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Abstract

Cloud computing has become a popular computational technology across all
industries, by which desired services can be accessed from any place and at any time.
Cloud environments are characterized bg big data, non centralization, distrilout
and nonrheterogeneitythat bring some challenges such aediability which is still a
major issue forcloud service providers. Fault tolerance is an active line ofarebein
design and implementation of dependable systems. It means to handle unexpected
defects, so that the system meets its specification in the presence of faults. Specification
guarantees can be broadly characterized by safety and liveness propeligdslitiR in
cloud environment is handled by a set of faldtectionand fault tolerance techniques.

The fault detectionis configured by monitoring and heartbestitategieswhereasthe

fault tolerance igperformedby usingtechniques based dime and pace redundancy
such ascheckpointing, retry,SGuar@ .etc The main aim of this thesis is the
incorporation of recovery blocks scheme to enhance reliability of cloud computing
systems by providing Fagilent and FaulMasking nodes. A Fafbilent cloud wdeis

a safe component that uses tleeegptancdestfor self-fault detection whereas Fault
Masking nodeis a safe and live component that can detect and recover from failures
using the acceptance test and try blockée proposed strategies are proaed tme

and space complexities are estimated. Furthermore, a casestlayerification using

the modelchecker argrovided for the proposed schenmesprove the efficiency and

thar applicability.

Keywords: Reliability, Cloud computing, Recovery Blocks, Fault DetectioaulE
Tolerance, Fault Masking,&&eptancedst, Componerbased approach.



Résumeé

Le doud computingp u | 6i nf or maest dayane unetachnolegie dee
calcul populaire das todes les industries, pardaelle les services souhaéeuvent
°tres consult®s ° partir de noi mporte quel
cloud sont caractérisés par la granghasse de données, la noentralisation, la
distribution etle marg u ehétér@géneéité. Ces caractéristiques apportent quelques défis
telsquel 6 a s s u riahilitéc eui reste um probléeme majeur pour les fournisseurs des
servicescloud. La Tolérance aux fautes est une ligne de recherche active dans la
conceptionetd mi s e e ssysiemafiabées. Gata signifie de gérer les pannes
inattendes de sorte que le systeme répoadses spécifications en présence de fautes.
Les garantie de spécification peuvent étezgement caractérieg par des propriétés de
sécuritéi nnocuit® et de vivacit ®cloudeatgdréepdni | i t ®
un ensemble de techniques de détection et de toléranckawses La détection de
fautes est opée par kesstratégis de surveillanceetdeat t e ment de ciTur al
tolérance auxXautesest réalisée en utilisant des techniques basées sur la redondance
spatiaé et temporelletelles que le checkpointingg réessaile Sguardé et c . Le but
principal de cette théseé s t | 6 i n cuoschpnaar delilocsode reprise pour
améliore la fiabilité des systémeasoud computh g en f our nidefailamst des n
silencieusemenetd e s n 1 uds ensa sfgawat netdéfailldotriiencicguserdent
est un composant sécurisé qui utilise leteétaccept ati on pour | a do®t
desfautesa | o rusn qnuidujdan dessfautesest un composant sdr et actif qui peut
détectelesfautes et faire une reprisee r s | @tdisaraumt e 8 dibneetuo e pt a't
ensembl e de bdstoatélies prdpdseestetéprouvéelslans un contexte
de support de modélisation et vérification formelle BtHa complexité temporellet
spatale a été estimée. De plus, une étude decaset®a | f i cat duomodel | 6ai d:e
cheder ont étéréalisées sur des schémas propadin de prouver leur efficacité et leur

applicabilité.

Mots-clés: Fiabilité, Blocs de Rprises,Détection de Fautes, ©lérance auxXautes,
Cloud computing, Test doappoehpde €dnéce@ng Repr i

base de composamnt
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Introduction

Embedded Computing systems could be seen now almost everywhere in our
daily life. They are found in household items, multimedia equipment, in mobile phones
as well as in cars, smart munitions, satellites and so on. However, despite increasing
hardware capabilities, these mobile devices will always be resoanstrained
compared to fixed hardware. In order to mitigate the hardware limitations dterant
wearable devices, cloudmputing [1], [2], [3], [4], [5], [72] allows users to use reta
infrastructure in an odemand fashionOver the past yearsloud @mputing has
become a popular computational technology across all industries. It bnenggvast
advantages such as theeluction of costs, development of efficiency, central pramot
of software, compatibility of various formats, unlimited storage capacity, easy access to
services at any time and from any location and most importantly, the independence of
these services from the hardware [94]. Clowdnputing is a type of paralleind
distributed computing system which consists of a collection of-gdenected and
virtualized computers that are dynamically provisioned and presented as oneeor mor
unified computing resource(E], [9], [10].

We could fairly statehat applicattns developed onlaud systems are often
critical in terms of human lives. For instance, many such applications could be
practically employed in healthcare, military, or disaster management scenarios.
Furthermore, desired services in cloud computing caacbessed from any place and at
any time. These cause removing the restrictions using in systems and traditional
networks in providing service to users. But that can bring some new problems,
restrictions, and challenges for users and applications. Thabili&y of cloud
application is still a major issue for providers and users. Failures of cloud apps generally
result in big economic losses as core business activities now rely on them [145]. This
was the case in 2011, there was a Microsoft cloud servitage which lasted for
approximately 2,5 hours [149]. In December 24, 2012 a failure of Amazon web services
caused an outage of Netflix cloud services for 19 hours. In October 2013, Facebook
reported an unavail abl e s ery20l4 ene df Googlep hot os

services (Gmail) was down for about-26 min [150].
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The demand for highly dependable cloud apps has reached high levels [147].
However, there is still no clear methodology in industry today for developing highly
dependable cloudpplications [145]. A research presented in [146] has revealed that
infrastructure and platform services offered by big players like Amazon, Google and
Microsoft suffer from regular performance and availability issues due to service
overload, hardware flaires, software errors and operator errors. Moreover, because of
the constantly increasing complexity of cloud apps and because developers have little
control over the execution environment of these applications, it is exceedingly difficult
to develop faulfree cloud apps. Therefore, cloud apps should be robust to failures if
they are to be highly dependable [148].

Fault tolerance has always been an active line of research in design and
implementation of dependable systems. It involves providing a systdnthe means
to handle unexpected defects, so that the system meets its specification in the presence
of faults. Fault tolerance is carried out viault detectionandrecovery[130]. In this
context, the notion of specification may vary depending on the guarantees that the
system must deliver in the presence of faults [45]. Such guarantees can be broadly
characterized byafety and liveness[20] properties In fact, Safetypropertiescan be
ensured by fault detection techniques whereas recovery mechanisms are used to meet
livenesgroperties.

In cloud computing system$ailure detections processed by using two main
strategiesintrusion detection systems (ID8) network or hosts attacks detecti@2],
[33] and Heartbeat/Pingingfrategy [43] for hardware fault detection. In the other side,
fault tolerancecapabilityis configured in cloudystems vigroactiveand reactivdault
tolerance techniques [22-27][94][98][101][102][103]  However, &ult tolerance
strategies used in cloud82-27] are based on timer spatial redundancy which can
tolerate only hardware faults wiht dealing with software bug#\ccording to our
thorough investigation of the area,eth is clearly a lack of formal approathat
rigorously relates the cloud computing wittftevare fault blerance concerns.

Recovery blockscheme 29],[30] is a variantof design diversity forisoftware
fault tolerance [28]lt is based on the selection of a set of operations on which recovery
operations are base®ecovery blocksare composeaf a set of try blocks and an

acceptance Testlhis earlier is an internal audit that can configure the fault detection

2



Introduction

process. While thdorward recovery can be present by the set of try bloEks.
constructing highly hardware and software fault tolerance in -teak distributed
computer systems, Distributed Recovery Blocks (DRB) is formulated by Kim Kan in
1983 [109][110][132]. It is &cheme that can handle the software and hardware ifaults
the same manner in distributed reale environment.

In this thesis, we propose a novel formal framework for constructing reliable
cloud modulesusing the recovery blocks scheme. The aim is to provide strategy that
can enhance cloud reliability by uniform treatments of software and hardware faults by
constructing FaiSilent and FauliMasking nodes. A Faibilent node is able of self
fault detecton by using the acceptance test. This earlier can guarantee initial safety
requirement in spite of faults. In the other hand, a Rdakking node is apt to handle
(i.e., detect and tolerate) software, hardware and response time faults by using both the
aaceptance test and try blocks to ensure safety and liveness properties in the same time.
In order to well explain the proposed schemes, Fire Control System is used as a case
study. Time & space complexity for such schemes is estimated. Also, safety and
liveness verification using the moegtecker is applied on the deduced models to prove
the efficiency and the applicability of the proposed schemes. BIP (Behavior,
Interaction, Priority) [14], [15], [16] is used as a Compormaded framework with
multi-party interactions for system modelization and UPPAAL mexledcker is used
as a tool for simulation and verification.

The thesis is divided into five chapters. First, we introduce the background to
and the motivation for the research and identify key rebegnoblems and
contributions. After, the chapter 1 explains the background of fault tolerance including
definitions and basic concepts then it presents the cloud computing systems, fault
detection and fault tolerance techniques in the cloud environme@hapter 2, a
survey of some current related works on fault detection and fault tolerance in cloud
computing are cited. Chapter 3, introduces the compdres®d cloud computing
approach and BIP as a Componbased framework. The Chapter 4 presentaudt f
detection scheme for constructifgil-Silentcloud nodes that ensureafsty properties
in the presence of faults. In ChapterFaultMasking scheme is described for fault
detection and recovery in cloud moduldst can ensure botkafety and liveness
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properties in the same time. Finally, conclusion and future perspectives are cited in the

conclusion section.
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1.1 Introduction

Reliability is the ability of a system or component to perform its required
functions under stated conditions and for a specified period of Wne. way to
increasing the reliability is by employing fault tolerance strategies. Falelahceis
defined as the abilitgf a system to deliver desired results even in the presence of faults.
A system is considered &ult tolerantif the behavior of the system, despite the failure

of some of its components, is consistent with its specifications [106].



