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Introduction

A brief history of Hopf algebras. The concept of a Hopf algebra arose in the 1940’s

in relation to the work of Heinz Hopf in algebraic topology and cohomology [25]. They

also appeared, in some sense, in the theory of algebraic groups in the various works of

Dieudonne, Cartier, and Hochschild. Beginning with the work of Milnor and Moore [42], a

general theory of Hopf algebras was then developed in the 1960’s and 1970’s continuing in

the works of Larson, Radford, Sweedler, Taft, and Wilson, among others. The first book

on the subject of Hopf algebra was written by Sweedler and published in 1969 [43]. Later,

these algebraic objects took on a prominent role in the theory of quantum groups that

became popular in the 1980’s and early 1990’s. Hopf algebras now play an important role

in many areas of mathematics and are linked with such topics as Lie algebras, Galois theory,

conformal field theory, quantum mechanics, tensor categories, and combinatorics. For more

information on the beginning history of Hopf algebras, see the survey of Andruskiewitsch

and Ferrer [4].

A brief history of Hom-type algebras.

The first instance of Hom-type algebras appeared in various papers dealing with q-

deformations of algebras of vector fields, mainly Witt and Virasoro algebras, which play

an important rôle in Physics. In a theory with conformal symmetry, the Witt algebra W

is a part of the complexified Lie algebra V ectC(S) × V ectC(S), where S is the unit circle,

belonging to the classical conformal symmetry. The q-deformations of Witt and Virasoro

algebras are obtained when the derivation is replaced by a σ-derivation, see for example

[1]. Then Hartwig, Larsson and Silvestrov introduced and studied the concept of Hom-

Lie algebra, which is a deformation of Lie algebra where the Jacobi identity is twisted

by a homomorphism, see [23, 29]. The associative-type objects corresponding to Hom-Lie

algebras, called Hom-associative algebras, have been introduced and studied by Makhlouf

and Silvestrov in [37], where it is shown that usual functors between associative algebras

and Lie algebras extend to Hom-type algebras. Moreover, Hom-analogues of coalgebras,
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bialgebras and Hopf algebras have been introduced in [34, 35]. The original definition of a

Hom-bialgebra involved two linear maps, one twisting the associativity condition and the

other one the coassociativity condition. Later, two directions of study on Hom-bialgebras

were developed, one in which the two maps coincide, they are still called Hom-bialgebras,

and another one, started in [6], where the two maps are assumed to be inverse to each other,

they are called monoidal Hom-bialgebras. In the last years, many concepts and properties

from classical algebraic theories have been extended to the framework of Hom-structures,

see for instance [3, 10, 12, 13, 22, 33, 39, 40, 46, 49, 50, 51, 52, 53, 54, 60, 61].

The algebraic deformation theory, as first described by Gerstenhaber [17], studies pertu-

bations of algebraic structures using cohomology and obstruction theory, which they define

in [18], is a theory with coeficients, which we denote by H∗GS (M,N), for Hopf bimodules

M and N over a Hopf algebra H.

Gerstenhaber’s work has been extended in various directions. Many algebraic or geo-

metric structures can be deformed, and for each kind of structure and deformation, one can

associate a cohomology theory in order to study and control these deformations. In the case

of associative algebras, the cohomology which appears is the Hochschild cohomology, for Lie

algebras, it is the Chevalley-Eilenberg cohomology, for commutative algebras, it is Harrison

cohomology. Other structures have been studied, see for example, Balavoine describes in

[5] deformations of any algebra over a quadratic operad. In the same direction, Hinich [26]

studies deformations of algebras over a differential graded operad. It is a natural problem

to try to extend deformation theory to morphisms. The cohomology and deformations of

Hom-associative algebra were initiated in [36] and then completed in [2].

Organization. Quantum groups or Hopf algebras are an exciting new generalisation of

ordinary groups. They have a rich mathematical structure and numerous roles in situations

where ordinary groups are not adequate. The main purpose of this thesis is to study

the theory of Hom-Hopf algebras and define a cohomology complex for Hom-bialgebras,

generalizing Gerstenhaber-Schack cohomology in [18, 19], and then study one-parameter

formal deformations. It is organized as follows.
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In the first chapter, we shall review an extensive amount of background material related

to the study of Hopf algebras. Thus the familiar concept of algebra dualize to concept

of coalgebra, and the structures of algebra and coalgebra combine to give the notion of a

bialgebra. Incorporating antipodes (sometimes called conjugations), we obtain the notion of

Hopf algebra. In the first section, we give an outline of basic definitions and theory related

to algebras and coalgebras, and then proceed into the study of bialgebras, Hopf algebras in

the second section. These are associative algebras equipped with additional structures such

as a comultiplication, a counit and an antipode. In some appropriate sense, these structures

and their axioms reflect the multiplication, the unit element and the inverse elements of a

group and their corresponding properties. In fact, the group algebra kG of any group G is

a Hopf algebra with multiplication induced by the group product and an antipode induced

by the group inverse operation.

In the third section, we shall give a brief overview of the completed results in the

classification of finite-dimensional bialgebras based on the structure of algebraic variety

and a natural structure transport action which describes the set of isomorphic algebras.

Solving such systems of polynomial equations leads to classifications of such structure. In

particular, we give a complete classification of bialgebras over an algebraically closed field

of characteristic zero in dimensions 2 and 3.

In chapter 2, we introduce the notions of Hom-algebra, Hom-coalgebra and Hom-

bialgebra and describe some properties of those structures extending the classical structures

of algebras, coalgebra and bialgebra. [37],[36]. Some other relevant properties of Hom-Hopf

algebras which generalize Hopf algebras will be discussed in this chapter, including notions

related to normal Hopf algebras and extensions of Hom-Hopf algebras, by strategically

replacing the identity map by a twisting map α in the defining axioms.

A Hom-associative algebra A is given by a multiplication µ : A⊗ A −→ A and a linear

self-map α such that the following α-twisted version of associativity holds: µ (µ (x, y) , α (z)) =

µ (α (x) , µ (y, z)). It is said to be multiplicative if, in addition, α ◦ µ = µ ◦ (α⊗ α). Or-

dinary associative algebras are multiplicative Hom-associative algebras with α = idA,. By
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dualization, in the sense that if we reverse all the arrows in the defining diagrams of Hom-

associative algebra, we get the concept of a Hom-coassociative coalgebra. We will define

a suitable notion of Hom-bialgebra, in which the comultiplication ∆ satisfies an α-twisted

version of coassociativity and is a morphism of Hom-associative algebras.

We made all the necessary preparations for constructing the dual Hom-associative al-

gebra of a Hom-coassociative coalgebra. The fact that the dual of a finite-dimensional

Hom-Hopf algebra will also be a Hom-Hopf algebra, the duality between of those structures

also implies the relationship between homomorphisms structures. Some results of these

chapter hold for the infinite-dimensional case, but we shall be concerned only with the

finite-dimensional case in this thesis.

We now describe the main results of chapter 2 concerning Hom-type generalizations of

Hopf algebras.

Proposition 1: The dual of morphism of Hom-coassociative coalgebra, is a morphism

of Hom-associative algebra, and the dual of morphism of Hom-associative algebra, is a

morphism of Hom-coassociative coalgebra.

Proposition 2: The morphism of Hom bialgebra is a morphism of Hom-Hopf algebras.

The next proposition gives some important properties of the antipode (see [6], [35]).

Proposition 3: We show that the antipode of a Hom-Hopf algebra is an anti-morphism

of Hom-associative algebras and anti-morphism of Hom-coassociative coalgebras. This

means that S : H −→ Hop is a Hom-associative algebra morphism and S : H −→ Hcop is a

Hom-coassociative coalgebra morphism.

Proposition 4: Let H be a finite dimensional Hom-Hopf algebra, with antipode S.

Then the Hom-bialgebra H∗ is a Hom-Hopf algebra, with antipode S∗.

Chapter 3 is dedicated to the study of Hom-type version of module over algebras (resp.

comodule over coalgebras), which will play an important role in Homological algebra and

quantum group theory. We recall in this chapter the definitions of modules and comodules

over Hom-associative algebras, these definitions of action and coactions are simply a polar-

isation of those of Hom-algebras and Hom-coalgebras. Moreover, we discuss their tensor
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products, the tensor products of bimodules can be endowed with bimodule structure. If M

and N are bimodules over A, we shall consider two bimodule structures on M ⊗ N (dual

of each other), which we will denote by M⊗N and M⊗N (see for example [48] for details).

These notations will also be used for the tensor product of bimodules or bicomodules.

A more precise version of the following result is proved in chapter 3.

Proposition 5: A right A-module is nothing else that a left module over the opposite

unital Hom-associative algebra Aop, and a right C-comodule is the same as a left comodule

over the opposite counital Hom-coassociative coalgebra Ccop.

Theorem 1: Let C be a counital Hom-coassociative coalgebra. Then for any right

C-comodule M , M∗ is a left C∗module. Conversely, let A be a finite-dimensional unital

Hom-associative algebra. If N is a left A-module, N∗ is a right A∗-comodule, and, if L∗

is a left A-module, then L is a right A∗-comodule.

Proposition 6: Let M and N are an H-Hom-bimodule and H-Hom-bicomodule, re-

spectively. The n-fold interior (bimodule) tensor power of M , M⊗n is an H-bimodule , and

the n-fold interior (bicomodule) tensor power of N, N⊗n is the interior H-bicomodule.

The purpose of Chapter 4 is to construct cochain complex Cp,qHom = Homk (B⊗q, B⊗p) of

a multiplicative and comultiplicative Hom-bialgebra B with coefficients in B that defines

a cohomology Hn
Hom (B,B). The second cohomology group play an important role in de-

formation theory, it is the space of infinitesimal deformations. Our theory gives a natural

identification between the underlying k-modules of the original and the deformed Hom-

bialgebra. Moreover, we compute the second cohomology group of Hom-type Taft-Sweedler

bialgebra. We show that, in this case the second cohomology group is not trivial.

In the last chapter, we define formal algebraic deformation for a Hom-bialgebra, in sec-

tion 1, 2 and 3. Our theory gives a natural identification between the underlying k-modules

of the original and the deformed Hom-bialgebra. In section 4 we begin the discussion of in-

finitesimal methods, which are an essential part of any deformation theory. We describe the

infinitesimal of a deformation and the relationship with cohomology, emphasizing several

special cases and the way in which deformation theories determine cohomology theories in
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low dimensions. An important aspect of the infinitesimal theory is the study of obstructions

which is our topic in section 5. A basic principle is that the obstructions should be described

using a structure on the cochain complex governing the deformation problem.

In section 6 and 7, we discuss the connection between the twistings of Hom-bialgebras

(see Proposition 2.4.6) and their formal deformations, and unitality and counitality of Hom-

bialgebra deformations, and show that every nontrivial formal deformation is equivalent to

a unital and counital deformation with the same unit and counit. Deformation preserves

the existence of antipodes, a deformation of a Hom-Hopf algebra as a Hom-bialgebra is

automatically a Hom-Hopf algebra.

A more precise version of the following result is proved in chapter 4 and 5,

Theorem 2: Let B = (B,µ, η,∆, ε, α) be a Hom-bialgebra and δp,qHom,H : Cp,qHom −→

Cp,q+1
Hom , δp,qHom,C : Cp,qHom −→ C

p+1,q
Hom the operators defined in (4.1), (4.2) then

(
Cp,qHom, δ

p,q
Hom,H , δ

p,q
Hom,C

)
is a bicomplex,

Proposition 7: The integrability of (µ1,∆1) depends only on its cohomology class.

Proposition 8: If H2
Hom (B,B) = 0 then all deformations of Hom-bialgebra B are

equivalent to a trivial deformation.

We fix some conventions and notations. In this thesis k denotes an algebraically closed

field of characteristic zero, even if the general theory does not require it. Vector spaces,

tensor products, and linearity are all meant over k, unless otherwise specified. We denote by

τi,j : V1⊗...⊗Vi⊗...⊗Vj⊗...⊗Vn −→ V1⊗...⊗Vj⊗...⊗Vi⊗...⊗Vn the flip isomorphism where

τi,j (x1 ⊗ x2 ⊗ ...⊗ xi ⊗ ...⊗ xj ⊗ ...⊗ xn) = (x1 ⊗ x2 ⊗ ...⊗ xj ⊗ ...⊗ xi ⊗ ...⊗ xn) .

We use in the sequel Sweedler’s notation for the comultiplication, ∆ (x) =
∑

(x) x(1) ⊗

x(2), and sometimes the multiplication is denoted by a dot for simplicity and when there is

no confusion.



Chapter 1

Bialgebras and Hopf algebras

The aim of this chapter is to provide some classical definitions of algebraic structures by

use of dual commutative diagrams. Thus the familiar concept of associative algebra du-

alize to concept of coassociative coalgebra, and the structures of associative algebra and

coassociative coalgebra combine to give the notion of a bialgebra. Incorporating antipodes

(sometimes called conjugations), we obtain the notion of a Hopf algebra. In the cocom-

mutative case, bialgebras and Hopf algebras can be viewed as monoids and groups in the

symmetric monoidal category of cocommutative coalgebras.

1.1 Algebras and coalgebras

We begin with the definition of an associative algebra over the field k.

Definition 1.1.1 An associative algebra with unit is a vector space A over k together

with two linear maps µ : A ⊗ A −→ A, called the multiplication or the product, and η :

k −→ A, called the unit, such that

µ ◦ (µ⊗ idA) = µ ◦ (idA ⊗ µ) (1.1)

µ ◦ (η ⊗ idA) = µ ◦ (idA ⊗ η) = idA (1.2)

Given such an unital associative algebra A = (A,µ, η), and the mapping η is determined

by its value η (1k) ∈ A, which is the unit element of A. Both definitions of an unital

associative algebra are easily seen to be equivalent. Equation (1.1) is the associativity law,

while (1.2) says that η (1k) = 1A is a unit element of A using the identification of k ⊗ A

and A⊗ k with A.

11
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The associativity (1.1) of the multiplication µ means that the diagram

A⊗A⊗A µ⊗idA−→ A⊗A

idA⊗µ ↓ ↓µ

A⊗A µ−→ A

is commutative. Likewise, the condition (1.2) of the unit can be expressed by the commu-

tativity of the following diagram:

k⊗A η⊗idA−→ A⊗A idA⊗η←− A⊗ k

∼= ↓µ ∼=

A
idA−→ A

idA←− A

Proposition 1.1.2 If a unit exists, it is unique.

Proof. Let η, η′ be two units. Then

µ ◦ (η (1k)⊗ x) = µ ◦ (x⊗ η (1k)) = x, ∀x ∈ A

and

µ ◦
(
η′ (1k)⊗ y

)
= µ ◦

(
y ⊗ η′ (1k)

)
= y, ∀y ∈ A

for x = η′ (1k) and y = η (1k), we have

η′ (1k) = µ ◦
(
η (1k)⊗ η′ (1k)

)
= µ ◦

(
η′ (1k)⊗ η (1k)

)
= η (1k) ,

which completes the proof.

Example 1.1.3 Here are some examples of associative algebras over k:

1. The field k, with the canonical structure, is an associative algebra.

2. the set of polynomials in variables x1, ..., xn, k[x1, ..., xn] is an associative algebra.

3. The algebra End (V ) of endomorphisms of a vector space V over k. The multiplication

is given by composition of operators.
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4. The vector space Mn (k) of all n×n matrices over k is an n2-dimensional associative

algebra over k with the usual matrix multiplication and matrix identity element I. It

is a standard result that Mn (k) is an unital associative algebra.

Let A and A′ be unital associative algebras. A k-linear mapping f : A −→ A′ is called

a morphism of unital associative algebra if f (µA (x⊗ y)) = µA′ (f (x)⊗ f (y)) for all

x, y ∈ A and f (1A) = 1A′ . The two latter conditions can be rewritten as

f ◦ µA = µA′ ◦ (f ⊗ f) and f ◦ ηA = ηA′

There exists a tensor product of unital associative algebra A⊗ A′ whose vector space is

the tensor product of vector spaces of A and A′ and whose multiplication is defined by

µA⊗A′ = (µA ⊗ µA′) ◦ (idA ⊗ τA′⊗A ⊗ idA′) .

τA′⊗A : A′⊗A −→ A⊗A′; τ (x′ ⊗ x) = x⊗x′, is the linear ‘flip’ map, and the unit is defined

by

ηA⊗A′ = (ηA ⊗ ηA′) .

For each unital associative algebra A one can define the opposite algebra Aop. This

is an unital associative algebra with the same underlying vector space as A, but with the

new multiplication µAop = µA ◦ τA⊗A, and the unit ηA. That is, we have µAop (x⊗ y) =

µA (y ⊗ x), where µAop and µA denote the products of Aop and A, respectively.

The unital associative algebra A is said to be commutative if µAop = µA.

We now dualize this definition by reversing all arrows and replacing all mappings by the

corresponding dual ones. In doing so, the multiplication µ : A⊗A −→ A is replaced by the

comultiplication ∆ : A −→ A ⊗ A, the unit η : k −→ A by the counit ε : A −→ k, which

is dual to that of an associative algebra over a field in the sense that if we reverse all the

arrows in the defining diagrams of an associative algebra, we get the concept of a coalgebra.

Definition 1.1.4 A counital coassociative coalgebra is a vector space C over k, equipped

with two linear mappings ∆ : C −→ C ⊗ C, called the comultiplication or the coproduct,
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and ε : C −→ k, called the counit, such that

(∆⊗ idC) ◦∆ = (idC ⊗∆) ◦∆, (1.3)

(ε⊗ idC) ◦∆ = (idC ⊗ ε) ◦∆ = idC , (1.4)

given such a counital coassociative coalgebra C = (C,∆, ε). Equation (1.3) is referred to

as the coassociativity of the comultiplication ∆, because it dualizes the associativity (1.1) of

the multiplication µ. Equation (1.4) is referred to as the counital of the counit ε.

The conditions (1.3) and (1.4) are respectively equivalent to the following commutative

diagrams:

C
∆−→ C ⊗ C

∆ ↓ ↓ idC ⊗∆

C ⊗ C ∆⊗idC−→ C ⊗ C

k⊗ C ε⊗idC←− C ⊗ C idC⊗ε−→ C ⊗ k

∼= ↑ ∆ ∼=

C
idC←− C

idC−→ C

The coopposite coalgebra Ccop is the counital coalgebra on the vector space C

equipped with the new comultiplication ∆Ccop = τC⊗C ◦∆C and the counit εC .

The counital coalgebra C is said to be cocommutative if ∆Ccop = ∆C .

Example 1.1.5 1. The ground field k is a coalgebra by defining ∆ (1) = 1 ⊗ 1 and

ε (1) = 1 and extended linearly to all of k.

2. Let G be a group,, and define kG to be the k-vector space with the canonical basis G.

Then by defining ∆ (g) = g⊗ g and ε (g) = 1, for all g ∈ G, we have a cocommutative

coalgebra (kG,∆, ε) by extending ∆ and ε linearly to all of kG.

Next we describe the tensor product coalgebra construction, which is similar to the

tensor product algebra structure of two algebras over the same field.

Example 1.1.6 Let (C,∆C , εC) and (C ′,∆C′ , εC′) be two counital coassociative coalgebras

over the field k.Then we can construct a counital coassociative coalgebra on the tensor

product vector space C ⊗ C ′, called the tensor product of coalgebra, by defining with

comultiplication

∆C⊗C′ = (idC ⊗ τC′⊗C ⊗ idC′) ◦ (∆C ⊗∆C′) : C ⊗ C ′ −→
(
C ⊗ C ′

)
⊗
(
C ⊗ C ′

)
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and counit

εC⊗C′ = εC ⊗ εC′ : C ⊗ C ′ −→ k.

Definition 1.1.7 Let C and C ′ be counital coassociative coalgebras. A k-linear mapping

f : C −→ C ′ is said to be a morphism of counital coalgebra (or counital coalgebra

morphism) if

∆C′ ◦ f = (f ⊗ f) ◦∆C and εC = εC′ ◦ f.

Proposition 1.1.8 Let f : C −→ C ′ and g : D −→ D′ be a morphisms of coalgebras. The

tensor product of f and g yield a coalgebra morphism

f ⊗ g : C ⊗D −→ C ′ ⊗D′

Proof. The fact that f and g are coalgebra morphisms implies commutativity of the top

square in the diagram

C ⊗D f⊗g−→ C ′ ⊗D′

∆C⊗∆D
↓ ↓∆C′⊗∆D′

(C ⊗ C)⊗ (D ⊗D)
f⊗f⊗g⊗g−→ (C ′ ⊗ C ′)⊗ (D′ ⊗D′)

idC⊗τC⊗D⊗idD ↓ ↓idC′⊗τC′⊗D′⊗idD′

(C ⊗D)⊗ (C ⊗D)
f⊗g⊗f⊗g−→ (C ′ ⊗D′)⊗ (C ′ ⊗D) ,

while the bottom square obviously is commutative by the definitions. Commutativity

of the outer rectangle means that f ⊗ g is a coalgebra morphism.

We will use notation attributed to Sweedler for the image of an element under the co-

multiplication of a coassociative coalgebra C. If x is an element of a coassociative coalgebra

(C,∆, ε), the element ∆ (x) ∈ C ⊗ C is a finite sumwhere the right hand side is a formal

sum denoting an element of C ⊗ C.

∆ (x) =
∑
i

x1i ⊗ x2i

It denotes how ∆ shares out x into linear combinations of a part (1) in the first factor of

C ⊗ C and a part (2) in the second factor. For brevity, we simply write

∆ (x) =
∑
(x)

x(1) ⊗ x(2). (1.5)
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With this notation, the coassociativity of ∆ is expressed by

(∆⊗ idC) ◦∆ (x) =
∑

∆
(
x(1)

)
⊗ x(2) =

∑
x(1)(1) ⊗ x(1)(2) ⊗ x(2)

(idC ⊗∆) ◦∆ (x) =
∑

x(1) ⊗∆
(
x(2)

)
=
∑

x(1) ⊗ x(2)(1) ⊗ x(2)(2)

and, hence, it is possible and convenient to shorten the notation by writing

(∆⊗ idC) ◦∆ (x) = (idC ⊗∆) ◦∆ (x) =
∑

x(1) ⊗ x(2) ⊗ x(3)

(idC ⊗ idC ⊗∆) (idC ⊗∆) ◦∆ (x) =
∑

x(1) ⊗ x(2) ⊗ x(3) ⊗ x(4)

(∆⊗ idC ⊗ idC) (∆⊗ idC) ◦∆ (x) =
∑

x(1) ⊗ x(2) ⊗ x(3) ⊗ x(4)

and so on.

Let us define inductively mappings ∆(n) : C −→ C⊗n+1 by

∆(n) =
(
id⊗n−1
C ⊗∆

)
◦∆(n−1) n > 1 and ∆(1) = ∆.

(From the coassociativity, it follows that ∆(n) is in fact equal to n− 1 compositions of

∆ independently of their order, that is, ∆(2) = (idC ⊗∆) ◦∆ = (∆⊗ idC) ◦∆, etc.)

For n = 2,

∆(2) (x) =
∑

x(1) ⊗ x(2) ⊗ x(3)

For n = 3,

∆(3) (x) =
(
id⊗2
C ⊗∆

)
◦∆(2) =

∑
x(1) ⊗ x(2) ⊗ x(3) ⊗ x(4)

For n = 4,

∆(4) =
(
id⊗3
C ⊗∆

)
◦∆(3) =

∑
x(1) ⊗ x(2) ⊗ x(3) ⊗ x(4) ⊗ x(5)

Then the element ∆(n) (x) ∈ C⊗n+1 is denoted by

∆(n) = x(1) ⊗ x(2) ⊗ ...⊗ x(n) ⊗ x(n+1)

then ∆(n) denotes the n−ary comultiplication.
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The conditions for the counit are described by

∑
ε
(
x(1)

)
x(2) =

∑
x(1)ε

(
x(2)

)
= x.

Then we denote the n−ary multiplication [57] by µ(n) : A⊗n+1 −→ A

µ(n) = µ(n−1) ◦
(
id⊗n−1
A ⊗ µ

)
n > 1 and µ(1) = µ.

For n = 2

µ(2) (x1 ⊗ x2 ⊗ x3) = µ ◦ (idA ⊗ µ) (x1 ⊗ x2 ⊗ x3) = (x1 · x2 · x3)

Then the element µ(n) (x1 ⊗ ...⊗ xn ⊗ xn+1) ∈ A is denoted by

µ(n) (x1 ⊗ ...⊗ xn ⊗ xn+1) = x1 · x2 · ... · xn−1 · xn · xn+1.

1.2 Bialgebras and Hopf algebras

Historically, the concept of Hopf algebra originated in algebraic topology, where the term

”Hopf algebra” was used for what we are calling a bialgebra. The term bialgebra was

introduced later and is still rarely used in topology, the bialgebras that usually appear

in algebraic topology automatically have antipodes, so that it is reasonable to ignore the

distinction, and we do so where no confusion can arise. We have followed the algebraic liter-

ature in using the name antipode and distinguishing between bialgebras and Hopf algebras

because of the more recent interest in Hopf algebras of a kind that do not seem to appear

in algebraic topology, such as quantum groups.

Definition 1.2.1 A bialgebra (B,µ, η,∆, ε) is an unital associative algebra (B,µ, η) with

and a counital coassociative coalgebra (B,∆, ε) such that the following diagrams are com-

mutatives.

B ⊗B µ−→ B
∆−→ B ⊗B

∆⊗∆ ↓ ↑µ⊗µ

B ⊗B ⊗B ⊗B idB⊗τB⊗B⊗idB−→ B ⊗B ⊗B ⊗B

B ⊗B ∆←− B

η⊗η ↑ ↑η

k⊗ k
idk,k⊗2

←− k
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and

B ⊗B µ−→ B

ε⊗ε ↓ ↓ε

k⊗ k
idk⊗2,k−→ k

That is, µ and η are a morphisms of coassociative coalgebras or, equivalently, ∆ and ε are

a morphisms of associative algebras.

Example 1.2.2 1. The field k, with its algebra structure, and with the canonical coal-

gebra structure, is a bialgebra.

2. Let G be a group, then kG endowed with a coalgebra structure as in Example 1.1.5 (in

which ∆ (g) = g ⊗ g and ε (g) = 1, for all g ∈ G is a bialgebra.

3. If B is a bialgebra, then Bop, Bcop and Bop,cop are bialgebras, where Bop has an algebra

structure opposite to the one of B, and the same coalgebra structure as B, Bcop has

the same algebra structure as B and the coalgebra structure co-opposite to the one of

B, and Bop,cop has the algebra structure opposite to the one of B, and the coalgebra

structure co-opposite to the one of B.

Also, if B is a bialgebra, then B ⊗ B is a bialgebra with the tensor product algebra

structure and the tensor product coalgebra structure.

Definition 1.2.3 Let B and B′ be two bialgebras. A linear map f : B −→ B′ is called a

morphism of bialgebras if it is a morphism of algebras and a morphism of coalgebras

between the underlying algebras, respectively coalgebras of the two bialgebras.

Definition 1.2.4 Let H be a bialgebra. A linear map S : H −→ H is called an antipode

of the bialgebra H if S is the inverse of the identity map idH : H −→ H with respect to the

convolution product ∗ defined by

idH ∗ S = S ∗ idH = η ◦ ε.

µ ◦ (idV ⊗ S) ◦∆ = µ ◦ (S ⊗ idV ) ◦∆ = η ◦ ε.

Definition 1.2.5 A bialgebra H having an antipode is called a Hopf algebra.
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Remark 1.2.6 In a Hopf algebra, the antipode is unique.

Let H, H ′ be two Hopf algebras. A map f : H −→ H ′ is called a morphism of Hopf

algebras if it is a morphism of bialgebras. It is natural to ask whether a morphism of Hopf

algebras should preserve antipode. The following result shows that this is indeed the case.

Proposition 1.2.7 Let H, H ′ be two Hopf algebras with antipodes SH and SH′. If f :

H −→ H ′ is a morphism of Hopf algebras, then SH′ ◦ f = f ◦ SH .

Remark 1.2.8 Let H be a Hopf algebra with antipode S. Then the bialgebra Hop,cop is a

Hopf algebra with the same antipode S. If moreover S is bijective, then the bialgebras Hop

and Hcop are Hopf algebras with antipode S−1.

If necessary, we will denote a Hopf algebra H = (H,µ, η,∆, ε, S) where S is the antipode.

We next describe some basic properties of the antipode of a Hopf algebra, this result shows

that S is an algebra anti-homomorphism and a coalgebra anti-homomorphism.

Proposition 1.2.9 Let H = (V, µ, η,∆, ε, S) be a Hopf algebras with antipode S.

i S ◦ µ = µ ◦ (S ⊗ S) ◦ τ ;

ii S (η (1k)) = η (1k) ;

iii ∆ ◦ S = (S ⊗ S) ◦ τ ◦∆;

iv ε ◦ S = ε.

Example 1.2.10 Let G be a group. Then the group algebra kG is a Hopf algebra with

canonical basis G. The antipode map is induced by the group inverse, so that

S (g) = g−1

for all g ∈ G, and extended linearly to all of kG. The fact that S is the antipode of kG

follows from the identity

µ (S ⊗ id) ∆ (g) = µ (S (g)⊗ g) = g−1g = 1G

µ (id⊗ S) ∆ (g) = µ (g ⊗ S (g)) = gg−1 = 1G
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for all g ∈ G, since ∆ (g) = g⊗ g and ε (g) = 1. Since G is a basis for kG, we have that

S is the antipode of kG.

