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INTRODUCTION 

 
Before we begin to present the main goal of this research and the thesis outline, it is of interest 

to briefly review the historical development and some of the important milestones in acousto-

optic field. This field was studied extensively in the past century, where in 1922, Brillouin 

predicted that the light can be diffracted by ultrasound [1]. It was not possible to confirm this 

prediction experimentally until ten years later. Surprisingly, simultaneously and for the first 

time a large number of diffracted orders was observed, symmetrically spaced about the 

undiffracted beam, independently by the Americans Debye and Sears, and the French Lucas 

and Biquard in 1932 [2-3]. Various efforts were made by them to describe the presence of 

multiple diffracted orders but unfortunately the intensities wandering of the various 

components has not found explanation in any of their theories [4].  

In 1935 Raman and Nath succeeded to explain this diffraction where they demonstrated that 

the propagation of an ultrasonic wave in elastic medium creates dilation and compression 

regions according to the rhythm of this ultrasonic wave. This variation produces a periodic 

modulation of the refractive index via the elasto-optic effect. Accordingly, the medium which 

was initially homogeneous transformed into inhomogeneous one providing a dynamic phase 

grating. This last may diffract portions of an incident light into one or more directions. The 

theoretical analysis of this diffraction showed that the intensity and the position, of each 

diffracted order, are constant when ultrasonic wave is sinusoidal [4-5].  

In case where sinusoidal ultrasonic wave is amplitude modulated (AM), the diffraction orders 

position remains constant. Likewise, it was observed that besides these diffracted orders, the 

spectrum showed satellite diffracted orders. This diffraction was performed for the first time 

by Pancholy and Parthasarathy and explained mathematically by Mertens and Hereman in 

1979 [6-7].   

Meanwhile, the using of frequency modulated ultrasonic wave (FM) led to appear a variety of 

optical devices such as acousto-optic deflectors (AODs), which have in turn widespread 

applications in many fields. For instance, some authors used theses AODs to develop an 
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acousto-optic cylindrical lens with a very fast focal scanning [8] by using two adjacent 

counterpropagating acoustic waves carrying the same frequency chirp [9]. Recently, AODs 

attracted more attention for diverse applications as is quoted in [10-11].   

In the same context, other diffraction can be obtained using sinusoidal ultrasonic wave of high 

frequency modulated by another sinusoidal one of low frequency. In this case the position of 

the diffracted order is no longer constant as the two first cases, sinusoidal and AM signal, but 

it oscillates around a central position with scanning frequency which increases proportionally 

with the modulating signal frequency. This deflection has long been known but it remained, to 

our knowledge, without explication.  

In this work, we theoretically study this deflection, following the same steps of those who 

preceded us in this field, starting form acousto-optic interaction principle to finally reach a 

very important relationship between the diffracted order position and the modulating signal. 

Afterwards, in order to check the proposed theoretical development a series of experiments 

are conducted.  

For better presentation and clear explanation of this research work, we are starting by studying 

modulated electrical signal which is used to generate ultrasound. After this, the determination 

of the relationship between the ultrasound and the medium refractive index is primordial to 

explain the diffraction phenomenon. Therefore, the thesis is organized as follows:  

i. The first chapter is interested to study the different electrical signals (amplitude 

modulated, frequency modulated and phase modulated).  Particular attention is devoted 

to frequency modulated signal as well as the essential parameters that affect the acousto 

optic deflector such as; modulation frequency, frequency excursion and frequency 

modulation index.   

ii. In the second chapter, which is considered the longest, we exploit electrical signals 

sited above to generate ultrasonic waves using piezoelectric transducer. This is 

followed by the study of ultrasounds propagation in elastic media and their effect on 

the refractive index. 

iii. During the third chapter, which is considered the most important, we theoretically 

investigate the diffraction phenomenon obtained by the interaction of ultrasonic waves, 
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generated previously, and electromagnetic one. This treatment is performed for three 

types of ultrasonic waves (sinusoidal, amplitude modulated and frequency modulated).  

iv. The experimental part is the subject of the fourth chapter, which presents the different 

performed experiments in order to check the theoretical development proposed in the 

chapter number three. Such as the effect of modulating signal frequency on the 

scanning frequency and the angular excursion of each diffracted order.  This is 

followed by a new method presentation enables us to measure the frequency 

modulation index. This operation was performed before using only a spectrum 

analyzer.  

This thesis is ended with general conclusion in which we present the achieved results and 

future prospects in this field.  
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CHAPTER I 

MODULATED ELECTRICAL SIGNALS 

1-1) Introduction: 

During the development of telecommunication devices, it quickly became necessary to code 

the information to be transmitted, either to adapt the information to the transmission channel 

or to simultaneously transmit several signals on the same channel. As a result, the coding of 

information is still being research subject. One of the forms of the information coding among 

the simplest and the oldest is to perform a frequency translation of the carrier. This type of 

coding is called analog modulation [12]. 

Analog modulation is the process of facilitating the transport of information over a carrier. For 

instance, the sound transmission in air has a limited range depends on sonic power. To extend 

the range of sound, we need to transmit it by another way, such as an electromagnetic wave. 

To perform that, it’s enough to vary the amplitude, frequency or phase of a carrier in 

accordance with instantaneous value of information (modulating signal). Once the carrier is 

mapped with the information to be sent, it is no longer a carrier and we call it the modulated 

signal. We distinguish three types of modulation [13]:     

                Amplitude modulation (AM).  

                Exponential modulation: Frequency modulation (FM). 

                                                      Phase modulation (PM). 

AM and FM are ways of broadcasting radio signals. Both transmit the information in the form 

of electromagnetic waves. AM works by modulating the amplitude of the carrier according to 

the modulating signal being sent, while the frequency remains constant. This differs from FM 

technology in which information is encoded by varying the carrier frequency and its amplitude 

is kept constant [34].     

Generally, the carrier frequency is very high compared to the modulating signal frequency. In 

the case where the two signals are sinusoidal, we write:  
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( ) ( )tAtA aa ωcos=                                                                  1.1 

Where:                             

        aA  : Carrier amplitude.  

       aω  : Carrier pulsation.                
 The comparison of these different modulation types and the choice of one of them is based on 

numerous criteria (noise immunity, implementation, demodulation, range, cost, etc.) [20]. 

1-2) Amplitude modulation (AM):  

Amplitude modulation was the earliest modulation method used in electronic communication, 

most commonly for transmitting voice. It was developed during the first two decades of the 

20th century beginning. The amplitude of the carrier is varied in proportion to the modulating 

signal being transmitted. In our study, we will interest in a sinusoidal modulating signal. 

1-2-1) Expression of amplitude modulated sinusoidal signal: 

As its name implies, an amplitude modulated sinusoidal electrical signal ( )tA is a signal has an 

amplitude modifies according to a linear law by the modulating signal. 

Let ( )tS represent the modulating signal with a frequency mf  and amplitude mA :      

                                              ( ) ( )tAtS mm ωcos=                                                                          1.2 

So, the amplitude modulated signal is written as follows:  

                                             ( ) ( )[ ] ( )ttSCAtA aaa ωcos+=                                                           1.3 

Where: aC  is the modulator proportionality factor, which sometimes takes the denomination 

modulator sensitivity. 

If we replace equation (1.2) in equation (1.3), we obtain: 

                     ( ) ( )[ ] ( ) ( ) ( )tt
A
ACAttACAtA am
a

ma
aammaa ωωωω coscos1coscos ⎥

⎦

⎤
⎢
⎣

⎡
+=+=                   

                             ( )[ ] ( )ttA amaa ωωβ coscos1+=                                                                         1.4 

Where aβ  is the amplitude modulation index (Amplitude modulation depth).   
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1-2-2) Time domain of AM signal: 

To plot AM signal as a function of time, we choose for example a carrier with a frequency of 

Hzfa
610=  and a modulating signal of frequency Hzfm

310= . The graphs below represent the 

amplitude modulated signal for different values of aβ . 

 t=0:.00000001:0.003; 

A= (1+ aβ *cos(2*pi*10^3*t)).*cos(2*pi*10^6*t); 

>> plot(A),grid 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 Figure 1.2: Time domain representation of AM signal for 1=aβ  
Time [s] 

A(t) 

Figure 1.1: Time domain representation of AM signal for 5.0=aβ  

Time [s] 

A(t) 

Original level 

-50% 

+50% 
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- From these figures, it can be seen that for an amplitude modulation index of 0.5, the 

modulation causes the signal to increase by a factor of 0.5 and decrease to 0.5 of its original 

level.  

- When the modulation index reaches 1, the carrier level falls to zero and rises to twice its 

non-modulated level. 

- Any increase of the modulation index above 1 causes over-modulation which gives rise to 

additional sidebands. 

- Experimentally, we can easily extract the AM index value from the graphics, without 

knowing ma ff and , as follows:  

We have:                             ( ) ( )[ ] ( )ttAtA amaa ωωβ coscos1+=                   

So the new amplitude is ( ) ( )[ ]tAtA maa ωβ cos1' +=   

In the case where  ( )[ ]1cos =tmω ( ) [ ]aaAAtA β+=′=′⇒ 1max                                                      1.5 

And if                    ( )[ ]1cos −=tmω ( ) [ ]aaAAtA β−=′=′⇒ 1min                                                    1.6 

From (1.5) and (1.6) we can find:  

                                              
minmax

minmax

AA
AA

a ′+′
′−′

=β                                                                           1.7 

For example in figure (1.1), the amplitude modulation index equals:  

                                               5.0
5.05.1
5.05.1

minmax

minmax =
+
−

=
′+′
′−′

=
AA
AA

aβ   

Figure 1.3: Time domain representation of AM signal for 2.1=aβ  
Time [s] 

A(t) 
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1-2-3) Frequency domain of AM signal: 

In the frequency domain, amplitude modulation produces a signal with power concentrated at 

the carrier frequency and two adjacent sidebands. Each sideband is an image of the other as 

indicated below.  

Using trigonometric relationship: 

                    ( ) ( ) ( ) ( )[ ]bababa −++= coscos
2
1coscos  

The equation ( )tA can be written as a sum of three sine waves [34]: 

                    ( ) ( )[ ] ( )ttAtA amaa ωωβ coscos1+=  

                    ( ) ( ) ( )ttAtA amaaa ωωβω coscoscos 0+=  

                    ( ) ( ) ( ) ( )[ ]ttttAtAtA amam
aa

aa ωωωωβω −+++=⇒ coscos
2

cos                                    1.8 

Therefore, the modulated signal has three components: the carrier which is unchanged and 

two sine waves with frequencies slightly above and below the carrier frequency af . 

The spectrum ( )fA  of the signal is then obtained by using the Fourier transform of this signal: 

( ) ( ) ( )[ ] ( )( ) ( )( )[ ]

( )( ) ( )( )[ ]mama
aa

mama
aa

aa
a

ffffffA

ffffffAffffAfA

−++−−+

++++−+++−=

δδβ

δδβδδ

4

42                              1.9 

Where ( )fδ  represents the Dirac Delta function (Appendix 1). 

This gives rise to two identical spectra, one for negative frequencies, and the other for positive 

ones as indicated in figure (1.4). Each spectrum is composed of three lines, one of amplitude 

2/aA at frequency af , the two other are of amplitude 4/aaA β  at frequencies; ( )ma ff −  called 

Lower Side Band (LSB) and ( )ma ff +  called Upper Side Band (USB) [12].  
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When the carrier is fully modulated ( 1=aβ ), the amplitude of line at frequency af  is equal to 

half that of the carrier, the sum of the powers of the sidebands is equal to half that of the 

carrier. This means that each sideband is just a quarter of the total power. In other words, for 

transmitting 100 watts, the total sideband power would be 50 watts and each individual 

sideband would be 25 watts [34]. 

Therefore, the sidebands spread out either side of the carrier and the total required bandwidth 

to transmit the signal, preserving its integrity, is given by the following equation [12, 20]:   

                                                                   ma fBP 2=
                                                         

    1.10 

1-3) Exponential modulation: 

We have already seen that the AM principle is based on the amplitude modification of the 

carrier without the frequency modification. Another form of modulation is to keep the 

amplitude of the carrier constant and vary, as a function the modulating signal rhythm, the 

value of the instantaneous phase. This modulation is called exponential or angular modulation 

[12-20]. 

We can define the instantaneous pulsation as follows: 

                                                          ( ) ( )
td
tdt ϕω =                                                                    1.11 

Figure 1.4: Frequency domain representation of AM signal  

4
aaA β

2
aA

( )fA  

f
ma ff +  afma ff −  ( )ma ff −−  af−  ( )ma ff +−  
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These two quantities ( )tω  and ( )tϕ will be modified as a function of the modulating signal. 

According to the characteristics of this modification we will have two modulations; a 

frequency modulation which is linear action on the instantaneous pulsation ( )tω  and a phase 

modulation which acts linearly on the instantaneous phase ( )tϕ . The advantage of these types 

of modulations is that the signals are less disturbed by the "noises" during their transmission, 

because the noises modify the amplitude, not the frequency of a signal. 

1-3-1) Frequency modulation: 

1-3-1-1) Expression of frequency modulated sinusoidal signal: 

In this case, the amplitude of the transmitted signal is constant and the information signal is 

encoded linearly in carrier frequency as indicate these formulas:  

                                      ( ) ( )[ ]∫+= dttSCtAtA faa )(2cos πω                                                     1.12 

Where fC being the modulator proportionality factor, this sometimes takes the denomination 

of modulator sensitivity [12].   

The instantaneous phase, pulsation and frequency are given, respectively, by the following 

formulas: 

                    ( ) ∫+= dttSCtt fa )(2πωϕ                                                                                    1.13 

                    ( ) )(2 tSCt fa πωω +=                                                                                         1.14 

                    ( ) )(tSCftf fa +=                                                                                                1.15   

In the case where ( )tS  is cosinusoidal, the formulas (1.12-1.15) become: 

                                      ( ) ( ) ⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ⋅
+= t

f
AC

tAtA m
m

mf
aa ωω sincos                                              1.16 

                                       ( ) ( )tACftf mmfa ωcos⋅+=                                                                1.17   

The quantity fAC mf Δ=⋅  is called the frequency excursion (frequency deviation). 

Therefore, the pulsation and phase excursion are written:  
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And if                   ( ) ( ) amm fffTnfTnt +Δ−==⋅+⇒⋅+= min)2/1'(2/1'                                      1.23 

From (1.22) and (1.23) we can find:  

                                                     
2

minmax fff −
=Δ                                                                   1.24 

Therefore, the value of FM index is: 
m

f f
ff

2
minmax −

=β    

Where the value of minmax and ff are extracted directly from the signal curve.  

For instance, when we choose a carrier with a frequency of MHzfa 10= , a modulating signal of 

frequency Hzfm 1.0= and 7105⋅=fβ . The FM signal expression is written as follows:  

                                   
( ) ( )( )[ ]ttAtA a 1.02sin105102cos 77 ππ ⋅+=  

The instantaneous periods, of this signal ( )tA , presented in the second column of the table 

(1.1) below are obtained theoretically using the MATLAB software, whereas the 

instantaneous periods of the third column are obtained experimentally using a memory 

oscilloscope (See chapter 4).  

