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INTRODUCTION

INTRODUCTION

Before we begin to present the main goal of this research and the thesis outline, it is of interest
to briefly review the historical development and some of the important milestones in acousto-
optic field. This field was studied extensively in the past century, where in 1922, Brillouin
predicted that the light can be diffracted by ultrasound [1]. It was not possible to confirm this
prediction experimentally until ten years later. Surprisingly, simultaneously and for the first
time a large number of diffracted orders was observed, symmetrically spaced about the
undiffracted beam, independently by the Americans Debye and Sears, and the French Lucas
and Biquard in 1932 [2-3]. Various efforts were made by them to describe the presence of
multiple diffracted orders but unfortunately the intensities wandering of the wvarious
components has not found explanation in any of their theories [4].

In 1935 Raman and Nath succeeded to explain this diffraction where they demonstrated that
the propagation of an ultrasonic wave in elastic medium creates dilation and compression
regions according to the rhythm of this ultrasonic wave. This variation produces a periodic
modulation of the refractive index via the elasto-optic effect. Accordingly, the medium which
was initially homogeneous transformed into inhomogeneous one providing a dynamic phase
grating. This last may diffract portions of an incident light into one or more directions. The
theoretical analysis of this diffraction showed that the intensity and the position, of each
diffracted order, are constant when ultrasonic wave is sinusoidal [4-5].

In case where sinusoidal ultrasonic wave is amplitude modulated (AM), the diffraction orders
position remains constant. Likewise, it was observed that besides these diffracted orders, the
spectrum showed satellite diffracted orders. This diffraction was performed for the first time
by Pancholy and Parthasarathy and explained mathematically by Mertens and Hereman in
1979 [6-7].

Meanwhile, the using of frequency modulated ultrasonic wave (FM) led to appear a variety of
optical devices such as acousto-optic deflectors (AODs), which have in turn widespread

applications in many fields. For instance, some authors used theses AODs to develop an
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acousto-optic cylindrical lens with a very fast focal scanning [8] by using two adjacent
counterpropagating acoustic waves carrying the same frequency chirp [9]. Recently, AODs
attracted more attention for diverse applications as is quoted in [10-11].

In the same context, other diffraction can be obtained using sinusoidal ultrasonic wave of high
frequency modulated by another sinusoidal one of low frequency. In this case the position of
the diffracted order is no longer constant as the two first cases, sinusoidal and AM signal, but
it oscillates around a central position with scanning frequency which increases proportionally
with the modulating signal frequency. This deflection has long been known but it remained, to
our knowledge, without explication.

In this work, we theoretically study this deflection, following the same steps of those who
preceded us in this field, starting form acousto-optic interaction principle to finally reach a
very important relationship between the diffracted order position and the modulating signal.
Afterwards, in order to check the proposed theoretical development a series of experiments
are conducted.

For better presentation and clear explanation of this research work, we are starting by studying
modulated electrical signal which is used to generate ultrasound. After this, the determination
of the relationship between the ultrasound and the medium refractive index is primordial to
explain the diffraction phenomenon. Therefore, the thesis is organized as follows:

1.  The first chapter is interested to study the different electrical signals (amplitude
modulated, frequency modulated and phase modulated). Particular attention is devoted
to frequency modulated signal as well as the essential parameters that affect the acousto
optic deflector such as; modulation frequency, frequency excursion and frequency
modulation index.

ii.  In the second chapter, which is considered the longest, we exploit electrical signals
sited above to generate ultrasonic waves using piezoelectric transducer. This is
followed by the study of ultrasounds propagation in elastic media and their effect on
the refractive index.

iii.  During the third chapter, which is considered the most important, we theoretically

investigate the diffraction phenomenon obtained by the interaction of ultrasonic waves,
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generated previously, and electromagnetic one. This treatment is performed for three
types of ultrasonic waves (sinusoidal, amplitude modulated and frequency modulated).

iv.  The experimental part is the subject of the fourth chapter, which presents the different
performed experiments in order to check the theoretical development proposed in the
chapter number three. Such as the effect of modulating signal frequency on the
scanning frequency and the angular excursion of each diffracted order. This is
followed by a new method presentation enables us to measure the frequency
modulation index. This operation was performed before using only a spectrum
analyzer.

This thesis 1s ended with general conclusion in which we present the achieved results and

future prospects in this field.
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CHAPTER 1

MODULATED ELECTRICAL SIGNALS

1-1) Introduction:

During the development of telecommunication devices, it quickly became necessary to code
the information to be transmitted, either to adapt the information to the transmission channel
or to simultaneously transmit several signals on the same channel. As a result, the coding of
information is still being research subject. One of the forms of the information coding among
the simplest and the oldest is to perform a frequency translation of the carrier. This type of

coding is called analog modulation [12].

Analog modulation is the process of facilitating the transport of information over a carrier. For
instance, the sound transmission in air has a limited range depends on sonic power. To extend
the range of sound, we need to transmit it by another way, such as an electromagnetic wave.
To perform that, it’s enough to vary the amplitude, frequency or phase of a carrier in
accordance with instantaneous value of information (modulating signal). Once the carrier is
mapped with the information to be sent, it is no longer a carrier and we call it the modulated
signal. We distinguish three types of modulation [13]:

Amplitude modulation (AM).

Exponential modulation: Frequency modulation (FM).

Phase modulation (PM).

AM and FM are ways of broadcasting radio signals. Both transmit the information in the form
of electromagnetic waves. AM works by modulating the amplitude of the carrier according to
the modulating signal being sent, while the frequency remains constant. This differs from FM
technology in which information is encoded by varying the carrier frequency and its amplitude
is kept constant [34].
Generally, the carrier frequency is very high compared to the modulating signal frequency. In

the case where the two signals are sinusoidal, we write:
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Alt)= A4, cos(w,t) 1.1
Where:
A, :Carrier amplitude.
o, : Carrier pulsation.

The comparison of these different modulation types and the choice of one of them is based on

numerous criteria (noise immunity, implementation, demodulation, range, cost, etc.) [20].

1-2) Amplitude modulation (AM):

Amplitude modulation was the earliest modulation method used in electronic communication,
most commonly for transmitting voice. It was developed during the first two decades of the
20™ century beginning. The amplitude of the carrier is varied in proportion to the modulating

signal being transmitted. In our study, we will interest in a sinusoidal modulating signal.

1-2-1) Expression of amplitude modulated sinusoidal signal:

As its name implies, an amplitude modulated sinusoidal electrical signal A(¢)is a signal has an
amplitude modifies according to a linear law by the modulating signal.

Let S(t)represent the modulating signal with a frequency £, and amplitude 4, :

S(t)= A4, cos(w,t) 1.2
So, the amplitude modulated signal is written as follows:
Alr)= [4,+C,S(t)] cos(a,t) 1.3

Where: C, is the modulator proportionality factor, which sometimes takes the denomination

modulator sensitivity.

If we replace equation (1.2) in equation (1.3), we obtain:

Alt)= [Aa +C,A4, cos(a)mt)] cos(w,t)= A{ 1+ %cos(a)mt)} cos(w,?)

=A[1+ B, cos(w,t)] cos(w,t) 1.4

Where £, 1s the amplitude modulation index (Amplitude modulation depth).
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1-2-2) Time domain of AM signal:

To plot AM signal as a function of time, we choose for example a carrier with a frequency of

f. =10° Hz and a modulating signal of frequency f, =10’ Hz. The graphs below represent the

amplitude modulated signal for different values of 3, .

» t=0:.00000001:0.003;
A= (1+ B, *cos(2*p1*1073*t)).*cos(2*p1*1076*t);

>> plot(A),grid
+50%
Original level
-50%
A(t)

Time [s]

Figure 1.1: Time domain representation of AM signal for £, =0.5

A(t)

Time [s]

Figure 1.2: Time domain representation of AM signal for g, =1
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A(Y)

- From these figures, it can be seen that for an amplitude modulation index of 0.5, the

modulation causes the signal to increase by a factor of 0.5 and decrease to 0.5 of its original

level.

- When the modulation index reaches 1, the carrier level falls to zero and rises to twice its

non-modulated level.

- Any increase of the modulation index above 1 causes over-modulation which gives rise to

additional sidebands.

- Experimentally, we can easily extract the AM index value from the graphics, without

knowing f, and £, , as follows:
We have: A(t)=A,[1+ p, cos(@, )] cos(am,?)
So the new amplitude is 4'(t)=4,[1+ B, cos(w, )]

In the case where [cos(w, t)=1]= 4(t)= 4, =4, [1+2,]

And if [cos(w, t)=-1]= A(t)=4.,, = 4,[1-5,]
From (1.5) and (1.6) we can find:
Ar'nax — Ar'nin
ﬁa - Ar,nax + Ar’nin

For example in figure (1.1), the amplitude modulation index equals:

Ar,nax _Al’nin _
Pe= A +A

max min

1.5-0.5 _05
1.54+0.5

1.5
1.6

1.7

10
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1-2-3) Frequency domain of AM signal:

In the frequency domain, amplitude modulation produces a signal with power concentrated at
the carrier frequency and two adjacent sidebands. Each sideband is an image of the other as

indicated below.
Using trigonometric relationship:
cos(a) cos(b)=%[cos(a+b)+cos(a—b)]
The equation A(¢)can be written as a sum of three sine waves [34]:
A(t)=4,[1+ B, cos(w,t)] cos(e,7)

= A, cos(w,t)+ 4, B, cos(w,t) cos(w,t)

= A(t)= A4, cos(w,t)+ A“zﬁ" [cos(w, t + w,t)+cos(w,t — a,t)] 1.8

Therefore, the modulated signal has three components: the carrier which is unchanged and

two sine waves with frequencies slightly above and below the carrier frequency f,,.

The spectrum 4 (f) of the signal is then obtained by using the Fourier transform of this signal:

A1) =240 £+ 8 + 1)1 2 Lelo(r =+ £, )67 (7, £,)
1.9
AL l5(r (7= 1 )0+ (- £,)]

4
Where &(f) represents the Dirac Delta function (Appendix 1).

This gives rise to two identical spectra, one for negative frequencies, and the other for positive
ones as indicated in figure (1.4). Each spectrum is composed of three lines, one of amplitude

A, /2 at frequency f,, the two other are of amplitude 4, 3, /4 at frequencies; (7, - f,) called
Lower Side Band (LSB) and (f, + f,,) called Upper Side Band (USB) [12].

11
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A(f)
4,
2
AB,
\ N N
~(f+ 1) ~fo —(f= 1) fotu  f fif, S

Figure 1.4: Frequency domain representation of AM signal

When the carrier is fully modulated (8, =1), the amplitude of line at frequency f, is equal to

half that of the carrier, the sum of the powers of the sidebands is equal to half that of the
carrier. This means that each sideband is just a quarter of the total power. In other words, for
transmitting 100 watts, the total sideband power would be 50 watts and each individual
sideband would be 25 watts [34].

Therefore, the sidebands spread out either side of the carrier and the total required bandwidth
to transmit the signal, preserving its integrity, is given by the following equation [12, 20]:

BP,=2f, 1.10

1-3) Exponential modulation:

We have already seen that the AM principle is based on the amplitude modification of the
carrier without the frequency modification. Another form of modulation is to keep the
amplitude of the carrier constant and vary, as a function the modulating signal rhythm, the
value of the instantaneous phase. This modulation is called exponential or angular modulation
[12-20].

We can define the instantaneous pulsation as follows:

w(t):dg;gt) 1.11

12
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These two quantities w(r) and ¢{r)will be modified as a function of the modulating signal.
According to the characteristics of this modification we will have two modulations; a

frequency modulation which is linear action on the instantaneous pulsation (z) and a phase
modulation which acts linearly on the instantaneous phase ¢(¢). The advantage of these types

of modulations is that the signals are less disturbed by the "noises" during their transmission,

because the noises modify the amplitude, not the frequency of a signal.
1-3-1) Frequency modulation:

1-3-1-1) Expression of frequency modulated sinusoidal signal:

In this case, the amplitude of the transmitted signal is constant and the information signal is

encoded linearly in carrier frequency as indicate these formulas:

A(t)= 4| coslo, 1427 €, [ Sty dt )| 1.12

Where C, being the modulator proportionality factor, this sometimes takes the denomination

of modulator sensitivity [12].

The instantaneous phase, pulsation and frequency are given, respectively, by the following

formulas:
o(0)=w,t+27 C,[S(t)dt 1.13
olt)=w, +27 C, S(1) 1.14
SO)=1,+C; 50) 115
In the case where S(¢) is cosinusoidal, the formulas (1.12-1.15) become:
C.-4
Alr)= Aa[ cos(a)a t+ 'ff " sin(w, t)ﬂ 1.16
fle)=f, + C,-4, cos(w, t) 1.17

The quantity C, - 4, = Af is called the frequency excursion (frequency deviation).

Therefore, the pulsation and phase excursion are written:

13
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C,-4 C,-4
L " sin(w, t) = Ap = " 1.18
o o

olt)=w, +27 C, -4, cos(w, t)=> Ao =27 C, -4, 1.19

olt)=w,t+

The relation between the frequency excursion and phase one is written then:

Af
Ap=—— 1.20
S
. . . AL .
Usually, this term is called frequency modulation index B, = Ap=—-. It is then possible to

rewrite the expression of the FM signal in the form below:
Alt)=4, [cos(a)a t+ B, sin(w,, t))] 1.21
It is essential to note that the FM index, contrarily to AM index, depends in the same time on

the frequency and the amplitude of the modulating signal [12].

1-3-1-2) Time domain of FM signal:

To plot FM signal as a function of time, we choose a carrier with a frequency of f, =10° Hz
and a modulating signal of frequency f, =10° Hz . The graphs below represent the FM signal
for different values of 3, .

» t=0:.00001:0.02; y=cos((2*pi*1000*t)+ g, *sin(2*pi*100*t)); plot(t,y),grid

1

0.8 -1t-- 111~
06 [--(1--HE-{1--F 3 b E a4 41
0.4 -
02

) ol
T 0 O O
a7 1 1 | O O A O
e = L N Y S

oeHl--H--

-

o 0.002 0.004 0.006 0.008 0.01 0o12 0.014 0016 0018 0.0z

Time [s]
Figure 1.5: Time domain representation of FM signal for g, =2
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Figure 1.6: Time domain representation of FM signal for g, =5

o8 -
0.6 f-h-1+-H
o4 -

0.2 {HH A -1

0.2 H-|

0.4 -

06 HH-H-{1-14--3-1---

] 0.002 0.004 0.006 0.008 0.01 0012 0014 0016 0018 0.02

Time [s]

Figure 1.7: Time domain representation of FM signal for g, =10

From these figures, one can see that:

- If Af << f, , the FM signal appear as sinusoidal one because the instantaneous frequency
becomes almost constant. Thus, whenever the frequency excursion approaches the carrier
frequency, the frequency modulation becomes more representative.

- Experimentally, we can easily determine the FM index value from the signal curve, without

knowing f, , as follows:

We have: f(t)= 1, +Af -cos(w, t)
In the case where t=n"T, = f(n"T,)=f, . =M +f, 1.22

15
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And if t=(n'+1/2)-T, = f(n'+1/2)-T)= f... =—Af + f, 1.23
From (1.22) and (1.23) we can find:

Af:@ 1.24

fmax — fmin
2fm

are extracted directly from the signal curve.

Therefore, the value of FM index is: S, =

Where the value of f

max

and f

For instance, when we choose a carrier with a frequency of f, =10 MHz , a modulating signal of

frequency f, =0.1Hz and §, =5 -10”. The FM signal expression is written as follows:

A()= 4, cos(27 107¢+ 510 sin(27 0.1¢))

The instantaneous periods, of this signal A(f), presented in the second column of the table
(1.1) below are obtained theoretically using the MATLAB software, whereas the
instantaneous periods of the third column are obtained experimentally using a memory

oscilloscope (See chapter 4).

From this table, we can easily extract the values of 7,,, and 7, thus f  and f, . .

n max

16
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CHAPTER I

Instantaneous periods obtained

experimentally using a

memory oscilloscope

.

