

Committee composition:

Prof. Kamel Nadjet Ferhat Abbas University -Setif 1 President

Prof. Aliouat Makhlouf Ferhat Abbas University –Setif 1 Director

Prof. Bensalem Saddek Grenoble University-France Co-Director

Prof. Boukarram abdallah Abderrahmane Mira University - Bejaia Examiner

Prof. Benmohamed

Mohamed
Constantine - 2- University. Examiner

July 2017

People's Democratic Republic of Algeria

Ministry of Higher Education and Scientific Research

Ferhat Abbas University–Setif-1

Faculty of Sciences

Department of Computer sciences

Fault Tolerance in Embedded Systems

Cloud Computing Systems

 By: Mounya Smara

A thesis submitted in partial fulfillment of the requirements for the

Doctorate degree

I

Abstract

Cloud computing has become a popular computational technology across all

industries, by which desired services can be accessed from any place and at any time.

Cloud environments are characterized by the big data, non centralization, distribution

and non-heterogeneity that bring some challenges such as: reliability which is still a

major issue for cloud service providers. Fault tolerance is an active line of research in

design and implementation of dependable systems. It means to handle unexpected

defects, so that the system meets its specification in the presence of faults. Specification

guarantees can be broadly characterized by safety and liveness properties. Reliability in

cloud environment is handled by a set of fault detection and fault tolerance techniques.

The fault detection is configured by monitoring and heartbeat strategies whereas the

fault tolerance is performed by using techniques based on time and space redundancy

such as checkpointing, retry, SGuard….etc. The main aim of this thesis is the

incorporation of recovery blocks scheme to enhance reliability of cloud computing

systems by providing Fail-Silent and Fault-Masking nodes. A Fail-Silent cloud node is

a safe component that uses the acceptance test for self-fault detection whereas a Fault-

Masking node is a safe and live component that can detect and recover from failures

using the acceptance test and try blocks. The proposed strategies are proved and time

and space complexities are estimated. Furthermore, a case study and a verification using

the model-checker are provided for the proposed schemes to prove their efficiency and

their applicability.

Keywords: Reliability, Cloud computing, Recovery Blocks, Fault Detection, Fault

Tolerance, Fault Masking, Acceptance test, Component-based approach.

II

Résumé

Le cloud computing ou l’informatique en nuage est devenu une technologie de

calcul populaire dans toutes les industries, par laquelle les services souhaités peuvent

êtres consultés à partir de n’importe quel endroit et à tout moment. Les environnements

cloud sont caractérisés par la grande masse de données, la non-centralisation, la

distribution et le manque d’hétérogénéité. Ces caractéristiques apportent quelques défis

tels que l’assurance de fiabilité ; qui reste un problème majeur pour les fournisseurs des

services cloud. La Tolérance aux fautes est une ligne de recherche active dans la

conception et la mise en œuvre des systèmes fiables. Cela signifie de gérer les pannes

inattendues de sorte que le système réponde à ses spécifications en présence de fautes.

Les garanties de spécification peuvent être largement caractérisées par des propriétés de

sécurité-innocuité et de vivacité. La fiabilité dans l’environnement cloud est gérée par

un ensemble de techniques de détection et de tolérance aux fautes. La détection des

fautes est opérée par les stratégies de surveillance et de battement de cœur alors que la

tolérance aux fautes est réalisée en utilisant des techniques basées sur la redondance

spatiale et temporelle telles que le checkpointing, le ré-essai, le Sguard, …etc. Le but

principal de cette thèse c’est l’incorporation du schéma des blocs de reprise pour

améliorer la fiabilité des systèmes cloud computing en fournissant des nœuds défaillants

silencieusement et des nœuds masquants des fautes. Un nœud défaillant silencieusement

est un composant sécurisé qui utilise le test d’acceptation pour la détection automatique

des fautes alors qu’un nœud masquant des fautes est un composant sûr et actif qui peut

détecter les fautes et faire une reprise vers l’avant en utilisant un test d’acceptation et un

ensemble de blocks d’essai. Les stratégies proposées ont été prouvées dans un contexte

de support de modélisation et vérification formelle BIP et la complexité temporelle et

spatiale a été estimée. De plus, une étude de cas et sa vérification à l’aide d’un model-

checker ont été réalisées sur des schémas proposés afin de prouver leur efficacité et leur

applicabilité.

Mots-clés : Fiabilité, Blocs de Reprises, Détection des Fautes, Tolérance aux fautes,

Cloud computing, Test d’acceptation, Reprise vers l’avant, Approche de Conception à

base de composants.

III

To my husband

To my parents

To my brothers and sisters

and

To my son Mouataz Billah.

IV

Acknowledgement

In the name of ALLAH, The most gracious and the most merciful, Alhamdulillah, all

praises to ALLAH for his blessing in completing this thesis.

This thesis would have never seen the daylight without the help of some very important

people to whom I would like to express my deepest gratitude.

My most sincere gratitude goes to my supervisor, Prof. Makhlouf Aliouat and to Dr.

Zibouda Aliouat for their support, advice and contribution to my studies.

Further, I would like to express my deepest gratitude to Prof. Al-Sakib Khan Pathan for

providing indispensible advices, information and support on different aspects of my

research.

I thank the members of my committee for their comments for my dissertation.

Last and not least, I would like to thanks all my friends and colleagues for their

encouragement.

V

Table of Contents

List of Tables……………………………………………………...……………… VIII

List of Figures………………………………………………………..…………... IX

List of Appendices……………………………………………………..………… XI

Introduction……………………………………………………………...………. 1

Chapter One: Background……………………………………………...……… 5

1.1 Introduction……………………..…………………………………………… 5

1.2 Fault Tolerance………………………………………………………...……… 6

 1.2.1 Faults model……………………………..……………………………… 6

 1.2.2 Safety and Liveness properties…………………….…………...………… 6

 1.2.3 Fault Tolerance techniques…………...………………...………………… 7

 1.2.4 Recovery Blocks technique…………………………...………..………… 7

 1.2.5 Distributed Recovery Blocks………………...…………………………… 8

1.3 Cloud computing systems………………………………………...…………… 11

 1.3.1 Definition………………………………………………….....…………… 11

 1.3.2 Architecture…………………………………………...…..……………… 12

 1.3.3 Reliability in Cloud computing……………………………....……...…… 13

1.3.3.1 Fault Detection in Cloud computing ………………………..……………… 14

a. Intrusion and Anomaly Detection systems ………………………………..… 14

b. Heartbeat and Pinging strategies……………………………………….….… 16

1.3.3.2 Fault tolerance in Cloud computing…………….………………………...… 18

a. Proactive Fault Tolerance……...……………………………………...……... 18

b. Reactive Fault Tolerance………..…………………………………………… 18

1.4 Conclusion…...………………………………………………………...……… 20

Chapter Two: Related Works…………………..…...…………………………. 21

2.1 Introduction…………………………………………..……………………… 21

2.2 Fault Detection in Cloud computing systems…………………………..…… 21

VI

2.3 Fault Tolerance in Cloud computing………………………………………… 23

2.4 Fault Tolerance in Component-based systems……………………….……… 26

2.5 Conclusion…………………………………………………………………… 27

Chapter Three: Component-based Cloud computing………………………… 29

3.1 Introduction…………………………………………………………………… 29

3.2 BIP Framework for Component-based design……………………...………… 30

 3.2.1 Atomic component…………………………………………...…………… 30

 3.2.2 Composite component…………………………………………..………… 32

 3.2.3 Connectors………………………………………………………………… 33

 3.2.3.1 Rendezvous connector………………………………………………… 33

 3.2.3.2 Broadcast connector………………………………………...………… 34

3.3 Recapitulation………………………………………………………….……… 34

3.4 Conclusion………………………………………………………………..…… 35

Chapter Four : Fault Detection in Component-based Cloud computing……. 36

4.1 Introduction…………………………………………………………………… 36

4.2 Acceptance Test for Fault Detection…………………….................................. 37

 4.2.1 Fault Detection in atomic component…………………………………...… 37

 4.2.2 Fault Detection in composite component ………………………………… 39

 4.2.2.1 Rendezvous connection………………………………………..……… 40

 4.2.2.2 Broadcast connection……………………………………..…………… 40

4.3 Construction of Fail-Silent models…………………………………….……… 41

 4.3.1 Construction of Fail-Silent atomic component………………………….… 41

 4.3.2 Construction of Fail-Silent composite component……………………...… 41

4.4 A case study…………………………………………………………………… 45

 4.4.1 Fire Control system………………………………………………….…… 45

 4.4.2 Construction of the Fail-Silent free fire control system………………….. 47

 4.4.3 Time and Space complexity……………………………………………… 51

 4.4.4 Safety verification using model-checker……………………………….… 53

 4.4.4.1 Safety verification of fault-free model…………………..…………… 55

VII

 4.4.4.2 Safety verification of failed model…………………………………… 56

4.5 Comparative Analysis………………………………………………………… 57

4.6 Conclusion…………………………………………………………………..… 60

Chapter Five: Fault-Masking in Component-based Cloud computing……… 63

5.1 Introduction…………………………………………………………………… 63

5.2 Recovery Blocks for Fault-Masking …………………………………………. 64

 5.2.1 Fault-Masking atomic component………………………………………… 65

 5.2.2 Fault-Masking composite component ……………………………….…… 66

 5.2.2.1 Rendevous connector…………………………………………..……… 66

 5.2.2.2 Broadcast connector………………………………………...………… 67

5.3 A Case Study………………………………………………………………..… 67

 5.3.1 Construction of Fault-Masking models……………………………..… 67

 5.3.2 Time and Space complexity………………………………………….…… 71

 5.3.3 Distributed Recovery Blocks Scheme………………………………..…… 72

 5.3.3.1 Construction of Fault-Masking model using DRB scheme…………… 73

 5.3.3.2 Liveness verification using model-checker…………………………… 78

a. Liveness verification on the fault-free model…………………………………… 80

b. Liveness verification on the failed model……………………………..………… 80

5.4 Comparative Analysis………………………………………………………… 81

5.5 Conclusion…………………………………………………………………….. 84

Conclusion……………………………………………………………………....... 85

Bibliography……………………………………………………………………… 87

Appendix A……………………………………………………………………….. 101

Appendix B……………………………………………………………………….. 105

VIII

List of Tables

Table 3.1 Some mathematical notations and their meanings…………………... 33

Table 3.2 Component-based concepts and their equivalents in Cloud systems... 35

Table 4.1 The values defined by the system developer………………………… 46

Table 4.2 Key notations and meanings…………………………………………. 48

Table 4.3 Safety properties of Fire Control System model…………………….. 54

Table 4.4 Variable initialization used for the fault free verification……………. 55

Table 4.5 Faults injected in the Fail-Silent Fire control model………………… 56

Table 4.6 Comparison of various aspects of IDS, Heartbeat/Pinging and

 Acceptance Test strategies…………………………………………. 61

Table 4.7 Accuracy Scale………………………………………………………. 62

Table 5.1 Key Notations and Meanings………………………………………… 75

Table 5.2 Liveness properties of the Cloud node1 model……………………… 79

Table 5.3 Faults injected in the fault free model ………………………………. 80

Table 5.4 Comparison between fault tolerance technique in Cloud systems…... 82

IX

List of Figures

Figure 1.1 Recovery Bocks Architecture……………………………………….. 8

Figure 1.2 Basic Structure of Distributed Recovery Blocks……………………. 9

Figure 1.3 Role Reverse in DRB scheme……………………………………….. 11

Figure 1.4 Overview of Cloud computing……………………………………… 12

Figure 1.5 Top Cloud Computing Services Providers………………………….. 12

Figure 1.6 Cloud computing architecture……………………………………….. 13

Figure 1.7 Anomaly Detection System…………………………………………. 15

Figure 1.8 a)Heartbeat strategy; b)Pinging strategy……………………………. 17

Figure 1.9 Fault Tolerance techniques in Cloud computing……………………. 19

Figure 3.1 A BIP atomic component (Producer)……………………………….. 31

Figure 3.2 Rendezvous interaction……………………………………………… 33

Figure 3.3 Broadcast interaction………………………………………………... 34

Figure 4.1 Fault Detection in atomic component using the Acceptance Test…... 38

Figure 4.2 PFC composite component model…………………………………... 42

Figure 4.3 Fail-Silent Producer…………………………………………………. 42

Figure 4.4 Fail-Silent FIFO……………………………………………………... 43

Figure 4.5 Fail-Silent Consumer………………………………………………... 44

Figure 4.6 Fail-Silent composite component PFC……………………………… 44

Figure 4.7 Fire Control System…………………………………………………. 45

Figure 4.8 Fire Control System BIP model……………………………………... 45

Figure 4.9 Fail-Silent Fire Control system……………………………………… 47

X

Figure 4.10 Time and Space complexity of Cloud node1………………………... 53

Figure 4.11 Simulation of Fail-Silent fire control system model………………… 54

Figure 4.12 Safety properties verification on fault-free fire control model……… 56

Figure 4.13 Fail-Silent fire control model after fault injection…………………... 57

Figure 4.14 Safety verification of the failed Fail-Silent control model………….. 57

Figure 5.1 Fault-Masking node behavior……………………………………….. 64

Figure 5.2 Cloud node1…………………………………………………………. 68

Figure 5.3 Fault-Masking Cloud node1………………………………………… 69

Figure 5.4 Time and Space complexity of Cloud node1………………………... 72

Figure 5.5 Cloud node1 BIP model……………………………………………... 73

Figure 5.6 Fault- Masking Cloud node1 based on DRB scheme……………….. 74

Figure 5.7 Fault-Masking model of Cloud node1………………………………. 79

Figure 5.8 Liveness properties verification on the fault-free model……………. 80

Figure 5.9 Liveness properties verification on the failed model……………….. 81

XI

List of Appendices

Appendix A……………………………………………………………………....... 101

Appendix B………………………………………………………………………... 105

Introduction

Embedded Computing systems could be seen now almost everywhere in our

daily life. They are found in household items, multimedia equipment, in mobile phones

as well as in cars, smart munitions, satellites and so on. However, despite increasing

hardware capabilities, these mobile devices will always be resource-constrained

compared to fixed hardware. In order to mitigate the hardware limitations on mobile and

wearable devices, cloud computing [1], [2], [3], [4], [5], [72] allows users to use remote

infrastructure in an on-demand fashion. Over the past years, cloud computing has

become a popular computational technology across all industries. It brings many vast

advantages such as the reduction of costs, development of efficiency, central promotion

of software, compatibility of various formats, unlimited storage capacity, easy access to

services at any time and from any location and most importantly, the independence of

these services from the hardware [94]. Cloud computing is a type of parallel and

distributed computing system which consists of a collection of inter-connected and

virtualized computers that are dynamically provisioned and presented as one or more

unified computing resource(s) [8], [9], [10].

We could fairly state that applications developed on cloud systems are often

critical in terms of human lives. For instance, many such applications could be

practically employed in healthcare, military, or disaster management scenarios.

Furthermore, desired services in cloud computing can be accessed from any place and at

any time. These cause removing the restrictions using in systems and traditional

networks in providing service to users. But that can bring some new problems,

restrictions, and challenges for users and applications. The reliability of cloud

application is still a major issue for providers and users. Failures of cloud apps generally

result in big economic losses as core business activities now rely on them [145]. This

was the case in 2011, there was a Microsoft cloud service outage which lasted for

approximately 2,5 hours [149]. In December 24, 2012 a failure of Amazon web services

caused an outage of Netflix cloud services for 19 hours. In October 2013, Facebook

reported an unavailable service for photos and “Likes”. In January 2014, one of Google

services (Gmail) was down for about 25-50 min [150].

Introduction

2

 The demand for highly dependable cloud apps has reached high levels [147].

However, there is still no clear methodology in industry today for developing highly

dependable cloud applications [145]. A research presented in [146] has revealed that

infrastructure and platform services offered by big players like Amazon, Google and

Microsoft suffer from regular performance and availability issues due to service

overload, hardware failures, software errors and operator errors. Moreover, because of

the constantly increasing complexity of cloud apps and because developers have little

control over the execution environment of these applications, it is exceedingly difficult

to develop fault-free cloud apps. Therefore, cloud apps should be robust to failures if

they are to be highly dependable [148].

Fault tolerance has always been an active line of research in design and

implementation of dependable systems. It involves providing a system with the means

to handle unexpected defects, so that the system meets its specification in the presence

of faults. Fault tolerance is carried out via fault detection and recovery [130]. In this

context, the notion of specification may vary depending on the guarantees that the

system must deliver in the presence of faults [45]. Such guarantees can be broadly

characterized by safety and liveness [20] properties. In fact, Safety properties can be

ensured by fault detection techniques whereas recovery mechanisms are used to meet

liveness properties.

 In cloud computing systems, failure detection is processed by using two main

strategies: Intrusion detection systems (IDS) for network or hosts attacks detection [32],

[33] and Heartbeat/Pinging strategy [43] for hardware fault detection. In the other side,

fault tolerance capability is configured in cloud systems via proactive and reactive fault

tolerance techniques [22-27][94][98][101][102][103]. However, fault tolerance

strategies used in clouds [22-27] are based on time or spatial redundancy which can

tolerate only hardware faults without dealing with software bugs. According to our

thorough investigation of the area, there is clearly a lack of formal approach that

rigorously relates the cloud computing with software fault tolerance concerns.

Recovery blocks scheme [29],[30] is a variant of design diversity for software

fault tolerance [28]. It is based on the selection of a set of operations on which recovery

operations are based. Recovery blocks are composed of a set of try blocks and an

acceptance Test. This earlier is an internal audit that can configure the fault detection

Introduction

3

process. While the forward recovery can be present by the set of try blocks. For

constructing highly hardware and software fault tolerance in real-time distributed

computer systems, Distributed Recovery Blocks (DRB) is formulated by Kim Kan in

1983 [109][110][132]. It is a scheme that can handle the software and hardware faults in

the same manner in distributed real-time environment.

 In this thesis, we propose a novel formal framework for constructing reliable

cloud modules using the recovery blocks scheme. The aim is to provide strategy that

can enhance cloud reliability by uniform treatments of software and hardware faults by

constructing Fail-Silent and Fault-Masking nodes. A Fail-Silent node is able of self-

fault detection by using the acceptance test. This earlier can guarantee initial safety

requirement in spite of faults. In the other hand, a Fault-Masking node is apt to handle

(i.e., detect and tolerate) software, hardware and response time faults by using both the

acceptance test and try blocks to ensure safety and liveness properties in the same time.

In order to well explain the proposed schemes, Fire Control System is used as a case

study. Time & space complexity for such schemes is estimated. Also, safety and

liveness verification using the model-checker is applied on the deduced models to prove

the efficiency and the applicability of the proposed schemes. BIP (Behavior,

Interaction, Priority) [14], [15], [16] is used as a Component-based framework with

multi-party interactions for system modelization and UPPAAL model-checker is used

as a tool for simulation and verification.

The thesis is divided into five chapters. First, we introduce the background to

and the motivation for the research and identify key research problems and

contributions. After, the chapter 1 explains the background of fault tolerance including

definitions and basic concepts then it presents the cloud computing systems, fault

detection and fault tolerance techniques in the cloud environment. In Chapter 2, a

survey of some current related works on fault detection and fault tolerance in cloud

computing are cited. Chapter 3, introduces the component-based cloud computing

approach and BIP as a Component-based framework. The Chapter 4 presents a fault

detection scheme for constructing Fail-Silent cloud nodes that ensures safety properties

in the presence of faults. In Chapter 5, Fault-Masking scheme is described for fault

detection and recovery in cloud modules that can ensure both safety and liveness

Introduction

4

properties in the same time. Finally, conclusion and future perspectives are cited in the

conclusion section.

5

Chapter One

Background

Summary

1.1 Introduction…………………………………………………………..………. 5

1.2 Fault tolerance……………………………………….……………..………… 6

 1.2.1 Faults model……………………………….………………………...… 6

 1.2.2 Safety and liveness properties……...……………………………..…… 6

 1.2.3 Fault tolerance techniques………….…………………………………. 7

 1.2.4 Recovery blocks technique…………………...…………………...…... 7

 1.2.5 Distributed recovery blocks…………..…………………………...…... 8

 1.3 Cloud computing systems………………………..………………………...... 11

 1.3.1 Definition……………………………..……………………………...... 11

 1.3.2 Architecture……………………………...……………………………. 12

 1.3.3 Reliability in cloud computing……………………………………...... 13

 1.3.3.1 Fault detection in cloud computing ………………………………. 14

 a. Intrusion and anomaly detection systems …….……………………...... 14

 b. Heartbeat and pinging strategies………………..……………...……... 16

 1.3.3.2 Fault tolerance in cloud computing……………………………...... 18

 a. Proactive fault tolerance…………………………………………...…... 18

 b. Reactive fault tolerance…………………………………………...…... 18

1.4 Conclusion……………………………………………………………...……. 20

1.1 Introduction

Reliability is the ability of a system or component to perform its required

functions under stated conditions and for a specified period of time. One way to

increasing the reliability is by employing fault tolerance strategies. Fault tolerance is

defined as the ability of a system to deliver desired results even in the presence of faults.

A system is considered as fault tolerant if the behavior of the system, despite the failure

of some of its components, is consistent with its specifications [106].

Chapter1 Background

6

1.2 Fault Tolerance

Fault Tolerance is carried out via fault detection and recovery [130]. The fault

detection is the phase in which the presence of a fault is deduced by detecting an error

in the state of some subsystem. After the fault detection phase, the error in the system

has to be corrected this is what we call recovery. With a system recovery task, the

system will reach an error-free state

1.2.1 Faults model

Three terms are crucial and related to system failure and thus need to be clearly defined,

which are named failure, error and fault. Failure, error and fault [104], have technical

meaning in the fault tolerance literature. A failure occurs when “a system is unable to

provide its required functions”. An error is “that part of the system state which is liable

to lead to subsequent failure”, while a fault is “the adjudged or hypothesized cause of

an error”. For example, a sensor may break due to a fault introduced by overheating.

The sensor reading error may then lead to a system failure. A fault can be of hardware

origin, which is caused by physical malfunctions or can be a software fault which is

caused by software bugs in system development.

A fault can be classified into three main groups, namely permanent, intermittent and

transient faults [133], according to their stability and occurrence:

Permanent faults, are caused by irreversible physical changes. The most common

sources for this kind of faults are the manufacturing processes.

Intermittent faults, are occasional error bursts that usually repeat themselves. But they

are not continuous as permanent faults. These faults are caused by unstable hardware

and are activated by an environmental change such as a temperature or voltage change.

Transient faults, are temporal single malfunctions caused by some temporary

environmental conditions which can be an external phenomenon such as radiation or

noise originating from other parts of the system.

In this thesis, the terms fault, error and failure refers to the same meaning which is the

deviation from the regular behavior of the system.

1.2.2 Safety and liveness properties

Tolerating faults involves providing a system with the means to handle

unexpected defects, so that the system meets its specification even in the presence of

faults. In this context, the notion of specification may vary depending upon the

Chapter1 Background

7

guarantees that the system must deliver in the presence of faults. Such guarantees can be

broadly characterized by safety and liveness properties [112]. Every possible property

can be expressed a by a conjunction of safety and liveness properties [113].

Safety property can be described over the state that must hold for all executions of the

system. It rules that “bad things never happen”. As an example, the requirement for a

system controlling the traffic lights of a street intersection that the lights for two

crossing streets may never be green at the same time.

Liveness property, this property can be expressed via a predicate that must be eventually

satisfied, guaranteeing that “a good thing will finally happen”. As an example of

liveness violation is deadlock involving two or more processes, which cyclically block

each other indefinitely in an attempt to access common resources.

 1.2.3 Fault Tolerance techniques

Fault tolerance is based on redundancy. It can be: time, hardware or software

redundancy [105].

Time redundancy, is based on the execution of some instructions many times (e.g.,

Checkpointing and rollback recovery).

Hardware redundancy is based on the idea to overcome hardware faults by using

additional physical components (e.g., TMR, Coding…).

Software redundancy or design redundancy, is based on all programs and instructions

that are employed for supporting fault tolerance (e.g., N version programming,

Recovery blocks).

1.2.4 Recovery Blocks technique

Recovery Blocks technique [107], [108] is a variant of N Versions Software

(NVS). It is based on the notion of try blocks. The try blocks are a set of operations (of

a program) that can be considered as a unit of detection and recovery. Each try block

contains a primary block, zero or more alternate blocks and an acceptance Test (see

Figure 1.1). The possible syntax of a recovery block is the following:

ensure<Acceptance Test> by <𝐵1> else by <𝐵2> ….else by <𝐵𝑛> else error. Where

𝐵1 is the primary try block and 𝐵𝐾(1 ≤ 𝑘 ≤ 𝑛), is the alternate try block.

Chapter1 Background

8

Figure 1.1. Recovery blocks architecture

The primary try block is the first block entered. It performs conventionally the desired

operation. The alternate try block, is entered when the primary block fails to pass the

acceptance Test. It is required to perform the desired operation in a different way or to

perform some alternative action acceptable to the program as a whole. All, primary or

alternates blocks must pass on exit on the acceptance test to judge their outputs. The

acceptance test is a section of program which is invoked in order to ensure that the

operation performed by the recovery block is to the satisfaction of the problem. The

acceptance test is an internal audit logic by which the component can possesses the

capability of judging the reasonableness of its computation results.

The forward recovery mechanism used in recovery blocks can enhance the efficiency in

terms of the overhead (time and memory) it requires. This can be crucial in real-time

applications where the time overhead of backward recovery can exceed stringent time

constraints [109] [110].

1.2.5 Distributed Recovery Blocks (DRB)

Since its first formulation in 1983 by Kim Kan, [109][132] distributed recovery

blocks (DRB) has been a technology for constructing highly hardware and software

fault-tolerance in real-time distributed computer systems.

DRB uses a pair of self-checking processing (PSP) nodes structure together with both

software internal audit and watchdog timer to facilitate real-time hardware fault

Chapter1 Background

9

tolerance. For facilitating real-time software fault tolerance, the software implemented

internal audit function and multiple versions of real-time task software which are

structured via the recovery block scheme [107], [108] and executed concurrently on

multiple nodes within a PSP structure. The DRB is a based on forward recovery which

is primarily used when there is no time for backward recovery.

Figure 1.2. Basic structure of Distributed Recovery Blocks[109]

The Figure 1.2 presents the DRB scheme structure. X is the primary node which

executes the primary try block A and B is the alternate try block. In the other hand, the

backup node Y executes B as the primary try block and A as the alternate try block. We

can see that the nodes use the try blocks in reverse order, this aims to avoid the failure

coincidence between the nodes. In other meaning, if both nodes use the same order of

try blocks, the same faults in the try block that causes a node to fail in processing a

certain data set will cause the other node to fail too.

Both nodes will receive the same input data and process them concurrently by the use of

two different try blocks (i.e., the try block A on X and the try block B on Y). After the

execution of the try blocks, the results judgment is performed by using the common

Chapter1 Background

10

acceptance test. As soon as each node passes the acceptance test, it updates its local

database. If we assume that X and Y never fail in the same time, three cases are possible

[109]:

Fault free situation, both nodes will pass the acceptance test with the results computed

with their primary try blocks. In such a case, the primary node X notifies Y of its success

of the acceptance test. Therefore, only the primary node sends its output to the successor

node.