From this table, we can easily extract the values of minT and maxT thus maxf and minf . 
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1-3-1-3) Frequency domain of FM signal: 

Using relationship number five derived from the Jacobi–Anger identity (Appendix 2), it is 

possible to put the equation (1.21) in the form [20]:
       

 

                         ( ) ( ) ( )⎥
⎦

⎤
⎢
⎣

⎡
+= ∑

+∞

−∞=n
mafna tntJAtA ωωβ cos                                                           1.25                

                         

( ) ( ) ( )
( ) ( ) ( )[ ]
( ) ( ) ( )[ ]
( ) ( ) ( )[ ] ...3cos3cos

2cos2cos

coscos

cos

3

2

1

0

+−−++

−+++

−−++

=⇒

ttttJA

ttttJA

ttttJA

tJAtA

mamafa

mamafa

mamafa

afa

ωωωωβ

ωωωωβ

ωωωωβ

ωβ

  

Where: nJ is the Bessel function of the first kind for integer orders n (Appendix 3).   

Hence, the spectrum ( )fA  of signal ( )tA is written as follows:                                 

( ) ( )[ ] ( ) ( ) ( )[ ]

( ) ( )( ) ( )( ) ( )( ) ( )( )[ ][ ]

( ) ( )( ) ( )( ) ( )( ) ( )( )[ ][ ] ...2222
2

2

2

2

1

0
0

+−++−−+++++−+

−++−−−++++−+

++−==

mamamamaf
a

mamamamaf
a

aaf

ffffffffffffJA

ffffffffffffJA

ffffJAtATFfA

δδδδβ

δδδδβ

δδβ

     

( ) ( ) ( )( ) ( )( )[ ].
2 mama

n
fn

a nfffnfffJAfA ++++−=⇒ ∑
+∞

−∞=

δδβ                                                      I.26                

This shows two identical spectra, one for negative frequencies and the other for positive ones 

as indicated in figure (1.8). Each spectrum is composed of lateral lines infinity on each side of 

the carrier frequency af . The Bessel function ( )fnJ β  represents the line amplitude ( )ma nff + . 

Each two symmetrical lateral line have the same amplitude, so each spectrum is symmetrical 

with respect to the frequency af [20]. 
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Theoretically, the FM signal spectrum has components extending infinitely, although their 

amplitude decreases. In practice, only the N lines on both sides of af , in total 2N + 1, are taken 

into account when determining the bandwidth [12]. Using the Carson bandwidth rule which 

states that almost all lines that contribute 99% of the power of frequency modulated signal 

situate within the bandwidth given by: 

                                  mf fNBP 2= ( ) mf f12 += β                                                                   I.27  

It is important to note that the FM signal bandwidth is ( )1+fβ  times greater than that of the 

AM signal [20]: 

                         ma fBP 2=                                      ( ) mff fBP 12 += β  

Precisely:  

In the case where: famfffm BBPfBBPBff ==⇒>>⇒Δ<< 21  

And if:                   maffm fBPBPBff 21 ==⇒<<⇒Δ>>       

( )10J  

( )fA  

f

( )11J  

( )12J  

ma ff 2−
ma ff −

af ma ff 2+
ma ff +  

( )11J  

( )12J  

( )10J  

( )11J  

( )12J  

( )ma ff 2+− ( )ma ff +−  
af−  ( )ma ff 2−−( )ma ff −−  

( )11J  

( )12J  

Figure 1.8: Frequency domain representation of FM signal 21 0 == Aetfβ  
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As a result, FM systems are far better than AM ones; either in terms of its larger bandwidth or 

its higher immunity against random noise. This last permits to say there is virtually no 

interference picked up in the FM receiver.  

1-3-2) Phase modulation: 

1-3-2-1) Expression of phase modulated sinusoidal signal: 

As we have already seen, phase modulation and frequency one are closely linked together, 

only in this case the information signal is encoded linearly in carrier phase as indicate these 

formulas:  

                                      ( ) ( )[ ])(cos tSCtAtA paa ⋅−= ω                                                             1.28 

Where pC being the sensitivity of modulator. 

The instantaneous phase and pulsation are given, respectively, by the following formulas: 

                    ( ) )(tSCtt pa ⋅−= ωϕ                                                                                             1.29 

                    ( )
dt

tdSCt pa
)(

−= ωω                                                                                           1.30 

In the case where ( )tS  is cosinusoidal, the formula (1.28) becomes: 

                                      ( ) ( )( )[ ]tACtAtA mmpaa ωω coscos ⋅−=                                                  1.31 

So, the instantaneous frequency is written as follows: 

                                     ( ) ( )tfACftf mmmpa ωsin⋅⋅+=                                                             1.32   

The quantity ffAC mmp Δ=⋅⋅  is called the frequency excursion (frequency deviation). 

Therefore, the pulsation and phase excursion are written:  

                                     ( ) ( ) mpmmpa ACtACtt ⋅=Δ⇒⋅−= ϕωωϕ cos                                        1.33 

                                     ( ) ( ) mpmmmmpa ACtfACt ⋅⋅=Δ⇒⋅⋅+= ωωωπωω sin2                         1.34 

The combination of the two relationships allows us to extract the same relation obtained 

previously in frequency modulation: 
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mf
fΔ

=Δϕ                                                                                 1.35 

By analogy with frequency modulation, the phase modulation index is written:  

                                                 
m

p f
fΔ

=Δ= ϕβ                                                                          1.36 

It should be noted that, contrary to what occurs for a FM signal, the PM index is independent 

from the modulating signal frequency. 

It is then possible to rewrite the PM signal expression on the form below:  

                                             ( ) ( )( )[ ]ttAtA mpaa ωβω coscos −=                                                 1.37 

The time and frequency domain of PM signal are identical to FM one.  

The table below presents the main characteristics of FM and PM signals.  

modulation 

index 

instantaneous 

phase 

instantaneous 

frequency 
ϕΔ  fΔ  

FM 
m

mf
f f

Aν
β =  ( )tt mfa ωβω sin+ ( )tff mmfa ωβ cos+ fβϕ =Δ  mf AC  

PM mpp Aνβ =  ( )tt mpa ωβω cos− ( )tff mmpa ωβ sin+ pβϕ =Δ  mmp fAC

 

 

These electrical signals and others can be transformed, using a piezoelectric transducer, into 

ultrasonic waves. In the next chapter, we will see the propagation of these waves in elastic 

media and their influence on the optical characteristics of these last. 

 

 

 

Table 1.2: Comparison between FM and PM [12].  
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CHAPTER II 

THE ULTRASOUND EFFECT ON REFRACTIVE INDEX  

2-1) Introduction: 

As stated in the previous chapter, some electrical signals can be transformed to ultrasonic 

waves using a piezoelectric transducer. In this chapter, we will study the effect of ultrasound 

propagation on refractive index of medium. This effect is discussed in detail; piezoelectric 

transducers are considered in section 2-3. The ultrasound propagation is the subject of section 

2-5. This is followed by the presentation of the acousto-optic coefficients in isotropic and 

anisotropic media and their effect on the index ellipsoid when an ultrasonic wave is applied. 

2-2) History and Definition:  

Acoustics, the science of sound, started as far back as Pythagoras in the 6th century BC, who 

wrote on the mathematical properties of stringed instruments. Echolocation in bats was 

discovered by Lazzaro Spallanzaniin 1794, when he demonstrated that bats hunted and 

navigated by inaudible sound and not vision. Echolocation is the biological sonar used by 

several kinds of animals. Echolocating animals emit calls out to the environment and listen to 

the echoes of those calls that return from various objects near them. They use these echoes to 

locate and identify the objects. In 1893, Francis Galton invented the Galton whistle, an 

adjustable whistle is used to produce ultrasound and measure the hearing range of humans and 

other animals, demonstrating that many animals could hear sounds above the hearing range of 

humans. The first technological application of ultrasound was an attempt to 

detect submarines by Paul Langevin in 1917.  

Ultrasound is mechanical waves, can only propagate in elastic media (gaseous, liquid or 

solid), with frequencies higher than the upper audible limit of human hearing. Ultrasound is 

no different from sound in its physical properties, except that humans cannot hear it. The 

upper audible limit varies from person to person and is approximately 20 KHz in healthy 
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adults. Children can hear some high-pitched sounds that older adults cannot hear, because in 

humans the upper limit pitch of hearing tends to decrease with age. The sounds have been 

classified compared to the reactions of the human ear. We distinguish: Infrasound, sound, 

ultrasound and hypersound as indicated in figure (2.1). 

 

 

 

 

 

 

Not to be confused ultrasonic with Supersonic. At the beginning of the 20th century, the term 

"supersonic" was used as an adjective to describe sound whose frequency is above the range 

of normal human hearing. The modern term for this meaning is "ultrasonic" and the term of 

supersonic is limited to describe the objects speed that is between 1000-1500 km/h in dry air. 

Speed greater than five times the speed of sound is often referred to as hypersonic.  

2-3) Transducers:   

The ultrasonic wave production is done by transducers that convert mechanical, magnetic or 

electrical energy into ultrasonic energy [15]. 

Generally, the transducers are classified into three categories: 

- Mechanical transducers. 

- Magnetostrictive transducers.  

- Piezoelectric transducers. 

At first, all ultrasonic waves were produced by mechanical transducers. Afterwards, 

magnetostrictive transducers were used to generate them, where some materials change its 

size slightly when they are exposed to a magnetic field. The use of mechanical and 

magnetostrictive transducers remained limited due to the weak frequency and energy.  

Nowadays, the term transducer typically refers to piezoelectric transducers, where the most of 

the commercial ultrasonic transducers are based on piezoelectric effect. These last are 

Sound 

20 20.103 109 

Figure 2.1: Acoustic waves spectrum  

( )Hzf a0 

UltrasoundInfrasound Hypersound 
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discovered by the brothers Pierre Curie and Jacques Curie in 1880, but only in the 1950s 

manufacturers begun to use the piezoelectric effect in industrial sensing applications. Since 

then, this principle has been increasingly used, and has become technology with excellent 

reliability.  

- The piezoelectric effect is based on the piezoelectric crystals properties, where these last 

change size and shape crystals when a voltage is applied. Alternating current voltage makes 

them oscillate at the same frequency which permits to produce ultrasonic wave [41]. This 

mechanism is known as inverse piezoelectric effect. Vice versa, the direct piezoelectric effect 

converts mechanical energy into electrical one as indicated in figure (2.2).   

   

 

 

 

 

 

 

 

 

 

 

Since piezoelectric materials generate a voltage when force is applied on them, they can also 

work as ultrasonic detectors. Thus, the piezoelectric transducers can be divided into three 

broad categories: transmitters, receivers and transceivers. Transmitters convert electrical 

signals into ultrasound, receivers convert ultrasound into electrical signals, and transceivers 

can both transmit and receive ultrasound.  

V=0 

         B) Direct piezoelectric effect: a tension is collected when a force is applied. 

A) Inverse piezoelectric effect: an ultrasound is collected when a tension is applied. 

V=0 
L 

+V 
LL Δ±

Figure 2.2: Inverse and direct effect representation [16]. 

+V 

F 
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When a piezoelectric material is placed in an electrical field of frequency Ef , its dimensions 

vary with the latter. This phenomenon makes it possible to generate ultrasonic waves of 

frequency ( Ea ff = ) as indicated in figure (2.3).  

 

 

 

 

 

In order to increase this deformation efficiency (the ultrasonic waves intensity), the excitation 

frequency Ef  must be equal to the mechanical resonance one rf  of the piezoelectric material 

which is given by the following expression [18]: 

                                                                   
L

Vfr 2
=                                                                   2.1 

Where: 

          V : Ultrasonic velocity in the piezoelectric material.            

         L: The piezoelectric material thickness.   
 
The piezoelectricity phenomenon appears generally in crystals devoid of symmetry center 

(noncentrosymmetric). Indeed, of the 32 crystal classes (Appendix 6), 21 are 

noncentrosymmetric, and of these, 20 exhibit direct piezoelectricity (the 21st is the cubic class 

432) [16]. This division is an elementary consideration in crystallography and this information 

is widely tabulated in [19]. These piezoelectric crystals lose this property when the 

temperature exceeds the Curie temperature
ECT . In this case, we say that the crystal is found in 

a Para-electrical or non-polar state [16]. 

2-4) Ultrasounds Applications:    

Ultrasound is used in many different fields: 

- Industrially, ultrasound is frequently used in the nondestructive testing of products and 

structures. It is used also to detect invisible flaws and to measure the thickness of objects. For 

Electrical field Ef  Ultrasonic wave af  

Figure 2.3: Piezoelectric transducer 

 
   Piezoelectric material  
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example, by measuring the time between sending a signal and receiving an echo, the distance 

of an object can be calculated.  

- Ultrasound is widely used in systems which evaluate targets by interpreting the reflected 

signals. For instance, a common use of ultrasound is in underwater finding; this use is also 

called Sonar. An ultrasonic pulse is generated in a particular direction. If there is an object in 

the path of this pulse, part or all of the pulse will be reflected back to the transmitter as an 

echo. By measuring the difference in time between the pulse being transmitted and the echo 

being received, it is possible to determine the distance. 

- It also used in cars as parking sensors to aid the driver.  

- A common ultrasound application is an automatic door opener, where an ultrasonic sensor 

detects a person's approach and opens the door. 

- Ultrasound imaging or sonography is often used in medicine.  

- Animals such as bats and porpoises use ultrasound for locating prey and obstacles 

(Echolocation), they can detect frequencies beyond 100 kHz, possibly up to 200 kHz.  

2-5) Ultrasound propagation: 

All material substances are comprised of atoms, which may be forced into vibratory motion 

about their equilibrium positions. When the medium particles are stressed in tension inferior 

its elastic limit, internal restoration forces arise that leads to the oscillatory motions of the 

medium particles. Ultrasound propagation is focused on particles that contain many atoms that 

move in unison to produce a mechanical wave which propagate in many modes [14]. 

2-5-1) Propagation modes:   

In solids, Ultrasound waves can propagate in many modes that are based on the way the 

particles oscillate. Longitudinal and shear waves are the two modes of propagation most 

widely used in solids. The particle movement responsible for the propagation of longitudinal 

and shear waves is illustrated below:   
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In longitudinal waves, the oscillations occur in the direction of wave propagation. Since 

compressional and dilational forces are active in these waves, they are also called pressure or 

compressional waves. They are also sometimes called density waves because the particle 

density fluctuates as they move. 

In the transverse or shear wave, the particles oscillate at a right angle or transverse to the 

direction of propagation. Shear waves require an acoustically solid material for effective 

propagation, and therefore, are not effectively propagated in materials such as liquids or 

gasses [14].   

As mentioned previously, longitudinal and transverse waves are most often used in practical.  

However, at surfaces, various types of elliptical or complex vibrations of the particles make 

other waves possible.  Some of these wave modes such as Rayleigh and Lamb waves are also 

useful.  