Instantaneous period obtained

theoretically using

MATLAB software

=

05 —

Time

D5<1<25+T,

5<1<5+T,,

Table 1.1: Instantaneous periods of FM signal.
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1-3-1-3) Frequency domain of FM signal:

Using relationship number five derived from the Jacobi—Anger identity (Appendix 2), it is
possible to put the equation (1.21) in the form [20]:

A(t):Aa{ $.(8,) cos(, 141 o, t)} 125

n=—0

= Alt)= AaJo(ﬂf) cos(m, 1)
+AaJ1(,Bf) [cos(a)at+ o, t)—cos(a)at— w,, t)]
+AaJ2(,Bf) [cos(a)at+2 ®,, t)+c0s(a)at—2a)m t)]
+AaJ3(ﬁf) [cos(coat+3 a)mt)—cos(a)at—3a)m t)]+...

Where: J, is the Bessel function of the first kind for integer orders » (Appendix 3).

Hence, the spectrum A(f) of signal A(t)is written as follows:

A)=TFLAO]= 20,8, ) [6r = 1)+ 6(r + 1,

22 g (B o = £+ 8+ (e L)1 (= £ )+ 807 (£~ £.))]

2 (B ol =+ 21, )+ 80 +(F, + 20, )07 = (f, -2, )+ 80 + (£, =24, )+ .

Aa
2

S8, N5 (7, + nf, ) 507 + (7, +nf, ) 126

n=—00

= A(f)=

This shows two identical spectra, one for negative frequencies and the other for positive ones
as indicated in figure (1.8). Each spectrum is composed of lateral lines infinity on each side of

the carrier frequency f, . The Bessel functionJ, (,Bf) represents the line amplitude (f, +f,, ).

Each two symmetrical lateral line have the same amplitude, so each spectrum is symmetrical

with respect to the frequency f, [20].

18
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> f

) (eny g —t-ny V) LSMe g, Lt

Figure 1.8: Frequency domain representation of FM signal f#, =1 et 4, =2

Theoretically, the FM signal spectrum has components extending infinitely, although their

amplitude decreases. In practice, only the N lines on both sides of £, , in total 2N + 1, are taken

into account when determining the bandwidth [12]. Using the Carson bandwidth rule which
states that almost all lines that contribute 99% of the power of frequency modulated signal
situate within the bandwidth given by:

BP, =2N f, =2(p, +1), 127

It is important to note that the FM signal bandwidth is (,B L+ 1) times greater than that of the
AM signal [20]:

BP, =2 f, BP, =2(B, +1),
Precisely:

In the case where: f, <<Af = B, >>1= BP, =2B, f, =BP, B,

And if: fu>>A = B, <<1= BP,=BP,=2 f,
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As a result, FM systems are far better than AM ones; either in terms of its larger bandwidth or
its higher immunity against random noise. This last permits to say there is virtually no
interference picked up in the FM receiver.

1-3-2) Phase modulation:

1-3-2-1) Expression of phase modulated sinusoidal signal:

As we have already seen, phase modulation and frequency one are closely linked together,
only in this case the information signal is encoded linearly in carrier phase as indicate these

formulas:
Alt)= 4, coslw, - C, - SO))| 1.28
Where C,being the sensitivity of modulator.

The instantaneous phase and pulsation are given, respectively, by the following formulas:

o(t)=w,t-C,-S(t) 1.29
ds(t)

Hl=w —C 2 1.30
ol)=0,-C, =

In the case where S(¢) is cosinusoidal, the formula (1.28) becomes:

Alt)=4, [cos(a)a t-C, 4, cos(m,, t))J 1.31
So, the instantaneous frequency is written as follows:

fl)=f,+C,-A,- f,sin(w,1) 1.32
The quantity C, - 4, - f, = Af is called the frequency excursion (frequency deviation).
Therefore, the pulsation and phase excursion are written:

o(t)=w,t- C, 4, cos(m, t)= Ap=C, -4, 1.33

olt)=w, +27 C, 4, f, sin(w, 1) = Aw=aw, -C, -4, 1.34
The combination of the two relationships allows us to extract the same relation obtained

previously in frequency modulation:
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Af
Ap=— 1.35
S
By analogy with frequency modulation, the phase modulation index is written:
Af
B,=Ap= f_m 1.36

It should be noted that, contrary to what occurs for a FM signal, the PM index is independent

from the modulating signal frequency.

It is then possible to rewrite the PM signal expression on the form below:
Alt)=A4, [cos(a)a t-p, cos(m,, t))J 1.37
The time and frequency domain of PM signal are identical to FM one.

The table below presents the main characteristics of FM and PM signals.

modulation instantaneous instantaneous
Ap Af
index phase frequency
Vv, A4, )
FM ﬁf = f wﬂt+ﬁf Sln(a)mt) fa +ﬂf fm COS((Umt) Agp:ﬁf Cf Am

PM | B,=v, A4, |aojt-p, cosl@,t)]| f,+p, f,sin(w,t)| Ap=8, | C, A,f

pmJm

Table 1.2: Comparison between FM and PM [12].

These electrical signals and others can be transformed, using a piezoelectric transducer, into
ultrasonic waves. In the next chapter, we will see the propagation of these waves in elastic

media and their influence on the optical characteristics of these last.
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CHAPTER 11

THE ULTRASOUND EFFECT ON REFRACTIVE INDEX

2-1) Introduction:

As stated in the previous chapter, some electrical signals can be transformed to ultrasonic
waves using a piezoelectric transducer. In this chapter, we will study the effect of ultrasound
propagation on refractive index of medium. This effect is discussed in detail; piezoelectric
transducers are considered in section 2-3. The ultrasound propagation is the subject of section
2-5. This is followed by the presentation of the acousto-optic coefficients in isotropic and

anisotropic media and their effect on the index ellipsoid when an ultrasonic wave is applied.

2-2) History and Definition:

Acoustics, the science of sound, started as far back as Pythagoras in the 6th century BC, who
wrote on the mathematical properties of stringed instruments. Echolocation in bats was
discovered by Lazzaro Spallanzaniin 1794, when he demonstrated that bats hunted and
navigated by inaudible sound and not vision. Echolocation is the biological sonar used by
several kinds of animals. Echolocating animals emit calls out to the environment and listen to
the echoes of those calls that return from various objects near them. They use these echoes to
locate and identify the objects. In 1893, Francis Galton invented the Galton whistle, an
adjustable whistle is used to produce ultrasound and measure the hearing range of humans and
other animals, demonstrating that many animals could hear sounds above the hearing range of
humans. The first technological application of ultrasound was an attempt to

detect submarines by Paul Langevin in 1917.

Ultrasound is mechanical waves, can only propagate in elastic media (gaseous, liquid or
solid), with frequencies higher than the upper audible limit of human hearing. Ultrasound is
no different from sound in its physical properties, except that humans cannot hear it. The

upper audible limit varies from person to person and is approximately 20 KHz in healthy
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adults. Children can hear some high-pitched sounds that older adults cannot hear, because in
humans the upper limit pitch of hearing tends to decrease with age. The sounds have been
classified compared to the reactions of the human ear. We distinguish: Infrasound, sound,

ultrasound and hypersound as indicated in figure (2.1).

Infrasound Sound Ultrasound Hypersound

l I I I >
>

0 20 20.10° 10° £, (Hz)

Figure 2.1: Acoustic waves spectrum

Not to be confused ultrasonic with Supersonic. At the beginning of the 20th century, the term
"supersonic" was used as an adjective to describe sound whose frequency is above the range
of normal human hearing. The modern term for this meaning is "ultrasonic" and the term of
supersonic is limited to describe the objects speed that is between 1000-1500 km/h in dry air.

Speed greater than five times the speed of sound is often referred to as hypersonic.

2-3) Transducers:

The ultrasonic wave production is done by transducers that convert mechanical, magnetic or
electrical energy into ultrasonic energy [15].
Generally, the transducers are classified into three categories:

- Mechanical transducers.

- Magnetostrictive transducers.

- Piezoelectric transducers.
At first, all ultrasonic waves were produced by mechanical transducers. Afterwards,
magnetostrictive transducers were used to generate them, where some materials change its
size slightly when they are exposed to a magnetic field. The use of mechanical and
magnetostrictive transducers remained limited due to the weak frequency and energy.
Nowadays, the term transducer typically refers to piezoelectric transducers, where the most of

the commercial ultrasonic transducers are based on piezoelectric effect. These last are
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discovered by the brothers Pierre Curie and Jacques Curie in 1880, but only in the 1950s
manufacturers begun to use the piezoelectric effect in industrial sensing applications. Since
then, this principle has been increasingly used, and has become technology with excellent
reliability.

- The piezoelectric effect is based on the piezoelectric crystals properties, where these last
change size and shape crystals when a voltage is applied. Alternating current voltage makes
them oscillate at the same frequency which permits to produce ultrasonic wave [41]. This

mechanism 1s known as inverse piezoelectric effect. Vice versa, the direct piezoelectric effect

converts mechanical energy into electrical one as indicated in figure (2.2).

@ h @ N
L L+AL

A) Inverse piezoelectric effect: an ultrasound is collected when a tension is applied.

B) Direct piezoelectric effect: a tension is collected when a force is applied.

Figure 2.2: Inverse and direct effect representation [16].

Since piezoelectric materials generate a voltage when force is applied on them, they can also
work as ultrasonic detectors. Thus, the piezoelectric transducers can be divided into three
broad categories: transmitters, receivers and transceivers. Transmitters convert electrical
signals into ultrasound, receivers convert ultrasound into electrical signals, and transceivers

can both transmit and receive ultrasound.
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When a piezoelectric material is placed in an electrical field of frequency f;, its dimensions

vary with the latter. This phenomenon makes it possible to generate ultrasonic waves of

frequency ( f, = f,) as indicated in figure (2.3).

Electrical field f; ~ —| Piezoelectric material | ——— Ultrasonic wave f,

Figure 2.3: Piezoelectric transducer
In order to increase this deformation efficiency (the ultrasonic waves intensity), the excitation
frequency f, must be equal to the mechanical resonance one f, of the piezoelectric material

which is given by the following expression [18]:

Vv
= 2.1
/. 2L
Where:
V' : Ultrasonic velocity in the piezoelectric material.

L: The piezoelectric material thickness.

The piezoelectricity phenomenon appears generally in crystals devoid of symmetry center
(noncentrosymmetric). Indeed, of the 32crystal classes (Appendix 6), 21 are
noncentrosymmetric, and of these, 20 exhibit direct piezoelectricity (the 21* is the cubic class
432) [16]. This division is an elementary consideration in crystallography and this information
1s widely tabulated in [19]. These piezoelectric crystals lose this property when the

temperature exceeds the Curie temperature 7. . In this case, we say that the crystal is found in

a Para-electrical or non-polar state [16].

2-4) Ultrasounds Applications:

Ultrasound is used in many different fields:
- Industrially, ultrasound is frequently used in the nondestructive testing of products and

structures. It is used also to detect invisible flaws and to measure the thickness of objects. For
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example, by measuring the time between sending a signal and receiving an echo, the distance
of an object can be calculated.

- Ultrasound is widely used in systems which evaluate targets by interpreting the reflected
signals. For instance, a common use of ultrasound is in underwater finding; this use is also
called Sonar. An ultrasonic pulse is generated in a particular direction. If there is an object in
the path of this pulse, part or all of the pulse will be reflected back to the transmitter as an
echo. By measuring the difference in time between the pulse being transmitted and the echo
being received, it is possible to determine the distance.

- It also used in cars as parking sensors to aid the driver.

- A common ultrasound application is an automatic door opener, where an ultrasonic sensor
detects a person's approach and opens the door.

- Ultrasound imaging or sonography is often used in medicine.

- Animals such as bats and porpoises use ultrasound for locating prey and obstacles

(Echolocation), they can detect frequencies beyond 100 kHz, possibly up to 200 kHz.

2-5) Ultrasound propagation:

All material substances are comprised of atoms, which may be forced into vibratory motion
about their equilibrium positions. When the medium particles are stressed in tension inferior
its elastic limit, internal restoration forces arise that leads to the oscillatory motions of the
medium particles. Ultrasound propagation is focused on particles that contain many atoms that

move in unison to produce a mechanical wave which propagate in many modes [14].
2-5-1) Propagation modes:

In solids, Ultrasound waves can propagate in many modes that are based on the way the
particles oscillate. Longitudinal and shear waves are the two modes of propagation most
widely used in solids. The particle movement responsible for the propagation of longitudinal

and shear waves is illustrated below:
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Figure 2.5: Shear waves.

In longitudinal waves, the oscillations occur in the direction of wave propagation. Since
compressional and dilational forces are active in these waves, they are also called pressure or
compressional waves. They are also sometimes called density waves because the particle
density fluctuates as they move.

In the transverse or shear wave, the particles oscillate at a right angle or transverse to the
direction of propagation. Shear waves require an acoustically solid material for effective
propagation, and therefore, are not effectively propagated in materials such as liquids or
gasses [ 14].

As mentioned previously, longitudinal and transverse waves are most often used in practical.
However, at surfaces, various types of elliptical or complex vibrations of the particles make
other waves possible. Some of these wave modes such as Rayleigh and Lamb waves are also
useful.

The table below summarizes many, but not all, of the wave modes possible in solids.
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Wave Types in Solids Particle Vibrations
Longitudinal Parallel to wave direction
Transverse (Shear) Perpendicular to wave direction
Surface Wave - Rayleigh Elliptical orbit
Plate Wave - Lamb Complex vibration
Plate Wave - Love Complex vibration

Table 2.1: Wave modes possible in solids [14]

Longitudinal and transverse waves were discussed on the previous page, so let's touch on
surface and plate waves here.

Surface waves travel the surface of a relatively thick solid material penetrating to a depth of
one wavelength. Surface waves combine both a longitudinal and transverse motion to create
an elliptic orbit motion. Surface waves are generated when a longitudinal wave intersects a
surface near the second critical angle and they travel at a speed close to the shear wave one
(see section 2.6.3). Plate waves are similar to surface ones except they can only be generated
in materials a few wavelengths thick. Lamb waves are complex vibratory ones that propagate

parallel to the surface [18].

2-5-2) Position, velocity and pressure of particles in material:

In the previous section, it was pointed out that sound waves propagate due to the vibrations or
oscillatory motions of particles within a material. An ultrasonic wave may be visualized as an
infinite number of oscillating masses or particles connected by means of elastic springs. Each
individual particle is influenced by the motion of its nearest neighbor and its restoring forces.

This restoring forces is described by Hooke's Law [14].

Hooke's Law, when used along with Newton's Second Law can explain an ultrasound
propagation. Newton's Second Law says that the force applied to a particle will be balanced
by the particle's mass and its acceleration. Mathematically, let’s consider a sinusoidal plane

ultrasonic wave propagating in the direction x. The particles of the medium vibrate around an
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equilibrium position with the same frequency of ultrasonic wave. The differential equation

that describes this vibration is [17]:

0’ X (x.t) _p O’ X (x.)

or’ ox’ 22
Where:
X(xz): Particle position of according to time and space.
x : Propagation direction of ultrasonic wave.
V. Ultrasonic wave velocity.
The solution of this differential equation is given by the following formula:
X(xt)= X,.sin(w,f - k,x) 23

Where:

X, : The vibration amplitude.

27 .
k = /1—: Ultrasonic wave vector.

a
a

o, =2 f,: Ultrasonic wave pulsation.

From equation (2.3), we remark that all the points situated at the same abscissa x are in the
same vibratory state; they are called in phase and constitute a wave surface which is in this
case plane [18].