Let H and H ′ be Hopf algebras. Then the tensor product H ⊗ H ′ is a Hopf algebra

with the tensor product algebra and tensor product coalgebra structures.

The antipode of H ⊗H ′ is given by SH ⊗ SH′ , where SH and SH′ are the antipodes of

H and H ′, respectively.

1.3 Classification in low dimensions

In this section, we show that for a fixed dimension n, the set of bialgebrasis endowed with

a structure of algebraic variety and a natural structure transport action which describes

the set of isomorphic algebras. Solving such systems of polynomial equations leads to

classifications of such structure. We aim at classifying bialgebras of dimension 2 and 3.

Let V be an n-dimensional vector space over k. Setting a basis {ei}i∈{0,1,2,...n} of V ,

a multiplication µ (resp. a comultiplication ∆) is identified with its n3 structure constants

Cki,j ∈ k (resp. Djk
i ), where µ (ei ⊗ ej) =

n∑
k=1

Cki,jek and ∆ (ei) =
n∑

j,k=1

Dj,k
i ej ⊗ ek. The

counit ε is identified to its n structure constants ξi. We assume that e1 is the unit.

A collection

{(
Cki,j , D

j,k
i , ξi

)
i,j,k∈{1,...,n}

}
represents a bialgebra if the underlying multi-

plications, comultiplication, and the counit satisfy the appropriate conditions which trans-

late to following polynomial equations.
n∑
l=1

(
C lijC

s
lk − C ljkCsil

)
= 0

Cj1i = Cji1 = δij

∀i, j, k, s ∈ {1, ..., n} ,


n∑
l=1

(
Dlk
s D

ij
l −D

il
sD

jk
l

)
= 0

n∑
l=1

Djl
i ζl =

n∑
l=1

Dlj
i ζl = δij

∀i, j, k, s ∈ {1, ..., n} ,



n∑
l=1

C lijD
ks
l −

n∑
r,t,p,q=1

Drt
i D

pq
j C

k
rpC

s
tq = 0

D11
1 = 1, Dij

1 = 0 (i, j) 6= (1, 1)

ζ1 = 1,
n∑
l=1

C lijζl = ζiζj

∀i, j, k, s ∈ {1, ..., n} .
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Then, the set of n-dimensional bialgebras, which we denote by Bn, carries a structure of

algebraic variety imbedded in k2n3+n with its natural structure of algebraic variety.

The ”structure transport” action is defined by the action of GLn (V ) on Bn. It corre-

sponds to the change of basis.

Let B = (V, µ, η,∆, ε) be a bialgebras and f : V −→ V be an invertible endomor-

phism, then the action of f on B transports the bialgebra structure into a bialgebra

B = (V, µ′, η′,∆′, ε′) defined by

µ′ = f ◦ µ ◦
(
f−1 ⊗ f−1

)
and η′ = f ◦ η

∆′ = (f ⊗ f) ◦∆ ◦ f and ε′ = ε ◦ f−1.

1.3.1 Classifications in Dimension 2

The set of 2-dimensional unital associative algebras yields two non-isomorphic algebras (see

[15]). Let {e1, e2} be a basis of k2, then the algebras are given by the following non-trivial

products.

•µ2
1 (e1, ei) = µ2

1 (ei, e1) = ei, i = 1, 2, µ2
1 (e2, e2) = e2,

•µ2
2 (e1, ei) = µ2

2 (ei, e1) = ei, i = 1, 2, µ2
1 (e2, e2) = 0.

In the sequel we consider that all the algebras are unital and the unit η corresponds to

e1.

In the following, we list the coalgebras which, combined with µ1, give bialgebra struc-

tures (up to isomorphism).

•∆2
1,1 (e1) = e1 ⊗ e1; ∆2

1,1 (e2) = e1 ⊗ e2 + e2 ⊗ e1 − 2e2 ⊗ e2;

ε2
1,1 (e1) = 1; ε2

1,1 (e2) = 0;

•∆2
1,2 (e1) = e1 ⊗ e1; ∆2

1,2 (e2) = e2 ⊗ e2;

ε2
1,2 (e1) = 1; ε2

1,2 (e2) = 1;

•∆2
1,3 (e1) = e1 ⊗ e1; ∆2

1,3 (e2) = e1 ⊗ e2 + e2 ⊗ e1 − e2 ⊗ e2;

ε2
1,3 (e1) = 1; ε2

1,3 (e2) = 0;
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1.3.2 Classifications in Dimension 3

First, we recall the classification of 3-dimensional unital associative algebras (see [15]).

Let {e1, e2, e3}, be a basis of k3, then the algebras are given by the following non-trivial

products.

•µ3
1 (e1, ei) = µ3

1 (ei, e1) = ei, i = 1, 2, 3; µ3
1 (ej , e2) = µ3

1 (e2, ej) = ej , j = 2.3, µ3
1 (e3, e3) = e3,

•µ3
2 (e1, ei) = µ3

2 (ei, e1) = ei, i = 1, 2, 3; µ3
2 (ej , e2) = µ3

2 (e2, ej) = ej , j = 2.3, µ3
2 (e3, e3) = 0,

•µ3
3 (e1, ei) = µ3

3 (ei, e1) = ei, i = 1, 2, 3; µ3
3 (e2, e2) = e2,

•µ3
4 (e1, ei) = µ3

4 (ei, e1) = ei, i = 1, 2, 3,

•µ3
5 (e1, ei) = µ3

5 (ei, e1) = ei, i = 1, 2, 3; µ3
5 (e2, ej) = ej , j = 2, 3.

Thanks to computer algebra, we obtain the following coalgebras associated to the previ-

ous algebras in order to obtain a bialgebra structures. We denote the comultiplications by

∆3
i,j and the counits by ε3

i,j , where i indicates the item of the multiplication and j the item

of the comultiplication which combined with the multiplication i determine a bialgebra.

For the multiplication µ3
1, we have:

•∆3
1,1 (e1) = e1 ⊗ e1; ∆3

1,1 (e2) = e1 ⊗ e2 + e2 ⊗ e1 − e2 ⊗ e2; ∆3
1,1 (e3) = e1 ⊗ e3 + e3 ⊗

e1 − 2e3 ⊗ e3; ε3
1,1 (e1) = 1; ε3

1,1 (e2) = 0; ε3
1,1 (e3) = 0.

•∆3
1,2 (e1) = e1 ⊗ e1; ∆3

1,2 (e2) = e1 ⊗ e2 + e2 ⊗ e1 − e2 ⊗ e2; ∆3
1,2 (e3) = e1 ⊗ e3 + e3 ⊗

e1 − e3 ⊗ e3; ε3
1,2 (e1) = 1; ε3

1,2 (e2) = 0; ε3
1,2 (e3) = 0.

•∆3
1,3 (e1) = e1 ⊗ e1; ∆3

1,3 (e2) = e1 ⊗ e2 + e2 ⊗ e1 − e2 ⊗ e2; ∆3
1,3 (e3) = e1 ⊗ e3 − e2 ⊗

e3 + e3 ⊗ e1 − e3 ⊗ e2 − e3 ⊗ e3; ε3
1,3 (e1) = 1; ε3

1,3 (e2) = 0; ε3
1,3 (e3) = 0.

•∆3
1,4 (e1) = e1 ⊗ e1; ∆3

1,4 (e2) = e1 ⊗ e2 + e2 ⊗ e1 − e2 ⊗ e2; ∆3
1,4 (e3) = e1 ⊗ e3 − e2 ⊗

e3 + e3 ⊗ e1 − e3 ⊗ e2; ε3
1,4 (e1) = 1; ε3

1,4 (e2) = 0; ε3
1,4 (e3) = 0.

•∆3
1,5 (e1) = e1 ⊗ e1; ∆3

1,5 (e2) = e1 ⊗ e2 + e2 ⊗ e1 − e2 ⊗ e2; ∆3
1,5 (e3) = e1 ⊗ e3 + e3 ⊗

e1 − e2 ⊗ e3; ε3
1,5 (e1) = 1; ε3

1,5 (e2) = 0; ε3
1,5 (e3) = 0.

•∆3
1,6 (e1) = e1 ⊗ e1; ∆3

1,6 (e2) = e1 ⊗ e2 + e2 ⊗ e1 − e2 ⊗ e2; ∆3
1,6 (e3) = e1 ⊗ e3 + e3 ⊗

e1 − e3 ⊗ e2; ε3
1,6 (e1) = 1; ε3

1,6 (e2) = 0; ε3
1,6 (e3) = 0.
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•∆3
1,7 (e1) = e1 ⊗ e1; ∆3

1,7 (e2) = e2 ⊗ e2; ∆3
1,7 (e3) = e2 ⊗ e3 + e3 ⊗ e2 − 2e3 ⊗ e3;

ε3
1,7 (e1) = 1; ε3

1,7 (e2) = 1; ε3
1,7 (e3) = 0.

•∆3
1,8 (e1) = e1⊗e1; ∆3

1,8 (e2) = e2⊗e2; ∆3
1,8 (e3) = e2⊗e3+e3⊗e2−e3⊗e3; ε3

1,8 (e1) = 1;

ε3
1,8 (e2) = 1; ε3

1,8 (e3) = 0.

∆3
1,9 (e1) = e1⊗ e1; ∆3

1,9 (e2) = e1⊗ e3 + e2⊗ e2− e2⊗ e3 + e3⊗ e1− e3⊗ e2; ∆3
1,9 (e3) =

e1 ⊗ e3 + e3 ⊗ e1 − e3 ⊗ e3; ε3
1,9 (e1) = 1; ε3

1,9 (e2) = 1; ε3
1,9 (e3) = 0.

•∆3
1,10 (e1) = e1⊗ e1; ∆3

1,10 (e2) = e1⊗ e3 + e2⊗ e2− e2⊗ e3 + e3⊗ e1− e3⊗ e2 + e3⊗ e3;

∆3
1,10 (e3) = e1 ⊗ e3 + e3 ⊗ e1 − 2e3 ⊗ e3; ε3

1,10 (e1) = 1; ε3
1,10 (e2) = 1; ε3

1,10 (e3) = 0.

•∆3
1,11 (e1) = e1⊗ e1; ∆3

1,11 (e2) = e2⊗ e2 + e3⊗ e1− e3⊗ e2; ∆3
1,11 (e3) = e2⊗ e3 + e3⊗

e1 − e3 ⊗ e3; ε3
1,11 (e1) = 1; ε3

1,11 (e2) = 1; ε3
1,11 (e3) = 0.

•∆3
1,12 (e1) = e1⊗ e1; ∆3

1,12 (e2) = e1⊗ e3 + e2⊗ e2− e2⊗ e3; ∆3
1,12 (e3) = e1⊗ e3 + e3⊗

e2 − e3 ⊗ e3; ε3
1,12 (e1) = 1; ε3

1,12 (e2) = 1; ε3
1,12 (e3) = 0.

•∆3
1,13 (e1) = e1⊗ e1; ∆3

1,13 (e2) = e1⊗ e2− e1⊗ e3 + e2⊗ e1− 2e2⊗ e2 + 2e2⊗ e3− e3⊗

e1 + 2e3⊗ e2− e3⊗ e3; ∆3
1,13 (e3) = e2⊗ e3 + e3⊗ e2− 2e3⊗ e3; ε3

1,13 (e1) = 1; ε3
1,13 (e2) = 1;

ε3
1,13 (e3) = 1.

•∆3
1,14 (e1) = e1⊗e1; ∆3

1,14 (e2) = e1⊗e2−e1⊗e3+e2⊗e1−e2⊗e2+e2⊗e3−e3⊗e1+e3⊗e2;

∆3
1,14 (e3) = e2 ⊗ e3 + e3 ⊗ e2 − e3 ⊗ e3; ε3

1,14 (e1) = 1; ε3
1,14 (e2) = 1; ε3

1,14 (e3) = 1.

•∆3
1,15 (e1) = e1⊗e1; ∆3

1,15 (e2) = e2⊗e2; ∆3
1,15 (e3) = e3⊗e3; ε3

1,15 (e1) = 1; ε3
1,15 (e2) = 1;

ε3
1,15 (e3) = 1.

•∆3
1,16 (e1) = e1⊗e1; ∆3

1,16 (e2) = e2⊗e2; ∆3
1,16 (e3) = e2⊗e2−e2⊗e3−e3⊗e2 +2e3⊗e3;

ε3
1,16 (e1) = 1; ε3

1,16 (e2) = 1; ε3
1,16 (e3) = 1.

•∆3
1,17 (e1) = e1 ⊗ e1; ∆3

1,17 (e2) = e2 ⊗ e3 + e3 ⊗ e2 − e3 ⊗ e3; ∆3
1,17 (e3) = e3 ⊗ e3;

ε3
1,17 (e1) = 1; ε3

1,17 (e2) = 1; ε3
1,17 (e3) = 1.

•∆3
1,18 (e1) = e1 ⊗ e1; ∆3

1,18 (e2) = e2 ⊗ e1 − e3 ⊗ e1 + e3 ⊗ e2; ∆3
1,18 (e3) = e3 ⊗ e3;

ε3
1,18 (e1) = 1; ε3

1,18 (e2) = 1; ε3
1,18 (e3) = 1.

For the multiplication µ3
2, we have

•∆3
2,1 (e1) = e1 ⊗ e1; ∆3

2,1 (e2) = e1 ⊗ e2 + e2 ⊗ e1 − e2 ⊗ e2; ∆3
2,1 (e3) = e1 ⊗ e3 + e3 ⊗

e1 − e3 ⊗ e2; ε3
2,1 (e1) = 1; ε3

2,1 (e2) = 0; ε3
2,1 (e3) = 0.
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∆3
2,2 (e1) = e1⊗e1; ∆3

2,2 (e2) = e1⊗e2+e2⊗e1−e2⊗e2; ∆3
2,2 (e3) = e1⊗e3+e2⊗e3+e3⊗e1;

ε3
2,2 (e1) = 1; ε3

2,2 (e2) = 0; ε3
2,2 (e3) = 0.

•∆3
2,3 (e1) = e1 ⊗ e1; ∆3

2,3 (e2) = e1 ⊗ e2 + e2 ⊗ e1 − e2 ⊗ e2; ∆3
2,3 (e3) = e1 ⊗ e3 − e2 ⊗

e3 + e3 ⊗ e1 − e3 ⊗ e2 + λe3 ⊗ e3; ε3
2,3 (e1) = 1; ε3

2,3 (e2) = 0; ε3
2,3 (e3) = 0.

For the multiplication µ3
3, we have

•∆3
3,1 (e1) = e1 ⊗ e1; ∆3

3,1 (e2) = e2 ⊗ e2; ∆3
3,1 (e3) = e2 ⊗ e3 + e3 ⊗ e2; ε3

3,1 (e1) = 1;

ε3
3,1 (e2) = 1; ε3

3,1 (e3) = 0.

•∆3
3,2 (e1) = e1 ⊗ e1; ∆3

3,2 (e2) = e2 ⊗ e2; ∆3
3,2 (e3) = e1 ⊗ e3 + e3 ⊗ e2; ε3

3,2 (e1) = 1;

ε3
3,2 (e2) = 1; ε3

3,2 (e3) = 0.

•∆3
3,3 (e1) = e1 ⊗ e1; ∆3

3,3 (e2) = e2 ⊗ e2; ∆3
3,3 (e3) = e2 ⊗ e3 + e3 ⊗ e1; ε3

3,3 (e1) = 1;

ε3
3,3 (e2) = 1; ε3

3,3 (e3) = 0.

For the multiplication µ3
4, there does not exist any bialgebras.

For the multiplication µ3
5, we have

•∆3
5,1 (e1) = e1 ⊗ e1; ∆3

5,1 (e2) = e2 ⊗ e2; ∆3
5,1 (e3) = e2 ⊗ e3 + e3 ⊗ e2; ε3

5,1 (e1) = 1;

ε3
5,1 (e2) = 1; ε3

5,1 (e3) = 0.

In the sequel we consider that all the algebras are unital and the unit η corresponds to

e1.



Chapter 2

Hom-bialgebras and Hom-Hopf

algebras

In this chapter, we first recall basics on unital Hom-associative algebras, counital Hom-

coalgebras and Hom-bialgebras, and describe some properties of those structures extending

the classical structures of algebras, coalgebra and bialgebra [37],[36].

All vector spaces (Hom-algebras, Hom-coalgebras, Hom-bialgebras) will be over a ground

field k. In the classification of Andruskiewitsch and Schneider, however we do not require

this for the general theory.

2.1 Unital Hom-associative algebras

Definition 2.1.1 ([34], [38]) A Hom-associative algebra is a triple A = (A,µ, α) con-

sisting of a k-vector space A, a linear map µ : A⊗ A −→ A (multiplication), and a homo-

morphism α : A −→ A satisfying the Hom-associativity condition

µ ◦ (α⊗ µ) = µ ◦ (µ⊗ α) . (2.1)

We assume moreover in this paper that α ◦ µ = µ ◦ α⊗2.

To generalize quantum groups to the Hom setting, we need a suitably weakened notion

of a multiplicative identity for Hom-associative algebras.

Definition 2.1.2 A Hom-associative algebra A is called unital if there exists a linear map

η : k −→ A such that α ◦ η = η and

µ ◦ (η ⊗ idA) = µ ◦ (idA ⊗ η) = α (2.2)

25
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The unit element is 1A = η (1k) , we refer a unital Hom-associative algebra by (A,µ, η, α)

Hom-associativity and unitality conditions (2.1) and (2.2) may be expressed by the

followings commutative diagrams.

A⊗A⊗A µ⊗α−→ A⊗A

α⊗µ ↓ ↓µ

A⊗A µ−→ A

k⊗A η⊗idA−→ A⊗A idA⊗η←− A⊗ k

∼= ↓ µ ∼=

A
α−→ A

α←− A.

where we have identified

k⊗A ∼= A ∼= A⊗ k

Remark 2.1.3 .

1. We recover the classical associative algebra when the twisting map α is the identity map.

2. We have α ◦ η (1k) = η (1k) then α (1A) = 1A and µ (1A ⊗ 1A) = 1A.

3. We call Hom-associator the linear map asA defined on A⊗3 by µ ◦ (α⊗ µ− µ⊗ α).

Example 2.1.4 Here are some examples of Hom-associative algebras :

1. Let {e1, e2, e3} be a basis of a 3-dimensional linear space A over k. The following mul-

tiplication µ and linear map α on A define a Hom-associative algebra over k3:

µ (e1 ⊗ e1) = ae1, µ (e1 ⊗ e2) = µ (e2 ⊗ e1) = ae2,

µ (e2 ⊗ e2) = ae2, µ (e1 ⊗ e3) = µ (e3 ⊗ e1) = be3,

µ (e2 ⊗ e3) = be3, µ (e3 ⊗ e2) = µ (e3 ⊗ e3) = 0,

α (e1) = ae1, α (e2) = ae2, α (e3) = be3,

where a, b are parameters in k.

The algebras are not associative when a 6= b and b 6= 0, since

µ (µ (e1 ⊗ e1)⊗ e3)− µ (e1 ⊗ µ (e1 ⊗ e3)) = (a− b) be3.
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2. Let kG be the group-algebra over the group G. As a vector space, kG is generated by

{eg, g ∈ G}. If α : G −→ G is a group homomorphism, then it can be extended to an

algebra endomorphism of kG by setting

α

∑
g∈G

ageg

 =
∑
g∈G

agα (eg) =
∑
g∈G

ageα(g)

Consider the usual bialgebra structure on kG and α a bialgebra morphism. Then, we

define a generalized Hom-bialgebra (kG,µ,∆, α) over kG by setting:

µ
(
eg ⊗ eg′

)
= α

(
eg·g′

)
, ∆ (eg) = α (eg)⊗ α (eg) .

3. Let A = (A,µ, α) be a Hom-associative algebra. Then (Mn (A) , µ′, α′), where Mn (A)

is the vector space of n×n matrix with entries in A, is also a Hom-associative algebra

in which the multiplication µ′ is given by matrix multiplication µ and α′ is given by α

in each entry.

Example 2.1.5 1. The tensor product of two unital Hom-associative algebras (A1, µ1, η1, α1)

and (A2, µ2, η2, α2) is defined by (A1 ⊗ A2, µ̃, η̃, α̃) such that µ̃ = (µ1 ⊗ µ2) ◦ τ2,3,

η̃ = η1 ⊗ η2, and α̃ = α1 ⊗ α2, where τ23 = idA1 ⊗ τA2⊗A1 ⊗ idA2 and τA2⊗A1 :

A2 ⊗A1 −→ A1 ⊗A2; τA2⊗A1 (x2 ⊗ x1) = x1 ⊗ x2, is the linear ‘flip’ map.

2. Given a Hom-associative algebra A = (A,µ, α), we define the opposite Hom-associative

algebra Aop = (A,µop, α) as the Hom-associative algebra with the same underlying

vector space A, but with a multiplication defined by

µop = µ ◦ τA⊗A, µop (x⊗ y) = µ (y ⊗ x)

A Hom-associative algebra (A,µ, α) is commutative if and only if µop = µ.

Definition 2.1.6 Let (A,µ, α) and (A′, µ′, α′) be two Hom-associative algebras. A linear

map f : A→ A′ is said to be a Hom-associative algebras morphism if

µ′ ◦ f⊗2 = f ◦ µ, and f ◦ α = α′ ◦ f. (2.3)
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It is said to be a weak morphism if holds only the first condition. If further more, the

Hom-associative algebras are unital with respect to η and η′, then f ◦ η = η′.

If A = A′, then the Hom-associative algebras (resp. unital Hom-associative algebras)

are isomorphic if there exists a bijective linear map f : A→ A such that

µ = f−1 ◦ µ′ ◦ f⊗2, α = f−1 ◦ α′ ◦ f, (2.4)

(resp. µ = f−1 ◦ µ′ ◦ f⊗2, α = f−1 ◦ α′ ◦ f and η = f−1 ◦ η′). (2.5)

Proposition 2.1.7 Let (A1, µ, η, α) , (A2, µ
′, η′, α′) be two unital Hom-associative algebras.

The maps i1 and i2

i1 : A1 → A1 ⊗A2

x → i1 (x) = α (x)⊗ 1A2

i2 : A2 → A1 ⊗A2

y → i2 (y) = 1A1 ⊗ α′(y)

are the morphisms of unital Hom-associative algebras.

Proof. First we check condition (2.3) for the map i1.

It holds if and only if

µ̃ ◦ (i1 ⊗ i1) = i1 ◦ µ, i1 ◦ α =
(
α⊗ α′

)
◦ i1, and i1 ◦ η = η ⊗ η′. (2.6)

where µ̃ is defined as in Example 2.1.5. For all x1, y1 ∈ V1, we have

µ̃ ◦ (i1 ⊗ i1) (x1 ⊗ y1) =
(
µ⊗ µ′

)
(idA1 ⊗ τA2⊗A1 ⊗ idA2) (i1 (x1)⊗ i1(y1))

=
(
µ⊗ µ′

)
(idA1 ⊗ τA2⊗A1 ⊗ idA2) (α (x1)⊗ 1A2 ⊗ α (y1)⊗ 1A2)

= µ(α (x1)⊗ α (y1))⊗ µ′(1A2 ⊗ 1A2)

= α (µ(x1 ⊗ y1))⊗ 1A2

= i1 ◦ µ(x1 ⊗ y1).

So the first condition is satisfied. For all x ∈ A1. we have

α̃ ◦ i1 (x) = (α⊗ α′) (α (x)⊗ 1A2)

= α (α (x))⊗ 1A2

= i1 ◦ α (x) .
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So the scond condition is satisfied.

Finally

i1 ◦ η (1k) = α (η (1k))⊗ 1A2 = η (1k)⊗ η′ (1k) .

Which shows that i1 is a unital Hom-associative algebras morphism. Proof for i2 is

similar.

Proposition 2.1.8 ([49]) Let (A,µ, η, α) be a unital Hom-associative algebra and β : A −→

A be a weak morphism of Hom-associative algebra, i.e. β ◦ µ = µ ◦ β⊗2, β ◦ α = α ◦ β, and

β ◦ η = η. Then Aβ = (A,µβ = β ◦ µ, ηβ = β ◦ η, αβ = β ◦ α) is a unital Hom-associative

algebra.

Hence, we denote by βn the n-fold composition of n copies of β, with β0 = idA, β
n ◦

µ = µ ◦
(
β⊗2

)n
, then Aβn = (A,µβn = βn ◦ µ, ηβn = βn ◦ η, αβn = βn ◦ α) is a unital Hom-

associative algebra.

Proof. We have

µβ ◦ α⊗2
β = (β ◦ µ) ◦ [(β ◦ α)⊗ (β ◦ α)] = (β ◦ µ) ◦

(
β⊗2 ◦ α⊗2

)
= β ◦ β ◦

(
µ ◦ α⊗2

)
= β ◦ (β ◦ α) ◦ µ = (β ◦ α) ◦ (β ◦ µ)

= αβ ◦ µβ.

Since β is a weak morphism of Hom-associative algebra, so αβ is a weak morphism of

Hom-associative algebra.

We show that (A,µβ, ηβ, αβ) satisfies the Hom-associativity. Indeed

µβ (µβ ⊗ αβ) = (β ◦ µ) ◦ (β ◦ µ⊗ β ◦ α)

= β ◦ (β ◦ (µ ◦ (µ⊗ α)))

(2.1)
= β ◦ (β ◦ (µ ◦ (α⊗ µ)))

= β ◦ (µ ◦ (β ◦ α⊗ β ◦ µ))

= (β ◦ µ) ◦ (β ◦ α⊗ β ◦ µ)

= µβ (αβ ⊗ µβ) .
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The second assertion is proved similarly, so (A,µβ, ηβ, αβ) is a unital Hom-associative alge-

bra.

Remark 2.1.9 In particular, if α = idA, one can construct a Hom-associative algebra

starting from an associative algebra and an algebra endomorphism.

2.2 Counital Hom-coassociative coalgebras

We define first the fundamental notion of a Hom-coassociative coalgebra, which is dual

to that of a Hom-associative algebra, in the sense that if we reverse all the arrows in the

defining diagrams of a Hom-associative algebra, we get the concept of a Hom-coassociative

coalgebra.

Definition 2.2.1 [29] A Hom-coassociative coalgebra is a triple (C,∆, β) where C is

a k-vector space, ∆ : C −→ C ⊗ C, is a linear map, and β : C −→ C is a homomorphism

satisfying the Hom-coassociativity condition,

(∆⊗ β) ◦∆ = (β ⊗∆) ◦∆. (2.7)

We assume moreover that ∆ ◦ β = β⊗2 ◦∆.

A Hom-coassociative coalgebra is said to be counital if there exists a linear map ε :

C −→ k such that ε ◦ β = ε and

(ε⊗ idC) ◦∆ = (idC ⊗ ε) ◦∆ = β. (2.8)

Conditions (2.7) and (2.8) are respectively equivalent to the following commutative

diagrams:

C
∆−→ C ⊗ C

∆ ↓ ↓ β ⊗∆

C ⊗ C ∆⊗β−→ C ⊗ C ⊗ C

k⊗ C ε⊗idC←− C ⊗ C idC⊗ε−→ C ⊗ k

∼= ↑ ∆ ∼=

C
β←− C

β−→ C
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Example 2.2.2 The ground field k is a Hom-coalgebra by defining

∆ (1⊗ 1) = 1, ε (1) = 1, and β (1) = 1

and extended linearly to all of k.

Remark 2.2.3 1. We recover the classical coassociative coalgebra when the twisting map

β is the identity map.

2. Given a Hom-coassociative coalgebra C = (C,∆, β) , we define the coopposite Hom-

coassociative coalgebra Ccop = (C,∆cop, β) to be the Hom-coassociative coalgebra with

the same underlying vector space as C and with comultiplication defined by ∆cop =

τC⊗C ◦∆.

3. A Hom-coassociative coalgebra (C,∆, β) is cocommutative if and only if ∆cop = ∆.

Definition 2.2.4 Let (C,∆, β) and (C ′,∆′, β′) be two Hom-coassociative coalgebras. A

linear map f : C → C ′ is a Hom-coassociative coalgebras morphism if

f⊗2 ◦∆ = ∆′ ◦ f , and f ◦ β = β′ ◦ f. (2.9)

It is said to be a weak morphism if holds only the first condition. If furthermore the

Hom-coassociative coalgebras admit counits ε and ε′, we have moreover ε = ε′ ◦ f.

That is, f : C → C ′ is a weak morphism of Hom-coalgebras if the diagrams

C
∆−→ C ⊗ C

f ↓ ↓f⊗f

C ′
∆′−→ C ′ ⊗ C ′

C
f−→ C ′

ε ↓ ↙ε′

k

commute, and f ◦ β = β′ ◦ f.

We say that a Hom-coassociative coalgebra (C,∆, β) is isomorphic to a Hom-coassociative

coalgebra (C ′,∆′, β′) if there exists a bijective Hom-coassociative coalgebra morphism f :

C −→ C ′, and we denote this by C ∼= C ′ when the context is clear, shach that

∆′ = f⊗2 ◦∆ ◦ f−1, ε′ = ε ◦ f−1 and β′ = β ◦ f−1,
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Definition 2.2.5 If (C,∆, β) is a Hom-coassociative coalgebra and D is a vector subspace

of C, then we say that D is a Hom-subcoalgebra if ∆ (D) ⊆ D ⊗ D. In this case,

(D,∆ |D , β |D ) is a Hom-coassociative coalgebra contained in the Hom-coassociative coal-

gebra (C,∆, β).