The table below summarizes many, but not all, of the wave modes possible in solids. 
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Wave Types in Solids  Particle Vibrations  
Longitudinal Parallel to wave direction 
Transverse (Shear) Perpendicular to wave direction 
Surface Wave - Rayleigh Elliptical orbit  
Plate Wave - Lamb Complex vibration  
Plate Wave - Love Complex vibration 

 

 

Longitudinal and transverse waves were discussed on the previous page, so let's touch on 

surface and plate waves here. 

Surface waves travel the surface of a relatively thick solid material penetrating to a depth of 

one wavelength. Surface waves combine both a longitudinal and transverse motion to create 

an elliptic orbit motion. Surface waves are generated when a longitudinal wave intersects a 

surface near the second critical angle and they travel at a speed close to the shear wave one 

(see section 2.6.3). Plate waves are similar to surface ones except they can only be generated 

in materials a few wavelengths thick.  Lamb waves are complex vibratory ones that propagate 

parallel to the surface [18].   

2-5-2) Position, velocity and pressure of particles in material:   

In the previous section, it was pointed out that sound waves propagate due to the vibrations or 

oscillatory motions of particles within a material. An ultrasonic wave may be visualized as an 

infinite number of oscillating masses or particles connected by means of elastic springs. Each 

individual particle is influenced by the motion of its nearest neighbor and its restoring forces. 

This restoring forces is described by Hooke's Law [14].  

Hooke's Law, when used along with Newton's Second Law can explain an ultrasound 

propagation. Newton's Second Law says that the force applied to a particle will be balanced 

by the particle's mass and its acceleration. Mathematically, let’s consider a sinusoidal plane 

ultrasonic wave propagating in the direction x . The particles of the medium vibrate around an 

Table 2.1: Wave modes possible in solids [14] 
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equilibrium position with the same frequency of ultrasonic wave. The differential equation 

that describes this vibration is [17]: 

                                            ( ) ( )
2

2
2

2

2 ..
x

txXV
t

txX
∂

∂
=

∂
∂                                                         2.2 

Where:  

           ( )txX . : Particle position of according to time and space. 

          x  : Propagation direction of ultrasonic wave.   

           V : Ultrasonic wave velocity. 

The solution of this differential equation is given by the following formula: 

                                               ( ) ( )xktXtxX aa −= ωsin.. 0                                                             2.3 
Where:  

         0X : The vibration amplitude.  

         
a

ak
λ
π2

= : Ultrasonic wave vector.  

         aa fπω 2= : Ultrasonic wave pulsation.  

From equation (2.3), we remark that all the points situated at the same abscissa x are in the 

same vibratory state; they are called in phase and constitute a wave surface which is in this 

case plane [18]. 

The particle velocity is then given by: 

                         ( ) ( ) ( )xktX
dt

txdXtxX aaa −==′ ωω cos,, 0                                                    2.4  

The ultrasonic pressure variation in a given point is related to the particle velocity in the 

medium by equation [15]: 

                                   ( ) ( ).,, 0 txXVtxp ′=Δ ρ                                                                              2.5 

The ratio of the pressure to the velocity at a given point is then equal to the product of the 

initial density of the medium by the wave velocity, this ratio is constant [15]: 

                                                           ( )
( ) V

txX
txp

0,
, ρ=

′
Δ                                                               2.6 

This equation is often called the Ohm law, in acoustics, and the preceding ratio is called the 

acoustic impedance Z  of the medium [15]. 
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Therefore equation (2.6) becomes: 

                                   ( ) ( )xktXZtxp aaa −=Δ ωω cos, 0                                                      2.7 

Acoustic impedance is important in the determination of transmission and reflection 

coefficients at the boundary of two materials having different acoustic impedances, as it will 

be indicated in section (2.6.2). 

2-5-3) Ultrasound velocity:    

Within a given material, ultrasound always travels at the same speed no matter how much 

force is applied when other variables, such as temperature, are held constant. By replacing 

equation (2.3) in equation (2.2), we obtain: 

                                                         
a

a f
V

=λ                                                                              2.8 

Among the properties of ultrasonic waves are wavelength, frequency and velocity. The 

wavelength aλ  is directly proportional to the wave velocity and inversely proportional to the 

wave frequency af . As can be noted by previous equation, a change in frequency will result in 

a change in wavelength and the velocity remains constant in the same material.  

Of course, in different materials, ultrasound does travel at different speeds. This is because 

ultrasound speed depends on the initial density 0ρ  and the elastic constants C  (Appendix 4), 

both are different for different materials. The general relationship between the ultrasound 

speed, density and elastic constants is given by the following equation:   

                                    
0ρ

CV =                                                                                                 2.9 

This equation may take a number of different forms depending on the type of wave 

(longitudinal or shear). The typical elastic constants of a material include (Appendix 4):   

- The Modulus of Elasticity (Young's modulus) E . 

- The Modulus of rigidity (Shear modulus)G . 

- The Bulk Modulus K . 

- Poisson's Ratioσ .   
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- The Lamé parameters: Lamé's first parameter 1G   

                                       Lamé's second parameter GG =2  

When calculating the velocity of a longitudinal wave, Young's Modulus and Poisson's Ratio 

are commonly used. When calculating the velocity of a shear wave, the Lamé parameters are 

used.  

It must also be mentioned that the elastic constants C in the above equation are the same for 

all directions within isotropic material. However, most materials are anisotropic and the 

elastic constants differ with each direction [17].   

2-5-4) Ultrasound propagation in gases and liquids: 

Ultrasound propagates in gases and liquids in the form of longitudinal waves [15]. The 

differential equation which describes the particles vibration is written as follows: 

                                                      2

2

0
2

2

x
XK

t
X

∂
∂

=
∂
∂

ρ
                                                                  2.10 

Where:  

           K : Is the Bulk Modulus.  

From equations (2.2) and (2.10), we deduce that the longitudinal velocity of the ultrasonic 

wave is: 

                                                       
0ρ

KVL =                                                                          2.11 

The ultrasound speed within a material is a function of the material properties and is 

independent from the ultrasound amplitude. 

 In the case of gases, the density varies as a function of temperature, so that: 

                                           
TT α

ρ
ρ

+
=

1
0                                                                       2.12 

              :α  The coefficient of volumetric expansion  

Therefore the relation (2.11) becomes: 
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Table 2.2: Effect of temperature on ultrasound speed in dry air    

                                                       ( )
0

1
ρ

α KTVL +=                                                              2.13 

In dry air (0% humidity) the previous formula becomes as follows:   

                                                      15.273
13.331 TVL +=  

It can be deduced from equation (2.13) that the ultrasonic velocity in the gases varies 

proportionally with the square root of the temperature as indicated in table (2.2) and in figure 

(2.6) [22].   

 

 

 

 

 

 

 

 

 

 

 

 

Temperature 
 T (°C)    

Velocity 
( )s
m  

Density  

⎟
⎠
⎞⎜

⎝
⎛

3m
kg  

35 351.88 1.1455 
30 349.02 1.1644 
25 346.13 1.1839 
20 343.21 1.2041 
15 340.27 1.2250 
10 337.31 1.2466 
5 334.32 1.2690 
0 331.30 1.2922 
−5 328.25 1.3163 
−10 325.18 1.3413 
−15 322.07 1.3673 
−20 318.94 1.3943 
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Table 2.3: Ultrasound velocity, density and acoustic impedance of some gases 

 
 

The table below gives the ultrasonond velocity, density, and acoustic impedance of a few 

gases at 0 °C [15].                      

Gas   
Velocity  

( )s
m  

Density  

⎟
⎠
⎞⎜

⎝
⎛

3m
kg  

Impedance 

⎟
⎠
⎞⎜

⎝
⎛

sm
kg

2  

Hydroiodic acid  157 5.7 900 
Chlorine (CL 2 ) 206 3.2 660 
Carbon dioxide (CO 2 ) 258 2.0 520 
Hydrochloric acid (CLH) 296 1.64 485 
Air 331 1.3 430 
Helium 970 0.18 174 
Hydrogen (H 2 ) 1,260 0.088 110 
Argon 319 1.781 568 
Nitrogen 334 1.251 418 
Ethylene 317 1.26 400 
Methane 430 0.717 308 
Neon 435 0.9 392 
Oxygen 316 1.429 452 

 
 
 

Figure 2.6: Speed of sound in dry air vs. temperature. 
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Table 2.4: Ultrasound velocity, density and acoustic impedance of some liquids [15]  

 In all liquids, except water, the ultrasound velocity is decreasing as a function of 

temperature. In water, however, the ultrasound velocity increases with temperature to reach a 

maximum at about 80 °C [15] as indicated in figure (2.7). 

 
 

Table (2.4) gives the ultrasonic velocity, density, and acoustic impedance of some liquids. 

Liquid 
 

Temperature
°C 

Velocity 
( )s
m  

Density  
3

3 10*⎟
⎠
⎞⎜

⎝
⎛

m
kg  

Impedance 
6

2 10*⎟
⎠
⎞⎜

⎝
⎛

sm
kg  

Chloroform (CH3 CL) 20 1,000 1.49 1.49 
Metal alcohol (CH3 OH)   20 1,120 0.79 0.89 
Carbon sulphide (CS2) 20 1,160 1.26 1.46 
Ethyl alcohol (C2H5OH)   20 1,180 0.79 0.935 
Petroleum (C7H8) 15 1,330 0.70 0.931 
Water 17 1,430 1 1.43 
Sea water 17 1,510 1.03 1.56 
Mercury 20 1,450 13.6 19.7 
Glycerine 20 1,920 1.26 2.42 
Benzene 20 1,320 0.879 1.16 
Ethanol 20 1,170 0.789 0.934 

  
 

 

Figure 2.7: Ultrasound speed in water vs. temperature 
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2-5-5) Ultrasound propagation in solids: 

The ultrasound propagation in gases and liquids is limited in longitudinal waves, since these 

media cannot withstand shear stresses. In solids, however not only the compressive forces but 

also the shear forces. This is why, alongside longitudinal waves, transverse waves can propagate. 

The differential equations which describe the particles vibration in both longitudinal and 

transverse directions are written as follows [15, 18]: 

                                                        2
1

2
21

2
1

2 2
x
XGG

t
X

∂
∂+

=
∂

∂
ρ

                                                    2.14 

                          

                                                        .2
2

2
2

2
2

2

x
XG

t
X

∂
∂

=
∂

∂
ρ

                                                            2.15 

Where: 
     21 XetX : Particles motion in two directions.                                                     

     21 GetG : The Lamé parameters. 

     ( )( )σσ
σ

211
.

1 −+
=

EG
 

     
( ) .
122 σ+

=
EG   

σ  : Poisson's Ratio.  

E : The Elasticity Modulus (Young's modulus). 

From equations (2.2, 2.14 and 2.15), we can deduce that the longitudinal and transverse ultrasonic 

wave velocities are: 

                                                                                        2.16 

 

                             ( ).
12

2

σρρ +
==

EGVT

           
                                                                   2.17  

Where: 
     LV : Longitudinal velocity. 

TV  : Transverse velocity. 

( )
( )( )ρσσ

σ
ρ 211

1.2 21

−+
−

=
+

=
EGGVL
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Table 2.5: Ultrasonic velocity, density and acoustic impedance of some solids 

It should be noted that the longitudinal velocity is always greater than the transverse one.   

                                 ( )
( )σ

σ
21

12
−

−
= TL VV

 
                                                                                  2.18 

Table (2.5) gives the ultrasonic velocity, density, and acoustic impedance of some solids.  

Solids 
Velocity LV  

( )s
m  

Density  
3

3 10*⎟
⎠
⎞⎜

⎝
⎛

m
kg  

Impedance 
6

2 10*⎟
⎠
⎞⎜

⎝
⎛

sm
kg  

Steel  5,900 7.8 46.02 
Aluminum  6,260 2.7 16.90 
Silver  3,600 10.5 38.00 
Copper  4,700 8.9 41.80 
Nickel 5,630 8.8 49.50 
Cast iron  4,600 7.2 33.12 
Brass  3,830 8.5 32.55 
Magnesium  5,800 1.7 9.86 
Gold  3,240 19.3 62.5 
Bone  4,000 1.9 7.60 
Lead 2,160  11.4 24.62 
Quartz  5,720 2.65 14.4 
Tungsten 5,460 19.1 104.2 
Uranium  3,370 18.7 63.09 
Glass (crown) 5,660 2.5 14.15 
Zinc 4,170 7.1 29.2 
 

 

From these tables, one can deduce that: the ultrasound speed varies from substance to 

substance. Ultrasound travels most slowly in gases, it travels faster in liquids and faster still 

in solids. For example, ultrasound travels at 331 m/s in air, it travels at 1,430 m/s in water (4.3 

times as fast as in air) and at 5,120 m/s in iron. Exceptionally, in stiff material such as 

diamond, ultrasound travels at 12,000 m/s which is consider the maximum speed that 

ultrasound can reach it [22]. It is of interest to note that the velocity of surface waves, which 

are guided by the medium boundaries, is given by [15]: 

                                                  
0

2

1
12.187.0

ρσ
σ GVs +

+
=                                                           2.19 
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2-6) Characteristics of ultrasonic wave propagation: 

When we studied the propagation of ultrasonic waves in the different elastic media, we did not 

take into account the attenuation phenomenon on the one hand and on the other the reflection 

and refraction phenomenon which appear at the boundaries of two media. 

2-6-1) Ultrasonic waves attenuation: 

When ultrasound travels through a liquid, its intensity diminishes with distance. In idealized 

materials, ultrasound amplitude remains constant. The differential equation describing the 

plane ultrasonic wave propagation in this medium is: 

                                                 
2

2
2

2

2

x
V

t ∂
Θ∂

=
∂

Θ∂                                                              2.20 

Where: 

           Θ : The potential energy of the ultrasonic wave. 

Natural materials, however, all produce an effect which further weakens the ultrasound. This 

further weakening results from scattering and absorption. Scattering is the reflection of the 

ultrasound in directions other than its original propagation direction.  Absorption is the 

conversion of the ultrasound energy to other forms of energy (heat).  The combined effect of 

scattering and absorption is called attenuation.  Ultrasonic attenuation is the decay rate of the 

wave as it propagates through material [22].  

If we take into account the ultrasonic wave attenuation, we can then demonstrate that the 

preceding equation becomes:  

                                                  ( )
txx

V
t ∂∂

Θ∂′+
+

∂
Θ∂

=
∂

Θ∂
2

3

2

2
2

2

2

4
3

ρ
ηη                                             2.21 

Where:                                

          ηη ′, : Kinetic and mass viscosities respectively. 

The amplitude change of a decaying plane wave can be expressed as:  

                                                  ( )xti a αω −Θ=Θ exp0                                                          2.22 
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In this expression 0Θ  is the unattenuated amplitude of the propagating wave at some location. 

The amplitude Θ  is the reduced amplitude after the wave has traveled a distance x  from that 

initial location. The quantity α is the attenuation coefficient of the wave traveling in the x -

direction which is presented by the following relationship:     

                                                ( )
3

2

3
2

V
a

ρ
ωηηα

′+
=                                                                        2.23 

Really, the absorption coefficient values α  are not precise and it is Kirchhoff, who first, 

showed that we must take into account the energy losses due to the transmission of heat in the 

medium. Under these conditions, the absorption coefficient is then given by: 

                             ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −′+′+=
p

a

C
k

V
1

3
4

2
1

3

2 γηη
ρ
ωα                                                        2.24 

Or: 

     k′ : Heat conductivity of the medium. 

     pC : Heat at constant pressure. 