Chapterl ackgroBnd

1.2 Fault Tolerance
Fault Tolerance is carried out via fault detection and recovery .[T3@ fault

detectionis the phase in which the presence of a fault is deduced by detecting an error
in the state of some subsystem. After the fault detection phase, the error ystém s
has to be corrected this is what we call recovery. With a system recovery task, the
system will reach an errdree state
1.2.1 Faults model
Three terms are crucial and related to system failure and thus need to be clearly defined,
which arenamed fdure, error and fault. Failuresrror and faul{104], have technical
meaning in thdault tolerance literature. A failure occurs wh@ra sy st em i s una
provide its r.Amewodrisfietdh aftu npcaritonsfo t he system
tol ead t o subswitpadanlttish f el adpadged or hypot h
a n e r Roroekample, a sensor may break due to a fault introduced by overheating.
The sensor reading error may then lead to a system fafluelt can be of Ardware
origin, which is caused by physical malfunctions or can lsfawarefault which is
caused by software ba system development.
A fault can be classified into three main groups, namely permanent, intermittent and
transient faults [133], according tioeir stability and occurrence:
Permanent faultsare caused by irreversible physical changes. The most common
sources for this kind of faults are the manufacturing processes.
Intermittent faultsare occasional errdsurststhat usually repeat themselves. But they
are not continuous as permanent faults. These faults are caused by unstable hardware
and are activated by an environmental change such as a temperature or voltage change.
Transient faults, are temporal single nfanctions caused by some temporary
environmental conditions which can be an external phenomenon such as radiation or
noise originating from other parts of the system.
In this thesisthe termdfault, error andailure refers to the same meaning whichhs t
deviation from the regular behavior of the system.
1.2.2 Safety and liveness properties

Tolerating faults involves providing a system with the means to handle
unexpected defects, so that the system meets its specification even in the presence of

faults. In this context, the notion of specificatiomay vary depending upon the
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guarantees that the systemsndeliver in the presence of faults. Such guarantaebe
broadly characterized by safety ameehess properties [112]. Every possible property
can be expressedoy a conjunction of safety anvéness properties [113].
Safetypropertycan be described over the state that must hold for all executions of the
system. It rules thalt b a d nhdvarmagpsp. Asrah example, the requirement for a
system controlling the traffic lights of a street intersection that the lights for two
crossing geets may never be green at the same time.
Livenesgroperty this property can be expressed via a predicate that must be eventually
satisfied, guaranteeing thita good t hi ng wiA$ &n efampleadf | y
livenessviolation is deadlock involving two or more processes, which cyclically block
each other indefinitely in an attempt to access common resources.
1.2.3 FaultTolerancetechniques

Fault tolerance is based on redundancy. Itl&rtime, hardwareor softwae
redundancy105].
Time redundancyjs based on the execution of some instructions many times (e.g.,
Checkpointing andollback recovery).
Hardware redundancys based on the idea to overcome hardware faults by using
additional physical componenis.g, T MR, Codi ngé) .
Software redundancgr design redundancgys based omll programs and instructions
that are employed for supporting fault tolerance ( e.g.veksion programming,
Recovery lbcks).
1.2.4 Recovery Blocks technique

Recovery Blocksechnique[107], [108] is a variant oN Versions Software
(NVS). It is basedn the notion of try blocks. The try blocks are a set of operations (of
a program) that can be consideredaasit of detection and recovery. Each try block
contains a primary block, zeror more altmate blocks and anceeptancelest (see
Figure 1.1) The possible syntax of a recovery block is the following:
ensure<Acceptance Test> byo<> else by ¥ > é . e | 6 e elde grroWhere

0 isthe primarytry blockand p ™ ¢, isthe alternate try block.
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Figurel.1l.Recoveryblocks architecture
The pimary try block is theirst block entered. It performs conventionally the desired
operation The alternate try block, isntered when the primary block fails to pass the
acceptance Test. It is required to perform the desired operation in a different way or to
perform some alternative action acceptable to the program as a whole. All, primary or
alternates blocks must pass on exit ondbeeptancdest to judge their output§he
acceptanceestis a section of program which is invoked in order to ensure that the
operation performed by the recovery block is to the satisfaction of the problem.
acceptancdest is an internal audit logic by which the component can possesses the
capability of judging the reasonableness of its computation results.
The forward recovery mechanism used in recovery blocks can enharefédieacy in
terms of the overhead (time&d memory) it requires. This can be crucial in téake
applications where the time overhead of backward recovery can exceed stringent time
constraint§109] [110].
1.2.5 Distributed Recovery Blocks (DRB)

Since its first formulation in 1983 by Kim Karj109][132] distributedrecovery
blocks (DRB) has beera technology for constructing highly hardware and software
fault-tolerance in realime distributed computer systems.

DRB uses a pair of setthecking processing (PSP) nodes structure together with bo
software internal audit and watchdog timer to facilitate -tiea hardware fault

8
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tolerance. For facilitating redgime software fault tolerance, the software implemented
internal audit function and multiple versions of raale task software which are
structured via the recovery block schefd®7, [108 and executed concurrently on
multiple nodes within a PSP structuiidie DRB is a based on forward recovery which

is primarily used when there is no time for backward recovery.

Figurel.2 Basicstructure of DstributedRecoveryBlockg109]

The Figure 1.2 presents the DRB scheme structdres the pimary node which
executes th@rimarytry block A andB is thealternatetry block In the other hand, the
backup noder executedB as theprimary try block andA as thealternate try blockWe

can see that the nodes use the try blocks in reverse timdeaims to avoid the failure
coincidence between the nodes. In other meaning, if both nodes use the same order of
try blocks, the same faults the try block that causes a node to fail in processing a
certain data set will cause the other node to fail too.

Both nodes will receive the same input data and process them concurrently by the use of
two different try blocks (i.ethetry block A on X andthetry block B onY). After the

execution of the try blocks, the results judgtmenperformed by using the common

9
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acceptancdest. Assoon as each node passes tbeeptanceest it updates its local
databaself we assume thaX andY never fail h the same time, thremses are possible
[109]:

Fault free situationpoth nodes will pass theeceptanceest with the results computed
with their primary try blocks. In such a case, fremary nodeX notifiesY of its success

of theacceptanceest. Therefore, only th@rimary node sends its output to the successor
node.

Failure of the primary node Xand thebackup nodeY pass the @eptancdest. In this
case, the nod¥ attempts to infornthe kackup node pon its failure.At just reception

of the notice, the backup nodewill send its output to the suessor and then the role of
the primary and &ckup nodes are reversgskte Figure 1.3). For the newirpary node

Y, the tryblock A must become thprimary try block In thistime, thenew kackup node

X (i.e., the failed primary node) will use tiwy block B for recoveryin order to bring
the database in the node up sdedwithout disturbing the newimary nodeY. After the
successful retrythe tryblock B remains as thprimary in the newbackup node. In the
case when therimary crash completely, theackup node will recognize the failure of
theprimary upon expiration of the preset timenii.

Failure of the backup node Yn this case, therpnary node X needsot be disturbed.
The kackup node will just make a retry with try block A to achieve localized recovery.
DRB is an attractive strategy for two raisons: First, the two nodes always execute two
different try blocks. An advantage here is that if a dataaeses one of the try blocks
to fail but not both of them, then one acceptable result can be sent to the successor with
little delay. Second, the oent pimary node always uses as the pmary try block
and try block A is generally designed to prodbegter quality outputs than try block B.

A primary node can have one or momckup nodes. In other words, themary try
block can have more than one alternate try block. As long as themoagetackup
nodes with more alternate try blockse #ystemwill be more reliable.
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1.3 Cloud computing systems
1.3.1 Definition
Cloud omputing [8], [9] is a type of parallel and distributed computing system
which consists of a collection of inteonnected and virtualized computers that are
dynamically provisioned and presented as one or more unified computing resource(s)
based orservicelevel agreements (SLAS) established through negotiation between the
service provider and the consumers [8], [@furel.4).

The Figurel.5shows some examples of var®doud service providers

11



Chapterl

ackgroBnd
S
Servers
2 — 3
. 4 Application Cwintegs
r Mocdharing .: C:Ie(-‘./,'“‘.r "
Loz "

I\. Platform .”— : 4“/}
\ ™= = s T 3

I Infrastructure

l Compete -
BAOCR S g
Froses A

Cloud Computing

Figurel.4. Overview ofcloud computing [98]

mgn @@ Mg
] ¢ 3Bce
cloud drive

propbox GO gle

o Nrivo — 1
OpenD EGNX.TE Q
iCloud

Figurel.5. Top cloud computing services providers
1.3.2 Architecture

e

The architecture of thelaud computing [96] can be divided into 4 layers: the

hardware /datacenter layer, the infrastructure layer, the platform layer and the
application layer, as sk in the Figurel.6.
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Figurel.6. Cloud omputingarchitecture [96]

Hardware Layer,This layer is responsible for managing the physical resources of the
c oud, including physical servers, router s
layer is typically implemented in data centers.

Infrastructure layer, this layer creates a pool of storage and computing resources by
partitioning the physical resourcesing virtualization technologies.

Platform layer,consists of operating systems and application frameworks. The purpose
of this layer is to minimize the burden of deploying applications directly into virtual
machine containers.

Application layer,is the hghest level of the architecturehd@ application layer consists

of the actual cloud applications. Different from traditional applicationsloud
applications can leverage the automéascaling feature to achieve better performance,

availability and loweoperating cost.