Failure of the primary node X, and the backup node Y pass the acceptance test. In this

case, the node X attempts to inform the backup node upon its failure. At just reception

of the notice, the backup node Y will send its output to the successor and then the role of

the primary and backup nodes are reversed (see Figure 1.3). For the new primary node

Y, the try block A must become the primary try block. In this time, the new backup node

X (i.e., the failed primary node) will use the try block B for recovery in order to bring

the database in the node up to date without disturbing the new primary node Y. After the

successful retry, the try block B remains as the primary in the new backup node Y. In the

case when the primary crash completely, the backup node will recognize the failure of

the primary upon expiration of the preset time limit.

Failure of the backup node Y, in this case, the primary node X needs not be disturbed.

The backup node will just make a retry with try block A to achieve localized recovery.

DRB is an attractive strategy for two raisons: First, the two nodes always execute two

different try blocks. An advantage here is that if a data set causes one of the try blocks

to fail but not both of them, then one acceptable result can be sent to the successor with

little delay. Second, the current primary node always uses A as the primary try block

and try block A is generally designed to produce better quality outputs than try block B.

A primary node can have one or more backup nodes. In other words, the primary try

block can have more than one alternate try block. As long as there are more backup

nodes with more alternate try blocks, the system will be more reliable.

Chapter1 Background

11

Figure 1.3. Roles reverse in DRB scheme

1.3 Cloud computing systems

1.3.1 Definition

Cloud computing [8], [9] is a type of parallel and distributed computing system

which consists of a collection of inter-connected and virtualized computers that are

dynamically provisioned and presented as one or more unified computing resource(s)

based on service-level agreements (SLAs) established through negotiation between the

service provider and the consumers [8], [10] (Figure 1.4).

The Figure 1.5 shows some examples of various cloud service providers

X

 Primary Node

A B

Y

 Backup Node

B A

 Roles Reverse

 X

 Backup Node

B A

 Y

 Primary Node

A B

 Roles Reverse

Y Failure

X Failure

 X

 Primary Node

A B

Y

 Backup Node

B A

Chapter1 Background

12

Figure 1.4. Overview of cloud computing [98]

Figure 1.5. Top cloud computing services providers

1.3.2 Architecture

The architecture of the cloud computing [96] can be divided into 4 layers: the

hardware /datacenter layer, the infrastructure layer, the platform layer and the

application layer, as shown in the Figure 1.6.

Chapter1 Background

13

Figure 1.6. Cloud computing architecture [96]

Hardware Layer, This layer is responsible for managing the physical resources of the

cloud, including physical servers, routers, switchers…etc. in practice, the hardware

layer is typically implemented in data centers.

Infrastructure layer, this layer creates a pool of storage and computing resources by

partitioning the physical resources using virtualization technologies.

Platform layer, consists of operating systems and application frameworks. The purpose

of this layer is to minimize the burden of deploying applications directly into virtual

machine containers.

Application layer, is the highest level of the architecture. The application layer consists

of the actual cloud applications. Different from traditional applications, cloud

applications can leverage the automatic –scaling feature to achieve better performance,

availability and lower operating cost.

1.3.3 Reliability in cloud computing

The emergence of cloud computing has brought new dimension to the world of

information technology. Even though cloud computing provides many benefits, one key

challenge in it is to ensure continuous reliability and guaranteed availability of

resources provided by it. Therefore, there is a serious need for fault tolerant mechanisms

in cloud environments. Before dealing with the fault tolerance techniques in cloud

systems, it should first explore the different faults model that may occur in such system.

The failures in cloud computing are categorized in four classes [99]:

Chapter1 Background

14

Hardware faults: mainly occur in processors, hard disk drive, integrated circuits

sockets and memory.

Software faults: provided as a result of software bugs.

Network faults: this type of failures inhibits the communication between the cloud and

the end users. It is caused by server overload and network congestion.

Timeout failure [100]: can be considered as a result of failures (e.g., hardware,

software, and network). It occurs when the time needed for executing a task exceeds the

delay set by the service monitor.

In our thesis, we focalize on tolerating hardware faults, software faults and Timeout

failures.

1.3.3.1 Fault Detection in Cloud computing

Failures in cloud computing systems are processed by using two main strategies:

Intrusion detection and Heartbeat/Pinging.

a. Intrusion and Anomaly Detection Systems (IDSs)

IDSs [32], [33], [34], [35], [36] are strongly adopted in clouds. Generally, IDSs

are used for detection of network or hosts attacks (e.g., Denial of service, Buffer

overflow, Sniffer attacks). They are based on behavior observation of the component

and an alarm is raised if an abnormal behavior is detected. They can be grouped into

two detection principles, namely misuse-based (or Signature-based) and anomaly-based

IDS.

Signature-based IDS

This kind of IDS recognizes intrusions and anomalies by matching observed data

with pre-defined descriptions of intrusive behavior. Therefore, a signature database

corresponding to known attacks is specified a priori.

Anomaly-based IDS

The strategy of anomaly detection is based on the assumption that abnormal

behavior is rare and different from normal behavior, and thus it tries to model what is

normal rather than what is anomalous. Anomaly detectors generate an anomaly alarm

whenever the deviation between a given observation at an instant and the normal

behavior exceeds a predefined threshold (see Figure 1.7). Anomaly detection refers to

the important problem of finding non-conforming patterns or behaviors in live traffic

data. These non-conforming patterns are often known as anomalies. Three types of

Chapter1 Background

15

anomaly-based IDS techniques are available for cloud Computing: statistical, data

mining, and machine learning techniques [32],[33], [34], [35], [44].

Figure 1.7. Anomaly Detection System.

Statistical based anomaly detection- In this technique, anomaly detection is realized by

observing computations in the cloud and it creates a profile which stores a value to

represent their behavior. In order to detect failures using these techniques, two profiles

must be used. The first one stores the ideal profile while the second one stores the

current profile which is updated periodically (this one calculates anomaly score). If

anomaly score of current profile is higher than the threshold value of stored profile, then

it is considered as anomaly and it can be detected. A survey of statistical based anomaly

detection is presented in [37]. Statistical anomaly detection systems can detect

unpredictable anomalies. They can monitor activities such as CPU (Central Processing

Unit) usage, number of TCP (Transmission Control Protocol) connectors in term of

statistical distribution but more time is required to identify attacks and detection

accuracy is mainly based on the amount of collected behaviors.

Data mining based anomaly detection- Data mining techniques such as: classification,

clustering and association rule mining can be used for failure detection. Data mining

techniques use an analyzer which can differentiate normal and abnormal activity within

clouds by defining some boundaries for valid activities in the cloud. A good number of

approaches are proposed for this issue in [38]. Data mining anomaly detection

techniques are largely used because they do not need any prior knowledge of the system

Chapter1 Background

16

but their algorithms are generally computation-intensive. Moreover, data mining

techniques can produce high false alarm rate (FAR) and they require more time and

more sample training.

Machine learning based anomaly detection - The ability for programs or software to

improve performance over time by learning is an important technique for the detection

of anomaly. Verified values or normal behaviors of data are stored; when anomaly

occurs or is being detected, the machine learns its behavior, stores the new sequence or

rules. This technique creates a system that can improve performance of the program by

learning from the prior results [39],[40], [41]. A survey on existing techniques based on

machine learning is presented in [42]. Machine learning techniques alone can just detect

known attacks. Therefore, they must be accompanied with statistical or data mining

techniques in order to ensure detection of suspected unknown anomalies. We can see

that each of the previous techniques has its strengths and weaknesses; the recent works

for anomaly detection in cloud computing are focusing on development of more

efficient hybrid techniques from the existing IDSs. Hybrid techniques are efficient for

anomaly detection but they often come with high computational cost.

b. Heartbeat and Pinging Strategies

The most common implementation for fault detection in cloud computing

systems is based on two keep-alive massage strategies: heartbeat and pinging [43]. In

Heartbeat strategy, a message is periodically sent from a monitored node to the failure

detector to inform that it is still alive. If the heartbeat does not arrive before a timeout,

the failure detector suspects the node is faulty (see Figure 1.8 (a)).

In pinging strategy, a message is continuously sent from a failure detector to a

monitored node. The failure detector expects to receive as answer an ACK. If a keep-

alive message fails, a probe (i.e., a series of messages separated by a time interval) can

be used to verify whether a node is really faulty (Figure 1.8 (b)).

Chapter1 Background

17

(a)

(b)

Figure 1.8. a) Heartbeat strategy; b) Pinging strategy.

Heartbeat or pinging strategies are used for permanent hardware fault detection

where the detection is focused on finding the crashed nodes. Furthermore, they are

based on message passing which can produce an overflow in network connections.

In cloud computing systems, failure detection is done with the aid of intrusion detection

and heartbeat/pinging strategies. Intrusion detection systems are dedicated to ensuring

safety requirements by preventing any malicious attacks against the cloud connections

or nodes. This strategy is based on monitoring the system behavior to detect any

abnormal behavior produced by malicious attacks. The failure detection in this case is

effected by an external monitor component which manipulates a set of data and applies

Chapter1 Background

18

a sequence of computations to decide whether there is an anomaly or not. This type of

process requires more time, and more computations. That is why, it cannot offer high

accuracy for failure detection and this justifies the high false alarm rate (FAR) in IDSs.

The second strategy used in cloud networks is heartbeat/pinging. It is useful for

detecting the crashed nodes. Heartbeat strategy is based on message-passing between

the failure detector and the set of monitored nodes. As noted earlier, this can lead to an

overflow of the network connections. In both IDS and Heartbeat, fault confinement in

the cloud network is not processed. This means that if one node fails, all of its neighbors

can simply get infected and the failure would be transferred over the network. By this

effect, the safety of the cloud network becomes a great concern.

1.3.3.2 Fault tolerance in cloud computing

The techniques that are used to create the fault Tolerance capability in cloud

computing can be divided into two main categories: proactive fault tolerance and

reactive fault tolerance [98][101][102][103] (see Figure 1.9).

a. Proactive Fault Tolerance

It is based on avoid failures by proactively taking preventative measures. It makes sure

that the job gets done completely without any reconfiguration. Two techniques are

based on proactive fault tolerance which are: Preemptive migration and software

rejuvenation.

Software Rejuvenation, it designs the system for periodic reboots and it restarts the

system with clean state with a fresh start.

Pre-emptive Migration, in this technique, the applications are constantly monitored,

analyzed and depend on a feedback-loop control mechanism.

Self-Healing, for better performance, a big task can divided into parts. Running various

instances of an application on various virtual machines can automatically handle

failures of application instances.

b. Reactive Fault Tolerance

It aims to reduce the effect of the faults already occurred in cloud. Some of the fault

tolerance policies are:

Checkpointing and rollback recovery, is useful for the long running and the big

applications. It is doing after every change in the system. When the task fails, the job

will be restarted from the recently checkpoint rather than restarting from the beginning.

Chapter1 Background

19

Job Migration, in which the task can be migrated to another machine after failure

detection. HAProxy can be used for migration of the jobs to another machine.

Replication, in order to make the execution succeed, various replicas of task are run on

different resources. HAProxy, Hadoop and AmazonEc2 are used for implementing

replication.

SGuard, is based on rollback recovery. It can be implemented in Hadoop and

AmazonEc2.

Retry, is the simplest among all. In which the failed task is implemented again and

again on the same resource.

Rescue Workflow, it allows the workflow to resist after failure of any task until it will

not able to proceed without rectifying the fault.

Task Resubmission, at runtime, the failed task is resubmitted either to the same or to a

different resource for execution.

Figure 1.9. Fault tolerance techniques in Cloud computing

We can observe that fault tolerance techniques in cloud systems can be

categorized under two main categories: Rollback recovery (or time redundancy) and

physical redundancy (or space redundancy). The rollback recovery mechanism consists

of the re-execution of the system from the last correct state (e.g., Checkpointing and

rollback recovery) or even the restart of the system from the begin (e.g., SGuard, Retry,

Software Rejuvenation). Space redundancy consists of the concurrent execution of

many versions of the same program or the division of one program to many parts

Fault Tolerance Policies

Proactive Policies Reactive Policies

Software Rejuvenation

Pre-emptive Migration

Self-Healing

Checkpointing Job Migration SGuard Replication Rescue Workflow

Retry Task Resubmission

Chapter1 Background

20

executed concurrently on different machines (e.g., Replication, Self-Healing) or to

migrate a process from a failed machine to an operational one (.g., Job Migration, Task

Resubmission). Rollback recovery is very convenient for transient hardware fault

tolerance in long applications. But it is not supportable by Real-time cloud applications

because it needs more time for recovery. Furthermore, a consistent state must be

calculated for each recovery and this is not easy to get especially in high scalable

distributed cloud systems. Space redundancy can tolerate only permanent hardware

crashes. It is very convenient for Real-time applications but it requires the

implementation of complicated communication policies between the collaborative

machines.

We can say that the existent strategies used for the fault tolerance in cloud

computing have an observable missing in software fault tolerance. This latest can be

ensured via software redundancy.

1.4 Conclusion

In this chapter, some basic concepts of fault tolerance are introduced such as:

faults model, safety and liveness properties and fault tolerance techniques. Then,

recovery blocks is presented as a forward recover fault tolerance scheme. After, the

DRB scheme is described as a parallel execution of recovery blocks for software and

hardware fault tolerance in real-time distributed systems. Then, Cloud computing

systems are introduced in the next section. Its architectures and characteristics are

highlighted. After that, reliability in cloud environment is discussed and the main fault

detection and fault tolerance techniques are detailed.

21

Chapter Two

 Related Works

Summary

2.1 Introduction……………………………………………………………….… 21

2.2 Fault detection in cloud computing systems……………………………...… 21

2.3 Fault tolerance in cloud computing……………………………………….… 23

2.4 Fault tolerance in component-based systems……………………………..… 26

2.5 Conclusion………………………………………………………………...… 27

2.1 Introduction
There are quite a good number of works on fault detection and fault tolerance in

cloud computing systems either in component-based systems. Before wrapping up this

thesis, we would like to mention a few of them. The mentioned researches are classified

into three main classes: Fault detection in cloud computing, Fault tolerance in cloud

computing and fault tolerance in component-based systems.

2.2 Fault detection in cloud computing systems

Many researches have been provided for fault detection in cloud Computing.

Fan et al. in [46] use Petri Nets model to propose a fault detection strategy for cloud

module by providing a cloud computing fault Net (CFN). The CFN aims to model

different basic components of the cloud application as either the detection or failure

process. By the CFN, byzantine fault detection can be done dynamically in the

execution process. Wang et al. in [47] propose an online incremental clustering

approach to recognize access behavior patterns and use CCA (Canonical-Correlation

Analysis) to model the correlation between workloads and the metrics of application

performance/resource utilization in a specific access behavior pattern. In [48], Barhuiya

et al. introduce a lightweight anomaly detection tool (LADT) which monitors system-

level and virtual machine level metrics in cloud data to detect node level anomalies

using simple metrics and correlation analysis. In this work, LADT addresses the

complexity of implementing efficient monitoring and analysis tools in large-scale cloud

data centers by collecting and storing the metrics generated by node and virtual

Chapter2 Re lated Works

22

machines using Apache Chukwa. T. Wang et al. present in [49] a correlation analysis

based approach to detecting the performance anomaly for internet ware using kernel

canonical correlation analysis (KCCA) to model the correlation between workloads and

performance based on monitoring data. Furthermore, XmR control charts are used to

detect anomalous correlation coefficient and trend without a prior knowledge. In [50],

C. Wang et al. propose an algorithm that computes statistics on data based on multiple

time dimensions using statistical methods. The proposed algorithms have low

complexity and are scalable to process large amounts of data. The works in [47], [48],

[49],[50] are based on statistical monitoring techniques which are based on observing

the system behavior to detect any abnormal behavior. This process requires a prior

knowledge which is extremely difficult in large scale systems.

Kumar et al. in [51] present a fault detection algorithm for faulty services using data

mining’s outlier detection method that can help to detect accurate and novel faulty

services without any prior knowledge. In [52], Prasad and Krishna present statistical

chart approach which is the standard algorithm applied to outlier detection for anomaly

detection in continuous datasets. In [53], Ranjan and Sahoo present a new clustering

approach based on K-medoids method for intrusion detection. The works in [51], [52],

[53] are based on data mining system monitoring. These techniques present some hard

computations and generate a high false alarm rate. In [54], Singh et al. propose a

collaborative IDS framework in which known stealthy attacks are detected using

signature matching and unknown attacks are detected using decision tree classifier and

support vector machine (SMV). In [55], Pandeeswari and Kumar introduce an hybrid

algorithm which is a mixture of Fuzzy C-Means Clustering algorithm and Artificial

Neural Network (FCM-ANN). In [56] Sha et al. propose a statistical learning

framework by adopting both the high-order markov chain and multivariate time series.

Ghanem et al. propose in [57] a hybrid approach for anomaly detection in large scale

datasets using detectors generated based on multi-start meta heuristic method and

genetic algorithm. The works in [54], [55], [56], [57] are hybrid system monitoring

techniques which require high computational costs.

In [58], Arockiam and Francis present fault detection technique based on two

strategies: push model and pull model. In push model, fault detector sends signals to

various nodes in the cloud to check their health status. On the other hand, in pull model,

Chapter2 Re lated Works

23

each component in the system sends signals to fault detector telling its health status.

Some techniques based on heartbeat strategy are presented in [59], [60]. In [61],

Hayashibara et al. presents the 𝜑 Accrual failure detector. It is based on heartbeat

strategy but instead of providing information of boolean nature (Trust or Suspect); it

produces a suspicious level on a continuous scale. By this, the applications can directly

use the value output by the accrual failure detector as a parameter to their actions. These

approaches are designed to adapt dynamically to their environment and in particular,

adapt their behavior to changing network conditions. In [62], Lavinia et al. present a

failure detection system that combines the power of existing approaches such as gossip

protocol with the decoupling of monitoring and interpretation as offered by the accrual

failure detection solutions. This combination gives a better estimation of the inter-

arrival times of heartbeat and an increase level of confidence in the suspicion of process

being lost. The works in [58], [59], [60], [61] and [62] are focalized only on hardware

fault detection in the cloud computing nodes without detecting software faults. In the

works [46-62] fault detection strategies in cloud computing are presented without

considering the component-based architecture, unlike our proposition which is

dedicated to fault detection in component-based cloud computing architecture.

2.3 Fault Tolerance in Cloud computing systems

In this section, some current researches of fault tolerance are presented. Ganesh

et al. in [22] emphasizes fault tolerance by considering reactive and proactive fault

tolerance policies. In proactive fault tolerance policy, preemptive migration and

software rejuvenation techniques were discussed. Then, Checkpointing/Restart,

replication and task resubmission were discussed in reactive fault tolerance. Zhang et

al. in [114] proposed a novel approach called byzantine fault tolerant cloud (BFT-

Cloud) for tolerating different types of failures in voluntary-resource clouds. BFT

(Byzantine Fault Tolerant Cloud) can tolerate different types of failures including the

malicious behaviors of nodes by making up a BFT group of one primary and 3f replicas.

BFT clouds are used for building robust systems in voluntary-resource cloud

environments. In [115], Jia et al. focus on the principle of fault correction by replacing

the failed component by a functionally equivalent one. The authors proposed the fault

correction by providing a light-weight fault handling for migration long-running

application services into shared open cloud infrastructures. To minimize failure impact

Chapter2 Re lated Works

24

on services and application executions, they presented a diagnosis architecture and a

diagnosis method based on the service dependence graph (SDG) model and the service

execution log for handling service faults. Therefore, by analyzing the dependence

relations of activities in SDG model, the diagnosis method identifies the incorrect

activities and explains the root causes for the web service composition faults, based on

the differences between successful and failed executions of composite service. Choi et

al. in [116], proposed a fault tolerance and a QoS (Quality of Service) scheduling using

CAN (Content Adressable Network) in mobile social cloud computing by which,

members of a social network share cloud service or data with other members without

further authentication by using their mobile device. Fault tolerance and QoS scheduling

consists of four sub-scheduling algorithms: malicious user filtering, cloud service

delivery, QoS, provisioning replication and load balancing. Under the proposed

scheduling, a mobile device is used as a resource for providing cloud services, faults

caused from user mobility or other reasons are tolerated and user requirements for QoS

are considered. By using fault tolerance and QoS scheduling, faults arising from mobile

device are tolerated such as: network disconnection, battery drain. In [117], Jing et al.

proposed matrix multiplication as a cloud selection strategy and technique to improve

fault tolerance and reliability and prevent faulty and malicious clouds in cloud

computing environment. Sun et al. in [118] presented a dynamic adaptive fault tolerance

strategy DAFT. It is based on the idea of combining two fault tolerance models: a

dynamic adaptive checkpointing fault tolerance model and a dynamic adaptive

replication fault tolerance model in order to maximize the serviceability. In [119], Yi et

al. proposed a fault tolerance job scheduling strategy for grid computing. The

scheduling strategy includes JRT (Job Retry), JMG(Job Migration without

Checkpointing) and JCP(Job Migration with Checkpointing). The authors concluded

that JRT strategy has the most optimal system performance improvement for small jobs

and JCP strategy leads to the lowest performance improvement. An adaptive fault

tolerance of real-time applications (AFTRC) running on virtual machines in cloud

environment is proposed by Malik and Huet in [120]. The AFTRC scheme tolerates the

faults on the basis of reliability of each computing node. It is based on such modules

like: Acceptance Test (AT), Time Checker (TC), Reliability assessor (RA), and

Decision Mechanism (DM). Unfortunately, the acceptance test of the virtual machines

Chapter2 Re lated Works

25

is not discussed. In [121], Wu et al. puts forward that resource consumption is also an

important evaluation metric for any fault tolerant approach. The corresponding

evaluation models based on mean execution time and resource consumption are

constructed to evaluate any fault tolerant approach. In [121], an approach that aims to

handling quite a complete set of failures arising in grid environment by integrating basic

fault tolerant approaches is proposed. It is based on the four basic approaches: retry,

alternate resource, checkpoint/ restart, and replication and it can dynamically and

automatically decide which one is used by analyzing the current state of the running

task. An evaluation model for mean execution time is constructed and used to evaluate

fault tolerant approaches. A membership management solution over social graphs in the

presence of byzantine nodes is proposed by Lim et al. in [122]. A novel software

rejuvenation based fault tolerance scheme is proposed by Liu et al. in [135]. This

scheme comes from two inherently related aspects. First, adaptive failure detection is

proposed to predict which service components deserve foremost to be rejuvenated.

Second, a component rejuvenation approach based on checkpoints with trace replay is

proposed to guarantee the continuous running of cloud application systems. Gang et

al. in [136] proposed a framework to provide load balancing and fault prevention in web

servers in proactive manner to ensure scalability, reliability and availability. This

framework is based on autonomic mirroring and load balancing of data in database

servers using MySQL and master-master replication. Garraghan et al in [137]

introduced a byzantine fault tolerance framework that leverages federated cloud

infrastructure. An implementation of the proposed framework is discussed and detailed

experiments are provided. Alannsary et al in [138], proposed a reliability analysis

model that enables SaaS providers to measure, analyze and predict its reliability.

Reliability prediction is provided by analyzing failures in conjunction with the

workload. Mohammed et al. in [140] propose an infrastructure for IaaS cloud platforms

by optimizing the success rate of virtual computing node or virtual machines. The main

contribution is to develop an optimized fault tolerance approach where a model is

designed to tolerate faults based on the reliability of each compute node and can be

replaced if the performance is not optimal. Reddy et al. in [141], proposed an

FT2R2Cloud as a fault tolerant solution using time-out and retransmission of requests

for cloud applications. FT2R2Cloud measures the reliability of the software components

Chapter2 Re lated Works

26

in terms of the number of responses and the throughput. The authors proposed an

algorithm to rank software components based on their reliability calculated using a

number of service outages and service invocation. Zheng et al. in [142], identified

major problems when developing fault tolerance strategies and introduced the design of

static and dynamic fault tolerance strategies. The authors identify significant

components of complex service-oriented systems, and investigate algorithms for

optimal fault tolerance strategy selection. An heuristic algorithm is proposed to

efficiently solve the problem of selection of a fault tolerance strategy. Chen et al. in

[143] presented a lightweight software fault tolerance system called SHelp, which can

effectively recover programs from different types of software faults. As final work,

Moghtadaeipour and Tavoli in [144] proposed a new approach to improve load

balancing and fault tolerance using work-load distribution and virtual priority. We can

see clearly that the current researches focus on improving the fault tolerance in cloud

environments by improving the existent strategies or by collaboration of such strategies

to develop one more efficient. Thus, the proposed works are restricted on hardware

faults tolerance without dealing with software fault tolerance.

2.4 Fault tolerance in component-based systems

In this section, some researches dealing with fault tolerance in component-based

systems are presented. The component-based analysis of fault tolerance was first studied

by Arora and Kulkarni in [63], [65]. They proved that a fault tolerant program is a

decomposition of a fault intolerant program and a set of fault tolerance components. A

fault tolerant program satisfies safety and liveness properties. In [65], the authors

proved that fault tolerance components are: Detectors and Correctors, where Detectors

ensure safety property and Correctors ensure liveness property. The work in [65] was

extended to the context of real-time systems in [66]. In [63], [64], [65], [66], a program

is presented as a set of guarded commands in the shared memory model. Moreover, the

Detector (resp. Corrector) component which ensures safety (resp. liveness) property is

defined based on state predicate. State predicate means that properties or requirements

verification is done on the state level. Unlike those works, in this thesis, an actual

system is designed incrementally by composing smaller components. Each component

has its own state space, behavior, interface, and each component is responsible for

delivering a certain set of tasks. Roohitavaf and Kulkarni in [67] presented algorithms

Chapter2 Re lated Works

27

for adding stabilization and fault tolerance in the presence of unchangeable environment

actions. Bensalem et al. presented in [68] an heuristic method for compositional

deadlock and verification of Component-based systems using the Invariant. This work

focuses on just Deadlock detection. In [45], Bonakdarpour et al. introduced a theory of

fault recovery for component-based models. A non-masking model was constructed

from BIP models in order to ensure liveness property using Corrector component. But,

the authors in [45] have not dealt with fault detection concerns. Wu et al. in [76]

present a model-driven approach to describe specification and semi-automatic

configuration of fault tolerance solutions for component-based systems on the software

architecture level. In this work, the fault tolerance mechanisms are implemented by the

system in the form of a specific kind of component named tolerance facilities. In [77],

Tambe et al. present a model driven technique used to specify the special fault tolerance

requirement for component-based systems. In [78], Jung and Kazanzides presented a

run-time software environment for safety research on component-based medical robot

systems. In both [77], [78], the mechanisms and services are designed to be middleware.

Liu and Joseph in [79], [80] introduced a uniform framework for specifying, refining

and transforming programs that provides fault tolerance and schedulability using the

temporal logic of actions. In [81], a formal framework for the design of fault detection

and identification components has been proposed where the framework is based on

formal semantics provided by temporal epistemic logic. Temporal logic is a logical

language for formal specification of requirements. Generally, temporal logics are used

with model checkers for model verification (e.g., UPPAAL, KRONOS). Finally, Alko

and Mattila in [64] have evaluated effectiveness of service oriented architecture

approach to fault tolerance in mission critical real-time systems without dealing with

component-based approach.

