quantify the quality of a picture. This quality is a very subjective 

measure as it may mean that the reproduced image is to be used for casual human viewing 

(i.e. TV image) or it may be needed for precise, quantitative measurement of some sort (i.e. 

medical image). These types and degrees of degradation become quite dependent on the 

situation for which the picture is being used. Getting a quantifiable measure of the distortion 

between two images is very important as one can try and minimize this distortion so as to 

better replicate the original image. 

There are many ways of measuring the fidelity of a reproduced image Î to its 

original I . One of the simplest and most popular methods is to use the difference between 

I and Î . A common measure for the loss of information, in image coding, is the mean squared 

error (MSE), which is calculated using the following equation [41].  
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,ˆ,1 ]                                      (2.30) 

where m and n are the dimensions of the image, ),( jiI and ( )jiI ,ˆ  are the pixel values at 

location  in the input and output image, respectively. A human observing two images 

affected by the same type of degradation will generally judge the one with the smaller MSE to 

be closer to the original. A very small MSE can be taken to mean that the image is very close 

to the original. However the MSE has some problems when images with different types of 

degradation are compared, the one with the smallest MSE will not necessarily seem closest to 

the original. 

( ji, )

 Signal-to-noise ratio (SNR) is another measure often used to compare the performance 

of reproduced images which is defined, in decibels, by  

( )[ ]
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∑ ∑
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or in terms of the mean square error 

( )[ ]
MSE

jiI
mnSNR

m
i

n
j∑ ∑= =

=
1 1
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10

,1

log10                                (2.32) 

A common method of measuring the difference between two images is the Peak Signal 

to Noise Ratio, or PSNR which is defined by 

( )
MSE

PSNR
b 2

10
12log10 −

=                                     (2.33) 

where b is the number of bits used to represent a pixel in the input image. The numerator is 

the square of the largest possible pixel value in the input image. For an 8-bit grayscale image, 

the PSNR is given by 

MSE
PSNR

2

10
255log10=                                              (2.34) 
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In our thesis, we have chosen to use PSNR as the quantitative method of comparing 

the image quality of a processed image to the original image. Unfortunately, PSNR does not 

necessarily take into account the perceived quality of an image, rather it only takes into 

account the overall similarity of pixel values between the original and processed image. For 

example, in Figure 2.7, the difference in PSNR between images (a) and (b) (about 18 dB) is 

much greater than that between images (b) and (c) and images (c) and (d) (approximately 5 

dB, and 2 dB respectively), even though the perceivable degradation in quality between 

images (b) and (c) and between images (c) and (d) is much greater than that between images 

(a) and (b). Therefore, in addition to the objective analysis based on the computation of the 

PSNR, we will be using a subjective analysis of reconstructed image quality, using visual 

comparison, which will allow us to better evaluate the performances of the image coding 

techniques used in our thesis. 

 

 
                          (a) PSNR = 49.30 dB                                      (b)  PSNR = 31.45 dB                      

(c) PSNR = 26.06 dB                                             (d) PSNR = 23.71 dB

 

Figure 2.7: PSNR versus perceived image quality. 
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CHAPTER 3 

TRANSFORM CODING OF IMAGES  

Transform coding constitutes an integral component of contemporary image/video 

processing applications. Transform coding relies on the premise that pixels in an image 

exhibit a certain level of correlation with their neighboring pixels. Similarly in a video 

transmission system, adjacent pixels in consecutive frames show very high correlation. 

Consequently, these correlations can be exploited to predict the value of a pixel from its 

respective neighbors. A transformation is, therefore, defined to map this spatial (correlated) 

data into transformed (uncorrelated) coefficients. Clearly, the transformation should utilize 

the fact that the information content of an individual pixel is relatively small i.e., to a large 

extent visual contribution of a pixel can be predicted using its neighbors. 

A typical image transmission system is outlined in Figure 3.1 [42]. The objective of 

the source encoder is to exploit the redundancies in image data to provide compression. In 

other words, the source encoder reduces the entropy, which in our case means decrease in the 

average number of bits required to represent the image. On the contrary, the channel encoder 

adds redundancy to the output of the source encoder in order to enhance the reliability of the 

transmission. 

As mentioned previously, each sub-block in the source encoder exploits some 

redundancy in the image data in order to achieve better compression. The transformation sub-

block decorrelates the image data thereby reducing (and in some cases eliminating) interpixel 

redundancy [42]. 

The quantizer sub-block utilizes the fact that the human eye is unable to perceive some 

visual information in an image. Such information is deemed redundant and can be discarded 

without introducing noticeable visual artifacts. Such redundancy is referred to as psychovisual 

redundancy [42]. This idea can be extended to low bitrate receivers which, due to their 

stringent bandwidth requirements, might sacrifice visual quality in order to achieve bandwidth 

efficiency. This concept is the basis for rate distortion theory, that is, receivers might tolerate 

some visual distortion in exchange for bandwidth conservation. Lastly, the entropy encoder 
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Figure 3.1: Components of a typical image transmission system.  

employs its knowledge of the transformation and quantization processes to reduce the number 

of bits required to represent each symbol at the quantizer output. 

In addition, transform coding is a method in which the image is decomposed into 

several components that are then coded according to their specific characteristics. The idea 

behind this method is to compact the information in the image into a few elements (called 

coefficients) that are easier to code. A simple way to illustrate this method would be to 

consider the data scatter plot shown in Figure 3.2 [43] where two actual data points are taken 

together to form a 2-D vector describing a single point in the 2-D plane. Now it can be seen 

that the data is mostly concentrated around the α  axis when we use the βα −  co-ordinate 

system. So, if the points are resolved along these axes, then their spread is smaller along one 

of the axes (the β  axis). The "information" contained in two values of the original data now 

sequence gets more concentrated in one of the values and the change in the variance of the 

signal along the two directions leads to better compression [30]. Note that the transform itself 

does not compress the signal; it merely expresses the signal in a form that is more conducive 

to compression. 

Mathematically, a transform projects the signal onto a set of basis functions. If 

is a k-dimensional vector in the original space and T is a ( kxxxx ...,, 21= ) kk x matrix of  
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Figure 3.2: Transform coding: a geometric perspective. 

 

basis vectors, then the projection ( )kyyyy ...,, 21= , of x onto the basis functions is given by 

Txy =                                                                 (3.1) 

The inverse transformation can be obtained by multiplying the vector , by the inverse of the 

matrix  

y
1 , −TT

yTx 1−=                                                               (3.2) 

If the transformation is unitary, then ( )* t
T T I= , where ( )* t

T is the transpose of the 

complex conjugate of the matrix T and I is the identity matrix. This property is useful in 

coding, because this means that the quantization error magnitude in the transform domain is 

the same as that in the signal domain and the quantizer can be optimized in the transform 

domain. When the signal is two dimensional (like in an image), the inputs and outputs of the 

transform coding system are described as matrices. Hence, now the forward transform 

equation becomes 

XTTY t=                                                           (3.3) 

where X is an input matrix and Y the corresponding transformed matrix. Usually, separable 

transforms are used for image coding applications. This allows the 2-D transforms to be split 

into two 1-D transforms, which can then be applied separately along the horizontal and 

vertical directions. 
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3.1 Karhunen-Loeve Transform 

 A transform can also be viewed in terms of the changes in statistics between the 

original and transformed sequences [44]. In this perspective, a transform helps to decorrelate 

the samples of the signal (as mentioned before, a strong correlation exits between pixels of 

natural images). When the correlation between the samples is reduced, better signal 

compaction is possible. One such transform was proposed by Karhunen and Loeve and is 

known as the Karhunen-Loeve transform (KLT) [44].  

 The KLT is a linear orthogonal transform able to remove the correlation between 

pixels in an image. Let x be a vector with zero mean and autocorrelation matrix . To 

remove the correlation between samples, a multiplication matrix 

xR

A  is to be found such that 

the elements of Axy = are uncorrelated. The autocorrelation matrix for  can be expressed 

as 

y

( )( )[ ] t
x

t
y AARAxAxER ==                                         (3.4) 

Since  is already known, the task is then to find matrix xR A  such that is diagonal. A 

transform with 

t
x AAR

A  as the multiplication matrix is called a Karhunen-Loeve transform [45]. 

 From the autocorrelation matrix  the orthogonal eigenvectors are found which by 

there own definition form the linear basis of the original data signal [46]. With these basis 

vectors it is possible to represent the original data signal as a linear combination of these basis 

vectors. This is very useful as the resultant transformed signal has had all linear correlation 

removed from it. If this transformed signal is then analyzed to see which transform 

coefficients contribute to the energy of the signal, a quantifiable measurement of redundant 

and essential information can be made. Since all linear transforms are unitary [46], the 

coefficients that contribute to the energy of the entire signal can be stored with the other 

redundant coefficients being thrown away or stored in some compressed way. If enough 

coefficients are found to be redundant then some compression can occur. 

yR

 Though the KLT has optimal properties that are useful for transform coding, such as 

decorrelation and energy compaction, it has inherent disadvantages which have prevented it 

from being used in practical transform coders. Firstly, the transform is calculated from the 

source covariance (for zero-mean vectors the covariance matrix is equivalent to the 

autocorrelation matrix) matrix, and hence is source dependent [44, 45]. For the decoder to be 

able to perform the inverse transformation, it needs to know either the transformation matrix 
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or the source covariance matrix, for the specific data to be decoded. These parameters need to 

be transmitted as side information, thus incurring transmission overhead. Alternatively, a 

static and global Karhunen-Loeve transform matrix can be derived from training data and 

used in both encoding and decoding. However, this leads to the problem of source mismatch 

and suboptimal coding for data that is not part of and is statistically different to the training 

set [47]. 

 Secondly, there are sources where the covariance matrix is (or is close to being) 

singular which leads to the Karhunen-Loeve transform not being able to be uniquely defined 

[47]. It has been shown by Effros et al. [48] that for sources where the KLT is not unique, the 

`worst' KLT can give distortion performance that is 1.5 dB lower than the `best' KLT. 

 Lastly, the KLT can be a computationally complex operation. For a vector dimension 

of n, the Karhunen-Loeve transform requires nn −22 operations [38]. It is not amenable to 

fast and efficient computation, unlike the fast Fourier transforms (FFT). 

 Fortunately, there is a substitute that achieves performance very close to that of the 

optimal KLT but yet has the advantage of a fixed set of basis vectors independent of the 

signal thus cutting computational complexity drastically. This transform is known as the 

Discrete-Cosine Transform (DCT).   

3.2 Discrete Cosine Transform 

 The Discrete Cosine transform was introduced by Ahmed, Natarajan, and Rao in 1974 

[49, 50]. The DCT is an orthogonal transform having some features of a transformation to the 

frequency domain. Like other transforms, the DCT attempts to decorrelate the image data. 

After decorrelation each transform coefficient can be encoded independently without losing 

compression efficiency. This section describes the DCT and some of its important properties.  

3.2.1 The One-Dimensional DCT 

The most common DCT definition of a 1-D sequence { }nx of length N is 

∑
−

=
⎥⎦
⎤

⎢⎣
⎡ +

=
1

0 2
)12(cos)()()(

N

n N
unnxuuX πα                                    (3.5) 

for 1,...,2,1,0 −= Nu . Similarly, the inverse transformation is defined as 
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for 1,...,2,1,0 −= Nn . In both Equations (3.5) and (3.6) ( )uα  is defined as 
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 It is clear from Equation (3.5) that for
1

0

10,  ( 0) ( )
N

n

u X u x
N

−

=

= = = ∑ n . Thus, the first 

transform coefficient is the average value of the sample sequence. In literature, this value is 

referred to as the DC Coefficient. All other transform coefficients are called the AC 

Coefficients. 
 

 To fix ideas, ignore the sequence { }nx  and ( )uα component in Equation (3.5). The 

plot of 
( )2 1)

cos  for 0,1,..., 1
2
n u

n N
N

π +⎡ ⎤
= −⎢ ⎥

⎣ ⎦
with 8=N and varying values of u is 

shown in Figure 3.3. In accordance with our previous observation, the first the top-left 

waveform (u = 0) renders a constant (DC) value, whereas, all other waveforms 

 give waveforms at progressively increasing frequencies [51]. These 

waveforms are called the cosine basis function. Note that these basis functions are orthogonal. 

Hence, multiplication of any waveform in Figure 3.3 with another waveform followed by a 

summation over all sample points yields a zero (scalar) value, whereas multiplication of any 

waveform in Figure 3.3 with itself followed by a summation yields a constant (scalar) value. 

Orthogonal waveforms are independent, that is, none of the basis functions can be represented 

as a combination of other basis functions. 

)7,...,2,1( =u

If the input sequence has more than N sample points then it can be divided into sub-

sequences of length N and DCT can be applied to these chunks independently. Here, a very 

important point to note is that in each such computation the values of the basis function points 

will not change. Only the values of { }nx  will change in each sub-sequence. This is a very 

important property, since it shows that the basis functions can be pre-computed offline and 

then multiplied with the sub-sequences. This reduces the number of mathematical operations 

(i.e., multiplications and additions) thereby rendering computation efficiency. 
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Figure 3.3: One dimensional cosine basis function (N=8). 

 

3.2.2 The Two-Dimensional DCT 

When actually implemented into an algorithm the two dimensional DCT is usually 

performed on subblocks of an image with 8x8 to 16x16 pixel block sizes. This is due to the 

two dimensional transform being very computationally expensive to apply to the entire image. 

Statistics of an image are generally stationary in 8x8 or 16x16 pixel regions, if larger block 

sizes are considered, any high frequency coefficients that occur in the transformed block 

could be due to statistical change in the image as it moves between regions instead of the 

actual detail of the block [41]. The 2-D DCT is a direct extension of the 1-D case and is given 

by [42] 
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As mentioned in Section 3.1 the basis vectors used to represent the original signal 

block are signal independent. These linear basis functions can be seen in Figure 3.4 for an 8x8 

block. The use of a universal set of basis functions is highly valued as it gets around the 

problem of storing basis functions every time a transform is required, as is the case when 
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using the Karhunen-Loeve transform. 

 

Figure 3.4: Basis functions of an 8x8 DCT. 

 

3.2.3 DCT Coding 

 The actual DCT image block encoder/decoder can be best described in Figures 3.5 and 

3.6 respectively [41]. From these basic diagrams there seems more to the encoding process 

than simply applying a 2 dimensional DCT to the image subblocks. Firstly, there is the 

question of quantizing the transform coefficients. This is performed by using a 

MM  x quantization table, which is specified depending on the quality factor required by the 

user. The lossy aspect of transform coding comes into play at this point of time, as the higher 

the quality factor required the more bits that are required to the store the image. Conversely, 

for a lower quality factor fewer bits are required. Quantization is defined as division of each 

DCT coefficient by its corresponding quantizer step size, followed by rounding to the nearest 

integer as defined by 

( ) Q

cQ
c mnQ

mnXmnX ⎥
⎦

⎤
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⎡
=

,
),(),(                                               (3.9) 
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with [ ] denotes rounding. .