1.3.3 Reliability in cloud computing

The emergence afloud computing has brought new dimension to the world of
information technology. Even thougltoud computing provides many benefits, one key
challenge in it is to ensure continuotdiability and guaranteed  availability of
resources provided by it. Therefore, there se@ousneed for fault toleranhechanisms
in cloud environmentsBefore dealing withthe fault tolerancetechniquesin cloud
systens, it should first explore thdifferent faults model that may occursochsystem.
The failures ircloud computing are categorizedfour classes [99]:
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Hardware faults: mainly occur in processors, hard disk drive, integrated circuits
sockets and memory.
Software faults: provided asa result of software bugs.
Network faults: this type of failures inhibitthe communication between thiewd and
the end users. It is caused by server overload and network congestion.
Timeout failure [100]: can be considered as resultof failures (e.g hardware,
software, and network). It occurs when the time needed for executing a task exceeds the
delay set by the service monitor.
In our thesis, we focalize on tolerating hardware faults, software faults and Timeout
failures.
1.3.3.1 Fault Detectiorin Cloud computing

Failures incloud computing systems are processed by using two main strategies:
Intrusion detection and Heartbeat/Pinging.

a. Intrusion and Anomaly Detection Systems (IDSs)
IDSs [32], [33], [34], [35], [36] are strongly adopteddiouds. Generally, IDSs

are used for detection of network bosts attacks (e.g., Denial of service, Buffer
overflow, Sniffer attacks). They are based lmhavior observatiof the component
and an alarm is raised if an abnormal behavior is detected. CHmepe grouped into
two detection principles, namely mistisased (or Signatwieased) and anomabased
IDS.
Signaturebased IDS

This kind of IDS recognizes intrusions and anomalies by matching observed data
with predefined descriptions of intrusive befar. Therefore, a signature database
corresponding to known attacks is specified a priori.
Anomaly-based IDS

The strategy of anomaly detection is based on the assumption that abnormal
behavior is rare and different from normal behavior, and thus itttriesodel what is
normal rather than what is anomalous. Anomaly detectors generate an anomaly alarm
whenever the deviation between a given observation at an instant and the normal
behavior exceeds a predefined threshold (see Figi@yeAnomalydetection refers to
the important problem of finding nesonforming patterns or behaviors in live traffic
data. These neoonforming patterns are often known as anomalies. Three types of
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anomalybased IC5 techniques are available foloed Computing:statigical, data
mining, andmachinelearning techniques [32],[33], [34B5], [44].

Security
Administrator
Reaction to . Anomaly

Anomaly Detection Detection

raq

Cloud
Computing System Model
System (Normal Behavior)

Deviation

Anomaly
Observed Behavior Alarm

Figurel.7. Anomaly Detection System.

Statistical based anomaly detectiom this technique, anomaly detection is realized by
observing computations in théoad and itcreates a profile which stores a value to
represent their behavior. In order to detect failures using these techniques, two profiles
must be used. The first one stores the ideal profile while the second one stores the
current profile which is updated pedically (this one calculates anomaly score). If
anomaly score of current profile is higher than the threshold value of stored profile, then
it is considered as anomaly and it can be detected. A survey of statistical based anomaly
detection is presented if37]. Statistical anomaly detection systems can detect
unpredictable anomalies. They can monitor activities such as CPU (Central Processing
Unit) usage, number of TCP (Transmission Control Protocol) connectors in term of
statistical distribution but moreinte is required to identify attacks and detection
accuracy is mainly based on the amount of collected behaviors.

Data mining based anomaly detectioData mining techniques such atassification,
clustering and ssociation rule mining can be used for failure detection. Data mining
technigues use an analyzer which can differentiate normal and abnormal activity within
clouds by defining some boundaries for valid activities indbed. A good number of
approaches ra proposed for this issue in [38]. Dataining anomaly detection

techniques are largely used because they do not need any prior knowledge of the system
15
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but their algorithms are generally computatiotensive. Mbreover, dta mining
techniques can produdegh false alarm rate (FAR) and they require more time and
more sample training.

Machine learning based anomaly detectionThe ability for programs or software to
improve performance over time by learning is an important technique for the detection
of aromaly. Verified values or normal behaviors of data are stored; when anomaly
occurs or is being detected, the machine learns its behavior, stores the new sequence or
rules. This technique creates a system that can improve performance of the program by
learring from the prior results [3940], [41]. A survey on existing techniques based on
machine learning is presented in [4Rfachine learning techniques alone can just detect
known attacks. Therefore, they must be accompanied statistical ordata mining
techniques in order to ensure detection of suspected unknown anomalies. We can see
that each of the previous techniques has its strengths and weaknesses; the recent works
for anomaly detection ircloud computing are focusing on development of more
efficient hybrid techniques from the existing IDSs. Hybrid techniques are efficient for
anomaly detection but they often come with high computational cost.

b. Heartbeat and Pinging Strategies

The most common implementation fdault detection in cloud @mputing
systems is based on tvkeepalive massageatrategies: dartbeat anginging [43]. In
Heartbeat strategy, a message is periodically sent from a monitored node to the failure
detector to inform that it is still alive. If tHeeartbeat does not ard before a timeout,
the failure detector suspects the node is faulty (see Flggi(a)).

In pinging strategy, a message is continuously sent from a failure detector to a
monitored node. The failure detector expects to receive as answetkarf a keg-
alive messagéails, a probe (i.e., a series of messages separated by a time interval) can

be used to verify whether a node is really faulty (Figusgb)).
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Figurel.8. a) Heartbeastrategy; b) Pingingtrategy.

Heartbeat opinging strategies are used for permanent hardware fault detection

where the detection is focused on finding the crashed nodes. Furthetheyreye

based on message passing which can produce an overflow in network connections.

In cloud @mputing systemdailure detection is done with the aidiatrusiondetection

and heartbeapinging strategies. Intrusion detectiopstems are dedicated to ensuring

safety requirementsy preventing anynalicious attacks against thioed connections

or nodes. This sttagy is based on monitoring the system behavior to detect any

abnormal behavior produced by malicious attacks. The failure detection in this case is

effected by an externahonitor component which manipulates a set of data and applies
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a sequence of comptitans to decide whether there is an anomaly or not. This type of
process requires more time, and more computations. That is why, it cannot offer high
accuracy for failure detection and this justifies the high false alarm rate (FAR) in IDSs.
The second sttagy used incloud networks isheartbeapinging. It is useful for
detectingthe crashed nodes. Heartbeat strategy is based on mgsssgjeg between
the failuredetector and the set of monitored nodes. As noted earlier, this can lead to an
overflow of tre network connections. In both IDS and Heartbeat, fault confinement in
thecloud network is not processed. This means that if one node fails, all of its neighbors
can simply get infected and the failure would be transferred over the network. By this
effed, thesafetyof the doud network becomes a great concern.
1.3.3.2 Fault tolerance in cloud computing

The techniques that are used to createf#édt Tolerance capability icloud
computing can be divided into two main categories: proactive fault tolerance and
reactive fault tolerance [98][101][102][103] (see Figlr®.

a. Proactive Fault Tolerance

It is based on avoid failures by proactively taking preventative measures. It makes sure
that the job gets done completely without any reconfiguration. Two techniques are
based on proactive fault tolerance which are: Preemptive migration and software
rejuvenation.

Software Rejuvenationit designs the system for periodic reboots and it restarts the
system with clean state with a fresh start.

Pre-emptive Migration,in this technique, the applications are constantly monitored,
analyzed and depend on a feadbloop control mechanism.

Self-Healing, for betterperformance, a big task can divided into parts. Running various
instances of an application on various virtual machines can automatically handle
failures of application instances.

b. Reactive Fault Tokerance

It aims to reduce the effect te faults already occurred in cloud. Some of the fault
tolerance policies are:

Checkpointing and rollback recovery,is useful for thelong running and the big
applications. It is doing after every change in the system. When the task fails, the job

will be restarted from the recently checkpoint rather than restarting from the beginning.
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Job Migration, in which the task can be migrated aoother machine after failure
detection. HAProxy can be used for migration of the jobs to another machine.
Replication,in order to make the execution succeed, various replicas of task are run on
different resources. HAProxy, Hadoop and AmazonEc2 aesl dor implementing
replication.

SGuard, is based on rollback recovery. It can be implemented in Hadoop and
AmazonEc?2.

Retry, is the simplest among all. In which the failed task is implemented again and
again on the same resource.

Rescue Workflowijt allows the workflow to resist after failure of any task until it will
not able to proceed without rectifying the fault.

Task Resubmissiorat runtime, the failed task is resubmitted either to the same or to a

different resource for execution.

Fault TolerancePolicies —l

A\ 4
Proactive Policies Reactive Policies

Software Rejuvenation I Checkpointing Job Migration SGuard Replication Rescue Workflow

Preemptive Migration v o
SelfHealing Retry Task Resubmission

Figurel.9. Faulttolerance techniques in Cloedmputing

We can observe thafault tolerance techniques in cloud systems can be
categorized under two main categories: Rollback recovery (or time redundancy) and
physical redundancy (or space redundancy). The rollback recovery mechanism consists
of the reexecution of the system fmo the last correct state (e.g., Checkpointing and
rollback recovery) or even the restart of the system from the begin (e.g., SGuard, Retry,
Software Rejuvenation). Space redundancy consists of the concurrent execution of

many versions of the same program the division of one program to many parts
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executed concurrently on different machines (e.g., Replication;Hsaling) or to
migrate a process from a failed machine to an operational one (.g., Job Migration, Task
Resubmission). Rollback recovery is yeconvenient for transient hardware fault
tolerance in long applications. But it is not supportable by-Re& cloud applications
because it needs more time for recovery. Furthermore, a consistent state must be
calculated for each recovery and this i easy to get especially in high scalable
distributed cloud systems. Space redundancy can tolerate only permanent hardware
crashes. It is very convenient for Réahe applications but it requires the
implementation of complicated communication policieswieen the collaborative
machines.

We can say that the existent strategies used for the fault tolerance in cloud
computing have an observable missing in software fault tolerance. This latest can be

ensured via software redundancy.