2.5 Conclusion

In this chapter, some current researches are highlighted. In the first part, some

researches of fault detection in cloud systems are cited. They can be categorized under

two main categories: fault detection using systems monitoring and fault tolerance using

heartbeat/pinging strategies. In the second part, some current fault tolerance

researches in cloud computing are mentioned. We can observe that the researches aimed

to enhance the existent fault tolerance techniques by collaboration between more than

Chapter2 Re lated Works

28

one technique either by reinforcing the existing techniques by novel opportunities.

Finally some research on fault tolerance and fault recovery in component-based systems

are cited.

29

Chapter Three

Component-based Cloud computing

Summary

3.1 Introduction……………………………………………………….………… 29

3.2 BIP framework for component-based design………………………..……… 30

 3.2.1 Atomic component…………………………………….……………… 30

 3.2.2 Composite component………………………………………………… 32

 3.2.3 Connectors………………………………………………..…………… 33

 3.2.3.1 Rendezvous connector……………………………..……………… 33

 3.2.3.2 Broadcast connector…………………………….………………… 34

3.3 Recapitulation………………………………………………………..……… 34

3.4 Conclusion………………………………………………………………… 35

3.1 Introduction

A cloud application is composed of a number of cloud modules [10]. Each cloud

module has a virtual machine used to realize its function and each function is composed

of a set of tasks. It is evident that the cloud computing architecture, its layers and its

composition of components and services need to be designed as web service

components [11] based on well proven component-based software engineering.

component-based approach is a popular divide-and-conquer technique for designing and

implementing large systems as well as for reasoning about their correctness. It stipule

that a system is designed incrementally by composing smaller components, each

responsible for delivering a certain set of tasks to separate different concerns. Thus,

component-based design and analysis of fault tolerant systems is highly desirable in

order to achieve systematic modularization of such system [45]. Here, a component

represents an entity that provides a specific functionality. The components are expected

to be scalable, fault tolerant, manageable, and autonomous [13]. Several tools are

available for modeling heterogeneous embedded systems founded on component-based

models. One of them is BIP (Behavior, Interaction, Priority) tool [14], [15], [16]. In this

Chapter 3 Component-based Cloud computing

30

thesis, we will use BIP as a Component-based framework. It has been used successfully

in the field of robotics [17], [18], [19]. In BIP framework, a process is represented as a

Transition Labeled System (TLS), where the principal components are: the atomic

component and the composite component.

3.2 BIP framework for component-based design

BIP framework [7] is used for modeling heterogeneous real-time components

which integrates results developed at Verimag Laboratory. It supports a component

construction methodology based on the idea that components are obtained as

superposition of three layers: the first one is the behavior layer which presents the

internal behavior by a set of transitions and states. The intermediate layer includes a set

of connectors describing the interactions between transitions of the behavior. The upper

layer is a set of priority rules describing scheduling policies for interactions. Layering

implies a clear separation between behavior and structure (i.e., connectors and priority

rules). The principle components in BIP framework are: atomic component and

composite component.

3.2.1 Atomic component

We define an atomic component as a Labeled Transition System (LTS) with a

set of ports labeling individual transitions. These ports are used for communication

between different components.

Definition1. An atomic component 𝐵 is a labeled transition system represented by a

tuple (𝑄, 𝑃, , 𝑋, 𝑞0) where:

𝑄: is a set of states {𝑞0, 𝑞1, … , 𝑞𝑛};

𝑃: is a set of communication ports {𝑝0, 𝑝1, … , 𝑝𝑛}; we can distinguish two types of

ports: Complete or Incomplete.

Complete Port (Black Triangle): An interaction that contains a complete port is a

complete interaction in the sense that complete port does not need to be synchronized

with other ports to accomplish an interaction.

Incomplete Port (Black Circle): An incomplete port needs to be synchronized with

other ports in order to achieve an interaction. Therefore, an interaction that contains an

incomplete port is incomplete.

 ∶ 𝑄 𝑃 𝐺 𝐹 𝑄 is a set of transitions, each transition is a tuple of the form (𝑞𝑠,

𝑝, 𝑔, 𝑓, 𝑞𝑡) where:

Chapter 3 Component-based Cloud computing

31

𝑞𝑠: is the state which is the transition source;

𝑝: is the transition label and is the port associated to the transition;

𝑔: is the transition guard which is a boolean condition on the set of variables 𝑋; the

transition can be executed iff its guard 𝑔 is true and some interactions including the port

𝑝 are offered;

𝑓: is an internal action on the set of variables 𝑋, the function f is executed when the

transition 𝑡 is enabled and we write 𝑡(𝑓). In an atomic component, variables are treated

and modified by component internal functions;

𝑞𝑡: is the state which is the transition target;

𝑋: is a set of variables {𝑥𝑖}which are manipulated by the internal functions, 𝑓𝑖;

𝑞0: is the initial state of the atomic component.

If we have a variable 𝑥 which has an initial value 𝑣 and we write : 𝑥(𝑣) − 𝑡(𝑓) →

𝑥𝑖(𝑣 ′), by which we mean that: there exists a transition 𝑡 which contains an internal

function f such that after the achievement of the transition 𝑡, the function f will modify

the variable 𝑥 from the value 𝑣 to the new value 𝑣 ′.

Figure 3.1. A BIP atomic component (Producer).

The Figure 3.1. shows an atomic component (Producer), where:

 𝑄 = {𝑃, 𝐶}

 𝑃 = { 𝑃𝑟𝑜𝑑𝑢𝑐𝑒, 𝐶𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑒};

 = {< 𝑃, 𝑃𝑟𝑜𝑑𝑢𝑐𝑒, [𝑥 < 5], 𝑥: = 𝑥 + 1, 𝐶 >, < 𝐶, 𝐶𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑒,

[𝑇𝑟𝑢𝑒], 𝑃 >};

 𝑋 = {𝑥},

Chapter 3 Component-based Cloud computing

32

 𝑞0=P

An execution cycle of an atomic component 𝐵 = (𝑄, 𝑃, , 𝑋, 𝑞0) is 𝐶𝑦𝐵 = 𝑡1𝑡2 … 𝑡𝑛

such that 𝑡1 is the first transition in B and 𝑡𝑛 is the last one. An execution cycle of an

atomic component is the execution of all of its inner transitions for one time.

The behavior of a system as defined in [134] is what the system does to implement its

function and is described by a sequence of states that can be: Computation,

Communication or stored information.

 A Behavior of an atomic component 𝐵 = (𝑄, 𝑃, , 𝑋, 𝑞0) is 𝐵𝑒ℎ(𝐵) = 𝑓1𝑓2 … 𝑓𝑛

and for all i:

- 𝑓𝑖 ∈ 𝐹(i.e.,F is the set of internal functions in B) and

- There exists a transition sequence 𝑡1𝑡2 … 𝑡𝑛 and a state sequence 𝑞1𝑞2 … such that:

q0−𝑡1(𝑓1) → q1−𝑡2(𝑓2) →q2 −……... 𝑡𝑛(𝑓𝑛) →qn

The atomic component behavior has a direct effect on the set of variables X. If the initial

value of the set X is 𝑣0, it will be 𝑣𝑛 after the achievement of the atomic component

behavior: 𝑋(𝑣0) − 𝐵𝑒ℎ(𝐵) → 𝑋(𝑣𝑛) = 𝑋(𝑣0)— 𝑓1 → 𝑋(𝑣1) − 𝑓2 → 𝑋(𝑣2) − 𝑓3 →

⋯ 𝑋(𝑣𝑛). 𝑋 is the set of variables and𝑣1, 𝑣2, . . 𝑣𝑛are the values of the set X.

Hence, the behavior of 𝐵 in one execution cycle is:

𝐵𝑒ℎ𝐶𝑦(𝐵) = q0−𝑡1(𝑓1) → q1−𝑡2(𝑓2) →q2−……...→ 𝑡𝑛(𝑓𝑛) →q0 .

This means that 𝐵𝑒ℎ𝐶𝑦(𝐵) produces final results after achievement of one execution of

the entire internal functions of the atomic component 𝐵.

3.2.2 Composite component

The composite component is constructed from a set of interacted atomic

components. It represents the cloud computing system which is composed of interacted

cloud nodes.

Definition 2. A composite component 𝐵 = (𝐵1 … 𝐵𝑛) is defined by a composition

operator parameterized by a set of interactions. It is a transition system(𝑄, , , 𝑋,

𝑞0), where different mathematical notations carry the meanings as shown in Table 3.1.

Chapter 3 Component-based Cloud computing

33

Table 3.1.Some mathematical notations and their meanings.

𝑄 = 𝑖=1
𝑛 𝑄𝑖

The set of global sates is obtained by the cartesian product of

all the atomic components’ states in the composite

component.

𝑞0 = (𝑞1
0 , . . . 𝑞𝑛

0); The set of all the atomic components’ initial states.

𝑋 = ⋃ 𝑋𝑖

𝑛

𝑖=1
 ; The union of the atomic components’ variables sets.

 : is the least set of

transitions satisfying the rule

[45]:

𝑎 = {𝑝𝑖}𝑖∈1..𝑚∀𝑖 ∈ 𝐼: 𝑞𝑖 → 𝑞𝑖
’∀𝑖{1. . 𝑚}: 𝑞𝑖 = 𝑞𝑖

’(𝑞1 … 𝑞𝑛)

→ (𝑞1
’ … 𝑞𝑛

’)

- As mentioned in [45], a composite component 𝐵 =

(𝐵1 … 𝐵𝑚) can execute an interaction𝑎,iff for each port

pia, the corresponding atomic component 𝐵𝑖can execute a

transition labeled with 𝑝𝑖 - the states of the components that

do not participate in the interaction stay unchanged.

 =∪𝑖=1
𝑙 𝛽𝑖 The set of connectors which rely on the atomic components.

3.2.3 Connector

A connector 𝛽𝑖 = {𝑝𝑖}𝑖∈1..𝑚is a set of ports of the atomic components involved in

𝛽𝑖. It represents the network connection in the cloud system. We assume that a

connector contains at most one port from each atomic component. The Interaction of a

connector is any non-empty subset of this set. As defined in [45], for a given system

built from a set of 𝑛 atomic components 𝐵𝑖 = {(𝑄𝑖, 𝑃𝑖 ,, 𝑋, 𝑞0)}𝑖=1
𝑛 , we assume that

their respective sets of ports are pairwise disjoint, (i.e., for any two 𝑖𝑗 from {1..n, we

have Pi⋂Pj=∅). We can therefore define the set 𝑃 = ⋃ 𝑃𝑖
𝑛
𝑖=1 of all ports in the system.

An interaction is a set aP of ports. When we write 𝑎 = {𝑝𝑖}𝑖∈𝐼 , where I1..m}. An

interaction can be a rendezvous or a broadcast interaction.

3.2.3.1 Rendezvous Connector

Or strong synchronization enables an exchange of information between the

nodes. In this type of interaction, all the ports are synchronous (see Figure 3.2). The

initiative meaning of the synchronous is that it has to wait for other ports in order to

execute the interaction. The connector 𝛽1 = {𝑝𝑖=1..3, 𝑝𝑖𝐵𝑖=1..3} defines only one

Chapter 3 Component-based Cloud computing

34

interaction: 𝑎 = 𝐵1𝐵2𝐵3 in which, all the atomic components must synchronize at the

same time in order to achieve the interaction 𝑎.

Figure 3.2.Rendezvous interaction.

3.2.3.2 Broadcast Connector

Or weak synchronization is used to update information stored at the nodes. It

includes one trigger (i.e., initiator) port in 𝐵1 and two synchronous ports. The intuitive

meaning of trigger is that it can initiate the interaction, even if all other ports are not

enabled.

Figure 3.3. Broadcast interaction.

The connector (in Figure3.3) 𝛽2 = {𝑝𝑖=1..3, 𝑝𝑖𝐵𝑖=1..3 , 𝐵1 𝑖𝑠 𝑡ℎ𝑒 𝐵𝑟𝑜𝑎𝑑𝑐𝑎𝑡 𝑖𝑛𝑖𝑡𝑖𝑎𝑡𝑜𝑟 }

describes the set of all interactions that contains at least 𝐵1, which are:𝑎1 = {𝐵1}, 𝑎2 =

{𝐵1𝐵2}, 𝑎3 = {𝐵1𝐵3} ,𝑎4 = {𝐵1𝐵2𝐵3}. We can see that all the possible interactions

contain the initiator 𝐵1and the maximum one contains all the atomic components: 𝐵1,𝐵2

and 𝐵3.

3.3 Recapitulations

In the next chapters, the cloud system will be considered as a complex system

which is composed of a set of atomic components (i.e., nodes) supported by network

connections. The atomic component is the simpler component; it reflects the cloud

module and the atomic component transitions reflect the cloud module tasks, where the

composite component represents the cloud computing system that is composed of a set

Chapter 3 Component-based Cloud computing

35

of interacted cloud modules. The set of component-based concepts used in this thesis

and their equivalents in cloud computing system are presented in the Table 3.2.

Table 3.2. Component-based concepts and their equivalents in Cloud system.

Cloud system concepts Component-based approach concepts

Cloud module / node Atomic component

Module task Atomic transition

Cloud system Composite component

Network connections Connectors

Primary block Primary behavior

Alternate block Alternate behavior

3.4 Conclusion

In this chapter, the component-based approach for cloud systems is introduced.

Then, the main concepts of BIP as a framework for component-based design such as:

the atomic component, the composite component and connectors are described. Finally,

a recapitulation of the used terms in this thesis is given to facilitate the comprehension

of the rest of chapters.

36

Chapter Four

Fault Detection in Component-based Cloud

computing

Summary

 4.1 Introduction………………………………………………………………… 36

 4.2 Acceptance test for fault detection……………………................................. 37

 4.2.1 Fault detection in atomic component…………………………………. 37

 4.2.2 Fault detection in composite component ……………………………... 39

 4.2.2.1 Rendezvous connection…………………………………………... 40

 4.2.2.2 Broadcast connection…………………………………………….. 40

4.3 Construction of Fail-Silent models…………………………………………. 41

 4.3.1 Construction of Fail-Silent atomic component………………………… 41

 4.3.2 Construction of Fail-Silent composite component……………………... 41

4.4 A case study………………………………………………………………… 45

 4.4.1 Fire Control system…………………………………………………….. 45

 4.4.2 Construction of the Fail-Silent free fire control system………………... 47

 4.4.3 Time and space complexity…………………………………………….. 51

 4.4.4 Safety verification using model-checker……………………………….. 53

 4.4.4.1 Safety verification of fault-free model……………………………... 55

 4.4.4.2 Safety verification of failed model…………………………………. 56

4.5 Comparative Analysis………………………………………………………. 57

4.6 Conclusion…………………………………………………………………... 62

4.1 Introduction

Fault Detection is considered as one of the main challenges in large-scale

dynamic environments and thus, for maintaining the reliability requirements of cloud

systems. Most of the popular existing techniques for fault detection applied on the cloud

computing environment in general, are based on system-monitoring despite the extreme

Chapter4 Fault Detection in Component-based Cloud Computing

37

difficulty of keeping track of all machines with their huge number in cloud systems. In

this chapter, we propose a fault detection framework for the component-based cloud

computing by using Recovery Blocks’ acceptance test. This framework aims to

construct Fail-Silent cloud modules which have the ability of self-fault detection. In

this, the detection process of transient hardware faults, software faults, and response-

time failures is performed locally on each computing machine in the cloud system. We

assume that there is no permanent crash in the cloud nodes and the acceptance test is

reliable and cannot be altered. Each cloud node has one predefined function and the

software developer can set the acceptance test of each cloud node on the system.

4.2 Acceptance test for fault detection

Critical systems are usually related to human life, thus ensuring safety property

is very important in order to avoid catastrophic consequences caused by failures. Final

results of a critical system must be validated in order to judge their correctness. This

validation can be offered by the acceptance test. An acceptance test 𝐴𝑇 of a component

B is a boolean expression on the set of variables, X. It is used to validate final results’

correctness. The acceptance test ensures that the final results are acceptable but not

always they may be the desired results (i.e., some results may not be desired).Thus, it

ensures the continuity of service offered in spite of degradation in the system quality,

just to be safe from any disaster.

4.2.1 Fault detection in atomic component

An atomic component 𝐵 = (𝑄, 𝑃, , 𝑋, 𝑞0) produces results after each

execution cycle. The results could be correct or not correct. Without a mechanism of

fault detection, we cannot judge the correctness of final results. Therefore, an atomic

component must have an acceptance test which is a boolean expression on the set of

variables 𝑋 of the atomic component.

Definition 1. An acceptance test 𝐴𝑇𝐵 (𝑋) of the atomic component 𝐵 = (𝑄, 𝑃, , 𝑋,

𝑞0) is a boolean expression on the set of variables, 𝑋. The acceptance test validates the

correctness of 𝐵’s final results and ensures that they do not lead to disastrous

consequence even if they are not the expected results.

Chapter4 Fault Detection in Component-based Cloud Computing

38

After one execution cycle, 𝑋(𝑣) − 𝐵𝑒ℎ𝐶𝑦(𝐵) → 𝑋(𝑣′), the set of variables 𝑋 will be

modified by 𝐵𝑒ℎ𝐶𝑦(𝐵) from the value 𝑣 to the new value 𝑣′. Final results 𝑣′will be

checked by 𝐴𝑇𝐵 (𝑋) and three cases are possible here. Final results may be:

- The Correct results c, which satisfy the acceptance test and which are considered as

the desired results.

- The Acceptable results a, which satisfy the acceptance test but they are not the desired

results and they do not lead to disaster for the system.

- The Faulty results 𝑓, that do not satisfy the acceptance test. These kinds of results can

incur huge damages to the system.

Basing on these latest cases, the AT judges the behavior of the atomic component 𝐵 and

decides its correctness.Now, again two cases are possible for 𝐵:

- If the final results validate the acceptance test (i.e.,𝐴𝑇𝐵 (𝑣′) = True) then, B has a

correct or acceptable behavior (Fault-Free Behavior)and it earns execution.

- If the final results do not validate the acceptance test (i.e., 𝐴𝑇𝐵 (𝑣′) = False) then, B

has a failed behavior and it must be stopped immediately to go through recovery and

fault correction.

We mean by these two cases that: if 𝐵𝑒ℎ𝐶𝑦(𝐵) ⊨ ATB B is correct else B is failed.

Figure 4.1. Fault detection in atomic component using the acceptance test.

Figure 4.1 shows the fault detection using the acceptance test. The atomic component

𝐵 operates and validates its final results after each execution cycle. If 𝐵’s final results

satisfy the AT, 𝐵 has a correct or acceptable behavior (i.e., in left state). 𝐵 stands at that

state till detection of failure by 𝐴𝑇𝐵 (𝑋). At that moment, the atomic component 𝐵 will

be considered as failed and 𝐵 will pass to an unstable state (i.e., the right state). At that

state, the component will be blocked till recovery. An atomic component that has the

ability of self-fault detection using an acceptance test is Fail-Silent atomic component

(FSB). A Fail-Silent atomic component satisfies the 𝜔-regular expression:(𝑐/𝑎)∗𝑓. The

atomic component has a correct behavior (𝑐) or an acceptable behavior (𝑎). At just

Chapter4 Fault Detection in Component-based Cloud Computing

39

detection of a failure by the AT, the atomic component will be considered as failed (f)

and it will be blocked immediately attending the correction. The last correct state of the

atomic component 𝐵 will be saved in the history state 𝐻𝑠(𝐵). A Fail-Silent atomic

component operates without failures and returns a correct or an accepted result;

otherwise, it will be blocked immediately.

Proposition: A history state Hs is used in the atomic component in order to save the last

correct variable values of the atomic component and the last received messages from the

other atomic components. Hs=<𝑋(𝑣), (𝑚𝑠𝑔1 , 𝑚𝑠𝑔2, …) >. The history state is

indispensable for recovery phase.

Definition 2. A Fail-Silent atomic component, 𝐹𝑆𝐵 = (𝑄, 𝑃, , 𝑋, 𝑞0, 𝐻𝑠, 𝐴𝑇𝐵)is a

component which can validate its final results and judge its correctness by the

acceptance test ATB . The 𝜔-regular expression of a Fail-Silent atomic component is

[(𝑐/𝑎)∗𝑓].

Algorithm of Fail-Silent atomic component:

Fail-SilentB: Execute(𝐵𝑒ℎ𝐶𝑦(𝐵))

 If (𝐴𝑇𝐵(𝑋)) then

 Update 𝐻𝑠(𝐵)

 Go to Fail-SilentB

 Else

 Deadlock

EndIf

End Fail-SilentB

Theorem1: A Fail-Silent atomic component, 𝐹𝑆𝐵 = (𝑄, 𝑃, , 𝑋, 𝑞0, 𝐻𝑠, 𝐴𝑇𝐵)can

insure safety property using the cceptance Test 𝐴𝑇𝐵. The AT can validate final results

and decide their correctness. In the case of fault detection, the atomic component 𝐹𝑆𝐵

will be passed to a Deadlock state till failure correction.

4.2.2 Fault detection in composite component

A composite component 𝐵 = (𝐵1 … 𝐵𝑛) is a set of atomic components 𝐵𝑖=1..𝑛

glued by the set of connectors = {𝛽𝑖=1..𝑙}. As seen in chapter 3 - section 3.2.3, a

connector in a composite component can be rendezvous or broadcast connector.

Chapter4 Fault Detection in Component-based Cloud Computing

40

4.2.2.1 Rendezvous connection

If we have the Rendezvous connector 𝛽 such that 𝛽 = {𝑝𝑖=1..𝑚, 𝑝𝑖𝐵𝑖}, the only

possible interaction is 𝑎𝑖 = 𝐵1 𝐵2 𝐵3 … 𝐵𝑚 which contains all the atomic components

involved in the connector 𝛽. Therefore, the failure of one atomic component will

directly infect the others atomic components in the same rendezvous interaction. This

means that ∀ 𝐵1≤𝑖≤𝑚 ∈ 𝛽; 𝑖𝑓 (𝐵𝑖) is failed, then ∀𝐵𝑗≠𝑖𝑎𝑛𝑑𝐵𝑗 ∈ 𝛽, 𝐵𝑗 will fail too. Thus,

to construct a Fail-Silent rendezvous connector, all its inner atomic components must be

Fail-Silent as well. Therefore, 𝐹𝑆𝑅𝑒𝑛𝑑𝑒𝑧𝑣𝑜𝑢𝑠(𝛽) = {𝐹𝑆𝐵1, 𝐹𝑆𝐵2 , … , 𝐹𝑆𝐵𝑚 }.

Lemma1. A rendezvous connector, 𝛽 = {𝑝𝑖=1..𝑚, 𝑝𝑖𝐵𝑖} which involves a set of Fail-

Silent atomic component is Fail-Silent rendezvous connector: 𝐹𝑆𝑅𝑒𝑛𝑑𝑒𝑧𝑣𝑜𝑢𝑠(𝛽) =

{𝑝𝑖=1..𝑚, 𝑝𝑖 𝐹𝑆𝐵𝑖=1..𝑚}.

4.2.2.2 Broadcast connection

If we have the broadcast connector :

𝛽 = {𝑝𝑖=1..𝑚, 𝑝𝑖𝐵𝑖≠𝑘 𝑎𝑛𝑑 𝐵𝑘 𝑖𝑠 𝐵𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡 𝑖𝑛𝑖𝑡𝑖𝑎𝑡𝑜𝑟}.

 The possible set of interactions in this case are those containing at least one instance of

𝐵𝑘. The minimum interaction is 𝑎1 = {𝐵𝑘} which contains only the broadcast initiator

and the maximum interaction is 𝑎𝑛 = {𝐵𝑘𝐵2𝐵3 … 𝐵𝑚} which contains all the atomic

components involved in the connector 𝛽. We can see that if the atomic component 𝐵𝑘

fails and enters in a deadlock state, the others atomic component involved in the same

broadcast connector will be blocked too. But, if 𝐵2 𝑜𝑟 𝐵3 fails and blocked, it does not

affect the broadcast initiator 𝐵𝑘 . Thus, to construct a Fail-Silent connector 𝛾, at least

the broadcast initiator 𝐵𝑘 must be Fail-Silent. Therefore, 𝐹𝑆𝐵𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡(𝛽) =

{𝐹𝑆𝐵𝑘, 𝐵2, … , 𝐵𝑚 }.

Lemma2.A broadcast connector 𝛽 = {𝑝𝑖=1..𝑚, 𝑝𝑖𝐵𝑖 𝑎𝑛𝑑 𝐵𝑘 𝑖𝑠 𝐵𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡 𝑖𝑛𝑖𝑡𝑖𝑎𝑡𝑜𝑟}

which involve at least a Fail-Silent broadcast initiator is a Fail-Silent broadcast

connector: 𝐹𝑆𝐵𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡(𝛽) = {𝐹𝑆𝐵𝑘, 𝐵2, … , 𝐵𝑚 }..

Lemma 3. A composite component which contains Fail-Silent connectors (rendezvous

and/or broadcast) is Fail-Silent composite component. The 𝜔 − 𝑟𝑒𝑔𝑢𝑙𝑎𝑟 expression of

a Fail-Silent composite component is: [(𝐶 / 𝐴/ 𝐹)∗𝐹].

Theorem 2. A composite component which is composed of a set of Fail-Silent atomic

component is Fail-Silent composite component: 𝐹𝑆𝐵 = 𝛾(𝐹𝑆𝐵1, 𝐹𝑆𝐵2, … , 𝐹𝑆𝐵𝑛).

Chapter4 Fault Detection in Component-based Cloud Computing

41

4.3 Construction of Fail-Silent models

4.3.1 Construction of Fail-Silent atomic Component

Now, let us see how we could construct a Fail-Silent atomic component from an

initial model that is not Fail-Silent. Let 𝐵1 = (𝑄, 𝑃, , 𝑋, 𝑞0) be an atomic

component. In order to construct a Fail-Silent atomic component, we must add the

acceptance test. This test validates 𝐵1’s final results. The Fail-Silent 𝐵1 is 𝐹𝑆𝐵1 =

(𝑄′, 𝑃′,′, 𝑋, 𝐼, 𝐻𝑠(𝐵1), 𝐴𝑇𝐵1) such that:

𝑄′ = 𝑄 ∪ {𝑄𝐼 , 𝑄𝑇};𝑄𝐼and 𝑄𝑇are two new states. 𝑄𝐼 is the initial state.

𝑃′ = 𝑃 ∪ {𝑆𝑡𝑎𝑟𝑡𝐵1 , 𝑇𝑒𝑠𝑡𝐵1} , 𝑆𝑡𝑎𝑟𝑡𝐵1 𝑎𝑛𝑑 𝑇𝑒𝑠𝑡𝐵1 are two new ports where, 𝑆𝑡𝑎𝑟𝑡𝐵1 is

the first port in the Fail-Silent atomic component and 𝑇𝑒𝑠𝑡𝐵1 is the last one.

The first transition 𝑆𝑡𝑎𝑟𝑡𝐵1 leaves the initial state 𝑄𝐼 to the state 𝑞0, where, the

transition 𝑇𝑒𝑠𝑡𝐵1 achieves from the state 𝑄𝑇 to the state 𝑄𝐼.

′ = ⋃ {< 𝑄𝐼 , 𝑆𝑡𝑎𝑟𝑡𝐵1, 𝑈𝑝𝑑𝑎𝑡𝑒 (𝐻𝑠(𝐵1)), 𝑞0 >, < 𝑄𝑇 , 𝑇𝑒𝑠𝑡𝐵1, [𝐴𝑇𝐵1], 𝑄𝐼 >.