 

Figure 3.5:  DCT-based encoder processing steps. 

 

Figure 3.6: DCT-based decoder processing steps. 

 

 The output value obtained by applying Equation 3.9 is normalized by the quantizer 

step size. Dequantization is the inverse function of Equation 3.9, which in this case means 

simply that the normalization is removed by multiplying by the step size, which returns the 

result to a representation appropriate for the inverse DCT. 

 The actual quantization table was created via heuristic approach, as it should ideally be 

chosen based on the perceptual threshold of each frequency subband. The implementation 

used in this case was that of a linear table whose quantization intervals increase as the spatial 

frequency increases. This was done to eliminate any non essential high frequency components 

which are not as perceptually important as their low frequency counterparts. The quality 

factor can be simplified down to a single quality factor number ranging typically from 1 

(being good) to 25 (being the most coarse quantization available). An example of quantization 

table for an 8x8 block at different quality factors can be seen in Figure 3.7. By analyzing this 

table it can be noticed that the quantization intervals become larger as they extend out to the 

higher frequency regions. As the quality factor is increased, so are the overall quantization 

intervals. An example of this can be seen in the table for quality factor 8 shown in Figure 3.7. 
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At the highest frequency component, located in the bottom left corner of the 8x8 block, a 

value greater than 137 is required for this frequency component not to be quantized to zero. 

 

Figure 3.7: Quantization tables for 8x8 blocks at different quality factors. 
 

Using these quantization tables alone is not enough to take advantage of the 

redundancies that arise from transform coding. The DC coefficient located in the top left hand 

corner of a typical transformed 8x8 block can be separately encoded from the AC coefficients. 

This is due to the DC coefficient being a measure of the average intensity of the 64 image 

samples and contains most of the energy for the entire block. There is usually a strong 

correlation between the DC coefficients in adjacent 8x8 blocks. If these quantized DC 

coefficients are entropy coded based on their statistics alone, a marked improvement in 

compression can occur when compared to entropy coding the DC coefficients in conjunction 

with the AC coefficients. This difference in compression can be accounted for in the large 

difference that occurs in the statistical properties between AC coefficients, which usually have 

a Laplacian like statistical distribution [50], and DC coefficients, whose statistics vary quite 

markedly depending on the image. There is a further reason for this separate coding, in that 

the AC coefficients usually have large runs of zeros due to the coarse quantization they 
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undergo. These runs of zeros can be taken advantage of by run length encoding.  

Run length encoding expresses a run of characters of the same value by simply storing 

the value of the character and the number that occurred instead of writing out each character 

N times. This form of compression is ideally suited to transform coding, after the AC 

quantized coefficients are ordered into the zigzag sequence similar to Figure 3.8. This 

ordering helps to facilitate entropy coding and run length coding by placing low frequency 

coefficients (which are more likely to be nonzero) before high frequency coefficients. This 

method of DCT image coding broadly forms the basis for the image coding standard known 

as JPEG (Joint Photographic Experts Group) [52].  

 

Figure 3.8: Zigzag sequence. 

3.2.4 Properties of DCT 

 In the preceding sections, a mathematical foundation for DCT has been developed. 
However, the intuitive insight into its image processing application has not been presented. In 
this section, we outline (with examples) some properties of the DCT which are of particular 
value to image processing applications. 

3.2.4.1 Decorrelation 

 As discussed previously, the principle advantage of image transformation is the 
removal of redundancy between neighboring pixels. This leads to uncorrelated transform 
coefficients which can be encoded independently. Let us consider the example from Figure 
3.9 to outline the decorrelation characteristics of the 2-D DCT. Figures 3.9 (c) and (d) show 
the normalized autocorrelation among pixels in one line of the respective images (a) and (b) 
before DCT. The normalized autocorrelation of the two images after DCT is shown in Figures 
3.9 (e) and (f). Clearly, the amplitude of the autocorrelation after the DCT operation is very 
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small at all lags. Hence, it can be inferred that DCT exhibits excellent decorrelation 
properties. 

(a) (b)
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Figure 3.9: (a) First image; (b) Second image; (c) Normalized autocorrelation of uncorrelated 
image (first image) before DCT; (d) Normalized autocorrelation of correlated image (second 
image) before DCT; (e) Normalized autocorrelation of uncorrelated image after DCT; (f) 
Normalized autocorrelation of correlated image after DCT. 

3.2.4.2 Energy Compaction 

 Efficacy of a transformation scheme can be directly gauged by its ability to pack input 

data into as few coefficients as possible. This allows the quantizer to discard coefficients with 

relatively small amplitudes without introducing visual distortion in the reconstructed image. 

DCT exhibits excellent energy compaction for highly correlated images. Let us consider the 

two example images of Figures 3.9 (a) and (b). In addition to their respective correlation 

properties discussed in preceding sections, the uncorrelated image has more sharp intensity 

variations than the correlated image. Therefore, the former has more high frequency content 

than the latter. Figure 3.10 shows the DCT of both images. Clearly, the uncorrelated image 
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has its energy spread out, whereas the energy of the correlated image is packed into the low 

frequency region (i.e., top left region). 
(a)

(b)

 

Figure 3.10: (a) uncorrelated image and its DCT; (b) correlated image and its DCT. 

 One of the disadvantages with DCT-based transform coding is the introduction of 

block artifacts, as seen in Figure 3.11. This problem is caused by the discontinuities that result 

from the rectangular windowing of the image data. Various methods of reducing blocking 

artifacts include the use of overlapping blocks and low-pass filtering boundary pixels [53]. 

Disadvantages of these methods include an increase in bitrate and blurring, respectively [54]. 

Malvar and Staelin [54] investigated the lapped orthogonal transform (LOT). The idea of the 

LOT is to map blocks of n samples, to n basis functions which are l samples in length, such 

that . Therefore, longer blocks of l samples are formed from the smaller blocks which 

overlap each other by l-n samples [54]. This achieves the overlapping effect but since there 

are only n transform coefficients to quantize, there will be no increase in bitrate. Furthermore, 

the LOT basis functions decay toward zero at their boundaries, which leads to a reduction in 

block artifacts [54]. 

l n>
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(a) (b)

 
Figure 3.11: Showing the block artifacts of JPEG: (a) The image `boat' coded at low bitrate 
(quality 8); (b) Close up of coded image, showing the 8 x 8 blocks. 
 

 Transform coders which use a single transformation and quantization scheme, assume 

that images are stationary, i.e. the statistics throughout the image are uniform [55]. 

Unfortunately, this is not true as images contain edges and textures which have different 

spectral characteristics than those of smooth regions. Chen and Smith [56] investigated an 

adaptive scheme, where after each image block was transformed using the DCT, the resulting 

transformed blocks are classified based on the amount of activity, as measured by the energy 

level of the AC coefficients. That is, high activity blocks, such as edges or textures, will 

disperse energy among the high frequency (AC) coefficients, while smooth blocks will tend to 

concentrate energy in the DC coefficient. Classification is done using an equiprobable 

partition of the cumulative distribution function of the AC energies, with more bits being 

assigned to blocks of higher activity or AC coefficient energy and fewer bits given to blocks 

of lower activity [56]. Therefore, each block to be coded is classified based on activity, and 

then scalar quantised using the bit allocation of that class. 

3.3 Subband coding 

Subband coding [57], is based on decomposing a signal into a set of frequency subbands by 

using a filter called the analysis filter. Separating the signal into different frequency 

components and treating them separately can yield better coding performance. The outputs of 

the analysis filters ( and , for a special case of 2 channels) are sub-sampled to maintain 

critical sampling and the resulting coefficients are transmitted to the receiver. At the decoder 

end, the received coefficients are interpolated and a set of filters, called the synthesis filters 

( and ), operate on the received coefficients to reconstruct the signal.

0h 1h

0g 1g
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Figure 3.12: A 2-Channel Perfect Reconstruction Filter Bank. 

A block diagram representing the above scenario is shown in Figure 3.12. The analysis 

and synthesis filters are chosen so that aliasing effects due to sub-sampling cancel out. With 

proper filter selection the above system is called the two-channel perfect reconstruction (PR) 

filter bank. If there is no quantization of the signals at the encoder and if there are no errors in 

the channel through which the signal is transmitted, then the reconstructed signal is an exact 

replica of the transmitted signal. If  is the representation of the signal ( )X Z ( )x n in the z-

transform domain, 0 1 0( ),  H ( ),  ( )H z z G z  and are the frequency responses (in the z-

transform domain) of the analysis low-pass, high-pass and synthesis low-pass and high-pass 

filters respectively and corresponds to the reconstructed signal,

1( )G z

ˆ ( )X z ˆ( )x n , then we have 

[58] 

[ ] ( ) [ ] ( )0 0 1 1 0 0 1 1
1 1ˆ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2 2

X z H z G z H z G z X z H z G z H z G z X z= + + − − + − − −

(3.10) 

For perfect reconstruction 

ˆ ( ) ( )X z X z=                                                         (3.11)  

which implies that the coefficients of ( )X z must add up to 1; or 

0 0 1 1( ) ( ) ( ) ( ) 2H z G z H z G z+ =                                          (3.12) 

Also, all the aliasing terms which contain the factor ( )X z− must cancel, 

0 0 1 1( ) ( ) ( ) ( ) 0H z G z H z G z− − + − − =                                          (3.13) 

In practice it is desirable to deal with finite impulse response (FIR) filters. In order to achieve 

PR with FIR filters, it is required that [58] 
2 1

0 1 1 0( ) ( ) ( ) ( ) 2 kH z H z H z H z z− −− − − =                                 (3.14) 

( )nx  

( )nh0  2↓  2↑ ( )ng0  
( )ny0

( )nh1  2↓  2↑ ( )ng1  
( )ny1

( )nx̂
+ 
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where k is any integer. Substituting Equation 3.14 into Equations 3.12 and 3.13, we get the 

definition of the synthesis filters in terms of the analysis filters 
2 1

0 ( ) ( )kG z z H z+= 1

0

                                                  (3.15) 

and 
2 1

1( ) ( )kG z z H z+= − −                                                 (3.16) 

From the above equations it is clear that the synthesis filters will be non-causal if the analysis 

filters are causal. The synthesis filters can be made causal by multiplying by , so that 

Equation 3.11 becomes 

2 1kz− −

2 1ˆ ( ) ( )kX z z X z− −=                                                   (3.17) 
describing perfect reconstruction with delay 2k 1+ . Extensive research has been done to 

solve the Equations 3.12 and 3.13 [59]. 

The ideal subband filter with a vertical transition band, shown in Figure 3.13, is often 

called a `brick-wall' filter and can only be approximated using realisable digital filters. 

 

1( )jH e ω
0( )jH e ω

ω  π
2
π

 

 

 

 

 

 
Figure 3.13: Brick-wall filter with ideal filter response. 

 
Esteban and Galand [60] introduced a new type of subband filter that avoided the 

aliasing problems and these were called quadrature mirror filters (QMFs) whose ideal 

frequency response is shown Figure 3.14. The high pass QMF is obtained from the low pass 

QMF, , by the formula, , therefore  ( )h n ( 1) ( )n h n− 0 ( ) ( )H z H z= and . 

Rather than attempting to approximate the ideal subband filters, QMFs were designed to 

cancel out the aliasing effect of the filter transition band [57]. The aliasing distortion can be 

shown to be equal to: 

1( ) ( )H z H z= −

[ 0 1
1 ( ) ( ) ( ) ( ) ( )
2

]D G z H z G z H z X z= − + −                                (3.18) 

To set the aliasing distortion to zero, the following condition must be satisfied by the QMFs: 
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0( ) ( )G z H z=                                                        (3.19) 

1( ) ( )G z H z= − −                                                  (3.20) 

The perfect reconstruction property can therefore be expressed as (assuming an even-length 

linear phase QMF) [61] 

( ) ( )2 1H Hω ω π 2
+ − =                                             (3.21) 

Figure 3.14 shows this perfect reconstruction property for the 8-tap Johnston QMFs. 

A popular set of QMFs used in audio subband coding are the Johnston filters [62]. 

Generally, the more taps there are in the QMF, the better the separation ability and therefore 

efficiency [44] as it is shown in Figure 3.14. However, too many taps can lead to problems 

with the accumulation of errors due to coarse quantisation. As opposed to human hearing, 

because the human visual system is more sensitive to phase changes [63], only linear phase 

(symmetric) QMFs are used in subband image coding. 

Vetterli extended the QMF idea to two or more dimensions, which was necessary for 

the subband coding of images. The idea was to use separable filters, where a two-dimensional 

QMF can be separated into two one dimensional filters [38]. 

 

Figure 3.14: Frequency response of the Johnston QMF (8-taps). 
 
 

0 1( , ) ( ) ( )h m n h m h n=                                                 (3.22) 
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This simplifies the implementation of two-dimensional subband coding where the row and 

columns can be filtered separately, similar in operation to the separable transform. Figure 3.15 

shows one `level' of a subband decomposition which produces four subbands, labelled LL 

(low-low), LH (low-high), HL (high-low), and HH (high-high). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.15: Two dimensional subband coding using separable filters. 

3.4 Wavelet Transform Coding 

With the discovery that continuous time wavelets can be generated from discrete-time 

filters and vice-versa [64, 65], the design of wavelets and filter banks have become connected. 

Wavelets can be used to generate filters that can be used for subband coding.

 

3.4.1 Wavelets and their properties 

 With the short-time Fourier transform (STFT), a signal is time windowed (for the 

case of images, the signals span space rather than time) into segments and the frequency 

spectra are determined for each segment via a discrete Fourier transform [38]. This results in a 

two-dimensional data representation known as the time-frequency representation. While this 

representation is adequate for signal analysis, it has inherent disadvantages. To obtain high 

resolution in the frequency domain (narrowband), the time window has to be made wider, in 

order to capture longer data lags, but this results in low resolution in the time domain. On the 

other hand, to obtain high resolution in the time domain, a shorter time window is required 

but this in turn degrades the frequency resolution to wideband [66]. This trade-off between 

( )nh0  2↓  

( )nh0 2↓ LL Q

LH HH 

HL LL ( )nh1 2↓ Q LH 

( )nh1  

)(nx  

2↓  

( )nh0 2↓ Q HL 

( )nh1 2↓ Q HH 

Rows    Columns 
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time and frequency is intrinsic and was first discovered by Gabor [67], popularly known as 

the Gabor uncertainty principle 

2
1

≥∆∆ tω                                                         (3.23) 

Since the basis functions of the STFT are of fixed size in time and frequency, the time-

frequency resolution is fixed as well [38]. Relating this to DCT-based transform image 

coding, because the basis functions (cosines) have fixed spatial area and frequency 

bandwidth, smooth and edge regions are represented by transform coefficients at the same 

spatial-frequency resolution. Consequently, edge information tends to result in energy being 

dispersed to many transform coefficients. A higher bitrate is therefore required to 

reconstruct the edge information accurately [66]. 