1.4 Conclusion
In this chapter, some basic concepts of fault tolerance are introduced such as:

faults model, safety and liveness properties and fault tolerance techniques. Then,
recovery blocks is presented as a forward recover fault tolesuiemame After, the

DRB schemesd described as a parallel execution of recovery blocks for software and
hardware fault tolerance in retiine distributed systems. Then, Cloud computing
systems are introduced in the next section. Its architectures and characteristics are
highlighted. Afte that, reliability in cloud environment is discussed and the main fault

detection and fault tolerance techniques are detailed.
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2.1lIntroduction

There are quite a good number of worksfault detection and fault tolerance in
cloud computing systemsitherin componentbased systems. Befoverappingup this
thesis, we would like to mention a few of thefime mentioned researches are classified
into three main classes: Fault detection in cloud computing, Fault tolerance in cloud

computing and fault tolerance inmponentbased systems.

2.2 Fault detection in cloud computing systems
Many researches have been provided for fault detection in cloud Computing.

Fan et al. in [46] use Petri Nets model to proposauét detection strategy for cloud
module by providing aloud computing dult Net (CFN).The CFN aims to model
different basic components of thiowd application as either the detection or failure
process. Bythe CFN, byzantine fault detection can be done dynamically in the
execution processWang et al. in 47] propose an online incremental clustering
approach to recognize access behavior patterns and use CCA (CaGonietdtion
Analysis) to model the correlation between workloads and the metrics of application
performance/resource utilization in a spec#dccess behavior pattern. In [48], Barhuiya
et al. introdue a lightweight aomalydetection dol (LADT) which monitors system
level and witual machine level metrics inaud data to detect node level anomalies
using simple metrics and correlation anaysn this work, LADT addresses the
complexity of implementing efficient monitoring aadalysis tools in largecale toud

data centers by collecting and storing the metrics generated by node and virtual
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machines using Apache Chukwa.Wang et al. presg in [49] a ©rrelationanalysis
based approach to detecting the performammenaly for internet ware using kernel
canonical correlationrelysis (KCCA) to model the correlation between workloads and
performance based on monitoring data. Furthermore, XoRrol darts are used to
detect anomalous correlation coefficient and trend without a prior knowledge. In [50],
C. Wang et al. propose an algorithm that computes statistics on data based on multiple
time dimensions using statistical methods. The prapoakyorithms have low
complexity and are scalable to process large amounts of data. The works in [47], [48],
[49],[50] are based odatistical monitoring techniques which are based on observing
the system behavior to detect any abnormal behavior. Thiegsorequires a prior
knowledge which is extremely difficult in large scale systems.

Kumar et al. in [51] present fault detection algathm for faulty services usingatia
miningds outlier det docdetecoaccurate anth nodel fauhya t can
services without any prior knowledge. In [52], Prasad and Krishna present statistical
chart approach which is the standard algorithm applied to outlier detection for anomaly
detection in continuous datasets. In [53], Ranjan and Sahoo present a newngluster
approach based on-Wedoids method for intrusion detection. The works in [51], [52],
[53] are based odata mining system monitoring. These techniques present some hard
computations and generate a high false alaate.rin[54], Singh et b propose a
collaborative IDS famework in which known stealthy attacks are detected using
signature matching and urdwwn attacks are detected usingcsiontree classifier and
support vector mchine (SMV) In [55], Pandeeswari and Kumar introduae hey/brid
algorithm which is a mixture of Fuzzy-Keans Clustering algorithm and Atrtificial
Neural Network (FCMANN). In [56] Sha et al. propose a statistical learning
framework ly adopting both the higbrder narkov chain and multivariate time series.
Ghanen et al. proposén [57] a hybrid approach for anomaly detection in large scale
datasets using detectors generated based on-staultimeta heuristic method and
genetic algorithm. The workm [54], [55], [56], [57] are kibrid system monitoring
techniguesvhich require high computational costs.

In [58], Arockiam and Francis presenault detection technique based on two
strategiespushmodel andpull model. In push model, fault detector sendgals to

various nodes in thdaud to check their healthatus. On the other hand, in pull model,
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each component in the system sends signals to fault detector telling its health status.
Some techniques based oealtbeat strategy are presented in [59], [6A].[61],
Hayashibara et al. presents theAccrual failure detector.It is basedon heartbeat
strategy but instead of providing information lmjolean nature (Trust or Suspect); it
produces a suspicious level on a continuous scale. By this, the applications can directly
use the value output by the accrualure detector as a parameter to their actions. These
approaches are designed to adapt dynamically to their environment and in particular,
adapt their behavior to changing network conditions. In [62], Lavinia et al. present a
failure detection system thabmbines the power of existing approaches such as gossip
protocol with the decoupling of monitoring and interpretation as offered by the accrual
failure detection solutions. This combination gives a better estimafidhe inter

arrival times of leartbeat and an increase level of confidence in the suspicion of process
being lost. The works in [58], [59], [60], [61] and [6&]e focalized only on hardware

fault detectionin the cloud computing nodes without detecting software faults. In the
works [46-62] fault detection strategiesy cloud computing are presented without
considering thecomponentbased architecture, unlike our proposition which is

dedicated to fault detéion in componenbased cloudamputing architecture.

2.3 Fault Tolerance in Cbud computing systems
In this section, some current researches of fault tolerance are pres&dadsh

et al. in [22 emphasizedault tolerance by condering reactive and proactivadlt
tolerance policies. In proactivéault tolerance policy, preempe migration and
software rejuvenation techniques were discussében, Checkpointing/Restart,
replication and task resubmiss were discussed in reactivauft tolerance. Zhang et
al. in [114] proposeda novel approach called byzantine fault tolerant cloud (BFT
Cloud) for tolerating different types dhilures in voluntaryresource louds. BFT
(Byzantine Fault Tolerant Cloud) can tolerate different types of failures includeng t
malicious behaviors afodes ly making up a BFT group of one primary and 3f replicas
BFT douds are usedfor building robust systems in voluntaryesource loud
environments. In [115]Jia et al. focus on the principle of fault correction by replacing
the failed component by fainctionally equivalent oneThe authors proposed the fault
correction ly providing a lightweight fault handling for migration lorRginning
application services into shared opgoud infrastructuresTo minimize failure impact
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on services and applicatioexecutions, they presedta diagnosis architecture and a
diagnosis method based on the service dependence graph (SDG) model and the service
execution log for handling service fault§herefore,by analyzing the dependence
relations of activities in SDGnodel, the diagnosis method identifies the incorrect
activities and explains the root causes for the web service composition faults, based on
the differences between successful and failed executions of composite ¥€hacet

al. in [116], proposed adult tolerance ané QoS (Quality of Service) scheduling using
CAN (Content Adressable Network) in mobile socédud computing by which,
members of a social network shateud service or data with other members without
further authentication by using thenobile device. Faultolerance and QoS scheduling
consists of four sulkcheduling algoritms: malicious user filtering, laud service
delivery, QoS, provisioningreplication and load balancing. Under the proposed
scheduling, a mobile device isatsas aesource for providingloud services, faults
caused from user mobility or other reasons are tolerated and user requirements for QoS
are considered. By using fault tolerance and QoS scheduling, faults arssmgnfsbile
device are tolerated such: aetwork disconnetion, battery drainln [117], Jing et al.
propased matrix multiplication as dauid selection strategy and technique to improve
fault tolerance and reliability ah prevent faulty and malicious clouds irowd
computing environmenSun et alin [118] presentec dynamic adapte/ fault tolerance
strategy DAFT. It is based ae idea ofcombining two fault tolerance modelsa
dynamic adaptive checkpointingadit tolerance model ral a dynamic adaptive
replication ault tolerance modeh orderto maximize the serviceabilityn [119], Yi et

al. proposeda fault tolerance job scheduling strategy for grid computing. The
scheduling strategy includes JRT (Job Retry), JMG(Job Migration without
Checkpointing) and JCP(Job Migration with Checkpointin)e authorsconcluded

that JRT strategy has the most optimal systenfopmance improvement for small jobs

and JCP strategy leads to the lowest peréme improvement.An adaptive fault
tolerance of realime applications(AFTRC) running on virtual machines; cloud
environment is proposed by Malik and Huet in [120he AFTRC scheme tolerates the
faults on the basis of reliability of each computing node. It is based on such modules
like: Acceptance Test (AT), Time Checker (TC), Reliability assessor (RA), and

Decision Mechanism (DM Unfortunately the acceptancdest ofthe virtual machines
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is not discussed. In [121Wu et al.puts forward that resource consumption is also an
important evaluation metric for any faultolerant approach. The corresponding
evaluation models based on mean execution time and resource caoBuRIpt
constructed to evaluate angult tolerant approach. In [121], an approach that awns
handling quite a compte set of failures arising irrig environment by integrating basic
fault tolerant approaches proposedit is based on the four basapproachesretry,
alternate resource, checkpoint/ restart, aeplication and it can dynamically and
automatically decide which one is used by analyzing the current state of the running
task. An evaluation model for mean execution time isstroicted andised to evaluate

fault tolerant approache&. membership management solution ovesiglographs in the
presence of yzantine nodess proposed by Lim et ain [122]. A novel software
rejuvenation basedalfilt tolerance scheme proposed byLiu et al. in [135]. This
scheme comes from two inherently related aspects. First, adaptive failure detection is
proposed to predict which service components deserve foremost to be rejuvenated.
Second, a component rejuvenation approach based on checkpoints withplagesre
proposed to guarantee the continuous running of cloud application systems. Gang et
al. in [136] propose a framework to provide load balancing and fault prevention in web
servers in proactive mannéo ensure scalability, reliability and availaty. This
framework is based on autonomic mirroring and load balancing of data in database
servers using MySQL andnastermaster replication. Garraghan et al in [137]
introducel a byzantinefault tolerance frarawork that leverages federatedbux
infragructure. An implementation of the proposed framework is discussed and detailed
experiments are provided. Alannsary et al in [138], prap@seeliability analysis
model that enables SaaS providers to measure, analyze and predict its reliability.
Reliabiity prediction is provided by analyzing failures in conjunction with the
workload. Mohammed et al. in [14Qjropose an infrastructure for laa®uad platforms

by optimizing the success rate of virtual computing node or virtual machines. The main
contribution is to develop an optimizddult tolerance approach where a model is
designed to tolerate faults based on the reliability of each compute amwti can be
replaced if the performance is not optimal. Reddy et al. in [141], prdpase
FT2R2Cloud as a fault tolerant solution using tioug and retransmission of requests

for cloud applications. FT2R2Cloud measures the reliability of the softwanpanents
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in terms of the number of responses and the througHjhg. aithors propose an
algorithm to rank software components based on their reliability calculated using a
number of service outages and service invocation. Zheng et al. in [142], atentifi
major problems when developinguiit tolerance strategies and introduced tkesign of

static and dynamic alult tolerance strategiesThe auhors identify significant
components of complex serviceiented systems, and irstegate algorithms for
optimal fault tolerance strategy selection.nAheuristic algorithm is proposed to
efficiently solve the problem of selection offault tolerance strategy. Chen et al. in
[143] presered a lightweight softwareatilt tolerance system called SHelp, which can
effectvely recover programs from different types of software faults final work,
Moghtadaeipour and Tavolin [144] proposd a new approacto improve load
balancing anddult tolerance using worload distribution and virtual priorityWe can

see clearlythat the current researches focus on improving the fault tolerance in cloud
environments by improving the existent strategies or by collaboration of such strategies
to develop one more efficient. Thus, the proposed works are restricted on hardware

faults blerance without dealing with software fault tolerance.