The Hom-coassociativity of ∆ is expressed by

(∆⊗ β) ◦∆ (x) =
∑

∆
(
x(1)

)
⊗ β

(
x(2)

)
=
∑

x(1)(1) ⊗ x(1)(2) ⊗ β
(
x(2)

)
(β ⊗∆) ◦∆ (x) =

∑
β
(
x(1)

)
⊗∆

(
x(2)

)
=
∑

β
(
x(1)

)
⊗ x(2)(1) ⊗ x(2)(2)

Let us define inductively mappings ∆(n) : C −→ C⊗n+1 by

∆(n) =
(
β⊗n−1 ⊗∆

)
◦∆(n−1) n > 1 and ∆(1) = ∆,

then the element ∆(n) (x) ∈ C⊗n+1 is denoted by

∆(n) = βn−1
(
x(1)

)
⊗ βn−2

(
x(2)

)
⊗ ...⊗ β2

(
x(n−2)

)
⊗ β

(
x(n−1)

)
⊗ x(n) ⊗ x(n+1)

or

∆(n) = x(1) ⊗ x(2) ⊗ β (x3)⊗ β2 (x4)⊗ ...⊗ βn−2
(
x(n)

)
⊗ βn−1

(
x(n+1)

)
then ∆(n) denotes the n−ary Hom-comultiplication, then we denote the n−ary Hom-

multiplication [57] by µ(n) : A⊗n+1 −→ A

µ(n) = µ(n−1) ◦
(
α⊗n−1 ⊗ µ

)
n > 1 and µ(1) = µ.

Then the element µ(n) (x1 ⊗ ...⊗ xn ⊗ xn+1) ∈ A is denoted by

µ(n) (x1 ⊗ ...⊗ xn ⊗ xn+1) = αn−1 (x1) · αn−2 (x2) · ... · α (xn−1) · xn · xn+1

or

µ(n) (x1 ⊗ ...⊗ xn ⊗ xn+1) = x1 · x2 · α (x3) · ... · αn−2 (xn) · αn−1 (xn+1)

The counit is described by

∑
ε
(
x(1)

)
x(2) =

∑
x(1)ε

(
x(2)

)
= β (x)
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Next we describe the tensor product Hom-coassociative coalgebra construction, which is

similar to the tensor product Hom-associative algebra structure of two Hom-associative

algebras over the same eld.

Proposition 2.2.6 Let (C1,∆1, ε1, β1) and (C2,∆2, ε2, β2) be two counital Hom-coassociative

coalgebras. Then the composite map

C1 ⊗ C2
∆1⊗∆2−→ (C1 ⊗ C1)⊗ (C2 ⊗ C2)

idC1
⊗τC2⊗C1

⊗idC2−→ (C1 ⊗ C2)⊗ (C1 ⊗ C2)

where : τC2⊗C1 : C2 ⊗ C1 −→ C1 ⊗ C2 is the linear ‘flip’ map, defines a Hom-coassociative

comultiplication ∆̃ = (idC1 ⊗ τC2⊗C1 ⊗ idC2) ◦∆1 ⊗∆2 on C1 ⊗ C2, and with the counit ε1

of C1 and ε2 of C2 the map ε1 ⊗ ε2 : C1 ⊗ C2 −→ k is a counit of C1 ⊗ C2.

Definition 2.2.7 Tensor product C1 ⊗ C2 of two counital Hom-coassociative coalgebras

(C1,∆1, ε1, β1) and (C2,∆2, ε2, β2) is defined by (C1 ⊗ C2, ∆̃, ε̃, β̃) such that

∆̃ = (idC1 ⊗ τC2⊗C1 ⊗ idC2) ◦∆⊗∆′, ε̃ = ε1 ⊗ ε2, and β̃ = β1 ⊗ β2 (2.10)

Dual to the notion of an ideal of a Hom-associative algebra is that of a coideal of a

Hom-coassociative coalgebra. With coideals, we will be able to construct quotient Hom-

coassociative coalgebras on the corresponding quotient vector spaces.

Definition 2.2.8 Let (C,∆, ε, β) be a Hom-coassociative coalgebra and I a subspace of C.

Then I is a left coideal of C if ∆ (I) ⊆ C ⊗ I. Similarly, I is called a right coideal of

C if ∆ (I) ⊆ I ⊗ C. We say that I is a coideal of C if ∆ (I) ⊆ C ⊗ I + I ⊗ C , ε (I) = I

and α (I) = I.

Remark 2.2.9 Let (A,µ, η, α) , and (C,∆, ε, β) tow unital Hom-associative algebras, we

have

1. αn ◦ µ = µ ◦ (αn ⊗ αn) ∀n ≥ 1.

2. (βn ⊗ βn) ◦∆ = ∆ ◦ βn ∀n ≥ 1.
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Proposition 2.2.10 Let C = (C,∆, ε, α) be a counital Hom-coassociative coalgebra and

β : C −→ C be a weak morphism of Hom-coassociative coalgebra, i. e. ∆ ◦ β = β⊗2 ◦ ∆,

β ◦α = α ◦ β, and ε ◦ β = ε then Cβ = (C,∆β = ∆ ◦ β, εβ = ε ◦ β, αβ = α ◦ β) is a counital

Hom-coassociative coalgebra.

Hence, we denote by βn the n-fold composition of n copies of β, with β0 = idV , ∆◦βn =(
β⊗2

)n ◦∆, then Cβn = (C,∆βn = ∆ ◦ βn, εβn = ε ◦ βn, αβn = α ◦ βn) is a counital Hom-

coassociative coalgebra.

Proof. We have

α⊗2
β ◦∆β =

(
β⊗2 ◦ α⊗2

)
◦ (∆ ◦ β)

= β⊗2 ◦
(
α⊗2 ◦∆

)
◦ β = β⊗2 ◦∆ ◦ α ◦ β = ∆ ◦ β ◦ α ◦ β

= ∆β ◦ αβ.

Since β is a weak morphism of Hom-coassociative coalgebra, so αβ is a morphism of Hom-

coassociative coalgebra.

We show that (C,∆β, εβ, αβ) satisfies the Hom-coassociativity. Indeed

(∆β ⊗ αβ) ◦∆β = (∆ ◦ β ⊗ α ◦ β) ◦ (∆ ◦ β)

= (∆⊗ α) ◦
(
β⊗2 ◦∆

)
◦ β

= ((∆⊗ α) ◦∆) ◦ β ◦ β

(2.7)
= (α⊗∆) ◦∆ ◦ β ◦ β

= (α ◦ β ⊗∆ ◦ β) ◦∆ ◦ β

= (αβ ⊗∆β) ◦∆β.

The second assertion is proved similarly, so (C,∆β, εβ, αβ) is a Hom-counital coassocia-

tive coalgebra.

If α = idC , this proposition shows how to construct a Hom-coassociative coalgebra

starting from a coalgebra and a coalgebra morphism ([35]). It is a Hom-coalgebra version

of the Proposition 2.1.8. We need only the coassociative comultiplication of the coalgebra

[see [55]].
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2.3 Duality between Hom-associative algebras and Hom-coassociative

coalgebras

We will often use the following simple fact: if V and W are k-vector spaces, and x is an

element of V ⊗W, then x can be represented as x =
∑n

i=1 xi ⊗ yi for some positive integer

n, some linearly independent (xi)i=1,...,n in V, and some (yi)i=1,...,n in W. Similarly, it can

be written as a sum of tensor monomials with the elements appearing on the second tensor

position being linearly independent.

The following lemma is well known from linear algebra.

Lemma 2.3.1 Let M, N, and V are three k-vector spaces, and linear maps φ : M∗⊗V −→

Hom (M,V ) , φ′ : Hom (M,N∗) −→ (M ⊗N)∗ , ρ : M∗ ⊗N∗ −→ (M ⊗N)∗ defined by

φ (f ⊗ v) (m) = f (m) v for f ∈M∗, v ∈ V, m ∈M

φ′ (g) (m⊗ n) = g (m) (n) for g ∈ Hom (M,N∗) , m ∈M, n ∈ N,

ρ (f ⊗ g) (m⊗ n) = f (m) g (n) for f ∈M∗, g ∈ N∗, m ∈M, n ∈ N

where Hom (M,V ) = {f : M −→ V, f is a linear map} and M∗ = Hom (M,k) .

Then

i) The map φ is injective. If moreover V is finite dimensional, then φ is an isomorphism.

ii) The map φ′ is an isomorphism.

iii) The map ρ is injective. If moreover N is finite dimensional, then ρ is an isomorphism.

ρ is commutative.

Corollary 2.3.2 For any k-vector spaces M1, ...,Mn the map

θ : M∗1 ⊗ ...⊗M∗n −→ (M1 ⊗ ...⊗Mn)∗

defined by

θ (f1 ⊗ ...⊗ fn) (m1 ⊗ ...⊗mn) = f1 (m1) ...fn (mn)

is injective. Moreover, if all spaces Mi are finite dimensional, then θ is an isomorphism.
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Proof. The assertion follows immediatly by induction from asertion iii) of the Lemma

2.3.1.

If V, W are k-vector spaces and v : V −→ W is a k-linear map, we will denote by

v∗ : W ∗ −→ V ∗ the map define by

v∗ (f∗) = f∗v for any f∗ ∈W ∗. (2.11)

We made all the necessary preparations for constructing the dual Hom-associative alge-

bra of a Hom-coassociative coalgebra.

Theorem 2.3.3 Let (C,∆, ε, β) be a counital Hom-coassociative coalgebra and C∗ be the

linear dual of C. We define the maps µ : C∗ ⊗ C∗ ρ−→ (C ⊗ C)∗
∆∗−→ C∗, µ = ∆∗ρ, where

ρ is define as in Lamma 2.3.1, and η : k φ−→ k∗ ε∗−→ C∗, η = ε∗φ where φ : k −→ k∗ is

the canonical isomorphism, and η (1k) = 1C∗ where 1C∗ (x) = ε (x), and the homomorphism

α : C∗ −→ C∗, α (h) = h ◦ β.

Then (C∗, µ, η, α) is an unital Hom-associative algebra.

This is checked in exactly the same way as for Hom-coassociative coalgebras, as was

done in [35, Corollary 4.12].

Proof. The product µ = ∆∗ρ is defined from C∗ ⊗ C∗ to C∗ by

µ (f∗ ⊗ g∗) (x) = ∆∗ρ (f∗ ⊗ g∗) (x) = ρ (f∗ ⊗ g∗) (∆ (x)) =
∑
(x)

f∗
(
x(1)

)
g∗
(
x(2)

)
(2.12)

for all x ∈ C and f∗, g∗ ∈ C∗

From this it follows that for f∗, g∗, h∗ ∈ C∗, we have

µ (µ (f∗ ⊗ g∗)⊗ α (h∗)) = ρ (µ (f∗ ⊗ g∗)⊗ α (h∗)) ∆

= ρ (ρ (f∗ ⊗ g∗) ∆⊗ h∗ ◦ β) ∆

= ρ (ρ (f∗ ⊗ g∗)⊗ h∗) (∆⊗ β) ∆

(2.7)
= ρ (f∗ (β)⊗ ρ (g∗ ⊗ h∗) ∆) ∆

= µ (α (f∗)⊗ µ (g∗ ⊗ h∗))
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So the Hom-associativity µ ◦ (µ⊗ α) = µ ◦ (α⊗ µ) follows from the Hom-coassociativity

(∆⊗ β) ◦∆ = (β ⊗∆) ◦∆.

Moreover, if C has a counit ε satisfying (idC ⊗ ε) ◦∆ = (ε⊗ idC) ◦∆ = β.

The second condition from the definition of a Hom-associative algebra is equivalent to

the fact that η is an unital for the multiplication defined by µ,

We remark now that for f∗ ∈ C∗ we have

µ (η ⊗ idC∗) (f∗) = ∆∗ρ (η (1k)⊗ f∗) (2.12)
= ρ (η (1k)⊗ f∗) ∆

= ρ (ε⊗ f∗) ∆ = ρ (idC∗ ⊗ f∗) (ε⊗ idC) ∆

(2.8)
= ρ (idC∗ ⊗ f∗) ◦ β

= f∗ ◦ β = α (f∗) .

and

µ (idC∗ ⊗ η) (f∗) = ∆∗ρ (f∗ ⊗ η (1k))

(2.12)
= ρ (f∗ ⊗ η (1k)) ∆

= ρ (f∗ ⊗ ε) ∆

= ρ (f∗ ⊗ idC∗) (idC ⊗ ε) ∆

(2.8)
= ρ (f∗ ⊗ idC∗) ◦ β

(2.12)
= f∗ ◦ β = α (f∗) .

which shows that η is the unit in C∗.

Conversely, does a unital Hom-associative algebra (A,µ, α) lead to a counital Hom-

coassociative coalgebra on A∗? It turns out that it is not possible to perform a construction

similar to the one of the dual unital Hom-associative algebra, due to the inexistence of a

canonical morphism (A⊗A)∗ −→ A∗⊗A∗. However, if A is finite-dimensional, the canonical

morphism ρ : (A⊗A)∗ −→ A∗ ⊗A∗ is bijective.

Theorem 2.3.4 [35, Corollary 4.12] Let (A,µ, η, α) is a finite dimensionel unital Hom-

associative algebra, and A∗ be the linear dual of A. We define the comultiplication by the
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composition

∆ : A∗
µ∗−→ (A⊗A)∗

ρ−1

−→ A∗ ⊗A∗ by ∆ = ρ−1µ∗,

and

ε : A∗
η∗−→ k∗ ψ−→ k, ε = ψη∗

where ρ is define as in Lamma 2.3.1, and ψ is the canonical isomorphism, ε (f) = f (1A)

for f ∈ A∗, where 1A = η (1k) and the homomorphism

β : A∗ −→ A∗, β (h) = h ◦ α.

Then (A∗,∆, ε, β) is a counital Hom-coassociative coalgebra.

Such a construction could be extended to a so called finite dual.

Proof. First we establish the Hom-coassociativity of the comultiplication, which follows

from Hom-associativity of the multiplication.

We can define ∆ (f∗) =
∑

(f) f
∗
(1) ⊗ f

∗
(2), with the property that

f∗ ◦ µ (x⊗ y) =
∑
(f)

f∗(1) (x)⊗ f∗(2) (y)

The comultiplication is defined by

∆ (f∗) (x⊗ y) = ρ−1 ◦ µ∗ (f∗) (x⊗ y) = f∗ ◦ µ (x⊗ y) x, y ∈ A

∆ (f∗) = f∗ ◦ µ

For f ∗ ∈ A∗ we have

(∆⊗ β) ◦∆ (f∗)
(1.5)
=
∑
(f)

(∆⊗ β) ◦
(
f∗(1) ⊗ f

∗
(2)

)
=
∑
(f)

∆
(
f∗(1)

)
⊗ β

(
f∗(2)

)
=
∑
(f)

f∗(1) ◦ µ⊗ f
∗
(2) ◦ α =

∑
(f)

(
f∗(1) ⊗ f

∗
(2)

)
◦ (µ⊗ α)

= (f∗ ◦ µ) ◦ (µ⊗ α)
(??)
= f∗ ◦ µ ◦ (α⊗ µ) = ∆ (f∗) (α⊗ µ)

=
∑
(f)

f∗(1) ◦ α⊗ f
∗
(2) ◦ µ =

∑
(f)

β
(
f∗(1)

)
⊗∆

(
f∗(2)

)
= (β ⊗∆) ◦∆ (f∗) .
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which shows that ∆ is Hom-coassociative.

Moreover, if A has an unit η satisfying µ ◦ (idA ⊗ η) = µ ◦ (η ⊗ idA) = α then for f

∗ ∈ A∗ we have

(ε⊗ idA∗) ◦∆ (f∗) =
∑
(f)

(
ε
(
f∗(1)

)
⊗ f∗(2)

)
=
∑
(f)

(
f∗(1) ◦ η (1k)⊗ f∗(2)

)
=
∑
(f)

(
f∗(1) ⊗ f

∗
(2)

)
(η ⊗ idA) = f∗ ◦ µ ◦ (η ⊗ idA)

(2.2)
= f∗ ◦ α = β (f)

and so (ε⊗ idA∗) ◦∆ = β. Similarly, (idA∗ ⊗ ε) ◦∆ = β, showing that is in fact the counit

of A∗. Therefore (A∗,∆, ε, β) is a counital Hom-coassociative coalgebra.

Proposition 2.3.5 Let (C,∆, ε, β) and (D,∆′, ε′, β′) be counital Hom-coassociative coal-

gebras, and let (A,µ, η, α) and (B,µ′, η′, α′) be finite-dimensional unital Hom-associative

algebras.

1) If f : C −→ D is a Hom-coassociative coalgebra morphism, then f∗ : D∗ −→ C∗ is a

Hom-associative algebra morphism.

2) If f : A −→ B is a Hom-associative algebra morphism, then f∗ : B∗ −→ A∗ is a

Hom-coassociative coalgebra morphism.

Proof. 1) We verify that f∗ is the Hom-associative algebra morphism .

Let d∗, e∗ ∈ D∗ and c ∈ C. where µD∗ , ηD∗ , and αD∗ are define as in Theorem 2.3.3. We

have

f∗ ◦ µD∗ (d∗ ⊗ e∗) (c) = µD∗ (d∗ ⊗ e∗) (f (c))

(2.12)
= ρ (d∗ ⊗ e∗) ◦∆D ◦ f (c)

(2.9)
= ρ (d∗ ⊗ e∗) ◦ (f ⊗ f) ◦∆C (c) (f is a Hom-coassociative coalgebra morphism)

= ρ (d∗ (f)⊗ e∗ (f)) ∆C (c)

(2.11)
= µC∗ (f∗ (d∗)⊗ f∗ (e∗)) (c)

= µC∗ ((f∗ ⊗ f∗) (d∗ ⊗ e∗)) (c)
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Furthermore

f∗ ◦ ηD∗ (1k) = f∗ (εD) = εD (f) = εC = ηC∗ (1k) ,

For d∗ ∈ D∗ we have

f∗ ◦ αD∗ (d∗) = αD∗ (d∗) (f) = d∗ ◦ βD (f)

= d∗ ◦ f ◦ βC (f is a Hom coalgebra morphism)

= f∗ (d∗) ◦ βC = αC∗ ◦ f∗ (d∗)

Then f∗ is a Hom-associative algebra morphism.

2) We have to show that the following diagram is commutative

B∗
f∗−→ A∗

∆B∗ ↓ ↓∆A∗

B∗ ⊗B∗ f∗⊗f∗−→ A∗ ⊗A∗

Let b∗ ∈ B∗, where ∆A∗ , εA∗ , and βA∗ are defined as in Theorem 2.3.4. We have

(∆A∗ ◦ f∗) (b∗) = ∆A∗ ◦ (b∗ (f))

= b∗ ◦ f ◦ µA = b∗ ◦ µB (f ⊗ f) (f is a Hom-associtive algebra morphism)

= (f∗ ⊗ f∗) (b∗ ◦ µB) = (f∗ ⊗ f∗) ∆B∗ (b∗)

whitch proves the commutativity of the diagram. Also

(εA∗ ◦ f∗) (b∗) = εA∗ (b∗ (f)) = b∗ (f) (1A) = b∗ ◦ f (ηA (1k))

= b∗ ◦ (ηB (1k)) = b∗ (1B) = εB∗ (b∗) ,

and

f∗ ◦ βB∗ (b∗) = βB∗ (b∗) (f) = b∗ ◦ αB (f)

= b∗ ◦ f ◦ αA (f is a Hom-coassocitive coalgebra morphism)

= f∗ (b∗) ◦ αA = βA∗ ◦ f∗ (b∗)

so f∗ is a Hom-coassocitive coalgebra morphism.
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Proposition 2.3.6 Let (V, µ, µ, α) , (V,∆, ε, α) be respectively unital Hom-associative al-

gebra and counital Hom-coassocitive coalgebra. The following statements are equivalent

1. The maps µ and η are morphisms of counital Hom-coassocitive coalgebras.

2. The maps ∆ and ε are morphisms of unital Hom-associative algebras.

Proof. Let µ be a morphism of the Hom-coassociative coalgebra

µ : (V ⊗ V, ∆̃, ε̃, β̃) −→ (V,∆, ε, α)

such that: ∆̃ = τ2,3 ◦∆⊗∆, ε̃ = ε⊗ ε, β̃ = α⊗ α then the morphism µ satisfies the axiom

(2.9)

(µ⊗ µ) ◦ τ2,3 ◦∆⊗∆ = ∆ ◦ µ, and µ ◦ (α⊗ α) = α ◦ µ. (2.13)

And η is a morphism of the Hom-coassociative coalgebra

η :
(
k, idk,k⊗2 , idk,k, idk,k

)
−→ (V,∆, ε, α)

then :

(η ⊗ η) ◦ idk,k⊗2 = ∆ ◦ η (2.14)

η ◦ idk,k = α ◦ η (2.15)

by relations (2.13), (2.14) and α is a homomorphism, the comultiplication

∆ : (V, µ, η, α) −→ (V ⊗ V, µ̃, η̃, α̃)

is a week morphism of Hom-associative algebra, such that

µ̃ = (µ⊗ µ) ◦ τ2,3, η̃ = η ⊗ η and α̃ = α⊗ α.

By the relations (2.13), (2.15) and α is a homomorphism, the counit

ε : (V, µ, η, α) −→
(
k, idk⊗2,k, idk,k, idk,k

)
ε ◦ µ = idk⊗2,k ◦ (ε⊗ ε)

is a morphism of Hom-associative algebra.
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Lemma 2.3.7 Let (C,∆, ε, β) be a counital Hom-coassociative coalgebra and f : C −→ C

be a linear map which commutes with β satisfies β ◦ f = f ◦ β. Then

1. (β ⊗ (idC ⊗ f) ◦∆) ◦∆ = (∆⊗ (β ◦ f)) ◦∆.

2. (β ⊗ (f ⊗ idC) ◦∆) ◦∆ = (((idC ⊗ f) ◦∆)⊗ β) ◦∆.

3. (((f ⊗ idC) ◦∆)⊗ β) ◦∆ = ((β ◦ f)⊗∆) ◦∆.

Proof. The proof in checking axiom of Hom-coassociative, we compute as follows

1. The first equality

(β ⊗ (idC ⊗ f) ◦∆) ◦∆ = (idC ⊗ (idC ⊗ f) ◦ (β ⊗∆) ◦∆

(2.7)
= ((idC ⊗ idC)⊗ f) ◦ (∆⊗ β) ◦∆

= ((idC ⊗ idC) ◦∆⊗ f ◦ β) ◦∆

= (∆⊗ (β ◦ f)) ◦∆.

2. The second equality

(β ⊗ (f ⊗ idC) ◦∆) ◦∆ = (idC ⊗ (f ⊗ idC) (β ⊗∆) ◦∆

(2.7)
= ((idC ⊗ f)⊗ idC)(∆⊗ β) ◦∆

= ((idC ⊗ f) ◦∆⊗ β) ◦∆.

3. The third equality

((f ⊗ idC) ◦∆⊗ β) ◦∆ = ((f ⊗ idC)⊗ idC)(∆⊗ β) ◦∆

(2.7)
= (f ⊗ (idC ⊗ idC))(β ⊗∆) ◦∆

= (f ◦ β ⊗ (idC ⊗ idC) ◦∆) ◦∆

= (f ◦ β ⊗∆) ◦∆

= (β ◦ f ⊗∆) ◦∆.

This finishes the proof.
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Remark 2.3.8 This Lemma can be used in the proof of Proposition 4.2.1.

Lemma 2.3.9 Let (C,∆, ε, β)) be a counital Hom-coassociative coalgebra, and f de a linear

map f : C → C⊗m satisfying f ◦ β = β⊗m ◦ f then

1. ((∆⊗ β⊗m)(∆⊗ β⊗(m−1)) ◦ f =
(

(β ⊗∆) ◦∆⊗ (β ◦ β)⊗(m−1)
)
◦ f.

2.
(
βn ⊗

(
βn−1 ⊗ f

)
◦∆
)
◦∆ = (∆⊗ β⊗m)

(
βn−1 ⊗ f

)
◦∆.

3.
(((

f ⊗ βn−1
)
◦∆
)
⊗ βn

)
◦∆ =

(
(β⊗m ⊗∆)

(
f ⊗ βn−1

))
◦∆.

Proof. This proof is completely analogous to that of Lemma 2.3.7.

1. The first equality

((∆⊗ β⊗m)(∆⊗ β⊗(m−1)) ◦ f =
(

∆⊗ β ⊗ β⊗(m−1)
)

(∆⊗ β⊗(m−1)) ◦ f

(2.7)
=
(

(∆⊗ β) ∆⊗ (β ◦ β)⊗(m−1)
)
◦ f

=
(

(β ⊗∆) ∆⊗ (β ◦ β)⊗(m−1)
)
◦ f.

2. The second equality

(
βn ⊗

(
βn−1 ⊗ f

)
◦∆
)
◦∆ = (

(
βn−1 ◦ β)⊗

(
βn−1 ⊗ f

)
◦∆
)
◦∆

(2.7)
=
(
βn−1 ⊗ (βn−1 ⊗ f)) ◦ (β ⊗∆

)
◦∆

=
(
βn−1 ⊗ (βn−1 ⊗ f)) ◦ (∆⊗ β

)
◦∆

= ((βn−1 ⊗ βn−1) ◦∆⊗ f ◦ β) ◦∆

= (∆ ◦ βn−1 ⊗ β⊗m ◦ f) ◦∆

= (∆⊗ β⊗m) ◦ (βn−1 ⊗ f) ◦∆.
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3. The third equality

(((
f ⊗ βn−1

)
◦∆
)
⊗ βn

)
◦∆ =

(((
f ⊗ βn−1

)
◦∆
)
⊗ βn−1 (β)

)
◦∆

(2.7)
=
((
f ⊗ βn−1

)
⊗ βn−1

)
(∆⊗ β) ◦∆

=
(
f ⊗

(
βn−1 ⊗ βn−1

))
(β ⊗∆) ◦∆

=
(
f (β)⊗

(
βn−1

)⊗2
∆
)
◦∆

=
(
β⊗m (f)⊗∆

(
βn−1

))
◦∆

=
((
β⊗m ⊗∆

) (
f ⊗ βn−1

))
◦∆.

This finishes the proof.

This Lemma can be used in the proof of Propositions 4.2.1 and 4.2.3.

Remark 2.3.10 The following result is an immediate consequence of Lemma 2.3.9

(((
βn−1 ⊗ f

)
◦∆
)
⊗ βn

)
◦∆ =

((
βn ⊗

(
f ⊗ βn−1

))
◦∆
)
◦∆.

2.4 Hom-Hopf algebras

In this section, we introduce a generalization of Hopf algebras and show some relevant

properties of the new structure.

2.4.1 Hom-bialgebras

A Hom-bialgebra is a vector space which is an unital Hom-associative algebra and a counital

Hom-coassociative coalgebra such that the conditions in Proposition 2.3.6 hold,[34, 35], see

also [51].

Definition 2.4.1 A Hom-bialgebra is a tuple B = (B,µ, η, α,∆, ε, β) in which (B,µ, η, α)

is an unital Hom-associative algebra, (B,∆, ε, β) is a counital Hom-coassociative coalgebra

and the linear maps ∆ and ε are morphisms of Hom-associative algebras, that is

∆ ◦ µ = µ⊗2 ◦ τ2,3 ◦∆⊗2 and ε⊗ ε = ε ◦ µ. (2.16)
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Remark 2.4.2 1. ([34]) In terms of elements, condition (2.16) could be expressed by

the following identities :

∆ (1B) = 1B ⊗ 1B, α (1B) = 1B, and β (1B) = 1B, where 1B = η (1k)

∆ (µ (x⊗ y)) = ∆ (x) ·∆ (y) =
∑

(x)(y)

µ
(
x(1) ⊗ y(1)

)
⊗ µ

(
x(2) ⊗ y(2)

)
ε (1B) = 1k, ε (µ (x⊗ y)) = ε (x) ε (y) , and ε ◦ α (x) = ε (x) .

where using the Sweedler’s notation ∆ (x) =
∑
(x)

x(1)⊗x(2) and the dot ”·” denotes the

multiplication on tensor product.

2. If α = β the Hom-bialgebra is denoted (V, µ, η,∆, ε, α) .

3. Observe that a Hom-bialgebra is neither associative nor coassociative, unless of course

α = β = idV , in which case we have a bialgebra.

Definition 2.4.3 A morphism of Hom-bialgebra (resp. weak morphism of Hom-bialgebra)

which is either a morphisms (resp. weak morphism) of Hom-associative algebra and Hom-

coassociative coalgebra.

Example 2.4.4 Let G be a group and kG the corresponding group algebra over k. As a

vector space, kG is generated by {eg : g ∈ G}. If α : G −→ G is a group homomorphism,

then it can be extended to an algebra endomorphism of kG by setting

α

∑
g∈G

ageg

 =
∑
g∈G

agα (eg) =
∑
g∈G

ageα(g)

Consider the usual bialgebra structure on kG and a bialgebra morphism. Then, we define a

Hom-bialgebra (kG,µ,∆, α) over kG by setting:

µ
(
eg ⊗ eg′

)
= α

(
egg′
)
, ∆ (eg) = α (eg)⊗ α (eg) .

Example 2.4.5 Let X be a set and consider the set of non-commutative polynomials A =

k 〈Xi〉. It carries a bialgebra structure with a comultiplication defined for x ∈ X by

∆ (x) = 1A ⊗ x+ x⊗ 1A and ∆ (1) = 1A ⊗ 1A.
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Let α be a bialgebra morphism. We define a Hom-bialgebra (A,µ′,∆′, α′) by

µ′ (f ⊗ g) = f (α (X)) g (α (X)) ,∆′ (x) = α (1A)⊗ α (x) + α (x)⊗ α (1A)

and ∆ (1) = α (1A)⊗ α (1A) .