Therefore, the ultrasonic intensity expression as a function of distance is given by:  

                                                   .2exp0 xII aa α−=                                                                2.25 

- In viscous liquids, such as glycerine, absorption is mainly determined by the viscosity 

coefficient η , but in less viscous liquids such as benzene, the viscosity coefficientη′  is the 

most important. In the case of water, it is necessary to take into account both η  and η′ . 

- It is of interest to note that the attenuation is generally proportional to the square of 

ultrasound frequency that means acoustic losses are much higher in liquids than in solids.  So, 

the improved efficiency can only be realized at relatively low frequencies. For water 

MHzfa 50<  [33]. 
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Table 2.6: Absorption coefficient for longitudinal waves ( )MHzfa 2=  [18] 

The table (2.6) gives the absorption coefficient values for some media.  

Medium  ( )mdB /α  

Steel 5-50 

Aluminum 1-5 

Water 1 

Cast iron  20-200 

Grease 100-500 

Brass 50-200 

Muscle 200-500 

Bone   5000-20000 

Skin   500-2000 

Plexiglass 500 

  

 

- It should be noted that the quoted values of attenuation are often given for a single 

frequency, or an attenuation value averaged over many frequencies may be given. Thus, 

quoted values of attenuation only give a rough indication of the attenuation and should not be 

automatically trusted. Generally, a reliable value of attenuation can only be obtained by 

determining the attenuation experimentally for the particular material being used [14].  

2-6-2) Reflection and transmission of ultrasonic wave: 

Ultrasonic waves are reflected at boundaries where there is a difference in acoustic 

impedances of the materials. This difference in Z  is commonly referred to as the impedance 

mismatch.  The greater the impedance mismatch, the greater the percentage of energy that will 

be reflected at the interface.   

Let’s consider an ultrasonic wave passes through an interface between two materials at 

an oblique angle iθ , as indicated in figure (2.8). These materials have different acoustic 
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impedances 1Z and 2Z , so the incident ultrasonic wave is partially reflected and partially 

transmitted. This also occurs with light, which is why objects seen across an interface appear 

to be shifted relative to where they really are.    

In order to determine the propagation direction of reflected and transmitted waves, it is 

enough to use the geometric laws similar to those of the light “Snell's law”. We can 

demonstrate the equality between the ratio of material velocities 1V  and 2V  and the one of 

the sine's of incident iθ  and refracted tθ  angles. The below formula presents this equality:   

                                                    
2

1

sin
sin

V
V

t

i =
θ
θ                                                                            2.26 

On the contrary, the reflected wave is propagating at the same angle as the incident one 

because the two waves are traveling in the same material, and hence have the same velocities. 

   

 

 

 

 

 

 

 

 

 

 

 

The amount of reflected and transmitted waves is determined using the same collusion 

principle of two balls which states that: the particle velocity ( )txX ,′ and particle pressure 

( )txp , must be continuous across the boundary.    

If the indices ri ,  and t  refer to the incident, reflected and transmitted waves respectively, the 

reflection R  and the transmission T  coefficients are given by:  

Figure 2.8: Reflection and transmission of ultrasonic wave at an interface 

rθ

Medium 1 

iθ

tθ Medium 2 
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2

2112

2112

coscos
coscos

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
−

=
θθ
θθ

ZZ
ZZR                                                    2.27 

                                                   
( )2

2112

121

coscos
cos4

θθ
θ

ZZ
ZZT

+
=                                                     2.28 

Where: 

           ri θθ , and tθ : Incident, reflected and transmitted angle respectively. 

           21, ZZ : Designate respectively the acoustic impedances of media 1 and 2. 

In normal incidence, the previous expressions become: 

                                                        
2

12

21
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
−

=
ZZ
ZZR                                                                 2.29                

                                                         
( )2

12

214
ZZ
ZZT

+
=                                                                  2.30 

From these two equations, we can deduce that: 

-  When the acoustic impedances on both sides of the boundary are known, the fraction of the 

incident wave intensity that is reflected or transmitted can be calculated. Multiplying the 

reflection coefficient by 100 yields the amount of reflected energy as a percentage of the 

original energy.   

- The amount of reflected energy plus the transmitted one must equal the total amount of 

incident energy, so the transmission coefficient can be also calculated by simply subtracting 

the reflection coefficient from one.   

- The reflection and transmission coefficients are often expressed in decibels (dB) to allow for 

large changes in signal strength to be more easily compared. To convert the intensity or power 

of the wave to dB units, take the log of the reflection or transmission coefficient and multiply 

this value times 20.   

- It is obvious that the reflection factor depends only on the impedance mismatch 21 ZZ − . This 

leads us to say that, in almost all cases of ultrasound transmission from a liquid or a solid to a 

gas or vice versa, produces a complete reflection due to the impedance mismatch. Conversely, 
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the ultrasound transmission from a solid to a liquid is more favorable since the impedance 1Z

becomes comparable to the impedance 2Z .  

2-6-3) Mode conversion:  

In the previous section, it was pointed out that when ultrasonic waves pass through an 

interface between materials having different acoustic velocities, refraction takes place at the 

interface. In the case when the two materials are solids, one form of wave can be transformed 

into another form. For example, when a longitudinal wave hits an interface at an angle θ , 

some of the energy can cause particle movement in the transverse direction to start a shear 

wave as presented in figure (2.9). Hence, mode conversion occurs when a wave encounters an 

interface between solids of different acoustic impedances and the incident angle is not normal 

to the interface.  

 

 

 

 

 

 

 

 

 

 

 

From this figure, one can observe that if the two media are solids, a longitudinal incident wave 

will be reflected and refracted at the boundary to give in each medium a longitudinal and a 

transverse wave.  

What happens practically is that the shear wave tT  is not refracted as much as the longitudinal 

wave tL . This occurs because shear waves travel slower than longitudinal ones as we have 

Figure 2.9: Mode conversion [15] 
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already shown in equation (2.18). Therefore, the velocity difference between the incident 

longitudinal wave and the shear one is not as great as it is between the incident and refracted 

longitudinal waves. In reflection, we notice that the longitudinal wave rL  is reflected inside 

the material. The reflected shear rT  wave is reflected at a smaller angle than the reflected 

longitudinal wave. This is also due to the fact that the shear velocity is less than the 

longitudinal velocity within a given material. 

Theoretically, these two cases can be explained by the equation (2.26) which remains true for 

shear waves as well as longitudinal ones. Hence the final formula is written as follows:  

                                   
tLtTTrrLiL VVVVV
γβαθθ sinsinsinsinsin

====                                                        2.31  

When a longitudinal wave moves from a slower to a faster material, there is an incident angle 

that makes the refraction angle, of longitudinal wave tL , equals 90o.  This is known as the first 

critical angle which can be found by putting o90=γ . So the first critical angle is equal to: 

                                                                 
tL

iL
Lc V

V
=θsin                                                            2.32 

At this angle of incidence the transverse wave tT  propagates in the second medium, conversely 

much of the acoustic energy presented by longitudinal wave travels along the interface and 

decays exponentially. This wave is sometime referred to as a creep wave and it is not very 

useful because it decays exponentially [14].  

Beyond the first critical angle, only the shear wave propagates into the second material. For 

this reason, most transducers use a shear wave so that the signal is not complicated by having 

two waves present. In many cases, there is also an incident angle that makes the refraction 

angle for the shear wave equals 90o. This is known as the second critical angle which can be 

found by putting o90=β . So the second critical angle is equal to: 

                                                                  
tT

iL
Tc V

V
=θsin                                                           2.33 

Slightly beyond the second critical angle, surface waves will be generated [14]. 
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2-7) Relationship between the ultrasound propagation and the optical characteristics of 

the medium: 

Before developing the relationship between the ultrasonic wave propagation and the refractive 

index of the medium, we introduce here some notions on the permittivity and the electric 

displacement field. 

2-7-1) The permittivity:  

The permittivity, usually denoted by ε , describes the amount of charge needed to generate one 

unit of electric flux in a particular medium. More specifically, a charge will yield more 

electric flux in a medium with low permittivity than in a medium with high permittivity. Thus, 

permittivity is the measure of a material's ability to resist an electric field, not its ability to 

permit it as the name ‘permittivity’ might seem to suggest [35].                                       

The permittivity study is not easy. In general, permittivity is not a constant; it can vary with 

the frequency of the applied field, temperature, position and other parameters. In a nonlinear 

medium, the permittivity can depend on the strength of the electric field. Permittivity can 

present by tensor or value (anisotropic or isotropic medium) as well as it can take complex or 

real values (Conducting or dielectric medium) [35].                                       

The permittivity general expression is [36-38]: 

                                                   ( )ℵ+⋅=⋅= 100 εεεε r                                                            2.34  

Where:  

         rε  : The relative permittivity tensor which represents the dimensionless quantity. 

          ℵ  : The electric susceptibility tensor.    

        0ε  : The vacuum permittivity equals 2

29

36
10

mN
Cor

m
F

π

−

 which represents the lowest    

         possible permittivity 0=ℵ .    
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The relative permittivity of linear, homogeneous and anisotropic medium is represented by a 

second rank tensor. However, it is of interest to note that, due to the tensor theory complexity 

such as the high number of terms of some tensor, the Einstein summation convention and 

other, we prefer to use the matrix form which is more practical and more simple. The 

permittivity matrix is given as follows [30]:  

                                                                    
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

333231

232221

131211

εεε
εεε
εεε

                                                    2.35 

In general case, permittivity has 9 independent elements ijε . However, we can choose a new 

set of axes when the matrix can be always diagonal. Accordingly, the preceding matrix 

simplifies to [31]:   

                                                                    
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

33

22

11

00
00
00

ε
ε

ε
                                                    2.36 

The new coordinate axes are called the principal ones. Since, all of our analysis will be carried 

out in this system and the original coordinates cannot take place here. Accordingly, the 

anisotropic media can be classified as follows [30]:  

                                           

Media Permittivity refractive Indices  

Isotropic media  
2

332211 n=== εεε  ⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

11

11

11

00
00
00

ε
ε

ε
 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

100
010
001

2n  

Uniaxial media 
2

33
2
02211 enn =≠== εεε  

:0n  Ordinary refractive index 

:en  Extraordinary refractive index. 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

33

11

11

00
00
00

ε
ε

ε
 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

2

2
0

2
0

00
00
00

en
n

n
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Table 2.7: Anisotropic media classification  

Biaxial media 

332211 εεε ≠≠  ⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

33

22

11

00
00
00

ε
ε

ε
 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

2
33

2
22

2
11

00
00
00

n
n

n
 

 

 

2-7-2) The relationship between the electric displacement vector and electric field vector:  

In 1865, Maxwell unified and expanded the laws of Faraday, Ampere, Gauss and Poisson into 

a set of equations now known as Maxwell's equations. They express the relations between 

temporal and spatial variations of electric and magnetic fields. These equations are written as 

follows:  

                                            
t
BErot

∂
∂

−=

→
→→

                                                                               2.37 

                                           
t
DJHrot

∂
∂

+=

→
→→→

                                                                             2.38                

                                           ρ=
→

Ddiv                                                                                       2.39                 

                                           0=
→

Bdiv                                                                                        2.40 

Where:      

          
→

B  : Magnetic induction (displacement) vector 2V.s/m . 

          
→

H  : Magnetic field vector A/m.  

          
→

D : Electric induction (displacement) vector 2A.s/m . 

          
→

E  : Electric field vector V/m. 

          ρ  : Free charge density 3C/m . 

          
→→

= EJ σ  : Vector of current density 2A/m .   

The first equation is generally known as Faraday's Law. The second one, excluding the term

)/( tD ∂∂
→

, is known as Ampere's law. The two last equations are known as Gauss's law and 
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Poisson's equation, respectively. Maxwell modified Ampere's law by including the 

displacement term and showed that electric and magnetic fields are intimately connected and 

inseparable, thus the study beginning of electromagnetic waves. 

In conjunction with the above four equations, we need the so-called constitutive equations 

which written in the case when the medium is linear and homogeneous as follows [31]: 

                                                  
→→→

== EED rεεε 0                                                                     2.41                

                                                  
→→→

== HHB rμμμ 0                                                                   2.42 

                                                 
→→

= EJ σ                                                                                    2.43 

Where:  

           rμ  : Is the relative permeability tensor which represents the dimensionless quantity. 

           σ  : Is the conductivity tensor ( )V.mA/  

           0μ  : Is the vacuum permeability equals
mA

wbor
mA
sV710..4 −π  

In order to determine the relation between
→

D and
→

E in non-magnetic and anisotropic medium, 

we consider a plane monochromatic wave of frequency ω  and wave vector →

k  propagates in an 

anisotropic medium characterized by a tensor ε . The electric field vector associated with this 

wave is then expressed, using the complex notation, by: 

                                                   ⎟
⎠
⎞

⎜
⎝
⎛ +−⋅=

→→→→

rktiEE ωexp0  

The other components of the electromagnetic vectors
→

D ,
→

B and
→

H naturally present the same 

spatio-temporal dependence. In this medium, where the magnetic induction vector and the 

magnetic field one are collinear, Maxwell’s equations become:  

                                           
t
HErot

∂
∂

−=

→
→→

μ                                                                               2.44                

                                          
t
DHrot

∂
∂

=

→
→→

                                                                                   2.45               
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                                          0=
→

Ddiv                                                                                         2.46                

                                          0=
→

Hdiv                                                                                         2.47                

Using the differential operator (Appendix 5), we can rewrite the previous equation as follows: 

                                           
→→→

=∧ HEk μω                                                                                 2.48              

                                          
→→→

−=∧ DHk ω                                                                                  2.49                

                                          0=⋅
→→

Dk                                                                                           2.50                

                                          0=⋅
→→

Hk                                                                                          2.51   

From equations (2.48 and 2.49), we can observe that: 
→→

⊥ HE and
→→→

⊥⊥ DHk .  

This last perpendicular can be confirmed using the two equations (2.50 and 2.51). In addition, 

we remark that the vectors
→

k , 
→

D and 
→

E  are coplanar, they all lie the same plane as presented 

in figure (2.10) [31]:  

 

 

 

 

 

 

 

 

 

To determine the relation between 
→

D and
→

E , it is necessary and sufficient to combine the two 

formulas (2.48 and 2.49), we find finally: 
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Figure 2.10: Vectorial representation of different components in anisotropic medium  
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Using the vector identity ⎟
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                                             2.52   

Where 
→

DE  is the component of the electric field parallel to
→

Di  .   

By replacing the equation (2.52) in (2.41), we can find after a long development an equation 

which is called Fresnel’s equation. This latter enables us to determine the various possible 

refractive indices using the index ellipsoid.  

2.8) The electro-optic and the acousto-optic effect on the index ellipsoid:  

In this section, we discuss the effect of the applied electric field on the index ellipsoid in 

crystal. This is followed by the effect of ultrasound propagation.  