 Wavelets allow a signal to be analysed at different scales or support widths. The 

wavelet basis set consists of functions with different support widths to trade-off time and 

frequency resolution [38]. Wavelets with wide support examine large regions of the signal 

and hence are suitable for low frequency content or analysing `trends' while those with short 

support examine small regions of the signal and hence are suitable for high frequency content 

or analysing `anomalies' [38]. Because wavelets often have compact support, the 

decomposition of a signal at a time instant consists of only those wavelets that are located in 

(or, translated to) that region. Other wavelets that are outside the vicinity do not contribute to 

the reconstruction. This contrasts to the Fourier transform, whose complex exponential basis 

functions have global support and exist for all time, or in the case of the STFT, exist 

throughout the analysis window. The property of compact support is of benefit to the image 

coding problem, as wavelets with short support have excellent spatial resolution and this 

allows edge information to be represented by sparser wavelet coefficients. Therefore, 

encoding edge information will not require as high a bitrate as one would need in a DCT-

based transform coder. 
Wavelets are a set of basis functions that are generated through dilations and 

translations of a single function, ( )tψ , called the mother wavelet [68]. 
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1

,                                                 (3.24) 
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Where specifies the dilation factor (scale) and b the amount of translation. High frequency 

resolution (or, small scale) wavelets which have a narrow width, correspond to  while 

low frequency (or, large scale) wavelets which have a wider width, correspond to [68]. 

The mother wavelet also satisfies the following property 

a

1<a

1>a

( )∫
∞

∞−

= 0dxxψ                                                          (3.25) 

which implies the function is oscillatory [68]. 

The continuous wavelet transform (CWT), , of a signal, ),( bac )(tx , is defined as 

dtttxbac ba )()(),( *
,∫= ψ                                             (3.26) 

where a and b are the scale and translation of the wavelet, respectively. As opposed to the 

time-frequency representation of the STFT, the CWT produces a time-scale representation 

[69]. 

 It should be noted that the scale, a, and translation, b, in Equation (3.26) are 

continuous variables. In order to limit the number of wavelet basis functions and to avoid the 

generation of an awful lot of data, the scale and translations are discretised, with 

becoming a set of wavelet coefficients. The resulting wavelet is termed a discrete 

wavelet [69]. In order for the wavelet transform to be non-redundant and easily computed, the 

basis functions need to be orthogonal. A dyadic discretisation of the scale and translation, 

and , is popular and results in the following functions [68] 

),( bac

ma 2= nb m2=

( ntt m
m

nm −= − )
−

22)( 2
, ψψ                                        (3.27) 

which form an orthogonal basis in , the space of square integrable functions. A 

wavelet series decomposition can then be performed on a continuous signal

)(2 RL

)(tx : 

( ) ( )∑=
nm

nmnm txctx
,

,,)( ψ                                                (3.28) 

where 

>=< )(),()( ,, txtxc nmnm ψ                                               (3.29) 
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3.4.2 Multiresolution Analysis and the Discrete Wavelet Transform 

 Mallat [64] introduced the concept of multiresolution analysis (MRA) using 

wavelets, which is similar to the Laplacian pyramid idea proposed by Burt and Adelson [70]. 

That is, a lower resolution approximation of an image is found, effectively via a low-pass and 

downsampling operation. However, the loss of information (residual), as a result of going to 

the coarser approximation, is represented more efficiently than in the Laplacian pyramidal 

coder and does not lead to an increase in data. This is the basic operation of the discrete 

wavelet transform (DWT). 

In multiresolution analysis, one really has two functions: the mother wavelet ψ  and 

its dilated and translated versions [68] 

 ( ntt m
m

nm −= − )
−

22)( 2
, φφ                                    (3.30) 

For fixed m, the nm,φ are orthonormal. Let  denote the space spanned by themV nm,φ . 

These spaces then describe successive approximation spaces, 

...... 21012 −− ⊂⊂⊂⊂ VVVVV                                   (3.31) 

 each with resolution . For each m, the wavelets m2 nm,ψ span a space which is exactly 

the orthogonal complement in of . Thus the coefficients 

mW

1−mV mV

∫>==< dttxttxtxc nmnmnm )()()(),()( ,,, ψψ                            (3.32) 

describe the information lost when going from an approximation of x  with resolution , 

to the coarser approximation with resolution, . All this is translated into the following 

algorithm [68] 

12 −m

m2

, 1 1,

, 0 1,

( ) (2 ) ( )

( ) (2 ) ( )

m n m k
k

m n m k
k

c x h n k a x

a x h n k a x

−

−

= −

= −

∑

∑
                                         (3.33) 

1 0

0

( ) ( 1) (1 )

( ) 2 ( ) (2 )

nh n h n

h n t n t dtφ φ

= − −

= −∫
                                         (3.34) 

where and are low-pass and high-pass filters respectively. If 0h 1h x is given in sampled form, 

then one can take these samples as the highest order resolution coefficients and describe na ,0
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a subband coding algorithm using the low-pass filter and the high-pass filter . Because 

of their association with orthonormal wavelet bases, these filters give exact reconstruction 

0h 1h

1, 0 , 1 ,( ) (2 ) ( ) (2 ) ( )m l m n m n
n

a x h n l a x h n l c x− ⎡ ⎤= − + −⎣ ⎦∑                   (3.35) 

These equations form the basis of the multiscale image decomposition filter structure depicted 

in Figure 3.16.  

The DWT described in the previous section is for one dimensional (1-D) signals. Images are 

2-D and are analyzed using a separable 2-D wavelet transform. A 2-D separable transform is 

equivalent to two 1-D transforms in series. It is implemented as a 1-D row transform followed 

by a 1-D column transform on the data obtained from the row transform. Figure 3.17 shows 

the filter bank structure for computation of a 2-D DWT and IDWT. 
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Figure 3.16: Decomposition filter bank for wavelet transforms. 
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Figure 3.17: One level filter bank for computation of 2-D DWT. 
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The resulting subband structure for a 1-level decomposition is shown in Figure 3.18 

(In the notation , etc. the first letter refers to the horizontal filtering (L:lowpass, H: 

highpass) at level i  and the second letter to the vertical filtering of the coefficients in that 

subband.). 
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Figure 3.18 The 1-level wavelet decomposition with subband notation. 

As we know, most images are smooth. It is reasonable to use smooth mother wavelet 

for image analysis. On the other hand, it is also desirable that the mother wavelet is symmetric 

so that the corresponding wavelet transform can be implemented using mirror boundary 

conditions that reduce boundary artifacts. Unfortunately, except for the Harr wavelet (trivial 

example), no wavelets are both orthogonal and symmetric [71]. To achieve the symmetric 

property, the orthogonality requirement could be relaxed by using a biorthonogal basis.  

Biorthogonal wavelet filters define an extra set of basis functions, bringing the total to 

four: )(~),(),(~),( tttt ψψφφ . The `tilde' functions become the synthesis basis functions while 

the other two form the analysis basis functions. The reconstruction becomes 

1, 0 , 1 ,( ) (2 ) ( ) (2 ) ( )m l m n m n
n

a x g n l a x g n l c x− ⎡ ⎤= − + −⎣ ⎦∑                             (3.36) 
where the reconstruction filters may differ from the analysis filters . The 

relations between them are given by [71] 

0 1,g g 0 1,h h

1 0

1 0

( ) ( 1) (1 )

( ) ( 1) (1 )

n

n

g n h n

h n g n

= − −

= − −
                                          (3.37) 
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The most commonly used wavelet filters in image coding and compression are the 

biorthogonal, so called “9/7” filters (named after the number of filter taps in the low and high 

frequency filters) [72]. 

Table 3.1 shows the filter coefficients for the biorthogonal 9/7-tap filter. The corresponding 

scaling and wavelet functions are plotted in Figure 3.18. 

 

n  1 1±  2±  3±  4±  

nh  0.602949 0.602949 -0.078223 -0.016864 0.026749 

nh  0.557543 0.295636 -0.028772 -0.045636 0 

Table 3.1: Coefficients of the spline variant 9/7-tap wavelet filter. 
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Figure 3.19 (a) analysis scaling functionφ ; (b) analysis wavelet functionψ ; 

(c) reconstruction scaling functionφ ; (d) reconstruction wavelet functionψ . 
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Figure 3.20 shows the original greyscale test images `boat', `lighthouse', and 

`Sandiego' as well as their wavelet transform (using the 9/7-tap wavelet filter). It can be 

observed that most of the energy of the image has been compacted into the LL subband, 

where the low frequency information or `trends' of the image have been captured by the 

scaling functions. The coefficients in the other subbands are very sparse except for some edge 

information which have been captured by the local wavelet functions. In fact, wavelets act as 

`singularity detectors' and it is because of the sparseness of the wavelet coefficients that 

makes the DWT a more efficient transform than the DCT on edge data [73]. Also, since this 

wavelet is biorthogonal rather than orthonormal, energy has not been conserved and the LL 

subband contains more energy. 
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Figure 3.20: Discrete wavelet transform of greyscale test images: `Boat', `Lighthouse', 

`Sandiego' (using 9/7-tap biorthogonal wavelet filters). 
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CHAPTER 4 

MULTIPLE DESCRIPTION CODING 

With the rapid development of Internet applications, a large number of images are sent 

over the Internet. The most common way to communicate an image over the internet is to use 

a progressive encoding system and to transmit the coded image as a sequence of packets over 

a TCP connection. Suppose N packets are used to send an image. When the first packet 

arrives, a coarse image is got. When more and more packets arrive, the quality of this image is 

improved. This scheme works well if all packets are received one by one. But if a packet is 

lost, the whole reconstruction stops until that packet is resent and finally received. For a TCP-

based network, the delay for resending a packet is often much longer than the time between 

the arrivals of packets. If one packet is lost, all packets after it become useless for the 

reconstruction of the image until the retransmitted lost packet is received.  

If packet loss is unavoidable and which packet would be lost can be known in 

advance, there is no way of making the packet useful only if the packets before it are received. 

A better idea is to make all packets equally important so that a reconstruction can be made 

from an arbitrary combination of packets. That is exactly the idea behind multiple description 

(MD) coding. In MD coding, the signal is encoded into more than one description and each 

description is packed into one packet. Each packet can have equal importance. When all 

packets are received, a signal with high fidelity is reconstructed. When one or more packets 

are lost, the quality of the reconstructed signal will degrade gracefully. Some technique such 

as path diversity may be employed to make sure that at least some packets are received. Path 

diversity means that different packets are sent through different paths so that if some paths are 

blocked due to various reasons, the packets in other paths can still be received. 

This chapter addresses the problem of multiple description (MD) coding, which, 

originally formulated as a source coding scheme that represents a source stream with multiple 

coded streams,  can be cast as a joint source-channel coding method for a channel whose end-

to-end performance includes uncorrected erasures [24, 74, 75]. This channel is encountered in 

a packet communication system that has effective error detection but does not have 

retransmission of incorrect or lost packets. In our work, each description is a single network 
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packet, so we will use the terms “description” and “packet” interchangeably throughout the 

thesis. 

4.1 Introduction 

 At the September 1979 Shannon Theory Workshop, the following question was posed 

by Gersho, Ozarow, Witsenhausen, Wolf, Wyner, and Ziv [11]. If an information source is 

described by two separate descriptions, what are the concurrent limitations on qualities of 

these descriptions taken separately and jointly? Known at that time in Bell Laboratories as the 

channel splitting problem, this came to be known as the multiple description (MD) problem in 

the information theory community. The primary theoretical results in this area were provided 

in the 1980s by the aforementioned researchers along with Ahlswede, Berger, Cover, El 

Gamal, and Zhang. 

Figure 4.1 depicts the basic concept for the case of two descriptions, where an encoder 

is given a sequence of source symbols { } 1
N

k kX =  to communicate to three receivers over two 

independent noiseless (or error-corrected) channels. Description 1 is coded with rate 1R  and 

Description 2 with rate 2R . The side decoders (Decoder 1 and Decoder 2) receive each one 

description and the respective distortions are and . The central decoder (Decoder 0) 

however receives both the descriptions and the corresponding distortion is . For a 

quadratique distortion measure and real-valued signals, the distortions are given by 

1D 2D

0D

( ) {
2

,
1

1 ˆ , 0,1,
N

i k i k
k

D E X X i
N =

⎡ ⎤= − ∈⎢ ⎥⎣ ⎦∑ }2                                   (4.1) 

where ,
ˆ

i kX denotes the reconstruction sequence produced by decoder . i

 The problem is formulated as follows. Given the rates of the two descriptions, 

1R and 2R , minimize subject to the constraints [76] 0D

1 1,m

2 2,

D D
D D

ax

max

≤
≤

                                                       (4.2) 

 

where and are given constants. If 1,maxD 2,maxD 1D D2= and 1 2R R= , the two descriptions are 

said to be balanced. 
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Figure 4.1: The concept of multiple description coding. 

 

In other words, the central theoretical problem is to determine the set of achievable 

values (in the usual Shannon sense) for the quintuple ( )1 2 0 1 2, , , ,R R D D D . Decoder 1 receives 

1R bits and hence cannot have distortion less than , where is the distortion-rate 

function of the source. Making similar arguments for the other two decoders gives the 

following bounds on the achievable region: 

1( )D R (.)D

( )0 1D D R R≥ + 2                                                  (4.3) 

( )1D D R≥ 1                                                          (4.4) 

( )2D D R≥ 2

2

                                                        (4.5) 

Achieving equalities in Equation (4.3) would imply that an optimal rate 1R R+ description 

can be partitioned into optimal rate 1R and rate 2R descriptions. Unfortunately, this is usually 

not true because optimal individual descriptions at rates 1R  and 2R  are similar to each other 

and hence redundant when combined. Making descriptions individually good and yet 

sufficiently different is the fundamental tradeoff in this problem [12]. 

The MD problem can be generalized to more than two channels and more than three 

receivers. The natural extension is to M channels and 2M 1− receivers, one receiver for each 

nonempty subset of channels. This generalization was considered by Witsenhausen [77] for 

the restricted case where the source has finite entropy rate and lossless communication is 

required when any k M< of the channels are lost. Normalizing the source rate to one and 

assuming equal usage of each channel, each channel must accommodate a rate of ( )
1

M k− . 