The set of transitions will be enriched by two transitions associated with the

ports 𝑆𝑡𝑎𝑟𝑡𝐵1 𝑎𝑛𝑑 𝑇𝑒𝑠𝑡𝐵1. The transition< 𝑄𝐼 , 𝑆𝑡𝑎𝑟𝑡𝐵1, 𝑈𝑝𝑑𝑎𝑡𝑒 (𝐻𝑠(𝐵1)), 𝑞0 >is

the first transition which leaves the initial state 𝑄𝐼 to the state 𝑞0,its internal function is

𝑈𝑝𝑑𝑎𝑡𝑒 (𝐻𝑠) which updates the history state 𝐻𝑠(𝐵1) by the last correct variable values

and the last received messages. The second new transition is <

𝑄𝑇 , 𝑇𝑒𝑠𝑡𝐵1, [𝐴𝑇𝐵1], 𝑄𝐼 >. It is the test transition in the component 𝐹𝑆𝐵– it aims to test

and validate the final results of X by the guard [𝐴𝑇𝐵] which is the expression of the

acceptance test. The transition 𝑇𝑒𝑠𝑡𝐵 leaves from the state 𝑄𝑇 to the initial state 𝑄𝐼.

This transition is triggered iff the acceptance test is satisfied (𝐴𝑇𝐵(𝑋) = 𝑇𝑟𝑢𝑒); else, the

Fail-Silent atomic component will be blocked on the state 𝑄𝑇.

4.3.2 Construction of Fail-Silent composite component

As seen in the section 4.2.2, in order to construct a Fail-Silent composite

component for 𝐵=𝛾(𝐵1, 𝐵2, … , 𝐵𝑛)which contains a set of atomic components glued by

a set of connectors 𝛾. All its inner connectors, rendezvous and/or broadcast must be

Fail-Silent and so, all its inner atomic components must be Fail-Silent as well.

Therefore, if we have a composite component, 𝐵=𝛾(𝐵1, 𝐵2, … , 𝐵𝑛), the Fail-Silent

composite component is 𝐹𝑆𝐵 = 𝛾(𝐹𝑆𝐵1, 𝐹𝑆𝐵2, … , 𝐹𝑆𝐵𝑛).

In the next section, we will apply our approach on the Producer-FIFO-Consumer model.

Chapter4 Fault Detection in Component-based Cloud Computing

42

The Figure 4.2 presents a Producer-FIFO-Consumer (PFC) model. This model is

composed of three atomic components: Producer, FIFO, and Consumer. 𝑃𝐹𝐶 =

𝛾(𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟, 𝐹𝐼𝐹𝑂, 𝐶𝑜𝑛𝑠𝑢𝑚𝑒𝑟). Here, 𝛾 is the set of connectors:𝛾 = {𝛽1, 𝛽2}. 𝛽1

and 𝛽2 are rendezvous connectors.

𝛽1 = {𝑎1 = (𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟. 𝐶𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑒; 𝐹𝐼𝐹𝑂. 𝑊𝑟𝑖𝑡𝑒)}.

𝛽2 = {𝑎1 = (𝐹𝐼𝐹𝑂. 𝑅𝑒𝑎𝑑; 𝐶𝑜𝑛𝑠𝑢𝑚𝑒𝑟. 𝐶𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑒)}.

Figure 4.2. PFC composite component model.

In order to construct a Fail-Silent PFC model, we must first construct its inner Fail-

Silent atomic component. Therefore, we should construct the Fail-Silent Producer, the

Fail-Silent FIFO and Fail-Silent Consumer.

Construction of Fail-Silent producer:

Figure 4.3.Fail-Silent producer.

Figure 4.3 shows the Fail-Silent, Producer. It is defined as:

𝐹𝑆𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟 = (𝑄′, 𝑃′,′, 𝑋, 𝐼, 𝐻𝑠, 𝐴𝑇𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟)where:𝑄′ = 𝑄 ⋃ {𝑄𝐼 , 𝑄𝑇} = {𝑄𝐼, 𝑃,

𝐶, 𝑄𝑇}

Chapter4 Fault Detection in Component-based Cloud Computing

43

𝑃′ = 𝑃⋃ {𝑆𝑡𝑎𝑟𝑡𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟, 𝑇𝑒𝑠𝑡𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟}

= {𝑆𝑡𝑎𝑟𝑡𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟 , 𝑃𝑟𝑜𝑑𝑢𝑐𝑒, 𝐶𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑒, 𝑇𝑒𝑠𝑡𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟}

′ = ⋃ {< 𝑄𝐼 , 𝑆𝑡𝑎𝑟𝑡𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟 , [𝑇𝑟𝑢𝑒], 𝑈𝑝𝑑𝑎𝑡𝑒(𝐻𝑠), 𝑃 >,

< 𝑄𝑇 , 𝑇𝑒𝑠𝑡𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟 , [𝐴𝑇𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟], 𝑄𝐼 >} =

 {< 𝑄𝐼 , 𝑆𝑡𝑎𝑟𝑡𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟 , [𝑇𝑟𝑢𝑒], 𝑈𝑝𝑑𝑎𝑡𝑒(𝐻𝑠), 𝑃 >, < 𝑃, 𝑃𝑟𝑜𝑑𝑢𝑐𝑒, [𝑥 < 5], 𝑥 = 𝑥 + 1, 𝐶

>, < 𝐶, 𝐶𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑒, [𝑇𝑟𝑢𝑒], 𝑄𝑇 >,

< 𝑄𝑇 , 𝑇𝑒𝑠𝑡𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟, [𝐴𝑇𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟], 𝑄𝐼 > }

At fault free execution, 𝐹𝑆𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟 performs one execution cycle and before

updating the history state 𝐻𝑠 with the new values of 𝑋, 𝐹𝑆𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟 first validates the

acceptance test on the transition labeled 𝑇𝑒𝑠𝑡𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟. If the guard [𝐴𝑇𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟] is true,

the results are acceptable and the next execution cycle begins with the

transition 𝑆𝑡𝑎𝑟𝑡𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟. On which, the internal function (𝑈𝑝𝑑𝑎𝑡𝑒(𝐻𝑠)) will ensure

saving of the last correct variable values on the history state (Hs). If the component

𝐹𝑆𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟reaches the state 𝑄𝑇 and the variable values do not satisfy the guard

[𝐴𝑇𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟], at that moment, the Fail-Silent atomic component [𝐴𝑇𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟] will be

blocked on the state 𝑄𝑇 attending the recovery phase. Finally, we can see that we have

constructed a Fail-Silent atomic component 𝐹𝑆𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟 which can insure the safety

property using the acceptance test and which respect the 𝜔 − 𝑟𝑒𝑔𝑢𝑙𝑎𝑟 expression[(𝑐/

𝑎)∗𝑓]. In the same manner, we will construct the Fail-Silent FIFO (see Figure 4.4) and

the Fail-Silent Consumer (see Figure 4.5).

Figure 4.4.Fail-Silent FIFO

Chapter4 Fault Detection in Component-based Cloud Computing

44

Figure 4.5. Fail-Silent Consumer

After constructing the Fail-Silent atomic components, we will have the Fail-Silent

composite component PFC (see Figure 4.5).

Figure 4.6.Fail-Silent composite component PFC.

The Fail-Silent composite component PFC in the Figure 4.6 is composed of a set of the

Fail-Silent atomic components. If we suppose that a failure occurs in the Fail-Silent

Producer, then it will be blocked on the sate 𝑄𝑇 because its results do not satisfy the

𝑇𝑒𝑠𝑡𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟 guard. At the same time, both FIFO and Consumer are in correct

operation. But, in a future moment, the transition “Write” of FIFO component will need

to synchronize with the component, Producer. This latter is in deadlock state and

therefore, the components, FIFO and Consumer will be blocked too. We can see that the

failure of one component in the composite component PFC brings the deadlock of all

the components which are involved in direct or indirect interaction with the failed

component. By this way, we have not only stopped the failed component but also we

Chapter4 Fault Detection in Component-based Cloud Computing

45

have stopped the fault confinement in the composite component. After this fault

detection phase, recovery and fault tolerance must be set.

4.4 A CASE STUDY

4.4.1 Fire Control System

Let us explain our approach with a mobile cloud system. Let us consider a fire

control system which monitors the temperatures in the forest in order to prevent fires. In

our system, we have three main components: Sensor node, Cloud node1 and Cloud

node2. In this system, the mobile sensor frequently takes measures of the forest

temperatures and sends those data to the Cloud node1 (which receives the temperature

measures and calculates their average).The average temperature would be sent to the

Cloud node2 which produces a status report which would be transferred to the system

control (see Figure 4.7). We have used BIP model to design the fire control system as

shown in Figure 4.8.

Figure 4.7.Fire control system.

Figure 4.8.Fire Control system BIP model.

Chapter4 Fault Detection in Component-based Cloud Computing

46

The sensor node periodically takes temperature measures 𝑇 ∈ [𝑇𝑀𝑖𝑛, 𝑇𝑀𝑎𝑥]such

that 𝑇𝑀𝑖𝑛 and 𝑇𝑀𝑎𝑥 are defined according to the area climate conditions and to the

sensor node capacities. The difference between two successive temperatures does not

exceed 𝛼: |𝑇 − 𝑇𝑃𝑟𝑒𝑣| ≤ 𝛼.

The Cloud node1 receives the temperatures 𝑇 from the sensor node in the system and

calculates the average 𝑇𝑣of n different temperatures. Then, it sends the average 𝑻𝒗 to the

Cloud node 2. The average temperature 𝑻𝒗 must be between the highest received

temperature 𝑻𝒉 and the lowest one 𝑻𝒍(i.e., 𝑻𝒍 ≤ 𝑻𝒗 ≤ 𝑻𝒉).

The Cloud node 2 receives the average temperature 𝑇𝑣 from the Cloud node1.

According to the set of conditions 𝑪 and the average temperature 𝑻𝒗, the Cloud node2

produces a status report about the forest 𝑅 = 𝑓(𝑇𝑣, 𝐶). The values that must be defined

by the software developer are summarized in the Table 4.1.

Table 4.1. The values defined by the system developer.

Notation Meaning

𝑇𝑀𝑎𝑥 The highest temperature that can be detected

𝑇𝑀𝑖𝑛 The lowest temperature that can be detected

𝛼 (𝑎𝑙𝑓𝑎) The difference between two successive temperatures

N
Required number of temperatures for average

calculation

𝑠𝑒𝑛𝑠𝑜𝑟𝑇𝑖𝑚𝑒𝑂𝑢𝑡 Sensor Time-Out

𝑁𝑜𝑑𝑒1𝑇𝑖𝑚𝑒𝑂𝑢𝑡 Cloud node1 Time-Out

𝑁𝑜𝑑𝑒2𝑇𝑖𝑚𝑒𝑂𝑢𝑡 Cloud node2 Time-Out

C
The predefined conditions for the Cloud node2

decision

Chapter4 Fault Detection in Component-based Cloud Computing

47

Figure 4.9. Fail-Silent Fire Control system

4.4.2 Construction of the Fail-Silent Fire Control System

In order to construct Fail-Silent system, we will use the acceptance test

approach. First, we have to construct the Fail-Silent components. In the next section, we

describe each component:

The Sensor node: its main function is measuring the temperature. Therefore, to ensure

that the component is correct, we have to validate its behavior using an acceptance test.

The system developer has previous knowledge about the sensor characteristics and the

area climate where the sensor is deployed. Therefore, according to this information, he

can define an adequate acceptance test. In our example, we have supposed that one of

the main characteristics of the sensor is that it can detect only temperatures between

𝑇𝑀𝑖𝑛 and 𝑇𝑀𝑎𝑥(𝑖. 𝑒. , 𝑇𝑀𝑖𝑛 ≤ 𝑇 ≤ 𝑇𝑀𝑎𝑥). Besides, the difference between two

successive temperatures would not exceed 𝛼 (i.e., |𝑇 − 𝑇𝑃𝑟𝑒𝑣| ≤ 𝛼) which is a threshold

used to detect whether the sensor gives a random temperature reading. Furthermore, the

sensor has to send the temperature to the Cloud node1 before expiration of its Time-

Out. The sensor Time-Out is defined by the system developer. A Clock clk1 is used for

calculating the passage of time in the sensor. Finally, we can have the sensor node

acceptance test : 𝐴𝑇𝑆𝑒𝑛𝑠𝑜𝑟 = [(𝑇𝑀𝑖𝑛 ≤ 𝑇 ≤ 𝑇𝑀𝑎𝑥)&&(|𝑇 − 𝑇𝑃𝑟𝑒𝑣| ≤ 𝛼)]&& (𝑐𝑙𝑘1 ≤

𝑠𝑒𝑛𝑠𝑜𝑟𝑇𝑖𝑚𝑒𝑂𝑢𝑡). To say that the sensor operates correctly, it must validate the logical

expression of the acceptance test. Therefore, 𝐴𝑇𝑆𝑒𝑛𝑠𝑜𝑟 will take place as 𝑇𝑒𝑠𝑡𝑆𝑒𝑛𝑠𝑜𝑟

transition guard (Figure 4.9). If the component validates the 𝐴𝑇𝑆𝑒𝑛𝑠𝑜𝑟, then the

temperature will be saved in 𝑇𝑝𝑟𝑒𝑣on the next checkpoint and the Clock clk1 will be

initialized for the next execution cycle. Else, the sensor will be considered as failed and

Chapter4 Fault Detection in Component-based Cloud Computing

48

will be blocked on the state 𝑄𝑇. The failed sensor can be replaced by an operational one

which can get temperature measure from the last correct temperature 𝑇𝑝𝑟𝑒𝑣.

The Cloud node 1: The main function of this component is to calculate the average of

received n temperatures. Therefore, the average temperature will be included between

the highest temperatures 𝑇ℎ and the lowest one 𝑇𝑙(𝑖. 𝑒. , 𝑇𝑙 ≤ 𝑇 ≤ 𝑇ℎ). Also, we have

to ensure that the Cloud node1 has the ability of correct average calculation. For that,

we can test the component by calculating: 𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝐶𝑎𝑙𝑐𝑢𝑙(𝑎, 𝑏, 𝑐, 𝑑) = 𝑒 where 𝑎, 𝑏,

𝑐, 𝑑 are predefined random values. Furthermore, the Cloud node1 have to calculate and

send the average without exceeding its Time-Out (i.e., defined by the system

developer). A Clock clk2 is used to calculate time. Therefore, the acceptance test for the

Cloud node1 is: 𝐴𝑇𝑁𝑜𝑑𝑒1 = [(𝑇𝑙 ≤ 𝑇𝑣 ≤ 𝑇ℎ)&&(𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝐶𝑎𝑙𝑐𝑢𝑙(𝑎, 𝑏, 𝑐, 𝑑) =

𝑒)&&(𝑐𝑙𝑘2 ≤ 𝑁𝑜𝑑𝑒1𝑇𝑖𝑚𝑒𝑂𝑢𝑡)].The 𝐴𝑇𝑁𝑜𝑑𝑒1 is the guard of the transition 𝑇𝑒𝑠𝑡Node1

(Figure 4.9). If the node satisfies its acceptance test, 𝑇𝑣 will be saved on the next

checkpoint and the Clock clk2 will be initialized. If the acceptance test is not satisfied,

then the component is failed and it will be blocked on the state 𝑄𝑇.

The Cloud node 2:The main function of this component is to produce a forest report

state 𝑅 according to the temperature average 𝑇𝑣 received from the node1 and according

to predefined conditions 𝐶:𝑅 = 𝑓(𝑇𝑣, 𝐶). Therefore, we have to ensure that the

component is able to produce the correct report. For this aim, we can test the component

using the same function 𝑓 but with different data to see whether the component

produces the predicted report or not. Furthermore, taking and sending of decision must

be before the expiration of the Cloud node2 Time-Out. A Clock clk3 is used to calculate

the time in the Cloud node2. Finally, the acceptance test is: 𝐴𝑇𝑁𝑜𝑑𝑒2 = [(𝑓(𝑇′, 𝐶′) =

𝑅′)&&(𝑐𝑙𝑘3 ≤ 𝑁𝑜𝑑𝑒2𝑇𝑖𝑚𝑒𝑂𝑢𝑡]. The acceptance test 𝐴𝑇𝑁𝑜𝑑𝑒2 is the guard of the

transition 𝑇𝑒𝑠𝑡𝑁𝑜𝑑𝑒2. If the 𝐴𝑇𝑁𝑜𝑑𝑒2 is satisfied, a checkpoint will be taken at the

beginning of the next execution. Else, the Cloud node2 will be blocked on 𝑄𝑇and the

last correct report can be restored from the checkpoint.

Table 4.2.Key notations and meanings.

Symbol Description

clk2 Cloud node1 Clock

𝐶𝑜 Counter of received temperature

𝑆 Temperatures Sum

Chapter4 Fault Detection in Component-based Cloud Computing

49

T Received Temperature

Temp Table for saving the received temperatures

N
Number of temperatures needed for average

calculation

𝑇𝑣 Temperature Average

𝑇𝑙 Lowest received temperature

𝑇ℎ Highest received temperature

Checkpoint() Procedure of Checkpoint

AverageCalcul() Procedure of average temperature calculation

TestNode1 Procedure of the acceptance test

Algorithm 1: Cloud node1

Input: temperatures T;

Output: temperature Average𝑻𝒗;

[1]Co = 0;

[2]S = 0;

[3]AverageCalcul():

[4]Receive(T, Sensor);

[5]Co = Co + 1;

[6]Temp [Co] = T;

[7]If Co < N Then

[8]GoToAverageCalcul();

[9]Else

[10]For i=0 to N-1 do

[11]S=S+Temp[i];

[12]Temp[i] = 0;

[13]End for

[14] Tv= S / N;

[15]Send (Tv, Node2); // Send of " 𝑇𝑣” to the Cloud node2

[16]Co = 0; // re-initialization of Co

[17]S = 0; // re-initialization of S

[18]Go to AverageCalcul()

[19]End If

[20]End AverageCalcul()

The Cloud node1 has a main function which consists of “Calculating the average 𝑇𝑣

of 𝑁 temperatures received from the Sensor node”. In the Algorithm 1, in order to count

the number of received temperatures, a counter 𝐶𝑜 is used (line 1). First, the node1

receives the temperature 𝑇 from the Sensor node (line 4), the counter 𝐶𝑜 is then

incremented (line 5) and the temperature 𝑇 will be saved in the table 𝑇𝑒𝑚𝑝 (line 6). The

Chapter4 Fault Detection in Component-based Cloud Computing

50

Cloud node1 enters in a loop till reception of 𝑁 temperatures(𝑖. 𝑒. , 𝐶𝑜 = 𝑁). At that

moment, the temperature average can be calculated (line 9) by first calculus of the sum

of 𝑁 temperature (lines [10-13]). After calculation of the average 𝑇𝑣(line 14), it will be

sent to the Cloud node2 ([15]). A re-initialization for the next execution cycle will be

done(line 16-17).The notations used in the algorithms and their meanings are presented

in Table 9for a quick look-up.

Algorithm 2: Fail-Silent Cloud node1

Input: Temperatures T;

Output: temperature Average𝑻𝒗;

[1]clk2=0; // Clock Initialization

[2]Co = 0;

[3]S = 0;

[4]Checkpoint():

[5]Save (Tv);// save of the last correct Tv

[6]clk2=0;// re-initializations for the next execution cycle

[7] Co=0;

[8] S=0;

[9]GoToAverageCalcul();

[10]End Checkpoint

[11]AverageCalcul():

[12]Receive(T, Sensor);

[13]Co = Co + 1;

[14]Temp [Co] = T;

[15]If Co < N Then

[16]GoToAverageCalcul();

[17]Else

[18]Tl=Temp[1];

[19]Th =Temp[1];

[20]For i=0 to N-1 do

[21]S=S+Temp[i];

[22]If Temp[i]>Ththen// Calculation of the highest temperature

[23] Th= Temp[i];

[24]End If

[25]If Temp[i]<Tl then//Calculation of the lowest temperature

[26]Tl= Temp[i];

[27]End If

[28]Temp [i] = 0;

[29]End for

[30]Tv= S / N;

[31]Send (Tv, Node2);

[32]GoTo TestNode1();

[33]End If

[34]End AverageCalcul()

[35]TestNode1():

[36] If [(Tl ≤ Tv ≤ Th) &&(𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝐶𝑎𝑙𝑐𝑢𝑙(a, b, c, d) = e) && (𝑐𝑙𝑘2 ≤ 𝑁𝑜𝑑𝑒1𝑇𝑖𝑚𝑒𝑂𝑢𝑡]

then

[37] Go to Checkpoint();

[38] Else

Chapter4 Fault Detection in Component-based Cloud Computing

51

[39] Deadlock();//Deadlock in the case of non validation of the

Acceptance Test

[40] End If

[41] End TestNode1

In the Algorithm 2, The Fail-Silent Cloud node1 executes its main function of

calculating the average temperature but with consideration of fault detection and time

flow. In order to calculate time, a clock clk2 is used. It is initialized at the beginning of

each execution cycle to calculate time needed by the Cloud node1 to achieve its

function.

After the reception of 𝑁 temperatures by the Cloud node1, the highest temperature is

calculated and saved in 𝑻𝒉(lines[22-24]) and the lowest temperature 𝑻𝒉 also will be

calculated and saved (lines [25-27]). After calculating the average temperature 𝑻𝒗 (line

30), it will be sent to the Cloud node2 (line 31). Before starting a next execution cycle,

the output (i.e., 𝑇𝑣)must first pass the acceptance test within the procedure

TestNode1(line 35). The main role of this procedure is to judge the correctness of the

Cloud node1 outputs. The expression of the acceptance test (line 36) is composed of

three parts; the first one is:(𝑇𝑙 ≤ 𝑇𝑣 ≤ 𝑇ℎ). This part of test is to ensure that𝑇𝑣 is

comprised between the lowest temperature and the highest one. The second part of the

acceptance test is (𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝐶𝑎𝑙𝑐𝑢𝑙(𝑎, 𝑏, 𝑐, 𝑑) = 𝑒); it tests the calculus rigor of the

Cloud node1 by calculating a similar simplified operation such that the input (a, b, c, d)

and the output (e) are pre-known. The third part of the acceptance test is(𝑐𝑙𝑘2 ≤

𝑁𝑜𝑑𝑒1𝑇𝑖𝑚𝑒𝑂𝑢𝑡). It aims to test whether the outputs are produced after the Time-Out

expiration, which means that a response-time failure is occurred. In the case where the

acceptance test is passed, the next execution cycle of node1 will start by a checkpoint

(line 4) in order to save the last correct 𝑇𝑣 (line 5) and to initialize variables and clock

(lines [6-8]). In the worst case, when the acceptance test is not validated (i.e., at least

one part of the Acceptance Test expression is not satisfied) the Cloud node1 will be

considered as failed and it will remain in a deadlock state (line 39).

4.4.3 Time and Space complexity

In order to analyze time and space complexity of the previous algorithms, Big

Omega asymptotic notation will be used. This notation allows calculating both time and

space complexity of an algorithm. We have calculated the running expressions of the

Chapter4 Fault Detection in Component-based Cloud Computing

52

precedent algorithms: Cloud node1algorithm and Fail-Silent Cloud node1algorithm. We

have:

𝑓𝑁𝑜𝑑𝑒1(𝑛) = 13𝑛 + 2 ≤ 𝑔(𝑛) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 ≥ 0, and

𝑓𝐹𝑆𝑁𝑜𝑑𝑒1(𝑛) = 19𝑛 + 17 ≤ 𝑔(𝑛) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 ≥ 0

Where: 𝑔(𝑛) = 36𝑛 𝑓𝑜𝑟 𝑛 ≥ 0.

We can say that:

The time and space complexity of the functions 𝑓𝑁𝑜𝑑𝑒1(𝑛) and 𝑓𝐹𝑆𝑁𝑜𝑑𝑒1(𝑛) are

calculated according to the n values. If we assume that n represents the time unit, then

the graph plot in Figure 4.10 represents the time complexity of the Cloud node1

program. In this case, we can see that the functions 𝑓𝑁𝑜𝑑𝑒1(𝑛) and 𝑓𝐹𝑆𝑁𝑜𝑑𝑒1(𝑛)have the

same time growth rate. That means that the incorporation of the acceptance test in the

Cloud node1 program does not produce any big overhead. If we assume that n

represents the space unit, then the Figure 4.10 is a space complexity graph of the

functions 𝑓𝑁𝑜𝑑𝑒1(𝑛) and 𝑓𝐹𝑆𝑁𝑜𝑑𝑒1(𝑛) which are similar in space growth rate. It means

that the Fail-Silent Cloud node1 does not need a big storage space compared to the

primary Cloud node1 program.

Chapter4 Fault Detection in Component-based Cloud Computing

53

Figure 4.10.Time and space complexity of Cloud node1. fNode1 (resp. fFSNode1)

represents the Cloud node 1 complexity before (resp. After) the acceptance test

integration.

We can deduce that the time and space complexity of the failure detection process using

the acceptance test does not lead to any unreasonable overhead or calculus complexities

in the Cloud node1 (Figure 4.10). Finally, our proposed framework allows integration of

the failure detection over the cloud nodes without large costs. Hence, this is a fair and

practical solution to the issue.

4.4.4 Safety verification using model-checker

As noted previously, the acceptance test strategy aims to ensure safety in cloud

systems in spite of failures. In order to prove the efficiency of our framework, uppaal

4.0.14 model-checker for safety verification is used. First, a simulation of the Fail-Silent

Fire Control model is done to ensure the practicability of the model (See Figure 4.11).

After that, a set of safety properties that must be insured by the Fail-Silent model are

specified.

Chapter4 Fault Detection in Component-based Cloud Computing

54

Figure 4.11. Simulation of Fail-Silent Fire Control System model

The safety properties must be satisfied by the Fail-Silent model in order to say that it is

Safe. Safety properties are summarized in the Table 4.3.

Table 4.3. Safety property of Fire Control System model.

Safety Properties Safety Request

1. The sensor node never

produce random temperature

values.

A[]not (sensor.Qi and (T-Tprev)>sensor.alfa)

(n.b.,alfa value must be defined).

A[] not (sensor.Qi and (T>sensor.Tmax or T<sensor.Tmin))

(n.b., sensor.Tmin, sensor.Tmax values must be defined)

2. The Cloud node1 never earns

execution if it does not produce

the correct temperature average.

A[] not (CloudNode1.Qi and CloudNode1.Test!=<value>)

(n.b., <value> must be defined)

3. The Cloud node1 never

reaches the procedure

AverageCalcul with

temperature sum different of 0.

A[] not(CloudNode1.E and CoudNode1.S!=0)

4. The Cloud node2 never earns

execution if it does not produce

the correct decision

A[] not (CloudNode2. Qi and CloudNode2.Test!=<value>)

(n.b., <value> must be defined)

5. The sensor node never earns

execution if it sends a
E[] not (sensor.Qi and sensor.clk1>sensor.TimeOut)

Chapter4 Fault Detection in Component-based Cloud Computing

55

temperature after the expiration

of its Time-Out.

6. The Cloud node1 never earns

execution if it sends

temperature average after

expiration of its Time-Out.

E[] not (ClouNode1.Qi and

CloudNode1.clk2>CloudNode1.TimeOut)

7. The Cloud node2 never earns

execution if it sends decision

after expiration of its Time-Out.