2.8.1) The electro-optic effect:  

The application of an electric field changes the dielectric tensor of a material, however small. 

The electro-optic effect is in general defined by the change in the refractive index rather than 

the change in the dielectric constant because of the usefulness of the index ellipsoid method in 

solving problems. Thus the change in the index ellipsoid, due to an applied electric field, is 

written as follows [31]:  

                                                    ( )2
2

1
kikjij

i

EREr
n

⋅+⋅=⎥
⎦

⎤
⎢
⎣

⎡
Δ                                                     2.53 

Where:  

      ijr   : The Pockels electro-optic coefficients of rectangular matrix (6,3). 

      ikR  : The Kerr electro-optic coefficients of square matrix (6,6). 

      i  and k : Indices vary from 1 to 6. 

      j  : Index varies from 1 to 3. 

      jE  : The electric field components. 



CHAPTER II                                                                      THE ULTRASOUND EFFECT ON REFRACTIVE INDEX  

         
 

50 
 

      ( )2
kE  : The two components product of the electric field. ( )

xx EEE ⋅=2
1 , ( )

yx EEE ⋅=2
4 …. 

This matrix formula can develop to the following form: 
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                     2.54 

- The terms ijr and ikR  are called respectively the linear electro-optic matrix coefficients 

characterizing the Pockels effect and the quadratic electro-optic matrix coefficients 

characterizing the Kerr effect. 

- The Pockels effect doesn’t exist in centrosymmetric media, which possess a symmetry 

center, because the Pockels coefficients go to zero ( )0=ijr  such as glasses, liquids and in 

general isotropic media. Conversely, all piezoelectric materials lack symmetry center and in 

this case the Pockels effect takes place.  Concerning the Kerr effect, all materials are endowed 

with it. The explicit form of the linear and the quadratic electro-optic matrices are given in 

(Appendix 6) for the seven crystal systems [30].  

- The magnitude order of the linear electro-optic matrix coefficients ijr  is ( )11210 .1010 −−− Vmto , 

they can be positive or negative and they vary according to the wavelength of light. As regards 

the magnitude order of the quadratic electro-optic matrix coefficients ikR  ranging from ( )1510 −

to ( )2220 .10 −− Vm  [30].  

- In the Kerr cell, we can use as a medium; lithium niobate (LiNbO3), ammonium dihydrogen 

phosphate (ADP) and so on which are uniaxial media. In addition, liquids which are initially 

isotropic can become uniaxial anisotropic by using this cell. 
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2.8.2) The acousto-optic or elasto-optic Effect: 

A material deforms if subjected to an elastic stress field. The local density of the latter is 

modified and consequently its optical properties are also modified. The acousto-optic effect 

involves the first order changes in the optical properties of medium due to elastic strain [32]. 

In a manner analogous to that introduced in the case of electro-optic effect, the different 

variations of the index ellipsoid coefficients are given by six-component column vector (6,1). 

The latter is expressed as a function of the square photo-elastic matrix and the column vector 

of strain as indicated below [30]: 

                                                                    jij
i

Sp
n

⋅=⎥
⎦

⎤
⎢
⎣

⎡
Δ 2

1                                                     2.55 

Where:  

         ijp   : The photo-elastic coefficients of square matrix (6,6). 

         i  and j : Indices vary from 1 to 6. 

         jS  : The strain components. 

This matrix formula can develop to the following form: 
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                           2.56   

- It should be noted that the matrix p  is depended on a fourth rank piezoelectric tensor and an 

elastic tensor by the Hooke law, of course, if we remain in the elastic domain.  

- The terms of the matrix p  are dimensionless quantity and their magnitude order is typically

110 − , we say often that the deformation of the index ellipsoid ( )2
1/1 nΔ  is equal to one tenth of 

the material strain. The magnitude order of the piezoelectric tensor terms is 1212 .10 −− Nm . The 
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explicit form of the photo-elastic coefficients is given in (Appendix 7) for the seven crystal 

systems as well as the isotropic media. 

- If we assume that the stress is applied only in one direction x , the first component variation 

of the refractive index, which is in the same direction, is given by the following formula:                       

                             1112
1

1 Sp
n

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Δ  

                                    1112
0

2
1

11 Sp
nn

=−⇒
 

And as the amplitude of 1S is very small, we can write then: 

                     ( )( )
1112

0
2
1

0101 Sp
nn

nnnn
=

+−
⇒  

                      111

3
0

01 2
Spnnn +=⇒                                                                           2.57 

2.8.3) Some applications of acousto-optic effect: 

Among the most significant effects involving the photo-elasticity of materials, we cite: the 

strain measurement inside a material by calculating the induced birefringence. The creation of 

dynamic phase grating using acoustic waves which allows modifying the amplitude, 

frequency and propagation direction of an incident wave. The latter is the subject of our thesis. 

Other applications use this active phase grating as; Correlators, Spectrum analyzers and 

heterodyne interferometers that go far beyond the thesis scope and the reader should consult 

other references. 

a) The strain measurement inside a material by calculating the induced birefringence: 

Let us consider an isotropic silica block placed under uniform stress in the direction Ox . The 

medium undergoes only one strain 1S . The index variation, considering the silica photo-

elastic matrix mentioned in (Appendix 7), is given as follows. 
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                                                2.58 

Thus, the index variations are written:  
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Therefore, the medium becomes uniaxial anisotropic and the birefringence is proportional to 

the strain, which enables us to measure the stress inside the materials. 

b) The creation of dynamic phase grating: 

Another domain of application, which is the subject of our thesis, is the use of this photo-

elasticity to diffract light. Indeed, the ultrasonic sinusoidal wave propagation in the x 

direction, in water, causes a spatio-temporal variation of its refractive index with the same 

rhythm of the ultrasonic wave describing by equation (2.59). This variation gives rise to a 

dynamic phase grating of pitch equal to the acoustic wavelength aλ . 

Considering the photo-elastic matrix of water mentioned in (Appendix 7) and using the same 

previous analysis, we demonstrate that the refractive index is no longer constant but it varies 

sinusoidally as a function of time and space as indicated by the following formula: 

                                  ( ) ( )xktSpnntxn aa −+= ωsin
2

, 111

3
0

0  

                                  ( ) ( ) ( )xktSpnntxntxn aa −=−=Δ⇒ ωsin
2

,, 111

3
0

0                                    2.59 

Where: 
           0n : Average index of medium. 

           x  : Propagation direction of ultrasonic wave.   
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           ak : Ultrasonic wave vector.  

           aω : Ultrasonic wave pulsation.  

           31.011 =P : The photo-elastic coefficient.  

The variation amplitude of index is generally too weak 510 − and it is written as follows:                          

                                                              111

3
0

0 2
Spnn =Δ                                                           2.60 

The conservation principle of kinetic energy of the ultrasonic wave permits to write [15 p: 3]: 

                                                               .
2
1 2

1
3

0 SVIa ρ=                                                          2.61 

Where: 
                    aI  : Ultrasonic wave intensity.    

By combining the two equations (2.60-2.61), we obtain:  
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                                           3
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26
0

2 V
pnM e

ρ
=                                                                                  2.62 

                                          
220
aIMn =Δ⇒                                                                            2.63              

2M  : Is called the figure of merit. It determines the inherent efficiency of material regardless 

of the interaction geometry. As equation (2.62) shows, high efficiency materials must have 

high merit coefficient, precisely a high refractive index and a low acoustic velocity [29].  

We replace the previous equation in equation (2.59), we get: 

                  ( ) ( )xktIMnxtn aa
a −+= ωsin
2

, 20                                                    2.64 

In the same manner, we can demonstrate that the refractive index variations in a medium 

perturbed by an AM and FM signal are: 
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AM signal [6]:              ( ) ( )[ ] ( )[ ]xktxktnntxn aamma −−+Δ+= ωωβ sincos1, 00                          2.65            

FM signal:                    ( ) ( )( )[ ]xktxktnntxn mmfaa −+−Δ+= ωβω sinsin, 00                              2.66            

According to these relationships, we conclude that the ultrasonic wave propagation of 

intensity aI  in the elastic medium causes a spatio-temporal variation of its refractive index. 

This variation amplitude is proportional to the square root of the ultrasonic wave intensity. 

In the next chapter, we will study the diffraction phenomenon which results from the 

interaction of light with these elastic media. 
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CHAPTER III 

       THEORETICAL STUDY OF ACOUSTO-OPTIC  

INTERACTION        

3-1) Introduction: 

In the previous chapter, we have seen that the piezoelectric transducers were used to generate 

ultrasound which has the same frequency of electrical signal supply, also the ultrasonic wave 

propagation in elastic medium causes a spatiotemporal variation of its refractive index. 

The interaction of this ultrasonic wave with electromagnetic one in this medium provokes the 

diffraction phenomenon. The latter depends on the ultrasonic wave shape. In this chapter, we 

will treat theoretically this diffraction phenomenon for three types of ultrasonic waves 

(sinusoidal, amplitude modulated and frequency modulated). The first diffraction has been 

explained by Raman and Nath whereas the second one was performed by Pancholy and 

Parthasarathy and explained mathematically by Mertens and Hereman. In the last diffraction, 

which presents our study, we will start from the diffraction relation to finally reach a very 

important relationship between the diffraction orders positions and the modulating signal.   

3-2) Principle of acousto-optic interaction:    

An electrical signal ( )tA emitted by a high frequency generator feeds a piezoelectric 

transducer, which is immersed in liquid medium. The transducer converts the electrical signal 

to an ultrasonic wave via piezoelectric effect. The output acoustic power delivered by the 

transducer depends on the mismatch between the acoustic impedance of the transducer and the 

liquid acoustic impedance as presented by the formula (2.29). The propagation of this 

ultrasonic wave in the medium creates dilation and compression regions according to the 

rhythm of the electrical signal. A compression causes an increase in the density of the medium 

[40], and therefore of its refractive index. This variation in the index transforms the medium 

which is initially homogeneous into an inhomogeneous medium.  
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In the case where the ultrasonic wave is periodic, the medium may be considered as a moving 

phase grating figure (3.1). 

 

 
  

 

 

 

 

 

 

 

 

 

The interaction of a laser with this phase grating leads to the diffraction phenomenon. The 

diffraction spectrum is observed at a distance “z” from the AO cell. 

3-3) Theoretical study of the acousto-optic interaction: 

In order to explain this diffraction phenomenon we can follow two methods. The first one is 

based on the calculation of the spatial Fourier transform (FT) of the outgoing field ( )tzxEo ,,  

from the AO cell. This FT is written, in the case of the one-dimensional diffraction, as follows 

[23]:  

                                    ( ) ( ) [ ]∫
∞

∞−

−= dxxitzxEtzXE xo πν2exp,,,,                                               3.1 

Where 
z

X
x ⋅

=
0λ

ν  represents the spatial frequency in direction x   

In the second method, we calculate the phase derivative of vibratory term of the output field

( )tzxEo ,, in relation to spatial coordinates in order to find the wave vectors, in the two 

directions, and in relation to time to find the luminous frequency.                         

Figure 3.1: Acousto-optic interaction. 
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Let’s assume a plane monochromatic light wave of amplitude iE  hits perpendicularly the 

interaction medium. The complex light field immediately behind the AO cell is written [23-

24]:  
                         ( ) ( ) ( ).,,,, tzEtxTtzxE eo =                                                             

                                         ( ) ( )zktiEtxT i 0exp, += ω                                                       3.2 

Where:                    

            ( )txT ,  : The phase transformation.                           

           ω : Luminous pulsation.  

           
0

0
2
λ
π

=k  : Wave vector in vacuum.          

           0λ  : Wave length in vacuum.  

            z : Propagation direction of luminous wave. 

The phase transformation of a medium perturbed by an ultrasonic wave is given by the 

following formula:   

                                   ( ) ( )txitxT ,exp, ϕ−=  

                                     ( ) ( ) LtxnitxT ,2exp,
0λ
π

−=                                                                     3.3 

Where:                    

           ( )xtn ,  : The refractive index of the medium depends on time and space. 

           L: Interaction width. 

By replacing equation (3.3) in equation (3.2), we obtain: 

                                     
( ) ( ) ( )zktiLtxniEtzxE io 0

0

exp,2exp,, +⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= ω

λ
π

                              
3.4 

This expression represents the distribution of the complex field immediately after the 

interaction medium. It is directly linked by the ultrasonic wave ( )txn ,  which is proportional to 

the electrical signal ( )tA .   
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3-3-1) Theoretical study of the acousto-optic interaction in a medium perturbed by a 

sinusoidal signal:             

We have seen in chapter II, that the propagation of a sinusoidal ultrasonic wave in an elastic 

medium causes a spatiotemporal variation of its refractive index. This variation is given by 

equation (2.64):
 
 

                                     ( ) ( )xktnntxn aa −Δ+= ωsin, 00  
Where: 
          0n : Average index of medium. 

          0nΔ : Variation amplitude of refractive index. 

          x  : Propagation direction of ultrasonic wave.   

          ak : Ultrasonic wave vector.  

          aω : Ultrasonic wave pulsation.  

Therefore the field at the medium output, using the relation (3.4), is written [21, 29]: 
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A term of the form ξε sinexp i  can be developed in a series of the Bessel function of the first 

kind (Appendix 3) using the Jacobi relation (Appendix 2): 
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So the field at the medium output will be given by: 
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 The calculation of diffracted order angle using FT: 

By replacing the equation (3.7) in equation (3.1), we obtain:  
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Where ( )Ψδ is the Dirac function (Appendix 1). 

So each diffracted order angle is written as follows: 
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λθ 0tan ==                                                                       3.9  

 The calculation of diffracted order angle using the wave vector definition: 

From the equation (3.7), we can deduce that the diffracted order field is given by the 

following equation: 
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The resultant wave vector
→

nk , represented in figure (3.2), is obtained by deriving the vibratory 

term with respect to spatial coordinates:  

                 ( )( )
a

aa
x kn

x
zkxkntn

x
tzxk =

∂
++−∂

=
∂

∂
= 0),,( ωωϕ                                       3.11                

                 ( )( )
0

0),,( k
z
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z

tzxk aa
z =

∂
++−∂

=
∂

∂
=

ωωϕ                                          3.12                

                            
→→→→→

+=+=⇒ zxazzxxn ikiknikikk 0                                                                   3.13            

 

 

 

Figure 3.2: The wave vector of the outgoing field ( )tzxEn ,,  from the AO cell 

when the ultrasonic wave is sinusoidal. 

xk

zk

nk

nθ
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Hence, the propagation direction is given by the following equation:  

                              
a

a
n

n
k
kn

λ
λθ 0

0

tan ==                                                                                                           

And luminous frequency is obtained by deriving the vibratory term in relation to time:  

                            ( )( )
a
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n n

t
zkxkntn

t
tzx ωωωωϕω −=

∂
−+−∂

=
∂

∂
= 0),,(                                                        

From the previous discussion, we conclude: 

1) Different diffraction orders will appear as indicated in figure (3.3) which will propagate in 

the directions given by the below relation: 

                                        
a

nn
n
λ
λθθ 0tansin =≈                                                                         3.14                

2) The luminous frequency nω of the diffracted order n  is shifted with respect to the initial 

frequencyω  of the incident light: 

                                        an nωωω −=                                                                                    3.15                

 

 

 

 

 

 

 

 

 

 

 

3) The diffracted order intensity is given as follows: 

                                          ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⇒

0

02 2
λ
ΔnLπJII nin                                                                  3.16                

 

Figure 3.3: Representation of the light diffraction by a sinusoidal ultrasonic wave. 
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3-3-2) Theoretical study of the acousto-optic interaction in a medium perturbed by 

amplitude modulated signal:             

The propagation of an amplitude modulated ultrasonic wave in an elastic medium causes a 

spatiotemporal variation of its refractive index. This variation is given by the formula [6]: 

                        ( ) ( )[ ] ( )[ ]xktxktnntxn aamma −−+Δ+= ωωβ sincos1, 00                                     3.17     
Where: 
      ma ωω , : Pulsation of carrier and modulating wave respectively. 

      ma kk , : Wave vector of carrier and modulating wave respectively.                         

      aβ : The amplitude modulation index. 