(The rate cannot be lowered because the sum of the rates of the received channels must be at 
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least one.) This bound is achieved by using truncated Reed–Solomon codes. The situation 

with three channels and seven decoders was studied by Zhang and Berger [78]. 

4.2 Historical Notes 

 The multiple description approach was originally introduced through research done at 

AT&T Bell labs in the 1970s to increase the reliability of the phone system through channel 

splitting. Some of this work was either not archived or not publicly available and much of the 

details have been lost [12]. One of the first real applications was suggested by Jayant and 

Christensen [79, 80]. Here the authors suggest a method for segmenting audio into even and 

odd samples (Figure 4.2) in an attempt to improve the reliability of digital audio 

communication. 

 

Figure 4.2: The Multiple description coding of speech using even-odd sample 

segmentation. Each sub-sampled audio stream is encoded independently and 

transmitted over the network. The temporary loss of either stream can be concealed 

by up-sampling the correctly received stream by interpolating the missing values 

[79]. 

Around the same time, the problem was introduced into the information theory 

community by Wyner, Witsenhausen, Wolf, and Ziv [77, 81] who presented preliminary 

results on MD coding for a binary source and Hamming distortion.  This problem became 

very interesting from a theoretical point of view and much work has been done to analyze the 

problem in depth. The main focus in the information theory community has been on 

 56



characterizing the multiple description region, defined as the set of all achievable 

quintuples ( 1 2 1 2 0, , , , )R R D D D , under various assumptions about the statistical properties of 

the source. El-Gamal and Cover, for an arbitrary memoryless source and a bounded distortion 

measure, have done extensive work mapping out achievable rate-distortion region of pairs 

[ ]1 2,R R (the rates of each description), for a given distortion vector [ ]0 1 2, ,D D D (the 

distortions when both descriptions arrive and when either one of them but not the other arrive) 

using multiple description codes for channel splitting [11]. Ozarow then showed that, if the 

source is Gaussian and the distortion measure is squared error, the achievable rate region of 

El-Gamal and Cover is, in fact, the exact MD rate/distortion region for the source [82]. 

Subsequently, Ahlswede [83] showed that the El Gamal–Cover region is tight in the “no 

excess rate sum” case (where there is equality: ( )0 1D D R R= + 2

)

 in Equation 4.3), and Zhang 

and Berger [84] showed that this region is not tight when there is excess rate. The 

complementary situation, where Equations 4.4 and 4.5 hold with equality, is called the “no 

excess marginal rate” case and was also studied by Zhang and Berger [84]. It should be 

emphasized that, to this date, Ozarow’s result for the Gaussian source and squared error 

metric is the only one presenting a complete characterization of a MD rate/distortion region.  

For non-Gaussian sources, no technique for precisely determining the achievable rate-

distortion region is known. In [85], Zamir developed an outer bound and inner bound for MD 

region for a general memoryless real source with squared error distortion. These results are an 

extension of Shannon bounds on rate distortion function of a real source by the rate distortion 

function of the Gaussian source with the same variance/entropy [86].   

Venkataramani, Kramer and Goyal have found bounds on the achievable performance 

region for MD coding with more than two descriptions [87]. 

An important special case of the MD problem was presented in [88] and is known as the 

problem successive refinement of information or multiresolution (MR). The successive 

refinement problem can also be described by Figure 4.1, but the interest is only in 

characterizing achievable ( 1 2 1 0, , ,R R D D . In other words, no attempt is made to estimate the 

source from Channel 2 alone; or, Channel 1 is always present. Successive refinement was first 

studied by Koshelev [89, 90, 91]. The conditions for perfect successive refinement, where 

Equations 4.4 and 4.5 hold with equality, are described in [88]. The result follows from the 

tightness of the achievable region established by El Gamal and Cover [11] for the no excess 

rate sum case [83]. 
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4.3 Theoretical Bounds for a Memoryless Gaussian Source 

 The achievable rate-distortion region is completely known only for a memoryless 

Gaussian source with MSE distortion [12]. This result, obtained by Ozarow [82] is 

summarized as follows. 

Let 1 2, ,..., nX X X  be a sequence of independent identically distributed (i.i.d.) unit variance 

Gaussian random variables. The achievable set of rates and MSE distortions is the union of 

points satisfying 

22 , 1,Ri
iD i−≥ 2=                                                       (4.6) 

( )2( )1 2
0 1 22 . , , ,R RD D Dγ− +≥ 1 2R R                                     (4.7) 

where 

( )( ) ( )
2

2 1 2
1 2 1 2

1

1 1 1 2 R RD D D D
γ

− +
=

⎛ ⎞− − − − −⎜ ⎟
⎝ ⎠

 for 2( )1 2
1 2 1 2 R RD D − ++ < +  and 

1γ = otherwise. 

The bounds in Equation 4.6 are simply the side-channel rate-distortion bounds, a repeat of 

Equations 4.4 and 4.5. In the final inequality 4.7, the central distortion must exceed the rate-

distortion bound by the factorγ . 

The above equations are interpreted in three situations [12]: 

• The side descriptions are very good individually:  and .  Then, 12
1 2 RD −= 22

2 2 RD −=

       
2121

21

21
210 )1)(1(1

1
DDDD

DD
DD

DDD
−+

=
−−−

≥ .                        (4.8)   

       which leads to . 2/),min( 210 DDD ≥

• The central description is as good as possible: , then, )(2
0

212 RRD +−=

)(2
21

2121 RRDD +−+≥+                                               (4.9) 
• Intermediate between the above two extreme cases:  The situation is analyzed for the 

balanced case. Under the assumptions  121 >>= RR  so 121 <<= DD ,   

1
242

11 4)2)1((11
1 DDD R ≈−−−−= −

γ
,   .  Then, 1

1
4

0 )4(2 1 −−≥ DD R

14
10 2

4
1 RDD −≥                                                      (4.10) 
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4.4 Practical Coder Designs for Multiple Descriptions 

 One of the first practical coder designs for multiple descriptions appears in the context 

of speech coding. As previously mentioned, in 1981 Jayant and Christensen [79, 80], consider 

MD coding of DPCM speech for combating speech coding degradation due to packet losses. 

Information bits corresponding to even and odd samples are placed in separate packets. If 

only even (odd) sample packets are lost, data contained in odd (even) packet is used to 

estimate the missing samples using the nearest neighbour interpolation. 

4.4.1 Multiple description scalar quantization  

One of the first practical MDC methods, called multiple description scalar 

quantization (MDSQ), was proposed by Vaishampayan in [92]. The objective of this MD 

coding system is to minimize the average distortion when both channels work, subject to 

constrains on the average side distortion when only one channel works. In this method, the 

encoder generates the descriptions through an Index Assignment procedure that maps the 

quantized transformed coefficients into a pair of indices ( ),i j , where the first and second 

component are sent over its respective channels. When all the information arrives correctly to 

the receiver, we obtain perfect reconstruction quality in the recovery image. When there is a 

channel failure, an estimation procedure is applied in order to recover the lost description 

from the available one. 

The separation of an input image into multiple descriptions is a very important issue in MD 

coding. There are many separating algorithms, such as polyphase transform, scalar 

quantization, correlating transform and DCT separation. 

Figure 4.3 shows the basic high level architecture of the MDSQ system for two path 

connection between the source and destination. In the encoder, the system decomposes the 

input image X  with a decorrelating transform and then applies a uniform scalar quantizer to 

the transformed coefficients, resulting in the quantized field qX . Two descriptions of this 

field are generated by mapping qX  to a pair of index streams i and j , using the index 

assignment (IA) component of a MDSQ. 

  Basically, the IA component performs the splitting of the quantized field into two 

complementary and correlated descriptions. IA is an injection : xI N N N→ . When the scalar 

quantizer maps the source to a finite number of values N , the map I can be thought as a 

matrix of size N×N, in which only N locations are occupied. Figure 4.4 shows an example of  
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X    
  

qX  

1X̂

0X̂

2X̂

 
Figure 4.3: MDSQ architecture.  

IA and Figure 4.5(a) depicts simple splitting procedure example for generating the 

descriptions. The pair of indices i and j corresponds to column and row indices of cells in the 

IA. The correlation between the pair of indices i and j is inversely proportional to the number 

of diagonals used in the matrix. 

 

 

Figure 4.4: Example of Index Assignment Matrix [93]. 
 

When all the descriptions are received, the central decoder applies the inverse IA procedure, 

as it is illustrated in Figure 4.5(b). If only one description is available, estimation is applied 

with the help of the IA matrix. Assuming that indices i are available (columns in the IA 

matrix), we estimate the indices j by a mean operation. Figure 4.6 illustrates this estimation 

activity. 

We can see that the resultant estimated output differs slightly from the initial input (Figure 

4.5(a)). In MDSQ, the reconstructed image quality depends on how IA matrix is designed. 

Central decoder maps both descriptions to a reconstructed value 0X̂ , side decoder 1 maps 

description 1 (i indices) to 1X̂  and side decoder 2 maps description 2 (j indices) to 2X̂  . 
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Figure 4.5: Index Assignment Procedure (a) Generation of descriptions from quantized field 
and (b) Recovery of quantized field from descriptions. 

 

 
 

Figure 4.6: Index Assignment Estimation Procedure in case of one description lost. 
 
Average distortion of central decoder, side decoder 1 and side decoder 2 are 
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⎡ ⎤= −⎢ ⎥⎣ ⎦
⎡ ⎤= −⎢ ⎥⎣ ⎦
⎡ ⎤= −⎢ ⎥⎣ ⎦

                                              (4.11) 

respectively. 

The same concept may be extended to more than two descriptions by using higher 

dimensional mappings [94].  

 Vaishampayan and Domaszewicz in [95] extended the work in [92] to entropy 

constrained quantizers. They also used variable length codes (VLCs) instead of fixed length 

codes. With VLCs better performances are achieved, however, VLCs are very sensitive to 

errors (due to synchronization problems). In [96] the authors analyse the dependencies 

between the variables involved in the MDSQ coding chain and design an estimation strategy 

making use of part of the global model of dependencies each time. By analysing the MDC 

system they evidence the most appropriate form of redundancy one should introduce in the 
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context of VLC compressed streams in order to fight against de-synchronization when 

impaired by channel noise. 

 In [97] Vaishampayan and Batllo present an asymptotic analysis of MDSQ present in 

[92]. Specifically, expressions are derived for the average side and central distortions and for 

entropy when the number of quantization levels is large. In this work they compare the 

distortion product of the optimum level-constrained quantizer for a unit variance 

Gaussian source with the one on the converse theorem. From the converse theorem, it is 

shown that at high rates, for the case of balanced descriptions (

10 DD

RRR == 21  ) and Gaussian 

sources, the distortion product of the entropy-constrained MD scalar quantizer (MDSQ) 

takes the form

10 DD

Re 4
2

2
64

1 −⎟
⎠
⎞

⎜
⎝
⎛π . At the same time, the MD rate distortion bound (when put in 

distortion product form) becomes R42
4
1 − . This is an important result because it shows that for 

the MDSQ both the side and the central distortion attain the optimal exponential rate of decay 

(  ,  ). The only suboptimality of MDSQ at high rates is due to the use of a 

scalar quantizer which partitions the space into cubic regions instead of an ideal vector 

quantizer that would optimally partition the space into spheres. Various constructions of MD 

vector quantizers have been proposed [98, 99, 100] in which the MD lattice quantizers do 

effectively close the gap between the performance of the entropy constrained MDSQ and the 

MD rate-distortion bound. 

RD 2
0 2~ − RD 2

1 2~ −

4.4.2 Pairwise correlating transform 

A rather different approach pioneered by Wang et al. [101, 102] and then extended by 

Goyal and Kovacevic [12, 13, 103] consists of applying a suitable block-wise transform to the 

input vector before coding to obtain the MD property. This approach is usually called MD 

transform coding. The basic idea is to decorrelate the vector components and then to 

introduce again correlation between coefficients, but in a known and controlled manner, so 

that erased coefficients can be statistically estimated from those received. 

Let and  be independent zero-mean Gaussian random variables with 

variances  . For conventional (single-description) source coding, there would be no 

advantage to using a linear transform prior to quantization. Assuming high-rate entropy-coded 

uniform quantization, the distortion at R bits per sample is given by [12] 

1X 2X
2
2

2
1 σσ >
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ReD 2
210 2

6
−= σσπ                                                    (4.12) 

This is the best single-description performance that can be obtained with scalar quantization. 

Now suppose that the quantized versions of and  are sent on channels 1 and 2, 

respectively, in an MD system. Since and are independent, side decoder 1 cannot 

estimate , aside from using its mean. Thus, 

1X 2X

1X 2X

2X

2
1 1 2 2

12
ReD 2

2
π σ σ − σ= +                                                (4.13) 

and similarly 

2
2 1 2 2

12
ReD 2

1
π σ σ − σ= +                                                (4.14) 

Assume for the moment that each channel is equally likely to fail. Then, instead of 

dealing with and  separately, the average distortion will be used when one channel is 

lost 

1D 2D

( ) ( )2 2 2
1 1 2 1 2 1 2

1 1 2
2 2 12

ReD D D πσ σ σ σ −= + = + +                              (4.15) 

1D could be reduced if side decoder i  had some information about ,jX i ≠ j . This can be 

accomplished by transmitting not 'iX s , but correlated transform coefficients. The simplest 

possibility, as proposed in [102], is to transmit quantized versions of and  given by 1Y 2Y

1

2 2

1 11
1 12

Y X
Y X
⎡ ⎤ ⎡ ⎤⎡ ⎤

=⎢ ⎥ ⎢ ⎥⎢ ⎥−⎣ ⎦⎣ ⎦ ⎣ ⎦
1                                               (4.16) 

Since [ ]1 2
tY Y (t stands for transposition) is obtained with an orthonormal transformation 

and the MSE distortion is used, the distortion in approximating the iX ’s equals the distortion 

in approximating the  ’s. The variances of and are bothiY 1Y 2Y ( )2 2
1 2

2
σ σ+

 , so the central 

decoder performance is 
2 2

21 2
0 2

6 2
ReD σ σπ −⎛ ⎞+

= ⎜ ⎟
⎝ ⎠

                                              (4.17) 

which is worse than the performance without the transform by a constant factor of 

( )2 2
1 2

1 2

2
σ σ

γ
σ σ

+

=                                                     (4.18) 

 63



Now consider the situation at side decoder 1. The distortion is approximately equal to the 

quantization error plus the distortion in estimating from  . Since and and are jointly 

Gaussian, is Gaussian and 

2Y 1Y 2Y 1Y

2 1|Y Y y= 1 [ ]2 1 1|E Y Y y= is a linear function of . Specifically, 

has mean 

1y

2 1|Y Y y= 1 ( ) ( )12 2 2 2
1 2 1 2 yσ σ σ σ

−
+ − 1 and variance ( ) 12 2 2

1 2 12 2
2σ σ σ σ

−
+ . Thus  

( )
2 2

21 2
1 2 2

1 2

2 2
12

ReD σ σ π σ σ
σ σ

−≈ +
+ 1 2                                          (4.19) 

Comparing (4.15) and (4.19), the constant term has been reduced by a factor of 2γ . By using 

other orthogonal transforms, intermediate tradeoffs can be obtained. In addition, the use of 

nonorthogonal transforms allows yet more operating points, including more extreme 

tradeoffs.  In other words the limitations of the pairwise correlating transform method led to 

the work reported in [101]. 