Combining Propositions 2.1.8 and 2.2.10, we obtain the following proposition:

Proposition 2.4.6 Let B = (B,µ, η,∆, ε, α)be a Hom-bialgebra and β : B −→ B be a

Hom-bialgebra morphism, then Bβ = (B,µβ, ηβ,∆β, εβ, αβ) is a Hom-bialgebra.

Hence, (B,µβn , ηβn ,∆βn , εβn , αβn) is a Hom-bialgebra.

Proof. According to Propositions 2.1.8 and 2.2.10, (B,µβ, ηβ, αβ) is a unital Hom-associative

algebra, and (B,∆β, εβ, αβ) is a counital Hom-coassociative coalgebra. It remains to es-

tablish condition (2.16) in Bβ. Using µβ = β ◦ µ = µ ◦ β⊗2, ∆β = ∆ ◦ β = ∆ ◦ β⊗2,

τB⊗B ◦ β⊗2 = β⊗2 ◦ τB⊗B, and the condition (2.16) in the Hom-bialgebra B, we compute

as follows:

∆β ◦ µβ = ∆ ◦ β ◦ β ◦ µ = β⊗2 ◦ β⊗2 ◦∆ ◦ µ (2.16)
= β⊗2 ◦ β⊗2 ◦ µ⊗2 ◦ τ2,3 ◦∆⊗2

= β⊗2 ◦ (β ◦ µ)⊗2 ◦ τ2,3 ◦∆⊗2 =
(
β ◦ µ ◦ β⊗2

)⊗2 ◦ τ2,3 ◦∆⊗2

= µ⊗2
β ◦ β

⊗4 ◦ τ2,3 ◦∆⊗2 = µ⊗2
β ◦ τ2,3 ◦ β⊗4 ◦∆⊗2

= µ⊗2
β ◦ τ2,3 ◦∆⊗2

β .

We have shown that Bβ is a Hom-bialgebra.

This construction method of Hom-bialgebra, starting with a given Hom-bialgebra or a

bialgebra and a morphism, is called twisting principle.

Notice that the category of Hom-bialgebra is not closed under weak Hom-bialgebra

morphisms.

Example 2.4.7 (Hom-Type Taft-Sweedler bialgebra) We consider T2, the 4-dimensional

unital Taft-Sweedler algebra generated by g, x and the relations (g2 = 1, x2 = 0, xg = −gx).

The comultiplication is defined by ∆(g) = g ⊗ g and ∆(x) = x ⊗ 1 + g ⊗ x, the counit is

given by ε(g) = 1, ε(x) = 0. Set {e1 = 1, e2 = g, e3 = x, e4 = gx} be a basis.
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Pick any λ ∈ k, the map α : T2 → T2 defined by α(e1) = e1, α(e2) = e2, α(e3) = λe3,

α(e4) = λe4 is a bialgebra morphism. Therefore, we obtain a Hom-bialgebra (T2)λ which

is defined by the following table that describes multiplying the ith row elements by the jth

column elements.

e1 e2 e3 e4

e1 e1 e2 λe3 λe4

e2 e2 e1 λe4 λe3

e3 λe3 −λe4 0 0

e4 λe4 −λe3 0 0

and

∆(e1) = e1 ⊗ e1, ∆(e2) = e2 ⊗ e2, ∆(e3) = λ(e3 ⊗ e1 + e2 ⊗ e3),

∆(e4) = λ(e4 ⊗ e2 + e1 ⊗ e4).

ε(e1) = ε(e2) = 1, ε(e3) = ε(e4) = 0.

Example 2.4.8 1. A unital Hom-associative algebra (A,µ, η, α) becomes a Hom-bialgebra

when equipped with the trivial comultiplication ∆ = 0. Likewise, a counital Hom-

coassociative coalgebra (C,∆, ε, β) becomes a Hom-bialgebra when equipped with the

trivial multiplication µ = 0.

2. Let (B,µ, η,∆, ε, α) be a Hom-bialgebra. Then so are (B,−µ, η,−∆, ε, α) , and (B,µop, η,∆cop, ε, α)

where µop = µ ◦ τB⊗B and ∆cop = τB⊗B ◦∆ .

Proposition 2.4.9 Let B = (B,µ, η,∆, ε, α) be a finite dimensional Hom-bialgebra.

Then B∗ = (B∗,∆∗, ε∗, µ∗, η∗, α∗) is a Hom-bialgebra, together with the Hom-associative

algebra structure which is dual to the Hom-coassociative coalgebra structure of B, and with

the Hom-coassociative coalgebra structure which is a dual to the Hom-associative algebra

structure of B, is a Hom-bialgebra called dual Hom-bialgebra of B.

Proposition 2.4.10 If B is a finite dimensional Hom-bialgebra, then B is cocommutative

if and only if B∗ is commutative, and B is commutative if and only if B∗ is cocommutative.
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2.4.2 Hom-Hopf algebras

A Hom-bialgebra (B,µ, η,∆, ε, α) is a Hom-Hopf algebra if and only if the identity map of

B is invertible in the Hom-algebra Hom(B,B). Moreover, the preceding characterization

implies that an antipode of a Hom-Hopf algebra is uniquely determined. To define this

antipode, we will need the notion of a convolution product.

Proposition 2.4.11 Let (A,µ, η, α) be a unital Hom-associative algebra and (C,∆, ε, β)

be a counital Hom-coassociative coalgebra. Then, the vector space Hom(C,A) of k-linear

mappings of C to A equipped with the convolution product defined by

(f ∗ g) (x) = µ ◦ (f ⊗ g) ◦∆ (x) x ∈ C

and the unit being η ◦ ε is a unital Hom-associative algebra with the homomorphism

map defined by γ (f) = α ◦ f ◦ β.

Proof. By the Hom-associativity of the multiplication in A and the Hom-coassociativity

of the comultiplication in C, we obtain

((f ∗ g) ∗ γ (h)) = µ ◦ ((f ∗ g)⊗ γ (h)) ◦∆

= µ ◦ ((µ ◦ (f ⊗ g) ◦∆)⊗ (α ◦ h ◦ β)) ◦∆

= µ ◦ (µ⊗ α) (f ⊗ g ⊗ h) (∆⊗ β) ◦∆

= µ ◦ (α⊗ µ) (f ⊗ g ⊗ h) (β ⊗∆) ◦∆

= µ ◦ (α ◦ f ◦ β ⊗ µ ◦ (g ⊗ h) ◦∆) ◦∆

= (γ (f) ∗ (g ∗ h))

that is, the convolution product is Hom-associative. The relation

(η ◦ ε) ∗ f = µ ◦ (η ◦ ε⊗ f) ◦∆

= µ ◦ (η ⊗ idV ) ◦ f ◦ (ε⊗ idV ) ◦∆

(2.2),(2.8)
= α ◦ f ◦ β = γ (f)

shows that η ◦ ε is a left unit. It is similarly proved that η ◦ ε is a right unit.
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The homomorphism γ satisfies

(γ ◦ f) ∗ (γ ◦ g) = µ ◦ (α ◦ f ◦ β ⊗ α ◦ g ◦ β) ◦∆

= µ ◦ (α⊗ α) ◦ (f ⊗ g) ◦ (β ⊗ β) ◦∆

= α ◦ µ ◦ (f ⊗ g) ◦∆ ◦ β

= α ◦ (f ∗ g) ◦ β

= γ ◦ (f ∗ g) .

Then (Hom (C,A) , ∗, γ) is a Hom-associative algebra.

Corollary 2.4.12 Let (C,∆, ε, β) be a counital Hom-coassociative coalgebra and (A,µ, η, α)

a unital Hom-associative algebra. Then the vector spaces Hom(C⊗C,A) and Hom(C,A⊗A)

are unital Hom-associative algebras.

Proof. Consider C ⊗ C with the tensor product of Hom-coassociative coalgebras struc-

ture (resp. A ⊗ A with the tensor product of Hom-associative algebras structure) and A

with the Hom-associative algebra structure (resp. C with the Hom-coassociative coalge-

bra structure). Then it makes sense to speak about the unital Hom-associative algebra

Hom(C ⊗C,A) (resp. unital Hom-associative algebra Hom(C,A⊗A)), with the multipli-

cation given by convolution, defined by

(f ∗ g) (x⊗ y) = µ ◦ (f ⊗ g) ◦ ∆̃ (x⊗ y) where ∆̃ = (idC ⊗ τC⊗C ⊗ idC) ◦∆⊗∆,

(resp. (f ∗ g) (x) = µ̃ ◦ (f ⊗ g) ◦∆ (x) where µ̃ = (µ⊗ µ) (idA ⊗ τA⊗A ⊗ idA) .

The identity element of the Hom-associative algebra Hom(C⊗C,A) is η◦(ε⊗ ε) : C⊗C −→

A (resp. the unit of Hom-associative algebra Hom(C,A⊗A) is (η ⊗ η) ◦ ε : C −→ A⊗A).

Now let (B,µ, η,∆, ε, α) be a Hom-bialgebra.

An endomorphism S is an antipode if it is the inverse of the identity over B for the

Hom-algebra Hom(B,B) with the multiplication given by the convolution product. The

unit being η ◦ ε, (recall that concatenation denotes composition of maps).
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The conditions may be expressed by the identities :

µ ◦ (idB ⊗ S) ◦∆ = µ ◦ (S ⊗ idB) ◦∆ = η ◦ ε. (2.17)

Condition (2.17) means that S is the convolution inverse of the identity mapping, that

is,

S ∗ idB = idB ∗ S = η ◦ ε.

Definition 2.4.13 A Hom-Hopf algebra is a Hom-bialgebra with an antipode. It is

denoted by the tuple (H,µ, η,∆, ε, α, S) .

Remark 2.4.14 If (H,µ, η,∆, ε, α, S) is a Hom-Hopf algebra, the antipode S satisfies

µ ◦ (idH ⊗ S) ◦∆ = µ ◦ (S ⊗ idH) ◦∆ = η ◦ ε

α ◦ µ ◦ (idH ⊗ S) ◦∆ ◦ β = α ◦ µ ◦ (S ⊗ idH) ◦∆ ◦ β = α ◦ η ◦ ε ◦ β

µα ◦ (idH ⊗ S) ◦∆β = µα ◦ (S ⊗ idH) ◦∆β = η ◦ ε.

Then (H,µα, η,∆β, ε, α, S) is also a Hom-Hopf algebra.

Hence, let (H,µ, η,∆, ε, α, S) be Hom-Hopf algebra and β : H −→ H be a morphism of

Hom-bialgebra, then (H,µβn , ηβn ,∆βn , εβn , αβn , S) is a Hom-Hopf algebra.

Definition 2.4.15 Let H and H ′ be two Hom-Hopf algebras. A map f : H −→ H ′ is a

called a Hom-Hopf algebras morphism if it is a Hom-bialgebras morphism.

It is natural to ask whether a Hom-Hopf algebra morphism should preserve antipodes.

The following result shows that this is indeed the case.

2.4.3 Antipode’s properties.

Let (H,µ, η,∆, ε, α, S) be a Hom-Hopf algebra. For any element x ∈ H , using the counity

and Sweedler notation, one may write

α (x) =
∑
(x)

x(1) ⊗ ε
(
x(2)

)
=
∑
(x)

ε
(
x(1)

)
⊗ x(2) (2.18)
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Then, for any f ∈ Endk(H), we have

f ◦ α (x) =
∑
(x)

f
(
x(1)

)
ε
(
x(2)

)
=
∑
(x)

ε
(
x(1)

)
f
(
x(2)

)
(2.19)

The convolution product of f, g ∈ Endk(H). One may write

(f ∗ g) (x) =
∑
(x)

µ
(
f
(
x(1)

)
⊗ g

(
x(2)

))
x ∈ H (2.20)

Since the antipode S is the inverse of the identity for the convolution product, then S

satisfies∑
µ
(
S
(
x(1)

)
⊗ x(2)

)
=
∑

µ
(
x(1) ⊗ S

(
x(2)

))
= ε (x) η (1k) for any x ∈ H (2.21)

Proposition 2.4.16 Let (H,µ, η,∆, ε, α, S) and (H ′, µ′, η′,∆′, ε′, α′, S′) be two Hom-Hopf

algebras with antipodes S and S′. If f : H −→ H ′ is a morphism of Hom bialgebra, then

S′ ◦ f = f ◦ S. (2.22)

Proof. Consider the Hom-associative algebra Hom (H,H ′) with the convolution product,

and the elements S′ ◦ f and f ◦ S from this Hom-associative algebra. We show that they

are equal. Indeed

((
S′ ◦ f

)
∗ f
)

(x) = µ′ ◦
(
S′ ◦ f ⊗ f

)
◦∆ (x)

= µ′ ◦
(
S′ ⊗ idH′

)
(f ⊗ f) ◦∆ (x)

= µ′ ◦
(
S′ ⊗ idH′

)
◦∆′ ◦ f (x)

= η′ ◦ ε′ ◦ f (x) = ε′ (f (x)) η′ (1k)

= ε (x) η′ (1k)

So S′ ◦ f is a left inverse for f . Also

(f ∗ (f ◦ S)) (x) = µ′ ◦ (f ⊗ f ◦ S) ◦∆ (x)

= µ′ ◦ (f ⊗ f) (idH ⊗ S) ◦∆ (x)

= f ◦ µ ◦ (idH ⊗ S) ◦∆ (x)

= f ◦ η ◦ ε (x) = η′ ◦ ε (x)

= ε (x) η′ (1k) .
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Hence f ◦ S is also a right inverse for f . It follows that f is (convolution) anvertible,

and that the left and right inverses are equal.

Remark 2.4.17 Since α is a Homomorphism of Hom-bialgebra, so

S ◦ α = α ◦ S. (2.23)

The next proposition gives some important properties of the antipode (see [6], [35]).

We show that the antipode of a Hom-Hopf algebra is an anti-morphism of Hom-associative

algebras and anti-morphism of Hom-coassociative coalgebras. This means that S : H −→

Hop is a Hom-associative algebra morphism and S : H −→ Hcop is a Hom-coassociative

coalgebra morphism.

Proposition 2.4.18 Let (H,µ, η,∆, ε, α, S) be a Hom-Hopf algebra. The antipode S is

unique.

Proof. We have S ∗ idH = idH ∗ S = η ◦ ε. Thus, (S ∗ idH) ∗ S = S ∗ (idH ∗ S) = S. If S′

is another antipode of H then

S′ = S′ ∗ idH ∗ S′ = S′ ∗ idH ∗ S = S ∗ idH ∗ S = S.

Therefore the antipode when it exists is unique.

The next proposition gives some important properties of the antipode.

Proposition 2.4.19 Let (H,µ, η,∆, ε, α, S) be a Hom-Hopf algebras with antipode S. Were

we denote the multiplication by a point, µ (x⊗ y) = x · y Then:

i S (x · y) = S (y) · S (x) or S ◦ µ = µ ◦ (S ⊗ S) ◦ τ ;

ii S (η (1k)) = η (1k) ;

iii ∆ (S (x)) = S
(
x(2)

)
⊗ S

(
x(1)

)
or ∆ ◦ S = (S ⊗ S) ◦ τ ◦∆;

iv ε ◦ S = ε.

The multiplication is denoted by a dot for simplicity.
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Proof. i) Consider H ⊗H with the tensor product of Hom-coassociative coalgebra struc-

ture ∆̃α, H with the Hom-associative algebra structure µ. and a Hom-associative algebra

Hom (H ⊗H,H) with the multiplication given by convolution, (see Corollary 2.4.12)

f ∗ g (x⊗ y) = µ ◦ (f ⊗ g) ◦ ∆̃α (x⊗ y)

where ∆̃α = ∆̃ ◦ (α⊗ α) is defined in Definition 2.2.7.

Consider the maps F,G : H ⊗H −→ H defined by

F (x⊗ y) = S (y) · S (x) , G (x⊗ y) = S (x · y)

for any x, y ∈ H. We show that µ is a left inverse (with respect to convolution) for F ,

and a right inverse for G. Indeed, for x, y ∈ H we have

µ ∗ F (x⊗ y) = µ ◦ (µ⊗ F ) ◦ ∆̃α (x⊗ y)

=
∑

(x),(y)

µ
(

(α⊗ α) (x⊗ y)(1)

)
· F
(

(α⊗ α) (x⊗ y)(2)

)
=
∑

(x),(y)

µ
(
α
(
x(1)

)
⊗ α

(
y(1)

))
· F
(
α
(
x(2)

)
⊗ α

(
y(2)

))
(2.23)

=
∑

(x),(y)

((
α
(
x(1)

)
· α
(
y(1)

))
· α ◦

(
S
(
y(2)

)
· S
(
x(2)

)))
(2.1)
=

∑
(x),(y)

α2 ◦
(
x(1)

)
·
(
α
(
y(1)

)
·
(
S
(
y(2)

)
· S
(
x(2)

)))
=
∑

(x),(y)

α2
(
x(1)

)
·
((
y(1) · S

(
y(2)

))
· α
(
S
(
x(2)

)))
=
∑
(x)

α2 ◦
(
x(1)

)
·
(
(η ◦ ε (y)) · α

(
S
(
x(2)

)))
=
∑
(x)

α2 ◦
(
x(1)

)
·
(
η (1k) · α

(
S
(
x(2)

)))
ε (y)

=
∑
(x)

(
α2 ◦

(
x(1)

)
· α2 ◦

(
S
(
x(2)

)))
ε (y)

= α2 ◦ η ◦ ε (x) ε (y)

= ηH ◦ εH⊗H (x⊗ y) .



54

It shows that µ ∗ F = ηH ◦ εH⊗H

G ∗ µ (x⊗ y) = µ ◦ (G⊗ α ◦ µ) ◦ ∆̃α (x⊗ y)

=
∑
x⊗y

G
(

(α⊗ α) (x⊗ y)(1)

)
· µ
(

(α⊗ α) (x⊗ y)(2)

)
=
∑

(x),(y)

G
(
α
(
x(1)

)
⊗ α

(
y(1)

))
· µ
(
α
(
x(2)

)
⊗ α

(
y(2)

))
=
∑

(x),(y)

S
(
α
(
x(1)

)
· α
(
y(1)

))
·
(
α
(
x(2)

)
· α
(
y(2)

))

= α ◦

 ∑
(x),(y)

S
(
x(1) · y(1)

)
·
(
x(2) · y(2)

)
= α ◦

 ∑
(x),(y)

S
(

(x · y)(1)

)
·
(

(x · y)(2)

)
= α ◦

(∑
xy

S
(

(x · y)(1)

)
·
(

(x · y)(2)

))

= α ◦ ηH ◦ εH⊗H (x⊗ y) = ηH ◦ εH⊗H (x⊗ y)

and G ∗ µ = ηH ◦ εH⊗H . Hence µ is a left inverse for F and a right inverse for G in a

Hom-associative algebra, and therefore F = G. this means that i) holds.

ii) We apply the definition of the antipode for the element 1H . Setting 1H = η(1k) and

since ∆(1H) = 1H ⊗ 1H and ε(1H) = 1k one has

(S ∗ idH) (1H) = µ (S(1H)⊗ 1H) = α ◦ S(1H)

= S ◦ α(1H) = S ◦ α ◦ η(1k) = S ◦ η(1k)

(S ∗ idH) (1H) = η ◦ ε(1H) = η(1k).

Using the antipode property we get S ◦ η(1k) = η(1k).

iii)We use the same technique that we applied in part (i). We consider the linear maps

Q : H −→ H ⊗H and R : H −→ H ⊗H

in the convolution Hom-associative algebra Hom (H,H ⊗H) (see Corollary 2.4.12) where

µ̃α = α ◦ µ̃ is defined in Example 2.1.5.

f ∗ g (x) = µ̃α ◦ (f ⊗ g) ◦∆ (x)
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given by

Q (x) = S (x)1 ⊗ S (x)2 and R (x) = S (x2)⊗ S (x1)

for all x ∈ H. We will again prove that Q = R by showing that Q and R are both the

convolution inverse of ∆ : H −→ H ⊗H.

iv) We apply ε to the relation µ ◦ (idH ⊗ S) ◦ ∆ (x) = ε (x) η(1k). Since ε and S are

linear maps, we obtain

ε ◦ µ ◦ (idH ⊗ S) ◦∆ (x) = ε (ε (x) η(1k))

(ε⊗ ε ◦ S) ◦∆ (x) = ε (x) ε (1H) = ε (x)

ε ◦ S ◦ (ε⊗ idH) ◦∆ (x)
(2.8)
= ε (x)

ε ◦ S ◦ α (x)
(2.23)

= ε (x)

ε ◦ α ◦ S (x) = ε ◦ S (x) = ε (x) .

Thus ε ◦ S = ε.

Proposition 2.4.20 Let (H,µ, η,∆, ε, α, S) be a Hom-Hopf algebra with antipode S. Then

the following assertions are equivalent:

1.
∑

(x) S
(
x(2)

)
x(1) = ε (x) 1H for any x ∈ H. Or µ ◦ (S ⊗ idH) ◦ τ ◦∆ = ε ◦ η

2.
∑

(x) x(2)S
(
x(1)

)
= ε (x) 1H for any x ∈ H. Or µ ◦ (idH ⊗ S) ◦ τ ◦∆ = ε ◦ η

3. S2 = idH (by S2 we mean the composition of S with itself)

Proof. (1)=⇒(3) We know that idH is inverse of S with respect to convolution. We show

that S2 is a right convolution inverse of S, and by the uniqueness of the inverse it will follow

that S2 = idH . We have

(
S ∗ S2

)
(x) = µ ◦

(
S ⊗ S2

)
◦∆ (x) =

∑
(x)

S
(
x(1)

)
· S2

(
x(2)

)
=
∑
(x)

S
(
S
(
x(2)

)
·
(
x(1)

))
(S is an anti-morphism of Hom-associative algebras)

= S (ε (x) 1H) = ε (x) η (1k) = η ◦ ε (x)
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This shows that indeed S ∗ S2 = η ◦ ε.

(3)=⇒(2) We know that
∑

(x) x(1) · S
(
x(2)

)
= ε (x) 1H Applying the anti-morphism of

Hom-associative algebra S we obtain
∑

(x) S
2
(
x(2)

)
· S
(
x(1)

)
= ε (x) 1H . Since S2 = idH ,

this becomes
∑

(x) x(2) · S
(
x(1)

)
= ε (x) 1H .

(2)=⇒(3) We proceed as in (1)=⇒(3), and we show that S2 = idH is a left convolution

inverse for S. Indeed,

(
S2 ∗ S

)
(x) = µ ◦

(
S2 ⊗ S

)
◦∆ (x) =

∑
(x)

S2
(
x(1)

)
· S
(
x(2)

)

= S

∑
(x)

x(2) · S
(
x(1)

) = S (ε (x) 1H) = η ◦ ε (x) .

(3)=⇒(1) We apply S to the equation
∑

(x) S
(
x(1)

)
·x(2) = ε (x) 1H , and using S2 = idH

we obtain
∑

(x) S
(
x(2)

)
· x(1) = ε (x) 1H .

Corollary 2.4.21 Let H be a commutative or cocommutative Hom-Hopf algebra then S2 =

idH .

Proof. If H is commutative (µ (x⊗ y) = y ⊗ x), then by
∑

(x) S
(
x(1)

)
· x(2) = ε (x) 1H it

follows that
∑

(x) x(2) · S
(
x(1)

)
= ε (x) 1H , i.e. (2) from the proceding proposition.

If H is cocommutative, then

∑
(x)

x(1) ⊗ x(2) = x(2) ⊗ x(1)

and then by
∑

(x) S
(
x(1)

)
· x(2) = ε (x) 1H it follows that

∑
(x) S

(
x(2)

)
· x(1) = ε (x) 1H , i.e.

(1) from the proceding proposition.

Remark 2.4.22 Let (H,µ, η,∆, ε, α) be a Hom-Hopf algebra with antipode S. Then the

Hom-bialgebra Hop,cop = (H,µop, η,∆cop, ε, α) is a Hom-Hopf algebra with the same antipode

S.

In Proposition 2.4.9 we saw that if H is a finite dimensional Hom-bialgebra, then its

dual is a Hom-bialgebra. The following result shows that if H is a Hom-Hopf algebra, then

its dual also has a Hom-Hopf algebra structure.



57

Proposition 2.4.23 Let H be a finite dimensional Hom-Hopf algebra, with antipode S.

Then the Hom-bialgebra H∗ is a Hom-Hopf algebra, with antipode S∗.

Proof. We know already that H∗ is a Hom-bialgebra. We therefore need only show that

S∗ is the antipode of H∗. To this end, we have that,

µH∗ ◦ (S∗ ⊗ idH∗) ◦∆H∗ (f∗) = (ρ ◦ (S∗ ⊗ idH∗) ◦∆H) (f∗ ◦ µH)

= (S ⊗ idH)∗∆H (f∗ ◦ µH)

= (f∗ ◦ µH) (S ⊗ idH) ◦∆H

= (ρ ◦ f∗ ◦ ηH ◦ εH) = ηH∗ ◦ εH∗ (f∗) .

using ρ−1 (S ⊗ idH)∗ ρ = (S∗ ⊗ idH∗)

Similarly,

µH∗ ◦ (idH∗ ⊗ S∗) ◦∆H∗ (f∗) = ηH∗ ◦ εH∗ (f∗) .

for all f∗ ∈ H∗, since εH∗ (f∗) = f∗ (1H) = f∗ ◦ ηH (1k) , and ηH∗ (1k) = 1H∗ = ε, we have

that S∗ is the convolution inverse of idH∗ and therefore S∗ is the antipode of H∗.



Chapter 3

Modules and comodules of

Hom-Hopf algebras

In this chapter, we recall the definitions of modules and comodules over Hom-associative

algebras and study their tensor products. The definitions of action and coactions are simply

a polarisation of those of Hom-algebras and Hom-coalgebras, so we include them now among

the basic definitions.

A Hom-module is a pair (M,α) [56] in which M is a vector space and α : M −→M is a

linear map. A morphism (M,αM )−→ (N,αN ) of Hom-modules is a linear map f : M −→ N

such that αN ◦f = f◦αM . We will often abbreviate a Hom-module (M,α) to M . The tensor

product of the Hom-modules (M,αM ) and (N,αN ) consists of the vector space M ⊗N and

the linear self-map αM ⊗ αN .

3.1 Modules over Hom-associative algebras.

In this section, we define the notion of a module acting on a Hom-associative algebra. Let

A = (A,µA, ηA, αA) be a unital Hom-associative algebra and (M,αM ) be a Hom-module.

Definition 3.1.1 The vector space M is called a left A-module (or left module over

Hom-algebra A) if there exists a morphism λl : A⊗M −→M of Hom-modules, written as

λl (a⊗m) = aBm, called the structure map, such that

λl ◦ (αA ⊗ λl) = λl ◦ (µA ⊗ αM ) and λl ◦ (ηA ⊗ idM ) = αM (3.1)

58
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or, equivalently, that for all a, b ∈ A and m ∈M

αA (a) B (bBm) = (ab) B αM (m) and 1A Bm = αM (m)

where the first identity of (3.1) acts on A⊗A⊗M and the second of (3.1) on k⊗M 'M .

The axioms are depicted in the commutative diagrams:

A⊗A⊗M αA⊗λl−→ A⊗M

µA⊗αM ↓ ↓λl

A⊗M λl−→ M

k⊗M ∼= M

η⊗idM ↓ ↓αM

A⊗M λl−→ M

Remark 3.1.2 The map λl is then called a left action of A on M.

If (M,αM ) and (M ′, αM ′) are lefts A-modules, then a morphism of left A-modules

f : M −→M ′ is a morphism of the underlying Hom-modules such that

f ◦ λl = λ′l ◦ (idA ⊗ f) or f (aBm) = aB f (m) . (3.2)

If f is invertible, it is a left A-modules isomorphism.

Definition 3.1.3 A right A-module ( or right module over Hom-associative algebra A)

is a vector space M with a morphism λr : M ⊗ A −→ M of Hom-modules, right action of

A on M and written as λr (m⊗ a) = mC a, such that

λr ◦ (λr ⊗ αA) = λr ◦ (αM ⊗ µA) and λr ◦ (idM ⊗ η) = αM . (3.3)

The two conditions on a right A-module (3.3) can be expressed as for all a, b ∈ A and

m ∈M

(mC a) C αA (b) = αM (m) C (ab) and mC 1A = αM (m)

or as the commutativity of the diagrams

M ⊗A⊗A αM⊗µA−→ M ⊗A

λr⊗αA
↓ ↓λr

M ⊗A λr−→ M

M ⊗ k ∼= M

idM⊗η ↓ ↓αM

M ⊗A λr−→ M
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Remark 3.1.4 The map λr is then called a right action of A on M . We will often denote

a left or right A-module by (M,λ, αM ) and refer to λ as the left or right action of A on M.

Example 3.1.5 If A is an unital Hom-associative algebra, then we may consider A as

either a left or right A-module where the action is given by the multiplication µ.

The Hom-associativity and unit properties give, respectively, the corresponding proper-

ties for a A-module.

If M and M ′ are rights A-modules, then a morphism of right A-module f : M −→M ′

if

f ◦ λr = λ′r ◦ (f ⊗ idA) or f (mC a) = f (m) C a (3.4)

If f is invertible, it is an isomorphism of right A-modules.

Proposition 3.1.6 A right A-module is nothing else than a left module over the opposite

unital Hom-associative algebra Aop. Therfore we need only consider left modules which shall

for simplicity be called Hom-module in the sequel.