E[]not (CloudNode2.Qi and CoudNode2.clk3>CloudNode2.

TimeOut)

8. The entire system never earns

execution if it produces

decisions after the expiration of

its Time-Out.

(n.b.,The clock of the last

component can be considered as

the global clock of the system).

E[] not (CloudNode2.Qi and

CloudNode2.clk3><SystemTimeOut>)

4.4.4.1 Safety Verification of fault-free model

First, the properties are verified on the fault free Fire Control model using the

variable values defined in Table 4.4 and the verification results are presented in Figure

4.12.

Table 4.4.Variable initialization used for the fault free verification.

Variable Value

𝑇𝑀𝑎𝑥 120

𝑇𝑀𝑖𝑛 -20

𝛼 (𝑎𝑙𝑓𝑎) 40

N 5

𝑠𝑒𝑛𝑠𝑜𝑟𝑇𝑖𝑚𝑒𝑂𝑢𝑡 10

𝑁𝑜𝑑𝑒1𝑇𝑖𝑚𝑒𝑂𝑢𝑡 15

𝑁𝑜𝑑𝑒2𝑇𝑖𝑚𝑒𝑂𝑢𝑡 25

C If temperature average>60 then, Fire Alarm End If

Chapter4 Fault Detection in Component-based Cloud Computing

56

Figure 4.12.safety properties verification on fault-free Fail-Silent Fire Control model.

We can see in the Figure 4.12 that all the safety properties are verified on the

fault free Fail-Silent Control model which means that the model is safe.

Table 4.5. Faults injected in the Fail-Silent Fire control model.

Fault Fault Type Component Injection

Safety

property

in Table

10

Production of

random values.

Transient

hardware
Sensor

High temperature value +

high temperature variance
1

Incorrect calculation Software Cloud node1
Algorithm 2-line20, i:=1

instead of i:=0
 2

Incorrect calculation Software Cloud node1
Algorithm 2-line 8, the

instruction S=0 is deleted
 2-3

Production of

random decision

Transient

hardware
Cloud node2 Incorrect result 4

Component Time-

out

Response-

Time
Sensor

Add a loop on the state

sensor.Qt (see Figure

4.13)to produce a response-

time failure.

 5

Component Time-

out

Response-

Time
Cloud node1

Add a loop on the state

CloudNode1.Qt (see Figure

4.13) that produces +10 of

execution time

 6

Component Time-

out

Response

Time
Cloud node2

Add a loop on the state

CloudNode2.Qt (see Figure

4.13) that produces +10 of

execution time

 7-8

Chapter4 Fault Detection in Component-based Cloud Computing

57

4.4.4.2 Safety verification of failed model

After safety verification on the fault free model, the safety verification is done

on the failed model. The safety properties of the Table 4.3 will be verified on the same

Fail-Silent Fire Control model with the same variables but this time with injected faults.

A set of faults are injected in the model, in order to make the model failed and to test

whether the acceptance test strategy can preserve safety in spite of faults. The set of

injected faults are summarized in Table 4.5. For each injected fault, some details are

given such as: the type of fault, the component, how the injection is applied and the

safety property violated.

After injection of the faults, the produced model is presented in Figure 4.13. After that,

the safety properties (Table 4.3) are verified on the failed model and the verification

results are presented in the Figure 4.14.

Figure 4.13.Fail-Silent Fire Control model after faults injection.

Figure 4.14.Safety verification of the failed Fail-Silent Control model.

As can be seen in Figure 4.14, all the properties are satisfied by the failed Fire

Control model. Hence, all safety properties that are satisfied on the correct model are

also satisfied on the failed model. This means that the Fail-Silent behavior of the

acceptance test strategy preserves safety in spite of presence of failures.

Chapter4 Fault Detection in Component-based Cloud Computing

58

Finally, we can say that the acceptance test strategy is efficient enough for safety

insurance in the cloud Systems.

4.5 Comparative Analysis

The comparisons between IDS, Heartbeat/Pinging and acceptance test strategies

are summarized in Table 4.6, where the main differences between the strategies are

mentioned:

Strategy based on: The strategy of IDS is based on the cloud monitoring in which the

Cloud behavior is compared to a previous database which is different than the heartbeat

strategy that is based on keep-alive message transmission. In the acceptance test

strategy, the failure detection is distributed on the cloud nodes where each node has its

own acceptance test that can validate its behavior.

Monitoring process centralized or distributed: It is centralized in IDS. In heartbeat,

each failure detector node is responsible for a set of cloud nodes; therefore, we can say

that it is partially-distributed. In the acceptance test strategy, each node has its own

acceptance test. Hence, the failure detection process is distributed over all the cloud

nodes.

Detected failure origin: IDS can detect any malicious attack over the cloud nodes or

network where the heartbeat strategy can detect only the hardware crashes. The

acceptance test strategy can detect any abnormal behavior caused by software faults or

transient hardware faults.

Alarm causes: The key question is: In which cases the alarm announces that there is a

failure? In the IDS strategy, the failure alarm is raised whenever a deviation from the

normal behavior is monitored on the cloud system. In the heartbeat strategy, if the cloud

node does not send any alive-message to the detector node before the timeout

expiration, the failure alarm is raised. In the acceptance test strategy, if any abnormal

behavior is detected by the acceptance test over the cloud node, the failure alarm is

raised.

Property insurance: Which non-functional property is ensured by the strategy? IDS can

insure the safety property by protecting the cloud system from malicious attacks. The

heartbeat strategy can ensure only liveness of the cloud nodes whereas the acceptance

test strategy ensures the safety property by protecting cloud nodes from software faults

and hardware transient failures.

Chapter4 Fault Detection in Component-based Cloud Computing

59

Monitored components: In IDS, monitored components are the cloud nodes and the

network connections. In the heartbeat and the acceptance test strategies, monitored

components are only cloud nodes.

Failure detector component: In IDS, it is the system monitor. In heartbeat, the detector

nodes are charged by the crash detection. In the acceptance test strategy, each cloud

node is responsible for its failure detection process.

Failure detection accuracy: When we talk about the accuracy of the failure detection

strategy, we respond to the question: Is there really a failure when an alarm is raised?

The failure detection accuracy strongly relies on the monitoring process architecture

(i.e., Centralized, partially-distributed, or distributed) which means that the distance

between the failure detector and cloud nodes is very important in the cloud network. We

have used the scale shown in Table 4.7:

As noted before, in IDS strategy, the most known problem is the False Alarm Rate.

This is because of the difficulty of monitoring a huge number of cloud nodes by a

central monitoring approach which would produce high distance between the monitor

and the monitored components. Therefore, we can say that the accuracy of IDS is low.

However in the heartbeat strategy, monitoring is partially-distributed where each crash

detector is responsible for a set of nodes. The accuracy of crash alarm here is related to

the network conditions and timeout but the distance between the monitor and the

monitored component is medium and therefore, the accuracy is medium level compared

to that of IDS. In the distributed monitoring such as the acceptance test strategy, the

failure detector is the Cloud node; there is no distance between the monitor and the

monitored component, thus the failure alarm is raised only in the case of failure. Hence,

the accuracy of the failure alarm is high compared to that of IDS and heartbeat.

Component-based Approach: IDS and heartbeat strategies do not deal with component-

based architecture of the cloud systems but the acceptance test strategy is based on this

approach.

Scalability: The IDS does not support the scalability because it is difficult to provide

frequent database knowledge for scalable cloud systems. The heartbeat strategy is

known as large-scale crash detection strategy because it supports the scalability. The

acceptance test strategy is based on the component-based approach, where atomic cloud

nodes are coordinated to construct the global cloud system. The component-based

Chapter4 Fault Detection in Component-based Cloud Computing

60

approach supports the scalability. Furthermore, the fault detection strategy using the

acceptance test is independent from the architecture of the cloud system because it

depends only on the cloud node behavior. Therefore, the acceptance test strategy is

scalable.

Costs: For the IDS, the monitoring algorithms need complicated algorithms, large data

and long time. The heartbeat strategy needs large bandwidth for network connections.

The acceptance test strategy does not need large costs because Cloud nodes will carry

on the monitoring process in addition to their main functions.

4.6 Conclusion

In this chapter, a fault detection framework is proposed for cloud computing

systems by using Recovery Blocks’ acceptance test. The proposed framework aims to

construct Fail-Silent cloud modules which have the ability of self-fault detection. In

this, the detection process of transient hardware faults, software faults, and response-

time failures is performed locally on each computing machine in the cloud system. The

proposed strategy is performed on a case study, time and space complexities are

estimated and efficiency is proved using verification by model-checker.

Chapter4 Fault Detection in Component-based Cloud Computing

61

Table 4.6. Comparison of various aspects of IDS, Heartbeat/Pinging, and acceptance test strategies.

Features

Approaches
S

tr
a

te
g

y
 b

a
se

d
 o

n

C
en

tr
a

li
ze

d
/

D
is

tr
ib

u
te

d

M
o

n
it

o
ri

n
g

 P
ro

ce
ss

D
et

ec
te

d
 F

a
il

u
re

O
ri

g
in

A
la

rm
 C

a
u

se
s

P
ro

p
er

ty
 i

n
su

ra
n

ce

M
o

n
it

o
re

d

C
o

m
p

o
n

en
t

F
a

il
u

re
 D

et
ec

to
r

C
o

m
p

o
n

en
t

A
cc

u
ra

cy

C
o

m
p

o
n

en
t-

b
a

se
d

A
p

p
ro

a
ch

S
ca

la
b

il
it

y

C
o

st
s

Intrusion/Anomaly

Detection Systems

(IDS)

Cloud

System

Monitoring

Centralized
Malicious

attacks

Behavior

Deviation
Safety

Nodes and

network

Connections

System

Monitor
Low No No

Complicate

algorithms,

Time&Data

Heartbeat and

Pinging

Keep-Alive

Messages

partially-

Distributed

Hardware

crash

Failures

Timeout

Expiration
Liveness Nodes

Node

Detector
Medium No Yes

Large

network

connections

bandwidth

Acceptance Test

Strategy

Acceptance

Test
Distributed

Software

Faults

&Transient

Hardware

faults

Acceptance

Test no

validation

Safety Nodes Nodes High Yes Yes

Reliable

Acceptance

Test

Chapter4 Fault Detection in Component-based Cloud Computing

62

Table 4.7. Accuracy scale.

Accuracy

Distance

High Medium Low

Big - - X

Medium - X -

Small X - -

63

Chapter Five

Fault Masking in Component-based Cloud

Computing

Summary

5.1 Introduction…………………………………………………………………. 63

5.2 Recovery Blocks for Fault-Masking ……………………………………….. 64

 5.2.1 Fault-Masking atomic component……………………………………… 65

 5.2.2 Fault-Masking composite component …………………………………. 66

 5.2.2.1 Rendevous connector………………………………………………. 66

 5.2.2.2 Broadcast connector………………………………………………... 67

5.3 A Case Study………………………………………………………………... 67

 5.3.1 Construction of Fault-Masking model……………………………….. 67

 5.3.2 Time and Space complexity……………………………………………. 71

 5.3.3 Distributed Recovery Blocks Scheme………………………………….. 72

 5.3.3.1 Construction of Fault-Masking model using DRB scheme…… 73

 5.3.3.2 Liveness verification using model-checker………………………… 78

 a. Liveness verification on the fault-free model…………………………… 80

 b. Liveness verification on the failed model………………………............. 80

5.4 Comparative Analysis..……………………………………………………... 81

5.5 Conclusion…………………………………………………………………... 84

5.1 Introduction

 Fault tolerance has always been an active line of research in design and

implementation of dependable systems. It involves providing a system with the means

to handle unexpected defects, so that the system meets its specification in the presence

of faults. Many Techniques are used to create the fault tolerance capability in cloud

systems. They can be divided into two main categories: Proactive Fault Tolerance (i.e.,

Software Rejuvenation, Pre-emptive migration and Self-healing) and Reactive Fault

Tolerance (i.e., Checkpointing, Job Migration, Replication, SGuard, Retry …etc) [22-

27][94][98][101][102][103]. Fault tolerance techniques used in cloud computing are

Chapter5 Fault Masking in Component-based Cloud Computing

64

based on time and space redundancy which can tolerate only hardware faults without

dealing with software faults. According to our thorough investigation of the area, there

is clearly a lack of formal approach that rigorously relates cloud computing with

software fault tolerance concerns. In this chapter, a strategy of Fault-Masking in

component-based cloud computing based on Recovery Blocks is presented. The aim is

to construct reliable and available cloud nodes using the acceptance test and forward

recovery.

5.2 Recovery Blocks for Fault-Masking

In order to construct the Fault-Masking component, Recovery Blocks scheme is

used. A Fault-Masking node is able to satisfy safety and liveness [16][17] specification

properties in spite of faults. That’s means that it can detect and tolerate failures at just

appearance and continue to offer its main service without any perturbation. The Fault-

Masking node is a self-fault detector and a self-stabilizer in the same time. A node that

ensures safety property means that it never reaches a non-desirable state whereas a node

with liveness property insurance means that it always reaches a stable state after any

fault detection. In other meaning, the Fault-Masking node offers secure and continued

service in spite of failures.

Figure 5.1. Fault-Masking node behavior

The Figure 5.1 shows the Fault-Masking node behavior. In which the cloud node earns

execution (i.e., left state) since the behavior is correct or acceptable. At the moment of

fault detection, the cloud node will stop operating and then will enter in a forward

recovery phase (Figure 5.1. the right state). In the forward recovery an alternate try

block will be used to recover from the failure. After the recovery phase, the cloud node

behavior will reach a stable state with an acceptable behavior.

Correct/Acceptable

Behavior
[AT]

Fault Detection
[¬𝐴𝑇]

Fault-Masking
[𝐴𝑇]

Roll-Forward

Recovery

Chapter5 Fault Masking in Component-based Cloud Computing

65

Algorithm of Fault-Masking based on Recovery Blocks

Ensure Acceptance Test By

 Primary Try block

Else By

 Alternate Try Block

End Recovery Blocks

5.2.1 Fault-Masking atomic component

Definition1: an atomic component is defined as a tuple 𝐵 = (𝑄, 𝑃, 𝐵𝑒ℎ, 𝑋) such that:

𝑄: is a set of states {𝑞0, 𝑞1, … , 𝑞𝑛};

𝑃: is a set of communication ports {𝑝0, 𝑝1, … , 𝑝𝑛};

𝐵𝑒ℎ = {→/ τ ∈→= 𝑄 𝐺 𝐹 𝑄 } is the behavior of the atomic component 𝐵. It is

composed of a set of transitions. Each transition contains one guard and a set of internal

functions. The main behavior of an atomic component is considered as its Primary

behavior.

𝑋: is a set of variables {𝑥𝑖} which are manipulated by the internal functions, 𝑓𝑖;

Definition 2: An acceptance test 𝐴𝑇𝐵(𝑋) of an atomic component 𝐵 = (𝑄, 𝑃, 𝐵𝑒ℎ, 𝑋) is

a boolean expression on the set of variables, 𝑋. The acceptance test validates the

correctness of 𝐵’s final results and ensures that they do not lead to disastrous

consequence even if they are not the expected results. The acceptance test ensures

Safety properties in the atomic component. An atomic component that has an acceptance

test is a Fail-Silent atomic component.

Definition 3: A Fail-Silent atomic component, 𝐹𝑆𝐵 = (𝑄, 𝑃, 𝐵𝑒ℎ, 𝑋, 𝐴𝑇𝐵) is a self-

fault detector, it can ensure Safety properties using the acceptance test 𝐴𝑇𝐵. In the case

of fault detection, the atomic component 𝐹𝑆𝐵will pass to a deadlock state till recovery

achievement. The 𝜔-regular expression of the Fail-Silent atomic component is [(𝑐/

𝑎)∗𝑓].

A Fail-Silent atomic component has a correct behavior (𝑐) or an acceptable

behavior (𝑎). At just fault detection by the AT, the atomic component will be

considered as failed (f) and it will be blocked immediately attending the recovery phase.

Chapter5 Fault Masking in Component-based Cloud Computing

66

Definition 4: a Primary behavior of a Fail-Silent atomic component is the main

behavior that offers desired results. We write: 𝐹𝑆𝐵 = (𝑄, 𝑃, 𝐵𝑒ℎ𝑃𝑟𝑖𝑚𝑎𝑟𝑦 , 𝑋, 𝐴𝑇𝐵).

𝐵𝑒ℎ𝑃𝑟𝑖𝑚𝑎𝑟𝑦 : is the Primary behavior. It performs the desired operation.

Definition 5: An Alternate behavior 𝐵𝑒ℎ𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑒of the Fail-Silent atomic component

performs the operation in different manner. It aims to replace the Primary behavior in

the case of fault detection.

By using the Alternate behavior, the component can performs a roll-forward recovery

phase till the reach of a stable state (i.e., correct (c) or acceptable (a) state). The 𝜔-

regular expression which design the main role of the Alternate behavior in an atomic

component is 𝑟∗(𝑐/𝑎) such that:

𝑟 : Recovery;

𝑐 : Correct behavior;

𝑎 : Acceptable behavior.

Lemma 1: A Fail-Silent atomic component that uses an Alternate behavior

(𝑖. 𝑒. , 𝐵𝑒ℎ𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑒) can ensure Liveness property even in the presence of faults.

Theorem 1: The use of an Alternate behavior in the Fail-Silent atomic component can

produce a Fault-Masking component that ensures both Safety and Liveness properties in

the same time. The 𝜔-regular expression of the Fault-Masking atomic component

is [(𝑐/𝑎)∗𝑓 𝑟∗ (𝑐/𝑎)]𝜔.

Definition 6: a Fault-Masking atomic component is a component that can preserve and

Liveness specification properties in presence of faults. We write:

 𝐹𝑀𝐵 = (𝑄, 𝑃, 𝐵𝑒ℎ𝑃𝑟𝑖𝑚𝑎𝑟𝑦 , 𝐵𝑒ℎ𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑒 , 𝑋, 𝐴𝑇𝐵) Such that:

 𝐵𝑒ℎ𝑃𝑟𝑖𝑚𝑎𝑟𝑦 : is the Primary behavior and

𝐵𝑒ℎ𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑒 : is the Alternate behavior. It is required to perform the desired operation

in a different way.

5.2.2 Fault-Masking composite component

A composite component 𝐵 = (𝐵1 … 𝐵𝑛) is a set of atomic components 𝐵𝑖=1..𝑛

glued by the set of connectors = {𝛽𝑖=1..𝑙}. As seen in the chapter 3 - Section 3.2.3, a

connector in a composite component can be a rendezvous or broadcast connector.

5.2.2.1 Rendezvous connector

If we have the rendezvous connector 𝛾 such that 𝛾 = {𝑝𝑖=1..𝑛, 𝑝𝑖𝐵𝑖}, the only

possible interaction is 𝑎𝑖 = 𝐵1 𝐵2 𝐵3 … 𝐵𝑛 which contains all the atomic components

Chapter5 Fault Masking in Component-based Cloud Computing

67

involved in the connector 𝛾. Therefore, the failure of one atomic component will

directly infect the others atomic components. This means that ∀ 𝐵1≤𝑖≤𝑛 ∈ 𝛾; 𝑖𝑓 (𝐵𝑖) is

failed, then ∀𝐵𝑗≠𝑖𝑎𝑛𝑑𝐵𝑗 ∈ 𝛾, 𝐵𝑗 will be failed too.

Lemma 2: Let 𝐵 = (𝐵1 … 𝐵𝑛) a composite component. In order to construct a Fault-

Masking rendezvous connector , all the atomic components 𝐵1 … 𝐵𝑛 involved in it

must be Fault- Masking as well. 𝐹𝑀𝑅𝑒𝑛𝑑𝑒𝑧𝑣𝑜𝑢𝑠(𝛾) = {𝐹𝑀𝐵1, 𝐹𝑀𝐵2, … , 𝐹𝑀𝐵𝑛}.

5.2.2.2 Broadcast connector

If we have the broadcast connector 𝛾 = {𝑝𝑖=2..𝑛,

𝑝𝑖𝐵𝑖≠𝑘 𝑎𝑛𝑑 𝐵𝑘 𝑖𝑠 𝐵𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡 𝑖𝑛𝑖𝑡𝑖𝑎𝑡𝑜𝑟}. The possible set of interactions in this case

are those containing at least one instance of 𝐵𝑘. The minimum interaction is 𝑎1 = {𝐵𝑘}

which contains only the broadcast initiator where the maximum interaction is 𝑎𝑛 =

{𝐵𝑘𝐵2𝐵3 … 𝐵𝑛} which contains all the atomic components involved in the connector 𝛾.

Lemma 3: Let 𝐵 = (𝐵𝑘 … 𝐵𝑛) a composite component where is a broadcast

connector. To construct a Fault-Masking broadcast connector 𝛾, at least the broadcast

initiator 𝐵𝑘 must be Fault-Masking: 𝐹𝑀𝐵𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡(𝛾) = {𝐹𝑀𝐵𝑘, 𝐵2, … , 𝐵𝑛 }.

Theorem 2. A composite component that is composed of a set of Fault-Masking atomic

component is Fault-Masking composite component: 𝐹𝑀𝐵 =

𝛾(𝐹𝑀𝐵1, 𝐹𝑀𝐵2, … , 𝐹𝑀𝐵𝑛).

5.3 A Case Study

5.3.1 Construction of Fault-Masking models

In order to describe the construction of Fault-Masking models, we will present a

case study of Fire Control System (seen in chapter 4-Section 4.4.1). The Figure 5.2

presents the Cloud node 1 model.

Chapter5 Fault Masking in Component-based Cloud Computing

68

Figure 5.2 Cloud node 1

𝐶𝑙𝑜𝑢𝑑𝑁𝑜𝑑𝑒1 = (𝑄, 𝑃, 𝐵𝑒ℎ, 𝑋) where:

𝑄 = {𝐶, 𝐷, 𝐸}

 𝑃 = {𝑆𝑎𝑣𝑒, 𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝐶𝑎𝑙𝑐𝑢𝑙, 𝑆𝑒𝑛𝑑 }

𝐵𝑒ℎ = {< 𝐶, 𝑠𝑎𝑣𝑒(𝑇𝑣), 𝐷 >, < 𝐷, 𝑅𝑒𝑐𝑒𝑖𝑣𝑒(𝑇), 𝐷 >, < 𝐷, 𝑇𝑣 = 𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝐶𝑎𝑙𝑐𝑢𝑙, 𝐸, >

, < 𝐸, 𝑆𝑒𝑛𝑑 (𝑇𝑣), 𝐶 >}.

𝑋 = {𝑇𝑣}.

Algorithm 1: Cloud node1

Input: temperatures T;

Output: temperature Average𝐓𝐯;

[1]Co = 0;

[2]S = 0;

[3]ReceiveTemperatures()

[4] Receive(T, Sensor);

[5] Co = Co + 1;

[6] Temp [Co] = T;

[7] If Co < N Then

[8] GoToReceiveTemperatures();

[9] Else

[10] AverageCalcul():

[11] For i=0 to N-1 do

[12] S=S+Temp[i];

[13] Temp[i] = 0;

[14] End for

[15] Tv= S / N;

[16] EndAverageCalcul()

[17] Send (Tv, Node2); // Send of " Tv” to the Cloud

node2

[18] Co = 0; // re-initialization of Co

Receive(T)

Chapter5 Fault Masking in Component-based Cloud Computing

69

[19] S = 0; // re-initialization of S

[20] Go to ReceiveTemperatures()

[21]End If

For constructing the Fault-Masking model of the Cloud node1. An acceptance

test and an Alternate behavior must be incorporated in the model. The acceptance test

can be inserted using the procedure described in chapter 4. By this way, we will have a

Fail-Silent component. Then, the Alternate behavior must be inserted in order to

construct the Fault-Masking component.

Figure 5.3 Fault-Masking Cloud node 1

The Fault-Masking model of the Cloud node 1 in the Figure 5.3 is composed of:

𝐹𝑀𝐶𝑙𝑜𝑢𝑑𝑁𝑜𝑑𝑒1 = (𝑄′, 𝑃′, 𝐵𝑒ℎ𝑃𝑟𝑖𝑚𝑎𝑟𝑦, 𝐵𝑒ℎ𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑒 , 𝑋, 𝐴𝑇𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟) such that :

𝑄′ = {𝐶, 𝐷, 𝐸, 𝐹, 𝑞}.

𝑃′

= {𝑆𝑎𝑣𝑒, 𝐴𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝐶𝑎𝑙𝑐𝑢𝑙, 𝐵𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝐶𝑎𝑙𝑐𝑢𝑙, 𝑃𝑟𝑖𝑚𝑎𝑟𝑦𝐹𝑎𝑖𝑙, 𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦, 𝑇𝑒𝑠𝑡, 𝑆𝑒𝑛𝑑 }

𝐵𝑒ℎ𝑃𝑟𝑖𝑚𝑎𝑟𝑦 = {< 𝐶, 𝑠𝑎𝑣𝑒(𝑇𝑣), 𝐷 >, < 𝐷, 𝑇𝑣 = 𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝐶𝑎𝑙𝑐𝑢𝑙, 𝐸, >, < 𝐸, 𝑇𝑒𝑠𝑡, [𝐴𝑇],

𝐹 >, < 𝐹, 𝑆𝑒𝑛𝑑(𝑇𝑣), 𝐶 >}.

𝐵𝑒ℎ𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑒 = {< 𝐸, [¬𝐴𝑇], 𝑃𝑟𝑖𝑚𝑎𝑟𝑦𝐹𝑎𝑖𝑙 = 𝑇𝑟𝑢𝑒, 𝑞 >, < 𝑞, 𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦, 𝐷 >, <

𝐷, 𝑇𝑣 = 𝐵𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝐶𝑎𝑙𝑐𝑢𝑙, 𝐸 >, < 𝐸, 𝑇𝑒𝑠𝑡, [𝐴𝑇], 𝐹 >, < 𝐹, 𝑆𝑒𝑛𝑑(𝑇𝑣), 𝐶 >}.