2.4 Fault tolerance in componenbased systems
In this section, some researches dealing with fault tolerance in comymaseut

systems are presented. The compotastd analysis of fault tolerance was first studied
by Arora and Kulkarni in [63], [65]. They proved that a fault tolerant program is a
decomposition of a fault intolerant program and a set of fault tolerance components. A
fault tolerant program satisfies safety and liveness properties. In [65], the authors
proved that fault tolerance components are: Detectors and Correctors, wherer®etecto
ensure safety property and Correctors ensure liveness property. The work in [65] was
extended to the context of re@the systems in [66]. In [63], [64], [65], [66], a program
is presented as a set of guarded commands in the shared memory model. Mtireove
Detecto (resp. Corrector) component which ensus&iety (resp.livenesy property is
defined based on state predicate. State predicate means that properties or requirements
verification is done on the state level. Unlike those works, in ttiess, an actual
system is designed incrementally by composing smaller components. Each component
has its own state space, behavior, interface, and each component is responsible for
delivering a certain set of task®Roohitavafand Kulkarniin [67] presergd algorithns
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for adding stabilization anch@ilttolerance in the presence of unchangeable environment
actions. Bensalem et alpresergd in [68] an heuristic method for compositional
deadlock and verification of Compondrmsed systems using the Invariarhis work
focuses on just Deadlock detectidm [45], Bonakdarpour et aintroduce a theory of

fault recovery for omponertbased models. A nemasking model was constructed
from BIP models in ordeto ensurdivenessroperty usingCorrector component. But,

the authors in [45] have not dealt with fault detectbtmmcerns Wu et al. in [76]
present a modalriven approach to describe specification anemisautomatic
configuration of &ult tolerance solutions faaxomponerdbased systems ohd software
architecture level. In this work, theatilt tolerance mechanisms are implemented by the
system in the form of a specific kind of component named tolerance facilities. In [77],
Tambe et alpresent a model driven technique usedpecify the sgcial faulttolerance
requirement forrcomponerdbased systems. In [78Jung and Kazanzidgzresentd a
runtime software environment feafety research onomponerfbased medical robot
systems. In both [77], [78], the mechanisms and services are degidgrediddleware

Liu and Joseplin [79], [80] introducé a uniform framework for specifying, refining
and transforming programs that providesilt toleranceand schedulabilityusing the
temporal logic of actions. In [81], a formal framework for the design of fault detection
and identification components has been proposed where the framework is based on
formal semantics provided by temporal epistemic logic. Temporal logic dgjieal
language for formal specification of requirements. Generally, temporal logics are used
with model checkers for model verification (e.g., UPPAAL, KRONGSnally, Alko

and Mattila in [64] have evaluated effectiveness of serviceerdgd architecture
approach todult tolerance in mission critical reime systems without dealing with

componertbased approach.

2.5 Conclusion
In this chaptersome current researches are highlighted. In the first part, some

researches of fault detection in cloud systeare cited. They can be categorized under

two main categories: fault detection using systems monitoring and fault tolerance using

heartbeat/pinging strategies. In the second part, some current fault tolerance

researches in cloud computing are mergthnNe can observe that the researches aimed

to enhance the existent fault tolerance techniques by collaboration between more than
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one technique either by reinforcing the existing techniques by novel opportunities.
Finally some research on fault toleraracel fault recovery in componebased systems

are cited.
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Componentbased Cloud computing
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3.1 Introduction
A cloud applicaibn is composed of a number dded moduleg10]. Eachcloud

module has a virtual machine used to realize its function and each function is composed
of a set oftasks It is evident thathe cloud omputing architecture, its layers and its
composition of components and services need to be designed as wele servic
components [11] basedn well proven componeiitased sftware engineering.
componerdbased approach is a popular divaledconquer technique for designing and
implementing large systems as well as for reasoning about their correctness. It stipule
that a system is designed incrementally by composing smaller components, each
responsible for delivering a certain set of tasks to separate different concerns. Thus,
componenbased design and analysis of fault tolerant systems is highly desirable in
order to ahieve systematic modularization of such system [45]. Here, a component
represents an entity that provides a specific functionality. The components are expected
to be scalable, fault tolerant, manageable, and autonomous [13]. Several tools are
available br modeling heterogenas embedded systems founded omponentbased
models. One of them is BIP (Behavior, Interaction, Priotig) [14], [15], [16]. In this
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thesis we will use BIP as a Componemased frameworKt has been used successfully
in thefield of robotics [17], [18], [19]. In BIP framework, a process is represented as a
Transition Labeled System (TLS), where the principal components are: the atomic

component and the composite component.

3.2 BIP framework for component-based design
BIP framework[7] is used for modeling heterogeneous 4tgake components

which integrates results developed\&rimag Laboratory. It supports a component
construction methodology based on the idea that components are obtained as
superposition of three layerthe first one isthe behavior layerwhich presents the
internal behavior by a set of transitions and staftee intermediate layer includes a set
of connectorglescribing the interactions betwetansitions of the behaviorh& upper
layer is a set opriority rules describing scheduling policies for interactions. Layering
implies a clear separation between behavior and structure (i.e., connectors and priority
rules). The principle components in BIP framework amgomic component and
composite componén
3.2.1 Atomic component

We define an atomic component as a Labeled Transition System (LTS) with a
set of ports labeling individual transitions. These ports are used for communication
between different components.
Definition1. An atomic componend is a labeled transition system represented by a
tuple OhOh- hohn  where:
0: is a set of states) hn B h ;
0: is a set of communication port§ hf) 8 hf} Mwve can distinguishtwo types of
ports: Complete or Incomplete
Complete Port (Black Triangle)An interaction that contains a complete port is a
complete interaction in the sense that complete port does not need to be synchronized
with other ports to accomplish an interaction.
Incomplete Port (Black Circle)An incomgete port needs to be synchronized with
other ports in order to achieve an interaction. Therefore, an interaction that contains an
incomplete port is incomplete.
- DO 20 3°0%70% 0 is a set of transitions, each transition is a tuple of the farh
nh'h "  where:
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n :is the state which is the transition source;

f: is the transition label and is the port associated to the transition;

"Q is the transition guard which is abtleancondition on the set of variablés the
transition can be executdtlits guard’'Qis true and some interactions including the port
) are offered;

"Qis an internal action on the set of variallgsghe functionf is executed when the
transitionois enabled and we write"Q. In anatomic component, variables are treated
and modified by component internal functions;

N : is the statevhich is the transition target;

@ is a set of variableso which are manipulated by the interfiahctions,Q

N :is the initial state of the atomic component.

If we have a variable which has an initial valu® and we write:cwob 07Q©°

o ONFby which we mean that: there exists a transitiomhich contains an internal
functionf such thatfter the achievement of the transiti@rthe functionf will modify

the variablewfrom the valua) to the new value'y

Communicate Produce
[x<5]
X:=x+1

‘ Produce ° Communicate @

Figure3.1.A BIP atomic component (Producer).

The Figure 3.1.loows an atomic componefRRroducer) where:

0 0hé

0 01 & QROGET a6 & QOOO Q

- Oh0i ¢ QR @'Qu had, @ phd h 6hé & daad & ROMDO Q
"Yi oh@ N
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n =P
An executiortycleof an atomic componerit  0hOh- haohy isé w= 00 80
such tha is the first transition iB ando is the last one. Amxecution cyclef an
atomic component is the execution of all of its inner transitionsrfetime.
The behavior of a system as defined in [134] is what the system does éoniemplits
function and is described by a sequence of states thatbeanComputation,
Communication or stored information.
A Behavior of an atomic compongnt O0hOh- hohy  is6 @& "TQ8'Q
and for alli:
-"QN "Qi.e. F is the set of internal functions B) and
- There exists a transition sequedcg 8 0 and a state sequenga) 8 such that:
o 0 QO g 0 QO é€é.0 QO
The atomic component behavior has a direct effect on the set of vaXaliid¢ise initial
value of the set X i® , it will be0 after the achievement of the atomic component
behavior:® U 0O © DU L ? QO ®U QO MU QO
E @O0 .is the set of variables abd 83 are the values of the 9§t
Hence, the behavior od in one execution cycle is:
O™ 6 = 0 QO 0 QO éé.9.a4 QO9q.
This means thai @ 6 produces final results after achievement of one execution of

the entiranternal functions of the atomic componént

3.2.2 Composite component
The composite component is constructed from a set of interacted atomic

components. It represents tHeud computing system tich is composed of interacted
cloud nodes.

Definition 2. A composite componenh g6p8 6¢ is defined by a composition
operator parameterized by a set of interactions. It is a transition systgm- hoh

N , where different mathematical notations carry the meanings as shown irSBTlable
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Table3.1.Some mathematicabtations and their meanings.