We can rewrite the previous equation on the following form:  
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Putting: 

                                            01 nΔ=μ                                                                                         3.19 

                                           an βμ 02 Δ=                                                                                     3.20  
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The phase is then written as follows:  
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Therefore the field at the medium output, using the relation (3.4), is written [32]: 
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Using the Jacobi relation, the previous formula becomes: 
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Putting: 
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So the field at the medium output can be written as follows:  

( ) ( ) ( )

( ) ( ) ( ) ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+++−−+++−

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−⋅+= ∑

+∞

−∞=

ma
ma

qqg
pqgio

xqpxpgqtfpqtfpgqi

VJVJVJLnizktiEtzxE

λλ
π

λ
πω

2exp

22
2expexp,,

,,

22
1

0

0
0

 

             3.24 

 The calculation of diffracted order angle using FT: 

By replacing the equation (3.24) in equation (3.1), we obtain:  
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   3.25    

From this equation, we can deduce that the diffracted order angle is written as follows:  
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Where:            

                                                ( ) ( )pqretpqgn −=++=                                            3.27 

Hence, for each pair ( )rn ,  there is a diffraction angle.  

From the two previous equations, we can deduce: 
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And as the values of ( )qp, are integers, that means if ( )rn ± is even ( )g  is even too and if 

( )rn ± is odd ( )g  is also odd.  

So each diffracted order angle is written as follows:  
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 The calculation of diffracted order angle using the wave vector definition: 

From the equation (3.24) and using (3.27) we can deduce that the field of each diffracted order 

is given by the following equation:
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                             3.29 

The resultant wave vector 21 ,mmk
→

, represented in figure (3.4) is obtained by deriving the 

vibratory term in relation to spatial coordinates:  
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Hence, the propagation direction is given by the following equation:  
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And luminous frequency is obtained by deriving the vibratory term in relation to time:                             
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From the previous discussion, we conclude: 

1) Different diffraction orders will appear as indicated in figure (3.5) which will propagate in 

the directions given by the below relation: 
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2) The luminous frequency nω of the diffracted order ( )rn,  is shifted with respect to the initial 

frequencyω  of the incident light:   
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Figure 3.4: The wave vector of the outgoing field ( )tzxEn ,,  from the AO cell   

when the ultrasonic wave is amplitude modulated.  

xk
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rn,θ  
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Figure 3.5: Representation of the light diffraction by an amplitude modulated 

sinusoidal ultrasonic wave. 
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Hereby the formulas (3.33) and (3.34) one can observe that the diffraction spectrum consists 

of: 

- Principal diffracted orders obtained when ...,2,1,0 ±±=n and 0=r  having the same directions 

as in the case where the ultrasonic wave is not modulated.  

- Satellite diffracted orders obtained for each value of n  with ...,2,1 ±±=r  
Likewise, from the formula (3.29) we can distinguish between two symmetry properties in this 

diffraction: 

- The symmetry property of satellite diffracted orders with respect to the corresponding 

principal diffracted order n which is obtained by changing ( )r  into ( )r−  in equation (3.29). 

We can see immediately that rnrn EE −= ,, . This signifies that the intensity of satellite diffracted 

orders is symmetrical with respect to the corresponding principal diffracted order.    

- The symmetry property of diffracted orders with respect to the non diffracted order (n=0) 

which is obtained by changing ( )n  into ( )n−
 
and

 
( )r  into ( )r−  in equation (3.29). By taking 

into account the Bessel function priority, we can find after some elementary calculations that

rnrn EE −−= ,, . So the whole diffraction is symmetrical with respect to the non diffracted order. 

3-3-3) Theoretical study of the acousto-optic interaction in a medium perturbed by a 

frequency modulated signal:             

The propagation of a frequency modulated ultrasonic wave in an elastic medium causes a 

spatiotemporal variation of its refractive index. This variation is given by the formula: 

                        ( ) ( )( )[ ]xktxktnntxn mmfaa −+−Δ+= ωβω sinsin, 00                                           3.35     
Where: 
          ma ωω , : Pulsation of carrier and modulating wave respectively. 

          ma kk ,   : Wave vector of carrier and modulating wave respectively.                         

          fβ : The frequency modulation index. 

The phase is then written as follows:  

                        ( )( )[ ][ ]xktxktnnLtx mmfaa −+−Δ+= ωβω
λ
πϕ sinsin2),( 00
0

                              3.36      
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Therefore the field at the medium output, using the relation (3.2), is written [32]: 
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Using the Jacobi relation, the previous formula becomes: 
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 The calculation of diffracted order angle using FT: 

By replacing the equation (3.37) in equation (3.1), we obtain:  
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Under some conditions [42-43], we can suppose that: 
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Hence, the previous integral becomes:  
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                      3.38 

So each diffracted order angle is written as follows: 
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 The calculation of the diffracted order angle using the wave vector definition: 

From the equation (3.37), we can deduce that the diffracted order field is given by the 

following equation: 
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                       3.40 

The resultant wave vector ( )tkn

→

, represented in figure (3.6), is obtained by deriving the 

vibratory term in relation to spatial coordinates:  
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                        3.42 

Since the ( )xkm  value is very small compared to ( )tmω , the wave vector ( )tkn

→

 can be written as 

follows: 

                   ( ) ( ) ( )( ) →→→→→

++=+= zxmmfazzxxn ikitkknikitktk 0cos ωβ                                     3.43            
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Hence, the propagation direction is given by the following equation:  
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And luminous frequency is obtained by deriving the vibratory term in relation to time:  
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From the previous discussion, we conclude: 

1) A very important relationship that describes the diffracted order deflection as function of 

time:    
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Where nθΔ is the angular excursion and ( )tnθ  represents the diffraction angles for n=0,±1, ± 2, 

±3…. as indicated in figure (3.7).   
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Figure 3.6: The wave vector of the outgoing field ( )tzxEn ,,  from the AO cell   

when the ultrasonic wave is frequency modulated.  
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2) This equation contains two parts; a constant part mednθ which represents the angle of thn

diffracted order without modulation as shown in figure (3.8-a) and the second one, which 

depends on time, describes theoretically the diffracted orders deflection around a central 

position mednθ  of the scanned area as presented in figure (3.8-b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3) It is obvious, from figure (3.8-b), that the diffracted orders positions vary in sinusoidal 

manner with time, where ( )mm fT /1=  represents the period of the modulating signal as 

presented in equation (1.2).  

4) The angular excursion of each diffracted order nθΔ depends on two parameters; the 

diffracted order number n and the frequency excursion  Δf as indicated in the following 

relationship: 

                                                           
V

fnn
0λθ ⋅Δ

⋅=Δ                                                           3.45 

Furthermore, the angular excursion of the thn  diffracted order is n times the first diffracted 

order one, as presented by the following relationship:  
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Figure 3.8: Diffracted orders angles for n=0, ±1, ± 2 as a function of time for two cases: 

 (a) Ultrasonic wave without modulation ( 0=Δf ) (b) Ultrasonic wave is frequency modulated ( 0≠Δf ) 
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1

0 θλθ Δ⋅=
⋅Δ

⋅=Δ n
V

fnn  

We note that, the same formula has been obtained by the reference [37] for the case of 

Tellurium Dioxide TeO2 (anisotropic material) taken as an interaction medium.  

5) The mathematical expression of fβ  is given by the following formula (1.20):  

                                                   
m

f f
fΔ

=β  

Combining this theoretical formula and the relationship given by equation (3.45), the 

frequency modulation index can be rewritten as follows [44-45]:                                                                

                                                 
mmedn

an
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f f
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=
Δ
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θ

θ
β                                                                3.46 

This last relationship indicates that is possible to obtain fβ  experimentally by a simple 

measurement of nθΔ  and mednθ (without modulation). 

6) The luminous frequency nω of the diffracted order n  is shifted with respect to the initial 

frequencyω  of the incident light: 

                                         ( ) ( )tnnt mmfan ωωβωωω cos−−=                                                  3.47                

7) The diffracted order intensity is given as follows: 

                                        ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

0

02 2
λ
ΔnLπJII nin                                                                         3.48 

8) Using the equation (3.44), the scanning velocity of each diffracted orders is written as 

follows:  

                    ( ) ( ) ( ) ( )tXt
V

fzn
dt

tdXtX mnm
mn

n ωωωλ sin'sin' max0 =
⋅Δ

⋅⋅−==                   3.49 

It is clear from the obtained equation that the scanning velocity varies; linearly according to 

the frequency excursion as well as modulating signal frequency and sinusoidally according of 

time as indicated in figure (3.9). Furthermore, the equation below shows that the scanning 

maximal velocity of the thn  diffracted order is n times of the first diffracted order one.   

                                       
V

fznXnX m
n

ωλ ⋅Δ
⋅⋅=⋅= 0max1max ''                                      3.50    
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Figure 3.9: The scanning velocity variation as a function of time for different 

frequencies mf . 
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9) To calculate the scanning velocity in each spatial position of diffracted order without 

knowing time it is enough to combine the two equations (3.44) and (3.49). The obtained 

formula is presented below:  
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X
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                                        3.51 

This last relation presents ellipse equation which has; a center situated on abscissa axis and at 

a distance of mednX  from the center of reference (0, 0) and two diameters: the first one locates 

on abscissa axis and its value is ΔXn whereas the second is on ordinate axis and has value of 

max'nX   as indicated in figure (3.10).    

 
 

 

Figure 3.10: Scanning velocity variation according to spatial position for each 

diffracted order. 
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It is clear from the obtained figure that the scanning velocity varies elliptically as a function of 

spatial position, where it takes maximal value max'nX when diffracted order passes by central 

position of scanned area and reduces to zero at both extremities (Xn max, Xn min).   

 

During this chapter, we have confirmed that the intensity and the position of the diffracted 

orders are constant when a sinusoidal ultrasonic wave is presented. Once this last is replaced 

by amplitude modulated ultrasonic wave; the diffraction orders position remains constant and 

also it was observed that besides these diffracted orders, the spectrum showed satellite 

diffracted orders. Meanwhile, our theoretical study of the light deflection by a frequency 

modulated ultrasonic wave was enabled us to establish a very important relationship between 

the diffraction orders positions and the modulating signal. This last relationship showed that; 

the scanning frequency is equal to the modulating signal frequency mf  and the angular 

excursion Δθn doesn’t depend on the modulating signal frequency mf . Furthermore, for the nth 

diffracted order, the angular excursion Δθn is n times the first diffracted order one.  

In the next chapter, we will try to confirm experimentally all results obtained previously. 
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CHAPTER IV 

        EXPERIMENTAL STUDY OF THE LIGHT DEFLECTION       

4-1) Introduction: 

In preceding chapter, we have studied theoretically the diffraction phenomenon for three cases 

of ultrasonic waves (sinusoidal, amplitude modulated and frequency modulated) and we have 

succeeded in establishing a mathematical formula which allows us to determine; the diffracted 

order position as a function of time, the scanning frequency and the angular excursion.  

In order to check the proposed theoretical development, a series of experiments will be 

performed in this chapter; the influence of the modulating signal frequency on the scanning 

frequency for each diffracted order is considered in section (4-3-1), the influence of the 

modulating signal frequency on the angular excursion of each diffracted order is the subject of 

section (4-3-2). This is followed by the presentation of the relationship between frequency 

excursion and angular excursion of the diffracted order.   

4-2) Experimental setup:    

Details of the experimental setup are given in Figure (4.1).  
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The experimental setup consists of: 

1-He-Ne laser source (output power 30mW at λ0 =632.8nm) 2- Parallelepiped AO cell, 3- A 

circular piezoelectric transducer (Panametrics INC, with 19 mm in diameter and with 

fr=10MHz as a resonance frequency), 4- A transducer holder.  5- A frequency generator (FI 

5500GA) with maximum frequency fa max=25MHz, Umax=20 V and a  modulation  frequency 

fm max =20kHz, 6- An oscilloscope (Philips) with a maximum detectable frequency fmax 

=80MHz, 7- An ultrafast photodiode (UPh) with a detection specter ranging  from λ=170 to 

1100 nm, 8- A UPh holder, 9- An acquisition card, 10- A Computer, 11- A CCD Camera with 

resolution 1034x779 pixel and a pixel size equals 4.65 umx4.65 um), 12- Screen. 

The presented optical arrangement allows us to study the acousto-optical interaction using a 

frequency modulated acoustical signal. An He-Ne laser beam illuminates in the z direction a 

progressive ultrasonic wave inside a parallelepiped AO cell made of transparent glass and 

filled with distilled water. A frequency modulated (FM) ultrasonic wave is generated by a 

piezoelectric circular transducer made of LiNbO3 and driven by a variable frequency 

generator, where the carrier signal is sinusoidal and presents a high frequency fa equals 

10MHz and a maximum amplitude U equals 20Vpp. The modulating signal in turn, presents a 

variable frequency fm .We assume, like Raman and Nath that ultrasound can act as a pure 

phase grating. Vibrations of the piezoelectric transducer caused variations of the refractive 

B

Figure 4.1: Experimental set-up 
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index of the medium inside the AO cell. Hence, so the distribution of the refractive index is 

expressed by equation (2.66).  

Having left the AO cell, the intensity of the diffracted light in the far field can be observed at a 

position z equals 4m, as shown in figure (4.1). The acquisition card which is connected to the 

computer and to the ultrafast photodetector (UPh), as shown in figure (4.1-A) allows us to 

obtain the scanning frequency of each diffracted order. Whereas its scanning excursion is 

recorded by a CCD camera as illustrated in figure (4.1-B). The obtained figures of the 

electrical signals and their respective deflected orders are presented in table (4.1) for different 

modulating frequencies.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Low frequency 
Hzf m 1.0=  

st 0=  st 5.2= st 5=  st 5.7= st 10= ( )st  

TΔ2 TΔ2

12 XΔ 12 XΔ
22 XΔ

st 0=  st 5.2= st 5=  st 5.7= st 10= ( )st  

Modulating 
signal 

Moderate 
frequency 

Hzf m 100=  

Table 4.1: Presentation of FM electrical signals and their corresponding diffracted 

orders scanning for low and moderate frequencies fm 
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From the obtained images, one can observe that the increase of the modulating signal 

frequency leads to a faster variation of the instantaneous period, as well as the diffracted 

orders scanning frequency. This can be displayed on the spectral plane by a luminous band.   