The Fault-Masking Cloud node1 algorithm is the following:

D

E

𝑇𝑣 =

𝐴𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝐶𝑎𝑙𝑐𝑢𝑙()

𝐹

𝐶

Save (𝑇𝑣)
 Initialization

 Test

[𝐴𝑇]

𝑇𝑣 =

𝐵𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝐶𝑎𝑙𝑐𝑢𝑙 ()

Recovery

Input Buffer

𝑞

[¬ AT]

PrimaryFail

Send (𝑇𝑣)

 Send

Chapter5 Fault Masking in Component-based Cloud Computing

70

Algorithm 2: Fault-Masking Cloud node1

Input: Temperatures T;

Output: temperature Average𝐓𝐯;

[1]clk2=0; // Clock Initialization

[2]Co = 0;

[3]S = 0;

[4] Checkpoint():

[5] Save (Tv);// save of the last correct Tv

[6] clk2=0;// re-initializations for the next execution cycle

[7] Co=0;

[8] S=0;

[9] GoToReceiveTemperatures();

[10] End Checkpoint

[11]ReceiveTemperatures():

[12] Receive(T, Sensor);

[13] Co = Co + 1;

[14] Temp [Co] = T;

[15] If Co < N Then

[16] GoToReceiveTemperatures();

[17] Else

[18] Tl=Temp[1];

[19] Th =Temp[1];

[20] For i=0 to N-1 do

[21] If Temp[i]>Ththen// Calculation of the highest temperature

[22] Th= Temp[i];

[23] End If

[24] If Temp[i]<Tl then//Calculation of the lowest temperature

[25] Tl= Temp[i];

[26] End If

[27] EndFor

[28] GoToAaverageCalcul()

[29]EndReceiveTemperatures()

[30]AaverageCalcul()

[31] For i=0 to N-1 do

[32] S=S+Temp[i];

[33] Temp [i] = 0;

[34] End for

[35] Tv= S / N;

[36] If [(Tl ≤ Tv ≤ Th) && (𝑐𝑙𝑘2 ≤ Node1TimeOut] then

[37] Send (Tv, Node2);

[38] Go to Checkpoint();

[39] Else

[40] GoToBaverageCalcul();//non validation of the Acceptance

Test

[41] End If

[42] End AverageCalcul()

[43] BaverageCalcul():

[44] Tv = (Temp[0] + Temp[n − 1])/2
[45] If [(Tl ≤ Tv ≤ Th) && (𝑐𝑙𝑘2 ≤ Node1TimeOut] then

[46] Send (Tv, Node2);

[47] Go to Checkpoint();

[48] Else

Chapter5 Fault Masking in Component-based Cloud Computing

71

[49] FailedRecoveryBlocks();//non validation of the Acceptance

Test

[50] End If

[51]End BaverageCalcul()

As said before, the construction of a Fault-Masking model must follow two

phase: the construction of the Fail-Silent model then the incorporation of the forward

recovery to reach the Fault-Masking model. The Algorithm 2 describes the fault –

Masking model of the Cloud node 1. The main behavior of the Cloud node1 is the

calcul of the average temperature 𝑇𝑣 of 𝑁 received temperatures. Then, it sends the

output to Cloud node2. The Primary behavior of Cloud node1 is designed by the

procedure 𝐴𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝐶𝑎𝑙𝑐𝑢𝑙 [line 30]. After the calcul of 𝑇𝑣 , it must pass the

acceptance test [line 36]. If 𝑇𝑣 satisfies the test, it will be sent to Cloud node 2, else a

forward recovery will be provided by invoking the Alternate behavior which is designed

by the procedure 𝐵𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝐶𝑎𝑙𝑐𝑢𝑙 [line 40]. By using the alternate procedure [line 43-

44], the average temperature 𝑇𝑣 will be calculated by using only the first received

temperature and the last one. At the end, the result must pass the acceptance test to

validate its correctness. If 𝑇𝑣 is accepted then it will be sent to the successor else the

recovery blocks will be considered as failed.

5.3.2 Time and space complexity

 In order to analyze time and space complexity of previous algorithms, Big

Omega asymptotic notation is used. We have calculated the running expressions of the

Cloud node1 algorithm and for the Fault-Masking Cloud node1algorithm. We have:

𝑓𝑁𝑜𝑑𝑒1(𝑛) = 15𝑛 + 9 ≤ 𝑔(𝑛) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 ≥ 0, and

𝑓𝐹𝑀𝑁𝑜𝑑𝑒1(𝑛) = 25𝑛 + 34 ≤ 𝑔(𝑛) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 ≥ 0

Where: 𝑔(𝑛) = 59𝑛 𝑓𝑜𝑟 𝑛 ≥ 0.

We can say that:

The time and space complexity of the functions 𝑓𝑁𝑜𝑑𝑒1(𝑛) and 𝑓𝐹𝑀𝑁𝑜𝑑𝑒1(𝑛) are

calculated according to the n values. If we assume that n represents the time unit, then

the graph plot in Figure 5.4 represents the time complexity of the Cloud node1

Chapter5 Fault Masking in Component-based Cloud Computing

72

algorithm. In this case, we can see that the functions 𝑓𝑁𝑜𝑑𝑒1(𝑛) and 𝑓𝐹𝑀𝑁𝑜𝑑𝑒1(𝑛)have

the same time growth rate. That means that the incorporation of the fault masking

strategy in the Cloud node1 program does not produce any big overhead. If we assume

that n represents the space unit, then the Figure 5.4 is a space complexity graph of the

functions 𝑓𝑁𝑜𝑑𝑒1(𝑛) and 𝑓𝐹𝑀𝑁𝑜𝑑𝑒1(𝑛)which are similar in space growth rate. It means

that the Fault-Masking Cloud node1 does not need a big storage space compared to the

primary Cloud node1 program.

Figure 5.4 Time and space complexity of Cloud node1. fNode1 (resp. fFMNode1)

represents the Cloud node 1 complexity before (resp. After) the Fault Masking

Integration.

We can deduce that the time and space complexity of the Fault-Masking process

using the acceptance test and the try blocks does not lead to any unreasonable overhead

or calculus complexities in the Cloud node1 (Figure 5.4).

5.3.3 Distributed Recovery Blocks scheme

Recovery Blocks is an efficient mechanism for Fault-Masking, but it is based on

the sequential execution (i.e., if the primary block fail then the alternate block will take

place) which provide a latency in response time delays. This last is an important key in

real-time applications especially in Cloud applications. In order to adapt Recovery

Chapter5 Fault Masking in Component-based Cloud Computing

73

Blocks scheme for distributed real time constraints, Kim Kan proposed many

architectures for Distributed Recovery Blocks. In this section, we will apply DRB

scheme on the Cloud node1 model. It is composed of two nodes 𝑋 and 𝑌. Each node is

considered as Fault Masking atomic component. 𝑋 and 𝑌 are performed in distributed

and parallel execution where the Primary node is the responsible for response delivery.

Each Fault-Masking node has two try blocks 𝐴 and 𝐵. 𝐴 returns the desired output

whereas 𝐵 returns an acceptable one. The primary node 𝑋 performs 𝐴 as the primary

block and 𝐵 as the Alternate block. The backup node 𝑌 performs the try blocks in

inverse way, by executing 𝐵 as the Primary block and 𝐴 as the Alternate one.

We assume that only one node fails at a moment. This assumption aims to

ensure that at least one node is operator and hence it can send an output to the successor.

5.3.3.1 Construction of Fault-Masking model using DRB scheme

Figure 5.5: Cloud node1 BIP model - Fire Control system.

The Figure 5.5 is the BIP model of the Cloud node1. It is only Fail-Silent but not Fault-

Masking model. The Figure 5.6 presents the Fault-Masking model of Cloud node1

using the DRB scheme.

Chapter5 Fault Masking in Component-based Cloud Computing

74

Figure 5.6. Fault-Masking Cloud node1 based on DRB scheme

The Figure 5.6 presents the Fault-Masking model using the DRB scheme of the Cloud

node1. It is composed of two nodes a Primary node and a Backup node, each node is a

Fault-Masking that uses an acceptance test for fault detection and two try blocks for

forward recovery. Therefore, software and hardware faults can be handled in the same

manner. At the beginning, each node performs its Primary block. The Primary node

execute the primary block that calculate the temperature average using Aaveragecalcul

which produces the desired result while the Backup node performs the Alternate block

that uses the procedure Baveragecalcul to produce the correct but not the desired

average. If the Primary succeeds to validate the acceptance test, the temperature 𝑇𝑣will

be sent to the successor and will be saved on the local database. On the Backup node, if

𝑇𝑣 validates the acceptance test it will be saved on the local database. Only the result

produced by the Primary will be sent to the successor. In the case where the Primary

node fails, it will send a message to the Backup node to inform it about the Primary

D

𝑇𝑣 =

𝐴𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝐶𝑎𝑙𝑐𝑢𝑙()

𝐹

𝐶

Save (𝑇𝑣)

Initialization

[PrimaryFail]

Send (𝑇𝑣)

[𝐴𝑇]

𝑇𝑣 =

𝐵𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝐶𝑎𝑙𝑐𝑢𝑙 ()

D’

E’ 𝐹’

𝐶′

Save(𝑇𝑣)

𝑇𝑣 =

𝐵𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝐶𝑎𝑙𝑐𝑢𝑙()

 [𝐴𝑇]

Recovery

 Backup Node Behavior

Local data base

Successor

𝑇𝑣 =

𝐴𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝐶𝑎𝑙𝑐𝑢𝑙()

Recovery

E

𝑞

[¬ AT]

Send (𝑇𝑣)

Send Send

Local data base

 Primary

Node Behavior

Input Data

PrimaryFail PrimaryFail

q

[¬ AT]

PrimaryFail

Chapter5 Fault Masking in Component-based Cloud Computing

75

failure. At that moment, the Backup node sends its result to the successor and saves it

on its own database. By that, the failure of the Primary will not affect the response-time

delay of the component. In the same time the failed Primary node will perform a

forward recovery using its Alternate block that performs the procedure BaverageCalcul.

The Primary node failure provides a reverse roles on the nodes by which the Backup

node will take the role of the Primary node while the failed Primary will be the Backup

node. For the next execution cycle, the new Primary performs the Primary try block

while the new Backup use the Alternate try block (i.e., the Primary, always, performs

the Primary try block first while the Backup, always, performs the alternate try block).

The roles reverse of the nodes will be applied with each Primary node failure. By that,

the recovery time of the Primary does not affect the response time and the Primary

failure has no effect on the service quality of the component. In the case where the

Backup node fails, it performs a forward recovery silently using its alternate try block.

The DRB scheme allows masking hardware faults by the use of physical

redundancy(i.e., Primary node and Backup node), masking software faults by using

design diversity (i.e., Primary try block and Alternate try block) and masking response-

time faults by the parallelism execution of same input data on two different nodes.

Table 5.1: key notations and meanings

Symbol Description

X The Primary node

Y The Backup node

A The Primary try block

B The Alternate try block

𝑃𝑟𝑖𝑚𝑎𝑟𝑦𝐶𝑙𝑜𝑐𝑘 The Primary node clock

𝐵𝑎𝑐𝑘𝑢𝑝𝐶𝑙𝑜𝑐𝑘 The Backup node clock

𝐴𝑇 The acceptance test expression

𝑇𝑣 The average temperature

Successor The successor node

PrimaryFail Boolean that refers the failure of the Primary node

S Temperature Sum

N Number of temperatures needed for average calculation

Temp Table for saving the received temperatures

TimeOut The execution delay set by the system monitor

Chapter5 Fault Masking in Component-based Cloud Computing

76

Algorithm3: Masking Cloud node 1 (using DRB scheme).

Input: temperatures T;

Output: temperature Average𝐓𝐯;

[1]PrimaryNodeCode()

[2] 𝐶𝑙𝑜𝑐𝑘𝑃𝑟𝑖𝑚𝑎𝑟𝑦 ≔ 0

[3] Execute (PrimaryBlockCode())

[4] If 𝐴𝑇=true then

[5] Send (𝑇𝑣 , 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟)

[6] Save(𝑇𝑣)

[7] Go to PrimaryNodeCode()

[8] Else

[9] PrimaryFail:=True

[10] Execute (PrimaryNodeFailure(), Recovery())

[11] End if

[12]End PrimaryNodeCode()

[13]BackupNodeCode()

[14] 𝐶𝑙𝑜𝑐𝑘𝐵𝑎𝑐𝑘𝑢𝑝 ≔ 0

[15] Execute (PrimaryBlockCode())

[16] If 𝐴𝑇=true then

[17] If PrimaryFail=True then

[18] Send (𝑇𝑣 , 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟)

[19] End If

[20] Save(𝑇𝑣)

[21] Go to BackupNodeCode()

[22] Else

[23] Recovery()

[24] Enf if

[25]End BackupNodeCode()

[26]PrimaryNodeFailure()

[27]Exchange (X,Y)

[28] Exchange(A,B)

[29] execute (PrimaryNodeCode(), BackupNodeCode)

[30]End PrimaryNodeFailure

[31]Recovery ()

Chapter5 Fault Masking in Component-based Cloud Computing

77

[32] Execute (AlternateBlockCode)

[33] If AT=True then

[34] Save (𝑇𝑣)

[35] End If

[36]End Recovery()

[37]A()

[38] S = 0;

[39] For i=0 to N-1 do

[40] S=S+Temp[i];

[41] End for

[42] 𝑇𝑣= S / N;

[43]End PrimaryBlockCode()

[44]B()

[45] 𝑇𝑣= (Temp[0]+Temp[N-1]) / 2;

[46]End B()

[47]𝐴𝑇():

[48] Return (𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝐶𝑎𝑙𝑐𝑢𝑙(𝑎, 𝑏, 𝑐, 𝑑) = 𝑒) &&(𝑐𝑙𝑜𝑐𝑘 ≤ 𝑇𝑖𝑚𝑒𝑜𝑢𝑡) = 𝑇𝑟𝑢𝑒

[49]End 𝐴𝑇 ()

[50]Initialization ()

[51] PrimaryBlockCode:=A

[52] AlternateBlockCode:=B

[53] PrimaryNodeCode:=X

[54] X.PrimaryBlockCode:=A

[55] X.AlternateBlockCode:=B

[56] BackupNodeCode:=Y

[57] Y.PrimaryBlockCode:=B

[58] Y.AlternateBlockCode:=A

[59]Execute(PrimaryNodeCode, BackupNodeCode)

[60]End Initialization

As said before, the main role of the Cloud node1 is calculating the average of 𝑁

temperatures and sending the result to the successor node 2. The algorithms 2 presents

the Fault-masking behavior of the Cloud node1. In which, the calcul of the temperature

average will be done using two different try blocks (i.e., the Primary try block and the

Alternate try block) on two different nodes (the Primary node and the Backup node).

Chapter5 Fault Masking in Component-based Cloud Computing

78

The Primary try block [lines 37-43], use 𝑁 temperatures to provide the average,

whereas the alternate try block [line 44-46] needs only the first and the last temperatures

to calculate the average. The Primary node execute first the Primary try block while

the Backup node execute the Alternate try block. Both nodes (i.e., the Primary and the

Backup) have the same acceptance test [line 48]. As said before, the Primary and the

Backup nodes perform their Primary try blocks in the same time on different machines.

In the case of a failure, the node performs a recovery using its Alternate try block. At

the beginning, 𝐴 is considered as the Primary try block [line 51], whereas 𝐵 as the

Alternate try block [line 52]. 𝑋 in the Primary node [line 53] and 𝑌 as the Backup node

[line 56]. 𝑋 will perform 𝐴 as the Primary try block and 𝐵 as the Alternate try block

[line 53-54], 𝑌 will perform 𝐵 as Primary try block and 𝐴 as the Alternate try block. 𝑋

and 𝑌 are performed on two different nodes in the same time [line 59]. The Primary

node will send 𝑇𝑣 to the successor node if its behavior satisfies the acceptance test [line

5]. In the case where the acceptance test is not validated by the Primary node [line 8-9],

the Backup node will send 𝑇𝑣 to the successor in order to avoid that the response time

exceed the TimeOut [line 18]. At the same moment, the Primary node performs a

recovery task using the Alternate try block 𝐵 [line 32] and a role reverse will be

performed by exchanging the failed Primary node 𝑋 to be the Backup node and the

Backup node 𝑌 as the new Primary node [line 27]. Another Exchange will be provided

on the try blocks [line 28]. In which the Primary try block 𝐴 will be the new Alternate

try block and 𝐵 will be the new Primary try block. A next execution cycle will be

provided using 𝑌 (𝐴, 𝐵) as Primary node and 𝑋 (𝐵, 𝐴) as backup one [line 29]. This

roles reverse will be doing after any fault detection on the Primary node.

5.3.3.2 Liveness Verification using model-checker

The Figure 5.7, presents a simulation using UPPAAL tool for the DRB Fault-Masking

model of the Cloud node1. In order to prove the effectiveness of the Fault-Masking

model, a set of Liveness properties of the node1 model are presented in Table 5.2. We

will verify the validation of these properties in both Fault-Free and failed models.

Chapter5 Fault Masking in Component-based Cloud Computing

79

Figure 5.7 Fault-Masking model of Cloud node1- Fire Control system

Table 5.2. Liveness properties of the Cloud node1 model.

Liveness Properties Liveness Request

1. The average temperature is always

sent by the Primary node.

 A[](X.Send imply X_primary==1)

 A[] (Y.Send imply Y_primary==1)

2. Always there is only one primary

node.
A[] (not (X_primary==1 and Y_primary==1))

3. Only one node sends a response to

the successor.

A[] (X.Send imply not Y.Send) and (Y.Send imply

not X.Send)

4. The output sent to the successor is

that validates the Acceptance Test.

E[] (X.Send imply X.Test_Success)

E[] (Y.Send imply Y.Test_Success)

5. The output is always sent by a fault

free node.

A[] (X.FaultDetection imply not X.Send)

A[] (Y.FaultDetection imply not Y.Send)

6. The system never reaches a

deadlock state.
A[] not deadlock

Chapter5 Fault Masking in Component-based Cloud Computing

80

7. Always the successor receives a

response.
E<>(Successor.Receive)

8. The output sent to the successor is

usually that calculated by the Primary

try block.

E[](Successor.TvReceived ==PrimBlock)

a. Liveness verification on the fault-free model

As shown in the Figure 5.8, Liveness properties are satisfied in the fault free model.

Now, some faults will be injected in the model to make it failed and the same Liveness

properties will be checked on the failed model. This aims to check whether Liveness

properties are saved or not with the presence of failures.

Figure 5.8 Liveness properties verification on the fault free model

b. Liveness verification on the failed model

Now, a set of failures are Injected on the initial model and the Liveness

properties (Table 5.2) are checked. The set of injected faults are presented in Table 5.3.

For each faults, the type and the injection manner are described.

Table 5.3: Faults injected in the fault free model

Fault Fault Type Injection

Production of random outputs Transient hardware
TvX=50

Tmin = 60

Incorrect calculation Software

Algorithm3-line39, i:=1 instead of

i:=0

Algorithm3-line 38, the instruction

S=0 is deleted

Chapter5 Fault Masking in Component-based Cloud Computing

81

Algorithm3- line 40, the instruction

S=S+Temp[i] is replaced by

S=Temp[i]

Component Time-out Response-Time

Add a loop on the state X.Test (see

Figure 5.7) that produces +10 of

execution time

After injection of faults, the same liveness properties of the Table 5.2 will be verified on

the failed model. The verification results are presented in the Figure 5.9.

Figure 5.9 Liveness properties verification on the failed model

We can see that all liveness properties are satisfied in the model in spite of hardware

and software faults. We can conclude that the use DRB Fault- Masking scheme for

cloud environment is efficient compared with the existent strategies for Fault Tolerance

in cloud computing systems.

5.4 Comparative Analysis

A comparative analysis between the Fault-Masking strategy and the existent

techniques for fault tolerance are summarized in the Table 5.4.

Chapter5 Fault Masking in Component-based Cloud Computing

82

Table 5.4. Comparison between fault tolerance techniques in cloud systems

Technique Strategy Principle Difficulties Advantages Restrictions

Self-Healling Space redundancy

-Execution of the

same version on

multiple machines.

-Needs complicated

protocols for managing the

replication groups.

-Efficient for hardware

fault tolerance.

-Convenient for real-

time applications.

-Response time delays

are reduced.

-Cost more physical

components. Job Migration

Replication

Task

Resubmission

Checkpointing Time Redundancy

(Rollback

recovery)

-Execution of the

same program

many times.

-Needs to create a coherent

state for rollback recovery.

-The creation of a coherent

recovery state is a difficult

task.

- Needs to precise a

checkpointing frequency.

-Efficient for transient

hardware fault

tolerance.

-A bad checkpointing

process can remains the

system to a domino effect.

-Not supportable by real-

time applications.

Software

rejuvenation

SGuard

Retry

Chapter5 Fault Masking in Component-based Cloud Computing

83

Fault Masking Design Diversity

&Space

redundancy.

-Execution of

multiple versions

for the same

program on

different machines.

-Difficulty of designation of

a rigorous acceptance test.

-the development of different

program versions from the

same specification is not

easy.

-The management of the

Primary and the Alternate

nodes needs some

complicated protocols.

-Efficient for hardware

and software fault

tolerance.

-Response time delays

are very reduced.

-Tolerate only a set of

known faults.

-Cost more physical

components.

Chapter5 Fault Masking in Component-based Cloud Computing

84

5.5 Conclusion

In this chapter, we propose a Fault masking framework for Component-based

cloud computing by using Recovery Blocks’ scheme. This framework aims to construct

Fault Masking cloud modules which have the ability of Self-fault detection and fault

recovery. The proposed strategy is performed on a case study, time and space

complexities are estimated and the efficiency of the proposed schemes is proved using

Liveness verification by using model-checker.

85

Conclusion

Embedded systems are often installed in large areas. The application scenarios

range from the domestic sector to military sector through the use of high-tech

computing devices in various fields like transport, space, industry, public health, and so

on. Indeed, the growing interest in the deployment of these applications with hundreds

of computing operations has created frenzy in the research area in the related promising

fields.

Cloud computing systems are largely used in embedded systems. They have

attracted much interest recently for numerous Internet applications and services.

However, reliability in cloud applications remains as a very crucial issue. This issue is

especially difficult to deal with since cloud computing is a combination of hardware and

software in a dynamic setting. The majority of these systems are Safety-Critical, either

because they are at the heart of the behavior of a device or because they interact with

the human life in various critical situations. In such cases, the assurance of their Safety

and Liveness assumes a major objective. Thus, in order to grant them the ability to carry

out their missions despite faults that occur, fault detection and fault masking is the way

to accomplish this stated goal.

The aim from this thesis is the improvement of Cloud systems reliability. For

this target, Recovery Blocks principle for fault tolerance is adopted. Two new schemes

were proposed. They allow a uniform treatment of hardware and software faults in

Cloud systems. The first scheme is dedicated for fault detection. It is based on the use of

the Acceptance Test which can be presented as an internal temporal and logic audit.

The component that has the ability of self-fault detection using the acceptance test is

called The Fail-Silent component. It operates correctly and stops at just fault detection.

The second scheme in this thesis is dedicated for Fault-Masking. It performs the fault

detection by using the acceptance test and the forward recovery by using the try blocks.

A Fault-Masking component is able to detect and recover from faults without perturbing

the Cloud services. It can ensure the reliability and the availability of the Cloud

services.

In this thesis, the construction of Fail-Silent and Fault-Masking components was

well described. Furthermore, the proposed approaches were applied on the case study

Fire Control System and time and space complexities were analyzed. A Safety and a

Conclusion

86

Liveness verification were provided using UPPAAL model-checker to prove the

efficiency of the deduced models. Finally, comparative analysis was provided to

highlights the main differences between the proposed approaches and the existent

techniques.

The incorporation of Fault Detection and Fault-Masking capabilities in Cloud

systems will provide high reliable Cloud nodes but with more complexity. The node

that was only offer a service, from now, it must detect and recover from failure in

addition to its initial main role. Beside, Forward recovery can only remove predictable

and known errors from the system state. Hence, initiation of the recovery actions

depends on the ability to accurately detect the occurrence of faults. Furthermore, the

design of an effective acceptance test and a non fault-correlated set of try blocks is not

an easy task because that depends on the application complexity. As an interesting

future research direction, we would like to design and develop methods that can

automatically provide efficient acceptance test and non-correlated try blocks.

87

Bibliography

[1] N. Fernando, S. W. Loke, W. Rahayu, “Mobile Cloud Computing: A Survey”,

Future Generation Computer Systems, Jan 2013, Vol. 29, Issue. 1, pp. 84-106.

[2] P. A. Cox, “Mobile Cloud Computing: Devices, Trends, Issues and the enabling

technologies”, DeveloperWorks, IBM Corporation, March 2011, pp. 1-9,

ibm.com/developerWorks/.

[3] A. Ahmed, E. Ahmed, “A Survey on Mobile Edge Computing”, 10th IEEE

International Conference on Intelligent Systems and Control (ISCO 2016), India,

January, 2006.

[4] E. Ahmed, A.Gani, M-K. Khan, R. Bayya, S.U.Khan, “Seamless Application

Execution in Mobile Cloud Computing: Motivation, Taxonomy, and Open Challenges”,

Journal of Network and Computer Applications, Vol. 52, Pages 154-172, June 2015.

[5] A. C. Donald, S. A. Oli, L. Arockiam, “Mobile Cloud Security Issues and

Challenges: A Perspective”, International Journal of Engineering and Innovative

Technology (IJEIT), Vol.3, Issue.1, July 2013, pp. 401-406.

[6] RNewswire.org, http://www.reportlinker.com/, 2012.

[7] H. T. Dinh, C. Lee, D. Niyato, P. Wang, “A Survey of Mobile Cloud Computing:

Architecture, Applications, and approaches”, Wireless Communications and Mobile

Computing Journal, 2013, Vol.13, Issue.18, pp. 1587-1611.

[8] R. Buyya, C.S. Yeo, S.Venugopal, J. Broberg, and I.Brandic, “Cloud computing and

emerging IT platforms: Vision, hype, and reality for delivering computing as the 5th

utility”, Future Generation Computer Systems, Vol. 25, No.6, 2009, pp. 599- 616.

[9] M. M. Hassan, A.-S. K. Pathan, E.-N. Huh, and J. Abawajy, “Emerging Sensor-

Cloud Technology for Pervasive Services and Applications”, Guest Editorial of the

Special Issue of International Journal of Distributed Sensor Networks, Volume 2014,

Article ID 610106, DOI:10.1155/2014/610106, Hindawi Publishing Corporation, 2

pages.

[10] L. Youseff, M. Butrico, and D. Da Silva, “Toward a Unified Ontology of Cloud

Computing”, Grid Computing Environments Workshop (GCE’08), 12-16 Nov. 2008,

pp. 1-10.

Bibliography

88

[11] M. Ramachandran, “Component-based Development for Cloud Computing

Architectures”, Cloud Computing for Enterprise Architectures, Springer, 2011, pp. 91-

114.

[12] G. Gossler and J. Sifakis, “Composition for Component-based Modeling”, Science

of Computer Programming, Vol.55, Issues.1-3, 2005, pp.161-183.

[13] D. Patcu and C. Sandru, “Towards component-based Software Engineering of

Cloud Applications”, Working IEEE/IFIP Conference on software architecture

(WICSA), Venice, Italy, 2012, pp. 80-81.

[14]. A. Basu, M. Bozga, and J. Sifakis, “Modeling Heterogeneous Real-Time

Components in BIP”, IEEE International Conference on Software Engineering and

Formal Methods (SEFM’06), 2006, pp 3-12.

[15]. M. Bozga, V. Sfyrla, and J. Sifakis, “Modeling Synchronous Systems in BIP”,

ACM International Conference on Embedded Software (EMSOFT’09), 2009, pp. 77-86.

[16]. A. Basu, L. Mounier, M. Poulhies, J. Pulou, and J. Sifakis, “Using BIP for

Modeling and Verification of Networked Systems –A Case Study on TinyOS-based

Networks”, IEEE International Symposium on Network Computing and Applications,

NCA, Cambridge.MA, 2007, pp. 257-260.

[17] L. de Silva, R. Yan, F. Ingrand, R. Alami, and S. Bensalem, “A Verifiable and

Correct-by-Construction Controller for Robots in Human Environments”, Extended

Abstract, ACM/IEEE International Conference on Human-Robot Interaction, New

York, USA, 2015, pp.281- 281.

[18]S. Bensalem, L. de Silva, F. Ingrand, and R. Yan, “A Verifiable and Correct-by-

Construction Controller for Robot Functional Levels”, Journal of Software Engineering

for Robotics, Vol.2, No.1, 2011, pp.1-19.