Proof. Indeed,

λopr ◦ (αA ⊗ λopr ) (x⊗ y ⊗m) = λopr ◦ (αA (x)⊗ λopr (m⊗ y))

= λr ◦ (λr (m⊗ y)⊗ αA (x))

= λr ◦ (αM (m)⊗ µ (y ⊗ x))

= λopr ◦ (µop (x⊗ y)⊗ αM (m))

= λopr ◦ (µop ⊗ αM ) (x⊗ y ⊗m) .

We have shown that λopr is the structure map of a left A-module.

Theorem 3.1.7 Let (A,µ, η, αA) be an unital Hom-associative algebra and (M,λl, αM ) be

a left A-module Then
(
M,αnM ◦ λl, α

n+1
M

)
is a another left Aαn-module over unital Hom-

associative algebra Aαn = (A,µαn , ηαn , αn+1
A ) defined in Proposition 2.1.8.
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Theorem 3.1.8 Let (A,µA, ηA, αA) be an unital Hom-associative algebra and (M,λl, αM )

be a left A-module with structure map λl : A⊗M −→M . Define the map

λ̃2,0
l = λl ◦

(
α2
A ⊗ idM

)
: A⊗M −→M. (3.5)

Then λ̃2,0
l is the structure map of another left A-module structure on (M,αM ).

Hence, for any n ∈ N, λ̃n,0l is the structure map of another left A-Hom-module structure

on M , where

λ̃n,0l = λl ◦ (αnA ⊗ idM ) : A⊗M −→M.

Proof. The fact that λ : A⊗M −→M is a morphism of Hom-modules means that

αM ◦ λ = λ ◦ αA⊗M (3.6)

To see that λ̃n,0l is a morphism of Hom-modules, we compute as follows

αM ◦ λ̃n,0l = αM ◦ λl ◦ (αnA ⊗ idM )

(3.6)
= λl ◦ (αA ⊗ αM ) ◦ (αnA ⊗ idM )

= λl ◦ (αnA ⊗ idM ) ◦ (αA ⊗ αM )

= λ̃n,0l ◦ (αA ⊗ αM )

To see that λ̃2,0
l satisfies (3.1) (with λ̃2,0

l in place of λl ), we compute as follows:

λ̃n,0l ◦
(
αA ⊗ λ̃n,0l

)
= λl ◦ (αnA ⊗ idM ) ◦ (αA ⊗ (λl ◦ (αnA ⊗ idM )))

= λl ◦ (αA ⊗ λl) ◦ (αnA ⊗ αnA ⊗ idM )

(3.1)
= λl ◦ (µA ⊗ αM ) ◦ (αnA ⊗ αnA ⊗ idM )

= λl ◦ (αnA ◦ µA)⊗ αM by multiplicativity of αA

= λl ◦ (αnA ⊗ idM ) ◦ (µA ⊗ αM )

= λ̃2,0
l ◦ (µA ⊗ αM )

and

λ̃n,0l ◦ (ηA ⊗ idM ) = λl ◦ (αnA ⊗ idM ) ◦ (ηA ⊗ idM ) = λl ◦ (ηA ⊗ idM ) = αM



62

λl ◦ (ηA ⊗ idM ) = αM . We have shown that λ̃n,0l is the structure map of a left A-module

structure on (M,αM ).

Theorem 3.1.9 Let (A,µA, ηA, αA) be an unital Hom-associative algebra and (M,λr, αM )

be a right A-module with structure map λr : M ⊗A −→M . Define the map

λ̃2,0
r = λr ◦

(
idM ⊗ α2

A

)
: M ⊗A −→M.

Then λ̃2,0
r is the structure map of another right A-module structure on (M,αM ).

Hence, ∀n ∈ N, if (M,λr, αM ) is a right A-module. Then
(
M, λ̃n,0r , αM

)
is the another

right A-module, where

λ̃n,0r = λr ◦ (idM ⊗ αnA) : M ⊗A −→M.

Proof. This proof is completely analogous to that of Theorem 3.1.8

Theorem 3.1.10 Let (A,µ, η, αA) be an unital Hom-associative algebra and (M,αM ) be a

left A-module with structure map : λl : A ⊗M −→ M . For each integer k ≥ 0, define the

map

λ̃0,k
l = αkM ◦ λl : A⊗M −→M.

Then each the Hom-module
(
M, λ̃0,k

l , αk+1
M

)
gives the structure of a left module over

unital Hom-associative algebra (A,µαk , ηαk , ααk) in Proposition 2.1.8, for any m ∈ N.

Proof. Since λ̃0,k
l = αkM ◦ λl, it suffices to prove that λ̃0,k

l gives
(
M,αk+1

M

)
the structure of

an Aαk -module, where Aαk = (A,µαk , ηαk , ααk).

First, the morphism of Hom-modules in this case says

αk+1
M ◦ λ̃0,k

l = α2k+1
M ◦ λl = α2k

M ◦ λl ◦ (αA ⊗ αM )

= αkM ◦ λl ◦
(
αk+1
A ⊗ αk+1

M

)
= λ̃0,k

l ◦
(
αk+1
A ⊗ αk+1

M

)
by the multiplicativity of αA and αM with respect to λl.
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Next, the condition (3.1) (with λ̃0,k
l in place of λl ) in this case says

λ̃0,k
l ◦

(
αk+1
A ⊗ λ̃0,k

l

)
= αkM ◦ λl ◦

(
αk+1
A ⊗ αkM ◦ λl

)
= αkM ◦ λl ◦ (αA ⊗ λl) ◦

(
αkA ⊗ αkA ⊗ αkM

)
= αkM ◦ λl ◦ (µA ⊗ αM ) ◦

(
αkA ⊗ αkA ⊗ αkM

)
= αkM ◦ λl ◦

(
αkA ◦ µA ⊗ αk+1

M

)
= λ̃0,k

l ◦
(
µαk ⊗ αk+1

M

)
and

λ̃0,k
l ◦ (ηαk ⊗ idM ) = αkM ◦ λl ◦ (ηαk ⊗ idM ) = λl ◦

(
αkA ⊗ αkM

)
◦ (ηαk ⊗ idM )

= λl ◦ (ηαk ⊗ idM ) ◦ αkM = αk+1
M = λ̃0,k

l ◦ (idM ⊗ ηαk)

Then
(
M, λ̃0,k

l , αk+1
M

)
gives the structure of a left module.

Corollary 3.1.11 Let (A,µ, η, αA) be an unital Hom-associative algebra and (M,αM ) be

a left A-module with structure map λl : A ⊗M −→ M . For any integers n, k ≥ 0, define

the map

λ̃n,kl = αkM ◦ λl ◦ (αnA ⊗ idM ) : A⊗M −→M.

Then the Hom-module
(
M, λ̃n,kl , αk+1

M

)
gives the structure of a left module over the

unital Hom-associative algebra (A,µαk , ηαk , ααk).

Proof. Apply Theorem 3.1.10 to the A-module M with structure map λ̃n,0l = λl ◦

(αnA ⊗ idM ) in Theorem 3.1.8, and observe that λ̃n,kl =
(
λ̃n,0l

)0,k
. We have

λ̃n,kl ◦
(
αk+1
A ⊗ λ̃n,kl

)
= αkM ◦ λl ◦ (αnA ⊗ idM ) ◦

(
αk+1
A ⊗ αkM ◦ λl ◦ (αnA ⊗ idM )

)
= αkM ◦ λ

n,0
l ◦

(
αk+1
A ⊗ αkM ◦ λ

n,0
l

)
= α2k

M ◦ λ
n,0
l ◦

(
αA ⊗ λn,0l

)
= α2k

M ◦ λ
n,0
l ◦ (µA ⊗ αM ) by Theorem3.1.8

= α2k
M ◦ λl ◦ (αnA ⊗ idM ) ◦ (µA ⊗ αM )

= αkM ◦ λl ◦ (αnA ⊗ idM ) ◦
(
αkM ◦ µA ⊗ αk+1

M

)
= λ̃n,kl ◦

(
αkM ◦ µA ⊗ αk+1

M

)
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The second assertion is proved similarly, so
(
M, λ̃n,kl , αk+1

M

)
gives the structure of a left

Aαk -module.

Definition 3.1.12 A vector space M is called an A-bimodule if M is both a left A-module

with action a B m and a right A-module with action m C a satisfying the compatibility

condition

(aBm) C αA (b) = αA (a) B (mC b)

for a, b ∈ A and m ∈M . Or

λr ◦ (λl ⊗ αA) = λl ◦ (αA ⊗ λr) (3.7)

Then, we refer to the tuple (M,λl, λr, αM ) for an A-bimodule M .

If M and M ′ are A-bimodules, a map f : M −→M ′ is a morphism of A-bimodules

if it is a morphism of both left A-module and right A-module.

Every Hom-associative algebra (A,µA, αA) is an A-bimodule with λl = λr = µA.

Proposition 3.1.13 Let (A,µA, ηA, αA) be an unital Hom-associative algebra and (M,λl, λr, αM )

be a A-bimodule. Define the maps

λ̃2,0
l = λl ◦

(
α2
A ⊗ idM

)
and λ̃2

r = λr ◦
(
idM ⊗ α2

A

)
.

Then
(
M, λ̃2,0

l , λ̃2,0
r , αM

)
is a A-bimodule.

Hence, ∀n ∈ N, if (M,λl, λr, αM ) is a A-bimodule. Then
(
M, λ̃n,0l , λ̃n,0r , αM

)
is the

another A-bimodule,

Proof. We use Theorems 3.1.8 and 3.1.9, that (M,λl, αM ) is a leftA-module, and (M,λr, αM )

is a right A-module. It remains to establish compatibility condition, we compute as follows

λ̃n,0r ◦
(
λ̃n,0l ⊗ αA

)
= λr ◦ (idM ⊗ αnA) ◦ (λl ◦ (αnA ⊗ idM )⊗ αA)

= λr ◦ (λl ⊗ αA) ◦ (αnA ⊗ idM ⊗ αnA)

(3.7)
= λl ◦ (αA ⊗ λr) ◦ (αnA ⊗ idM ⊗ αnA)

= λl ◦ (αnA ⊗ idM ) ◦ (αA ⊗ λr ◦ (idM ⊗ αnA))

= λ̃n,0l ◦
(
αA ⊗ λ̃2

r

)
.
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Then
(
M, λ̃n,0l , λ̃n,0r , αM

)
is a A-bimodule.

Example 3.1.14 Let M ′ = V ⊗M ⊗ V , and consider structure maps λµl = µ⊗ αM ⊗ αV

and λµr = αV ⊗ αM ⊗ µ. Then
(
V ⊗M ⊗ V, λµl , λ

µ
r

)
is an exterior A-bimodule; λµl and λµr

called exterior bimodule structure maps. This is not to be confused with the notion of an

exterior algebra.

Proof. Indeed, the left A-module axioms for λµl now follows from that of λl and the

identities

λµl ◦
(
αV ⊗ λµl

)
= (µ⊗ αM ⊗ αV ) ◦ (αV ⊗ µ⊗ αM ⊗ αV )

= µ ◦ (αV ⊗ µ)⊗ α⊗2
M ⊗ α

⊗2
V

(2.1)
= µ ◦ (µ⊗ αV )⊗ α⊗2

M ⊗ α
⊗2
V

λµl ◦ (µ⊗ αV⊗M⊗V ) = (µ⊗ αM ⊗ αV ) ◦ (µ⊗ αV ⊗ αM ⊗ αV )

= µ ◦ (µ⊗ αV )⊗ α⊗2
M ⊗ α

⊗2
V

and

λµl ◦ (η ⊗ idV⊗M⊗V ) = (µ⊗ αM ⊗ αV ) ◦ (η ⊗ idV⊗M⊗V )

(2.2)
= (µ ◦ (η ⊗ idV )⊗ αM ⊗ αV ) = αV⊗M⊗V

Likewise the right A-module axioms for λµr follow from that of λr and the identity λr ◦

(idM ⊗ η) = αM .

λµr ◦ (λµr ⊗ αV ) = (αV ⊗ αM ⊗ µ) ◦ (αV ⊗ αM ⊗ µ⊗ αV )

= α⊗2
V ⊗ α

⊗2
M ⊗ µ ◦ (µ⊗ αV )

(2.1)
= α⊗2

V ⊗ α
⊗2
M ⊗ µ ◦ (αV ⊗ µ)

λµr ◦
(
αV⊗M⊗V ⊗ µ

)
= (αV ⊗ αM ⊗ µ) ◦ (αV ⊗ αM ⊗ αV ⊗ µ)

= α⊗2
V ⊗ α

⊗2
M ⊗ µ ◦ (αV ⊗ µ)
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and

λµr ◦ (idV⊗M⊗V ⊗ η) = (αV ⊗ αM ⊗ µ) ◦ (idV⊗M⊗V ⊗ η)

= αV ⊗ αM ⊗ µ ◦ (idV ⊗ η)

(2.2)
= αV⊗M⊗V .

Finally, compatibility conditionis (3.7) follows from the following calculation:

λµr ◦
(
λµl ⊗ αV

)
= (αV ⊗ αM ⊗ µ) ◦ (µ⊗ αM ⊗ αV ⊗ αV )

= αV ◦ µ⊗ α⊗2
M ⊗ µ ◦ αV

= µ ◦ (αV ⊗ αV )⊗ α⊗2
M ⊗ (αV ⊗ αV ) ◦ µ

= λµl ◦ (αV ⊗ λµr ) .

We have shown that
(
V ⊗M ⊗ V, λµl , λ

µ
r

)
is an exterior A-bimodule.

3.2 Comodules over Hom-coassociative coalgebras.

Dualizing actions of Hom-associative algebras on Hom-modules leads to coactions of Hom-

coassociative coalgebras on Hom-comodules. Let (C,∆C , εC , βC) be a counital Hom-coassociative

coalgebra and (M,βM ) be a Hom-module.

Definition 3.2.1 A right coaction of (C,∆C , εC , βc) on a vector space M , called then a

right C-comodule, is a morphism ρr : M −→ M ⊗ C of Hom-modules, satisfying the

identities

(ρr ⊗ βC) ◦ ρr = (βM ⊗∆C) ◦ ρr and (idM ⊗ εC) ◦ ρr = βM . (3.8)

If ρr and ρ′r are right comodules of C on Hom-module (M,βM ) and (M ′, βM ′), then

a morphism of right C-comodules f : M −→ M ′ is a morphism of the underlying

Hom-comodules such that

ρ′r ◦ f = (idC ⊗ f) ◦ ρr. (3.9)
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Definition 3.2.2 A left C-comodule (or left comodule over Hom-coalgebra C) on (M,βM )

is a linear mapping ρl : M −→ C ⊗M such that

(βC ⊗ ρl) ◦ ρl = (∆C ⊗ βM ) ◦ ρl and (εC ⊗ idM ) ◦ ρl = βM . (3.10)

The two conditions of (3.8) are equivalent to the requirement that the two diagrams

M ⊗ C ⊗ C βM⊗∆C←− M ⊗ C

ρr⊗βC ↑ ↑ρr

M ⊗ C ρr←− M

M ⊗ k ∼= M

idM⊗ε ↑ ↑βM

M ⊗ C ρr←− M

are commutative. The diagrams of (3.10) for a right comodule are obtained from the

diagrams of (3.3) for a right module by reversing arrows and replacing the multiplication

µ by the comultiplication ∆ and the unit η by the counit ε. Note also that the identities

of (3.8) and (3.10) which characterize right and left comodules are just the ”duals” of the

equations of (3.1) and (3.3) which define right and left modules, respectively.

The map ρr (resp. ρl) is then called a right (resp. left) coaction of (M,βM ) on C.We

will often denote a right or left comodule by (M,ρ, βM ) and refer to ρ as the left or right

coaction of M on C.

Then, a morphism of right C-comodule is f : M →M ′ such that

ρ′r ◦ f = (f ⊗ idC) ◦ ρr. (3.11)

If f is invertible, it is an isomorphism of right C-modules.

Let all m ∈M we now adapt the Sweedler notation to coaction if (M,ρr, βM ) is a right

C-comodule, then write

ρr (m) =
∑
(m)

m(0) ⊗m(1)

the elements on the first tensor position (the m(0)’s) being in M , and elements on the second

tensor position (the m(1)’s) being in C. So equations (3.8) becomes

∑(
m(0)

)
(0)
⊗
(
m(0)

)
(1)
⊗ βC

(
m(1)

)
=
∑

βM
(
m(0)

)
⊗
(
m(1)

)
(1)
⊗
(
m(0)

)
(2)

and ∑
εC
(
m(1)

)
⊗m(0) = βM (m)
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Similarly, if (M,ρl, βM ) is a left C-comodule, we denote

ρl (m) =
∑
(m)

m(−1) ⊗m(0)

for all m ∈M, where m(−1) ∈ C and m(0) ∈M. In this case, equations (3.10) becomes

∑
βC
(
m(−1)

)
⊗
(
m(0)

)
(−1)
⊗
(
m(0)

)
(0)

=
∑(

m(−1)

)
(1)
⊗
(
m(−1)

)
(2)
⊗ βM

(
m(0)

)
and ∑

εC
(
m(−1)

)
⊗m(0) = βM (m) .

a slightly different adaptation of our original Sweedler notation.

The Hom-coassociativity and counit properties give, respectively, the corresponding

properties for a C-comodule.

Proposition 3.2.3 A right C-comodule is the same as a left comodule over the coopposite

counital Hom-coassociative coalgebra Ccop.

Remark 3.2.4 The preceding proposition shows that any result that we obtain for right

Hom-comodules has an analogue for left Hom-comodules. This is why we are going to work

generally with right Hom-comodules, without explicitly mentioning the similar results for

left C-comodules.

For m ∈M, In Sweedler notation for a right C-comodule, this can be written

∑
f
(
m(0)

)
⊗m(1) =

∑
f (m)(0) ⊗ f (m)(1)

Theorems 3.1.8, 3.1.10 and Corollary 3.1.11 can be readily dualized by inverting the arrows

and replacing µ by ∆ in the various equalities in their proofs. Therefore, we omit the proofs

of the following results, which are dual to Theorems 3.1.8, 3.1.10 and Corollary 3.1.11

respectively.

Theorem 3.2.5 Let (C,∆, ε, βC) be a counital Hom-coassociative coalgebra and (M,βM )

be a right A-comodule with structure map ρr : M −→M ⊗ C. Define the map

ρ̃2,0
r =

(
idM ⊗ β2

C

)
◦ ρr : M −→M ⊗ C. (3.12)
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Then ρ̃2,0
r is the structure map of another right C-comodule structure on M .

Hence, ∀n ∈ N,
(
M, ρ̃n,0r , βM

)
is the another right A-module, where

ρ̃n,0r = (idM ⊗ βnC) ◦ ρr : M −→M ⊗ C.

Proposition 3.2.6 Let (C,∆, ε, βC) be a counital Hom-coassociative coalgebra and (M,βM )

be a left C-comodule with structure map ρl : M −→ C ⊗M . Define the map

ρ̃2,0
l =

(
β2
C ⊗ idM

)
◦ ρl : M −→ C ⊗M.

Then ρ̃2
l is the structure map of another left C-comodule structure on M .

Hence, ∀n ∈ N,
(
M, ρ̃n,0l , βM

)
is the another right C-comodule, where

ρ̃n,0l = (βnC ⊗ idM ) ◦ ρl : M −→ C ⊗M.

Theorem 3.2.7 Let (C,∆, ε, βC) be a counital Hom-coassociative coalgebra and (M,βM )

be a right C-comodule with structure map: ρr : M −→ M ⊗ C. For each integer k ≥ 0,

define the map

ρ̃0,k
r = ρr ◦ βkM : M −→M ⊗ C.

Then each the comodule
(
M, ρ̃0,k

r , βk+1
M

)
gives the structure of a right comodule over

Hom-coassociative coalgebra Cβk = (C,∆βk , εβk , ββk) in Proposition 2.2.10.

Corollary 3.2.8 Let (C,∆, ε, βC) be a Hom-coassociative coalgebra and (M,βM ) be a right

C-comodule with structure map ρr : M −→ M ⊗ C. For any integers n, k ≥ 0, define the

map

ρ̃n,kr = (idM ⊗ βnC) ◦ ρr ◦ βkM : M −→M ⊗ C.

Then the comodule
(
M, ρ̃n,kr , βk+1

M

)
gives the structure of a right comodule over the

counital Hom-coassociative coalgebra Cβk =
(
C,∆βk , εβk , ββk

)
in Proposition 2.2.10.

Definition 3.2.9 A vector space M is called a C-bicomodule (or bicomodule over counital

Hom-coassociative coalgebra C) if M is both a left C-comodule and a right C-comodule

satisfying the compatibility condition

(βC ⊗ ρr) ◦ ρl = (ρl ⊗ βC) ◦ ρr (3.13)
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Then we call (M,ρl, ρr, αM ) is a A-bicomodule.

The compatibility may be written as

∑
βC
(
m(−1)

)
⊗
(
m(0)

)
(0)
⊗
(
m(0)

)
(1)

=
∑(

m(0)

)
(−1)
⊗
(
m(0)

)
(0)
⊗ βC

(
m(1)

)
for any m ∈M.

Remark 3.2.10 Clearly, ∆ is a right comodule and also a left comodule of C on itself.

then ∆ is a C-bicomodule Indeed, in the case ρr = ρl = ∆ the equations (3.8), (3.10) and

the equations (3.13) become the Hom-coalgebra axioms (2.7) and (2.8).

If M and M ′ are C-bicomodules, a map f : M −→ M ′ is a morphism of C-Hom-

bicomodules if it is morphism of left C-comodule and it is morphism of right C-comodule.

Proposition 3.2.11 Let (C,∆C , εC , βC) be a counital Hom-coassociative coalgebra and

(M,ρl, ρr, βM ) be a C-bicomodule. Define the maps

ρ̃nl = (βnC ⊗ idM ) ◦ ρl and ρ̃nr = (idM ⊗ βnC) ◦ ρr.

Then (M, ρ̃nl , ρ̃
n
r , βM ) is a C-bimodule.

Example 3.2.12 If (C,∆C , εC , βC) is a counital Hom-coassociative coalgebra and V is a

k-vector space and βV is a homomorphism of a vector space, then V ⊗ C becomes a right

C-comodule with structure map

ρr : V ⊗ C −→ V ⊗ C ⊗ C

induced by ∆C , hence ρr = βV ⊗∆C

Proof. We want ρr to satisfy the following equations:

(ρr ⊗ βC) ◦ ρr = (βV⊗C ⊗∆C) ◦ ρr and (idV⊗C ⊗ εC) ◦ ρr = βV⊗C .
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We show the first equation:

(ρr ⊗ βC) ◦ ρr = (βV ⊗∆C ⊗ βC) ◦ βV ⊗∆C

= (βV ◦ βV ⊗ (∆C ⊗ βC) ∆C)

= (βV ◦ βV ⊗ (βC ⊗∆C) ∆C)

= (βV ⊗ βC ⊗∆C) (βV ⊗∆C)

= (βV⊗C ⊗∆C) ◦ ρr

The second equation follows:

(idV⊗C ⊗ εC) ◦ ρr = (idV⊗C ⊗ εC) ◦ (βV ⊗∆C)

= βV ⊗ (idC ⊗ εC) ∆C = βV ⊗ βC = βV⊗C .

Then ρr gives a right C-comodule on V ⊗ C.

Example 3.2.13 Let N ′ = V ⊗ N ⊗ V, and consider structure maps ρ∆
l = ∆ ⊗ βN ⊗ βV

and ρr = βV ⊗ βN ⊗ ∆. Then
(
V ⊗N ⊗ V, ρ∆

l , ρ
∆
r

)
is an exterior C-bicomodule; ρ∆

l and

ρ∆
r are called exterior bicomodule structure maps.

Proof. This proof is completely analogous to that of Example 3.1.14.

3.3 Duality between modules and comodules of Hom-Hopf

algebras

Let C be a counital Hom-coassociative coalgebra, and C∗ the dual unital Hom-associative

algebra. If M is a vector space, and ω : M −→ M ⊗ C is a linear map, we dfine ψω

: C∗ ⊗M −→M by

ψω = φ (γ ⊗ idM ) (idC∗ ⊗ τM⊗C) (idC∗ ⊗ ω)

where γ : C∗ ⊗ C −→ k is defined by γ (x∗ ⊗ x) = x∗ (x) , and φ : k ⊗M −→ M is the

canonical isomorphism. If ω (m) =
∑

imi ⊗ xi, then ψω (x∗ ⊗m) =
∑

i x
∗ (xi)mi.
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Proposition 3.3.1 Let (C,∆, ε, β)be a counital Hom-coassociative coalgebra. (M,ω, βM )

is a right C-comodule if and only if (M,ψω, αM ) is a left C∗-module where αM = βM .

Proof. From the previous Proposition we know that (C∗, µC∗ , ηC∗ , αC∗) is a unital Hom-

associative algebra when we define µC∗ , ηC∗ , αC∗ , as in Theorem 2.3.3.

Assume that (M,ω, βM ) is a right C-comodule. Denoting ω (m) =
∑
(m)

m(0) ⊗ x(1), we

have

ψω (x∗ ⊗m) =
∑

x∗
(
x(1)

)
m(0).

First, we have that

ψω (1C∗ ⊗m) = ψω (εC ⊗m) = φ (γ ⊗ idM ) (idC∗ ⊗ τM⊗C) (idC∗ ⊗ ω) (εC ⊗m)

(3.8)
=
∑

εC
(
x(1)

)
m(0) = (idM ⊗ εC) ◦ ω (m) = βM (m) = αM (m)

from the definition of a right C-comodule. Then, for x∗, y∗ ∈ C∗, m ∈M

ψω ◦ (αC∗ ⊗ ψω) (x∗ ⊗ y∗ ⊗m) = ψω ◦ (αC∗ (x∗)⊗ ψω (y∗ ⊗m))

= ψω ◦
(
x∗ (βC)⊗

∑
y∗
(
x(1)

)
m(0)

)
=
∑

y∗
(
x(1)

)
ψω
(
x∗ (βC)⊗m(0)

)
=
∑

y∗
(
x(1)

)
x∗ (βC)

(
x(2)

) (
m(0)

)
(0)

=
∑

x∗ ◦ βC
(
x(2)

)
y∗
(
x(1)

) (
m(0)

)
(3.8)
=
∑

ρ (x∗ ⊗ y∗)
(
βC
(
x(2)

)
⊗ x(1) ⊗m(0)

)
=
∑

ρ (x∗ ⊗ y∗)
(
x(2) ⊗ x(1) ⊗ βM

(
m(0)

))
=
∑

∆∗ρ (x∗ ⊗ y∗)x(1) ⊗ βM
(
m(0)

)
= ψω ◦ (µC∗ ⊗ αM ) (x∗ ⊗ y∗ ⊗m)

which shows that (M∗, ψω, αM ) is a left C∗-module. Assume now that (M∗, ψω, αM ) is a

left C∗-module. From ψω ◦ (ηC∗ ⊗ idM∗) = αM∗ , one obtains
∑
εC
(
x(1)

)
m(0) = αM (m) .

It follows

(idM ⊗ εC) ◦ ω (m) =
∑

εC
(
x(1)

)
m(0) = αM (m) = βM (m) ,
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Hence, the second condition from the definition of a right C-comodule is checked.

If x∗, y∗ ∈ C∗, m ∈M then

ψω ◦ (µC∗ ⊗ αM ) (x∗ ⊗ y∗ ⊗m) = ψω ◦ (∆∗ ◦ ρ (x∗ ⊗ y∗)⊗ αM (m))

=
∑

∆∗C ◦ ρ (x∗ ⊗ y∗)
(
x(1)

)
αM (m)(0)

=
∑(

x∗
(
x(1)

)
(1)
y∗
(
x(1)

)
(2)

)
αM (m)(0)

= φ′ (idM ⊗ y∗ ⊗ x∗) (βM ⊗∆C)ω (m)

where φ′ : M ⊗ k⊗ k −→M is the canonical isomorphism, and αM = βM . Also

ψω ◦ (αC∗ ⊗ ψω) (x∗ ⊗ y∗ ⊗m) = ψω ◦ (αC∗ (x∗)⊗ ψω (y∗ ⊗m))

= ψω ◦
(
αC∗ (x∗)⊗

∑
y∗
(
x(1)

)
m(0)

)
=
∑

y∗
(
x(1)

)
ψω ◦

(
x∗ (βC)⊗m(0)

)
=
∑

y∗
(
x(1)

)
x∗
(
βC
(
x(2)

))
m(0)

= φ′ (idM ⊗ y∗ ⊗ x∗) (ω ⊗ βC)ω (m)

Denoting

z = (βM ⊗∆C)ω (m)− (ω ⊗ βC)ω (m) ∈M ⊗ C ⊗ C

we have (idM ⊗ y∗ ⊗ x∗) (z) = 0 for any y∗, x∗ ∈ C∗. This shows that z = 0.

Indeed, if we denote by (ei)i a basis of C, we can write y =
∑

i,jmij ⊗ ei ⊗ ej for some

mij ∈ M. Fix i0 and j0 and consider the maps e∗i ∈ C∗ defined by e∗i (ej) = δi,j for any j.

Then mi0j0 =
(
idM ⊗ e∗i0 ⊗ e

∗
j0

)
(z) = 0, and from this we get z = 0

Then (βM ⊗∆C)ω (m) = (ω ⊗ βC)ω (m) . The proof is similar to the opposite case.

Proposition 3.3.2 Let A be a finite-dimentional unital Hom-associative algebra. If M is

a left A-module, then M is a right A∗-comodule.