4-3) Results and discussion  

In order to check the proposed theoretical development, a series of experiments have been 

conducted: the first one consists of observing the influence of a modulating signal frequency 

fm on the scanning frequency fS for each diffracted order, the second consists of observing the 

influence of the modulating signal frequency fm and the frequency excursion Δf on the 

diffracted order angular excursion Δθn.  

The perpendicularity between the ultrasound field and the light beam must be kept at an exact 

value during the experiment. For this, two goniometers, with an angular resolution of 12’, are 

placed in two perpendicular directions (y and z) to monitor the angular position of the 

piezoelectric transducer. The perpendicularity is checked at maximum diffraction efficiency. 

In addition, the UPh is mounted on a holder with two dimensionally moving benches with a 

step of 10 µm, along x and y directions. 

4-3-1) Influence of the modulating signal frequency on the scanning frequency for each 

diffracted order [46]:   

The experimental setup shown in figure (4.1) is carried out in order to observe the effect of the 

modulating signal frequency fm on the scanning frequency fS for each diffracted order (n= ±1, 

±2).  

First, we start the experiment by feeding the transducer with an electrical signal without 

modulation. The UPh is located at a distance z equals 4m from the parallelepiped AO cell and 

exactly on the diffracted order position. Then, the previous electrical signal is frequency 

modulated with a frequency excursion of Δf=2MHz and a modulating signal of fm=100Hz. The 

refractive index inside the AO cell takes consequently the form given by equation (2.66). Each 
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diffracted order will deflect around its central position θn med. The obtained signal of the first 

diffracted order intensity, recorded by the UPh, is presented in figure (4.2). 

 

 

 

 

What happens practically is that the diffraction order oscillates around a central position with 

a given period sS fT /1= . When the UPh is placed in the central position of the scanned area, it 

would detect three peaks for two sweeps of the excursion range. The first peak represents the 

intensity of the first diffracted order when it passes through the central position of the angular 

excursion in +X direction. Equally, the second peak is the intensity of the same diffracted 

order but when it returns back to the central position in the opposite direction. The third peak 

is similar to the first situation. The measurement of time between the first and the third peak 

corresponds to the scanning period ( msTS 10= ). 

In order to check the exact scanning frequency value of first diffracted order, many 

measurements have been conducted  for different frequencies fm and for each frequency three 

UPh positions on X axis have been chosen: the highest reached position of the deflected order 

(θ1max), the lowest (θ1min), and the medium (θ1med) one. The table (4.2) presents the obtained 

values. 

Time [s] 

Figure 4.2: Recorded signal intensity of the first diffracted order vs time when the UPh 

is situated in central position of the scanned area. 
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The modulating signal frequency of 

the generator  fm [Hz] 

Measured scanning frequency  fS [Hz] 

θ1max θ1min θ1med 
0.10 0.098 0.097 0.099 

1.00 0.970 1.050 1.000 

10 9.888 10.010 9.780 

100 105.000 103.500 100.000 

1 000 1,000.000 1,040.000 1,040.000

 

 

It is clear from the obtained results that the scanning frequency is very close to the modulating 

signal one fm and the relative difference between the two frequencies varies from 0 to 5%. We 

note that the same results were recorded for the remaining diffracted orders.  

To explain theoretically the obtained results, it is sufficient to consider equation (3.44). A 

double excursion 2(θn max – θn min), takes place for time t=1/fm. This means that, theoretically, 

the scanning frequency is exactly equal to the modulating signal frequency, which is observed 

experimentally in table (4.2).  

In order to clarify what happens when the UPh moves from position to another, we propose to 

see these recorded signals by acquisition card:   

 

 

 

 

 

 

 

 

 

Table 4.2: The scanning frequency values fs of the first diffracted order for different 

positions of the UPh.
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Figure 4.3: Recorded signals intensity of the first diffracted order vs 

time for different positions of UPh.    

Lowest position of diffracted order 
 min1θ  

Highest position of diffracted order 
        max1θ  

Central position of diffracted order 
                     med1θ  

A 

B 

D 

Position A 

Position B 

Position C 

Position D and E 

msTs 10=  

msT 51 =  msT 52 =  

msT 31 =  msT 72 =  

msT 11 =  msT 92 =  

E 

C 
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4-3-2) Influence of the modulating signal frequency on the angular excursion of the 

diffracted order [46]:   

This experiment has been conducted in order to observe the influence of the modulating signal 

frequency fm on the angular excursion Δθn. For this purpose the same electrical signal without 

modulation, previously used, has been employed to measure the medium angle θ1med using a 

micro displacement of the UPh holder. This last has shown that the value of this angle is to the 

order of (4.25 10-3 rd). Then, we choose Δf=2MHz and measure the maximum and the 

minimum reached angles of the first diffracted order θ1max and θ1min respectively, for different 

values of fm. The diffracted light intensity was used as a tool to define the exact limits of the 

deflected area.  The table (4.3) and the figure (4.4) illustrate the obtained average values of the 

deflected angles with their standard deviations.  

 

Generator 
frequency  
   [ ]Hz

1st angular 
measurement [rd .10-3] 

2nd angular 
measurement [rd .10-3] 

Average 
values  [rd .10-3] 

 Standard 
deviation 
[rd .10-3] 

Angular  
excursion  
[rd .10-3] 

mf  max1θ  
max1θ max1θ max1Sd  med1max11 θθθ −=Δ

0.1 5.115 5.103 5.109 0.0084 0.859 
1 5.125 5.115 5.12 0.0070 0.870 

10 5.118 5.108 5.113 0.0070 0.863 
100 5.12 5.11 5.115 0.0070 0.865 

1000 5.115 5.113 5.114 0.0014 0.864 
 

Generator 
frequency  
   [ ]Hz

1st angular 
measurement [rd .10-3] 

2nd angular 
measurement [rd .10-3] 

Average 
values  

[rd .10-3] 

 Standard 
deviation 
[rd .10-3] 

Angular  
excursion  
[rd .10-3] 

mf  min1θ  
min1θ min1θ min1Sd  min111 θθθ −=Δ med

0.1 3.39 3.39 3.39 0 0.860 
1 3.39 3.403 3.3965 0.0091 0.854 

10 3.388 3.403 3.3955 0.0106 0.855 
100 3.385 3.393 3.389 0.0056 0.861 

1000 3.385 3.398 3.3915 0.0091 0.859 

  

 

 

Table 4.3: Presentation of the angular excursion Δθ1, the maximal and the minimal 

angle of the first diffracted order for Δf =2MHz and different values of fm 
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It should be noted that the theoretical curves are plotted using equation (3.44) for an acoustic 

velocity V equals 1488m/s. To generalize previous results, the same experiment was done for 

the remaining diffracted orders as indicated in figure (4.5). 

 

 

 

 

 

 

 

 

 

 

Figure 4.4: The angular excursion Δθn, the maximum and minimum deflected angles of 

the first diffracted order according to fm .  
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Figure 4.5: The angular excursion Δθn, the maximum and minimum deflected angles of 

each diffracted order according to fm. 
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From the obtained curves presented in figures (4.4) and (4.5), one can observe that the 

experimental results are very close to theoretical ones. In addition, the maximum and the 

minimum deflection angles are symmetrical to a central position θ1med of the diffraction order. 

Moreover, the angular excursion doesn’t depend on the variation of the modulating signal 

frequency. Furthermore, the angular excursion of the 2nd diffracted order is 2 times the first 

diffracted order one, as presented by the following relationship:  

( ) 10 θλθ Δ⋅=Δ=Δ nVfnn    

4-3-3) Influence of frequency excursion on the angular excursion of the diffracted order 

[46]:    

To conduct this experiment, the same previous optical arrangement was undertaken, except in 

this case the modulating frequency fm is constant (fm= 100Hz) and the frequency excursion Δf 

varies by a step of 0.5MHz. The angular excursion of the first diffracted order is measured for 

each value of Δf as indicated in table (4.4) and in figure (4.6).  

Frequency 
excursion 

[ ]MHz

Average 
values [rd .10-3] 

 Standard 
deviation 
[rd .10-3] 

 Average 
values  

[rd .10-3] 

 Standard 
deviation [rd .10-3] 

 Angular 
excursion  
[rd .10-3] 

fΔ  max1θ  max1Sd min1θ min1Sd 12 θΔ⋅  
0 4.250 0 4.25 0 0.000 

0.5 4.464 0.05 4.063 0.07 0.401 
1 4.689 0.05 3.828 0.09 0.861 

1.5 4.919 0.055 3.648 0.05 1.271 
2 5.065 0.007 3.378 0.009 1.687 

2.5 5.319 0.043 3.175 0.04 2.144 
3 5.513 0.035 3 0.05 2.513 

3.5 5.691 0.004 2.75 0.008 2.941 
4 5.909 0.029 2.57 0.025 3.339 

4.5 6.144 0.0155 2.335 0.018 3.809 
5 6.356 0.026 2.138 0.029 4.218 

5.5 6.513 0.010 1.925 0.01 4.588 
6 6.765 0.021 1.713 0.007 5.052 

6.5 6.981 0.026 1.5 0.04 5.481 
7 7.266 0.023 1.255 0.05 6.011 

 Table 4.4: Presentation of the angular excursion Δθ1, the maximal and the minimal 

angle of the first diffracted order for fm =100MHz and different values of Δf.  
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To generalize these results for the rest of the diffracted orders, the same experiment was 

undertaken. The obtained results are illustrated in figure (4.7)  

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6: Angular excursion Δθn, the maximum and minimum deflected angles of the 

first diffracted order as a function of the frequency excursion Δf.  
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Figure 4.7: Angular excursion Δθn, the maximum and minimum deflected angles of 

each diffracted order as a function of the frequency excursion Δf.  
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The obtained curves show evidently a large concordance between theoretical and experimental 

results. In addition, a linear relationship is observed between Δf and Δθn of the diffracted 

orders, each pair of curves for the same diffracted order starts from a common point 

corresponding to Δf =Δθn=0 (diffraction orders without deflection). The obtained linearity is 

clearly justified mathematically using equation (3.45) where Δθn and Δf are linearly related.  

4-3-4) Determination of the frequency modulation index using acousto-optic method:    

In this experiment, a new method has been performed to determine with good accuracy a 

frequency modulation index fβ  of an FM signal. This parameter is generally obtained using 

an electronic spectrum analyzer [11].  

The relationship (3.46), mentioned in chapter 3, indicates that is possible to obtain fβ  

experimentally by a simple measurement of Δθn and θn med (without modulation). The 

following table presents the values of fβ  obtained theoretically using the generator parameters 

Δf and fm, and experimentally using the values of Δθn and θn taken from the previous 

experiment. The all results are summarized in figure (4.8).  

Frequency 
excursion given 
by the  generator  

Δf [MHz] 

Modulation 
index given 

by the 
generator 

fβ  

First diffracted order 
(+1) 

Second  diffracted order 
(+2) 

Measured 
frequency 
excursion 
Δf [MHz]

Measured 
modulation 

index  
fβ  

Measured 
frequency 
excursion 
Δf [MHz]

Measured  
modulation 

index  
fβ  

0 0 0.000 0 0.000 0 
0.5 5 000 0.504 5 035 0.514 5 145 
1 10 000 1.033 10 329 0.986 9 864 

1.5 15 000 1.574 15 741 1.540 15 398 
2 20 000 1.918 19 176 2.013 20 130 

2.5 25 000 2.515 25 153 2.448 24 484 
3 30 000 2.972 29 718 3.012 30 124 

3.5 35 000 3.391 33 906   
4 40 000 3.904 39 035   

4.5 45 000 4.456 44 565   
5 50 000 4.955 49 553   
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It is clear from the obtained values, that the experimental results of the frequency modulating 

index are very close to the values given by the generator, the maximum relative error doesn’t 

exceed 5%. It should be noted that the frequency modulation index can also be obtained using 

the 2nd diffraction order but the bandwidth of the piezoelectric transducer will limit this 

measurement.  

Finally, we have demonstrated theoretically and shown experimentally the possibility of using 

the (AOD) to obtain the frequency modulation index fβ .  

5.5 55 000 5.325 53 247   
6 60 000 5.918 59 176   

6.5 65 000 6.426 64 259   
7 70 000 7.096 70 965   

Theoretical curves 
Experimental curves   

Figure 4.8: Frequency modulation index variation according to the frequency excursion

Δf for the first diffracted order 

Table 4.5: Experimental determination of the frequency modulation index 
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CONCLUSION  

The acousto-optic phenomenon is based on three effects; the piezoelectric effect concerns the 

conversion of an electrical signal into acoustic one, the photoelastic effect has a direct relation 

with the elastic behavior of the medium and its optical parameters and ultimately the light-

ultrasound interaction. This phenomenon is realized by sending a high frequency ultrasonic 

wave in an elastic medium using a piezoelectric transducer. The interaction of ultrasonic 

waves with light leads to the diffraction phenomenon. This latter depends on the ultrasonic 

wave shape (sinusoidal, amplitude modulated and frequency modulated). 

In this work, we have theoretically studied all these cases of diffraction then we followed it by 

experimental study of the last one to confirm the theoretical development. The obtained 

results show that when ultrasonic wave is sinusoidal, each diffracted order position nX  varies 

linearly with ultrasound frequency af and its optical frequency nω  shifts from the initial one ω  

by an amount ωn . In case where the sinusoidal ultrasonic wave of high frequency af  (carrier) 

is amplitude-modulated by another one of low frequency mf (message), the principal diffracted 

orders have the same directions and optical frequencies as in the previous case whereas, the 

satellite diffracted orders are symmetrically distributed with respect to the corresponding 

principal diffracted order n , so the whole diffraction is symmetric with respect to the non 

diffracted order. It is of interest to note that the satellite diffracted orders are generally 

superimposed unless if the frequencies of the carrier af and message mf are close to each 

other. 

In the last case when the sinusoidal ultrasonic wave is frequency-modulated by another one, 

we have established a very important relationship between the diffraction orders positions and 

the modulating signal. This relationship shows that each diffraction order position ( )tX n

oscillates sinusoidally around a central position which represents the diffracted order position 

without modulation and the scanning frequency sf  is equal to the modulating frequency mf . 

In addition, the angular excursion nθΔ  doesn’t depend on the frequency modulation mf  and at 

the same time it has a linear relation with the frequency excursion fΔ . Furthermore, the 
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angular excursion of the thn diffracted order is n  times the first diffracted order one. As 

regards the scanning velocity, it varies linearly according to the frequency excursion as well as 

modulating signal frequency and sinusoidally according to time. Moreover, the scanning 

maximal velocity of the thn  diffracted order is also n  times of the first diffracted order one. 

Our ultimate goal is to demonstrate theoretically and calculate experimentally the frequency 

modulation index β  using the (AOD). 

By this work, we finally wish to open the doors for a better understanding of light deflection 

by an acousto-optic method. Several points may be the subjects for other theses such as: 

- Measure experimentally the scanning velocity of the diffracted order in order to verify the 

formula already obtained. 