The particle velocity is then given by:

X'(x,1)= % = X, w, cos(w,t -k x) 24

The ultrasonic pressure variation in a given point is related to the particle velocity in the
medium by equation [15]:

Ap(x,t)=p, V X' (x,2). 2.5
The ratio of the pressure to the velocity at a given point is then equal to the product of the

initial density of the medium by the wave velocity, this ratio is constant [15]:

Bple,t) NG 2.6
X'(x,1)
This equation is often called the Ohm law, in acoustics, and the preceding ratio is called the

acoustic impedance Z of the medium [15].
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Therefore equation (2.6) becomes:
Ap(x,t)=Z X, w, cos(w,t -k, x) 2.7
Acoustic impedance is important in the determination of transmission and reflection

coefficients at the boundary of two materials having different acoustic impedances, as it will

be indicated in section (2.6.2).
2-5-3) Ultrasound velocity:

Within a given material, ultrasound always travels at the same speed no matter how much
force is applied when other variables, such as temperature, are held constant. By replacing

equation (2.3) in equation (2.2), we obtain:

4, = 2.8
Ja

Among the properties of ultrasonic waves are wavelength, frequency and velocity. The
wavelength 4 is directly proportional to the wave velocity and inversely proportional to the
wave frequency f, . As can be noted by previous equation, a change in frequency will result in
a change in wavelength and the velocity remains constant in the same material.

Of course, in different materials, ultrasound does travel at different speeds. This is because
ultrasound speed depends on the initial density p, and the elastic constants C (Appendix 4),

both are different for different materials. The general relationship between the ultrasound

speed, density and elastic constants is given by the following equation:

V= |— 2.9
Po

This equation may take a number of different forms depending on the type of wave
(longitudinal or shear). The typical elastic constants of a material include (Appendix 4):

- The Modulus of Elasticity (Young's modulus) E.

- The Modulus of rigidity (Shear modulus) G .

- The Bulk Modulus K .

- Poisson's Ratioo .
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- The Lamé parameters: Lamé's first parameter G,

Lamé's second parameter G, =G
When calculating the velocity of a longitudinal wave, Young's Modulus and Poisson's Ratio
are commonly used. When calculating the velocity of a shear wave, the Lamé parameters are
used.
It must also be mentioned that the elastic constants C in the above equation are the same for
all directions within isotropic material. However, most materials are anisotropic and the

elastic constants differ with each direction [17].
2-5-4) Ultrasound propagation in gases and liquids:

Ultrasound propagates in gases and liquids in the form of longitudinal waves [15]. The

differential equation which describes the particles vibration is written as follows:

X Ko'X

== 2.10
ot  p, ox’

Where:
K : Is the Bulk Modulus.
From equations (2.2) and (2.10), we deduce that the longitudinal velocity of the ultrasonic

wave is:
vV, = |— 2.11

The ultrasound speed within a material is a function of the material properties and is
independent from the ultrasound amplitude.

¢ In the case of gases, the density varies as a function of temperature, so that:

p, =10 2.12

1+aT
a: The coefficient of volumetric expansion

Therefore the relation (2.11) becomes:
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v, = J+ar) X 2.13
Po

In dry air (0% humidity) the previous formula becomes as follows:

T
v, =331.3 )1+
273.15

It can be deduced from equation (2.13) that the ultrasonic velocity in the gases varies

proportionally with the square root of the temperature as indicated in table (2.2) and in figure

(2.6) [22].

Temperature | Y clocity Dke nsity
reoy | )| (%)
35 351.88 1.1455
30 349.02 1.1644
25 346.13 1.1839
20 343.21 1.2041
15 340.27 1.2250
10 337.31 1.2466

5 334.32 1.2690

0 331.30 1.2922
-5 328.25 1.3163
—10 325.18 1.3413
—15 322.07 1.3673
—20 318.94 1.3943

Table 2.2: Effect of temperature on ultrasound speed in dry air
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Figure 2.6: Speed of sound in dry air vs. temperature.

300

The table below gives the ultrasonond velocity, density, and acoustic impedance of a few

gases at 0 °C [15].

Velocity Density Impedance
Gas (%) (k% 3) (k% Zsj
Hydroiodic acid 157 5.7 900
Chlorine (CL,) 206 3.2 660
Carbon dioxide (CO, ) 258 2.0 520
Hydrochloric acid (CLH) 296 1.64 485
Air 331 1.3 430
Helium 970 0.18 174
Hydrogen (H,) 1,260 0.088 110
Argon 319 1.781 568
Nitrogen 334 1.251 418
Ethylene 317 1.26 400
Methane 430 0.717 308
Neon 435 0.9 392
Oxygen 316 1.429 452

Table 2.3: Ultrasound velocity, density and acoustic impedance of some gases
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% In all liquids, except water, the ultrasound velocity is decreasing as a function of
temperature. In water, however, the ultrasound velocity increases with temperature to reach a

maximum at about 80 °C [15] as indicated in figure (2.7).

1560

1540

1520

1500

1480

Speed (m/s)

1460

1440

1420

14005 20 20 60 80 100

Temperature (° C)

Figure 2.7: Ultrasound speed in water vs. temperature

Table (2.4) gives the ultrasonic velocity, density, and acoustic impedance of some liquids.

Liquid Temperature | Velocity Density Impedance
oC (%) (k%3)*103 (k%zsj*loé
Chloroform (CH; CL) 20 1,000 1.49 1.49
Metal alcohol (CH; OH) 20 1,120 0.79 0.89
Carbon sulphide (CS,) 20 1,160 1.26 1.46
Ethyl alcohol (C,HsOH) 20 1,180 0.79 0.935
Petroleum (C;Hg) 15 1,330 0.70 0.931
Water 17 1,430 1 1.43
Sea water 17 1,510 1.03 1.56
Mercury 20 1,450 13.6 19.7
Glycerine 20 1,920 1.26 2.42
Benzene 20 1,320 0.879 1.16
Ethanol 20 1,170 0.789 0.934

Table 2.4: Ultrasound velocity, density and acoustic impedance of some liquids [15]
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2-5-5) Ultrasound propagation in solids:

The ultrasound propagation in gases and liquids is limited in longitudinal waves, since these
media cannot withstand shear stresses. In solids, however not only the compressive forces but

also the shear forces. This is why, alongside longitudinal waves, transverse waves can propagate.

The differential equations which describe the particles vibration in both longitudinal and
transverse directions are written as follows [15, 18]:

0’°X, G +2G, 0°X,
o’ p X

2.14

’X, G, X,

. 2.15
or*  p ox’

Where:
X, et X,: Particles motion in two directions.

G, et G,: The Lamé parameters.

Eo
(1+o)1-20)

E
2(0+0)

2

o : Poisson's Ratio.
E - The FElasticity Modulus (Young's modulus).

From equations (2.2, 2.14 and 2.15), we can deduce that the longitudinal and transverse ultrasonic

wave velocities are:

VL:\/G1+2G2 :\/( E(l-o) )16

P 1+o)1-20)p

G E
V.= |2 | = 2.17
"V V2p(+o)
Where:

V, : Longitudinal velocity.

V, : Transverse velocity.
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It should be noted that the longitudinal velocity is always greater than the transverse one.

2(l-o

- 2.18
(1-20)

V,="V;

Table (2.5) gives the ultrasonic velocity, density, and acoustic impedance of some solids.

Solid Velocity V, Density Impedance
o (/) (k%s)*lm ("%zsj*loﬁ
Steel 5,900 7.8 46.02
Aluminum 6,260 2.7 16.90
Silver 3,600 10.5 38.00
Copper 4,700 8.9 41.80
Nickel 5,630 8.8 49.50
Cast iron 4,600 7.2 33.12
Brass 3,830 8.5 32.55
Magnesium 5,800 1.7 9.86
Gold 3,240 19.3 62.5
Bone 4,000 1.9 7.60
Lead 2,160 11.4 24.62
Quartz 5,720 2.65 14.4
Tungsten 5,460 19.1 104.2
Uranium 3,370 18.7 63.09
Glass (crown) 5,660 2.5 14.15
Zinc 4,170 7.1 29.2

Table 2.5: Ultrasonic velocity, density and acoustic impedance of some solids

From these tables, one can deduce that: the ultrasound speed varies from substance to
substance. Ultrasound travels most slowly in gases, it travels faster in liquids and faster still
in solids. For example, ultrasound travels at 331 m/s in air, it travels at 1,430 m/s in water (4.3
times as fast as in air) and at 5,120 m/s in iron. Exceptionally, in stiff material such as
diamond, ultrasound travels at 12,000 m/s which is consider the maximum speed that
ultrasound can reach it [22]. It is of interest to note that the velocity of surface waves, which

are guided by the medium boundaries, is given by [15]:

, _087+1.120 [G,

s

2.19
l+o Lo
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2-6) Characteristics of ultrasonic wave propagation:

When we studied the propagation of ultrasonic waves in the different elastic media, we did not
take into account the attenuation phenomenon on the one hand and on the other the reflection

and refraction phenomenon which appear at the boundaries of two media.
2-6-1) Ultrasonic waves attenuation:

When ultrasound travels through a liquid, its intensity diminishes with distance. In idealized

materials, ultrasound amplitude remains constant. The differential equation describing the

plane ultrasonic wave propagation in this medium is:
0’0 _,,0%0

2.20
ot? ox?

Where:
O : The potential energy of the ultrasonic wave.

Natural materials, however, all produce an effect which further weakens the ultrasound. This
further weakening results from scattering and absorption. Scattering is the reflection of the
ultrasound in directions other than its original propagation direction. Absorption is the
conversion of the ultrasound energy to other forms of energy (heat). The combined effect of
scattering and absorption is called attenuation. Ultrasonic attenuation is the decay rate of the
wave as it propagates through material [22].

If we take into account the ultrasonic wave attenuation, we can then demonstrate that the

preceding equation becomes:

2 2 ! 3
a®=Vza®+3(77+77) PRC)

ot* o’ 4p ox*ot 221
Where:
n, n': Kinetic and mass viscosities respectively.
The amplitude change of a decaying plane wave can be expressed as:
©=0,exp(io,t—ax) 2.22
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In this expression ©, is the unattenuated amplitude of the propagating wave at some location.
The amplitude © is the reduced amplitude after the wave has traveled a distance x from that
initial location. The quantity « is the attenuation coefficient of the wave traveling in the x-

direction which is presented by the following relationship:

' 2
o= 2lnrn)e; 223
3 pV

Really, the absorption coefficient values & are not precise and it is Kirchhoff, who first,

showed that we must take into account the energy losses due to the transmission of heat in the

medium. Under these conditions, the absorption coefficient is then given by:

2
RSN T Y el 2.24
2pV7 |3 C

P
Or:
k' : Heat conductivity of the medium.

C,: Heat at constant pressure.

Therefore, the ultrasonic intensity expression as a function of distance is given by:

I,=1,exp-2ax. 2.25

- In viscous liquids, such as glycerine, absorption is mainly determined by the viscosity

coefficient 77, but in less viscous liquids such as benzene, the viscosity coefficients’ is the
most important. In the case of water, it is necessary to take into account both 7 and r'.

- It is of interest to note that the attenuation is generally proportional to the square of
ultrasound frequency that means acoustic losses are much higher in liquids than in solids. So,
the improved efficiency can only be realized at relatively low frequencies. For water

£, <50 MHz [33].
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The table (2.6) gives the absorption coefficient values for some media.

Medium a(dB/m)
Steel 5-50
Aluminum 1-5
Water 1
Cast iron 20-200
Grease 100-500
Brass 50-200
Muscle 200-500
Bone 5000-20000
Skin 500-2000
Plexiglass 500

Table 2.6: Absorption coefficient for longitudinal waves (f, = 2MHz ) [18]

- It should be noted that the quoted values of attenuation are often given for a single
frequency, or an attenuation value averaged over many frequencies may be given. Thus,
quoted values of attenuation only give a rough indication of the attenuation and should not be
automatically trusted. Generally, a reliable value of attenuation can only be obtained by

determining the attenuation experimentally for the particular material being used [14].
2-6-2) Reflection and transmission of ultrasonic wave:

Ultrasonic waves are reflected at boundaries where there is a difference in acoustic
impedances of the materials. This difference in Z is commonly referred to as the impedance

mismatch. The greater the impedance mismatch, the greater the percentage of energy that will

be reflected at the interface.

Let’s consider an ultrasonic wave passes through an interface between two materials at

an oblique angled,, as indicated in figure (2.8). These materials have different acoustic

39



CHAPTER 11 THE ULTRASOUND EFFECT ON REFRACTIVE INDEX

impedances Z and Z,, so the incident ultrasonic wave is partially reflected and partially
transmitted. This also occurs with light, which is why objects seen across an interface appear
to be shifted relative to where they really are.

In order to determine the propagation direction of reflected and transmitted waves, it is
enough to use the geometric laws similar to those of the light “Snell's law”. We can
demonstrate the equality between the ratio of material velocities V| and ¥, and the one of

the sine's of incident ¢, and refracted 9, angles. The below formula presents this equality:

sing, V.

: 2.26
sind, ¥,

On the contrary, the reflected wave is propagating at the same angle as the incident one

because the two waves are traveling in the same material, and hence have the same velocities.

Medium 1

Medium 2

Figure 2.8: Reflection and transmission of ultrasonic wave at an interface

The amount of reflected and transmitted waves is determined using the same collusion

principle of two balls which states that: the particle velocity X'(x,z)and particle pressure
plx,z)must be continuous across the boundary.
If the indices i,7 and ¢ refer to the incident, reflected and transmitted waves respectively, the

reflection R and the transmission 7' coefficients are given by:
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2
R Z,cos80, —Z, cosb, 297
Z,co0s6, + Z cos 0,
T 47,7, cos 6, : 298
(22 cos @, + Z, cos 6, )
Where:
0,, 6. and ¢, : Incident, reflected and transmitted angle respectively.
Z,, Z,: Designate respectively the acoustic impedances of media 1 and 2.
In normal incidence, the previous expressions become:
z,-7,\
R= ) 2.29
Z,+Z,
r= 240 2.30
(2,+2)

From these two equations, we can deduce that:

- When the acoustic impedances on both sides of the boundary are known, the fraction of the
incident wave intensity that is reflected or transmitted can be calculated. Multiplying the
reflection coefficient by 100 yields the amount of reflected energy as a percentage of the
original energy.

- The amount of reflected energy plus the transmitted one must equal the total amount of
incident energy, so the transmission coefficient can be also calculated by simply subtracting
the reflection coefficient from one.

- The reflection and transmission coefficients are often expressed in decibels (dB) to allow for
large changes in signal strength to be more easily compared. To convert the intensity or power
of the wave to dB units, take the log of the reflection or transmission coefficient and multiply
this value times 20.

- It is obvious that the reflection factor depends only on the impedance mismatch Z, — Z, . This

leads us to say that, in almost all cases of ultrasound transmission from a liquid or a solid to a

gas or vice versa, produces a complete reflection due to the impedance mismatch. Conversely,
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the ultrasound transmission from a solid to a liquid is more favorable since the impedance Z,

becomes comparable to the impedance Z, .

2-6-3) Mode conversion:

In the previous section, it was pointed out that when ultrasonic waves pass through an
interface between materials having different acoustic velocities, refraction takes place at the
interface. In the case when the two materials are solids, one form of wave can be transformed
into another form. For example, when a longitudinal wave hits an interface at an angle 6,
some of the energy can cause particle movement in the transverse direction to start a shear
wave as presented in figure (2.9). Hence, mode conversion occurs when a wave encounters an
interface between solids of different acoustic impedances and the incident angle is not normal

to the interface.

Figure 2.9: Mode conversion [15]
From this figure, one can observe that if the two media are solids, a longitudinal incident wave
will be reflected and refracted at the boundary to give in each medium a longitudinal and a
transverse wave.

What happens practically is that the shear wave 7, is not refracted as much as the longitudinal

wave L, . This occurs because shear waves travel slower than longitudinal ones as we have
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already shown in equation (2.18). Therefore, the velocity difference between the incident
longitudinal wave and the shear one is not as great as it is between the incident and refracted
longitudinal waves. In reflection, we notice that the longitudinal wave L. is reflected inside
the material. The reflected shear 7. wave is reflected at a smaller angle than the reflected
longitudinal wave. This is also due to the fact that the shear velocity is less than the
longitudinal velocity within a given material.