4.5 Multiple Description Transform Coding  

 We propose to use the standard transform coding framework to realize the objective of 

MDTC. In conventional transform coding, the transform is used to decorrelate the input 

variables. Here we use a transform to introduce a controlled amount of correlation among the 

transformed coefficients. In other words, a block of N independent, zero-mean variables with 

different variances is mapped to a block of N statistically correlated transform coefficients. 

The transform coefficients are distributed to different packets (distributions) so in the case of 

packet loss, the lost coefficients can be estimated from the received coefficients.  

The forward transform with quantization stepsize ∆  of a source vector x , whose components 

are assumed to be independent, zero-mean and Gaussian, is implemented as follows [12, 13]: 

1.  (t stands for transposition) is uniformly quantized : [ t
nxxxx ..21= ] [ ]qx x

∆
=  

with  denotes rounding to the nearest multiple of[ ]. ∆ . 

2. The quantized vector [ ]tqnqqq xxxx ..21= is transformed with a discrete 

transform T  :  

( )qxTy ˆ=                                                        (4.20) 

3. The components of are independently entropy coded. y
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Where is a discrete version of a continuous transformT̂ T . The derivation of T̂ from T is by 

first factoring T into a product of upper and lower triangular matrices with unit 

diagonals . The discrete version of the transform is then given by [12]: kTTTT ...21=

( ) 1 2
ˆ ... k qT x T T T x

∆ ∆ ∆

⎡ ⎤⎡ ⎤⎡ ⎤= ⎣ ⎦⎢ ⎥⎣ ⎦⎣ ⎦
                                            (4.21) 

The coding structure presented here is the Goyal and Kovacevic generalization [12] of the 

method proposed by Orchard, Wang, Vaishampayan, and Reibman [101] where they 

considered coding of two variables with the transform 

( ) 1

1
12 2

T
β

β −

⎡ ⎤
= ⎢ ⎥

−⎢ ⎥⎣ ⎦
                                                  (4.22) 

approximated by 

( )
( )

[ ]1

1 0 1ˆ
0 12 1

T x x
β

β − ∆
∆ ∆

⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤
= ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥−⎢ ⎥⎣ ⎦⎢ ⎥ ⎣ ⎦⎣ ⎦⎣ ⎦

                                 (4.23) 

The analysis that follows is based on a high-rate (or fine-quantization, small quantization 

step ) assumption. In particular, the following assumptions or approximations are used: ∆

 

• The scalar entropy of [ ](T̂ x
∆ )  is the same as that of[ ]Tx

∆
. 

• The correlation structure of is unaffected by the quantization; i.e., y

( )ˆ ˆ( ) ( ) tt tE yy E T x T x E Tx Tx⎡ ⎤⎡ ⎤⎡ ⎤ = =⎣ ⎦ ⎣ ⎦ ⎣ ⎦  

• When one or more components of y are lost, the distortion dominated by the effect of the 

erasure, so quantization can be ignored. 

 When all the components of  [ ]tnyyyy ...21=  are received, the reconstruction is 

obtained from the inverse transform. The distortion is precisely the quantization error from 

step 1. If some components of  are lost, they are estimated from the received components 

using the statistical correlation introduced by the transform

y

T̂ . The estimate x̂   is then 

generated by inverting the transform as before. 

 Denote the variances of the components of x by 2 2
1 2, ,..., n

2σ σ σ  and denote the 

correlation matrix of x by ( 2 2 2
1 2, ,...,xR diag )nσ σ σ= . Under fine quantization approximations, 

assume the correlation matrix of isy ( )tt t
y xR E yy E Tx Tx TR T⎡ ⎤⎡ ⎤= = =⎣ ⎦ ⎣ ⎦ . Consider 

components of are erased, the reconstruction procedure is as follow [12, 13]: 0>k y
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By renumbering the variables if necessary, assume that [ ]tknr yyyy −= ,...,~
21 are received and 

[ t
nknnr yyy ,... ]~

1+−= are lost. The vector could be partitioned in “received” and “not 

received” components as

y

[ t
nrr yyy ]~,~= . The minimum mean square error (MSE) estimate of 

x  given ry~  is [ ryxE ]~ , which has a simple closed form because x is a jointly Gaussian vector. 

Using the linearity of the expectation operator we have: 

[ ] [ ]

[ ]

1 1
r

1 1

ˆ yr r

rr
r

nr rnr

x E x y E T Tx T E Tx y

yy
T E y T

E y yy

− −

− −

⎡ ⎤= = =⎣ ⎦
⎡ ⎤ ⎡ ⎤⎡ ⎤

= =⎢ ⎥ ⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦⎣ ⎦

                               (4.24)  

If the correlation matrix of y is partitioned in a way compatible with the partition of y as 

⎥
⎦

⎤
⎢
⎣

⎡
==

2

1

RB
BR

TTRR t
t

xy                                               (4.25) 

with  and  denote respectively the correlation matrices of the vectors xR yR x  and . y

Then it can be shown that rnr yy ~~ is Gaussian with mean r
t yRB ~1

1
− and correlation 

matrix 1
2 1

tA R B R B−= − . Thus [ ] 1
1

t
nr r rE y y B R y−=  and the reconstruction is  

1
1

1

ˆ r
t

r

y
x T

B R y
−

−

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
                                                    (4.26) 

4.5.1 Transform optimization 

The choice of the transformT determines the performance of the system. This section 

develops the relationships between the transform, rates, and distortions necessary to designT . 

Estimating the rate is straightforward. Since the quantization is assumed to fine, is 

approximately the same as , i.e., a uniformly quantized Gaussian random variable. If 

is treated as a Gaussian random variable with power

iy

( )i
T x

∆
⎤⎦⎡⎣

iy ( )2
iy y ii

Rσ =  quantized with bin 

width , the entropy of the quantized coefficient is approximately [104, Ch. 9] ∆

( ) 2
2

1 log 2
2 iiH y e kπ σ y ∆≈ +                                      (4.27) 

where 2
1 log 2 log
2

k eπ∆ = − 2 ∆ , all logarithms are base-two. Notice that depends only onk∆ ∆ . 

Thus, the rate per component is estimated as 
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( ) 2
2

1 1

1 1 log
2 i

nn

i
i i

R H y k
n n yσ∆

= =

= = +∑ ∏                                    (4.28) 

The minimum rate occurs when
1

2

1 1

n n

y
i i

2
iσ σ

= =

=∏ ∏   and at this rate the components of are 

uncorrelated. InterestinglyT  is not the only transform which achieves the minimum rate. 

In fact, an arbitrary split of the total rate among the different components of  is possible. 

This justifies the use of a total rate constraint in the following analyses. However, the case 

where the rates sent across each channel are equal is particularly considered.  

y

I=

y

 

Concerning the distortion, first consider the average distortion due only to quantization. Since 

the quantization noise is approximately uniform, this distortion is
2

12
∆  for each component. 

Thus the distortion per component when no components are erased is given by 
2

12
∆                                                               (4.29) 

and is independent of . T

For the case when  components are lost, the distortion computation was practically 

achieved in the development of Equation 4.26. Let

0k >

[ ]nr nr ry E y yη = − , which is Gaussian 

with zero mean and correlation matrix . 1
2 1

tA R B R B−= − η is the error in 

predicting from and hence is the error caused by the lost coefficients.  However, because 

of the use of a nonorthogonal transform, we must return to the original coordinates 

using to compute the distortion. Substituting

nry ry

1T −
nry η− for [ ]nr rE y y in Equation 4.24 gives 

1 1 0
ˆ r

nr

y
x T x T

y η η
− −⎡ ⎤ ⎡ ⎤

= = +⎢ ⎥ ⎢ ⎥+ ⎣ ⎦⎣ ⎦
, so

2
2 1 0

ˆ t tx x T U Uη η
η

− ⎡ ⎤
− = =⎢ ⎥

⎣ ⎦
whereU is the last columns 

of . Finally, 

l

1T −

( )2

1 1

ˆ
l l

t
ijij

i j
E x x U U A

= =

⎡ ⎤− =⎣ ⎦ ∑∑                                          (4.30)  

The distortion with erasures is denoted by . To determine , Equation (4.30) is averaged 

over the possible erasures of l components, weighted by their probabilities if necessary. 

The final distortion is a weighted sum of the distortions incurred with different numbers of 

channels available 

l lD lD

n
l

⎛ ⎞
⎜ ⎟
⎝ ⎠
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0

n

l l
l

D α
=

=∑ D                                                         (4.31) 

For the case each channel has an outage probability of p and the channel outages are 

independent, the overall expected MSE is D with (1 )l
l

n n lp p
l

α −⎛ ⎞
= −⎜ ⎟
⎝ ⎠

. The goal is to 

numerically determine transforms that minimize D for a given rate R . 

4.5.2 Sending two variables 

Here we will apply the analysis of the previous section to find the best transforms for 

sending variables (packets or descriptions). The case where the two descriptions are of 

equal importance, i.e. they have the same probability to be lost is considered. Suppose the 

probabilities of the combinations of packet states are given by the following Table 

2n =

 
   Packet 1  
  lost  received 
 lost 01 2p p− −  p  

Packet 2     
 received p   0p  

 
Table 4.1: Probabilities of system states in optimal transform determination for MDTC for the 
case of two descriptions. 
 

Let , normalized so that
a b

T
c d
⎡

= ⎢
⎣ ⎦

⎤
⎥ det 1T = . Then 1 d b

T
c a

− −⎡ ⎤
= ⎢ ⎥−⎣ ⎦

and 

2 2 2 2 2 2
11 2 1 2

2 2 2 2 2 2
21 2 1 2

t
y x t

R Ba b ac bd
R TR T

B Rac bd c d
σ σ σ σ
σ σ σ σ

⎡ ⎤+ + ⎡ ⎤
= = =⎢ ⎥ ⎢ ⎥+ + ⎣ ⎦⎣ ⎦

                               (4.32)  

Using Equation 4.28, the rate per component is given by 

( ) ( ) ( )(2 2 2 2 2 2 2 2
2 2 1 211 22

1 1log log
4 4y yR k R R k a b c d )1 2σ σ σ σ∆ ∆= + = + + +        (4.33) 

Minimizing Equation 4.33 over transforms with determinant one gives a minimum possible 

rate of *
2 1 2

1 log
2

R k σ σ∆= + [13]. *R Rρ = − is referred to as the redundancy which is the 

additional bitrate required for an MDTC coder to potentially reduce the distortion in the case 

of erasures 

( )( )2 2 2 2 2 2 2 2
1 2 1

2 2 2
1 2

1 log
4

a b c d 2σ σ σ σ
ρ

σ σ

+ +
=                                  (4.34) 
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 In order to evaluate the overall average distortion, a weighted average of the 

distortions for each of the four possible cases of the two descriptions is formed. If both 

descriptions are received, the distortion due to quantization only is 2
1,1 12D = ∆ . If neither 

description is received, the distortion is ( )2 2
1 2

0,0 2D
σ σ+

= . The remaining two situations 

where one description is received and the other is lost require the application of the results of 

the previous section. Let , the MSE distortion when (description1) is received but 

(description2) is lost. Substituting in Equation 4.30 with ( )

1,0D 1y

2y [ ] 2 2

11

t b
U U b a a b

a
−⎡ ⎤

= − =⎢ ⎥
⎣ ⎦

+  

( ) ( )
( )

2

12
11 22

11

y
y

y

R
A R

R

⎛ ⎞
⎜ ⎟= −
⎜ ⎟
⎝ ⎠

 , and det we get 1T ad bc= − =

 

( )
2 2

2 2 2 1 2
1,0 1 2 2 2 2 2

1 2

1 1ˆ   
2 2

D E x x y received and y lost a b
a b

σ σ
σ σ

⎡ ⎤= − = +⎣ ⎦ +
             (4.35) 

 

Similarly, the distortion when  is lost but  is received is 1description 2description

( )
2 2

2 2 1 2
0,1 2 2 2 2

1 2

1
2

D c d
c d

σ σ
σ σ

= +
+

                                            (4.36) 

 

The overall average distortion is 

( ) ( )

( ) ( ) ( )

0 1,1 1,0 0,1 0 0,0

2 22
1 2

0 0 1,0

'

1 2

1 2
12 2

D

D p D p D D p p D

0,1p p p p D D
σ σ

= + + + − −

⎡ ⎤+∆⎢ ⎥= + − − + +
⎢ ⎥⎣ ⎦

                   (4.37) 

 

Where the first bracketed term is independent ofT . Thus the optimization problem is to 

minimize 'D for a given redundancy ρ . After eliminating throughd ( )1d bc= + a

2

and solving 

Equation 4.34 with the assumption 1σ σ> , the optimal transform will satisfy [12] 

 

( )( )4 42

1

1 2 1 2 1 4 1
2

a
c

ρ ρ bc bcσ
σ

= − + − − +                               (4.38) 
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When this value of is used, a 'D depends only on the product , not on the individual values 

of and c . The optimal value ofbc is 

bc

b ( ) 1
2optimal

bc −= since we are considering the situation of 

equal packet lost probabilities. Thus, the optimal set of transforms is described by 

( )2ρ 4ρ
1 2

a 0(arbitrary) c = -1 2b

b ± 2 - 2 -1 σ a σ d = 1 2a

=

=
                               (4.39) 

and using a transform from this set gives 

( )
2 2

2 1 2
1 1,0 0,1 2 2 2 4

1
2 4.2 2 2 1

D D D
ρ ρ ρ

σ σσ −
= = = +

+ −
                            (4.40) 

In [22] it is suggested to use transforms of the form ( )
1

1 2 1 2
b

b
⎡ ⎤
⎢ ⎥−⎣ ⎦

which, in fact, lie in the 

optimal set of transforms described by Equation 4.39. The transforms of [22] do not give 

descriptions with equal rate (or, equivalently, power). Using Equation 4.27, the entropies 