Theorem 3.3.3 Let (C,∆, ε, β) be a counital Hom-coassociative coalgebra. Then for any

right C-comodule M , M∗ is a left C∗module. Conversely, Let (A,µ, η, α) be a finite-

dimensional unital Hom-associative algebra. If N is a left A-module then N∗ is a right

A∗-comodule.
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Proof. First let

M
ρr−→M ⊗ C

be the right C-comodule structure on M . Define

λ′l : C∗ ⊗M∗ ρ−→ (M ⊗ C)∗
ρ∗r−→M∗

We want λ′l = ρ∗r ◦ ρ and the map ρ, ρ (x∗ ⊗m∗) (m⊗ x) = x∗ (x)m∗ (m) to satisfy the

following equations:

λ′l ◦
(
αC∗ ⊗ λ′l

)
= λ′l ◦ (µC∗ ⊗ αM∗) and λ′l ◦ (ηC∗ ⊗ idM∗) = αM∗

Transposing the equations (3.8) will give the desired result. We show the first equation:

λ′l ◦
(
αC∗ ⊗ λ′l

)
(x∗ ⊗ y∗ ⊗m∗) = ρ∗r ◦ ρ ◦ (αC∗ ⊗ ρ∗r ◦ ρ) (x∗ ⊗ y∗ ⊗m∗)

= ρ∗r ◦ ρ ◦ (x∗ (βC)⊗ ρ (y∗ ⊗m∗) ρr)

= ρ ◦ (x∗ ⊗ ρ (y∗ ⊗m∗)) (βC ⊗ ρr) ρr

= ρ ◦ (ρ (x∗ ⊗ y∗)⊗m∗) (∆C ⊗ βM ) ρr

= ρ∗r ◦ ρ ◦ (∆∗C ◦ ρ (x∗ ⊗ y∗)⊗ αM∗ (m∗))

= λ′l ◦ (µC∗ ⊗ αM∗ (x∗ ⊗ y∗ ⊗m∗))

The second equation follows:

λ′l ◦ (1C∗ ⊗ idM∗) (m∗) = ρ∗r ◦ ρ ◦ (εC ⊗m∗) = ρ ◦ (εC ⊗m∗) ρr

= m∗ (idM ⊗ εC) ◦ ρr = m∗ ◦ βM = αM∗ (m∗)

Then λ′l gives a left A∗-module on M∗.

To go the other way, let

A⊗N λl−→ N

be the left A-module structure on N . Define

ρ′r : N∗
ρ−→ (A⊗N)∗

ρ∗r−→ N∗ ⊗A∗

Then ρ′r gives a A∗comodule on N∗ . The proof is similar to the opposite case.
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3.4 Tensor product of bimodules and bicomodules

We will need to consider tensor products over k of bimodules. The tensor product of

bimodules can be endowed with bimodule structures; if M and N are bimodules over A; we

shall consider two bimodule structures on M⊗N (dual of each other), which we will denote

by M⊗N and M⊗N (see for example [48] for details). These notations will also be used

for the tensor product of bimodules or bicomodules, ‘forgetting’ some of the structures.

Proposition 3.4.1 Let (H,µH ,∆H , αH) be a Hom-bialgebra and (M,λl, λr) , (M ′, λ′l, λ
′
r)

be H-bimodules.The internal (bimodule) tensor product of M with M ′ is the so called interior

H-bimodule M⊗M ′ = (M ⊗M ′, λl⊗λ′l, λr⊗λ′r) with

λ2
l : H ⊗ (M ⊗M ′) −→ M ⊗M ′

λ2
l = λl⊗λ′l =

(
λl ⊗ λ′l

)
◦ (idH ⊗ τH,M ⊗ idM ′) ◦ (∆H ⊗ idM ⊗ idM ′) (3.14)

and

λ2
r : (M ⊗M ′)⊗H −→ M ⊗M ′

λ2
r = λr⊗λ′r =

(
λr ⊗ λ′r

)
◦
(
idM ⊗ τM ′,H ⊗ idH

)
◦ (idM ⊗ idM ′ ⊗∆H) . (3.15)

Proof. It is already shown in [51].

To see that λ2
l is a morphism of modules, we compute as follows:

(αM ⊗ αM ′) ◦ λ2
l = (αM ⊗ αM ′) ◦

(
λl ⊗ λ′l

)
◦ (idH ⊗ τH,M ⊗ idM ′) ◦ (∆H ⊗ idM ⊗ idM ′)

(3.6)
=
(
λl ⊗ λ′l

)
(αH ⊗ αM ⊗ αH ⊗ αM ′) ◦ (idH ⊗ τH,M ⊗ idM ′) ◦ (∆H ⊗ idM ⊗ idM ′)

=
(
λl ⊗ λ′l

)
◦ (idH ⊗ τH,M ⊗ idM ′) ◦ (∆H ⊗ idM ⊗ idM ′) ◦ (αH ⊗ αM ⊗ αM ′)

= λ2
l ◦ (αH ⊗ αM ⊗ αM ′)

To see that λ2
l is a morphism of modules, we compute as follows, where some obvious

subscripts have been left out:
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λ2
l ◦
(
αH ⊗ λ2

l

)
=
(
λl ⊗ λ′l

)
(idH ⊗ τH,M ⊗ idM ′) (∆H ⊗ idM⊗M ′)

[
αH ⊗

(
λl ⊗ λ′l

)
(idH ⊗ τH,M ⊗ idM ′) (∆H ⊗ idM⊗M ′)

]
=
(
λl ⊗ λ′l

)
(idH ⊗ τH,M ⊗ idM ′)

(
α⊗2
H ⊗

(
λl ⊗ λ′l

))
[∆H ⊗ (idH ⊗ τH,M ⊗ idM ′) (∆H ⊗ idM⊗M ′)]

=
(
λl (αH ⊗ λl)⊗ λ′l

(
αH ⊗ λ′l

))
[∆H ⊗ (idH ⊗ τH,M ⊗ idM ′) ◦ (∆H ⊗ idM⊗M ′)]

(3.1)
=
(
λl (µH ⊗ αM )⊗ λ′l (µH ⊗ αM ′)

)
[∆H ⊗ (idH ⊗ τH,M ⊗ idM ′) ◦ (∆H ⊗ idM⊗M ′)]

=
(
λl ⊗ λ′l

)
(idH ⊗ τH,M ⊗ idM ′)

(
µ⊗2
H ⊗ αM⊗M ′

)
[∆H ⊗ (idH ⊗ τH,M ⊗ idM ′) ◦ (∆H ⊗ idM⊗M ′)]

=
(
λl ⊗ λ′l

)
(idH ⊗ τH,M ⊗ idM ′)

(
µ⊗2
H ⊗ idM⊗M ′

)
(idH ⊗ τH,H ⊗ idH ⊗ idM⊗M ′) ◦

(
∆⊗2
H ⊗ αM⊗M ′

)
(2.16)

=
(
λl ⊗ λ′l

)
(idH ⊗ τH,M ⊗ idM ′) ◦ (∆H ⊗ idM⊗M ′) ◦ (µH ⊗ αM⊗M ′)

= λ2
l ◦ (µH ⊗ αM⊗M ′) .

We have shown that λ2
l is the structure map of a left H-module structure on M ⊗M ′.

Remark 3.4.2 Since ∆H is Hom-coassociative,

(
λl⊗λ′l

)
⊗αH

(
λ′′l
)

= αH (λl)⊗
(
λ′l⊗λ′′l

)
and (

λr⊗λ′r
)
⊗αH

(
λ′′r
)

= αH (λr)⊗
(
λ′r⊗

(
λ′′r
))

Thus, the internal tensor product can be Hom-associatively applied to any finite family

of H-bimodules.

Proof. We use the Hom-coassociativity axiom (2.7). We have
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(
λl⊗λ′l

)
⊗αH

(
λ′′l
)

=
((
λl⊗λ′l

)
⊗ αH

(
λ′′l
))
◦ τ2,3 ◦

(
∆H ⊗ id⊗3

M

)
=
[((

λl ⊗ λ′l
)
◦ τ2,3 ◦ (∆H ⊗ idM⊗M ′)

)
⊗ αH

(
λ′′l
)]
◦ τ2,3 ◦ (∆H ⊗ idM⊗M ′⊗M ′′)

=
[(
λl ⊗ λ′l

)
⊗ λ′′l

]
◦ [τ2,3 ◦ (∆H ⊗ idM⊗M ′)⊗ αH⊗M ′′ ] ◦ τ2,3 ◦ (∆H ⊗ idM⊗M ′⊗M ′′)

=
[
λl ⊗

(
λ′l ⊗ λ′′l

)]
◦ [αH⊗M ⊗ τ2,3 ◦ (∆H ⊗ idM ′⊗M ′′)] ◦ τ2,3 ◦ (∆H ⊗ idM⊗M ′⊗M ′′)

=
(
αH (λl)⊗

(
λ′l⊗λ′′l

))
◦ τ2,3 ◦ (∆H ⊗ idM⊗M ′⊗M ′′)

= αH (λl)⊗
(
λ′l⊗λ′′l

)
.

The second assertion is proved similarly.

Corollary 3.4.3 Let (M,λl, λr)be an H-bimodule. The structure maps λ
µ
l = µ⊗λl⊗µ

and λ
µ
r = µ⊗λr⊗µ on the interior H-bimodule H⊗M⊗H are called the two-sided interior

extensions of λl and λr by µ respectively, by µ.

Proposition 3.4.4 Let (M,λl, λr)be an H-bimodule. The interior H-bimodule M⊗n =

(M⊗n, λnl , λ
n
r ), with

λnl =
(
λl⊗λn−1

l

)
=
(
λl ⊗ λn−1

l

)
◦ τ2,3 ◦

(
∆⊗ id⊗nM

)
(3.16)

and

λnr =
(
λn−1
r ⊗λr

)
=
(
λn−1
r ⊗ λr

)
◦ τn,n+1 ◦

(
id⊗nM ⊗∆

)
(3.17)

is called the n-fold interior (bimodule) tensor power of M.

Proof. By induction.

Example 3.4.5 Let (H,µH ,∆H , αH) be a Hom-bialgebra; for each n ≥ 1, the n-fold inte-

rior (bimodule) tensor power of H is the interior H-bimodule H⊗n = (H⊗n, λnl , λ
n
r ) with

λnl = µ⊗nH ◦ (135... (2n− 1) 246... (2n)) ◦
2n−2∏
i=n

(
∆H ⊗ id⊗(3n−i−2)

M

)
(3.18)

and

λnr = µ⊗nH ◦ (135... (2n− 1) 246... (2n)) ◦
2n−2∏
i=n

(
id
⊗(3n−i−2)
M ⊗∆H

)
(3.19)

where λl = λr = µH .
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Proposition 3.4.6 Let (H,µH ,∆H , αH) be a Hom-bialgebra and (N, ρl, ρr), (N ′, ρ′l, ρ
′
r) be

H-bicomodules. The internal (bicomodule) tensor product of N with N ′ is the so-called

interior H-bicomodule N⊗N ′ = (N ⊗N ′, ρl⊗ρ′l, ρr⊗ρ′r) with

ρ2
l = ρl⊗ρ′l = (µH ⊗ idN⊗N ′) ◦ τ2,3 ◦

(
ρl ⊗ ρ′l

)
(3.20)

and

ρ2
r = ρr⊗ρ′r = (idN⊗N ′ ⊗ µH) ◦ τ2,3 ◦

(
ρr ⊗ ρ′r

)
. (3.21)

Remark 3.4.7 Since µH is Hom-associative, we have

(
ρl⊗ρ′l

)
⊗α

(
ρ′′l
)

= α (ρl)⊗
(
ρ′l⊗ρ′′l

)
and

(
ρr⊗ρ′r

)
⊗α

(
ρ′′r
)

= α (ρr)⊗
(
ρ′r⊗ρ′′r

)
.

Thus, the internal tensor product can be Hom-associatively applied to any finite family of

H-bicomodules.

Corollary 3.4.8 Let (N, ρl, ρr) be an H-bicomodule. The structure maps ρ∆
l = ∆⊗ρl⊗∆

and ρ∆
r = ∆⊗ρr⊗∆ on the interior H-bicomodule H⊗N⊗H are called the two-sided interior

extensions of ρl and ρr by ∆, respectively.

Proposition 3.4.9 Let (N, ρl, ρr)be an H-bicomodule. The interior H-bicomodule N⊗n =

(N⊗n, ρnl , ρ
n
r ), with

ρnl = ρl⊗ρn−1
l =

(
µ⊗ id⊗nN

)
◦ τ2,3 ◦

(
ρl ⊗ ρn−1

l

)
(3.22)

and

ρnr = ρn−1
r ⊗ρr =

(
id⊗nN ⊗ µ

)
◦ τn,n+1 ◦

(
ρn−1
r ⊗ ρr

)
(3.23)

is called the n-fold internal (bicomodule) tensor power of N .

Proof. By induction.

Example 3.4.10 Let (H,µH ,∆H , αH) be a Hom-bialgebra, consider the H-bicomodule (H, ρl, ρr)

where ρl = ρr = ∆H . For each n ≥ 1, the n-fold internal (bicomodule) tensor power of H

is the interior H-bicomodule H⊗n = (H⊗n, ρnl , ρ
n
r ) with

ρnl =

2n−2∏
i=n

(
µH ⊗ id⊗iN

)
◦ (135... (2n− 1) 246... (2n))−1 ◦∆⊗nH . (3.24)
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ρnr =
2n−2∏
i=n

(
id⊗iN ⊗ µH

)
◦ (135... (2n− 1) 246... (2n))−1 ◦∆⊗nH . (3.25)

Lemma 3.4.11 Consider the interiors H-bicomodules, H⊗n = (H⊗n, λnl , λ
n
r ) and H⊗n =

(H⊗n, ρnl , ρ
n
r ) with λ1

l = λ1
l = µ, ρ1

l = ρ1
l = ∆ and let f : H⊗p → H⊗p be a linear map

which commutes with α and such that α⊗p ◦ f = f ◦ α⊗q, p, q ∈ N∗Then

1. λp+1
l ◦

(
αp−1 ⊗

(
αp−1 ⊗ f

)
◦ ρpl

)
=
(
αp−1 ⊗ λpl ◦

(
αp−1 ⊗ f

))
◦ ρp+1

l

2. λp+1
r ◦

((
f ⊗ αp−1

)
◦ ρpr ⊗ αp−1

)
=
(
λpr ◦

(
f ⊗ αp−1

)
⊗ αp−1

)
◦ ρp+1

r .

This Lemma can be used in the proof of Proposition 4.2.1, and Theorem 4.2.5.



Chapter 4

Gerstenhaber-Schack Cohomology

for Hom-bialgebras

Gerstenhaber-Schack cohomology of Hom-bialgebras is a twisted generalization of bialge-

bras cohomology, which was first discovered by Gerstenhaber and Schack [18, 19], extending

associative algebras cohomology introduced by Hochschild in [24] to bialgebras. Deforma-

tion theories are intimately related to cohomology. It turns out that, we do not need a

cohomology of Hom-Hopf algebras since it is enough to deform Hom-Hopf algebra as a

Hom-bialgebra.

The cohomology of Hopf algebras was introduced in order to study deformations of Hopf

algebras. In fact, the cohomology that we are going to study is adapted to deformations

of Hom-Hopf algebras as Drinfel’d quasi-bialgebras; however, M. Gerstenhaber and S.D.

Schack also defined a cohomology which studies the deformations of Hopf algebras as Hopf

algebras. We refer to [18, 19] for the definition of bialgebra cohomology and its truncated

version due to Gerstenhaber and Schack. We define the bicomplex extending Hochschild

cohomology for horizontal faces and coalgebra Cartier cohomology for the vertical faces.

4.1 Hochschild Complexes

Definition 4.1.1 A chain complex C− is a sequence of abelian groups and homomor-

phisms

... −→dn+1 Cn −→dn Cn+1 −→dn−1 Cn+2...

80
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with the property dn+1 ◦ dn = 0 for all n.

The homomorphisms dn are called coboundary operators or codifferentials.

A cochain complex C− is a sequence of abelian groups and homomorphisms

... −→dn−1 Cn −→dn Cn+1 −→dn+1 Cn+2...

with the property dn ◦ dn+1 = 0 for all n.

A chain complex can be considered as a cochain complex by reversing the enumeration

Cn = C−n ; dn = d−n.

A complex of A-Hom-modules is a complex for which Cn (respectively Cn) are Hom-

modules over a ring A and dn (resp. dn) are homomorphisms of Hom-modules.

Let Im dn+1 (resp. Im dn−1) be the image of Cn+1 (resp. Cn−1) by dn+1 (resp. dn−1)

and ker dn (resp. ker dn) be the kernel of dn (resp. dn). Since dn ◦ dn+1 = 0 (resp.

dn ◦ dn−1 = 0), we have Im dn+1 ⊂ ker dn (resp. Im dn ⊂ ker dn−1).

A homology of a chain complex Cn is the group Hn (C) = ker dn/ Im dn+1.

A cohomology of a chain complex Cn is the group Hn (C) = ker dn/ Im dn−1.

The elements of Cn are called n-dimensional chains, the elements of Cn are n-dimensional

cochains, the elements of Zn := ker dn (resp. Zn := ker dn) are n-dimensional cycles (resp.

cocycles), the elements of Bn := Im dn+1 (resp. Bn := Im dn−1) are n-dimensional bound-

aries (resp. coboundaries).

If C· is a complex of A-Hom modules, its cohomology is an A-Hom-module. A complex

is said to be acyclic ( or an exact sequence) if Hn (C) = 0 for all n.

A morphism f : C· −→ D· is a family of group (Hom-module) homomorphisms fn :

Cn −→ Dn commuting with differentials, that is fn+1 ◦ dnC = dnC ◦ fn. A morphismn f

induces a morphism of cohomology H− (f) = {Hn (f) : Hn(C·) −→ Hn(D·)} by the formula

{the class of cocycle c }= {the class of cocycle f (c)}.
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4.2 Hochschild Cohomology for Hom-bialgebras

We recall the definition of Hom-bialgebra cohomology du to Gerstenhaber and Schack and

its truncated version. For more details and greater generality we refer to ([18], [19]). Let

B = (B,µ, η,∆, ε, α) be a Hom-bialgebra on the k-vector space B.

The cochains are given by the bicomplex.

We set for the cochains:

Cp,qHom = Homk
(
B⊗q, B⊗p

)
, p, q ≥ 1,

Cp,qHom =
{
f : B⊗q −→ B⊗p, f is a linear map, f ◦ α⊗q = α⊗p ◦ f

}
.

We define the horizontal faces δp,qHom,H : Cp,qHom −→ C
p,q+1
Hom as

δp,qHom,H (f) = λpl ◦(αq−1⊗f)+

q∑
i=1

(−1)if ◦
(
α⊗(i−1) ⊗ µ⊗ α⊗(q−i)

)
+(−1)q+1λpr ◦(f⊗αq−1).

(4.1)

The vertical faces δp,qHom,C : Cp,qHom −→ C
p+1,q
Hom are defined as:

δp,qHom,C (f) = (αp−1⊗f)◦ρql +

p∑
j=1

(−1)j
(
α⊗(j−1) ⊗∆⊗ α⊗(p−j)

)
◦f+(−1)p+1(f⊗αp−1)◦ρqr.

(4.2)

Proposition 4.2.1 The composite

δ2,1
Hom,C ◦ δ

1,1
Hom,C = 0, δ1,2

Hom,C ◦ δ
1,1
Hom,H = δ2,1

Hom,H ◦ δ
1,1
Hom,C , δ1,2

Hom,H ◦ δ
1,1
Hom,H = 0.

Proof. We prove the first identity. We have

δ2,1
Hom,C (f) = (α⊗ f) ◦ ρ1

l − (∆⊗ α) ◦ f + (α⊗∆) ◦ f − (f ⊗ α) ◦ ρ1
r ,
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δ1,1
Hom,C (f) = (idB ⊗ f) ◦ ρ1

l −∆ ◦ f + (f ⊗ idB) ◦ ρ1
r , and ρ1

l = ρ1
r = ∆

δ2,1
Hom,C ◦ δ

1,1
Hom,C (f) = (α⊗ δ1,1

Hom,C (f)) ◦∆− (∆⊗ α) ◦ δ1,1
Hom,C (f) + (α⊗∆) ◦ δ1,1

Hom,C (f)

− (δ1
Hom,C (f)⊗ α) ◦∆

= (α⊗ ((idB ⊗ f) ◦∆−∆ ◦ f + (f ⊗ idB) ◦∆)) ◦∆

− (∆⊗ α) ◦ ((idB ⊗ f) ◦∆−∆ ◦ f + (f ⊗ idB) ◦∆)

+ (α⊗∆) ◦ ((idB ⊗ f) ◦∆−∆ ◦ f + (f ⊗ idB) ◦∆)

− ((idB ⊗ f) ◦∆−∆ ◦ f + (f ⊗ idB) ◦∆)⊗ α) ◦∆

= (α⊗ (idB ⊗ f) ◦∆) ◦∆− (α⊗ (∆ ◦ f)) ◦∆ + (α⊗ (f ⊗ idB) ◦∆) ◦∆

− (∆⊗ α) (idB ⊗ f) ◦∆ + (∆⊗ α) (∆ ◦ f)− (∆⊗ α) (f ⊗ idB) ◦∆

+ (α⊗∆) (idB ⊗ f) ◦∆− (α⊗∆) (∆ ◦ f) + (α⊗∆) (f ⊗ idB) ◦∆

− (((idB ⊗ f) ◦∆)⊗ α) ◦∆ + ((∆ ◦ f)⊗ α) ◦∆− (((f ⊗ idB) ◦∆)⊗ α) ◦∆

(∗)
= (α⊗ (idB ⊗ f) ◦∆) ◦∆ + (α⊗ (f ⊗ idB) ◦∆) ◦∆

− (∆⊗ α) (idB ⊗ f) ◦∆ + (α⊗∆) (f ⊗ idB) ◦∆

− (((idB ⊗ f) ◦∆)⊗ α) ◦∆− (((f ⊗ idB) ◦∆)⊗ α) ◦∆,

where (*) was obtained by the Hom-coassociativity of ∆ and Lemma 2.3.7.

From Lemma 2.3.9, we immediately obtain δ2,1
Hom,C ◦ δ

1,1
Hom,C (f) = 0.

For the second identity, we have

δ1,2
Hom,C (f) = (idB ⊗ f) ◦ ρ2

l −∆ ◦ f + (f ⊗ idB) ◦ ρ2
r ,

δ1,1
Hom,C (f) = (idB ⊗ f) ◦ ρ1

l −∆ ◦ f + (f ⊗ idB) ◦ ρ1
r ,

δ2,1
Hom,H (f) = λ2

l ◦ (idB ⊗ f)− f ◦ µ+ λ2
r ◦ (f ⊗ idB),
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δ1,1
Hom,H (f) = λ1

l ◦ (idB ⊗ f)− f ◦ µ+ λ1
r ◦ (f ⊗ idB), and ρ1

l = ρ1
r = ∆, λ1

l = λ1
r = µ,

δ1,2
Hom,C ◦ δ

1,1
Hom,H (f) = (idB ⊗ (µ ◦ (idB ⊗ f)− f ◦ µ+ µ ◦ (f ⊗ idB))) ◦ ρ2

l

−∆ ◦ (µ ◦ (idB ⊗ f)− f ◦ µ+ µ ◦ (f ⊗ idB))

+ ((µ ◦ (idB ⊗ f)− f ◦ µ+ µ ◦ (f ⊗ idB))⊗ idB) ◦ ρ2
r

= ((idB ⊗ µ ◦ (idB ⊗ f)) ◦ ρ2
l − (idB ⊗ f ◦ µ) ◦ ρ2

l +

(idB ⊗ µ ◦ (f ⊗ idB)) ◦ ρ2
l −∆ ◦ µ ◦ (idB ⊗ f)−∆ ◦ f ◦ µ

+ ∆ ◦ µ ◦ (f ⊗ idB) + (µ ◦ (idB ⊗ f)⊗ idB) ◦ ρ2
r

− (f ◦ µ⊗ idB) ◦ ρ2
r + (µ ◦ (f ⊗ idB)⊗ idB) ◦ ρ2

r

(∗∗)
= λ2

l ◦ (idB ⊗ (idB ⊗ f) ◦∆)− (idB ⊗ f) ◦∆ ◦ µ+

λ2
r ◦ (((idB ⊗ f) ◦∆)⊗ idB))− λ2

l ◦ (idB ⊗ (∆ ◦ f))

−∆ ◦ f ◦ µ+ λ2
r ◦ ((∆ ◦ f)⊗ idB)) + λ2

l ◦ (idB ⊗ (f ⊗ idB) ◦∆)

− (f ⊗ idB) ◦∆ ◦ µ+ λ2
r ◦ ((f ⊗ idB) ◦∆⊗ idB)

= δ2,1
Hom,H ◦ δ

1,1
Hom,C (f) ,

where (∗∗) is obtained by the compatibility condition and Lemma 3.4.11.

For the third identity see ([2]).

Proposition 4.2.2 ([2]) Let Dp,q
i : Cp,qHom (B⊗q, B⊗p) −→ Cp,q+1

Hom

(
B⊗q+1, B⊗p

)
be linear

operators defined for f ∈ Cp,qHom (B⊗q, B⊗p) by:

Dp,q
i (f) =


−λpl ◦ (αq−1 ⊗ f) + f ◦

(
µ⊗ α⊗(q−1)

)
if i = 0.

f ◦
(
α⊗i ⊗ µ⊗ α⊗(q−i−1)

)
if ∀1 ≤ i ≤ q − 2.

f ◦
(
α⊗q−1 ⊗ µ

)
− λpr ◦ (f ⊗ αq−1) if i = q − 1.

(4.3)

Then

Dp,q+1
i ◦Dp;q

j = Dp,q+1
j+1 ◦Dp,q

i 0 ≤ i < j ≤ q − 1, and δp,qHom,H =

q−1∑
i=0

(−1)i+1Dp,q
i . (4.4)

Proof. See ([2])
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Proposition 4.2.3 Let Sp,qi : Cp,qHom (B⊗q, B⊗p) −→ Cp+1,q
Hom

(
B⊗q, B⊗p+1

)
be the linear op-

erators defined for g ∈ Cp,qHom (B⊗q, B⊗p) by:

Sp,qi (g) =


−(αp−1 ⊗ g) ◦ ρql +

(
∆⊗ α⊗(p−1)

)
◦ g if i = 0.(

α⊗i ⊗∆⊗ α⊗(p−i−1)
)
◦ g if ∀1 ≤ i ≤ p− 2.(

α⊗p−1 ⊗∆
)
◦ g − (g ⊗ αp−1) ◦ ρqr if i = p− 1.

(4.5)

Then

Sp+1,q
j ◦ Sp,qi = Sp+1,q

i+1 ◦ Sp,qj 0 ≤ i < j ≤ p− 1, and δp,qHom,C =

p−1∑
i=0

(−1)i+1Sp,qi . (4.6)

Proof. Let g ∈ Cp,qHom (B⊗q, B⊗p).

· When the j = 0 and 1 ≤ i ≤ p− 2, we have

Sp+1,q
0 = − (αp ⊗ g) ◦ ρql + (∆⊗ α⊗p) ◦ g, Sp,qi (g) =

(
α⊗i ⊗∆⊗ α⊗(p−i−1)

)
◦ g.

The left-hand side in 4.6 is:(
Sp+1,q

0 ◦ Sp,qi
)

(g) = − (αp ⊗ Sp,qi (g)) ◦ ρql +
(
∆⊗ α⊗p

)
◦ Sp,qi (g)

= −
(
αp ⊗

((
α⊗i ⊗∆⊗ α⊗(p−i−1)

)
◦ g
))
◦ ρql

+
(
∆⊗ α⊗p

)
◦
((
α⊗i ⊗∆⊗ α⊗(p−i−1)

)
◦ g
)

= −
(
αp ⊗

((
α⊗i ⊗∆⊗ α⊗(p−i−1)

)
◦ g
))
◦ ρql

+
(

∆ ◦ α⊗ (α ◦ α)⊗i−1 ⊗ α⊗2 ◦∆⊗ (α ◦ α)⊗(p−i−1)
)
◦ g.

On the other hand, we have

Sp+1,q
i+1 =

(
α⊗i+1 ⊗∆⊗ α⊗(p−i−1)

)
◦ g, Sp,q0 (g) = −

(
αp−1 ⊗ g

)
◦ ρql +

(
∆⊗ α⊗(p−1)

)
◦ g.(

Sp+1,q
i+1 ◦ Sp,q0

)
(g) =

(
α⊗i+1 ⊗∆⊗ α⊗(p−i−1)

)
◦ Sp,q0 (g)

=
(
α⊗i+1 ⊗∆⊗ α⊗(p−i−1)

)(
−
(
αp−1 ⊗ g

)
◦ ρql +

(
∆⊗ α⊗(p−1)

)
◦ g
)

= −
(
αp ⊗

((
α⊗i ⊗∆⊗ α⊗(p−i−1)

)
◦ g
))
◦ ρql

+
(
α⊗2 ◦∆⊗ (α ◦ α)⊗i−1 ⊗∆ ◦ α⊗ (α ◦ α)⊗(p−i−1)

)
◦ g.

So
(
Sp+1,q

0 ◦ Sp,qi
)

(g) =
(
Sp+1,q
i+1 ◦ Sp,q0

)
(g) .