Theoretically, these two cases can be explained by the equation (2.26) which remains true for
shear waves as well as longitudinal ones. Hence the final formula is written as follows:

sinf sin@ sina sinf siny
VLi VLr VTr VTI VLt

2.31

When a longitudinal wave moves from a slower to a faster material, there is an incident angle

that makes the refraction angle, of longitudinal wave L,, equals 90°. This is known as the first

critical angle which can be found by putting y = 90°. So the first critical angle is equal to:
V,.
sinf,, =~ 2.32
VLt

At this angle of incidence the transverse waveT, propagates in the second medium, conversely

much of the acoustic energy presented by longitudinal wave travels along the interface and
decays exponentially. This wave is sometime referred to as a creep wave and it is not very
useful because it decays exponentially [14].
Beyond the first critical angle, only the shear wave propagates into the second material. For
this reason, most transducers use a shear wave so that the signal is not complicated by having
two waves present. In many cases, there is also an incident angle that makes the refraction
angle for the shear wave equals 90°. This is known as the second critical angle which can be
found by putting g =90°. So the second critical angle is equal to:

sin@,, = Vu 2.33

Tt

Slightly beyond the second critical angle, surface waves will be generated [14].
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2-7) Relationship between the ultrasound propagation and the optical characteristics of

the medium:

Before developing the relationship between the ultrasonic wave propagation and the refractive
index of the medium, we introduce here some notions on the permittivity and the electric

displacement field.
2-7-1) The permittivity:

The permittivity, usually denoted by &, describes the amount of charge needed to generate one

unit of electric flux in a particular medium. More specifically, a charge will yield more
electric flux in a medium with low permittivity than in a medium with high permittivity. Thus,
permittivity is the measure of a material's ability to resist an electric field, not its ability to
permit it as the name ‘permittivity’ might seem to suggest [35].

The permittivity study is not easy. In general, permittivity is not a constant; it can vary with
the frequency of the applied field, temperature, position and other parameters. In a nonlinear
medium, the permittivity can depend on the strength of the electric field. Permittivity can
present by tensor or value (anisotropic or isotropic medium) as well as it can take complex or
real values (Conducting or dielectric medium) [35].

The permittivity general expression is [36-38]:

e=¢,-6 =5, (1+N) 2.34
Where:
g, : The relative permittivity tensor which represents the dimensionless quantity.

N : The electric susceptibility tensor.

-9 2

g, - The vacuum permittivity equals1 Ll or ¢ — which represents the lowest
367 m Nm

possible permittivity 8=0.
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The relative permittivity of linear, homogeneous and anisotropic medium is represented by a
second rank tensor. However, it is of interest to note that, due to the tensor theory complexity
such as the high number of terms of some tensor, the Einstein summation convention and
other, we prefer to use the matrix form which is more practical and more simple. The
permittivity matrix is given as follows [30]:

&, &, &

& &y En 2.35

631 832 833
In general case, permittivity has 9 independent elements ¢,. However, we can choose a new

set of axes when the matrix can be always diagonal. Accordingly, the preceding matrix

simplifies to [31]:

e, 0 0
0 &, O 2.36
0 0 g,

The new coordinate axes are called the principal ones. Since, all of our analysis will be carried
out in this system and the original coordinates cannot take place here. Accordingly, the

anisotropic media can be classified as follows [30]:

Media Permittivity refractive Indices

Isotropic media & 00 1 oo

i 0 & O n?[0 1 0

En=ép=é&x=n 0 0 g 0 0 1
Uniaxial media

£, =Ep =Ny £ Ey =1, g 0 0 ng 00

. .. 0 & 0 0 n
n, : Ordinary refractive index 0 0 & 0 2
33 e
n, : Extraordinary refractive index.
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2
Biaxial media g 0 0 n, 0 0
0 & O 0 nyp O
T T 0 0 &5 0 0 77323

Table 2.7: Anisotropic media classification

2-7-2) The relationship between the electric displacement vector and electric field vector:

In 1865, Maxwell unified and expanded the laws of Faraday, Ampere, Gauss and Poisson into
a set of equations now known as Maxwell's equations. They express the relations between

temporal and spatial variations of electric and magnetic fields. These equations are written as

follows:
rotE=-28 2.37
ot
rot H =7+ 2 2.38
ot
divD=p 2.39
divB=0 2.40
Where:
B Magnetic induction (displacement) vector V.s/m*.
H: Magnetic field vector A/m.
D Electric induction (displacement) vector A.s/m”>.
E : Electric field vector V/m.
p : Free charge density C/m°.

J = o E : Vector of current density A/m”.

The first equation is generally known as Faraday's Law. The second one, excluding the term

(0D/ot), is known as Ampere's law. The two last equations are known as Gauss's law and
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Poisson's equation, respectively. Maxwell modified Ampere's law by including the
displacement term and showed that electric and magnetic fields are intimately connected and
inseparable, thus the study beginning of electromagnetic waves.

In conjunction with the above four equations, we need the so-called constitutive equations

which written in the case when the medium is linear and homogeneous as follows [31]:

D=¢E=¢,¢ E 2.41
B=uH=puu H 2.42
J=cE 2.43

Where:

4. : Is the relative permeability tensor which represents the dimensionless quantity.
o :Is the conductivity tensor A/(V.m)

4, - Is the vacuum permeability equals4.7.107 Vs or b
Am Am

- -
In order to determine the relation between Dand E in non-magnetic and anisotropic medium,

we consider a plane monochromatic wave of frequency @ and wave vector ¥ propagates in an
anisotropic medium characterized by a tensor ¢. The electric field vector associated with this
wave is then expressed, using the complex notation, by:
E:Eo-expi(—a) t+k r)
. - > -
The other components of the electromagnetic vectors D, B and H naturally present the same

spatio-temporal dependence. In this medium, where the magnetic induction vector and the

magnetic field one are collinear, Maxwell’s equations become:

—

rot E=—pu 2t 2.44
ot
ror =22 2.45
or
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divD=0 2.46

divH =0 247

Using the differential operator (Appendix 5), we can rewrite the previous equation as follows:

knE=uoH 2.48
;/\ ;I: —a)B 2.49
k-D=0 2.50
k-H=0 2.51

From equations (2.48 and 2.49), we can observe that: £E1 Hand kL H L D.

This last perpendicular can be confirmed using the two equations (2.50 and 2.51). In addition,

we remark that the vectors & , Dand E are coplanar, they all lie the same plane as presented
in figure (2.10) [31]:

D
A —
E

HI/ B
Figure 2.10: Vectorial representation of different components in anisotropic medium

- -
To determine the relation between Dand E, it is necessary and sufficient to combine the two

formulas (2.48 and 2.49), we find finally:
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Using the vector identity 4n [B/\ C j = B[A- C j - C[A- B j , we get:

Where E, is the component of the electric field parallel to 7, .

By replacing the equation (2.52) in (2.41), we can find after a long development an equation
which is called Fresnel’s equation. This latter enables us to determine the various possible

refractive indices using the index ellipsoid.

2.8) The electro-optic and the acousto-optic effect on the index ellipsoid:

In this section, we discuss the effect of the applied electric field on the index ellipsoid in

crystal. This is followed by the effect of ultrasound propagation.
2.8.1) The electro-optic effect:

The application of an electric field changes the dielectric tensor of a material, however small.
The electro-optic effect is in general defined by the change in the refractive index rather than
the change in the dielectric constant because of the usefulness of the index ellipsoid method in
solving problems. Thus the change in the index ellipsoid, due to an applied electric field, is

written as follows [31]:

AF}:G E,+ R, -E" 2.53

n.

1

Where:

r. : The Pockels electro-optic coefficients of rectangular matrix (6,3).

y

R, : The Kerr electro-optic coefficients of square matrix (6,6).
i and k: Indices vary from 1 to 6.

j :Index varies from 1 to 3.

E; : The electric field components.
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E k(z) : The two components product of the electric field. El(z) —E -E,EY=E _E, ...

y

This matrix formula can develop to the following form:

A(l/nlz) hi Ny N R, R, R; R, R R El(z)
A(l/ n;) o Ty Iy E Ry Ry, Ry Ry Ry Ry E§2)
A(l/n?) _| B T T El + Ry Ry Ry Ry Ry Ry E3(2) .54
A(l /n; ) T T Ty EZ Ry Ryp Ry Ry Ry Ry Eiz)
A(l/nSZ) sy Ty s } Ry, R, Ry Ry Ry Ry Es(z)
A(l /n ) o1 Teo T Ry Ry Ry Ry Res R E®

- The terms r,and R, are called respectively the linear electro-optic matrix coefficients

characterizing the Pockels effect and the quadratic electro-optic matrix coefficients
characterizing the Kerr effect.
- The Pockels effect doesn’t exist in centrosymmetric media, which possess a symmetry

center, because the Pockels coefficients go to zero (ry, :O) such as glasses, liquids and in

general isotropic media. Conversely, all piezoelectric materials lack symmetry center and in
this case the Pockels effect takes place. Concerning the Kerr effect, all materials are endowed
with it. The explicit form of the linear and the quadratic electro-optic matrices are given in
(Appendix 6) for the seven crystal systems [30].

- The magnitude order of the linear electro-optic matrix coefficients 7, is (10‘10 to 107 mpy~! ),
they can be positive or negative and they vary according to the wavelength of light. As regards
the magnitude order of the quadratic electro-optic matrix coefficients R, ranging from (10’15)
to (102 m*y2) [30].

- In the Kerr cell, we can use as a medium; lithium niobate (LiNbO;), ammonium dihydrogen

phosphate (ADP) and so on which are uniaxial media. In addition, liquids which are initially

1sotropic can become uniaxial anisotropic by using this cell.
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2.8.2) The acousto-optic or elasto-optic Effect:

A material deforms if subjected to an elastic stress field. The local density of the latter is
modified and consequently its optical properties are also modified. The acousto-optic effect
involves the first order changes in the optical properties of medium due to elastic strain [32].
In a manner analogous to that introduced in the case of electro-optic effect, the different
variations of the index ellipsoid coefficients are given by six-component column vector (6,1).
The latter is expressed as a function of the square photo-elastic matrix and the column vector

of strain as indicated below [30]:

1
A{—Z}py. .S, 2.55

Where:

p; - The photo-elastic coefficients of square matrix (6,6).

i and ;: Indices vary from 1 to 6.

S, The strain components.

This matrix formula can develop to the following form:

2
A(l/nl) Pu P P Pu Pis P

S
A(l/nj) Pyt Pn Dy Pu D Py || S
A(l/nf) | Ps1r P2 Py P Piss Pie Sy 2,56
A(l/l’lf) - Py Pa Pis Pas Pas Pas || Sa .
A(l / nsz) Psi Pss Dss Pss Pss Psg || Ss
A(] / ;162) Psi Po  Pe Pes Pes Pes )\ Se

- It should be noted that the matrix p is depended on a fourth rank piezoelectric tensor and an

elastic tensor by the Hooke law, of course, if we remain in the elastic domain.

- The terms of the matrix p are dimensionless quantity and their magnitude order is typically
107", we say often that the deformation of the index ellipsoid A(l/ nf) is equal to one tenth of

the material strain. The magnitude order of the piezoelectric tensor terms is 10 *m>.N ' . The
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explicit form of the photo-elastic coefficients is given in (Appendix 7) for the seven crystal
systems as well as the isotropic media.

- If we assume that the stress is applied only in one direction x, the first component variation

of the refractive index, which is in the same direction, is given by the following formula:

1
A(_QJ =pu S
n

1 1
=>——-—= S
”12 ng P9y

And as the amplitude of S, is very small, we can write then:

- ("1 _”02)(”21 +”o) =p, S,
nn

3

:>nl=n0+n?°p11 S, 2.57

2.8.3) Some applications of acousto-optic effect:

Among the most significant effects involving the photo-elasticity of materials, we cite: the
strain measurement inside a material by calculating the induced birefringence. The creation of
dynamic phase grating using acoustic waves which allows modifying the amplitude,
frequency and propagation direction of an incident wave. The latter is the subject of our thesis.
Other applications use this active phase grating as; Correlators, Spectrum analyzers and
heterodyne interferometers that go far beyond the thesis scope and the reader should consult

other references.

a) The strain measurement inside a material by calculating the induced birefringence:

Let us consider an isotropic silica block placed under uniform stress in the direction Ox. The

medium undergoes only one strain ;. The index variation, considering the silica photo-

elastic matrix mentioned in (Appendix 7), is given as follows.
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A(l/nlz) Pn P Pn 0 0 0 (5,
A(l/ng) P Pn P 0 0 010
A(l/nf) | P2 Po Py O 0 010 2.58
An2) |0 0 0 p, 0 00 '
AWa2)f |0 0 0 0 py 0|0

0

Alrnz)) L0000 0 p

Thus, the index variations are written:

3
n
_ 0
n =n, +7]711 S,
= 3

Ny
n,=n;=n, +7p12 S,

Therefore, the medium becomes uniaxial anisotropic and the birefringence is proportional to

the strain, which enables us to measure the stress inside the materials.

b) The creation of dynamic phase grating:

Another domain of application, which is the subject of our thesis, is the use of this photo-
elasticity to diffract light. Indeed, the ultrasonic sinusoidal wave propagation in the x
direction, in water, causes a spatio-temporal variation of its refractive index with the same
rhythm of the ultrasonic wave describing by equation (2.59). This variation gives rise to a

dynamic phase grating of pitch equal to the acoustic wavelength 4, .

Considering the photo-elastic matrix of water mentioned in (Appendix 7) and using the same
previous analysis, we demonstrate that the refractive index is no longer constant but it varies

sinusoidally as a function of time and space as indicated by the following formula:

3
n(x, t)=n, + n;‘)p“ S, sin(w,t — k,x)

3

= An(x, t)=n(x, t)—n, :n—zop11 S, sin(a,t —k,x) 2.59

Where:
n, : Average index of medium.

x : Propagation direction of ultrasonic wave.
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k,: Ultrasonic wave vector.
o, : Ultrasonic wave pulsation.
P, =0.31: The photo-elastic coefficient.

The variation amplitude of index is generally too weak 10~ and it is written as follows:

3
n

A110=7°p11 S, 2.60

The conservation principle of kinetic energy of the ultrasonic wave permits to write [15 p: 3]:

I, =%p0 V3s;. 2.61

Where:
I, : Ultrasonic wave intensity.

By combining the two equations (2.60-2.61), we obtain:

3
n 21
An, :—20 D, -
PV

= An _—ngpe \/1—7"
! \/p0V3 2

Putting:
6 2
Y 2.62
PV
1
= An, =,|M, 3“ 2.63

M, : Is called the figure of merit. It determines the inherent efficiency of material regardless
of the interaction geometry. As equation (2.62) shows, high efficiency materials must have
high merit coefficient, precisely a high refractive index and a low acoustic velocity [29].

We replace the previous equation in equation (2.59), we get:

n(t, x)=n, +1/M2 % sin(w, ¢ — k,x) 2.64

In the same manner, we can demonstrate that the refractive index variations in a medium
perturbed by an AM and FM signal are:
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AM signal [6]: n(x,t)=ny +An, [[1+ B, cos(@,t -k, x)|sin (w,t -k, x)] 2.65

FM signal: n(x,t)=n, + Any|sin(o, t—k, x+ B, sin (o, 1k, x)) 2.66
According to these relationships, we conclude that the ultrasonic wave propagation of

intensity /7, in the elastic medium causes a spatio-temporal variation of its refractive index.

This variation amplitude is proportional to the square root of the ultrasonic wave intensity.
In the next chapter, we will study the diffraction phenomenon which results from the

interaction of light with these elastic media.
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CHAPTER III

THEORETICAL STUDY OF ACOUSTO-OPTIC

INTERACTION

3-1) Introduction:

In the previous chapter, we have seen that the piezoelectric transducers were used to generate
ultrasound which has the same frequency of electrical signal supply, also the ultrasonic wave
propagation in elastic medium causes a spatiotemporal variation of its refractive index.

The interaction of this ultrasonic wave with electromagnetic one in this medium provokes the
diffraction phenomenon. The latter depends on the ultrasonic wave shape. In this chapter, we
will treat theoretically this diffraction phenomenon for three types of ultrasonic waves
(sinusoidal, amplitude modulated and frequency modulated). The first diffraction has been
explained by Raman and Nath whereas the second one was performed by Pancholy and
Parthasarathy and explained mathematically by Mertens and Hereman. In the last diffraction,
which presents our study, we will start from the diffraction relation to finally reach a very

important relationship between the diffraction orders positions and the modulating signal.