(rates) of two transformed quantized (with quantization step ) components 

are

∆

[ ] [1 2 1 2
t ta b

y y x x
c d
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

] ( ) ( )2 2 2 2
1 1 2 1 2

1 log
2

R H y a b kσ σ ∆= ≈ + + , 

( ) ( 2 2 2 2
2 2 2 1 2

1 log
2 )R H y c d kσ σ ∆= ≈ + + . Getting balanced rates, i.e. 1 2R R= is equivalent to 

requiring  and a c b d= = , and yields 

( )2 42

1

1 2 2 1
2

a ρ ρσ
σ

= ± + −                                            (4.41) 

( )2 41

2

1 1 2 2
2 2

b
a

ρ ρσ
σ

= ± = ± − −1                                      (4.42) 

These balanced-rate transforms will be used in the applications sections. The notation 

1 2
1 2

Tα
α α
α α

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

                                                    (4.43) 

will be used (whereα is equal to ) . When there is no lost, the reconstruction uses a

1 1 2 1 2
T

α

α α
α α

− −⎡ ⎤
= ⎢ ⎥
⎣ ⎦

                                                 (4.44) 

whereα is a parameter determined from the redundancy ρ to be introduced by the transform 

and the variances of the two components. 
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4.5.3 Sending four variables and more 

For sending any even number of variables over two channels, Orchard et al. [101] 
have suggested the following: form pairs of variables add correlation within each pair and 
send one variable from each pair across each channel. A necessary condition for optimality is 
that all the pairs are operating at the same distortion-redundancy slope. IfTα  is used to 
transform variables with variances 2 2

1 2and σ σ andTβ  is used to transform variables with 

variances 2
3  and 2

4σ σ , then the equal-slope condition implies 

( ) ( )28 4 4 2 8 4 4 8 4 4
1 2 1 2 3 44

4 4
3

16 16 64

32

γ α σ σ γ α σ σ α σ σ
β

α σ

− + − +
=                     (4.45) 

where 
( )
( )

2 2 2 2
3 4 3 4

2 2 2 2
1 2 1 2

σ σ σ σ
γ

σ σ σ σ

−
=

−
                                                  (4.46) 

4.5.4 Cascade structure 

The transform given by Equation 4.43 is used to build larger transforms as in Figure 4.7 

which illustrates the case of sending four components (descriptions). This cascade structure 

proposed in [12, 13] will be used in the application section for transmitting still images using 

four packets (descriptions).  

Using this cascade structure is equivalent to using a transform of the form 
1 0 0 0

0 00 0 1 0
0 00 1 0 0

0 0 0 1

2 2 1 4
2 2 1 4

2 2 1 4
2 2 1 4

T T
T

T T
γ α

γ β

α γ γ α β γ β γ
αγ γ α β γ β γ
αγ γ α β γ β γ
αγ γ α β γ β γ

⎡ ⎤
⎢ ⎥⎡ ⎤ ⎡⎢ ⎥= ⎢ ⎥ ⎢⎢ ⎥⎣ ⎦ ⎣⎢ ⎥
⎣ ⎦

⎡ ⎤
⎢ ⎥− −⎢ ⎥=
⎢ ⎥− −
⎢ ⎥− −⎣ ⎦

⎤
⎥
⎦

                                (4.47) 

The coder implementation is completed by designing the transformT  through numerical 
optimization of the parameters βα ,  andγ  given the total redundancy and the variances of the 
four components (descriptions). 
 

 

 

 

 

 

Figure 4.7: Cascade structure for MDTC coding of four variables 

4x  

3x  

2x  
1x  

4y
3y

γT̂

2y
1y

γT̂

βT̂

αT̂

 71



4.6 Application to Image Coding  

 As already mentioned, the most common way to communicate an image over the 

Internet is to use a progressive encoding system and to transmit the coded image as a 

sequence of packets over a TCP connection. When there are no packet losses, the receiver can 

reconstruct the image as the packets arrive; but when there is a packet loss, there is a large 

period of latency while the transmitter determines that the packet must be retransmitted and 

then retransmits the packet. The latency is due to the fact that the application at the receiving 

end uses the packets only after they have been put in the proper sequence. The problem is 

more acute if there are stringent delay requirements, for example, for fast browsing or for 

streaming video. In this case retransmission is not just undesirable but impossible. To combat 

this latency problem, it is desirable to have a communication system that is robust to 

arbitrarily placed packet erasures and that can reconstruct an image progressively from 

packets received in any order. The MDTC method described earlier seems suitable for this 

task. 

4.6.1 DCT-based MDTC image coding 

In this section, the transmission of still images using the concept of MDC coding is 

considered. First, we have deeply studied the Multiple Description Transform Coding 

(MDTC) scheme suggested by Goyal et al. in [12, 13] and its application to image coding for 

the case of four descriptions, then we have proposed a different way in forming the 

descriptions. It is shown that our employed technique leads to an improvement in 

performance in terms of rate/distortion [105]. In addition, using the proposed scheme, the DC 

coefficients (which are very important in image coding/transmission) obtained after the 

application of DCT need not be communicated reliably by some other means as suggested by 

Goyal et al. 

A typical MDTC DCT-based image coder is illustrated in Figure 4.8 where the dashed block 

highlights where our contribution resides. 

 The MDTC method is designed to operate on source vectors with uncorrelated 

components. Such condition is obtained by forming vectors from DCT components. The 

coding process is implemented as follow: 

1. The source image is transformed by an 8x8 DCT transformation. 

2. The DCT coefficients are uniformly quantized. 

3. The quantized DCT coefficients are split into 4 vectors (descriptions). 
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4. Correlating transform is applied to the 4 vectors. 

5. Entropy coding is applied to each vector. 

In step 3, we have applied two techniques to create the four descriptions, and for each 

technique we’ve considered two cases concerning the transmission of the DC coefficients: 

• Technique1/case1: used in [12, 13], where vectors are formed from quantized DCT 

coefficients separated to the maximum in frequency and space (The spatial separation is 

maximized, i.e., for 512x512 images, the samples that are grouped together are spaced by 

256 pixels horizontally and/or vertically) with the DC coefficients assumed to be 

communicated reliably by some other means. This method is referred to 

as / 1DCMDTC Tec . 

• Technique1/case2: as in technique1/case1 but here the DC coefficients are assumed to be 

transmitted along with the four packets of data. This method is referred to as 

/ 1DCMDTC Tec . 

The following example illustrates the procedure used in this technique to form the four 

vectors: 

35 27 15 34 26 14             
31 19 7 30 18 6 Vector 1 35 31 23 27 19 11 15 7 3 
23 11 3 22 10 2 Vector 2 34 30 22 26 18 10 14 6 2 
33 25 13 32 24 12 Vector 3 33 29 21 25 17 9 13 5 1 
29 17 5 28 16 4 Vector 4 32 28 20 24 16 8 12 4 0 
21 9 1 20 8 0 

 

            
Figure 4.9: Technique 1: description forming from 2D-DCT matrix with block size of 6. 

• Technique2/case1: quantized DCT coefficients at (odd row, odd column) are assigned to 

description 1; those at (odd row, even column) are assigned to description 2; those at 

(even row, odd column) are assigned to description 3; and those at (even row, even 

column) are assigned to description 4. The DC coefficients are assumed to be 

communicated reliably by some other means. This technique is referred to 

as / 2DCMDTC Tec . 

• Technique2/case2: akin to technique2/case1, but the DC coefficients are transmitted 

along with the four packets of data. This technique is referred to as / 2DCMDTC Tec . 

Figure 4.10 illustrates the procedure used in this technique to form the four vectors. 
35 27 15 34 26 14             
31 19 7 30 18 6 Vector 1 35 23 29 15 3 5 26 10 16 
23 11 3 22 10 2 Vector 2 27 11 17 34 22 28 14 2 4 
33 25 13 32 24 12 Vector 3 31 33 21 7 13 1 18 24 8 
29 17 5 28 16 4 Vector 4 19 25 9 30 32 20 6 12 0 
21 9 1 20 8 0 

 

            
Figure 4.10: Technique 2: description forming from 2D-DCT matrix with block size of 6. 
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Figure 4.8: Four descriptions MDTC DCT-based image coder. 

 

The performance is evaluated for 9 512x512 grayscale images that can be grouped into 

three image types: three low frequency (LF) (Lena, Boat, Goldhill), three medium frequency 

(MF) (Lighthouse, Nitf7, House), three high frequency (HF) (Satellite, Mandrill, Sandiego) 

images. The frequency type groups are based on the percentage of total image energy (96% - 

100% LF, 92% - 96% MF and ≤92% HF) in the LL subband obtained after decomposition 

using the 1-level biorthogonal 9 7B wavelet transform [106]. The distribution of energy for the 

nine images is given in Table 4.2.  
  Subbands 

Image type Image LL LH HL HH 
Lena 99.2500 0.4674 0.1863 0.0938 

Goldhill 98.6664 0.6946 0.5106 0.1284 
 

Low frequency 
Boat 98.6835 0.9904 0.2452 0.0809 

Lighthouse 95.6545 2.6774 1.5854 0.0827 
House 94.4307 2.9444 2.4701 0.1548 

 
Medium 

frequency Nitf7 93.2428 3.4490 2.6661 0.6421 
Baboon 84.2130 3.5517 8.7502 3.4852 
Satellite 89.7875 5.5814 3.9542 0.6769 

 
High 

frequency Sandiego 90.1828 5.0479 3.9718 0.7975 
Table 4.2: Percentage energy distribution after 1-level of decomposition using the 9 7B  
wavelet transform. 

DCT 
Transformation 

Description 
Formation 

Correlation 
Transform Quantization 

Entropy 
Coding 

Transmission 
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Redundancy of 0.1 bit/sample is evenly allocated to the four descriptions, and the bit 

rate is estimated by sample scalar entropies. 

Simulation results for the nine test images using the four coders ( / 1DCMDTC Tec , 

/ 1DCMDTC Tec , / 2DCMDTC Tec , / 2DCMDTC Tec ) are given in Figures 4.11-4.19. In all 

figures, the average PSNR is reported as a function of the bit rate for the case of one packet 

dropped. For comparison, the situation of no packet lost (using the two techniques) is also 

reported in all the figures. From these curves it can be noticed that: 

• In the first situation (i.e. the DC coefficients are assumed to be communicated reliably 

by some other means), the technique / 2DCMDTC Tec  mostly performs better than 

/ 1DCMDTC Tec  technique for low and medium frequency test images (Figures 4.11 

(a) – 4.16 (a)), and both technique performances are practically similar for the high 

frequency test images (Figures 4.17 (a) – 4.19 (a)). The average performance gain 

amounts to nearly 2.66 dB, 3.16 dB and 0.12 dB for respectively low frequency, 

medium frequency and high frequency test images. 

• In the second situation (i.e. the DC coefficients are transmitted along with the four 

packets of data.), our proposed method / 2DCMDTC Tec outperforms 

/ 1DCMDTC Tec coder for mainly all the test images. The average performance gain 

amounts to nearly 7.78 dB, 6.82 dB and 2.83 dB for respectively low frequency, 

medium frequency and high frequency test images. 

To illustrate further the performances brought by our proposed technique for erasure 

channels, we have measured the PSNR of the restored images in the cases of 1, 2 and 3 

packets lost at a bit rate of 2 bits/sample. The corresponding results are reported in Tables 4.3-

4.8. We clearly see from the Tables that using the suggested method results in an 

improvement in the reconstructed image quality when compared to Goyal et al. method. 

For a qualitative comparison, the subjective qualities of the nine test images for different 

levels of reconstruction with the four coders are depicted in Figures 4.20–4.55 where Figures 

(a), (b), (c) and (d) illustrate respectively the situations of 0, 1, 2, and 3 packets lost. It is 

worth noticing that our proposed method is more robust than the other method especially 

when the DC coefficients are not transmitted reliably with some other means. Moreover, in 

the case of one packet lost (Figures (b)), which is the most probable to happen, our proposed 

method shows a considerable improvement in the image reconstruction quality with respect to 

Goyal et al. technique. 
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Figure 4.11: Average PSNR versus bits per sample for Lena image. (a) DC coefficients reliably 
communicated with some other means, (b) DC coefficients transmitted along with the four descriptions. 
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Figure 4.12: Average PSNR versus bits per sample for Goldhill image. (a) DC coefficients reliably 
communicated with some other means, (b) DC coefficients transmitted along with the four descriptions. 
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Figure 4.13: Average PSNR versus bits per sample for Boat image. (a) DC coefficients reliably 
communicated with some other means, (b) DC coefficients transmitted along with the four descriptions. 
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Figure 4.14: Average PSNR versus bits per sample for Lighthouse image. (a) DC coefficients reliably 
communicated with some other means, (b) DC coefficients transmitted along with the four descriptions. 
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Figure 4.15: Average PSNR versus bits per sample for House image. (a) DC coefficients reliably 
communicated with some other means, (b) DC coefficients transmitted along with the four descriptions. 
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Figure 4.16: Average PSNR versus bits per sample for Nitf7 image. (a) DC coefficients reliably 
communicated with some other means, (b) DC coefficients transmitted along with the four descriptions. 
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Figure 4.17: Average PSNR versus bits per sample for Baboon image. (a) DC coefficients reliably 
communicated with some other means, (b) DC coefficients transmitted along with the four descriptions. 
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Figure 4.18: Average PSNR versus bits per sample for satellite image. (a) DC coefficients reliably 
communicated with some other means, (b) DC coefficients transmitted along with the four descriptions. 
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Figure 4.19: Average PSNR versus bits per sample for Sandiego image. (a) DC coefficients reliably 
communicated with some other means, (b) DC coefficients transmitted along with the four descriptions. 
 78



Lena image Goldhill image Boat image No. of 
packets 
dropped 

/ 1DCMDTC Tec  
PSNR (dB) 

/ 2DCMDTC Tec  
PSNR (dB) 

/ 1DCMDTC Tec  
PSNR (dB) 

/ 2DCMDTC Tec  
PSNR (dB) 

/ 1DCMDTC Tec  
PSNR (dB) 

/ 2DCMDTC Tec  
PSNR (dB) 

0 42.50 42.50 39.43 39.43 41.94 41.94 
1 31.16 32.42 27.83 32.98 28.65 31.70 
2 26.55 26.69 25.38 26.18 25.22 24.48 
3 25.04 23.68 24.71 23.82 23.59 22.39 

Table 4.3: PSNR as a function of the number of packets lost with DC coefficients being communicated reliably by some 
other means for Lena, Goldhill and boat images. 
 