-The theoretical development of the same work using Maxwell's differential equation. 

-The study of diffracted order intensity. 

All these works can contribute to confirm our theoretical and experimental study. 
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Appendix 1: Dirac delta function [27-28] 

The Dirac delta can be loosely thought of as a function which is zero everywhere except at the 

origin, where it is infinite. Thus, the graph of the delta function is usually thought of as 

following the whole x-axis and the positive y-axis. The integral over the entire real line is 

equal to one. As there is no function that has these properties, the computations that were done 

by the theoretical physicists appeared to mathematicians as nonsense, until the introduction of 

distributions by Laurent Schwartz, for formalizing and validating mathematically these 

computations. It is widely used in diffraction, signal processing, Laplace transform and 

probability.   

The mathematical expression of this distribution 

is given by:           

                          

                     ( )
⎩
⎨
⎧

≠
=∞+

=
00
0

x
x

xδ  

 

Some properties: 

- ( ) 1=∫
+∞

∞−
dxxδ  

- ( ) ( ) ννπδ dxjx ∫
+∞

∞−
⋅⋅−= 2exp  

- 
( ) ( ) ( )

( ) ( ) ( )⎪
⎩

⎪
⎨

⎧

=−

=

∫
∫

∞+

∞−

+∞

∞−

00

0

xfdxxxxf

fdxxxf

δ

δ
 

- ( ) ( ) ( )00 xxfxxxf −=−δ   

 

 

Schematic representation of the 
Dirac delta function by a line 

surmounted by an arrow. 



APPENDIX                                                    
         
 

95 
 

Appendix 2: Jacobi-Anger expansion [26-28]  

In mathematics, the Jacobi–Anger expansion (or Jacobi–Anger identity) is an expansion of 

exponentials of trigonometric functions in the basis of their harmonics. This identity is named 

after the 19th-century mathematicians Carl Jacobi and Carl Theodor Anger. 

The general identity is given by:   

                                                               ( )( ) ( ) ( )∑
+∞

−∞=

=
n

n nizJzi αα expsinexp  

There are other forms derived from this identity, such as: 

• ( )( ) ( ) ( )( )
n

n
n inizJzi ∑

+∞

−∞=

= αα expcosexp  

• ( )( ) ( ) ( )∑
+∞

−∞=

−=−
n

n nizJzi αα expsinexp  

• ( )( ) ( ) ( )( )n

n
n nizJzi 1expsinexp −=− ∑

+∞

−∞=

αα  

• 
( )( ) ( ) ( ) ( )

( )( ) ( ) ( )( )
⎪
⎪
⎩

⎪⎪
⎨

⎧

+=

+=

∑

∑
∞+

=
+

+∞

=

0
12

1
20

12sin2sinsin

2cos2sincos

n
n

n
n

nzJz

nzJzJz

αα

αα
 

• ( )( ) ( ) ( )∑
+∞

−∞=

+=+
n

mafnmfa tntJtt ωωβωβω cossincos  
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Appendix 3: Bessel functions [26-28] 

Bessel functions, first defined by the mathematician Daniel Bernoulli and then generalized 

by Friedrich Bessel, are the solutions ( )xy of Bessel's differential equation [26]:                                     

                              011 2

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛−+′+′′ y

x
ny

x
y                                                              

Where:   

                                         :n  Complex number 
The differential equation solutions are:  

1st case ( n non-integer):                        ( ) ( ) ( )xBJxJAxy nn −+=  

2nd case ( n integer):                              ( ) ( ) ( )xYCxJCxy nn 21 +=   

Where: 

          ( )xnJ : Bessel functions of the first kind 
          ( )xnY  : Bessel functions of the second kind 

Bessel functions of the first kind: It is defined as follows: 

              ( ) ( ) ( )
( )∑

∞

=

+

++Γ
−

=
0

2

n 1!
2/1J

r

rnr

rnr
xx                                                                                  

 
Where:  
 

 

 

 

 

From the graph [43 p 73], we can deduc 
Gamma function  

( )αΓ : is the gamma function defined as 

follows:  

 

( ) ∫
+∞

−−=Γ
0

1 dyey ynα         R∈α             
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If ....3,2,1=α the gamma function is called the factorial function ( ) ( ) ∞<−=Γ⇒ !1αα  

If ⇒−−−= ,....3,2,1,0α ( ) ±∞=Γ α   

If 
⎩
⎨
⎧

−−−
≠

,...3,2,1,0
....3,2,1

α ( ) ∞<Γ⇒ α   

Accordingly, if « n  » is a positive integer we can simplify the Bessel function to:                                    

( ) ( ) ( )
( )∑

∞

=

+

+
−

=
0

2

n !!
2/1J

r

rnr

rnr
xx                                                             

( ) ( ) ( )
( )

( ) ( )
( )

( ) ( )
( )

( ) ( )
( ) ....

!2!2
2/1

!1!1
2/1

!!0
2/1

!!
2/1J

42210

0

2

n +
+

−
+

+
−

+
−

=
+

−
=⇒

++∞

=

+

∑ n
x

n
x

n
x

rnr
xx

nnn

r

rnr

 

( ) ( )
( )

( )
( )

( )
( ) ....

!2!2
2/

!1
2/

!
2/J

42

n +
+

+
+

−=⇒
++

n
x

n
x

n
xx

nnn

                                                                            

The figure below presents the Bessel function of the first kind for integer orders 3,2,1=n :  

 

 

 

 

 

 

 

 

 

 

 

 

 

In the case where « n  » is a negative integer we can demonstrate that [43]:  

                                      ( ) ( ) ( )xx n
nn- J1J −=                                                                   

Bessel functions of the second kind:  

Figure 1: The Bessel function of the first kind for integer orders 3,2,1=n   
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                           ( ) ( ) ( ) ( )
( ) ...3,2,1,0

sin
JcosJ

Y n-n
n ≠

−
= n

n
xnx

x
π

π
                                                                       

                 ( ) ( ) ( ) ( )
( ) npn
p

xpx
x ⎯→⎯=

−
= ...3,2,1,0

sin
JcosJ

limY p-p
n π

π
                           

When « n  » is an integer, as was similarly the case for the functions of the first kind, the 

following relationship is valid: ( ) ( ) ( )xx n
nn- Y1Y −=  

 

 

Some properties of the Bessel function of the first kind for integer order "n": 

1)  

n : Is odd ( ) ( )xJxJ nn −−=⇒  ( )xJ n⇒ the function is odd. 

n : Is even ( ) ( )xJxJ nn −=⇒  ( )xJ n⇒ the function is even. 

Therefore, in both cases, we have: ( ) ( ) ( )xJxJ n
n

n −−= 1                                                                  

2) ( ) 012 =∑
+∞

−∞=
+

n
n zJ                                                                                                                   

3) ( ) 1=∑
+∞

−∞=n
n zJ                                                                                                                          

6) ( ) 12 =∑
+∞

−∞=n
n zJ                                                                                                           

Figure 2: The Bessel function of the second kind for integer orders 3,2,1=n   
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Appendix 4: Elastic constants 

In the science of materials, numbers that quantify the response of a particular material to elastic 

or non-elastic deformation when a stress load is applied to that material are known as Elastic 

Constants. These last are:  

- The Modulus of Elasticity (Young's modulus) E . 

- The Modulus of rigidity (Shear modulus)G . 

- The Bulk Modulus K . 

- Poisson's Ratio ν .   

- The Lamé parameters: Lamé's first parameter 1G   

                                     Lamé's second parameter GG =2  

For homogeneous isotropic materials simple relation exists between elastic constants that 

allow calculating them all as long as two are known:   

                                     ( ) ( ) ( )( )
ν

νννν 21121312 1
2

−+
=−⋅=+⋅=

GKGE  

 

 
1

2
1

2 29 EGGER ++=  
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4) Poisson's Ratio: denoted byν , is the signed ratio of transverse strain to axial strain.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Material Values for 
bulk modulus 

Glass  35 to 55 GPa 
Steel 160 GPa 
Diamond 443  GPa
Water 2.2 GPa 
Methanol 823 MPa 
Air 142 KPa 
Solid helium 50 MPa 

Material 
Values for 

  Poisson's Ratio 

Rubber 0.4999 

gold 0.42–0.44 

Saturated clay  0.40–0.49 

Copper 0.33 

Aluminum-alloy  0.32 

Clay 0.30–0.45 

Stainless steel 0.30–0.31 

Steel 0.27–0.30 

Titanium 0.265-0.34 

Magnesium 0.252-0.289 

Cast iron    0.21–0.26 

Sand  0.20–0.45 

Glass 0.18–0.3 

Foam  0.10–0.50 

Concrete  0.1-0.2 

Cork  0.0 
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Appendix 5: Differential operator [25]  

A) The Nabla:  It’s noted ∇ , and defined 
→→→

∂
∂

+
∂
∂

+
∂
∂

=∇ k
z

j
y

i
x

 

Where 
yx ∂

∂
∂
∂ , and 

z∂
∂  are the first partial derivatives of function and the vectors i, j, and k 

are the unit vectors in the positive x, y, and z directions, respectively.  

This vectorial operator has properties similar to those of ordinary vectors (scalar product, 

vectorial product, etc.). It is used to define special differential operators include 

the gradient, divergence, curl, and Laplace operator.  

B) The Gradient: In mathematics, a differential operator applied to a three-dimensional 

vector-valued function to yield a vector whose three components are the partial derivatives of 

the function with respect to its three variables. The symbol for gradient is grad . Thus, the 

gradient of a function ( )zyx ,,φ , written φφ grad=∇ , is:  

→→→→→→

∂
∂

+
∂
∂

+
∂
∂

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+
∂
∂

=∇ k
z

j
y

i
x

k
z

j
y

i
x

φφφφφ   

If in physics, for example, ( )zyx ,,φ  is a temperature field, φ∇  is the direction of the heat-

flow vector in the field. 

C) Divergence: In mathematics, a differential operator applied to a three-dimensional 

vector-valued function. The result is a function that describes a rate of change. The 

divergence of a vector 
→

E  is given by:   

⎟
⎠
⎞

⎜
⎝
⎛ ++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+
∂
∂

=∇
→→→→→→→

kEjEiEk
z

j
y

i
x

E zyx.. ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
+

∂
∂

+
∂

∂
=∇=

→→→→

k
z

Ej
y

E
i

x
EE zyx.   

In which yx EE , and zE  are the vector components of
→

E .  

D) Curl: In mathematics, a differential operator that can be applied to a vector-valued 

function in order to measure its degree of local spinning. It consists of a combination of 

the function’s first partial derivatives. It’s noted
→→→

=∧∇ ErotE  and defined  
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⎟
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∂
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EErot xyxzyz                          

Some properties: If φ and Ψ are differentiable scalar functions and if
→

E  and
→

H are 

differentiable vector functions, then:  

1) ( ) Ψ∇+∇=Ψ+∇ φφ   

2) 
→→→→

∇+∇=⎟
⎠
⎞

⎜
⎝
⎛ +∇ HEHE ...  
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Appendix 6: POCKELS’s and KERR’s coefficients [30-31-32] 

 

Crystals are divided into seven crystal systems: triclinic, monoclinic, orthorhombic, 

tetragonal, trigonal, hexagonal and cubic. Each system is divided into classes. In total there 

are 32 crystal classes. 

The table below presents, one class for each crystal systems, the linear electro-optic matrix 

coefficients corresponding to the POCKELS effect and the quadratic electro-optic matrix 

coefficients characterizing the Kerr effect.    

Anisotropic 
medium POCKELS’s coefficients KERR’s coefficients 

Triclinic 
( )1  

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
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⎜
⎜
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⎟
⎟
⎟
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⎜
⎜
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⎛
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Tetragonal 
( )422  
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⎟
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⎟
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Appendix 7: Photo-elastic coefficients [30-31-32] 
 

The table below presents the photo-elastic matrix coefficients for some class of the crystal 

systems as well as the isotropic media.   
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ABSTRACT: 

The using of acousto-optic interaction led to appear a variety of optical devices such as acousto-optic 

deflectors (AODs), which have in turn widespread applications in many fields. In this thesis, we theoretically 

demonstrate and experimentally confirmed one of this AOD. This last is obtained using a laser beam 

interaction with a frequency modulated ultrasonic sinusoidal wave in a liquid medium. The obtained results 

show that each diffracted order position varies sinusoidally around its central position, in the same rhythm as 

the modulating signal. Moreover, the scanning frequency of the diffraction order increases linearly according 

to the modulating signal frequency. Furthermore, the increase in the frequency excursion leads to the increase 

of the angular excursion. All the theoretical results are confirmed experimentally. Finally, the frequency 

modulation index has been easily obtained with good precision using experimental measurements of the 

diffracted order angular excursion. 

ملخص:

آثيرة تطبيقات له بدوره الصوتي، والذي -الضوئيالماسح  البصرية مثلالصوتي أدى إلى ظهور العديد من الأجهزة -داخل الضوئياستخدام التإن 

يتحصل عليه عندما يتداخل الليزر مع هذا الأخير . ه الأجهزةتجريبيا واحد من هذونؤآد نظريا طروحة نبرهن في هذا الأ. في العديد من المجالات

تغير جيبيا حول موضعه يموضع آل بقعة منعرجة أن بتظهر  عليهامحصل النتائج ال. في وسط سائلصوتية متغيرة تواتريا  فوقمع موجة 

ذلك، فإن الزيادة في أبعد من . واتر المعلومةوفق تتواتر إهتزاز البقع المنعرجة يتزايد خطيا ذلك فإن  ضف إلى. تواتر المعلومةنفس المرآزي، ب

معامل الترميز التواتري تحصل ، في الأخير. تجريبيا هاالنتائج النظرية تم تأآيد آل. في مجال التغير الزاويزيادة الؤدي إلى ر تمجال تغير التوات

 .لمجال التغير الزاويالقياسات التجريبية غلال باستعليه بطريقة سهلة وبدقة عالية وذلك 

RESUME :  

L'utilisation de l'interaction acousto-optique a conduit à apparaître une variété de dispositifs optiques tels que 

les déflecteurs acousto-optiques (DAO), qui ont à leur tour des applications répandues dans de nombreux 

domaines. Dans cette thèse, nous démontrons théoriquement et nous confirmons expérimentalement l’un de 

ces DAO. Ce dernier est obtenu en utilisant l’interaction du faisceau laser avec une onde sinusoïdale 

ultrasonore modulée en fréquence dans un milieu liquide. Les résultats obtenus montrent que la position de 

chaque ordre diffracté varie sinusoïdalement autour de sa position centrale, au même rythme du signal de 

modulant. En outre, la fréquence de balayage de l'ordre de diffraction augmente linéairement en fonction de la 

fréquence du signal de modulant. De plus, l'augmentation de l'excursion de fréquence conduit à l'augmentation 

de l'excursion angulaire. Tous les résultats théoriques sont confirmés expérimentalement. Enfin, l'indice de 

modulation de fréquence a été facilement obtenu avec une bonne précision en utilisant des mesures 

expérimentales de l'excursion angulaire de l'ordre diffracté.   