The set of global sates is obtained by ¢heesian product g

v A 0Q al |l t he at omi c component
component.

n e N The setof alltheatomc o mponent s6 i nit

@ ® N The union of the atomic cgd

is the least set 4. As mentioned in 45, a composite componend
transitions satisfying the rul g6 8 & can execute an interactihgiff for each port
[45]: pi/ a, the corresponding atomic componéntan execute

@ N «g!"® @ ° Nl transition labeled with) - the states of the components t

o Bé8nRo do not participate in the interaction stay unchanged.

g - f The set of connectors which rely on the atomic componer

3.2.3 Connector

A connectof N « g is aset of ports of the atomic componeant®lved in
I . It represents the network connection in #leud system. We assume that a
connector contains at most one port from each atomic component. The Interaction of a
connector is any neampty subst of this set. As defined in [#5for a givensystem
built from a set o€ atomic component§ 0 O h haohn , we assume that
their respective sets of ports are pairwise disjoint, (i.e., for any@Wom {1..n}, we

haveP;,KPj=n). We can therefore define the $et z 0 of all ports in the system.

An interaction is a sei/ P of ports. When we writed 1} . , wherel/ {1..m}. An
interaction can be @endezvous oabroadcastinteraction.
3.2.3.1 Rendezvous Connector

Or drong synchronization enables an exchange of information between the
nodes. In this type of interaction, all the ports are synchronous (see Bigur&he
initiative meaning of thesynchronouss that it has to wait for other ports in order to

execute tk interaction. The connecfor 1 M ES® 4 defines only one
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interaction:d © 6 6 in which, all the atomic components must synchronize at the

same time in order to achieve the interaction

P

By B, Bs

Figure3.2Rendezvous interaction.

3.2.3.2Broadcast Connector
Or weak synchronization is used to update information stored at the nodes. It

includes one trigger (i.e., initiatoport in6 and two synchronous ports. The intuitive

meaning of trigger is that it can initiate the interaction, evedl other ports are not

l

By By Bs

enabled.

B

Figure3.3. Broadcast interaction.

The connector (in Figure3.8 N ghNEO0 &M QFME 1 & &OUBECKDO QOO € i
describes the set of all interactions that contains atdeasthich arew 0 ,®

00 ,w 00 ,® 0 0 0 . We can see that all the possible interactions
contain the initiatod® and the maximum one contains all the atomic compon@nts:

ando .

3.3 Recapitulatiors

In the nextchaptersthe cloud system will be considered as a complex system
which is composed of a set of atomic components (i.e., nodes) supported by network
connections. The atomic component is the #&mgomponent; it reflects thdoad
module and the atomic cgranent trasitions reflect theloud module tasks, where the

composite component represeiiie cloud omputing system that isomposed of a set
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of interacted lbud modules. The sef componentased concepts used in thiresis
and their equivalents ilaud computing system are presented in the T&k?e

Table 3.2Componentased concepts and their equivalents in Cloud system.

Cloud system concepts Componentbased gproach concepts
Cloud module / ade Atomic component
Module task Atomic transition
Cloudsystem Composite component
Network connections Connectors
Primaryblock Primary kehavior
Alternate lhock Alternate fehavior

3.4 Conclusion
In this chapter, the componedmased approach for cloud systems is introduced.

Then, the main concepts of BIP as a framework for compdresed design such as:
the atomic component, the composite component and connectors are described. Finally,
a recapitiation of the used terms in this thesis is given to facilitate the comprehension

of the rest of chapters.
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Fault Detection in Componentbased Cloud

computing
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4.1 Introduction

Fault Detectionis considered as one of the main challenges in lscgke
dynamic environments and thus, for maintainihg teliability requirements ofl@ud
systems. Most of thegpular existing techniques faault detection applied on théoud

computing environment in general, are based on systemitoringdespite the extreme
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difficulty of keeping track of all machines with their huge numbetlaud systemslin

this chapter,we propose a fault detection framework for the compehaséd cloud
computing by usingRecovery Blocks a c c e @st. &hisc feamework aims to
constructFail-Silent cloud modules which have the ability eélf-fault detection. In
this, the detection press of transient hardware faults, software faults, and response
time failures is performed locally on each computing machine iclthe systemWe
assume that there is no permanent craghe doud nodes and the acceptanesttis
reliable and cannotebaltered.Each ¢oud node ha®ne predefined function and the

software developer caetthe acceptancestof each toud node on the system.

4.2 Acceptance test for fault detection

Critical systemsareusually related to human life, thus ensursadety property
IS very important in order to avoid catastrophic consequences caused by failures. Final
results of a critical system must be validated in order to judge their correctness. This
validation can be offered ke acceptanceest.An acceptancesstd "6f a component
B is aboolean expression dhe setof variablesX. It is used to validate fn a | resul ts
correctness. Thecaeptanceest ensures that the final results are acceptable but not
always they may be the desired res\flte., some results may not be desired).Thus, it
ensures the continuity of service offered in spite of degradation in the system quality,
just to be safe from any disaster.
4.2.1 Fault detection in atomic component

An atomic component 0hOh- hdhn  producesresults after each
execution cycle. The results could be correct or wotect. Without a mechanism of
fault detection, we cannot judge the correctness of final results. Therefore, an atomic
component must have atceptance testhich is aboolean expression on the set of
variables of the atomic component.
Definition 1. An acceptanceestd “Y & of the atomic componeit  0hOh- hah
N is aboolean expression on the set of variablesThe @ceptancdest validates the
correctness of6 6 dinal results and ensures that they dot lead to disastrous

consequence even if they are not the expected results.
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After one execution cyclegy b 0@ 6 © @O , the set of variables) will be
modifiedby 6 @ 06 from the value U to the new valua . Final resultsb will be

checked by "Y & andthreecases are possible here. Final results may be:

- The Corretresults ¢, which satisfy theceeptancdest and which are considered as
the desiredesults.

- The Acceptable resultes, which satisfy theacceptanceest but they are not the desired
results and they do not lead to disaster for the system.

- The Faulty result¥) that do not satisfy thacceptancéest. These kinds of results can
incur huge damages to the system.

Basing on these latest cases, the AT judges the behavior of the atomic condpanént
decides its correctness.Now, again two cases are possible for

- If the final results validate theceeptanceest (i.e.0 “Y Use = True) then,B has a
correct or acceptable behavior (Fatfree Behaviond itearns execution.

- If the fimal results do not validate the acceptares (i.e.,0 “Y Lae= False) then,B
has a failed behavioand it must be stopped immediatelygo throughrecovery and
fault correction.

We mean by these two cases tfifad @ 6 U ! 4 ¥ Bis correct else B is failed.

Correct/

Acceptable Behavior O
[AT]

O

Faulty Behavior
—[AT]

Figure4.1. Fault detection in atomic component using tbeeptanceest.

Figure4.1 shows thedult detection using thacceptanceest. The atomic component
0 operates and validates its final results after each execution cygle.df f i n al
satisfy the ATO has a correabr acceptable behavioig., in left statg 6 stands at that
state till detection of failure by "Y & . At that moment, the atomic componentwill

be considered as failed addwill pass to an unstable state (i.e., thyght statg. At that
state, the componemill be blocked till recoveryAn atomic componenthat has the
ability of seltfault detection ging an aceptancdest isFail-Silent atomic component
(FSs). A Fail-Silentatomic component satisfigse] -regular expressionc¥cd “"Q The

atomic component has a correct behavior or an acceptable behaviot) . At just
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detection of a failure by thAT, the atomic component will be considered as faff¢d

and it will beblockedimmediatelyattending the correctiohe last correct state of the
atomic componen®d will be saved in the history stat®i ¢ . A Fail-Silent atomic
component operates without failures and retuangorrect or an accepted result;
otherwise, it will be blocked immediately.

Proposition: A history state Hs used in the atomic componentarder to save the last
correct variablealues of the atomic component and the last received messages from the
other atomic components. Hsd<0 h & i "®@a i @ >. The history state is
indispensable forecovery phase.

Definition 2. A Fail-Silentatomic componentOY 0hOh- hédhn h'Oihd "Yis a
component which can validate its final results and judge its correctness by the
acceptanceest | 4 8 4 E R -regular expression of a Failent atomic component is

Algorithm of Fail -Silent atomic component:

Fail-SilentB: Execut®d @ 0
If (6 "Y® then
Update™Oi 6
Go to FailSilentB
Else
Deadlock
EndIf
End Fail-SilentB

Theorem1: A Fail-Silent atomic componentD"Y 0hOh- hodhn h"Oihd Y can
insuresafety property using theceptance Test “Y The AT can validate final results
and decide the correctness. In the case of fadéitection, the atomicomponentO™Y
will be passed to a Deadlock state till failure correction.
4.2.2 Fault detection in composite component

A composite componeid g6 8 6 is a set of atomic componeriis g
glued by the set of connectogs | g . As seen inchapter 3- section3.2.3, a

connector in a composite component can be rendezvous or broadcast connector.
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4.2.2.1 Rendezvous connection
If we have the Rendezvous connectorsuch that N g MEO , the only

possibleinteraction is® 0 6 6 8 6 which contains all the atomic components
involved in the connectdr . Therefore, the failure of one atomic component will
directly infect the others atomic components in the same rendezvous interaction. This
means thel 0 N NQ@ s failed, thed 6 wedN T, 06 will fail too. Thus,

to construct dail-Silentrendezvous connector, all its inner atomic components must be
Fail-Silentas well. Therefore,"O"Y "O'YRO'Y B RO"Y

Lemmal A rendezvous connectdr, B g M E® whichinvolves a set ofail-
Silent atomic component igFail-Silent rendezvous connector:O"Y
N g MEQY g
4.2.2.2 Broadcastonnection
If we have the broadcast connector :