3-2) Principle of acousto-optic interaction:

An electrical signal A(f)emitted by a high frequency generator feeds a piezoelectric
transducer, which is immersed in liquid medium. The transducer converts the electrical signal
to an ultrasonic wave via piezoelectric effect. The output acoustic power delivered by the
transducer depends on the mismatch between the acoustic impedance of the transducer and the
liquid acoustic impedance as presented by the formula (2.29). The propagation of this
ultrasonic wave in the medium creates dilation and compression regions according to the
rhythm of the electrical signal. A compression causes an increase in the density of the medium
[40], and therefore of its refractive index. This variation in the index transforms the medium

which is initially homogeneous into an inhomogeneous medium.
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In the case where the ultrasonic wave is periodic, the medium may be considered as a moving
phase grating figure (3.1).

Electrical signal A(?)

Piezoelectric n=2
X ¥ / transducer

n=1
)
4 n=20
Z —
- — ' -1
I E,(z.1) —E,(x]z.1) E(X,z,1)

<+—> n=-2
Laser source L
z

Acousto-optic cell.

Figure 3.1: Acousto-optic interaction.

The interaction of a laser with this phase grating leads to the diffraction phenomenon. The

diffraction spectrum is observed at a distance “z” from the AO cell.

3-3) Theoretical study of the acousto-optic interaction:

In order to explain this diffraction phenomenon we can follow two methods. The first one is

based on the calculation of the spatial Fourier transform (FT) of the outgoing field £, (x, z,¢)

from the AO cell. This FT is written, in the case of the one-dimensional diffraction, as follows
[23]:

E(X,z,1)= JEO (x,z,)exp[—i2zv, x]dx 3.1

Where v, = represents the spatial frequency in direction x

Ay 2
In the second method, we calculate the phase derivative of vibratory term of the output field
E, (x,z,¢)in relation to spatial coordinates in order to find the wave vectors, in the two

directions, and in relation to time to find the luminous frequency.
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Let’s assume a plane monochromatic light wave of amplitude £, hits perpendicularly the
interaction medium. The complex light field immediately behind the AO cell is written [23-
24]:
E, (x,z,t)=T(x,t) E,(z,2).
=T(x,t) E expi(w t + k, z) 3.2
Where:
T(x,¢) : The phase transformation.

o : Luminous pulsation.

2

k, : Wave vector in vacuum.

0

A, : Wave length in vacuum.

z : Propagation direction of luminous wave.
The phase transformation of a medium perturbed by an ultrasonic wave is given by the

following formula:

T(x, t): exp—igo(x,t)
T(x,t)=exp—i%Z n(x,t) L 3.3

Where:
n(t, x) : The refractive index of the medium depends on time and space.
L: Interaction width.

By replacing equation (3.3) in equation (3.2), we obtain:

E (x,z,t)=E, exp—i(i—ﬁ n(x,1) LJ -expi(w t+k, 2) 34
0
This expression represents the distribution of the complex field immediately after the

interaction medium. It is directly linked by the ultrasonic wave n(x,7) which is proportional to

the electrical signal A(z).
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3-3-1) Theoretical study of the acousto-optic interaction in a medium perturbed by a

sinusoidal signal:

We have seen in chapter II, that the propagation of a sinusoidal ultrasonic wave in an elastic
medium causes a spatiotemporal variation of its refractive index. This variation is given by

equation (2.64):

n(x,t)=n, + An, sin(w,t - k,x)
Where:
n,: Average index of medium.

An, : Variation amplitude of refractive index.

x : Propagation direction of ultrasonic wave.

k,: Ultrasonic wave vector.
o, : Ultrasonic wave pulsation.

Therefore the field at the medium output, using the relation (3.4), is written [21, 29]:

2z n,L 27 An,L
Eo(x,z,t)zEl. expi(a)t+k0 z)expi(— 7’/1”0 jexpi[—ﬂi—no sin(a)at—i—”x]] 3.5

0 0

a

A term of the form expissin& can be developed in a series of the Bessel function of the first

kind (Appendix 3) using the Jacobi relation (Appendix 2):
exp— 5s1n§ ZJH £ )exp— ) 3.6

Where:

:m—nolJ and g: a)at—z—ﬂ-x
j’0 ﬂ’a

So the field at the medium output will be given by:

0 n=—ow /1(1 /10

¢ The calculation of diffracted order angle using FT:

E,(x,z,t)= E, expi(wt +k,2)

By replacing the equation (3.7) in equation (3.1), we obtain:
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I +ocexp[i nz—ﬂx} *exp{— ik, [Qﬂ dx
s ﬂ’a z
= E(X,z,t)=E.- expi[_ 27;7:0L J eXpi(koz)ieXpi(a)t ~na) Jn(ZﬂLAnoj

z
rwexp— i 27{i - ﬁ} x dx
- 2k A,

E(X,z,o:E,.-exp{- S j expi(kyz) 3 expi(t —ne) Jn(—z”ﬁf’%j

n=-m

n=—0

:>E(X,z,t)=Ei~expi(— 27 L ]-expi(koz)iexpi(a)t—na)at) Jn(27rLAnOJ 5[ X —ﬂj 3.8
A P dz A

Where 5(P) is the Dirac function (Appendix 1).

So each diffracted order angle is written as follows:

tan @, _X_nk
z A

a

3.9

¢ The calculation of diffracted order angle using the wave vector definition:

From the equation (3.7), we can deduce that the diffracted order field is given by the

following equation:

E,(x,z,t) = E, expi(@t +k,z)exp i(— 2”;0L j expin(—(a)at —i—ﬂxn -J, (MJ 3.10

0 j“O

a

The resultant wave vectork, , represented in figure (3.2), is obtained by deriving the vibratory
term with respect to spatial coordinates:

_0p(x,2,1) _ O(@—na,)t+nk,x+kz)

k. =nk, 3.11
ox ox
kZ:8¢(x,z,t):8((a)—na)a)t+nkax+koz):ko 312
0z Oz
=k, 3.13
Figure 3.2: The wave vector of the outgoing field £, (x,z,7) from the AO cell 60

when the ultrasonic wave is sinusoidal.
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Hence, the propagation direction is given by the following equation:

And luminous frequency is obtained by deriving the vibratory term in relation to time:

o 0ozt _e-ne)+nkx-kz) _

! ot ot ¢

From the previous discussion, we conclude:
1) Different diffraction orders will appear as indicated in figure (3.3) which will propagate in
the directions given by the below relation:

n 3.14

sin@, = tan0, =

a

2) The luminous frequency w, of the diffracted order, is shifted with respect to the initial

frequency » of the incident light:
w,=0-no, 3.15

Electrical signal A(?)

Piezoelectric
transducer

T <+—>
Laser source L
z

Acousto-optic cell.

Figure 3.3: Representation of the light diffraction by a sinusoidal ultrasonic wave.

3) The diffracted order intensity is given as follows:

3.16

=] :]JZ(M)

j'0
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3-3-2) Theoretical study of the acousto-optic interaction in a medium perturbed by

amplitude modulated signal:

The propagation of an amplitude modulated ultrasonic wave in an elastic medium causes a
spatiotemporal variation of its refractive index. This variation is given by the formula [6]:

n(x,t)=n, + An, [[1+ B, cos(w,t -k, x)]sin (o, -k, x)] 3.17
Where:
o,, o, : Pulsation of carrier and modulating wave respectively.

k,, k,: Wave vector of carrier and modulating wave respectively.
B, : The amplitude modulation index.

We can rewrite the previous equation on the following form:

n(x,t)z n, + AnO[ {1 + L, cos(fz;r (fmt - LJH sin (27[ [fat - iD]
A A
= n(x,t)z n, + An, sin (27r(fat - %D +An, p, cos(27r (fmt - %}] sin (27[ [fat - %D 3.18

Putting:
M, =An, 3.19

#y =Any B, 3.20

= n(x,t) = n, + 4, sin (27{]21 —%)J+ My cos(27z(fmt —%)J sin [27; Lfat —%‘J]

The phase is then written as follows:

o(x,t) = 2/1—7: L{n0 + 4 Sil’l(Zﬂ(fal‘ - /%D}
+ 2/1—7; L u, COS(Zﬂ'(fmt - %B sin(Zﬁ(fat - /%,D

:>(0(xal)=i—” Ln, + 1 i—ﬂ L Sil’l(27l’(fat—%]]

(U 0 a

+ 1, 2/1—7[ L cos(27z(fmt - %D sin(27z(fat - %)]
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2 2r . x
=>@(x,t)=—Ln, +u —Lsm{27r(fat——ﬁ
A 0 T4 y)

a

+ U, %L Sin(Zﬂ-(fat_%j—i_Zﬂ(fmt_%]] 3.21
0 a

m

+ U, % L sin(27{fat—%j—27z(fmt—%n
0 a

m

Therefore the field at the medium output, using the relation (3.4), is written [32]:

E (x,z,t)= E, expi(wt +k, z)-expi(— 2”/In°L j-expi {—2”/1& sin(27r(fat—%jﬂ
0 0

a

.exp{_% sin(Z;r(fat—%a]+27{fmt—%n} 3.22

m

S TR O B

Using the Jacobi relation, the previous formula becomes:

Eo(va,t)=Eiexpi(a)t+k0z)~exp[—i2ﬁZ—OLJ|:i exp[_l‘gzﬁ[fat_%n Jg[Z”Lﬂlﬂ

0 g=—n Ay

& ) X X Ly
-iqg2 t+f t————1| | J 2
q;o CXP( 1qgi7w (fa fm ﬁ«a /,Lm j j ‘I( 20 ]:|
_i exp| —i p2x| f,t—f P I 7L,
p==—0 p p ’ ! ﬁ’a ﬂ'm ! j’()

a

Putting:

2n Ly
V=
ﬂ:izﬁ(famfmt—i—iJ And | 4
/,i’a /,i’m 27[Lluz
CR
X X 0
=i 2| ft—f t——+—
Y (fa S ) im}
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= E,(x,2,t)= E, expi(wt +k, z exp(—ﬂ;r—oL]{ > exp-ga) Jg(Vl)}

£ oweoms{3)][£ ewt s3]

= E (x,z,t)= E, expi(ot + k, z)- exp(—iZﬂZ—oLj
0

3.23
< V. V.
{ >, expl-ga-qf-py) Jg(Vl)Jq(gszp(fﬂ
8,4, p=—®
So the field at the medium output can be written as follows:

S Y (%

Eo(x,z,t) Eexpl(cot+k z)-exp —i2zop|. z Jg(Vl)Jq =\ J,|=
Ay 8:4,4=—° 2 2 324

a

exp —i 27 [(q+g+p)ﬁt+(q—p)fmt—(q+g+p)%+(p—Q)/%j

¢ The calculation of diffracted order angle using FT:

By replacing the equation (3.24) in equation (3.1), we obtain:

E(X,Z,t):El- -eXpi[_ 27[;0L J expi(koz).exp i 272[ft—(q+g+p)fat_(q_p)fm t]
PR R I

= E(X,z,t):Ei-expiL— 27;”0L } expi( kyz)-expi 2z[ ft—(q+g+p)f,t—(g-p)f, 1]

0

Ny V. V)| : g+g+p) (p-q) X
g,q;_iJg(Vl)Jq(?zj Jp(fj}jweXp—zbz(_( ; )Jr(/1 ). /Iozjxdx

a m

2z n,L

:E(X,Z,M,»-expi(- j expilky2)-exp i 2 f1- (g + g+ D), 1~ (a - p) 1, 1]

3.25

0

L33 e

a m

From this equation, we can deduce that the diffracted order angle is written as follows:
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o, =2 | w1 3.26
Tz A A,
Where:
n:(g+q+p) et r:(q—p) 3.27

Hence, for each pair(n,7) there is a diffraction angle.

From the two previous equations, we can deduce:

qz(nﬂ;—g) o pz(n—;—g)

And as the values of (p,q)are integers, that means if (n+r)is even (g) is even too and if
(n+r)is odd (g) is also odd.

So each diffracted order angle is written as follows:

@nd, =| o+ r2- |2, 3.8
o R

a m

¢ The calculation of diffracted order angle using the wave vector definition:

From the equation (3.24) and using (3.27) we can deduce that the field of each diffracted order

is given by the following equation:

Ew(x,z,t)=Ei -expi[— 2”/{10]4 ] expi( kyz)-exp i 27z[ft—nfa t—-rf, t]

0

) ng (Vl)‘]n—r—g (EJ Jn+r—g (&j -C€Xp 127 ni_{_ I"L
e T 2 T 2 ﬂ'a /Im

The resultant wave vector ks, .., , represented in figure (3.4) is obtained by deriving the

3.29

vibratory term in relation to spatial coordinates:

_0p(x,z,t) Nowt+kyz—nw,t—rao, t+nk,x+rk,x)|

k
} Ox 0x 3.30
=nk,+r k,
k. :agp(x,z,t) _ 6[(a)t+k0 z-no,t-row,t+ nkax+rkmx)]:k0 331
oz Oz
:Z”’V :kxi:+kz;z):(nka +rkm)l:+k0;z) 332
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Figure 3.4: The wave vector of the outgoing field £, (x, z,7) from the AO cell

when the ultrasonic wave is amplitude modulated.

Hence, the propagation direction is given by the following equation:

tand, = ni+ rL Ay
’ A A

And luminous frequency is obtained by deriving the vibratory term in relation to time:

o = 0p(x,2,1) _ 8[(a)t+koz—na)at—rwmt+ nkax+rkmx)]
ot ot

=w—-nao,t—rw,t

From the previous discussion, we conclude:

1) Different diffraction orders will appear as indicated in figure (3.5) which will propagate in

the directions given by the below relation:

n,r

sinf, ~tanf, , = ni+ rL Ao 3.33
’ A A

2) The luminous frequency w, of the diffracted order(n,r) is shifted with respect to the initial
frequency »w of the incident light:

@, =0-Nnw,t—ro,t 3.34

n

Electrical signal A(%
ectrical signal A(2) Satellite

diffracted

Piezoelectric

/ transducer orders

Principal

diffracted

orders
Ee (Z’ t) °
[ ]
°
Laser source :
Acousto-optic cell.
66

Figure 3.5: Representation of the light diffraction by an amplitude modulated

sinusoidal ultrasonic wave.
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Hereby the formulas (3.33) and (3.34) one can observe that the diffraction spectrum consists
of:

- Principal diffracted orders obtained when » = 0,+1,+2,...and » =0 having the same directions
as in the case where the ultrasonic wave is not modulated.

- Satellite diffracted orders obtained for each value of » with r =+1,£2,..

Likewise, from the formula (3.29) we can distinguish between two symmetry properties in this
diffraction:

- The symmetry property of satellite diffracted orders with respect to the corresponding
principal diffracted order n which is obtained by changing (r) into (—7) in equation (3.29).

We can see immediately thatE, , = E, .. This signifies that the intensity of satellite diffracted

orders is symmetrical with respect to the corresponding principal diffracted order.

- The symmetry property of diffracted orders with respect to the non diffracted order (n=0)
which is obtained by changing (1) into(—#) and (r) into (-) in equation (3.29). By taking
into account the Bessel function priority, we can find after some elementary calculations that

E, =E,_ .So the whole diffraction is symmetrical with respect to the non diffracted order.

3-3-3) Theoretical study of the acousto-optic interaction in a medium perturbed by a

frequency modulated signal:

The propagation of a frequency modulated ultrasonic wave in an elastic medium causes a

spatiotemporal variation of its refractive index. This variation is given by the formula:

n(x,t) = ny + Any|sin(w, 1 -k, x + B, sin(w, t -k, X)) 3.35
Where:
o,, o, : Pulsation of carrier and modulating wave respectively.

k,, k, : Wave vector of carrier and modulating wave respectively.

a?’

B, : The frequency modulation index.