· The case (j, i) = (0, p− 1), the following prouves is an immediate of presidente com-

putation, we have
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Sp+1,q
0 (g) = − (αp ⊗ g)◦ρql −(∆⊗ α⊗p)◦g, Sp,qp−1 (g) =

(
α⊗p−1 ⊗∆

)
◦g−

(
g ⊗ αp−1

)
◦ρqr,

The left-hand side in 4.6 is:

Sp+1,q
0 ◦ Sp,qp−1 (g) = −

(
αp ⊗ Sp,qp−1 (g)

)
◦ ρql −

(
∆⊗ α⊗p

)
◦ Sp,qp−1 (g)

= −
(
αp ⊗

((
α⊗p−1 ⊗∆

)
◦ g −

(
g ⊗ αp−1

)
◦ ρqr

))
◦ ρql

+
(
∆⊗ α⊗p

)
◦
((
α⊗p−1 ⊗∆

)
◦ g −

(
g ⊗ αp−1

)
◦ ρqr

)
= −

(
αp ⊗

(
α⊗p−1 ⊗∆

)
◦ g
)
◦ ρql +

(
αp ⊗

(
g ⊗ αp−1

)
◦ ρqr

)
◦ ρql

+
((

∆⊗ α⊗p
)
◦
(
α⊗p−1 ⊗∆

)
◦ g
)
−
(
∆⊗ α⊗p

)
◦
(
g ⊗ αp−1

)
◦ ρqr

= −
(
αp ⊗

(
α⊗p−1 ⊗∆

)
◦ g
)
◦ ρql +

(
αp ⊗

(
g ⊗ αp−1

)
◦ ρqr

)
◦ ρql

+
((

∆ (α)⊗ (α ◦ α)⊗p−2 ⊗ α⊗2 (∆)
)
◦ g
)
−
(((

∆⊗ α⊗p−1
)
◦ g
)
⊗ α

(
αp−1

))
◦ ρqr

= −
(
αp ⊗

(
α⊗p−1 ⊗∆

)
◦ g
)
◦ ρql +

(
αp ⊗

(
g ⊗ αp−1

)
◦ ρqr

)
◦ ρql

+
((

∆ ◦ α⊗ (α ◦ α)⊗p−2 ⊗∆ ◦ α
)
◦ g
)
−
(((

∆⊗ α⊗p−1
)
◦ g
)
⊗ αp

)
◦ ρqr.

On the other hand, we have

Sp+1,q
p (g) = (α⊗p ⊗∆)◦g−(g ⊗ αp)◦ρqr, Sp,q0 (g) = −

(
αp−1 ⊗ g

)
◦ρql +

(
∆⊗ α⊗p−1

)
◦g.

So

Sp+1,q
p ◦ Sp,q0 (g) =

(
α⊗p ⊗∆

)
◦ Sp,q0 (g)− (Sp,q0 (g)⊗ αp) ◦ ρqr

=
(
α⊗p ⊗∆

)
◦
(
−
(
αp−1 ⊗ g

)
◦ ρql +

(
∆⊗ α⊗p−1

)
◦ g
)

−
((
−
(
αp−1 ⊗ g

)
◦ ρql +

(
∆⊗ α⊗p−1

)
◦ g
)
⊗ αp

)
◦ ρqr

= −
((
α⊗p ⊗∆

)
◦
(
αp−1 ⊗ g

)
◦ ρql

)
+
(
α⊗p ⊗∆

)
◦
((

∆⊗ α⊗p−1
)
◦ g
)

+
(((

αp−1 ⊗ g
)
◦ ρql

)
⊗ αp

)
◦ ρqr −

(((
∆⊗ α⊗p−1

)
◦ g
)
⊗ αp

)
◦ ρqr

(∗∗∗)
= −

(
αp ⊗

(
α⊗p−1 ⊗∆

)
◦ g
)
◦ ρql +

(
∆ ◦ α⊗ (α ◦ α)⊗p−2 ⊗∆ ◦ α

)
◦ g

+
(
αp ⊗

(
g ⊗ αp−1

)
◦ ρqr

)
◦ ρql −

(((
∆⊗ α⊗p−1

)
◦ g
)
⊗ αp

)
◦ ρqr.

The equality (***) is given by the relation in Remark 2.3.10, and
(
M,λql , λ

q
r

)
is a B-

bimodules.

So Sp+1,q
0 ◦ Sp,qp−1 (g) = Sp+1,q

p ◦ Sp,q0 (g) .

· The case when 1 ≤ j ≤ p− 2, 1 ≤ i ≤ p− 2 and i < j we have
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Sp+1,q
j (g) =

(
α⊗j ⊗∆⊗ α⊗(p−j)) ◦ g, Sp,qi (g) =

(
α⊗i ⊗∆⊗ α⊗(p−i−1)

)
◦ g

The left hand, we have

Sp+1,q
j ◦ Sp,qi (g) =

(
α⊗j ⊗∆⊗ α⊗(p−j)

)
◦
(
α⊗i ⊗∆⊗ α⊗(p−i−1)

)
◦ g

=
(

(α ◦ α)⊗j ⊗∆ (α)⊗ (α ◦ α)⊗i−j−1 ⊗ α⊗2 ◦∆⊗ (α ◦ α)⊗(p−i−1)
)
◦ g.

The right hand, we have

Sp+1,q
i+1 (g) =

(
α⊗i+1 ⊗∆⊗ α⊗(p−i−1)

)
◦ g.

Sp+1,q
i+1 ◦ Sp,qj (g) =

(
αi+1 ⊗∆⊗ α⊗(p−i−1)

)
◦
(
α⊗j ⊗∆⊗ α⊗(p−j−1)

)
◦ g

=
(

(α ◦ α)⊗j ⊗ α⊗2 ◦∆⊗ (α ◦ α)⊗i−j−1 ⊗∆ ◦ α⊗ (α ◦ α)⊗(p−i−1)
)
◦ g,

So Sp+1,q
j ◦ Sp,qi (g) = Sp+1,q

i+1 ◦ Sp,qj (g).

· When the 1 ≤ j ≤ p− 2. and i = p− 1,

Sp+1,q
j (g) =

(
α⊗j ⊗∆⊗ α⊗(p−j)) ◦ g, Sp,qp−1 (g) =

(
α⊗p−1 ⊗∆

)
◦ g −

(
g ⊗ αp−1

)
◦ ρqr

Sp+1,q
j ◦ Sp,qp−1 (g) =

(
α⊗j ⊗∆⊗ α⊗(p−j)

)
◦
((
α⊗p−1 ⊗∆

)
◦ g −

(
g ⊗ αp−1

)
◦ ρqr

)
=
(

(α ◦ α)⊗j ⊗∆ ◦ α⊗ (α ◦ α)⊗p−j−2 ⊗ α2 ◦∆
)
◦ g

−
(((

α⊗j ⊗∆⊗ α⊗p−j−1
)
◦ g
)
⊗ αp

)
◦ ρqr.

The right hand, we have

Sp+1,q
p ◦ Sp,qj (g) =

((
α⊗p ⊗∆

)
◦
(
α⊗j ⊗∆⊗ αp−j−1

)
◦ g −

((
α⊗j ⊗∆⊗ αp−j−1

)
◦ g ⊗ αp

)
◦ ρqr

)
=
(

(α ◦ α)⊗j ⊗ α⊗2 ◦∆⊗ (α ◦ α)p−j−2 ⊗∆ ◦ α
)
◦ g

−
((
α⊗j ⊗∆⊗ αp−j−1

)
◦ g ⊗ αp

)
◦ ρqr.

So Sp+1,q
j ◦ Sp,qp−1 (g) = Sp+1,q

p ◦ Sp,qj (g) .

This finishes the proof.

Proposition 4.2.4 Let Dp,q
i : Cp,qHom (B⊗q, B⊗p) −→ Cp,q+1

Hom

(
B⊗q+1, B⊗p

)
and Sp,qi : Cp,qHom (B⊗q, B⊗p) −→

Cp+1,q
Hom

(
B⊗q, B⊗p+1

)
. Then

Sp,q+1
j ◦Dp,q

i = Dp+1,q
i ◦ Sp,qj for all 0 ≤ i ≤ q − 1, 0 ≤ j ≤ p− 1. (4.7)
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Theorem 4.2.5 Let B = (B,µ, η,∆, ε, α) be a Hom-bialgebra and δp,qHom,H : Cp,qHom −→

Cp,q+1
Hom , δp,qHom,C : Cp,qHom −→ C

p+1,q
Hom the operators defined in (4.1), (4.2) then

(
Cp,qHom, δ

p,q
Hom,H , δ

p,q
Hom,C

)
is a bicomplex (see [45], and [9]),

i.e

δp,q+1
Hom,H ◦ δ

p,q
Hom,H = 0, δp,q+1

Hom,C ◦ δ
p,q
Hom,H = δp+1,q

Hom,H ◦ δ
p,q
Hom,C , δ

p+1,q
Hom,C ◦ δ

p,q
Hom,C = 0 (4.8)

Proof. We prove the first identity.

δp+1,q
Hom,C ◦ δ

p,q
Hom,C =

(
p∑
i=0

(−1)i+1Sp+1,q
i

)
◦

p−1∑
j=0

(−1)j+1Sp,qj


=

p∑
i=0

p−1∑
j=0

(−1)i+jSp+1,q
i ◦ Sp,qj =

∑
0≤j<i≤n

(−1)i+jSp+1,q
i ◦ Sp,qj +

∑
0≤i≤j≤n−1

(−1)i+jSp+1,q
i ◦ Sp,qj

(4.6)
=

∑
0≤j<i≤n

(−1)i+jSp+1,q
i Sp,qj +

∑
0≤i≤j≤n−1

(−1)i+jSp+1,q
j+1 Sp,qi

=
∑

0≤j<i≤n
(−1)i+jSp+1,q

i Sp,qj +
∑

0≤i<k≤n
(−1)i+k−1Sp+1,q

k Sp,qi = 0.

The second equality, we have

δp,q+1
Hom,C ◦ δ

p,q
Hom,H =

(
p−1∑
i=0

(−1)i+1Sp,q+1
i

)
◦

q−1∑
j=0

(−1)j+1Dp,q
j


=

p−1∑
i=0

q−1∑
j=0

(−1)i+jSp,q+1
i ◦Dp,q

j


(??)
=

p−1∑
i=0

p−1∑
j=0

(−1)i+jDp+1,q
j ◦ Sp,qi


=

q−1∑
j=0

(−1)j+1Dp+1,q
j

 ◦(p−1∑
i=0

(−1)i+1Sp,qi

)

= δp+1,q
Hom,H ◦ δ

p,q
Hom,C

For the therd identity, see ([2]).

There is a canonical way to construct a complex from a given bicomplex.

The cochains are given by the bicomplex

ĈHom =
∑
n

⊕ĈnHom, ĈnHom =
∑

p+q=n+1,p,q≥1

⊕Cp,qHom, Cp,qHom = Homk
(
B⊗q, B⊗p

)
n ≥ 1;
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The coboundary operator is δnHom : ĈnHom −→ Ĉ
n+1
Hom defined as

δnHom|Cn+1−q,q
Hom

= δp,qHom,H ⊕ (−1)q δp,qHom,C , 1 ≤ q ≤ n, p = n+ 1− q.

Hence, for each n ≥ 1, we get a complex

0 −→ Ĉ1
Hom −→δ1Hom Ĉ2

Hom −→δ2Hom Ĉ3
Hom −→δ3Hom Ĉ4

Hom

Remark 4.2.6 The composite δ2
Hom ◦ δ1

Hom = 0, according to Proposition 4.2.1.

We define the n−th cohomology group of the above complex to be the Hom- bialgebra

cohomology of B, which will be denoted by Hn
Hom (B,B), n ≥ 1.

Definition 4.2.7 The kernel of δnHom in ĈnHom is the space of n-cocycles is defined by:

ZnHom (B,B) =
{
ϕ ∈ ĈnHom, δnHom (ϕ) = 0

}
(4.9)

The image of δnHom is the space of n-coboundaries is defined by:

Bn
Hom (B,B) =

{
ϕ ∈ ĈnHom, ϕ = δn−1

Hom (ψ) , ψ ∈ Ĉn−1
Hom

}
(4.10)

The Gerstenhaber-Shack cohomology group of the Hom-bialgebra B = (B,µ, η,∆, ε, α)

with coefficient in it self is

Hn
Hom (B,B) = ZnHom (B,B) /Bn

Hom (B,B) (4.11)

In particular,

•H1
Hom (B,B) =

{
f : B −→ B, δ1,1

Hom,H (f) = 0 and δ1,1
Hom,C (f) = 0

}
where

δ1,1
Hom,H (f) = µ ◦ (idB ⊗ f)− f ◦ µ+ µ ◦ (f ⊗ idB)

δ1,1
Hom,C (f) = (idB ⊗ f) ◦∆−∆ ◦ f + (f ⊗ idB) ◦∆

It is very useful to write outH2
Hom (B,B) andH3

Hom (B,B) explicitly from the definition.
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The cohomology groups H2
Hom (B,B) and H3

Hom (B,B) play an important role in de-

formation theory.

The cohomology group

•H2
Hom (B,B) = Z2

Hom (B,B) /B2
Hom (B,B) ,

where

•Z2
Hom (B,B) =

{
(f, g) ∈ Ĉ2

Hom, δ
1,2
Hom,H (f) = 0, δ1,2

Hom,C (f) + δ2,1
Hom,H (g) = 0, δ2,1

Hom,C (g) = 0
}

(4.12)

where for f : B ⊗B −→ B and g : B −→ B ⊗B , we have

δ1,2
Hom,H (f) = λ1

l ◦ (α⊗ f)− f ◦ (µ⊗ α) + f ◦ (α⊗ µ)− λ1
r ◦ (f ⊗ α)

δ1,2
Hom,C (f) + δ2,1

Hom,H (g) =
(
(idB ⊗ f) ◦ ρ2

l −∆ ◦ f + (f ⊗ idB) ◦ ρ2
r

)
+

(λ2
l ◦ (idB ⊗ g)− g ◦ µ+ λ2

r ◦ (g ⊗ idB))

δ2,1
Hom,C (g) = (α⊗ g) ◦ ρ1

l − (∆⊗ α) ◦ g + (α⊗∆) ◦ g − (f ⊗ α) ◦ ρ1
r

where ρ1
l = ρ1

r = ∆, λ1
l = λ1

r = µ, and

•B2
Hom (B,B) =

{
(f, g) ∈ Ĉ2

Hom, ∃h : B −→ B, f = δ1,1
Hom,H (h) , g = δ1,1

Hom,C (h)
}

where

δ1,1
Hom,H (h) = µ ◦ (idB ⊗ h)− h ◦ µ+ µ ◦ (h⊗ idB)

δ1,1
Hom,C (h) = (idB ⊗ h) ◦∆−∆ ◦ h+ (h⊗ idB) ◦∆

The cohomology group

•H3
Hom (B,B) = Z3

Hom (B,B) /B3
Hom (B,B) ,

where

•Z3
Hom (B,B) =

 (F,H,G) ∈ Ĉ3
Hom, δ

1,3
Hom,H (F ) = 0, δ2,2

Hom,H (H)− δ1,3
Hom,C (F ) = 0,

δ2,2
Hom,C (H) + δ3,1

Hom,H (G) = 0, δ3,1
Hom,C (G) = 0


(4.13)
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and

•B3
Hom (B,B) =

 (F,H,G) ∈ Ĉ3
Hom, ∃ (f, g) ∈ Ĉ2

Hom, , F = δ1,2
Hom,H (f) ,

H = δ1,2
Hom,C (f) + δ2,1

Hom,H (g) , G = δ2,1
Hom,C (g)


where we write, F : B ⊗B ⊗B −→ B, H : B ⊗B −→ B ⊗B and G : B −→ B ⊗B ⊗B

Lemma 4.2.8 B2
Hom (B,B) ⊂ Z2

Hom (B,B) because δ2
Hom ◦ δ1

Hom (ϕ) = 0.

Example 4.2.9 We consider (T2)λ, the 4-dimensional Taft-Sweedler Hom-bialgebra defined

in Example 2.4.7 for which we compute for λ 6= 1 and λ 6= 0, the first cohomology groups.

The space of 1-cohomology classes of (T2)λ

H1
Hom ((T2)λ, (T2)λ) =

{
f : (T2)λ −→ (T2)λ: δ1,1

Hom,H (f) = 0 and δ1,1
Hom,C (f) = 0

}
The elements are defined with respect to a basis {e1, e2, e3, e4} by

f (e1) = 0, f (e2) = 0, f (e3) = ae3, f (e4) = ae4,where a is a free parameter.

The 2-cocycles of the Hom-bialgebras (T2)λ

Z2
Hom ((T2)λ, (T2)λ) =

{
(f, g) ∈ Ĉ2Hom : δ1,2Hom,H (f) = 0, δ2,1Hom,C (g) = 0, δ1,2Hom,C (f) + δ2,1Hom,H (g) = 0

}
.

They are defined with respect to the basis {e1, e2, e3, e4}, by the table which describes mul-

tiplying the i th row elements by the j th column elements with respect to the same basis

:

f e1 e2 e3 e4

e1 a (e1 + e2) a (e1 + e2) λa (e3 + e4) λa (e3 + e4)

e2 a (e1 + e2) a (e1 − 3e2) λ (ce4 − ae3) λ ((2a− c) e3 − ae4)

e3 λa (e3 − e4) −λ (ae3 + ce4) 0 0

e4 λa (e4 − e3) −λ ((2a− c) e3 + ae4) 0 0

and

g (e1) = −a (e1 ⊗ e1 + e1 ⊗ e2 + e2 ⊗ e1 − e2 ⊗ e2) ,

g (e2) = −a (e1 ⊗ e1 − e1 ⊗ e2 − e2 ⊗ e1 + e2 ⊗ e2) ,

g (e3) = λa (e1 ⊗ e3 − e2 ⊗ e3 − e3 ⊗ e1 − e3 ⊗ e2) ,

g (e4) = −λa (e1 ⊗ e4 + e2 ⊗ e4 − e4 ⊗ e1 + e4 ⊗ e2) .
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The space of 2-coboundaries of the Hom-bialgebra (T2)λ is defined by

B2
Hom ((T2)λ, (T2)λ) =

{
(f, g) ∈ Ĉ2

Hom, ∃h : (T2)λ −→ (T2)λ, f = δ1,1
Hom,H (h) , g = δ1,1

Hom,C (h)
}

such that

f e1 e2 e3 e4

e1 0 0 0 0

e2 0 0 λce4 −λce3

e3 0 −λce4 0 0

e4 0 λce3 0 0

and g (ei) = 0 for i ∈ {1, 2, 3, 4} , where λ, a, c ∈ k are free parameters.

The 2th cohomology group of (T2)λ is the quotient

H2
Hom ((T2)λ, (T2)λ) = Z2

Hom ((T2)λ, (T2)λ) /B2
Hom ((T2)λ, (T2)λ) ,

which is defined, with respect to the basis {e1, e2, e3, e4}, by

f e1 e2 e3 e4

e1 a (e1 + e2) a (e1 + e2) λa (e3 + e4) λa (e3 + e4)

e2 a (e1 + e2) a (e1 − 3e2) −λae3 λa (2e3 − e4)

e3 λa (e3 − e4) −λae3 0 0

e4 λa (e4 − e3) −λa (2e3 + e4) 0 0

and

g (e1) = −a (e1 ⊗ e1 + e1 ⊗ e2 + e2 ⊗ e1 − e2 ⊗ e2) ,

g (e2) = −a (e1 ⊗ e1 − e1 ⊗ e2 − e2 ⊗ e1 + e2 ⊗ e2) ,

g (e3) = λa (e1 ⊗ e3 − e2 ⊗ e3 − e3 ⊗ e1 − e3 ⊗ e2) ,

g (e4) = −λa (e1 ⊗ e4 + e2 ⊗ e4 − e4 ⊗ e1 + e4 ⊗ e2) .



Chapter 5

Formal deformations of

Hom-bialgebras

We discuss, in this chapter, a deformation theory for Hom-bialgebras following Gersten-

haber’s approach. Let (B,µ, η,∆, ε, β) be a Hom-bialgebra and k[[t]] be the power series

ring in one variable t and coefficients in k and let B[[t]] be the set of formal power series

whose coefficients are elements of B (note that B[[t]] is obtained by extending the coeffi-

cients domain of B from k to k[[t]]). Then B[[t]] is a k[[t]]-module and when B is finite

dimensional, we have B [[t]] = B ⊗k k[[t]]. Notice that B is a submodule of B[[t]].

5.1 Formal deformations

Throughout this section, let B = (B,µ0, η0,∆0, ε0, α0) be an arbitrary but fixed Hom-

bialgebra. We define a formal deformation of B to be a formal power series in the indeter-

minate t,

Definition 5.1.1 A formal Hom-bialgebra deformation of B over k[[t]] consists of a

k[[t]]-bilinears maps

µt =
∑
i≥0

µit
i : B ⊗B −→ B[[t]], ηt =

∑
i≥0

ηit
i : k −→ B[[t]],

∆t =
∑
j≥0

∆jt
j : B −→ B[[t]]⊗B[[t]], εt =

∑
j≥0

εjt
j : B −→ k[[t]],

and

αt =
∑
k≥0

αkt
k : B −→ B[[t]],

93
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where each µi is a k-bilinear map µi : B ⊗ B −→ B (extended to be k [[t]]-bilinear) ,

the maps ∆j , εj , ηi and αk are a k-linear maps ∆j : B −→ B ⊗ B, εj : B −→ k, ηi :

k −→ B, and αk : B −→ B (extended to be k [[t]]-linear).With respect to which the Bt =

(B[[t]], µt, ηt,∆t, εt, αt) is again a Hom-bialgebra.

If we study only deformations of B = (B,µ0, η0,∆0, ε0, α0) in which the unit and the

counit are conserved, that is Bt = (B [[t]] , µt, η0,∆t, ε0, αt), then we as consider a deforma-

tion as a triple (µt,∆t, αt) satisfying
µt ◦ (αt ⊗ µt) = µt ◦ (µt ⊗ αt) (formal Hom-associativity).

(∆t ⊗ αt) ◦∆t = (αt ⊗∆t) ◦∆t (formal Hom-coassociativity).

∆t ◦ µt = µ⊗2
t ◦ (idB ⊗ τB⊗B ⊗ idB) ◦∆⊗2

t (formal compatibility).

(5.1)

5.2 Formal automorphisms

We need a notion of equivalence of formal deformations.

Definition 5.2.1 Let B = (B,µ, η,∆, ε, α) be a Hom-bialgebra. A formal automor-

phism on B, we mean a formal power series

Φt = idB + tΦ1 + t2Φ2 + t3Φ3 + ...,

where each Φi ∈ End (B), satisfying multiplicativity and comultiplicativity,

Φt ◦ µ = µ ◦ (Φt ⊗ Φt) and ∆ ◦ Φt = (Φt ⊗ Φt) ◦∆. (5.2)

The same rules of dealing with power series apply here as well. In particular, multi-

plicativity and comultiplicativity are equivalent to the equality

Φn ◦ µ =
n∑
i=0

µ ◦ (Φi ⊗ Φn−i) and ∆ ◦ Φn =
n∑
i=0

(Φi ⊗ Φn−i) ◦∆. (5.3)

for all n ≥ 0, in which Φ0 = idB. The conditions when n = 0 are trivial, as it only says

that the identity map on B is multiplicative and comultiplicative.
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When n = 1, the conditions are

Φ1 ◦ µ = µ ◦ (Φ1 ⊗ idB) + µ ◦ (idB ⊗ Φ1)

and ∆ ◦ Φ1 = (Φ1 ⊗ idB) ◦∆ + (idB ⊗ Φ1) ◦∆,

which are equivalent to say that Φ1 is a derivation and coderivation on B. More generally,

if Φ1 = Φ2 = ... = Φn = 0, then Φn+1 is a derivation and coderivation on B.

Remark 5.2.2 A formal automorphism Φt has a unique formal inverse

Φ−1
t = idB + tΦ1 + t2

(
Φ2

1 − Φ2

)
+ t3

(
−Φ3

1 − Φ1Φ2 − Φ2Φ1 − Φ3

)
+ ...

for which

Φt ◦ Φ−1
t = Φ−1

t ◦ Φt = idB

The coefficient of tn in Φ−1
t is an integral polynomial in Φ1,Φ2, ...,Φn. Moreover, the

multiplicativity and the comultiplicativity of Φt implies that of Φ−1
t . Indeed, for elements

x, y ∈ B, we have

µ (x⊗ y) = µ
(
Φt ◦ Φ−1

t (x)⊗ Φt ◦ Φ−1
t (y)

)
= Φt ◦ µ

(
Φ−1
t (x)⊗ Φ−1

t (y)
)

Φ−1
t ◦ µ (x⊗ y) = µ

(
Φ−1
t (x)⊗ Φ−1

t (y)
)

which implies that Φ−1
t is multiplicative.

∆ =
(
Φ−1
t ◦ Φt ⊗ Φ−1

t ◦ Φt

)
◦∆

=
(
Φ−1
t ⊗ Φ−1

t

)
◦ (Φt ⊗ Φt) ◦∆

=
(
Φ−1
t ⊗ Φ−1

t

)
◦∆ ◦ Φt

∆ ◦ Φ−1
t =

(
Φ−1
t ⊗ Φ−1

t

)
◦∆

which implies that Φ−1
t is comultiplicative.

We record these facts as follows.
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Lemma 5.2.3 Let Φt = idB + tΦ1 + t2 Φ2 + t3Φ3 + ..., be a formal automorphism on B.

Then the first non-zero i (i ≥ 1) is a derivation and coderivation on B. Moreover, the

formal inverse Φ−1
t of Φt is also a formal automorphism on B.

Proposition 5.2.4 Let Bt and Φt be, respectively, a formal deformation and a formal

automorphism of B. Then the formal power series

Φ−1
t ◦Bt ◦ Φt =

(
B,Φ−1

t ◦ µt ◦ (Φt ⊗ Φt) , (Φt ⊗ Φt) ◦∆t ◦ Φ−1
t ,Φ−1

t ◦ αt ◦ Φ−1
t

)
is also a formal deformation of B.

Proof. We need to check the Hom-associativity condition (2.1) for µ′t = Φ−1
t ◦µt◦(Φt ⊗ Φt)

and the Hom-coassociativity condition (2.7) for ∆′t =
(
Φ−1
t ⊗ Φ−1

t

)
◦ ∆t ◦ Φt, where α′t =

Φ−1
t ◦ αt ◦ Φt.

For the Hom-associativity condition, we have

µ′t ◦
(
µ′t ⊗ α′t

)
= Φ−1

t ◦ µt ◦ (Φt ⊗ Φt) ◦
((

Φ−1
t ◦ µt ◦ (Φt ⊗ Φt)⊗ Φ−1

t ◦ αt ◦ Φt

))
= Φ−1

t ◦ µt ◦ (Φt ⊗ Φt) ◦
(
Φ−1
t ⊗ Φ−1

t

)
◦ ((µt ⊗ αt) (Φt ⊗ Φt ⊗ Φt)) =

(2.1)
= Φ−1

t ◦ µt ◦ ((αt ⊗ µt) (Φt ⊗ Φt ⊗ Φt))

= Φ−1
t ◦ µt ◦ (Φt ⊗ Φt) ◦

(
Φ−1
t ⊗ Φ−1

t

)
◦ (αt ⊗ µt) ◦ (Φt ⊗ Φt ⊗ Φt)

= Φ−1
t ◦ µt ◦ (Φt ⊗ Φt) ◦

((
Φ−1
t ◦ αt ◦ Φt

)
⊗
(
Φ−1
t ◦ µt ◦ (Φt ⊗ Φt)

))
= µ′t ◦

(
α′t ⊗ µ′t

)
.

We have used the Hom-associativity for µt and the multiplicativity of both Φt and Φ−1
t of

µ0, extended to power series. The Hom-associativity for ∆′t is equally easy to verify.

For the compatibility condition, we have

∆′t ◦ µ′t =
((

Φ−1
t ⊗ Φ−1

t

)
◦∆t ◦ Φt

)
◦
(
Φ−1
t ◦ µt ◦ (Φt ⊗ Φt)

)
=
(
Φ−1
t ⊗ Φ−1

t

)
◦ (µt ◦ µt) ◦ (idB ⊗ τ ⊗ idB) ◦ (∆t ⊗∆t) ◦ (Φt ⊗ Φt)

=
(
Φ−1
t ◦ µt ⊗ Φ−1

t ◦ µt
)

(Φt ⊗ Φt ⊗ Φt ⊗ Φt) ◦ (idB ⊗ τ ⊗ idB)

◦
(
Φ−1
t ⊗ Φ−1

t ⊗ Φ−1
t ⊗ Φ−1

t

)
◦ (∆t ◦ Φt ⊗ Φt ◦∆t)

=
(
µ′t ⊗ µ′t

)
◦ (idB ⊗ τ ⊗ idB) ◦

(
∆′t ⊗∆′t

)
.
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Then Φ−1
t ◦Bt ◦ Φt is a formal deformation of B.

5.3 Equivalent and trivial deformations

In this section, we characterize the equivalent and trivial deformations of Hom-bialgebras.

Definition 5.3.1 Let B = (B,µ0, η,∆0, ε, α) be a Hom-bialgebra. Given two deforma-

tions of B0, Bt = (B,µt, η,∆t, ε, α) and B′t = (B,µ′t, η,∆
′
t, ε, α)where µt =

∑
i≥0

µit
i ,

∆t =
∑
j≥0

∆jt
j , µ′t =

∑
i≥0

µ′it
i , ∆′t =

∑
j≥0

∆′jt
j with µ′0 = µ0, and ∆′0 = ∆0.