I N g hNES OE® QBT & HQAHTO QOO £ |
The possible set of interactions in this case are those containing at least one instance of
6 . The minimum interaction i& 6 which contains only the broadcast initiator
and the maximum interaction 0 0606 86 which contains all the atomic
components involved in the connectar We can see that the atomic componeri
fails andenters in a deadlock state, the others atomic component involved in the same
broadcast connector will be blocked too. Bug) if¢ 16 fails and blockegdit does not
affect the broadcast initiat@ . Thus, to construct Rail-Silentconnector , at least
the broadcast initiator0 must be Fail-Silent.  Therefore,"O"Y
"O"Y ¢ M
Lemma2.A broadcast connectbr 1) g hR £0 G & & Q61 ¢ OQQENG QOO £ |
which involve & least aFail-Silent broadcast initiatoris a Fail-Silent broadcast
connector’0"Y "O'Y ¢ M
Lemma3. A composite component which contaifail-Silent connectors (rendezvous
and/or broadcast) iBail-Silentcomposite component. The i ‘Q"Q6 éxpoassion of
aFail-Silentcomposite component is:6 767 0" "0O.
Theorem 2.A composite component which is composed of a sétadfSilentatomic

component i§ail-Silentcomposite componeri®Y [ "OYh'O'YF8 h'O°Y .
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4.3 Construction of FailSilent models

4.3.1 Construction of FaitSilent atomic Component

Now, let us see how we could construgtail-Silentatomic component from an
initial model that is notFail-Silent Letd OhOh- h&hy be an atomic
component.In order to construct &ail-Silent atomic component, we must add the
acceptanceest. This testvalidates6 6 dinal results. The Fail-Silent 6 is"O"Y
0 hO b ROh"@A & hd "Y such that:

O 0° 0 h0 ;0 and0d aretwo new state$. is the initial state.

0 0° "YO GIhOYQi 0,"YO @icE Qi @re two new ports wherdyo @ 1iisd
the first port in thd=ail-Silentatomic component arnd'Qi ¢s the last one.

The first transitionYd i teaves the initial stat® to the stat& , where, the
transition"YQi @échieves from the stafe to the state .

- -z ORYOOIKYHAIQO®® hi h 0 hYQi o6 Y h

The set of transitions will be enriched by two transitions associated with the
ports YO @i Qi O The transition 0 h"Yo GIhSYA Qo®D hn s
the first transition which leaves the initial stateto the state) ,its internal function is
Y1 'Q & ®iQwhich updates the history std@i 6 by the last correct variable values
and the last received messagesThe second new transitio is

0 h"YQi 180 "Y h0 8t is the test transition in the compon&dtY it aims to test
and validate the final results of by the guard 0 “Y which is the expression of the
acceptanceest. The transitioflYQi l@aves from the staté to the initial state) .
This transition is triggereiff the acceptanceestis satisfiedd "Y®  “Yi 9§, 8se, the
Fail-Silentatomic component will be blocked on the siate

4.3.2 Construction of FaitSilent composite component

As seen inthe section4.2.2, in order to construct dail-Silent composite
component fob= & M M B which contains a set of atomic components glued by
a set of connectors. All its inner connectorstendezvous and/or broadcast must be
Fail-Silentand so, all its innestomic components must Bail-Silentas well.

Therefore, if we have a composite componénrf, 6 5 B 5 , the Fail-Silent
composite componenti®Y | "O'YHO'YI8 FO'Y 8

In the next section, we will apply our approach on the Prodrié&d-Consumer model.
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The Figure 4.2 presents a Produc&iFO-Consumer (PFC) model. This model is

composed of three atomic components: Producer, FIFO, and Consui®ér.

r 01l DORDOBO € £ i 6 dMEre,l is the set of connectofs:

andf are rendezvous connectors.

I
I

&) 01 &£ Q@M ¢ 6 ¢ NOO@KN Q0. Q
O OO QN®E £ i AMRHAOE QODOO Q

TRt

Write|

Write |

q- Produce | Communicate H
1 |

Read

Consjime

B
Read

Commynicate

Consume ?

Figure4.2 PFC composite component model.

In order to construct &ail-Silent PFC model, we must first construct itser Fail-

Silent atomic componentTherefore, we should construct tRail-Silent Producer, the

Fail-SilentFIFO andFail-SilentConsumer.

Construction of FailSilent producer:

A

Startl’radlecer

§ tartp, oqucer
Update(Hs)

Communicate

4 Produce

Produce

[x<5]
Xi=xX+1

Communicate

Figure4.3.Fail-Silent producer

Figure4.3shows thd-ail-Silent,Producer. It is defined as:

0y

6ho

0 de &h'@Oihd Y
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0 0z YOOI 0 RAYQi o
YOOI 0 M1 £ Qbdadao s WooQ
- -z 0 AYo i 0 h"Yi oh®/ QWoei®™ h
0 AyQi 6 ho"y 3]
0 AYd di 6 h"Yl 6AQA QWO h 01 & Qo ® hd o pd
¢ Gaot RYOOM h
Qi 6 ho"y 3]

0¢

P

o R

< o

At fault free execution;O"Y performs one execution cycle and before
updating the history stat®i with the new values ofw, "O"Y first validates the
acceptanceest on the transition labelédQi 6 . If the guard 6 "Y is true,
the results are acceptable artie next execution cycle beginsvith the
transition'Yo @i 0 . On which, theinternal function Y1) Q @®iQ will ensure
saving of the last correct variable values on litgtory state(Hs). If the component
oY reaches the statd and the variable values do not satisfy the guard
0"Y , at that moment, th&ail-Silent atomic componentd Y will be
blocked on the state attending the recovemghase Finally, we can see that we have
constructed d-ail-Silent atomic componentO™Y which can insure theafety
property using thecceptanceest and which respect the 1 'Q "Q6 exgbassion oY
® “"Q. In the same manner, we will construct feil-SilentFIFO (see Figure 4)Yand
theFail-SilentConsumer (see Figueb).

A

Startgpo

Startgpq

Write Read

Figure4.4.Fail-Silent FIFO
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Sturt-’:all:mnet'

Contmunicate Consume ?

Figure4.5. Fail-Silent Consumer

After constructing theFail-Silent atomic componentsywe will have theFail-Silent

compoge component PFC (see Figure4.5

Startpoducer Startgpe

Startgpg

Startproducer

Update(Hs) P Update(Hs)
Producer
Festproducer [x=3] Testppo
[ATproaucer) x =x+1 [ATrrro]

o Conununicate

Q") c
i Communicate -? E Write | | Read Conununicate | | Consume :t
l FDIHHL'E

Figure4.6.Fail-Silentcomposite component PFC.

The Fail-Silentcomposie component PFC in theigure 4.6is composed of a set of the
Fail-Silent atomiccomponents. If we suppose that a failure occurs inFdieSilent
Producer, then it will be blocked on the sate because itsesults do not satisfy the
YQi 0 guard. At the same time, both FIFO and Consumer are in correct
operation. But, in a future moment, the transifitvrited o f cdmpdhddt will need

to synchronize with the component, Producer. This lattein iseadlock state and
therefore, the componenFIFO and Consumer will be blocked too. We can see that the
failure of one component in the coogite component PFC brings theadilock of all

the components which are involved in direct or indirect interaction with the failed

component. By this way, wieave notonly stopped the failed component but also we
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have stopped the fault confinement in themposite component. After thisadlt
detection phaseecovery and fault toleraneeust be set.

4.4 A CASE STUDY
4.4.1 Fire Control System

Let us exphin ourapproach with a mobilelaud system. Let us consider a fire
control system which monitors the temperatures in the forest in order to prevent fires. In
our system, we have three main componers&nsornode, Cloud nodel and Cloud
node2 In this system, # mobile sensor frequently takes measures of the forest
temperaturesand sends those data to the Cloud nodel (which receives the temperature
measuresand calculatesheir averag®.The average temperatuveould be sent to the
Cloud node2 which producesstatus reportwhich would be transferred to the system
control (see Figurd.7). We have used BIP model to design the fire control system as

shown in Figuret.8.

Cloud node 1

5 A verage fe’?’ip?i‘c}'(’i( re
T E

Temperatures

3
((I))//

Sensor node

Cloud node 2

Forest Control

Figure4.7.Fire control system.

Cloud nodel

Sensor node Recetve (T) Cloud node2
C » D
. Putlon (T)
Send|T,) ~.._ Update(Co)

nd (T) pture (T) [Co=NJ
F ﬁ, = AverageCalcul()

Receive Send
Send i
Receive Send

Figure4.8 Fire Control system BIP model.

E
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The sensor node periodically takes temperature meadredY h"Y  such
thatY and”Y are definedaccording to the area climate conditions and to the
sensor node capacitieshe difference between two successive temperatures does no
exceed gsY Y s | 8
The Cloud nodelteceives the temperaturésfrom the sensor node in the system and
calculates the averag¥of n different temperatures. Then, it sends the aveﬂage the
Cloud node 2.The average temperatucﬁs) must be between the highegeceived
temperaturg| jand the lowesdneq|Ji.e..fa o -

The Cloud node 2receives the average temperafifefrom the Cloud nodel.
According to the set of conditiongand the averagemperature,, the Cloud node2
produces a status report about the fokest Q" YRS . The values that must lokefined

by the software developer are summarized in the Thlle

Table4.1. The values defined by the system developer.

Notation Meaning
Y The highestemperature that can be detected
Y The lowest temperature that can be detected
| Oa "Q® The difference between two successive temperat
N Required number of temperatures for averageg
calculation
i Qei €l Sensor TimeOut
0¢'PQ Cloud nodel Timeéut
0€&€QQ Cloud node2 Timeut
c The predefined conditions for the Cloud nodeZ2

decision
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Fail-Silent sensor node Fail-Silent Cloud nodel

Fail-Silent Cloud node2

Checlpoint (T,.)

ikl =0 4

Figure4.9. Fail-Silent Fire Control system

4.4.2 Construction of the FaHSilent Fire Control System

In order to construct Fabilent system, we will use thacceptance et
approach. First, we hate construct the Fafbilent components. In the next section, we
describe each component:

The Sensor nodeits main function is measuring the temperature. Therefore, to ensure
that the component is correct, we have to validate its behavior usageptanceest.