The phase is then written as follows:

o(x,t) = 2/1—” L |n, +An0[sin(a)a t—k,x+pB; sin(w, 1k, x))]] 3.36

0
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Therefore the field at the medium output, using the relation (3.2), is written [32]:

E,(x,z,t)= E, expi(wt + k, z)exp(—ii—” L noj

()

exp(— ii—” LAn, [sin(a)a t—k, x+ f,sin (a)m t—k, x))]]

0

Using the Jacobi relation, the previous formula becomes:

E, (x,z,t) =E, exp(— ii—ﬂL nojexpi(a)t +k, z)
0

3.37
iexp [—in (a)a t—k,x+p, sin(a)m t—k, x))] Jn[i—”LAno)

n=—ow 0
+¢ The calculation of diffracted order angle using FT:

By replacing the equation (3.37) in equation (3.1), we obtain:

E(X,z,t)=E,.~expi(— 27[/1n0L ] expi(koz)iexpi(wt—na)at) J{

0

ZHLAnO]

n=—0

0

J+wexp— in (— k,x+ B, sin (a)m t—k, x)) exp{— ik, (ﬁﬂ dx

z
= E(X,z,0)=E,- expi[— 2”/1”°L ] expi(k,2) Y expi (@t - naot) J n(zniAno]
0 n=—o0 0

r:exp— i ( (ko X n kajx +np, [sin (,t ) cos(k, x)—sin(k, x)cos(a, t )]j dx

1
Under some conditions [42-43], we can suppose that: C.OS
sin(k, x)~k, x

Hence, the previous integral becomes:

E(X,z,t): E;- expi[— 27;”0]4 ] expi(koZ)iexpi(a)t —na)al) Jn(—zﬂiAnO]
0 0

n=-w

+we:xp—i ki—nka x+np,|sinlw,t )k, x cos a)mt] dx

= E(X,z,t):El.-expi[— 27r/1n0L ] expi( koz)iexpi(a)t—na)at) Jn(

0

27 L An,
20

H=—00

exp—inf, [sin (a)m t ) ]~rwexp—i ( [ko X nkajx -np, k, xcos(a)m t )] dx
o - »
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= E(X,z,t)=E,- expi(— 27;’:0L j expi( koz)iexpi(a)t —nat) Jn(

n=—0w

27rLAn0j
A

exp—inf,[sin(w, ) ].f:exp—i27z [ZXZ_/%_’;& cos(m, ¢ )]x dx

m

= E(X,z,t)=E, .expi[_ 27;110[‘ j expi( kOZ)ioexpi(a)t nwi) Jn(27rLAnoj

' p g 3.38
exp-inf,fsin(o, 1) ].5[%2 T )J
So each diffracted order angle is written as follows:
an 0, )= 0)_ j o ﬂff cos(a, 1) 339

¢ The calculation of the diffracted order angle using the wave vector definition:
From the equation (3.37), we can deduce that the diffracted order field is given by the

following equation:

E (x,z,t)=E exp[— ii—ianojexpi(a)t +k,z)
3.40
exp [— in (a)a t—k,x+p; sin(w, t -k, x))] J{i.—izLAnoj

The resultant wave VectorI:n(t), represented in figure (3.6), is obtained by deriving the

vibratory term in relation to spatial coordinates:

_Op(x,t) 6((a)t+k0 z)—n(a)at—ka x+ﬂf sin(a)m t—k, x)))

k. =k, 3.41
Oz Oz

()= op(x,t) @t +k,z)-nle, t—k,x+ B, sin(w, 1k, x))

x - Ox - ox 342

= n(ka + Bk, cos(w, t—k, x))

Since the (k, x) value is very small compared to (w, ), the wave vectork, (¢) can be written as

follows:

k(€)= ()i, +k_ i, =n(k, + B, k, cos (@,  )ir+ ki, 3.43
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k,(t

0,(1)

k

z

k. (¢)

P

Figure 3.6: The wave vector of the outgoing field £, (x,z,¢) from the AO cell

when the ultrasonic wave is frequency modulated.

Hence, the propagation direction is given by the following equation:

tan 6, (¢)= X,0) = ”jo +n by cos(m, 1)
z a m

And luminous frequency is obtained by deriving the vibratory term in relation to time:

ooty ot +k z)-nlo, t—k, x+ B, sin(w, t—k, x)))
@)= or or
=w-no,-nf; o, cos(w, t)

From the previous discussion, we conclude:
1) A very important relationship that describes the diffracted order deflection as function of

time:
sin@, (t) ~tan @,(t)= n/l_lo+ n%cos (o0, 1)

X AX
— Sin@n(t): Xn(t): n med + n COS(G)m t)zg o +A0n COS(a)m t) 344

n
z z

Where A#, is the angular excursion and 6, (¢) represents the diffraction angles for n=0,%1, + 2,

+3.... as indicated in figure (3.7).

Electrical signal 4(%) Pif:ﬁ:éizgrlc o ’ 12 AX,

XZ med

|

Laser source

Acousto-optic cell.

Figure 3.7: Representation of the light diffraction by a frequency modulated 70

ultrasonic wave.
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2) This equation contains two parts; a constant part ¢,  which represents the angle of n”

diffracted order without modulation as shown in figure (3.8-a) and the second one, which
depends on time, describes theoretically the diffracted orders deflection around a central

position €, . of the scanned area as presented in figure (3.8-b).

15-

10_

o,(t
= (1) =
g s 8
r; al(t) @
g =)
) o
2 0 6, (¢) 2
© ©
5 g
5 4 0.() 5
Q (0]
g g
£ ol 0., (1) E ol
1, (¢)
5 T T T T T T T T ! 15 T T T T T T T T
0m 0B 010 015 02 0w 006 010 015 00
Tinefs] Tire[g
a b

Figure 3.8: Diffracted orders angles for n=0, =1, &+ 2 as a function of time for two cases:

(a) Ultrasonic wave without modulation (Af = 0) (b) Ultrasonic wave is frequency modulated (Af # 0)

3) It is obvious, from figure (3.8-b), that the diffracted orders positions vary in sinusoidal

manner with time, where (T, =1/f,) represents the period of the modulating signal as

presented in equation (1.2).

4) The angular excursion of each diffracted order A@, depends on two parameters; the

diffracted order number n and the frequency excursion Af as indicated in the following
relationship:

By Ay 3.45

AO, =n-

Furthermore, the angular excursion of the »” diffracted order is n times the first diffracted

order one, as presented by the following relationship:
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20— A6,
V

We note that, the same formula has been obtained by the reference [37] for the case of
Tellurium Dioxide TeO, (anisotropic material) taken as an interaction medium.
5) The mathematical expression of g, is given by the following formula (1.20):
Af
A

Combining this theoretical formula and the relationship given by equation (3.45), the

B,

frequency modulation index can be rewritten as follows [44-45]:

A .
_&_AS, ), 3.46
fm enmed “Jm

This last relationship indicates that is possible to obtain g, experimentally by a simple

By

measurement of A@, and 6, , (without modulation).
6) The luminous frequency w, of the diffracted ordern is shifted with respect to the initial

frequency » of the incident light:
w,t)=0-nw,—n B, w, cos(w, 1) 3.47

7) The diffracted order intensity is given as follows:

2nLAn{] 3.48

I, = [ian(
0

8) Using the equation (3.44), the scanning velocity of each diffracted orders is written as

follows:

X ()= Pal) 22,2 O (0, )= X

" sin (o, t) 3.49

n max

It is clear from the obtained equation that the scanning velocity varies; linearly according to
the frequency excursion as well as modulating signal frequency and sinusoidally according of
time as indicated in figure (3.9). Furthermore, the equation below shows that the scanning

maximal velocity of the »” diffracted order is n times of the first diffracted order one.

X' :n.X' :n.Z.ﬂoAf‘.—a)m

7 max 1 max V

3.50

72



THEORETICAL STUDY OF ACOUSTO-OPTIC INTERACTION

CHAPTER 111

2500

2000}~~~ — — — —
1500 — — — — -4 — — -

ZH 001="4 10} [s/wur] A3100[2A SuruULOg

0.01

0.008

0.006

0.004

0.002

ZH 00S="/"10} [s/mwr] A3100[0A SuruuedS

3
S ” ” ” ” ” i i ,
| | | | | | T
| T | | | |
I | | | | | | |
| ] T | |
| | | | | | | T
| | | | | |
i | | | | |
3 | I I I I I I
S i Etiti B T B —f==F =T - =T~
o | | | | | | | ]
| | | 1 T |
T | | | | | |
T | | | | | |
| | | | T |
| | | | | | | |
| | | T |
© T | | | | | | |
o)
| | | | | | |
| | T | | |
| | | | | | | |
| T | | | |
| | | | | | T
| | | | | |
| T | | | |
3 | | | | | | | |
3 e e e e —— k- b - — = — 4 — —
o | | | | | | | T
| | | | | i
| T | | | | |
| | | | | | |
| | | | |
| | | | | | | | =
| | | | T |
T | | | | | |
S | | | | | |
S I A I T T T "7 7
© | | | | | | | |
| | | T | |
T | | | | | | |
T | | | | |
| | | | | |
| | | | | | |
‘5 | | T | |
= [ I | | | | | |
o x | 1 1 1 1 1
ro) o~ 0 — [T} S) 0 — 0 o~ 0
S & S 3 & o

ZH 0001="4 103 [s/wwa] £1100]9A Suruuedg

0.01

0.008

0.006

0.004

0.002

Time [s]

73

The scanning velocity variation as a function of time for different

Figure 3.9

frequencies £, .



CHAPTER 111 THEORETICAL STUDY OF ACOUSTO-OPTIC INTERACTION

9) To calculate the scanning velocity in each spatial position of diffracted order without
knowing time it is enough to combine the two equations (3.44) and (3.49). The obtained
formula is presented below:

(Xn(t)—Xnmed J:(L(I)I _ 351

AX X'

n n max

This last relation presents ellipse equation which has; a center situated on abscissa axis and at

a distance of X from the center of reference (0, 0) and two diameters: the first one locates

nmed
on abscissa axis and its value is 4X, whereas the second is on ordinate axis and has value of

X' as indicated in figure (3.10).

nmax

5000
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3000

2000

1000

0

-1000

-2000

Scanning velocity [mm/s]

-3000

-4000

-5000
-50

Spatial position [mm]

Figure 3.10: Scanning velocity variation according to spatial position for each

diffracted order.
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It is clear from the obtained figure that the scanning velocity varies elliptically as a function of

spatial position, where it takes maximal value X', when diffracted order passes by central

n max

position of scanned area and reduces to zero at both extremities (X, ,.ac X min)-

During this chapter, we have confirmed that the intensity and the position of the diffracted
orders are constant when a sinusoidal ultrasonic wave is presented. Once this last is replaced
by amplitude modulated ultrasonic wave; the diffraction orders position remains constant and
also it was observed that besides these diffracted orders, the spectrum showed satellite
diffracted orders. Meanwhile, our theoretical study of the light deflection by a frequency
modulated ultrasonic wave was enabled us to establish a very important relationship between
the diffraction orders positions and the modulating signal. This last relationship showed that;

the scanning frequency is equal to the modulating signal frequency f, and the angular
excursion A6, doesn’t depend on the modulating signal frequency f, . Furthermore, for the n"

diffracted order, the angular excursion 46, is n times the first diffracted order one.

In the next chapter, we will try to confirm experimentally all results obtained previously.

75



CHAPTER 1V EXPERIMENTAL STUDY OF THE LIGHT DEFLECTION

CHAPTER 1V

EXPERIMENTAL STUDY OF THE LIGHT DEFLECTION

4-1) Introduction:

In preceding chapter, we have studied theoretically the diffraction phenomenon for three cases
of ultrasonic waves (sinusoidal, amplitude modulated and frequency modulated) and we have
succeeded in establishing a mathematical formula which allows us to determine; the diffracted

order position as a function of time, the scanning frequency and the angular excursion.

In order to check the proposed theoretical development, a series of experiments will be
performed in this chapter; the influence of the modulating signal frequency on the scanning
frequency for each diffracted order is considered in section (4-3-1), the influence of the
modulating signal frequency on the angular excursion of each diffracted order is the subject of
section (4-3-2). This is followed by the presentation of the relationship between frequency

excursion and angular excursion of the diffracted order.

4-2) Experimental setup:

Details of the experimental setup are given in Figure (4.1).

Alrl Al
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Figure 4.1: Experimental set-up

The experimental setup consists of:

1-He-Ne laser source (output power 30mW at A, =632.8nm) 2- Parallelepiped AO cell, 3- A
circular piezoelectric transducer (Panametrics INC, with 19 mm in diameter and with
£,=10MHz as a resonance frequency), 4- A transducer holder. 5- A frequency generator (FI
5500GA) with maximum frequency f,, ,..=25MHz, U,,,,=20 V and a modulation frequency
fm mar =20kHz, 6- An oscilloscope (Philips) with a maximum detectable frequency f,...
=80MHz, 7- An ultrafast photodiode (UPh) with a detection specter ranging from A=170 to
1100 nm, 8- A UPh holder, 9- An acquisition card, 10- A Computer, 11- A CCD Camera with
resolution 1034x779 pixel and a pixel size equals 4.65 umx4.65 um), 12- Screen.

The presented optical arrangement allows us to study the acousto-optical interaction using a
frequency modulated acoustical signal. An He-Ne laser beam illuminates in the z direction a
progressive ultrasonic wave inside a parallelepiped AO cell made of transparent glass and
filled with distilled water. A frequency modulated (FM) ultrasonic wave is generated by a
piezoelectric circular transducer made of LiNbO; and driven by a variable frequency
generator, where the carrier signal is sinusoidal and presents a high frequency f, equals
10MHz and a maximum amplitude U equals 20Vpp. The modulating signal in turn, presents a
variable frequency f,, .We assume, like Raman and Nath that ultrasound can act as a pure

phase grating. Vibrations of the piezoelectric transducer caused variations of the refractive
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index of the medium inside the AO cell. Hence, so the distribution of the refractive index is
expressed by equation (2.66).

Having left the AO cell, the intensity of the diffracted light in the far field can be observed at a
position z equals 4m, as shown in figure (4.1). The acquisition card which is connected to the
computer and to the ultrafast photodetector (UPh), as shown in figure (4.1-A) allows us to
obtain the scanning frequency of each diffracted order. Whereas its scanning excursion is
recorded by a CCD camera as illustrated in figure (4.1-B). The obtained figures of the
electrical signals and their respective deflected orders are presented in table (4.1) for different

modulating frequencies.

_— Moderate

odu allng Low frequency frequency

signa f, =0.1Hz f. =100 Hz
t=10s

=,

™ IZAT

{ Iz AT

FM electrical signal recorded
by a memory oscilloscope

- |kax,
Rkax, Tt 2AX,

Diffracted orders scanning
recorded bya CCD camera

Table 4.1: Presentation of FM electrical signals and their corresponding diffracted

orders scanning for low and moderate frequencies f,,
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From the obtained images, one can observe that the increase of the modulating signal
frequency leads to a faster variation of the instantaneous period, as well as the diffracted

orders scanning frequency. This can be displayed on the spectral plane by a luminous band.

4-3) Results and discussion

In order to check the proposed theoretical development, a series of experiments have been
conducted: the first one consists of observing the influence of a modulating signal frequency
fw on the scanning frequency fs for each diffracted order, the second consists of observing the
influence of the modulating signal frequency f,, and the frequency excursion Af on the

diffracted order angular excursion Ag,.

The perpendicularity between the ultrasound field and the light beam must be kept at an exact
value during the experiment. For this, two goniometers, with an angular resolution of 12°, are
placed in two perpendicular directions (y and z) to monitor the angular position of the
piezoelectric transducer. The perpendicularity is checked at maximum diffraction efficiency.
In addition, the UPh is mounted on a holder with two dimensionally moving benches with a

step of 10 um, along x and y directions.

4-3-1) Influence of the modulating signal frequency on the scanning frequency for each

diffracted order [46]:

The experimental setup shown in figure (4.1) is carried out in order to observe the effect of the
modulating signal frequency f,, on the scanning frequency fs for each diffracted order (n=+1,

12).