Lena image Goldhill image Boat image No. of 
packets 
dropped 

/ 1DCMDTC Tec  
PSNR (dB) 

/ 2DCMDTC Tec  
PSNR (dB) 

/ 1DCMDTC Tec  
PSNR (dB) 

/ 2DCMDTC Tec  
PSNR (dB) 

/ 1DCMDTC Tec  
PSNR (dB) 

/ 2DCMDTC Tec  
PSNR (dB) 

0 42.50 42.50 39.43 39.43 41.94 41.94 
1 23.67 32.30 22.07 32.91 25.29 31.60 
2 18.00 24.04 17.22 23.25 15.94 21.52 
3 15.74 20.89 16.12 21.28 14.81 19.71 

Table 4.4: PSNR as a function of the number of packets lost with DC coefficients being transmitted along with the four 
data streams for Lena, Goldhill and boat images. 
 

Lighthouse image House image Nitf7 image No. of 
packets 
dropped 

/ 1DCMDTC Tec  
PSNR (dB) 

/ 2DCMDTC Tec  
PSNR (dB) 

/ 1DCMDTC Tec  
PSNR (dB) 

/ 2DCMDTC Tec  
PSNR (dB) 

/ 1DCMDTC Tec  
PSNR (dB) 

/ 2DCMDTC Tec  
PSNR (dB) 

0 39.93 39.93 37.34 37.34 31.42 31.42 
1 24.95 30.45 22.52 27.42 21.64 22.27 
2 21.22 22.67 19.93 20.05 18.00 16.49 
3 20.65 19.95 17.79 17.56 16.13 14.81 

Table 4.5: PSNR as a function of the number of packets lost with DC coefficients being communicated reliably by some 
other means for Lighthouse, House and Nitf7 images. 
 

Lighthouse image House image Nitf7 image No. of 
packets 
dropped 

/ 1DCMDTC Tec  
PSNR (dB) 

/ 2DCMDTC Tec  
PSNR (dB) 

/ 1DCMDTC Tec  
PSNR (dB) 

/ 2DCMDTC Tec  
PSNR (dB) 

/ 1DCMDTC Tec  
PSNR (dB) 

/ 2DCMDTC Tec  
PSNR (dB) 

0 39.93 39.93 37.34 37.34 31.42 31.42 
1 20.83 30.39 18.99 27.35 17.00 22.21 
2 16.55 20.36 15.86 17.29 12.40 14.82 
3 14.30 17.95 13.41 15.17 10.44 13.09 

Table 4.6 PSNR as a function of the number of packets lost with DC coefficients being transmitted along with the four 
data streams for Lighthouse, House and Nitf7 images. 
 

Baboon image Satellite image Sandiego image No. of 
packets 
dropped 

/ 1DCMDTC Tec  
PSNR (dB) 

/ 2DCMDTC Tec  
PSNR (dB) 

/ 1DCMDTC Tec  
PSNR (dB) 

/ 2DCMDTC Tec  
PSNR (dB) 

/ 1DCMDTC Tec  
PSNR (dB) 

/ 2DCMDTC Tec  
PSNR (dB) 

0 31.42 31.42 34.12 34.12 32.21 32.21 
1 25.26 25.42 26.50 27.02 25.12 24.84 
2 22.13 21.13 22.78 22.47 21.63 20.07 
3 20.38 19.41 20.96 20.40 19.52 18.41 

Table 4.7 PSNR as a function of the number of packets lost with DC coefficients being communicated reliably by some 
other means for Baboon, Satellite and Sandiego images. 
 

Baboon image Satellite image Sandiego image No. of 
packets 
dropped 

/ 1DCMDTC Tec  
PSNR (dB) 

/ 2DCMDTC Tec  
PSNR (dB) 

/ 1DCMDTC Tec  
PSNR (dB) 

/ 2DCMDTC Tec  
PSNR (dB) 

/ 1DCMDTC Tec  
PSNR (dB) 

/ 2DCMDTC Tec  
PSNR (dB) 

0 31.42 31.42 34.12 34.12 32.21 32.21 
1 22.11 25.38 23.76 26.96 21.31 24.78 
2 18.63 19.68 20.36 20.52 18.64 18.70 
3 16.86 18.05 18.15 18.82 16.47 17.24 

 
Table 4.8 PSNR as a function of the number of packets lost with DC coefficients being transmitted along with the four 
data streams for Baboon, Satellite and Sandiego images. 
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Figure 4.20: Lena image reconstruction results 
for / 1DCMDTC Tec , at 2 bits/sample, with the DC 
coefficients being communicated reliably with some 
other means. (a) No packet is lost; (b) 1 packet is 
lost; (c) 2 packets are lost; (d) 3 packets are lost. 

 

 

 

 
 
Figure 4.21: Lena image reconstruction results 
for / 2DCMDTC Tec , at 2 bits/sample, with the 
DC coefficients being communicated reliably with 
some other means. (a) No packet is lost; (b) 1 packet 
is lost; (c) 2 packets are lost; (d) 3 packets are lost. 
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Figure 4.22: Lena image reconstruction results 
for / 1DCMDTC Tec , at 2 bits/sample with the DC 
coefficients being communicated along with the four 
data streams. (a) No packet is lost; (b) 1 packet is 
lost; (c) 2 packets are lost; (d) 3 packets are lost. 

 

 

 

 
 
Figure 4.23: Lena image reconstruction results 
for / 2DCMDTC Tec , at 2 bits/sample with the DC 
coefficients being communicated along with the four 
data streams. (a) No packet is lost; (b) 1 packet is 
lost; (c) 2 packets are lost; (d) 3 packets are lost. 
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Figure 4.24: Goldhill image reconstruction results 
for / 1DCMDTC Tec , at 2 bits/sample, with the DC 
coefficients being communicated reliably with some 
other means. (a) No packet is lost; (b) 1 packet is lost; 
(c) 2 packets are lost; (d) 3 packets are lost. 

 

 

 

 
 
Figure 4.25: Goldhill image reconstruction results 
for / 2DCMDTC Tec , at 2 bits/sample, with the DC 
coefficients being communicated reliably with some 
other means. (a) No packet is lost; (b) 1 packet is lost; 
(c) 2 packets are lost; (d) 3 packets are lost. 
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Figure 4.26: Goldhill image reconstruction results 
for / 1DCMDTC Tec , at 2 bits/sample with the DC 
coefficients being communicated along with the four 
data streams. (a) No packet is lost; (b) 1 packet is 
lost; (c) 2 packets are lost; (d) 3 packets are lost. 

 

 

 

 
 
Figure 4.27: Goldhill image reconstruction results 
for / 2DCMDTC Tec , at 2 bits/sample with the DC 
coefficients being communicated along with the four 
data streams. (a) No packet is lost; (b) 1 packet is 
lost; (c) 2 packets are lost; (d) 3 packets are lost. 
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Figure 4.28: Boat image reconstruction results 
for / 1DCMDTC Tec , at 2 bits/sample, with the DC 
coefficients being communicated reliably with some 
other means. (a) No packet is lost; (b) 1 packet is 
lost; (c) 2 packets are lost; (d) 3 packets are lost. 

 

 

 

 
 
Figure 4.29: Boat image reconstruction results 
for / 2DCMDTC Tec , at 2 bits/sample, with the 
DC coefficients being communicated reliably with 
some other means. (a) No packet is lost; (b) 1 packet 
is lost; (c) 2 packets are lost; (d) 3 packets are lost. 
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Figure 4.30: Boat image reconstruction results 
for / 1DCMDTC Tec , at 2 bits/sample with the DC 
coefficients being communicated along with the four 
data streams. (a) No packet is lost; (b) 1 packet is 
lost; (c) 2 packets are lost; (d) 3 packets are lost. 

 

 

 

 
 
Figure 4.31: Boat image reconstruction results 
for / 2DCMDTC Tec , at 2 bits/sample with the DC 
coefficients being communicated along with the four 
data streams. (a) No packet is lost; (b) 1 packet is 
lost; (c) 2 packets are lost; (d) 3 packets are lost. 
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Figure 4.32: Lighthouse image reconstruction results 
for / 1DCMDTC Tec , at 2 bits/sample, with the DC 
coefficients being communicated reliably with some 
other means. (a) No packet is lost; (b) 1 packet is 
lost; (c) 2 packets are lost; (d) 3 packets are lost. 

 

 

 

 
 

Figure 4.33: Lighthouse image reconstruction results 
for / 2DCMDTC Tec , at 2 bits/sample, with the 
DC coefficients being communicated reliably with 
some other means. (a) No packet is lost; (b) 1 packet 
is lost; (c) 2 packets are lost; (d) 3 packets are lost. 
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Figure 4.34: Lighthouse image reconstruction results 
for / 1DCMDTC Tec , at 2 bits/sample with the DC 
coefficients being communicated along with the four 
data streams. (a) No packet is lost; (b) 1 packet is 
lost; (c) 2 packets are lost; (d) 3 packets are lost. 

 

 

 

 
 
Figure 4.35: Lighthouse image reconstruction results 
for / 2DCMDTC Tec , at 2 bits/sample with the DC 
coefficients being communicated along with the four 
data streams. (a) No packet is lost; (b) 1 packet is 
lost; (c) 2 packets are lost; (d) 3 packets are lost. 
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Figure 4.36: House image reconstruction results 
for / 1DCMDTC Tec , at 2 bits/sample, with the DC 
coefficients being communicated reliably with some 
other means. (a) No packet is lost; (b) 1 packet is 
lost; (c) 2 packets are lost; (d) 3 packets are lost. 

 

 

 

 
 
Figure 4.37: House image reconstruction results 
for / 2DCMDTC Tec , at 2 bits/sample, with the 
DC coefficients being communicated reliably with 
some other means. (a) No packet is lost; (b) 1 packet 
is lost; (c) 2 packets are lost; (d) 3 packets are lost. 
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Figure 4.38: House image reconstruction results 
for / 1DCMDTC Tec , at 2 bits/sample with the DC 
coefficients being communicated along with the four 
data streams. (a) No packet is lost; (b) 1 packet is 
lost; (c) 2 packets are lost; (d) 3 packets are lost. 

 

 

 

 
 
Figure 4.39: House image reconstruction results 
for / 2DCMDTC Tec , at 2 bits/sample with the DC 
coefficients being communicated along with the four 
data streams. (a) No packet is lost; (b) 1 packet is 
lost; (c) 2 packets are lost; (d) 3 packets are lost. 
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Figure 4.40: Nitf7 image reconstruction results 
for / 1DCMDTC Tec , at 2 bits/sample, with the DC 
coefficients being communicated reliably with some 
other means. (a) No packet is lost; (b) 1 packet is 
lost; (c) 2 packets are lost; (d) 3 packets are lost. 

 

 

 

 
 
Figure 4.41: Nitf7 image reconstruction results 
for / 2DCMDTC Tec , at 2 bits/sample, with the 
DC coefficients being communicated reliably with 
some other means. (a) No packet is lost; (b) 1 packet 
is lost; (c) 2 packets are lost; (d) 3 packets are lost. 
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Figure 4.42: Nitf7 image reconstruction results 
for / 1DCMDTC Tec , at 2 bits/sample with the DC 
coefficients being communicated along with the four 
data streams. (a) No packet is lost; (b) 1 packet is 
lost; (c) 2 packets are lost; (d) 3 packets are lost. 

 

 

 

 
 
Figure 4.43: Nitf7 image reconstruction results 
for / 2DCMDTC Tec , at 2 bits/sample with the DC 
coefficients being communicated along with the four 
data streams. (a) No packet is lost; (b) 1 packet is 
lost; (c) 2 packets are lost; (d) 3 packets are lost. 
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Figure 4.44: Baboon image reconstruction results 
for / 1DCMDTC Tec , at 2 bits/sample, with the DC 
coefficients being communicated reliably with some 
other means. (a) No packet is lost; (b) 1 packet is 
lost; (c) 2 packets are lost; (d) 3 packets are lost. 

 

 

 

 
 
Figure 4.45: Baboon image reconstruction results 
for / 2DCMDTC Tec , at 2 bits/sample, with the 
DC coefficients being communicated reliably with 
some other means. (a) No packet is lost; (b) 1 packet 
is lost; (c) 2 packets are lost; (d) 3 packets are lost. 
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Figure 4.46: Baboon image reconstruction results 
for / 1DCMDTC Tec , at 2 bits/sample with the DC 
coefficients being communicated along with the four 
data streams. (a) No packet is lost; (b) 1 packet is 
lost; (c) 2 packets are lost; (d) 3 packets are lost. 

 

 

 

 
 
Figure 4.47: Baboon image reconstruction results 
for / 2DCMDTC Tec , at 2 bits/sample with the DC 
coefficients being communicated along with the four 
data streams. (a) No packet is lost; (b) 1 packet is 
lost; (c) 2 packets are lost; (d) 3 packets are lost. 
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Figure 4.48: Satellite image reconstruction results 
for / 1DCMDTC Tec , at 2 bits/sample, with the DC 
coefficients being communicated reliably with some 
other means. (a) No packet is lost; (b) 1 packet is 
lost; (c) 2 packets are lost; (d) 3 packets are lost. 

 

 

 

 
 
Figure 4.49: Satellite image reconstruction results 
for / 2DCMDTC Tec , at 2 bits/sample, with the 
DC coefficients being communicated reliably with 
some other means. (a) No packet is lost; (b) 1 packet 
is lost; (c) 2 packets are lost; (d) 3 packets are lost. 
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Figure 4.50: Satellite image reconstruction results 
for / 1DCMDTC Tec , at 2 bits/sample with the DC 
coefficients being communicated along with the four 
data streams. (a) No packet is lost; (b) 1 packet is 
lost; (c) 2 packets are lost; (d) 3 packets are lost. 

 

 

 

 
 
Figure 4.51: Satellite image reconstruction results 
for / 2DCMDTC Tec , at 2 bits/sample with the DC 
coefficients being communicated along with the four 
data streams. (a) No packet is lost; (b) 1 packet is 
lost; (c) 2 packets are lost; (d) 3 packets are lost. 
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Figure 4.52: Sandiego image reconstruction results 
for / 1DCMDTC Tec , at 2 bits/sample, with the DC 
coefficients being communicated reliably with some 
other means. (a) No packet is lost; (b) 1 packet is 
lost; (c) 2 packets are lost; (d) 3 packets are lost. 

 

 

 

 
 
Figure 4.53: Sandiego image reconstruction results 
for / 2DCMDTC Tec , at 2 bits/sample, with the 
DC coefficients being communicated reliably with 
some other means. (a) No packet is lost; (b) 1 packet 
is lost; (c) 2 packets are lost; (d) 3 packets are lost. 
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Figure 4.54: Sandiego image reconstruction results 
for / 1DCMDTC Tec , at 2 bits/sample with the DC 
coefficients being communicated along with the four 
data streams. (a) No packet is lost; (b) 1 packet is 
lost; (c) 2 packets are lost; (d) 3 packets are lost. 