[19] S. Bensalem, M. Gallien, F. Ingrand, I. Kahloul, and T.H. Nguyen, “Toward a

more dependable software architecture for autonomous robots”, IEEE Robotics and

Automation Magazine, Vol.16, No. 1, 2009, pp. 67-77.

[20] A. Avizienis, J.C. Laprie, B. Randell, and C.Laudwehr, “Basic Concepts and

Taxonomy of Dependable and Secure Computing”, IEEE Transactions on Dependable

and Secure Computing, Vol. 1, No. 1, 2004, pp. 11-33.

Bibliography

89

[21] Y.S. Dai, D.Yang, J.Dongarra, and G.Zhang, “Cloud Service Reliability: Modeling

and Analysis”, IEEE Pacific Rim International Symposium on Dependable Computing,

2009.

[98][22] A. Ganesh, M. Sandhya, and S. Shankar, “A study on fault tolerance methods

in Cloud Computing”, IEEE International Advance Computing Conference (IACC),

2014, Gurgaon, pp. 844-849.

[23] D. P. Chandrashekar, Robust and Fault-Tolerant Scheduling for Scientific

Workflows in Cloud Computing Environments. PhD dissertation, The University of

Melbourne, August 2015. Available at:

http://www.cloudbus.org/students/DeepakPhDThesis2015.pdf [last accessed: 27

October 2015].

[24] J. Guitart, M. Macias, K. Djemame, T. Kirkham, M. Jiang, and D. Armstrong,

"Risk-Driven Proactive Fault-Tolerant Operation of IaaS Providers", 2013 IEEE 5th

International Conference on Cloud Computing Technology and Science (CloudCom),

Volume: 1, 2-5 Dec., 2013, pp. 427-432.

[25] E.N. Elnozahy, L. Alvisi, Y.M. Wang, and D.B. Johnson.“A Survey of Rollback

Recovery Protocols in Message-Passing Systems”, ACM Computing Surveys, Vol. 34,

No. 3, 2002, pp. 375-408.

[26] H. Mansouri, N. Badache, M. Aliouat, and A.-S. K. Pathan, “A New Efficient

Checkpointing Algorithm for Distributed Mobile Computing”, Journal of Control

Engineering and Applied Informatics, Vol.17, No.2, 2015, pp. 43-54.

[27] R. Guerraoui and A. Schiper, “Fault-Tolerance by Replication in Distributed

Systems”, International Conference on Reliable Software Technologies, Switzerland,

1996, pp. 38-57.

[28] A. Avizienis, “The Methodology of N-Version Programming”, Chapter 2 of

Software Fault Tolerance. M. R. Lyu (ed.), Wiley, 1995, pp.23-46.

[29] B. Randel, “System Structure for Software Fault Tolerance”, ACM SIGPLAN

Notices, Vol. 10, No.6, 1975, pp.437-449.

[30] J.J Horning, H.C Lauer, P.M. Melliar-Smith, and B. Randell. “A Program Structure

For Error Detection and Recovery”, Operating Systems, International Symposium held

at Rocquencourt, Springer Berlin Heidelberg, Vol.16, 1974, pp.171-187.

Bibliography

90

[31] M. Smara, M.Aliouat, Z.Aliouat, “Fault Detection in Component-based models:

Using BIP Models”, the 12th International Symposium on Programming and Systems

(ISPS), April 2015, pp.1-9.

[32] Mahendra.-K. Aharwir, Manish.-K.Ahirwar, U.Chourasia, “Anomaly Detection in

the Services Provided by Multi Cloud Architectures; A Survey”, International Journal

of Research in Engineering and Technology, Vol.3, Issue.9, Sep 2014, pp.196-200.

[33] A.Sari, “A Review of Anomaly Detection Systems in Cloud Network and Survey

of Cloud Security Measures in Cloud Storage Applications”, Journal of Information

Security, Vol.6, No.2, 2015, pp.142-154.

[34] I. M. Osman, H. T. Elshoush, “Alert Correlation in Collaborative Intelligent

Intrusion Detection Systems- a Survey”, Applied Soft Computing Journal, Vol.11,

Issue.7, 2011, pp.4349-4365.

[35] S. X. Wu, W. Banzhaf, “The use of Computational Intelligence in Intrusion

Detection Systems; A Review”, Applied Soft Computing Journal, 2010, Vol.10, Issue.

1, pp.1-35.

[36] A.-S.K.Pathan. The State of the Art in Intrusion Prevention and Detection. ISBN

9781482203516, CRC Press, Taylor & Francis Group, USA, January 2014.

[37] J. Lee, S. Moskovics, L. Silacci, “A Survey of Intrusion Detection Analysis

Methods”, 1999.

[38] S. Agrawal, J. Agrawal, “Survey on Anomaly Detection Using Data Mining

Techniques”, International Conference on Knowledge and Intelligent Information and

Engineering Systems, 2015, pp.708-713.

[39] J. Singh, M.J. Nene, “A survey on Machine Learning Techniques for Intrusion

Detection Systems”, International Journal of Advanced Research in Computer and

Communication Engineering, Vol. 2, Issue. 11, November 2013.

[40] P. Felber, X. Défago, R. Guerraoui, P. Oser, “Failure Detector as First Class

Objects”, International Symposium on Distributed Objects and Applications (DOA),

Computer Society, Edinburgh-Scotland, September 1999, pp. 132-141.

[41] M. Gander, M. Felderer, B. Katt, A. Tolbaru, R. Breu, A. Moschitti, “Anomaly

Detection in the Cloud: Detecting Security Incidents via Machine Learning”, In

Trustworthy Eternal Systems via Evolving Software, Data and Knowledge, Springer

Berlin Heidelberg, 2013, pp. 103-116.

Bibliography

91

[42] N. F. Haq, M. Rafni, A.-R.Onik, F. M. Shah, Md. A. K. Hridoy, D. Md. Farid,

“Application of Machine Learning Approaches in Intrusion Detection System: A

Survey”, International Journal of Advanced Research in Artificial Intelligence, 2015,

Vol. 4, No. 3, pp.9-18.

[43] I. Gupta, T. D. Chandra, and G.S. Goldszmidt, “On scalable and efficient

distributed failure detectors”, ACM symposium on Principles of distributed computing,

August 2001, pp. 170-179.

[44] C. Dobre. F. Pop, A. Costan, M. I. Andreica, V. Cristea , “Improving Network

Traffic Anomaly Detection for Cloud Computing Services”, The Ninth International

Conference on Systems and Networks Communications ICSNC, 2014, pp.107-113.

[45] B.Bonakdarpour, M.Bozga, and G.Gossler, “A Theory of Fault Recovery for

Component-Based Models”, International Symposium on Stabilization, Safety, and

Security of Distributed Systems (SSS’12), Toronto, Canada, 2012, pp.314-328.

[46] G. Fan, H. Yu. L. Chen, and D. Liu, “Model-based Fault Detection Technique in

Cloud Computing”, IEEE Asia-Pacific Services Computing Conference (APSCC),

Guilin, 2012, pp.249-256.

[47] T. Wang, W. Zhang, J. Wei, and H. Zhang, “Fault Detection for Cloud Computing

Systems with Correlation Analysis”, International Symposium on Integrated Network

Management (IM), Ottawa, ON, May 2015, pp. 652-658.

[48] S.Barhuiya, Z.Papazachos, P.Kilpatrick, D.S. Nikolopoulos, “A Lightweight Tool

for Anomaly Detection in Cloud Data Centers”, International Conference on Cloud

Computing and Services Science CLOSER, Lisbon, Portugal, 2015, pp. 343-351.

[49] T. Wang, J. Wei, F. Qin, W. Zhang, H. Zhong, T. Huang, “Detecting performance

anomaly with correlation analysis for Internetware”, Science China Information

Sciences, Vol.56, Issue.8, 2013, pp. 1-15.

[50] C. Wang, K. Viswanthan, L. Choudur, V. Talwar, W. Satterfield, K. Schwan,

“Statistical Techniques for Online Anomaly Detection in Data Centers”, International

Symposium on Integrated Network Management (IM), Duplin, May 2011, pp. 385-392.

[51] M. Kumar and R. Mathur, “Outlier Detection Based Fault-Detection Algorithm for

Cloud Computing”, International Conference for Convergence of Technology (I2CT),

Pune, April 2014, pp.1-4.

Bibliography

92

[52] Y. A. Siva Prasad, G. R. Krishna, “Statistical Anomaly Detection Technique for

Real Time Datasets”, International Journal of Computer Trends and Technology

(IJCTT), Dec 2013, Vol. 6, No. 2, pp. 89-94.

[53] R. Ranjan and G. Sahoo, “A New Clustering Approach for Anomaly Intrusion

Detection”, International Journal of Data Mining & Knowledge Management Process

(IJDKP), Vol.4, No.2, March 2014, pp. 29-38.

[54] D. Singh, D. Patel, B. Borisaniya, C. Modi, “Collaborative IDS Framework for

Cloud ”, International Journal of Network Security, Vol. 18, No. 4, 2015, pp. 699-709.

[55] N. Pandeeswari, G. Kumar, “Anomaly Detection System in Cloud Environment

Using Fuzzy Clustering Based ANN”, Mobile Network and Applications, Springer US,

August 2015.

[56] W. Sha, Y. Zhu, M. Chen, T. Huang, “Statistical Learning for Anomaly Detection

in Cloud Server Systems: A Multi-Order Markov Chain Framework”, IEEE transaction

on Cloud Computing, January 2015, pp. 1-14.

[57] T. F. Ghanem, W. S. Elkilani, H. M. Abdul-kader, “A hybrid approach for efficient

anomaly detection using metaheuristic methods”, Journal of Advanced Research, Vol.6,

Issue.4, July 2015, pp. 609-619.

[58] L. Arockiam and G. Francis E, “FTM-A Middle Layer Architecture for Fault

Tolerance in Cloud Computing”, Special Issue in International Journal of Computer

Applications on Issues and Challenges in Networking, Intelligence and Computing

Technologies (ICNICT, pp. 12-16), November 2012.

[59] G. Maier, R. Sommer, H. Dreger, A. Feldmann, V. Paxson, and F. Schneider,

“Enriching network security analysis with time travel”. ACM SIGCOMM Computer

Communication Review, Vol. 38, No. 4, August, 2008, pp. 183-194.

[60] W. Chen, S. Toueg, and M. K. Aguilera, “On the quality of service of failure

detectors”, IEEE Transactions on Computers, Vol. 51, No. 5, 2002, pp. 561-580.

[61] N. Hayashibara, X. Défago, R. Yared, T. Katayoma, “The 𝜑 accrual failure

detector", Proceedings of the 23rd IEEE International Symposium on Reliable

Distributed Systems, 2004, pp. 66-78.

[62] A. Lavinia, C. Dobre, F. Pop, V. Cristea, “A Failure Detection for Large Scale

Distributed Systems”, International Conference on Complex, Intelligent and Software

Intensive Systems (CISIS), 2010.

Bibliography

93

[63] A. Arora and M.G. Gouda, “Closure and convergence: A foundation of fault

tolerant computing”, IEEE Transactions on Software Engineering, Vol. 19, Issue 11,

1993, pp. 1015-1027.

[64] P. Alko and J.Mattila, “Software Fault Detection and Recovery in Critical Real-

Time Systems: An Approach based on Loose Coupling”, Journal of Fusion Engineering

and Design, Vol. 89, Issues. 9-10, 2014, pp. 2272-2277.

[65] A. Arora and S. S. Kulkarni, “Detectors and correctors: A theory of fault-tolerance

components”, International Conference on Distributed Computing Systems (ICDCS),

USA, 1998, pp. 436-443.

[66] B. Bonakdarpour, S. S. Kulkarni, and A. Arora, “Disassembling real-time fault

tolerant programs”, ACM International Conference on Embedded Software (EMSOFT),

New York, USA, 2008, pp. 169-178.

[67] M. Roohitavaf and S. Kulkarni, “Stabilization and Fault-Tolerance in Presence of

Unchangeable Environment”, 2015, available at: http://arxiv.org/abs/1508.00864 [last

accessed: 8 October, 2015].

[68] S. Bensalem, M. Bozga, T-H. Nguyen and J. Sifakis, “D-Finder: A Tool for

Compositional Deadlock Detection and Verification”, Lecture Notes in Computer

Science, Volume 5643, Springer Berlin Heidelberg, pp. 614-619.

[69] T.T. Pham and X. Défago, “Reliability Prediction for Component-based Systems:

Incorporating Error Propagation Analysis and Different Execution Models”,

International Conference on Quality Software (ICQS 2012), Shaanxi, 2012, pp. 106-

115.

[70] T.T. Pham and X. Défago, “Reliability Prediction for Component-based Software

Systems with Architectural-level Fault Tolerance Mechanisms”, International

Conference on Availability, Reliability and Security (ARES 2013), Germany, 2013, pp

11-20.

[71] T.T. Pham, X. Défago, and Q.T.Huynh, “Reliability prediction for component-

based software systems: Dealing with concurrent and propagating errors”, Journal of

Science of Computer Programming, Vol. 97, Part. 4, Elsevier, 2015, pp. 426-457.

[72] P. Mathur and N. Nishchal, “Cloud Computig : New challenges to the entire

computer industry”, International Conference on Parallel and Distributed Grid

Computing (PDGC), Solan, October 2010, pp. 223-228.

http://arxiv.org/abs/1508.00864

Bibliography

94

[73] A. Ebnenasir and B.H.C. Cheng, “Pattern-Based Modeling and Analysis of Failsafe

Fault-Tolerance in UML”, IEEE High Assurance Systems Engineering Symposium

(HASE’07), 2007, pp. 275-282.

[74] A. Ebnenasir and B. H. C Cheng, “Architecting Dependable Systems IV, chapter

A Pattern-Based Approach for Modeling and Analyzing Error Recovery”, Lecture

Notes in Computer Science, Volume 4615, Springer Berlin Heidelberg, 2007, pp. 115-

141.

[75] T. Xu, Z. Liu, T. Tang, W. Zheng, and L.Zhao, “Component Based Design of Fault

Tolerant Devices in Cyber Physical System”, International Symposium on

Object/Component/Service-Oriented Real-Time Distributed Computing Workshops

(ISORCW 2012), Guangdong, 2012, pp. 37-42.

[76] Y. Wu, G. Huang, H. Song, and Y. Zhang, “Model Driven Configuration of Fault

Tolerance Solutions for Component-Based Software System”, International Conference

on Model Driven Engineering Languages and Systems (MODELS’12), Innsbruck,

Austria, 2012, pp. 514-530.

[77] S. Tambe, A. Dabholkar, and A. Gokhale, “Fault-tolerance for Component-based

Systems -An Automated Middleware Specialization Approach”, International

symposium on Object/Component/Service-Oriented Real-Time Distributed Computing

(ISORC 2009), Tokyo, 2009, pp. 47-54.

[78] M.Y. Jung and P. Kazanzides. “Run-time Safety Framework for Component-based

Medical Robots”. Medical Cyber Physical Systems Workshop (formerly known as

HCMDSS (High Confidence Medical Devices, Software, and Systems)), CPSWeek,

2013, Philadelphia-USA, 2013.

[79] Z. Liu and M. Joseph, “Transformation of programs for fault-tolerance. Formal

Aspects of Computing, Volume 4, Issue 5, 1992, pp. 442-469.

[80] Z. Liu and M. Joseph, “Specification and verification of fault-tolerance, timing,

and scheduling”, ACM Transactions on Programming Languages and Systems

(TOPLAS), New York-USA, Vol.21, Issue. 1, 1999, pp. 46-89.

[81] M. Bozzano, A.Cimatti, M.Gario, and S.Tonetta, “Formal Design of Fault

Detection and Identification Components Using Temporal Epistemic Logic”, European

Joint Conferences on Theory and Practice of Software (ETAPS, 2014), pp. 326-340.

Bibliography

95

[82] S. W. Loke, “Supporting ubiquitous sensor-cloudlets and context-cloudlets:

Programming compositions of context-aware systems for mobile users”, Future

Generation Computer Systems, Vol. 28, No. 4, 2012.

[83] T. Liu, F. Chen, Y. Ma, Y. Xie, “An energy-efficient task scheduling for mobile

devices based on cloud assistant”, Future Generation Computer Systems, Vol. 61, 2016.

[84] Y.S. Chang, C.T. Fan, W.T. Lo, W.C.Hung, S.M.Yuan, “Mobile cloud-based

depression diagnosis using an ontology and a Bayesian network”, Future Generation

Computer Systems, Vol. 43-44, 2015.

[85] E. Ahmed, S. Khan, I. Yaqoob, A. Gani, F. Saleem, "Multi-Objective Optimization

Model for Seamless Application Execution in Mobile Cloud Computing", Proceedings

of 5th International Conference on Information and Communication Technologies,

(ICICT'13), Karachi, Pakistan.

[86] Y. Saleem, F. Salim, M. H. Rehmani, “Resource Management in Mobile Sink

based Wireless Sensor Networks through Cloud Computing”, Book Chapter at Resource

Management in Mobile Computing Environments, Springer-Verlag Handbook, Volume

3, 2014, pp 439-459.

[87] M. Sookhak, H. Teleban, E. Ahmed, A. Gani, M-K Khan, “A Review on Remote

Data Auditing in Single Cloud Server: Taxonomy and Open Issues”, Journal of

Network and Computer Applications, Vol. 43, August 2014, pp. 121-141.

[88] S. Ghafoor, M. H Rehmani, S. Cho, and S. H. Park, “An Efficient Trajectory

Design for Mobile Sink in a Wireless Sensor Network”, Elsevier Computers and

Electrical Engineering Journal, Volume 40, Issue 7, Oct 2014, pp. 2089-2100.

[89] E. Ahmed, A. Gani, M. Sookhak, S.H. Ab Hamid, F. Xia, “Application

Optimization in Mobile Cloud Computing: Motivation, Taxonomies, and Open

Challenges”, Journal of Network and Computer Applications, Vol. 52, June 2015, pp.

52-68.

[90] Y. Saleem, F. Salim, M. H. Rehmani, “Integration of Cognitive Radio Sensor

Networks and Cloud Computing: A Recent Trend, Cognitive Radio Sensor Networks:

Applications, Architectures, and Challenges”, This book is part of the Advances in

Wireless Technologies and Telecommunication (AWTT) series., Editors: Mubashir

Husain Rehmani and YasirFaheem, IGI Global USA, 2014.

[91) U. Shaukat, E. Ahmed, Z. Anwar, F. Xia, “Cloudlet Deployment in Local Wireless

Bibliography

96

Area Networks, Motivation, Taxonomies, and Open Research Challenges”, Journal of

Network and Computer Applications, Vol. 62, 2016.

[92] M-H Rehmani, A.-S. K Pathan, “Emerging Communication Technologies based on

Wireless Sensor Networks: Current Research and Future Applications, CRC Press,

Taylor and Francis Group, USA, 2015.

[93] Ejaz Ahmed, Adnan Akhanzada, Md. Wahiduzaman, Abdullah Gani,

SitiHafizahAb Hamid, RajkumarBuyya, Network-centric Performance Analysis of

Runtime Application Migration in Mobile Cloud Computing, Simulation Modelling

Practice and Theory, Vol. 50, January, 2015, pp. 42-56.

[94] M. N. Cheraghlou, A. K. Zadeh, M. Haghparast, “ A survey of fault tolerance

architecture in Cloud Computing”, Journal of Network and Computer Applications,

Vol. 16, 2016, pp.81-92.

[95] NIST Definition of Cloud Computing v15,

http://www.nist.gov/itl/cloud/upload/cloud-def-v15.pdf.

[96] Q. Zhang, L. Cheng and R. Boutaba , “Cloud Computing: state-of-the-art and

research challenges”, Journal of Internet Services and Applications, May 2010, Vol. 1,

Issue.1, pp. 7-18.

[97] P. K. Patra, H. Singh, G. Singh, “ Fault Tolerance Techniques and Comparative

Implementation in Cloud Computing”, International Journal of Computer Applications,

2013, Vol. 64, No. 14, pp. 37-41.

[98] A.Ganesh, M.Sandhya and S. Shankar, “A Study of Fault Tolerance Methods in

Cloud Computing”, IEEE International Advance Computing Conference (IACC),

February 2014, India, pp. 844-849.

[99] J. L. M. Humphrey, Y.-W. Cheah, Y. Ryu, “Fault Tolerance and scaling in e-

Science Cloud Applications: Observations from the Continuing Development of

MODISAzure”, IEEE e-Science Conference, 2010, Australia, pp. 1-8.

[100] Y. S. Dai, B. Yang, J. Dongarra, G. Zhang, “Cloud Service Reliability: Modeling

and Analysis” , IEEE Pacific Rim International Symposium on Dependable Computing,

2009, China , pp.1-17.

[101] S. K. Chamoli, D. S. Rana, “Fault Tolerance and Load Balancing algorithm in

Cloud Computing : a survey”, International Journal of Advanced Research in Computer

and Communication Engineering, Vol. 4, Issue. 7, 2015, pp. 92-96.

http://www.nist.gov/itl/cloud/upload/cloud-def-v15.pdf

Bibliography

97

[102] Z. Amin , N. Sethi, H. Singh, “Review on Fault tolerance techniques in Cloud

Computing”, International Journal of Computer Applications, Vol. 116, No.18, 2015,

pp. 11-17.

[103] S. M. Hosseini, M. G. Arani, “Fault Tolerance Techniques in Cloud Storage : a

Survey”, International Journal of Database Theory and Application , Vol. 8, No. 4,

2015, pp. 183-190.

[104] J. –C. Laprie, “ Dependability-its attributes, impairments and means”, in B.

Randell, J.-C. Laprie, H. Kopetz and B. Littlewood, editors, Predictability Dependable

Computing Systems, ESPRIT Basic Research Series, Springer, 1995, pp. 3-24.

[105] A. Avizienis, “Fault-Tolerant Systems”, IEEE Transactions on Computers,

Vol.25, No.12, 1976, pp. 1304-1312.

[106] P. Jalote, “Fault-Tolerance in Distributed Systems”, 1998, by Prentice Hall, Inc.

A Pearson Education Company, Upper Saddle River, New Jersey 07458.

[107] B. Randel, “System Structure for Software Fault Tolerance”, ACM SIGPLAN

Notices, Vol. 10, No.6, 1975, pp.437-449.

[108] J.J Horning, H.C Lauer, P.M. Melliar-Smith, and B. Randell. “A Program

Structure For Error Detection and Recovery”, Operating Systems, International

Symposium held at Rocquencourt, Springer Berlin Heidelberg, Vol.16, 1974, pp.171-

187.

[109] K. H. Kim, H. O. Welch, “Distributed Execution of Recovery Blocks: An

Approach for Uniform Treatment of Hardware and Software Faults in Real-Time

Applications”, IEEE Transactions on Computers, Vol. 38, No.5, 1989, pp. 626-636.

[110] M. Abadi, L. Lamport, “The existence of refinement mappings”, Theoritical

Computer Science, Vol. 82, Issue. 2, May 1991, pp. 253-284.

[111] H. P. Zima, A. Nikora, “Fault Tolerance”, from Encyclopedia of Parallel

Computing, Springer US, 2011, pp.645-658.

[112] L. Lamport, “Proving the correctness of multiprocess programs”, IEEE

Transaction in Software Engineering, USA, Vol. 3, No. 2, March 1977, pp. 125-143.

[113] B. Alpern, F.B. Schneider, “Defining Liveness”, 1985, Inf Process Left, Vol.21,

No. 4, pp. 181-185.

Bibliography

98

[114] Y. Zhang, Z. Zheng, M. R. Lyn, BFT Cloud, “A Byzantine Fault Tolerance

Framework for Voluntary-Ressource Cloud Computing”, IEEE International

Conference on Cloud Computing, Washington, US, 2011, pp. 444-451.

[115] Z. Jia, R. Chen, X. Xing, J. Xu, Y. Xie, “SFDCloud : top-k Service faults

diagnosis in Cloud Computing”, Automated Software Engineering, 2014, Vol. 21,

Issue. 4, pp. 461-488.

[116] S. K. Choi, K. Chung, H. Yu, “Fault Tolerance and QoS Scheduling using CAN

in mobile social Cloud Computing”, Cluster Computing Journal, 2014.

[117] D. Jing, H. Scott, H. Yunghsiang, D. Julia, “Fault-Tolerant and Reliable

Computation in Cloud Computing ”, Globecom Workshops, 2010, pp. 1601-1605.

[118] D. Sun, G. Chang, C. Miao, X. Wang, “Analyzing, Modeling and Evaluating

Dynamic Adaptive Fault Tolerance strategies in Cloud computing environments”,

Journal of Supercomputing 2013, Vol. 66, Issue. 1, pp. 193-228.

[119] H. Yi, G. Bin, W. Fengyu, “Cloud model-based Security-aware and Fault

Tolerant Job Scheduling for computing Grid”, ChinaGrid, 2010, pp. 25- 30.

[120] S. Malik, F. Huet, “Adaptive Faut Tolerance in Real-time Cloud Computing”,

IEEE World Congress on services, Washington, USA, 2011, pp. 280-287.

[121] Y. Wu, Y. Yuan, G. Yang, W. Zheng, “An adaptive task-level fault tolerant

approach to Grid”, Journal of SuperComputing, 2010, Vol. 51, Issue. 2, pp. 97- 114.

[122] J. B. Lim, J. M. Gip, K. S. Chung, J. Kang, D. Lee, H. Yu, “Gossip Membership

Management with social graphs for Byzantine Fault Tolerance in Clouds”, Network and

Parallel Computing, 2014, LNCS 8707, pp. 321-332.

[123] K. H. Kim, “Distributed Execution of Recovery Blocks: an Approach to uniform

Treatment of Hardware and Software faults”, Proceeding Fourth International

Conference on Distributed Computing Systems, 1984, pp. 526-532.

[124] K. H. Kim, H. O. Welch, “Distributed Execution of Recovery Blocks: An

Approach for Uniform Treatment of Hardware and Software Faults in Real-Time

Applications”, IEEE Transactions on Computers, Vol. 38, No.5, 1989, pp. 626-636.

[125] K. H. Kim, “The distributed Recovery Block Scheme” in M. R. Lyu (ed.),

Software Fault Tolerance, New York: John Wiley & Sons, 1995, pp. 189-209.

[126] L. L. Pullum, “Software Fault Tolerance Techniques and Implementations”,

Artech house, Inc. Norwood, MA, USA, 2001. ISBN: 1-58053-137-7.

Bibliography

99

[127] B. Randel, “System Structure for Software Fault Tolerance”, ACM SIGPLAN

Notices, Vol. 10, No.6, 1975, pp.437-449.

[128] J.J Horning, H.C Lauer, P.M. Melliar-Smith, and B. Randell. “A Program

Structure For Error Detection and Recovery”, Operating Systems, International

Symposium held at Rocquencourt, Springer Berlin Heidelberg, Vol.16, 1974, pp.171-

187.

[129] M. Abadi, L. Lamport, “The existence of refinement mappings”, Theoritical

Computer Science, Vol. 82, Issue. 2, May 1991, pp. 253-284.

[130] J. C. Laprie, “Dependability, Basic Concepts and Terminology”, Number 5 of

Dependable Computing and Fault-Tolerant System, Springer-Verlag, 1992.

[131] E. Bauer, R. Adams, “Reliability and Availability of Cloud Computing”, John

Wiley & Sons, July 2012, DOI: 10.1002/9781118393994. Ch1.