First, we start the experiment by feeding the transducer with an electrical signal without
modulation. The UPh is located at a distance z equals 4m from the parallelepiped AO cell and
exactly on the diffracted order position. Then, the previous electrical signal is frequency
modulated with a frequency excursion of A~2MHz and a modulating signal of f,,=100Hz. The

refractive index inside the AO cell takes consequently the form given by equation (2.66). Each
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diffracted order will deflect around its central position 6, ,..;. The obtained signal of the first

diffracted order intensity, recorded by the UPh, is presented in figure (4.2).

l'_—l
=z

a\

g T:=10ms

E‘: 19 Paglk 1% Peak 3% Peak
=

&

17

e

D

o

—

=}

u q
S

Time [s]

Figure 4.2: Recorded signal intensity of the first diffracted order vs time when the UPh

is situated in central position of the scanned area.

What happens practically is that the diffraction order oscillates around a central position with

a given period 7, =1/ f,. When the UPh is placed in the central position of the scanned area, it

would detect three peaks for two sweeps of the excursion range. The first peak represents the
intensity of the first diffracted order when it passes through the central position of the angular
excursion in +X direction. Equally, the second peak is the intensity of the same diffracted
order but when it returns back to the central position in the opposite direction. The third peak
is similar to the first situation. The measurement of time between the first and the third peak

corresponds to the scanning period (7, =10ms).

In order to check the exact scanning frequency value of first diffracted order, many
measurements have been conducted for different frequencies f,, and for each frequency three
UPh positions on X axis have been chosen: the highest reached position of the deflected order
(O1max), the lowest (0),,), and the medium (6,,,.;) one. The table (4.2) presents the obtained

values.
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The modulating signal frequency of | Measured scanning frequency fs[Hz]
the generator f,, [Hz] O 1max O 1min O 1med
0.10 0.098 0.097 0.099
1.00 0.970 1.050 1.000
10 0.888 10.010 9.780
100 105.000 103.500 100.000
1 000 1,000.000 | 1,040.000 | 1,040.000

Table 4.2: The scanning frequency values f; of the first diffracted order for different
positions of the UPh.

It is clear from the obtained results that the scanning frequency is very close to the modulating
signal one f,, and the relative difference between the two frequencies varies from 0 to 5%. We
note that the same results were recorded for the remaining diffracted orders.

To explain theoretically the obtained results, it is sufficient to consider equation (3.44). A
double excursion 2(6, ,uux — 0, min), takes place for time t=1/f,,. This means that, theoretically,
the scanning frequency is exactly equal to the modulating signal frequency, which is observed
experimentally in table (4.2).

In order to clarify what happens when the UPh moves from position to another, we propose to

see these recorded signals by acquisition card:
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Figure 4.3: Recorded signals intensity of the first diffracted order vs
time for different positions of UPh.
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4-3-2) Influence of the modulating signal frequency on the angular excursion of the

diffracted order [46]:

This experiment has been conducted in order to observe the influence of the modulating signal
frequency f,, on the angular excursion A6,. For this purpose the same electrical signal without
modulation, previously used, has been employed to measure the medium angle 6;,,., using a
micro displacement of the UPh holder. This last has shown that the value of this angle is to the
order of (4.25 107 rd). Then, we choose Af=2MHz and measure the maximum and the
minimum reached angles of the first diffracted order 6, and 6,,,;, respectively, for different
values of f,,. The diffracted light intensity was used as a tool to define the exact limits of the
deflected area. The table (4.3) and the figure (4.4) illustrate the obtained average values of the

deflected angles with their standard deviations.

Generator | 1% angular pnd angular | Average Standard Angular
frequency | measurement | measurement | values deviation excursion
(2] [rd .107] [rd .10°] | [rd.107] | [rd.107] [rd .10
fm 0, max 0, o 01 max Sdl max AHI = élmax - elmd
0.1 5.115 5.103 5.109 0.0084 0.859
1 5.125 5.115 5.12 0.0070 0.870
10 5.118 5.108 5.113 0.0070 0.863
100 5.12 5.11 5.115 0.0070 0.865
1000 5.115 5.113 5.114 0.0014 0.864
Generator | 1* angular 2" angular | Average | Standard Angular
frequency | measurement | measurement | values | deviation excursion
1] [rd .10 [rd .10%] | [rd.107] | [rd .10 [rd .107]
fm 0, in 0, min 51 min Sd 1min A91 = ‘91%1 - élmin
0.1 3.39 3.39 3.39 0 0.860
1 3.39 3.403 3.3965 0.0091 0.854
10 3.388 3.403 3.3955 0.0106 0.855
100 3.385 3.393 3.389 0.0056 0.861
1000 3.385 3.398 3.3915 0.0091 0.859

Table 4.3: Presentation of the angular excursion 46;, the maximal and the minimal

angle of the first diffracted order for 4f=2MHz and different values of 1,
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Figure 4.4: The angular excursion A6,, the maximum and minimum deflected angles of

the first diffracted order according to f,, .

It should be noted that the theoretical curves are plotted using equation (3.44) for an acoustic
velocity V equals 1488m/s. To generalize previous results, the same experiment was done for

the remaining diffracted orders as indicated in figure (4.5).

Theoretical curves —

Experimental curves <°c=°°°=°

10 4 ¢ ® ® M . HZmax
g 8] 2A0,
o -1 'y Py Py Py 'Y
E 6 HZmin
o
:::& b * * * /\ Hlmax
© 47 2A 6’1@
S 4 01 min
8 2
S B J
] o 4
e} @
g 2 27
9 J
T 44 - - - A 0 i
2 4 206, "
g 64 - - - " —Imax
= J . . - N )
£ o mi
= _8 i min
5 ] 200,
§ '10 _ [ ° ° ° [) eizrm
= T T T T T T T T T 1
g -1 0 1 2 3

b Log(f, [Hz])

Figure 4.5: The angular excursion A6,, the maximum and minimum deflected angles of
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From the obtained curves presented in figures (4.4) and (4.5), one can observe that the
experimental results are very close to theoretical ones. In addition, the maximum and the
minimum deflection angles are symmetrical to a central position 8,,,., of the diffraction order.
Moreover, the angular excursion doesn’t depend on the variation of the modulating signal
frequency. Furthermore, the angular excursion of the 2™ diffracted order is 2 times the first
diffracted order one, as presented by the following relationship:

AB, =n(A, Af V) =n-A8,

4-3-3) Influence of frequency excursion on the angular excursion of the diffracted order
[46]:

To conduct this experiment, the same previous optical arrangement was undertaken, except in
this case the modulating frequency f,, is constant (f,,= 100Hz) and the frequency excursion Af
varies by a step of 0.5MHz. The angular excursion of the first diffracted order is measured for

each value of Af as indicated in table (4.4) and in figure (4.6).

Frequency | Average | Standard | Average | Standard | Angular
excursion | values | deviation | values | deviation | excursion
[MHZ] | [rd 1077 | [rd .107] | [rd.107] | [rd.107] | [rd .107]

Af 01 max Sd| o 01 min Sd, 2-A0,

0 4.250 0 4.25 0 0.000

0.5 4.464 0.05 4.063 0.07 0.401

1 4.689 0.05 3.828 0.09 0.861

1.5 4.919 0.055 3.648 0.05 1.271

2 5.065 0.007 3.378 0.009 1.687

2.5 5.319 0.043 3.175 0.04 2.144

3 5.513 0.035 3 0.05 2.513

3.5 5.691 0.004 2.75 0.008 2.941

4 5.909 0.029 2.57 0.025 3.339

4.5 6.144 0.0155 2.335 0.018 3.809

5 6.356 0.026 2.138 0.029 4.218

5.5 6.513 0.010 1.925 0.01 4.588

6 6.765 0.021 1.713 0.007 5.052

6.5 6.981 0.026 1.5 0.04 5.481

7 7.266 0.023 1.255 0.05 6.011

Table 4.4: Presentation of the angular excursion 46;, the maximal and the minimal

angle of the first diffracted order for f,, =100MHz and different values of Af. 85
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Maximum and minimum deflected angle of first diffracted order
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Figure 4.6: Angular excursion Ag,, the maximum and minimum deflected angles of the

first diffracted order as a function of the frequency excursion Af.

To generalize these results for the rest of the diffracted orders, the same experiment was

undertaken. The obtained results are illustrated in figure (4.7)
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Figure 4.7: Angular excursion A, the maximum and minimum deflected angles of

each diffracted order as a function of the frequency excursion Af.
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The obtained curves show evidently a large concordance between theoretical and experimental
results. In addition, a linear relationship is observed between Af and A6, of the diffracted
orders, each pair of curves for the same diffracted order starts from a common point
corresponding to Af =A6,=0 (diffraction orders without deflection). The obtained linearity is

clearly justified mathematically using equation (3.45) where A8, and Af are linearly related.
4-3-4) Determination of the frequency modulation index using acousto-optic method:

In this experiment, a new method has been performed to determine with good accuracy a

frequency modulation index g, of an FM signal. This parameter is generally obtained using

an electronic spectrum analyzer [11].

The relationship (3.46), mentioned in chapter 3, indicates that is possible to obtain g,

experimentally by a simple measurement of A#, and 6, ,.; (without modulation). The

following table presents the values of S, obtained theoretically using the generator parameters

Af and f,, and experimentally using the values of Af, and 6, taken from the previous

experiment. The all results are summarized in figure (4.8).

Frequency Modulation First diffracted order Second diffracted order
excursion given | index given (+D (+2)
by the generator by the Measured | Measured | Measured | Measured
Af [MHz] generator frequency | modulation | frequency | modulation
B, excursion index excursion index
Af [MHz] B, Af [MHz] B,
0 0 0.000 0 0.000 0
0.5 5000 0.504 5035 0.514 5145
1 10 000 1.033 10 329 0.986 9 864
1.5 15000 1.574 15741 1.540 15398
2 20 000 1.918 19176 2.013 20 130
2.5 25 000 2.515 25153 2.448 24 484
3 30 000 2.972 29 718 3.012 30 124
3.5 35000 3.391 33 906
4 40 000 3.904 39 035
4.5 45 000 4.456 44 565
5 50 000 4.955 49 553
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5.5 55 000 5.325 53 247
6 60 000 5918 59176
6.5 65 000 6.426 64 259
7 70 000 7.096 70 965

Table 4.5: Experimental determination of the frequency modulation index

Theoretical curves
Experimental curves eseeecees

70000 °

20000

Frequency modulation index

10000

o+~ ¥+7+—
o 1 2 3 4 5 6 7

Frequency excursion [MHz]

Figure 4.8: Frequency modulation index variation according to the frequency excursion

Af for the first diffracted order

It is clear from the obtained values, that the experimental results of the frequency modulating
index are very close to the values given by the generator, the maximum relative error doesn’t
exceed 5%. It should be noted that the frequency modulation index can also be obtained using
the 2" diffraction order but the bandwidth of the piezoelectric transducer will limit this
measurement.

Finally, we have demonstrated theoretically and shown experimentally the possibility of using

the (AOD) to obtain the frequency modulation index 3, .
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CONCLUSION

The acousto-optic phenomenon is based on three effects; the piezoelectric effect concerns the
conversion of an electrical signal into acoustic one, the photoelastic effect has a direct relation
with the elastic behavior of the medium and its optical parameters and ultimately the light-
ultrasound interaction. This phenomenon is realized by sending a high frequency ultrasonic
wave in an elastic medium using a piezoelectric transducer. The interaction of ultrasonic
waves with light leads to the diffraction phenomenon. This latter depends on the ultrasonic
wave shape (sinusoidal, amplitude modulated and frequency modulated).

In this work, we have theoretically studied all these cases of diffraction then we followed it by
experimental study of the last one to confirm the theoretical development. The obtained

results show that when ultrasonic wave is sinusoidal, each diffracted order position X, varies
linearly with ultrasound frequency f,and its optical frequency w, shifts from the initial one o
by an amountn@. In case where the sinusoidal ultrasonic wave of high frequency £, (carrier)
is amplitude-modulated by another one of low frequency f, (message), the principal diffracted

orders have the same directions and optical frequencies as in the previous case whereas, the
satellite diffracted orders are symmetrically distributed with respect to the corresponding
principal diffracted ordern, so the whole diffraction is symmetric with respect to the non
diffracted order. It is of interest to note that the satellite diffracted orders are generally

superimposed unless if the frequencies of the carrier f,and message f, are close to each

other.
In the last case when the sinusoidal ultrasonic wave is frequency-modulated by another one,
we have established a very important relationship between the diffraction orders positions and

the modulating signal. This relationship shows that each diffraction order position X, (¢)

oscillates sinusoidally around a central position which represents the diffracted order position

without modulation and the scanning frequency £ is equal to the modulating frequency £, .
In addition, the angular excursion A9, doesn’t depend on the frequency modulation f, and at

the same time it has a linear relation with the frequency excursion Af . Furthermore, the
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angular excursion of the »”diffracted order is n times the first diffracted order one. As
regards the scanning velocity, it varies linearly according to the frequency excursion as well as
modulating signal frequency and sinusoidally according to time. Moreover, the scanning
maximal velocity of the »” diffracted order is also n times of the first diffracted order one.
Our ultimate goal is to demonstrate theoretically and calculate experimentally the frequency
modulation index 8 using the (AOD).

By this work, we finally wish to open the doors for a better understanding of light deflection
by an acousto-optic method. Several points may be the subjects for other theses such as:

- Measure experimentally the scanning velocity of the diffracted order in order to verify the
formula already obtained.

-The theoretical development of the same work using Maxwell's differential equation.

-The study of diffracted order intensity.

All these works can contribute to confirm our theoretical and experimental study.
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Appendix 1: Dirac delta function [27-28]

The Dirac delta can be loosely thought of as a function which is zero everywhere except at the
origin, where it is infinite. Thus, the graph of the delta function is usually thought of as
following the whole x-axis and the positive y-axis. The integral over the entire real line is
equal to one. As there is no function that has these properties, the computations that were done
by the theoretical physicists appeared to mathematicians as nonsense, until the introduction of
distributions by Laurent Schwartz, for formalizing and validating mathematically these

computations. It is widely used in diffraction, signal processing, Laplace transform and

probability.
The mathematical expression of this distribution ~“ [ SRR BESEHATEY, SREERAN
Lo |- A 4
1s given by: ; ]
(1R _— __
0.6 :— _:
+oo x=0 0.4 _— _j
o (x) = ; ]
0 x#0 02 = B
0o
_“? _' Ll i i LI._L_I_].J_L Lol L L ) L I.l T T ' | L L 3 L4 b1 )
Some properties: 2 2 0 i
_ j o 5(x) dr=1 Schematic representation of the
o0 Dirac delta function by a line

surmounted by an arrow.

S(x)= J-j:exp(— j2m-x)-vdv
[ £@o(x) = 0)
[ (o =) dr= ()
S()8(x = x,)= fx - xo)
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Appendix 2: Jacobi-Anger expansion [26-28]

In mathematics, the Jacobi—Anger expansion (or Jacobi—Anger identity) is an expansion of
exponentials of trigonometric functions in the basis of their harmonics. This identity is named
after the 19th-century mathematicians Carl Jacobi and Carl Theodor Anger.

The general identity is given by:
exp zzsm ZJ exp zna

There are other forms derived from this identity, such as:

n

. exp zzcos ZJ exp zna)(z)

° exp zzsm ZJ exp zna)
o exp(—izsin(a ZJn exp(ina)-1)'
cos( zsin(a) )+ 22] ) cos(2na)

sin(zsin(a 22]2“1 sin (27 + l)a)

n=0

. cos(a)at+ﬂf sin(a)mt))z i]n(ﬂf) cos(a)aH-n w, 1)

n=—0
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Appendix 3: Bessel functions [26-28]

Bessel functions, first defined by the mathematician Daniel Bernoulli and then generalized

by Friedrich Bessel, are the solutions y(x) of Bessel's differential equation [26]:
1 2
y”+—y'+(l—(£j ]y =0
X X

n: Complex number

Where:

The differential equation solutions are:

1% case (n non-integer): y(x)=4J,(x)+ BJ_,(x)
2" case (n integer): y(x)=c,J,(x)+C, 7, (x)
Where:

J,(x): Bessel functions of the first kind
Y, (x) : Bessel functions of the second kind

n

Bessel functions of the first kind: It is defined as follows:

()= i (—1) (x/2)™

= F(n +r +1)

Where : : Gam malfu nction

F(a): is the gamma function defined as 4*

follows: 2_
- "

[(e)= J.y”’l e dy a €R ! ; ;
0 fama

From the graph [43 p 73], we can deduc [\H
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If o =1,23....the gamma function is called the factorial function=> F(a) = (a - 1) <o

If & =0,-1,-2,-3,....= [(a) =t

If « ¢{1’2’3"" :F(a)<oo
0,-1,-2,-3,...