Figure 4.55: Sandiego image reconstruction results 
for / 2DCMDTC Tec , at 2 bits/sample with the DC 
coefficients being communicated along with the four 
data streams. (a) No packet is lost; (b) 1 packet is 
lost; (c) 2 packets are lost; (d) 3 packets are lost.
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4.6.2 Image coding using wavelet-based MDTC 

In this section, a new and simple MDC scheme based on the one described in [12, 13] is 

defined [107, 108]. In this method, we employ the discrete wavelet transform (DWT) instead of the 

DCT. Experimental results show that the proposed approach leads to a more graceful degradation of 

image quality with an increase in the loss in descriptions. Also with this technique, we do not need 

to consider reliable transmission of the DC components by some other means. 

The discussion before assures that random variables have Gaussian distribution, which is a 

base condition for using correlating transform. Theoretically, Mallat [64] has proved that the 

histograms of wavelet transform coefficients of natural images can be modeled by a family of 

Gaussian distribution. So we can use MDTC within wavelet domain on a strong basis. 

The wavelets have often been employed in transform image coders. Although wavelets share 

many properties with the DCT (e.g. decorrelation), they also allow better localization in both 

frequency and space [14]. As mentioned before in Section 3.4, the DWT decomposes the original 

spatial-domain signal into various decomposition levels that comprise a number of subbands, each 

of them consists of coefficients that indicate the horizontal and vertical spatial frequency 

characteristics of the original samples [109]. The first level decomposition, which will be used in 

our coder, includes four subbands, LL1, HL1, LH1 and HH1 [109]. We consider the case of four 

descriptions. This method is designed to operate on source vectors with uncorrelated components. 

Such condition is obtained by forming vectors from DCT or DWT components. We refer to DCT-

based coder used in [12, 13] as MDTC/DCT coder. 
 

As cited earlier, the implementation of the MDTC/DCT coder proceeds in the following steps: 

 

1. The source image is transformed by an 8x8 DCT transformation. 

2. The DCT coefficients are uniformly quantized. 

3. The quantized DCT coefficients are split into 4 vectors (descriptions). 

4. Correlating transform is applied to the 4 vectors. 

5. Entropy coding is applied to each vector. 

 98



In step 3, the four vectors are formed from quantized DCT coefficients separated to the maximum 

in frequency and space with the DC coefficients assumed to be communicated reliably by some 

other means. 

Our coding process based on DWT is implemented as follow [107]: 

1. The source image is transformed by the 1-level biorthogonal B9/7 wavelet transform [110] 

obtaining therefore the four subbands: LL1, HL1, LH1, and HH1.  

2. The four vectors (descriptions ) are formed:  

⎪
⎪
⎩

⎪
⎪
⎨

⎧

→
→
→
→

41
31
21
11

ndescriptioHH
ndescriptioLH
ndescriptioHL
ndescriptioLL

3. The DWT coefficients (the four vectors) are uniformly quantized.  

4. Correlating transform (as described in section 2) is applied to the 4 vectors. 

5. Entropy coding is applied. 

This technique is referred to as MDTC/DWT. A typical MDTC DWT-based image coder is 

depicted in Figure 4.56. 

Redundancy of 0.1 bit/sample is evenly allocated to the four descriptions. The bit rate is estimated 

by sample scalar entropies. Simulation results for the nine test images, previously used in Section 

4.6.1, for the two coders are given in Figures 4.57-4.65. In all figures, the average PSNR is reported 

as a function of the bit rate for the case of one packet dropped. We can observe that the 

MDTC/DWT performance increase rapidly with the bit rate and outperforms MDTC/DCT for 

higher bit rates, but the reconstruction quality of MDTC/DWT is worse than MDTC/DCT slightly 

at higher part of about 1 bit/sample. 

To illustrate further the robustness of our approach for erasure channels, we have measured 

the PSNR of the restored images in the cases of 1, 2 and 3 packets dropped at a bit rate of 2 

bits/sample. 

The corresponding results are reported in Tables 4.9-4.11. We clearly see from the table that using 

MDTC/DWT results in an improvement in the reconstructed image quality when compared to 
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MDTC/DCT. For a qualitative comparison, the subjective qualities of the nine test images, for 

different levels of reconstruction with MDTC/DCT and MDTC/DWT coders are depicted in Figures 

4.66–4.83 where Figures (a), (b), (c) and (d) illustrate respectively the situations of 0, 1, 2, and 3 

packets lost. It is easily noticeable that for the wavelet transform based system the reconstruction 

quality degradation is graceful with the number of packets lost, and even in the case of three packet 

loss, the system can still provide a better and more useful reconstruction of the original image 

compared to the DCT-based system. 

 

 

Description1: quantized LL1 

 

Figure 4.56: Four descriptions MDTC DWT-based image coder. 
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Lena image Goldhill image Boat image No. of 
packets 
dropped 

MDTC/DCT 
PSNR (dB) 

MDTC/DWT 
PSNR (dB) 

MDTC/DCT 
PSNR (dB) 

MDTC/DWT 
PSNR (dB) 

MDTC/DCT 
PSNR (dB) 

MDTC/DWT 
PSNR (dB) 

0 42.50 37.23 39.43 34.64 41.94 35.53 
1 31.16 36.97 27.83 34.48 28.65 35.39 
2 26.55 34.04 25.38 29.40 25.22 31.81 
3 25.04 31.45 24.71 27.70 23.59 28.09 

 

Table 4.9: PSNR as a function of the number of packets lost for Lena, Goldhill and boat images. 
 
 

Lighthouse image House image Nitf7 image No. of 
packets 
dropped 

MDTC/DCT 
PSNR (dB) 

MDTC/DWT 
PSNR (dB) 

MDTC/DCT 
PSNR (dB) 

MDTC/DWT 
PSNR (dB) 

MDTC/DCT 
PSNR (dB) 

MDTC/DWT 
PSNR (dB) 

0 39.93 32.75 37.34 29.91 31.42 26.88 
1 24.95 32.63 22.52 29.67 21.64 25.79 
2 21.22 24.55 19.93 21.58 18.00 18.65 
3 20.65 22.40 17.79 19.80 16.13 17.04 

 

Table 4.10: PSNR as a function of the number of packets lost for Lighthouse, House and Nitf7 images. 
 
 

Baboon image Satellite image Sandiego image No. of 
packets 
dropped 

MDTC/DCT 
PSNR (dB) 

MDTC/DWT 
PSNR (dB) 

MDTC/DCT 
PSNR (dB) 

MDTC/DWT 
PSNR (dB) 

MDTC/DCT 
PSNR (dB) 

MDTC/DWT 
PSNR (dB) 

0 31.42 28.12 34.12 31.21 32.21 29.16 
1 25.26 26.44 26.50 30.55 25.12 28.40 
2 22.13 22.38 22.71 23.73 21.48 21.94 
3 20.38 20.17 20.96 22.14 19.38 20.20 

 
Table 4.11: PSNR as a function of the number of packets lost for Baboon, Satellite and Sandiego 
images. 
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MDTC/DCT: no packet lost
MDTC/DCT: one packet lost
MDTC/DWT: no packet lost
MDTC/DWT: one packet lost

 
Figure 4.57: Average PSNR versus bits per sample, ‘Lena’ image. 
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Figure 4.58: Average PSNR versus bits per sample, ‘Goldhill’ image. 
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MDTC/DCT: no packet lost
MDTC/DCT: one packet lost
MDTC/DWT: no packet lost
MDTC/DWT: one packet lost

 
Figure 4.59: Average PSNR versus bits per sample, ‘Boat’ image. 
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MDTC/DCT: no packet lost
MDTC/DCT: one packet lost
MDTC/DWT: no packet lost
MDTC/DWT: one packet lost

 
Figure 4.60: Average PSNR versus bits per sample, ‘Lighthouse’ image. 
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Figure 4.61: Average PSNR versus bits per sample, ‘House’ image. 
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Figure 4.62: Average PSNR versus bits per sample, ‘Nitf7’ image. 
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Figure 4.63: Average PSNR versus bits per sample, ‘Baboon’ image. 
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Figure 4.64: Average PSNR versus bits per sample, ‘Satellite’ image. 
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Figure 4.65: Average PSNR versus bits per sample, ‘Sandiego’ image. 
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Figure 4.66: Lena image reconstruction 
results for MDTC/DCT, at 2 bits/sample. (a) 
No packet is lost; (b) 1 packet is lost; (c) 2 
packets are lost; (d) 3 packets are lost. 

 

 

 

 
 
Figure 4.67: Lena image reconstruction 
results for MDTC/DWT, at 2 bits/sample. (a) 
No packet is lost; (b) 1 packet is lost; (c) 2 
packets are lost; (d) 3 packets are lost. 
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Figure 4.68: Goldhill image reconstruction 
results for MDTC/DCT, at 2 bits/sample. (a) 
No packet is lost; (b) 1 packet is lost; (c) 2 
packets are lost; (d) 3 packets are lost. 

 

 

 

 
 
Figure 4.69: Goldhill image reconstruction 
results for MDTC/DWT, at 2 bits/sample. (a) 
No packet is lost; (b) 1 packet is lost; (c) 2 
packets are lost; (d) 3 packets are lost. 
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Figure 4.70: Boat image reconstruction results 
for MDTC/DCT, at 2 bits/sample. (a) No 
packet is lost; (b) 1 packet is lost; (c) 2 
packets are lost; (d) 3 packets are lost. 

 

 

 

 
 
Figure 4.71: Boat image reconstruction results 
for MDTC/DWT, at 2 bits/sample. (a) No 
packet is lost; (b) 1 packet is lost; (c) 2 
packets are lost; (d) 3 packets are lost. 
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Figure 4.72: Lighthouse image reconstruction 
results for MDTC/DCT, at 2 bits/sample. (a) 
No packet is lost; (b) 1 packet is lost; (c) 2 
packets are lost; (d) 3 packets are lost. 

 

 

 

 
 

Figure 4.73: Lighthouse image reconstruction 
results for MDTC/DWT, at 2 bits/sample. (a) 
No packet is lost; (b) 1 packet is lost; (c) 2 
packets are lost; (d) 3 packets are lost. 
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Figure 4.74: House image reconstruction 
results for MDTC/DCT, at 2 bits/sample. (a) 
No packet is lost; (b) 1 packet is lost; (c) 2 
packets are lost; (d) 3 packets are lost. 

 

 

 

 
 
Figure 4.75: House image reconstruction 
results for MDTC/DWT, at 2 bits/sample. (a) 
No packet is lost; (b) 1 packet is lost; (c) 2 
packets are lost; (d) 3 packets are lost. 
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Figure 4.76: Nitf7 image reconstruction 
results for MDTC/DCT, at 2 bits/sample. (a) 
No packet is lost; (b) 1 packet is lost; (c) 2 
packets are lost; (d) 3 packets are lost. 

 

 

 
 

Figure 4.77: Nitf7 image reconstruction 
results for MDTC/DWT, at 2 bits/sample. (a) 
No packet is lost; (b) 1 packet is lost; (c) 2 
packets are lost; (d) 3 packets are lost. 
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Figure 4.78: Baboon image reconstruction 
results for MDTC/DCT, at 2 bits/sample. (a) 
No packet is lost; (b) 1 packet is lost; (c) 2 
packets are lost; (d) 3 packets are lost. 

 

 

 

 
 
Figure 4.79: Baboon image reconstruction 
results for MDTC/DWT, at 2 bits/sample. (a) 
No packet is lost; (b) 1 packet is lost; (c) 2 
packets are lost; (d) 3 packets are lost. 
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Figure 4.80: Satellite image reconstruction 
results for MDTC/DCT, at 2 bits/sample. (a) 
No packet is lost; (b) 1 packet is lost; (c) 2 
packets are lost; (d) 3 packets are lost. 

 

 

 

 
 
Figure 4.81: Satellite image reconstruction 
results for MDTC/DWT, at 2 bits/sample. (a) 
No packet is lost; (b) 1 packet is lost; (c) 2 
packets are lost; (d) 3 packets are lost. 
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Figure 4.82: Sandiego image reconstruction 
results for MDTC/DCT, at 2 bits/sample. (a) 
No packet is lost; (b) 1 packet is lost; (c) 2 
packets are lost; (d) 3 packets are lost. 

Figure 4.83: Sandiego image reconstruction 
results for MDTC/DWT, at 2 bits/sample. (a) 
No packet is lost; (b) 1 packet is lost; (c) 2 
packets are lost; (d) 3 packets are lost.
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CHAPTER 5 

CONCLUSION AND FUTURE WORK 

5.1 Thesis summary 

In this thesis we have investigated the problem of transmitting image data over 

heterogeneous packet erasure channels using Multiple Description Transform Coding (MDTC). 

 Firstly, based on the work of Goyal et al. [9, 12], we have proposed a different DCT 

based MDTC image coder for the case of four descriptions (packets). The difference relies 

mainly on the way the four packets are formed. The performance has been evaluated for 

9 512x512 greyscale test images grouped into three image types: three low frequency (Lena, 

Boat, Goldhill), three medium frequency (Lighthouse, Nitf7, House), and three high frequency 

(Satellite, Mandrill, SanDiego) images. Simulation results have shown that our employed 

technique leads to an improvement in performance in terms of rate/distortion. In addition, using 

the proposed scheme, the DC coefficients obtained after the application of DCT need not be 

communicated reliably by some other means as suggested by Goyal et al in their MDTC coder. 

 In a second part, we have proposed a new simple wavelet based MDTC image coder for 

the case of four packets. The considered scheme uses the wavelet transform instead of the DCT 

transform. We have carried out a comparative study of DCT- and DWT-based coding on the nine 

previously mentioned test images.  Our proposed approach shows to be more robust when 

transmitting images through unreliable networks. Through some experiments, we conclude that 

even if the wavelet-based MDTC system receives only one description (the three other 

descriptions being lost), it can still restore image with better reconstruction quality with respect 

to DCT-based MDTC system. Also, the same significant superiority in reconstruction quality 

applies if two descriptions are lost (and with a lower difference if only one is lost). 
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5.2 Future directions 

Further work may include: 
• The coding scheme presented here is based on high-rate entropy estimates for uniformly 

quantized Gaussian random variables. Further investigations could be done, including the 

effect of non-uniform quantization and the divergence from Gaussianity.  

• One interesting problem is to study the possibility of incorporating, in the proposed 

scheme, the run length coding and Huffman coding to get a JPEG like coder. 

• In order to be well adapted to image transmission on Internet, the proposed 4 descriptions 

MDTC/DWT image coder can be extended to the case of 8 descriptions by designing the 

corresponding correlating transform. 

• Another interesting question in a future is to extend this work to handle video data 

transmission by developing the necessary algorithms. 
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