[132] K. H. Kim, “The distributer Recovery Block Scheme”, Chapter 8 in Software

Fault Tolerance, Edited by Lyu, 1995, John Wiley & Sons Ltd.

[133] M. Stanisavijevic, A. Schmid, Y. Leblebici, “Reliability, Faults and Fault

Tolerance”, Chapter 2 from “Reliability of Nonoscale Circuits and Systems

Methodologies and Circuits Architectures”, Hardcover, 195p, Springer, 2011.

[134] A. Avizienis, J.-C. Laprie, B. Randell, C. Landweht, “Basic Concepts and

Taxonomy of Dependable and secure Computing”, IEEE Transactions on Dependable

and Secure Computing, Vol.1, No.1, March 2004, pp.1-23.

[135] J. Liu, J. Zhou, R. Buyya, “Software Rejuvenation based Fault Tolerance Scheme

for Cloud Applications ”, IEEE International Conference on Cloud Computing,

2015,New York-USA, pp. 1115-1118.

[136] a. Garg, S. Bagga, “An Autonomic Approach for Fault Tolerance using Scaling,

Replication and Monitoring in Cloud Computing”, International Conference on

MOOCs, Innovation and Technology in Education (MITE), 2015,Amritsar-Punjab, pp.

129-134.

[137] P. Garraghan, P. Townend, J.Xu, X.Yang, P. Sui, “Using Byzantine Fault-

Tolerance to improve Dependability in Federated Cloud Computing ”, International

Journal of Software and Informatics, Vol. 7, Issue. 2, 2013, pp. 221-237.

Bibliography

100

[138] M.O. Alannsary, J. Tian, “Measurement and Prediction of SaaS Relability in the

Cloud ”, IEEE International Conference on Software Quality, Reliability and Security

companion, 2016, Vienna-Austria, pp. 123-130.

[140] B. Mohamed, M. Kiran, I.-U. Awan, K. M. Maiyama, “Optimizing Fault

Tolerance in Real-Time Cloud Computing IaaS Environment ”, IEEE international

Conference o Future Internet of Things and Cloud, 2016, Vienna-Austria, pp. 363-370.

[141] C. M. Reddy, N. Nalini, “FT2R2Cloud: Faault Tolerance using time-out and

retransmission of requests for Cloud applications”, in International Conference on

Advances in Electronics, Computers and Communications (ICAECC), 2014.

[142] Z. Zheng, M. R. Lyu, “Selecting an Optimal Fault tolerance strategy for reliable

service-oriented systems with local and global constraints”, IEEE Transaction-compt.

64(1), 219-232, 2015.

[143] G. Chen et al. “A Lightweight Software Fault Tolerance System in the Cloud

Environment”, Concurrency Comput. Pract. Experience, 27(12), 2015, 2982-2998.

[144] A. Moghtadaeipour, R. Tavoli, “A New Approach to Improve Load Balancing for

Increasing Fault tolerance and Decreasing Energy Consumption in Cloud Computing”,

in 2nd International Conference on Knowledge-based Engineering and innovation

(KBEI), 2015.

[145] S. Shankland, “Amazon suffers u.s”, Outage on Friday- Retrieved on December

15, 2013.

[146] B. Winterford , “Stress tests rain on Amazon’s Cloud”, IT News, Retrieved on

December 15, 2013, August 2009.

[147] Z. Zheng, T. Zhan, M. Lyu and T. King, “Component Ranking for Fault Tolerant

Cloud Applications”, IEEE Transactions on Services Computing, Issue 4.Vol.5, Fourth

Quarter 2012, PP. 540-550, DOI 10.1109/TSC.2011.42.

[148] F. Khomh, “On Improving the Dependability of Cloud Applications with Fault

Tolerance”, WISCA 2014, Sydney, Australia, Vol. 2, 2 pages.

[149] ITProPortal, “ITProPortal.com: 24/7 Tech Commentary & Analysis”, 2012

[Online]. Available : http://www.itproportal.com/.

[150] K.Bilal, O, Khalid, R.Malik, M.Usman and S.Khan, “Fault Tolerance in the

Cloud”, no. ITProPortal, pp. 1-13, 2012.

101

Appendix A

Theorem1: A Fail-Silent atomic component, 𝐹𝑆𝐵 = (𝑄, 𝑃, , 𝑋, 𝑞0, 𝐻𝑠, 𝐴𝑇𝐵)can

insure Safety property using the acceptance test 𝐴𝑇𝐵. The AT can validate final results

and decide their correctness. In the case of Fault Detection, the atomic

component 𝐹𝑆𝐵will pass to a Deadlock state till failure correction.

Proof. In order to prove Theorem 1, we will use demonstration by the absurdum.

Let𝐵 = (𝑄, 𝑃, , 𝑋, 𝑞0)be an atomic component which has no acceptance test.

At the moment 𝑡, initial variable value of 𝐵 is𝑣0. The expected results are: 𝑣0 at the

moment𝑡,𝑣1 at the moment 𝑡′,𝑣2 at 𝑡′′ and 𝑣3 at 𝑡′′′ where:𝑡 < 𝑡′ < 𝑡′′ < 𝑡′′′. The

atomic component B will be infected by a fault at the moment 𝑡′′and B has no

acceptance test which can validate its final results and detect the failures.𝑣0 → 𝑣1 →

𝑣2 → 𝑣3are the correct and expected final results of the atomic component 𝐵.

At the moment𝑡′(𝑡′ > 𝑡),𝑣0 − 𝐵𝑒ℎ𝐶𝑦(𝐵) → 𝑣1. The atomic component B produces the

correct result and it is considered that it is correct (c).

At the moment 𝑡’’ (𝑡’’ > 𝑡′ > 𝑡),𝑣1 − 𝐵𝑒ℎ𝐵(𝐶𝑦) → 𝑣2
′ . At that moment, the atomic

component B offers the result 𝑣2
′ which is different from the expected value 𝑣2 because

of a failure that infects the atomic component B. B offers a failed result (𝑣2
′ ≠ 𝑣2)but it

earns its execution.

Hence, the atomic component continues its execution and at the moment 𝑡′′′(𝑡′′′ > 𝑡′′ >

𝑡′), 𝑣2
′ − 𝐵𝑒ℎ𝐶𝑦(𝐵) → 𝑣3

′ , (𝑣3
′ ≠𝑣3). We can see that since the first failure that happens

at the moment 𝑡′′, the component B has deviated from its exact behavior and it

continues to produce faulty results that may be transferred to other components without

failure detection. This kind of failure is very difficult to deal with because it may

include the entire system in Byzantine failure which threatens the Safety property.

Therefore, because of the absence of the AT, the Safety property will be violated.

We can see clearly that the Safety property will be ensured using the AT. If B’s

outcomes do not satisfy B’s AT, B will be considered as failed and it will be blocked

immediately. Using the AT, we can ensure that the values which are used in the entire

system are the correct ones. In other way, we have ensured Safety property by adopting

the Fail-Silent behavior.

Appendix A

102

Lemma1. A rendezvous connector, 𝛽 = {𝑝𝑖=1..𝑚, 𝑝𝑖𝐵𝑖} which involves a set of Fail-

Silent atomic component is Fail-Silent rendezvous connector: 𝐹𝑆𝑅𝑒𝑛𝑑𝑒𝑧𝑣𝑜𝑢𝑠(𝛽) =

{𝑝𝑖=1..𝑚, 𝑝𝑖 𝐹𝑆𝐵𝑖=1..𝑚}.

Proof. We will demonstrate by the absurdum that:

𝑖𝑓 ∃ 𝐵1≤𝑖≤𝑚 ∈ 𝑟𝑒𝑛𝑑𝑒𝑧𝑣𝑜𝑢𝑠 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟 𝛽; and𝐵𝑖 is not Fail-Silent, then the rendezvous

connector 𝛽 is not Fail-Silent either.

Let 𝛽 = {𝑝𝑖=1..𝑚, 𝑝𝑖 𝐵𝑖} be a rendezvous connector which contains m atomic

components. All The atomic components are Fail-Silent except 𝐵𝑗. The atomic

components involved in 𝛽are synchronized to exchange information via this connector.

Each atomic component 𝐹𝑆𝐵𝑖≠𝑗 is Fail-Silent atomic component, and it has an AT that

can validate its outputs and decide their correctness. In such a scenario, in case of

detection of any failure, all components will be blocked immediately except the atomic

component 𝐵𝑗 (that is not Fail-Silent) and thus, 𝐵𝑗 will still be executed and fail. The

initial value of 𝐵𝑗 is 𝑣𝑗
0and the expected results of 𝐵𝑗 are: 𝑣𝑗

1 → 𝑣𝑗
2 → 𝑣𝑗

3at the

moments: 𝑡′, 𝑡′′ and 𝑡′′′such that (𝑡′ < 𝑡′′ < 𝑡′′′). The initial value of the entire group of

atomic components is 𝑉0 and the expected values of the entire group are: 𝑉1 → 𝑉2 → 𝑉3

at the moments: 𝑡′, 𝑡′′ and 𝑡′′′ where: (𝑡′ < 𝑡′′ < 𝑡′′′).

At the moment 𝑡′, 𝐵𝑗 returns the value 𝑣𝑗
1and it exchanges𝑣𝑗

1 with the other atomic

components in the same group to produce the global value 𝑉1.

At the moment 𝑡′′, 𝐵𝑗 will be infected by a failure but it earns execution and returns the

value 𝑣𝑗
2′ instead of 𝑣𝑗

2. This value will be transferred to other atomic components and

the global result of the entire group will be 𝑉2
′ instead of 𝑉2 .

At the moment 𝑡′′′, faulty 𝐵𝑗 will produce the value 𝑣𝑗
3′ instead of 𝑣𝑗

3. This value will be

transferred to the others atomic components and the global result of the group will be 𝑉3
′

instead of 𝑉3.

If the failure is not be detected by another Fail-Silent atomic component, the entire

group will earn execution; hence, would show failed behavior and as a consequence,

would produce incorrect results. As noted earlier, this type of failure is Byzantine

failure which disrupts the Safety of the composite component. Hence, we can see that if

there exist even a single atomic component involved in the rendezvous connector that is

not Fail-Silent, the rendezvous connector will not be considered as Fail-Silent. From

Appendix A

103

this, we conclude that to construct a Fail-Silent rendezvous connector, all its involved

atomic components must be Fail-Silent as well. 𝐹𝑆𝑅𝑒𝑛𝑑𝑒𝑧𝑣𝑜𝑢𝑠(𝛽) =

{𝐹𝑆𝐵1, 𝐹𝑆𝐵2 , … , 𝐹𝑆𝐵𝑚 }.

Lemma 2. A broadcast connector 𝛽 = {𝑝𝑖=1..𝑚,

𝑝𝑖𝐵𝑖 𝑎𝑛𝑑 𝐵𝑘 𝑖𝑠 𝐵𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡 𝑖𝑛𝑖𝑡𝑖𝑎𝑡𝑜𝑟} which involve at least a Fail-Silent broadcast

initiator is a Fail-Silent broadcast connector: 𝐹𝑆𝐵𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡(𝛽) = {𝐹𝑆𝐵𝑘, 𝐵2, … , 𝐵𝑚 }..

Proof. Let suppose that 𝐵 = (𝐵1, 𝐵2, 𝐵3) is a composite component and 𝛾 is a

broadcast connector that relies the set of atomic components 𝐵1, 𝐵2 𝑎𝑛𝑑 𝐵3 where 𝐵1 is

the broadcast initiator. Let’s suppose the following scenario, in which 𝐵1, 𝐵2 𝑎𝑛𝑑 𝐵3 are

not Fail-Silent components.

At the moment 𝑡 , the atomic components 𝐵1, 𝐵2 𝑎𝑛𝑑 𝐵3 have a correct behavior and

no faults are detected.

If we suppose that at the moment 𝑡′ > 𝑡 , both 𝐵2 𝑎𝑛𝑑 𝐵3 failed. They would stay in

operation but produce wrong results without affecting the broadcast initiator 𝐵1.

We take another scenario when the broadcast initiator 𝐵1 fails first. In this case 𝐵1 will

produce and send a wrong result to 𝐵2 𝑎𝑛𝑑 𝐵3.

We can see that the failure of 𝐵1 affect immediately the others atomic component

involved in the same broadcast connector (i.e., 𝐵2 𝑎𝑛𝑑 𝐵3). But, if 𝐵2 𝑜𝑟 𝐵3 fails, they

do not perturb the broadcast initiator 𝐵1 . Hence, if 𝐵1 is not Fail-Silent, Safety of the

entire composite component can be violated.

We can conclude that to construct a Fail-Silent connector 𝛾, at least the broadcast

initiator must be Fail-Silent as well: 𝐹𝑆𝐵𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡(𝛽) = {𝐹𝑆𝐵𝑘, 𝐵2, … , 𝐵𝑚 }.

Lemma3. A composite component which contains Fail-Silent connectors (rendezvous

and/or broadcast) is Fail-Silent composite component. The 𝜔 − 𝑟𝑒𝑔𝑢𝑙𝑎𝑟 expression of

a Fail-Silent composite component is: [(𝐶 / 𝐴/ 𝐹)∗𝐹].

Proof. Let 𝐵 = 𝛾(𝐵1, 𝐵2 … , 𝐵𝑛) be a composite component which is composed of a set

atomic components relied on by a set of Fail-Silent connectors 𝛾 =

{𝐹𝑆𝛽1, 𝐹𝑆𝛽2, … , 𝐹𝑆𝛽𝑙 }.

Appendix A

104

At moment 𝑡, the behavior of all the connectors is correct:

∀ 𝐹𝑆𝛽𝑖=1..𝑙 𝐵; 𝐹𝑆𝛽𝑖 𝑖𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡(𝑐) thus the values used on the composite component 𝐵

are the correct one, C.

At moment 𝑡′ > 𝑡; some connectors have a correct or accepted behavior and other

connectors have failed behavior and thus it will remain at a Deadlock state because of a

failure detection: ∀ 𝐹𝑆𝛽𝑖=1..𝑙 𝐵; 𝐹𝑆𝛽𝑖 𝑖𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡(𝑐) 𝑜𝑟 𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑(𝑎) 𝑜𝑟 𝑓𝑎𝑖𝑙𝑒𝑑(𝑓)

state. As some of the connectors are still operating, the entire behavior of the composite

component would be correct C or accepted A or failed F: (C/A/F).

At the moment 𝑡′′′ > ⋯ > 𝑡′ > 𝑡; all the Fail-Silent connectors are failed and they will

be in Deadlock state because of failure detection: ∀ 𝐹𝑆𝛽𝑖=1..𝑙 𝐵; 𝐹𝑆𝛽𝑖 𝑖𝑠 𝑓𝑎𝑖𝑙𝑒𝑑(𝑓),

thus the entire composite component will be considered as failed (F) and will pass to a

Deadlock state.

We can conclude that the behavior of the composite component is[(𝐶/𝐴 /𝐹)∗𝐹]. A

composite component which contains Fail-Silent connectors is therefore Fail-Silent

composite component.

Theorem 2. A composite component which is composed of a set of Fail-Silent atomic

component is Fail-Silent composite component: 𝐹𝑆𝐵 = 𝛾(𝐹𝑆𝐵1, 𝐹𝑆𝐵2, … , 𝐹𝑆𝐵𝑛).

Proof. Let 𝐵 = 𝛾(𝐹𝑆𝐵1 , 𝐹𝑆𝐵2, … , 𝐹𝑆𝐵𝑛) be a composite component. 𝐵 is composed of

the set of Fail-Silent atomic components 𝐹𝑆𝐵𝑖=1..𝑛 which are connected by the set of

connectors 𝛾 = {𝛽𝑖=1..𝑙, / 𝛽𝑖 𝑖𝑠 𝑟𝑒𝑛𝑑𝑒𝑧𝑣𝑜𝑢𝑠 𝑜𝑟 𝑏𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡 } Each connector 𝛽𝑖=1..𝑙 =

{𝑝𝑖=1..𝑚, 𝑝𝑖𝐹𝑆𝐵𝑖=1..𝑚}is a rendezvous or broadcast connector. According to lemma.1

and lemma.2, 𝛽𝑖 is Fail-Silent connector and we write𝐹𝑆𝛽𝑖=1..𝑙 = {𝑝𝑖=1..𝑚,

𝑝𝑖 𝐹𝑆𝐵𝑖=1..𝑚}.

On the other hand, we have the composite component 𝐵 = 𝛾(𝐹𝑆𝐵1 , 𝐹𝑆𝐵2, … , 𝐹𝑆𝐵𝑛)

which is composed of a set of Fail-Silent atomic components relied on by a set of Fail-

Silent connectors 𝛾 = {𝐹𝑆𝛽𝑖=1..𝑙,/ 𝛽𝑖 𝑖𝑠 𝑟𝑒𝑛𝑑𝑒𝑧𝑣𝑜𝑢𝑠 𝑜𝑟 𝑏𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡 }. According to

Lemma3, the composite component 𝐵 is Fail-Silent and we write: 𝐹𝑆𝐵 = 𝛾(𝐹𝑆𝐵1,

𝐹𝑆𝐵2, … , 𝐹𝑆𝐵𝑛). Therefore, we conclude that a composite component which is

constructed by a set of Fail-Silent atomic components is Fail-Silent as well.

105

Appendix B

Lemma 1: A Fail-Silent atomic component that use an Alternate behavior

(𝑖. 𝑒. , 𝐵𝑒ℎ𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑒) can ensure Liveness property even in the presence of faults.

Proof: let suppose the Fail-Silent atomic component 𝐹𝑆𝐵 = (𝑄, 𝑃, 𝐵𝑒ℎ𝑝𝑟𝑖𝑚𝑎𝑟𝑦 ,

𝑋, 𝐴𝑇𝐵).

 𝐹𝑆𝐵 has an acceptance test that can validate 𝐵’𝑠 internal behavior. We have seen before

that the 𝜔-regular expression of any Fail-Silent atomic component is:(𝑐/𝑎)∗𝑓 .

Therefore, at the moment of a failure detection on the Primary behavior, 𝐵 will be

blocked immediately and the component will enter in a deadlock state. It is very clear

that the use of a Fail-Silent atomic component that has only one behavior leads to a

deadlock state in the case of fault detection. Hence, in order to avoid this case an

Alternate behavior for the atomic components have to be used. It helps the component

to skip the abnormal state without entering in the deadlock state. We can say that the

use of an Alternate behavior in the atomic component can save Liveness of the atomic

component.

Theorem 1: the use of an Alternate behavior in the Fail-Silent atomic component can

produces a Fault-Masking component that can ensure both Safety and Liveness

properties in the same time. The 𝜔-regular expression of the Masking atomic

component is[(𝑐/𝑎)∗𝑓 𝑟∗ (𝑐/𝑎)]𝜔.

Proof: Let suppose that we have a Fail-Silent atomic component 𝐹𝑆𝐵 =

(𝑄, 𝑃, 𝐵𝑒ℎ𝑝𝑟𝑖𝑚𝑎𝑟𝑦, 𝐵𝑒ℎ𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑒, 𝑋, 𝐴𝑇𝐵). It uses the acceptance test 𝐴𝑇 for self-

checking of final outputs. The 𝜔-regular expression of the Fail-Silent 𝐵 in this case is

: (𝑐/𝑎)∗𝑓 . At the moment of failure detection, 𝐹𝑆𝐵 will be blocked and thereby the

Liveness of the component is violated. At that moment 𝐹𝑆𝐵 will perform its Alternate

behavior. This last will perform a forward recovery task to save Liveness proprties. The

𝜔-regular expression of the Alternate behavior in the Fail-Silent atomic component is

𝑟∗(𝑐/𝑎). Therefore, the 𝜔-regular expression produced from the conjunction of the

Primary and the Alternate behaviors is [(𝑐/𝑎)∗𝑓𝑟∗(𝑐/𝑎)]𝜔 . We can observe that it is

Appendix B

106

the same expression of the Fault-Masking component. Finally, we can conclude that the

use of an Alternate behavior in a Fail-Silent atomic component provide a Fault-Masking

component that ensure Safety and Liveness properties in the same time.

Lemma2: Let 𝐵 = (𝐵1 … 𝐵𝑛) a composite component. To construct a Fault-Masking

rendezvous connector , all the atomic components 𝐵1 … 𝐵𝑛 involved in it must be

Fault- Masking as well. 𝐹𝑀𝑅𝑒𝑛𝑑𝑒𝑧𝑣𝑜𝑢𝑠(𝛾) = {𝐹𝑀𝐵1, 𝐹𝑀𝐵2, … , 𝐹𝑀𝐵𝑛}.

Proof, Let suppose that 𝐵 = (𝐵1, 𝐵2, 𝐵3) is a composite component and 𝛾 is a

rendezvous connector that relies the set of atomic components 𝐵1, 𝐵2 𝑎𝑛𝑑 𝐵3. Both

𝐵1 𝑎𝑛𝑑 𝐵2 are Fault-Masking components whereas 𝐵3 is only Fail-Silent. 𝐵1, 𝐵2 𝑎𝑛𝑑 𝐵3

are synchronized to exchange information via the connector . Let’s suppose the

following scenario:

At the moment 𝑡 , the components 𝐵1, 𝐵2 𝑎𝑛𝑑 𝐵3 have a correct behavior and no faults

are detected.

At the moment 𝑡′ > 𝑡 , the atomic component 𝐵1 is failed. It stops operating

immediately and perform a forward recovery using its Alternate behavior. After a

period of time, 𝐵1 will reach a stable state and achieve the rendezvous connection

with 𝐵2 𝑎𝑛𝑑 𝐵3.

At the moment 𝑡′′ > 𝑡′ , the atomic component 𝐵2 is failed. Because it is Fault-Masking

component, it can detect and tolerate the fault after a period of time and earn the

rendezvous connection with 𝐵1 𝑎𝑛𝑑 𝐵3.

At the moment 𝑡′′′ > 𝑡′′ , the atomic component 𝐵3 detects a failure. It stops

immediately the operation and stays in a deadlock state. Because it has no mechanism

for fault recovery, the atomic component 𝐵3 still blocked and it would enter the entire

atomic components involved in the rendezvous connector 𝛾 (i.e.,𝐵1 𝑎𝑛𝑑 𝐵2) in a

deadlock state even though they are Fault-Masking and hence violate the Liveness of

the entire composite component.

From this scenario, we can conclude that to construct a Fault-Masking composite

component 𝐵 = (𝐵1, … 𝐵𝑛) with a rendezvous connector ; all its inner atomic

components must be Fault- Masking as well: 𝐹𝑀𝑅𝑒𝑛𝑑𝑒𝑧𝑣𝑜𝑢𝑠(𝛾) =

{𝐹𝑀𝐵1, 𝐹𝑀𝐵2, … , 𝐹𝑀𝐵𝑛}.

Appendix B

107

Lemma3: Let 𝐵 = (𝐵𝑘 … 𝐵𝑛) a composite component where is a broadcast

connector. To construct a Fault-Masking broadcast connector 𝛾, at least the broadcast

initiator 𝐵𝑘 must be Fault-Masking: 𝐹𝑀𝐵𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡(𝛾) = {𝐹𝑀𝐵𝑘 , 𝐵2, … , 𝐵𝑚 }.

Proof, Let suppose that 𝐵 = (𝐵1, 𝐵2, 𝐵3) is a composite component and 𝛾 is a

broadcast connector that relies the set 𝐵1, 𝐵2 𝑎𝑛𝑑 𝐵3 where 𝐵1 is the broadcast initiator.

Let’s suppose the following scenario in which 𝐵1, 𝐵2 𝑎𝑛𝑑 𝐵3 are only Fail-Silent

components and not Fault-Masking.

At the moment 𝑡 , the atomic components 𝐵1, 𝐵2 𝑎𝑛𝑑 𝐵3 have a correct behavior and

no faults are detected.

At the moment 𝑡′ > 𝑡 , the atomic component 𝐵2 is failed. It stops operating

immediately and stay in a deadlock state. But the entire composite component stills in

operation because the fault cannot be transferred to 𝐵1 𝑜𝑟 𝐵3.

At the moment 𝑡′′ > 𝑡′ , the atomic component 𝐵3 is failed. It will be blocked too

without perturbing the entire composite component.

We can say that the failure of 𝐵2 𝑎𝑛𝑑 𝐵3 has no effect on the entire composite

component while the broadcast initiator is not failed.

Now, let’s take another scenario when the broadcast initiator 𝐵1 fails first. In this case

𝐵1 will stay in a deadlock state and 𝐵2 𝑎𝑛𝑑 𝐵3 will even enter in a deadlock state

waiting a broadcast message from 𝐵1. We can see that if 𝐵1 fails, the others atomic

component involved in the same broadcast connector will be infected by the failure.

But, if 𝐵2 𝑜𝑟 𝐵3 fails it does not affect the broadcast initiator 𝐵1 . Hence, if 𝐵1 is only

Fail-Silent and not Fault-Masking component , Liveness of the entire composite

component can be violated.

We can conclude that to construct a Masking broadcast connector 𝛾, at least the

broadcast initiator must be Fault-Masking: 𝐹𝑀𝐵𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡(𝛾) = {𝐹𝑀𝐵𝑘 , 𝐵2, … , 𝐵𝑚 }.

Theorem 2. A composite component that is composed of a set of Fault-Masking atomic

component is Fault-Masking composite component: 𝐹𝑀𝐵 =

𝛾(𝐹𝑀𝐵1, 𝐹𝑀𝐵2, … , 𝐹𝑀𝐵𝑛).

Proof. Let 𝐵 = 𝛾(𝐵1, 𝐵2, 𝐵3) be a composite component which is composed of a set of

atomic components relied on by a set of Fault-Masking connectors 𝛾 = {𝐹𝑀𝛽1, 𝐹𝑀𝛽2 }.

At the moment 𝑡, the behavior of 𝐵1, 𝐵2, 𝑎𝑛𝑑𝐵3 is correct (𝑐/𝑎) thus we can say that

entire composite component 𝐵 is correct, 𝐶/𝐴.

Appendix B

108

At the moment 𝑡′ >> 𝑡; the atomic component 𝐵1, 𝐵2 𝑎𝑛𝑑 𝐵3 have a failed behavior

(𝑓). the entire behavior of the composite component will be failed F.

At the moment 𝑡′′ > 𝑡′; all the Fault-Masking atomic component

 𝐵1, 𝐵2 𝑎𝑛𝑑 𝐵3 perform a recovery task to reach a stable state after the fault detection.

Thus the entire composite component will be considered in a recovery state R.

At the moment 𝑡′′′ > 𝑡′′; the component 𝐵1, 𝐵2 𝑎𝑛𝑑 𝐵3 recover from the failure and

reach a correct or acceptable behavior(𝑐/ 𝑎) therefore the behavior of the composite

component is (𝐶/ 𝐴) as well.

We can conclude that the behavior of the composite component is [(𝐶/𝐴)∗ 𝐹 𝑅(𝐶/𝐴)].

We can see that the the 𝜔-regular expression of the composite component is the same of

the Fault- Masking component. We conclude that a composite component which is

composed of a set of Fault- Masking atomic components is Fault-Masking composite

component 𝐹𝑀𝐵 = 𝛾(𝐹𝑀𝐵1, 𝐹𝑀𝐵2, … , 𝐹𝑀𝐵𝑛).