Accordingly, if « n » is a positive integer we can simplify the Bessel function to:

o (_ l)r (x/z)n+2r

1,(x) =2

= rl(n+r)
G2 ) ()2 1 )
:JH(X)_; Antry 0y ety | 2(ar2)

(x/2) ~ (x/2)"? N (x/2)* N
(n) (n+1)  20(n+2)

=1,(x)=

The figure below presents the Bessel function of the first kind for integer orders n =123

1.0 J,0%)

J(x) ——=—
0.8 \ Jo(x) —-=--
0.6

0.4 7 \ T
[ g \ \ -
0.2 FA N N A L
- ] 1] ] ] T B Zl W
i ! \ B / . \ b "
7 vy / r N K i £ ]
. LY ! F b L 1
0.0 b \ 1 I Ly = Fi LY " i
£ \ [ . \ /! . % !
\ ! i \ “ f ! % e
N A YN b5
—0.2 \ L ’ A . ]

' T N
‘b_,, " -
-0.4
0 o 10 15 20
X

Figure 1: The Bessel function of the first kind for integer orders n =1,2,3

In the case where « n » is a negative integer we can demonstrate that [43]:

L(x)=(1"1,x)

Bessel functions of the second kind:
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Y (x)= Lo () costn) 1, (x) 155

sin(nr)

J, (x) COS(pﬂ')— J, (x)
sin (pﬂ')

n=0.123.. p——n

Y, (x)=1lim
When « n » is an integer, as was similarly the case for the functions of the first kind, the

following relationship is valid: Y_ (x)=(-1)" Y,(x)

1 1
0.5 /
0.0 .
I
L /
[,
-0.5 ¥

It fi L
- I -
! ‘.‘
-1.0 .

T I
L
, }‘\\ i, o B
. - - —— .

"\ Y \. /”‘_:?’.\.I‘i . ., /———:‘\,;“\:— -"\‘,

/ \ ] .

. L L
‘f

-15 .
B ]
I .
-2.0 —
L | i
|
-2.5 it Y (x)
| L
B Y, ) =
11 a W
-3.0 Y, i) :
0 5 10 15 20

X

Figure 2: The Bessel function of the second kind for integer orders 7 =1,2,3

Some properties of the Bessel function of the first kind for integer order "n'":

1)
n:Isodd= J, (x)=-J,(-x) = J,(x) the function is odd.

n:Iseven= J (x)=J,(-x) = J,(x) the function is even.

Therefore, in both cases, we have: J, (x)=(-1)"J, (- x)

2) +Z.OJ2n+1(Z): 0

n=—00

3) iJ (2)=1
6) iJZH (z)=1
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Appendix 4: Elastic constants

In the science of materials, numbers that quantify the response of a particular material to elastic
or non-elastic deformation when a stress load is applied to that material are known as Elastic
Constants. These last are:

- The Modulus of Elasticity (Young's modulus) E.

- The Modulus of rigidity (Shear modulus) G .

- The Bulk Modulus K .

- Poisson's Ratio v.
- The Lamé parameters: Lamé's first parameter G,
Lamé's second parameter G, =G

For homogeneous isotropic materials simple relation exists between elastic constants that

allow calculating them all as long as two are known:

E=2-G2(1+v)=3-K(1—2v):G‘(1+V)(l_zv)

1%
The two
— = G, = = G =
known values. E= ’ i £ |
p E E vE
v E v 2. (1+v) 3-(1-2v) | (+v)i-2v)
E-2G, £G. _ | G(E-2G))
E,G, E 2.G, G 3-(3G,-E) (3G,-E)
3K-E 6 KE 3KBK -E)
E.K E 6K 9K - E K 9K - E
o . 2G, E-3G, +R E+3G,+R G
.Gy £ E+G,+R 4 6 ‘
2G,(1+v) 2G,v
V’GZ 2G2(1+V) 14 G2 3(1272‘/) (1*22\/)
3K(1-2v) 3K v
v,K 3K(1-2v) v ﬂ K 1+v)
(1+v)i-2v)G, (1-2v)G, (1+v)G,
v,G, Y v 2y 3v G

R=4E*+9G? +2EG,
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1) Young's modulus (modulus of elasticity): denoted by E, can be calculated by dividing

the tensile stress o, by the extensional strain ¢ : !
F/A L
p=2_-1r"2
e AL/L
AL
Where: : ® ® ®
F

Schematic appearance of round metal

E: Is the Young's modulus.
L: Is the original length of the object. bar after tensile testing

(a) Brittle fracture
F: Is the force exerted on an object under tension. (b) Ductile fracture

(c) Completely ductile fracture

AL: 1s the amount by which the length of the object changes.

A: Is the actual cross-sectional area through which the force is applied.

Material Typ'lcal values for
Young's modulus (GPa)
Aluminum 69
Brass 100-125
Bronze 96-120
Copper (Cu) 117
Diamond 1050-1210
Glass 50-90
Magnesium metal (Mg) 45
Nylon 24
Osmium (Os) 525-562
Rubber 0.01-0.1
Silicon carbide (SiC) 450
Steel (ASTM-A36) 200
Titanium (Ti) 110.3
Tungsten (W) 400410
Wood 11
O A
Peak Rupture
strength / strength

Ductile behavior

Elastic
behavior

€ 100

v
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2) Shear modulus (modulus of rigidity): denoted by G, 1s defined as the ratio of shear

stress o to the shear strain ¢:

F
P I\
B TR
4 . T/
1 ! r
£ =/
G o F/A | i ]
- = 7 — —
& Ax / l @i[ ;; j'!
f ——
i —
A —
L -
v R

Typical values for
Material shear modulus (GPa)
(at room temperature)
Diamond 478.0
Steel 79.3
Copper 44.7
Titanium 41.4
Glass 26.2
Aluminium 25.5
Iron 52.5

3) Bulk modulus: denoted by K >0, can be formally defined by the equation:

d, d,
KZ_VO% poﬁ

Where:

v, . Is original pressure.
dp/dv: Denotes the derivative of pressure with respect to volume.
p, . Is original density.
dp/dp: Denotes the derivative of pressure with respect to density.

The inverse of the bulk modulus gives a substance's compressibility.
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. Values for
Material bulk modulus

Glass 35to 55 GPa
Steel 160 GPa
Diamond 443 GPa
Water 2.2 GPa
Methanol 823 MPa
Air 142 KPa
Solid helium 50 MPa

Material Values for
Poisson's Ratio

Rubber 0.4999
gold 0.42-0.44
Saturated clay 0.40-0.49
Copper 0.33
Aluminum-alloy 0.32
Clay 0.30-0.45
Stainless steel 0.30-0.31
Steel 0.27-0.30
Titanium 0.265-0.34
Magnesium 0.252-0.289
Cast iron 0.21-0.26
Sand 0.20-0.45
Glass 0.18-0.3
Foam 0.10-0.50
Concrete 0.1-0.2
Cork 0.0

4) Poisson's Ratio: denoted by v, is the signed ratio of transverse strain to axial strain.
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Appendix 5: Differential operator [25]

A) The Nabla: It’s noted v, and defined v =27+ j+ 2%
ox oy~ 0Oz

0 : . : ..
Where ai, § and > are the first partial derivatives of function and the vectors i, j, and k
X Oy z

are the unit vectors in the positive x, y, and z directions, respectively.

This vectorial operator has properties similar to those of ordinary vectors (scalar product,
vectorial product, etc.). It is used to define special differential operators include
the gradient, divergence, curl, and Laplace operator.

B) The Gradient: In mathematics, a differential operator applied to a three-dimensional

vector-valued function to yield a vector whose three components are the partial derivatives of

the function with respect to its three variables. The symbol for gradient is grad . Thus, the

gradient of a function ¢(x, y,z), written V¢ = grad¢ , is:

W:(a? i g;y:@? op, 097

—i+—j+ i+—j+
ox oy~ oz ox Oy 0z

If in physics, for example, ¢(x, y,z) is a temperature field, V¢ is the direction of the heat-
flow vector in the field.

C) Divergence: In mathematics, a differential operator applied to a three-dimensional

vector-valued function. The result is a function that describes a rate of change. The

divergence of a vector E is given by:

- - - - - - - - - aE -
V.E= iz+£]+ik .(EY i+E j+Ezkj =V.E= O, i+ aEZ k
ox oy~ oz : 7 ox 8y 0z

In which E,,E and E, are the vector components of £

D) Curl: In mathematics, a differential operator that can be applied to a vector-valued

function in order to measure its degree of local spinning. It consists of a combination of
the function’s first partial derivatives. It’s noted V A E = rot E and defined
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V/\Z" i7+37+3£ /\(EY7+E ;+EZZJ=
ox oy~ oz : g

xhj §)|Q) ~
QP owy
IR o >

=

>~ (QE. OE \> (0E. OE.\> (OE, OE_ >
=>rotE=|—— i—| —=—-—\j+ ——> |k
oy Oz ox Oz ox 0Oy

Some properties: If ¢ and ¥ are differentiable scalar functions and if £

differentiable vector functions, then:

1) V(¢+¥)=Vg+V¥

2)v{ﬁ+ﬁ):vE+Vf}

3)vA(E+ﬁ):vAE+vAﬁ

4 v.(¢ 13) _(Vo)E + ¢(V.sz

5) w[ﬁj:(w)@ +¢(wﬁj
@x%fAﬁj:ﬁ{vAE)4q§Aﬁj

7 vA(Z:Asz (H v)E ﬁ[v?:j _(z.vjmz(v_;j
8)v(Efa:(ﬁx05+[§v)ﬁ+ﬁx(vAEj+EA(vAﬁj

5¢ 5¢ o’¢
x2 oy’ az

9) V¢ =div gradg =
10) VA(Vg)=0
11) divrotE =0

> o o o

12) VZE graddivE—rotrotE =V’E, z+V E, ]+V E. k

R
and H are
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Appendix 6: POCKELS’s and KERR’s coefficients [30-31-32]

Crystals are divided into seven crystal systems: triclinic, monoclinic, orthorhombic,

tetragonal, trigonal, hexagonal and cubic. Each system is divided into classes. In total there

are 32 crystal classes.

The table below presents, one class for each crystal systems, the linear electro-optic matrix

coefficients corresponding to the POCKELS effect and the quadratic electro-optic matrix

coefficients characterizing the Kerr effect.

Aﬁzgtifﬁglc POCKELS’s coefficients KERR'’s coefficients

T R, R, R; R, R; R

By Py Ry Ry Ry Ry Ry Ry

Triclinic ” 7 ” Ry Ry, Ry Ry Ry Ry
5 o I3

(l) Fa Ty T Ry Ry, Ry Ry Ry Ry

r Ry R, Ry, Ry; Ry Ry Ry

K Fe T Ry Ry, Ry Rg Res R

o 00 n R, R, Ry 0 Rs; O

o B 00 ny Ry Ry, R; 0 Ry 0

MOI’IOC}IHIC o 00y Ry R, R; 0 Ry 0

(rm?) 0 r, O 0O 0 0 R, 0 R,

o 00 g Ry R, R; 0 R, 0

0 r, O 0 0 0 w0 R

0O 0 o R, R, R; O 0 0

‘ 0O 0 o R, R, R; O 0 0

Orth(ozrlzl(z))mblc 0 0 0 R, Ry R, 0 0 0

r, 0 0 0 0 0 R, O 0

0 n, O 0 0 0 0 Rs; O

0 0 7, 0 0 0 0 0 Ry
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Appendix 7: Photo-elastic coefficients [30-31-32]

The table below presents the photo-elastic matrix coefficients for some class of the crystal

systems as well as the isotropic media.

Aﬁzgtifﬁglc The photo-elastic coefficients
Pu Po P Pu Pis P
P P Py Pu P P
Triclinic Psi P Pz P Pis P
Py Px Pa3 Ps Pss P
Psi Ps» Pss Pss Pss  Psg
Pa P2 Pes Pes Pes Pos
Pn P Ps 0 pgs
o Py Pn Pn 0 P
Monoclinic Py Pn Py 0 pys O
0 0 0 pu 0 py
Psi P Pss 0 pss O
0 0 0 Pou Pss Pes
Pn Po P3O 0 0
Py Pn Py 0 0 0
Orthorhombic Py Py P 0O 0 0
0 0 0 pu O 0
0 0 0 0 ps O
0 0 0 0 0 P
Py Pn Py O 0 0
P Pu Pi 0 0
Tet(rjzg;))nal Psi P Pss 0 0
0 0 0 pu O 0
0 0 0 0 p, O
0 0 0 0 0 P
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Trigonal Pn P Ps  Pu 0 0
(32) P> Pun Pi —Ps O 0
Py Py P 0 0 0
_Pu—Po Pn —Pu 0 py 0 0
Pess 2 0 0 0 0 P Pa
0 0 0 0 Pia Pes
Hexagonal Py Po P 00 0
(6mm) P, Pn Py 0 O 0
Py Py Pn O 0 0
Pes = P~ Po 0O p, O 0
2 0 0 py, O
0 0 0 0 0 pe
Py Po P O 0 0
. P> Pu Pn O 0 0
C(;t;c P, Po, Py O 0 0
0 0 0 p, O 0
0 0 0 0 py O
0 0 0 0 0 pu
Ilflcétg?lﬂlc KERR’s coefficients
Py P P O 0 0
P, Pu P O 0 0
Puy = % Po Pn pPn O 0 0
0 0 0 py, O 0
0 0 0 0 py 0
0 0 0 0 0 py
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ABSTRACT:

The using of acousto-optic interaction led to appear a variety of optical devices such as acousto-optic
deflectors (AODs), which have in turn widespread applications in many fields. In this thesis, we theoretically
demonstrate and experimentally confirmed one of this AOD. This last is obtained using a laser beam
interaction with a frequency modulated ultrasonic sinusoidal wave in a liquid medium. The obtained results
show that each diffracted order position varies sinusoidally around its central position, in the same rhythm as
the modulating signal. Moreover, the scanning frequency of the diffraction order increases linearly according
to the modulating signal frequency. Furthermore, the increase in the frequency excursion leads to the increase
of the angular excursion. All the theoretical results are confirmed experimentally. Finally, the frequency
modulation index has been easily obtained with good precision using experimental measurements of the

diffracted order angular excursion.
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RESUME :

L'utilisation de l'interaction acousto-optique a conduit a apparaitre une variété¢ de dispositifs optiques tels que
les déflecteurs acousto-optiques (DAO), qui ont a leur tour des applications répandues dans de nombreux
domaines. Dans cette thése, nous démontrons théoriquement et nous confirmons expérimentalement 1’un de
ces DAO. Ce dernier est obtenu en utilisant I’interaction du faisceau laser avec une onde sinusoidale
ultrasonore modulée en fréquence dans un milieu liquide. Les résultats obtenus montrent que la position de
chaque ordre diffracté¢ varie sinusoidalement autour de sa position centrale, au méme rythme du signal de
modulant. En outre, la fréquence de balayage de I'ordre de diffraction augmente linéairement en fonction de la
fréquence du signal de modulant. De plus, 'augmentation de I'excursion de fréquence conduit a I'augmentation
de I'excursion angulaire. Tous les résultats théoriques sont confirmés expérimentalement. Enfin, I'indice de
modulation de fréquence a été facilement obtenu avec une bonne précision en utilisant des mesures

expérimentales de I'excursion angulaire de I'ordre diffracté.