We say that they are equivalent if there is a formal automorphism Φt : B −→ B [[t]]

which is a k [[t]]-linear map that may be written in the form Φt =
∑
i≥0

Φit
i where Φi ∈

Endk(B) and Φ0 = idB such that

Φt ◦ µt = µ′t ◦ (Φt ⊗ Φt) , (5.4)

(Φt ⊗ Φt) ◦∆t = ∆′t ◦ Φt (5.5)

and

Φt ◦ α = α ◦ Φt. (5.6)

Definition 5.3.2 A deformation Bt of B0 is said to be trivial if and only if Bt is equivalent

to B0

We discuss in the following the equivalence of two deformations.Equation (5.4) is equiv-

alent to ∑
i,j≥0

(Φi ◦ µj) ti +j =
∑
i,j,k≥0

µ′i ◦ (Φj ⊗ Φk) t
i +j+k . (5.7)

By identification of the coefficients, one obtains that the constant coefficients are iden-

tical, i.e.

µ0 = µ′0 and Φ0 = idB.

For the coefficients of t one finds

(Φ0 ◦ µ1) + (Φ1 ◦ µ0) = µ′1 ◦ (Φ0 ⊗ Φ0) + µ′0 ◦ (Φ1 ⊗ Φ0) + µ′0 ◦ (Φ0 ⊗ Φ1)

µ1 + Φ1 ◦ µ0 = µ′1 + µ0 ◦ (Φ1 ⊗ idB) + µ0 ◦ (idB ⊗ Φ1)
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µ′1 = µ1 − (µ0 ◦ (Φ1 ⊗ idB)− Φ1 ◦ µ0 + µ0 ◦ (idB ⊗ Φ1)) . (5.8)

Equations (5.5) are equivalent to

∑
i,j≥0

(
∆′i ◦ Φj

)
ti +j −

∑
i,j,k≥0

(Φi ⊗ Φj) ◦∆kt
i +j +k = 0.

∑
i+j=n

(
∆′i ◦ Φj

)
−

∑
i+j+k=n

(Φi ⊗ Φj) ◦∆k = 0. n = 1, 2, ...

Similarly for the comultiplication, setting ∆0 = ∆′0 and Φ0 = idB, the coefficients of t leads

to (
∆′0 ◦ Φ1

)
+
(
∆′1 ◦ Φ0

)
= (Φ0 ⊗ Φ0) ◦∆1 + (Φ0 ⊗ Φ1) ◦∆0 + (Φ1 ⊗ Φ0) ◦∆0

Hence

∆′1 = ∆1 + (idB ⊗ Φ1) ◦∆0 − (∆0 ◦ Φ1) + (Φ1 ⊗ idB) ◦∆0. (5.9)

Homomorphisms condition (5.6) is equivalent to
∑
i≥0

(Φi ◦ α) ti =
∑
i≥0

(α ◦ Φi) t
i.Therefore

Φi ◦ α = α ◦ Φi, for all i > 0.

The first and second order conditions of the equivalence between two deformations of a

Hom-bialgebra are given by (5.8) (5.9) may be written

µ′1 = µ1 − δ1,1
Hom,H (Φ1) and ∆′1 = ∆1 + δ1,1

Hom,C (Φ1) . (5.10)

In general, if the deformations (µt,∆t) and (µ′t,∆
′
t) of (µ0,∆0) are equivalent then

µ′1 = µ1 + δ1,1
Hom,H (Φ1) and ∆′1 = ∆1 + δ1,1

Hom,C (Φ1) .

5.4 Deformations equation and infinitesimals

The general principle here is that every deformation has as infinitesimal which lies in ap-

propriate second cohomology group. In this section we discuss the infinitesimals, beginning

with the case of Hom-bialgebras. In each of these (µi,∆i) is (essentially) the infinitesimal.

We can discover the definitions of the cochain groups and coboundary by examining the

coefficients of t in the equation above.
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Now, we discuss the deformation equation in terms of cohomology. The first problem

is to give conditions about µi, ∆j and αk such that the deformation (µt,∆t, αt) be Hom-

associative, Hom-coassociative and compatibility.

We study the equations (5.1) and thus characterize the deformations of Hom-bialgebras.

The coefficients of ts yields :

∑
i+j+k=s
i,j,k≥0

(µi ◦ (µj ⊗ αk)− µi ◦ (αk ⊗ µj)) = 0 s = 0, 1, 2...

∑
i+j+k=s
i,j,k≥0

(∆j ⊗ αk) ◦∆i − (αk ⊗∆j) ◦∆i = 0 s = 0, 1, 2, ...

∑
i+j=s
i,j≥0

(∆i ◦ µj)−
∑

i+j+k+r=s
i,j,k,r≥0

(µi ⊗ µj) ◦ τ2,3 ◦ (∆k ⊗∆r) = 0 s = 0, 1, 2, ...

(5.11)

This infinite system, called the deformation equation, gives the necessary and suffi-

cient conditions for Bt to be a Hom-bialgebra. It may be written

s∑
i=0

s−i∑
j=0

(µi ◦ (αj ⊗ µs−i−j)− µi ◦ (µs−i−j ⊗ αj)) = 0 s = 0, 1, 2, · · ·

s∑
i=0

s−i∑
j=0

(∆s−i−j ⊗ αj) ◦∆i − (αj ⊗∆s−i−j) ◦∆i = 0 s = 0, 1, 2, · · ·

s∑
i=0

(
(∆i ◦ µs−i)−

s−i∑
j=0

s−i−j∑
k=0

(µi ⊗ µj) ◦ τ2,3 ◦ (∆k ⊗∆s−i−j−k)

)
= 0 s = 0, 1, 2, · · ·

Definition 5.4.1 We call αk-associator the map

Hom
(
B⊗2, B

)
×Hom

(
B⊗2, B

)
−→ Hom

(
B⊗3, B

)
, (µi, µj) 7−→ µi ◦αk

µj

defined by

µi ◦αk
µj = µi ◦ (αk ⊗ µj)− µi ◦ (µj ⊗ αk) .

We call αk-coassociator the map

Hom
(
B,B⊗2

)
×Hom

(
B,B⊗2

)
−→ Hom

(
B,B⊗3

)
, (∆i,∆j) 7−→ ∆i ◦αk

∆j

defined by

∆i ◦αk
∆j = (∆j ⊗ αk) ◦∆i − (αk ⊗∆j) ◦∆i.
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By using αj-associators, and αj-coassociators, the deformation equations may be written

as follows

s∑
i=0

s−i∑
j=0

µi ◦αj µs−i−j = 0 s = 0, 1, 2, · · ·

s∑
i=0

s−i∑
j=0

∆i ◦αj ∆s−i−j = 0 s = 0, 1, 2, · · ·

s∑
i=0

(
(∆i ◦ µs−i)−

s−i∑
j=0

s−i−j∑
k=0

(µi ⊗ µj) ◦ τ2,3 ◦ (∆k ⊗∆s−i−j−k)

)
= 0 s = 0, 1, 2, · · ·

The first equations corresponding to s = 0, are the Hom-associativity condition for µ0,

the Hom-coassociativity condition for ∆0 and the compatibility condition of µ0 and ∆0.

If the structure map is not deformed, then one gets the following system, where α0 = α,

s−1∑
i=1

µi ◦α µs−i = −δ1,2
Hom,H (µ1) s = 1, 2, · · ·

s∑
i=0

∆i ◦α ∆s−i = −δ2,1
Hom,C (∆1) s = 1, 2, · · ·

s−1∑
i=1

(
(∆i ◦ µs−i)−

s−i∑
j=0

s−i−j∑
k=0

(µi ⊗ µj) ◦ τ2,3 ◦ (∆k ⊗∆s−i−j−k)

)
= 0 s = 1, 2, · · ·

In particular, for s = 1 we have

•µ0 ◦α µ1 + µ1 ◦α µ0 = 0, which is equivalent δ1,2
Hom,H (µ1) = 0

•∆0 ◦α ∆1 + ∆1 ◦α ∆0 = 0, which is equivalent δ2,1
Hom,C (∆1) = 0

•the compatibility condition which is equivalent δ1,2
Hom,C (µ1) + δ2,1

Hom,H (∆1) = 0, There-

fore, we have

Proposition 5.4.2 The first term (µ1,∆1) of a deformation of a Hom-bialgebra, where the

structure map is not deformed, is always a 2-cocycle for the Hom-bialgebra Gerstenhaber-

Schack cohomology.

It turns out that (µ1,∆1) is always a 2-cocycle for the Hochschild cohomology (i.e.

(µ1,∆1) ∈ Z2
Hom (B,B)), whose cohomology class is determined by the equivalence class of

the deformation (µt,∆t) .

More generally, suppose that (µm,∆m) be the first non-zero coefficient after (µ0,∆0) in

the deformation (µt,∆t). Then (µm,∆m) is a 2-cocycle for the Hochschild cohomology.

Definition 5.4.3 In every case the 2-cocycle for the Hochschild cohomology (µm,∆m) is

commonly called infinitesimal of the deformation Bt of B0.
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This terminology would be bener applied to the cohomology class of µ1 in H2 (B,B)

since in each case equivalent deformations have cohomologous infinitesimals. Conversely,

a cocycle cohomologous to the infinitesimal of a deformation necessarily appears as that

of an equivalent deformation. For instance, if µ1 = δ1
Homϕ1 then µt is equivalent to a

deformation µ′t for which µ′1 = 0. (The equivalence µ′t ' µt is given by the linear isomorphism

idB − tϕ1 : B [[t]] −→ B [[t]]). Continuing µ′2 is then a cocycle and, if it is a coboundary,

say µ′2 = δ1
Homϕ2, then there is a further equivalent deformation µ′′t having µ′′1 = µ′′2 = 0,

(The equivalence µ′′t ' µ′t is given by idB − t2ϕ2). These remarks apply in every case.

5.5 Obstructions

A basic task of deformation theory is to construct and catalog the deformation of a given

algebra. In later sections we shall consider this problem using some recently minted tech-

niques. But first we must take a more foundational approach: Obstruction theory. This

describes the relationships among the cochains (µi,∆i) in a deformation (µt,∆t) . For ex-

ample, in the Hom-bialgebra case,

gathering the first and the last terms in the kth equations of the system 5.11, for an

arbitrary k, k > 1; the equations may be written

δ2
Hom (µk,∆k) =



δ1,2
Hom,H (µk) = µ0 ◦α µk + µk ◦α µ0 = −

∑
i+j=k
i,j 6=k

µi ◦α µj

δ2,1
Hom,C (∆k) = ∆0 ◦α ∆k + ∆k ◦α ∆0 = −

∑
i+j=k
i,j 6=k

∆i ◦α ∆j

δ1,2
Hom,C (µk) + δ2,1

Hom,H (∆k) =
∑
i+j=k
i,j 6=k

(∆i ◦ µj)−
∑

i+j+t+r=k
i,j,t,r 6=k

(µi ⊗ µj) ◦ τ2,3 ◦ (∆t ⊗∆r)

from which one sees, in particular, that δ2
Hom (µ1,∆1) = 0, It follows that the integrability

of an (µ1,∆1) ∈ Z2
Hom (B,B), i.e., the existence of a deformation with the given (µ1,∆1) as

its linear term, depends only on the cohomology class [(µ1,∆1)] of (µ1,∆1). We may view

[(µ1,∆1)] ∈ H2
Hom (B,B) as the infinitesimal of the equivalence class of the deformation Bt.

Definition 5.5.1 Let B = (B,µ, η,∆, ε, α) be a Hom-bialgebra, and (µ1,∆1) be an el-
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ement of Z2
Hom (B,B), the 2-cocycle (µ1,∆1) is said integrable if there exists a fam-

ily (µt,∆t)t≥0 such that µt =
∑
i≥0

µit
i and ∆t =

∑
i≥0

∆it
i defines a formal deformation

Bt = (B [[t]] , µt, η,∆t, ε, α) of B.

Therefore, we have the following observation:

Proposition 5.5.2 The integrability of (µ1,∆1) depends only on its cohomology class.

Proof. Recall that two elements are cohomologous if their difference is a coboundary, when

this is the case, µ′1 = µ1 − δ1,1
Hom,H (f) , and ∆′1 = ∆1 + δ1,1

Hom,C (f)

If the equation δ2
Hom (µ1,∆1) = 0 implies that

δ1,2
Hom,H (µ1) = 0, δ2,1

Hom,C (∆1) = 0, δ1,2
Hom,C (µ1) + δ2,1

Hom,H (∆1) = 0

We have

δ1,2
Hom,H (µ′1) = δ1,2

Hom,H

(
µ1 − δ1,1

Hom,H (f)
)

= δ1,2
Hom,H (µ1)− δ1,2

Hom,H ◦ δ
1,1
Hom,H (f) = 0,

δ2,1
Hom,C (∆′1) = δ2,1

Hom,C

(
∆1 + δ1,1

Hom,C (f)
)

= δ2,1
Hom,C (∆1) + δ2,1

Hom,C ◦ δ
1,1
Hom,C (f) = 0

δ1,2
Hom,C (µ′1) + δ2,1

Hom,H (∆′1) = δ1,2
Hom,C

(
µ1 − δ1,1

Hom,H (f)
)

+ δ2,1
Hom,H

(
∆1 + δ1,1

Hom,C (f)
)

= δ1,2
Hom,C (µ1) + δ2,1

Hom,H (∆1)−
(
δ1,2
Hom,C ◦ δ

1,1
Hom,H (f)− δ2,1

Hom,H ◦ δ
1,1
Hom,C (f)

)
= 0.

Is given by Proposition 4.2.1 implies that δ2
Hom (µ′1,∆

′
1) = 0.

If the equations (µ1,∆1) = δ1
Hom (f) implies that

µ1 = δ1,1
Hom,H (f) ,∆1 = δ1,1

Hom,C (f)

and

µ′1 = µ1 + δ1,1
Hom,H (Φ1) and ∆′1 = ∆1 + δ1,1

Hom,C (Φ1) .

We have

µ′1 = δ1,1
Hom,H (f) + δ1,1

Hom,H (Φ1) = δ1,1
Hom,H (f + Φ1)

∆′1 = δ1,1
Hom,C (f) + δ1,1

Hom,C (Φ1) = δ1,1
Hom,C (f + Φ1) .

Then if two integrable 2-cocycles are cohomologous, then the corresponding deformations

are equivalent.
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Proposition 5.5.3 Let B0 = (B,µ0, η,∆0, ε, α) be a Hom-bialgebra. There is, over k[[t]]/t2,

a one to-one correspondence between the elements of H2
Hom (B,B) and the infinitesimal de-

formation of B0 defined by

µt = µ0 + µ1t and ∆t = ∆0 + ∆1t. (5.12)

Proof. The deformation equation is equivalent to δ2
Hom (µ1,∆1) = 0, that is (µ1,∆1) ∈

Z2
Hom (B,B) .

Suppose that the truncated deformationBm−1
t =

(
B [[t]] /tm, µm−1

t ,∆m−1
t

)
Write µm−1

t =

µ0 + tµ1 + t2µ2 + ...+ tm−1µm−1 and ∆m−1
t = ∆0 + t∆1 + t2∆2 + ...+ tm−1∆m−1 satisfies the

deformation equation. The truncated deformation is extended to a deformation of order m,

ie µmt = µ0 + tµ1 + t2µ2 + ...+ tm−1µm−1 + tmµm and ∆m
t = ∆0 + t∆1 + t2∆2 + ...+ tm∆m

satisfying the deformation equation if,

δ2
Hom (µm,∆m) =



δ1,2
Hom,H (µm) = µ0 ◦α µm + µm ◦α µ0 = −

∑
i+j=m
i,j 6=m

µi ◦α µj

δ2,1
Hom,C (µm) = ∆0 ◦α ∆m + ∆m ◦α ∆0 = −

∑
i+j=m
i,j 6=m

∆i ◦α ∆j

δ1,2
Hom,C (µm) + δ2,1

Hom,H (∆m) =
∑

i+j=m
i,j 6=m

(∆i ◦ µj)−
∑

i+j+t+r=m
i,j,t,r 6=m

(µi ⊗ µj) ◦ τ2,3 ◦ (∆t ⊗∆r)

To this end, consider the following cochains

Ob (µm) =
∑

i+j=m
i,j 6=m

µi ◦α µj ,

Ob (∆m) =
∑

i+j=m
i,j 6=m

∆i ◦α ∆j ,

Ob (∆m ◦ µm) =
∑

i+j=m
i,j 6=m

(∆i ◦ µj)−
∑

i+j+t+r=m
i,j,t,r 6=m

(µi ⊗ µj) ◦ τ2,3 ◦ (∆t ⊗∆r)

The Ob (µm) , Ob (∆m) and Ob (∆m ◦ µm) are called the obstruction to finding µm,

∆m, ∆m ◦ µm extending the deformation.

A standard deformation theory argument [19] if α = idB shows that Ob (µm) , Ob (∆m) ,

are a 3-coboundary if and only if µm−1
t and ∆m−1

t extends to a k [[t]] /tm+1algebra and
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coalgebra structures on B [[t]] /tm+1. In this case, any 2-cochain whose coboundary is

(Ob (µm) , Ob (∆m)) gives an extension. An analogous argument applied to our setting

yields the following result.

If one has only µm−1
t = µ0 + tµ1 + t2µ2 + ...+ tm−1µm−1 and ∆m−1

t = ∆0 + t∆1 + t2∆2 +

...+ tm−1∆m−1 satisfies the deformation equation (5.11) for k = 1, ...,m− 1 then

(Ob (µm) , Ob (∆m) , Ob (∆m ◦ µm)) ∈ Z3
Hom (B,B)

and the cohomology class of this cocycle is the obstruction to finding an (µm,∆m,∆m ◦ µm)

such that (5.11) is satisfied for k = m.

Remark 5.5.4 Suppose that
(
B [[t]] /tm, µm−1

t ,∆m−1
t

)
is a deformation of B0.

If Bt =
(
B [[t]] /tm+1, µm−1

t + tmµm,∆
m−1
t + tm∆m

)
is a deformation of B0, then B′t =(

B [[t]] /tm+1, (µmt )′ = µm−1
t + tmµ′m, (∆

m
t )′ = ∆m−1

t + tm∆′m
)

is a deformation of B0 if,

and only if

(µ′m − µm,∆′m −∆m) ∈ Z2
Hom (B,B). Note also that if (µ′m − µm,∆′m −∆m) ∈ B2

Hom (B,B),

then deformations Bt and B′t are equvalent.

Hom-bialgebras for which every formal deformation is equivalent to a trivial defor-

mation are said to be analytically rigid. The nullity of the second cohomology group

(H2
Hom (B,B) = 0) gives a sufficient criterion for rigidity.

In the following we assume that H2
Hom (B,B) 6= 0, then one may obtain nontrivial one-

parameter formal deformations. We consider the problem of extending a one parameter

formal deformation of order m− 1 to a deformation of order m.

Suppose now that

µt = µ0 + µ1t+ µ2t
2 + ... and ∆t = ∆0 + ∆1t+ ∆2t

2 + ...

are a one parameter family of deformation of (µ0,∆0) for which

µ1 = µ2 = ... = µm−1 = 0 and ∆1 = ∆2 = ... = ∆m−1 = 0.

The deformation equation implies

δ2
Hom (µm,∆m) = 0

(
(µm,∆m) ∈ Z2

Hom (B,B)
)
.
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If further (µm,∆m) ∈ B2
Hom (B,B) (ie. (µm,∆m) = δ1

Hom (f, g)), then setting the morphism

Φt = idB + Φmt
m we have,

µ′t = Φ−1
t ◦ µt ◦ (Φt ⊗ Φt) = µ0 + µm+1t

m+1 + ...

∆′t = (Φt ⊗ Φt) ◦∆t ◦ Φ−1
t = ∆0 + ∆m+1t

m+1 + ...

And again (µm+1,∆m+1) ∈ Z2
Hom (B,B) , we can now prove:

Corollary 5.5.5 If H2
Hom (B,B) = 0 then all deformations of Hom-bialgebra B are equiv-

alent to a trivial deformation.

5.6 Unital and Counital Hom-bialgebra Deformations

We discuss unitality and counitality of Hom-bialgebra deformations.

Proposition 5.6.1 The unit (resp. the counit) of Hom-bialgebra B is also the unit (resp.

the counit) of the formal deformation Bt of B if and only if

µn (x⊗ 1B) = µn (1B ⊗ x) = 0 ∀n ≥ 1, ∀x ∈ B, η (1k) = 1B

(resp. (idB ⊗ ε) ◦∆n = (ε⊗ idB) ◦∆n = 0 ∀n ≥ 1).

Proof. The element 1B is a unit for Bt if µt ◦ (η ⊗ idB) = µt ◦ (idB ⊗ η) = α.

∀x ∈ B, µt (x⊗ 1B) = α (x) , µt (1B ⊗ x) = α (x) , where µt =
∑
i≥1

tiµi.

We have

µt (x⊗ 1B) = α (x) = µ0 (x⊗ 1B) +
∑
i≥1

µi (x⊗ 1B) ti

α (x) = α (x) +
∑
i≥1

µi (x⊗ 1B) ti

By identification, we obtain µn (x⊗ 1B) = 0, ∀n ≥ 1, and similarly µn (1B ⊗ x) =

0, ∀n ≥ 1. The map ε is a counit for Bt if (ε⊗ idB) ◦ ∆t = (idB ⊗ ε) ◦ ∆t = α, where
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∆t =
∑
i≥1

ti∆i.

(ε⊗ idB)

∑
i≥0

∆it
i

 = α = (ε⊗ idV ) ◦∆0 +
∑
i≥1

(ε⊗ idV ) ◦∆it
i

α = α+
∑
i≥1

(ε⊗ idB) ◦∆it
i.

By identification, we obtain (ε⊗ idB)◦∆i = 0, ∀i ≥ 1. Similarly (idB ⊗ εj)◦∆i = 0, ∀i ≥ 1.

Theorem 5.6.2 Let B = (B,µ, η,∆, ε, α) be a Hom-bialgebra with a surjective map α.

Every nontrivial formal deformation Bt = (B,µt, ηt,∆t, εt, α) is equivalent to a unital and

counital deformation with the same unit η and counit ε.

Proof. We show that the unit is conserved by deformation. Assume µt = µ+
∑
i≥p

tiµi. Two

deformations are equivalent if there is a formal isomorphism Φt = Id + tΦ1 + t2Φ2 + · · · ,

where Φi ∈ EndK (V ), which leads to

µ′1(x, y) = µ1(x, y) + f1(µ0(x, y))− µ0(f1(x), y)− µ0(x, f1(y)). (5.13)

Since µ1 is a 2-cocycle, then
∑

i+j=1 µi (µj (x, y) , α(z))− µi (α(x), µj (y, z)) = 0.

We set y = z = 1, respectively x = y = 1 and z = x. Then, we obtain

µ1(α(x), 1) = µ0(α(x), µ1(1, 1)), µ1(1, α(x)) = µ0(µ1(1, 1), α(x)).

If α is surjective, then we have

µ1(x, 1) = µ0(x, µ1(1, 1)), µ1(1, x) = µ0(µ1(1, 1), x). (5.14)

We consider the formal isomorphism satisfying f1(1) = µ1(1, 1), fn = 0 for n ≥ 2. Using

(5.13) and (5.14), the equivalent multiplication leads to a new deformed multiplication

satisfying

µ′1(x, 1) = µ1(x, 1) + f1(µ0(x, 1))− µ0(f1(x), 1)− µ0(x, µ1(1, 1))

= µ1(x, 1) + f1(α(x))− α(f1(x))− µ1(x, 1) = 0.
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Similarly, we obtain µ′1(1, x) = 0. By induction on n, we show that for all n ≥ 1, µ′n(1, x) =

µ′n(x, 1) = 0. Indeed, we assume µ′k(1, x) = µ′k(x, 1) = 0 for k = 1, · · · , n− 1. We consider

the isomorphism ft satisfying fn(1) = µn(1, 1) and fk = 0 ∀k 6= n. Then, using (5.13) and

(5.14), we obtain µ′n(1, x) = µ′n(x, 1) = 0.

Observe that the product (1 + f1t
1) · · · (1 + fnt

n) converge when n tends to infinity.

Therefore, according to Proposition 5.6.1, the unit is conserved by deformation. The proof

is similar for the counit.

5.7 Twistings and Deformations

In this section, we discuss the connection between the twistings of Hom-bialgebras (see

Proposition 2.1.8) and their formal deformations.

Proposition 5.7.1 Let Bt = (B [[t]] , µt, ηt,∆t, εt, α) be a formal deformation of a Hom-

bialgebra B = (B,µ0, η0,∆0, ε0, α) and β : B −→ B be a Hom-bialgebra morphism of B and

Bt. Then Bt,β = (B [[t]] , β ◦ µt, β ◦ ηt,∆t ◦ β, εt ◦ β, β ◦ α) is a formal deformation of the

Hom-bialgebra Bβ = (B, β ◦ µ0, η0,∆0 ◦ β, ε0, α).

Hence, for any n ∈ N Bt,βn = (B [[t]] , βn ◦ µt, βn ◦ ηt,∆t ◦ βn, εt ◦ βn, βn ◦ α) is a for-

mal deformation of the Hom-bialgebra Bβn.

Proof. The proof is analogous to that of Proposition 2.1.8.

Corollary 5.7.2 Let B = (B,µ0, η0,∆0, ε0) be a bialgebra and α : B −→ B be a bialgebra

morphism (i.e. α ◦ µ0 = µ0 ◦ (α⊗ α) , ∆0 ◦ α = (α⊗ α) ◦∆0, α ◦ η0 = η0 and ε0 ◦ α = ε0).

If Bt = (B [[t]] , µt, ηt,∆t, εt) is a formal deformation of the bialgebra B and α is a bialgebra

morphism for Bt (i.e. α◦µt = µt◦(α⊗ α) , ∆t◦α = (α⊗ α)◦∆t, α◦ηt = ηt and εt◦α = εt).

Then Bt,α = (B [[t]] , α ◦ µt, ηt,∆t ◦ α, εt, α) is a formal deformation of the Hom-bialgebra

Bα = (B,α ◦ µ0, η0,∆0 ◦ α, ε0, α).

Proposition 5.7.3 Let Bt = (B,µt, ηt,∆t, εt, α) and B′t = (B,µ′t, η
′
t,∆

′
t, ε
′
t, α) be two

equivalent deformations of a Hom-bialgebra B = (B,µ0, η0,∆0, ε0, α). Then, Bt,αn =
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B [[t]] , αn ◦ µt, ηt,∆t ◦ αn, εt, αn+1

)
and B′t,αn =

(
B [[t]] , αn ◦ µ′t, η′t,∆′t ◦ αn, ε′t, αn+1

)
are

equivalent deformations of the Hom-bialgebra Bαn =
(
B,αn ◦ µ0, η0,∆0 ◦ αn, ε0, α

n+1
)
, for

any n ∈ N.

Proof. We know that there exists a formal automorphism Φt =
∑
i≥0

Φit
i , where Φi ∈

Endk(B) and Φ0 = idB such that Φt◦µ′t = µt◦Φ⊗2
t , Φ⊗2

t ◦∆′t = ∆t◦Φt, and Φt◦α = α◦Φt.

Then, we have

αn ◦ Φt ◦ µ′t = αn ◦ µt ◦ Φ⊗2
t , Φ⊗2

t ◦∆′t ◦ αn = ∆t ◦ Φt ◦ αn, and Φt ◦ α ◦ αn = α ◦ Φt ◦ αn,

Φt ◦
(
αn ◦ µ′t

)
= (αn ◦ µt) ◦ Φ⊗2

t , Φ⊗2
t ◦

(
∆′t ◦ αn

)
= (∆t ◦ αn) ◦ Φt, and Φt ◦ αn+1 = αn+1 ◦ Φt.

Hence Bt,αn is equivalent to B′t,αn , for any n ∈ N.

Proposition 5.7.4 Let Bt = (V, µt, ηt,∆t, εt, α) be a formal deformation of a Hom-bialgebra

B = (V, µ0, η0,∆0, ε0, α). Then Bt,αn is equivalent to a formal deformation B′t,αn of a Hom-

bialgebra Bαn with the same unit and counit as Bαn.

Proof. The proof is similar to Theorem 5.6.2. Notice that surjectivity is not required.
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Résumé :

Le travail porte sur la cohomologie et les déformations des Hom-bialgèbres et algèbres Hom-Hopf qui 
sont des versions modifiées par un morphisme des structures classiques de bialgèbre et algèbre de Hopf liées 
aux groupes quantiques. Les algèbres de type-hom sont apparues dans les déformations quantiques des 
algèbres de Witt et Virasoro, comme une généralisation des algèbres de Lie. Premièrement on rappelle la 
théorie des algèbres de type-Hom et les propriétés établies, puis on introduit les A-bimodules et C-
bicomodules nécessaire pour la définition de la cohomologie, puis leur dualité. Enfin on établit une théorie 
des déformations formelles pour les Hom-bialgèbres généralisant la théorie de déformation de Gerstenhaber.
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Abstract :

The study is conducted on the cohomology and the deformations of Hom-bialgebras and Hom-Hopf
algebras, a generalized version of bialgebras and Hopf algebras obtained by modifying the classical structures 
by a morphism linked to quantum groups. Hom-type algebras appeared in the quantum deformations of Witt 
and Virasoro algebras as a generalisation of Lie algebras. First we recall the theory of Hom-type algebras and 
describe some properties of those structures, and then introduce the needed A-bimodule and C-bicomodule 
for the definition of the cohomology, and then its duality. In the final we establish a deformation formelle 
theory of Hom-bialgebras generalised the deformations theory of Gerstenhaber.
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