The system developer has previous knowledge about the sensor characteristics and the
area climag where the sensor is deployed. Therefaceprding to this information, he

can define an adequateceptancdest. In our example, we have supposed that one of
the main characteristics of thgensor is that it can deteghly temperatures between

Y and Y &Y Y Y 8Besides, the difference between two
successive temperatures would not exceéce.,sY “Y s | ) which is a threshold

used to detect whether the sensor gives a random temperature reading. Furtheemore, t
sensor has to send the temperature to the Cloud nodel before expiration of its Time
Out. The sensor Tim@ut is defined by the system develop&iClock clkl is used for
calculating the passage of time in the senbamally, we can have the sensor node
acceptance test : 0 Y "YOY Y QO0sY Y s | 00wpQ

i Q¢ i €1 .To say that the sensor operates correctly, it must validate the logical
expression of thecceptance tesfThereforep Y will take place asYQi 0o
transition guard (Figured.9). If the component validates the Y , then the
temperature will be saved ity on the next checkpoint and the Clockl will be

initialized for the next execution cycle. Else, the sensor will be considered as failed and
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will be blocked on the stafe . The failed sensor can be replaced by an operational one
which can get temperature measure from the last correct tempékature
The Cloud node 1:The main function of this component is to calculate the average of
receivedn temperatures. Therefore, the average temperature will be included between
the highest temperaturég and the lowesbne”Y ‘&3 “Y Y “Y . Also, we have
to ensure that the Cloud nodel has the ability of correct average calculation. For that,
we can test the component by calculatiog) Qi & "QQ 6feha#id 6 ®wheredh ¢h
ch Qare predefined random values. Furthermtite,Cloud nodel have to calculate and
send the averagevithout exceeding its Tim@®ut (i.e., defined by the system
developer). A Clocklk2is used to calculate tim&herefore, the acceptanasst for the
Cloud nodel is0 Y YUY YOO O i 0QQ6 éhahdi®d &
QOOML QU ¢ PQ Thed Y s the guard of the transitiofYQi o
(Figure 4.9). If the node satisfies itsceeptancetest, 'Y will be saved on the next
checkpoint and the Cloaoklk2 will be initialized. If theacceptanceest is not satisfied,
then the component is failed and it will be blocked on the 8tate
The Cloud node 2The main function of this componeist to produce a forest report
stateY according to the temperature averagaeceived from the nodel and according
to predefined conditions:Y "Q°YH . Therefore, we have to ensure that the
component is able to produce the correct report. For this aim, we can test the component
using the same functioif2but with different data to see whether the component
produces the predicted report or not. Furthermore, taking and sending of decision must
be before the expiration of the Cloud node2 Thg. A Clockclk3is used to calculate
the ime in theCloud node2. Finally, the acceptanesttis:d Y QY
Y Q00 cQU ¢ 'QQ . The acceptanceest 6 "Y is the guard of the
transition’YQi o . If the 6 Y is satisfied,a checkpointwill be taken at the
beginning of the next executioBlse,the Cloud node2 will be blocked an and the
last correct report can be restored from the checkpoint.

Table4.2Key notations ananeanings.

Symbol Description
clk2 Cloud nodel Clock
0 Counter of received temperature
Y Temperatures Sum
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T Received Temperature
Temp Table for saving the received temperatures
N Number of temperatures needed for average
calculation
Y Temperature Average
Y Lowest received temperature
Y Highestreceived temperature
Checkpoint() Procedure of Checkpoint
AverageCalcul() Procedure ofiverage temperature calculation
TestNodel Procedure of thacceptancédest
Algorithm 1: Cloud nodel
Input: temperatures T;
Output: temperature Average { o
[1]Co =0;
[2]S =0;
[3]AverageCalcul():
[4]Receive(T, Sensor);
[5]Co=Co + 1;
[6]Temp [Co] =T;
[7]If Co < N Then
[8]GoToAverageCalcul();
[9]Else
[10]Fori=0O to N -1do
[11]S=S+Tempi];
[12]Templi] = 0;
[13]ENnd for
[14] 4 =S/N;
[15]Send (4 , Node2); /I Send of c’Yo to the Cloud
[16]Co =0; I re - initialization of Co
[17]S =0; Il re - initialization of S
[18]Go to AverageCalcul()
[19]ENnd If

[20]End AverageCalcul()

The Cloud nodel hasamdinunct i on wh iGalbulatmhg thesavesagesy o f i
of 0 temperatures received from the Sensorvode | n t he Al gorithm 1,
the number of received temperatures, a coudtéis used (line 1). First, the nodel

receives the temperatur®&’ from the Sensor node (line 4), the countegis then
incremented (line 5) and the temperatifeill be saved in the tabley'Q & (fine 6). The
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Cloud nodel enters in a loop till receptiof § temperature$&HH ¢ 0 . At that
moment,the temperature average can be calculated (line 9) by first calculus of the sum
of 0 temperature (lines [203]). After calculatiorof the average”Y(line 14), it will be

sent to the Cloud node2 {]). A re-initialization for the next execution cycle will be
done(line 1617).The notationsised in the algorithms and themeaningsare presented

in Table 9for a quick lookip.

Algorithm 2: Fail - Silent Cloud nodel

Input: Temperatures T,
Output:  temperature Average  4|.;

[1]clk2 =0; /I Clock Initialization

[2]Co =0;

[3]S = 0;

[4]Checkpoint():

[5]Save (4 );/l save of the last correct 4
[6]clk2=0;// re - initializations for the next execution cycle
[7] Co=0;

[8] S=0;

[9]GoToAverageCalcul();

[10]End Checkpoint

[11]AverageCalcul():

[12]Receive(T, Sensor);

[13]Co=Co + 1,

[14]Temp [Co] =T,

[15]If Co < N Then

[16]GoToAverageCalcul();

[17]Else

[18] 4 =Temp[1];

[19] 4 =Temp[l];

[20] Fori=Oto N -1do

[21]S=S+Tempi];

[22]If Templi]> 4 then// Calculation of the highest temperature
[23] 4 =Templi];

[24]End If

[25]If Templi]< 4  then//Calculation of the lowest temperature
[26] 4 =Templi];

[27]ENnd If

[28]Temp [i] = 0;

[29]End for

[30] 4 =S/N;

[31]Send (4 , Node2);

[32]GoTo TestNodel();

[33]ENnd If

[34]End AverageCalcul()

[35]TestNodel():

[36] If [ 4 4 4 QOQBLQI HQQABEADLOA QOOXTQI ¢ Q]
then

[37] Go to Checkpoint();

[38] Else
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[39] Deadlock();//Deadlock in the case of non valida tion of the
Acceptance Test

[40] End If

[41] End TestNodel

In the Algorithm 2, The FaiBilent Cloud nodel executes its main function of
calculating the average temperature but with consideration of fault detection and time
flow. In order to calculate time, a clock2 is used. It is initialized at the beginniog
each execution cycle to calculate time needed by the Cloud nodel to achieve its
function.
After the reception ofy temperatures by the Cloud nodd#fie highest temperature is
calculated and saved i:H1|(Iines[2224]) and the lowest temperatuﬂq also will be
calculated and saved (lines [23]). After calculating the average temperatglte(line
30), it will be sent to the Cloud node2 (line 3&gfore starting a next execution cycle,
the output (i.e.,”Y )must first pass the acceptancesttwithin the procedure
TestNode(ine 35). The main role of this procedure is to judge the correctness of the
Cloud nodeloutputs. The expression of thecaptancdest (line 36) is composed of
three parts; the first one i8Y Y Y . This part oftest is to ensure that is
comprised between the lowest temperature and the highestlmmaeecond part of the
acceptancetest is & 0 'Q1 & "QQ éfvfdid 6 @ ; it tests the calculus rigor of the
Cloud nodel by calculating a similar sinfi@d operation such that the input (a, b, c, d)
and the output (e) are gsknown. The third part of thecaeptancetest is & Q
0 ¢ PQ . It aims to test whether the outputs are produced after the-@irhe
expiration, which means thatrasponsdime failure is occurredn the case where the
acceptanceest is passed, the next execution cycle of nodel will start by a checkpoint
(line 4) in order to save the last corréct (line 5) and to initialize variables amtbck
(lines [6:8]). In the worst case, when tlaeceptancdest is not validated (i.e., at least
one part of the Acceptance Test expression is not satisfied) the Cloud nodel will be
considered afailed and it will remainin adeadlock state (line 39).
4.4.3 Time andSpace complexity

In order to analyze time and space complexity of the previous algoriBims,
Omega asymptotic notatiomill be used. This notation allows calculating both time and

space complexity of an algorithm. We have calculdbedrunning expressns of the
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precedent algorithms: Cloud nodelalgorithm and-Saént Cloud nodelalgorithm. We
have:

Q € p& ¢ Q& QeEda& 1 and

Q E p&® px Q& QDO T

Where:'Qe o Q¢ E T8

We can say that:

fNodel(n) }
=0(n),n=0.

frsnode1 (M)

The time and space complexity of the functiocls & and "Q € are
calculated according tthe n values.If we assume that representshe time unit,then

the graph plot in Figuret.10 represents the time complexity of the Cloud nodel
program. In this case, we can see that the functidns ¢ and™Q ¢ have the
same time growth rate. That means that the incorporation aictieptancdest in the
Cloud nodel programogs not produceany big overheadlf we assume than
represents thespace unit,then the Figure4.10 is a space complexity graph of the
functions™Q ¢ and™Q ¢ which are similar in space growth rate. It means
that the Fa#Silent Cloud nodel does not need a big storage spao®ared to the

primary Cloud nodel program.
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Figure4.10Time and space complexity of Cloud nodel. fNodel (resp. fFSNodel)
represents the Cloud node 1 complexity before (respr)Afe acceptance test

integration.

We can deduce théte time and space complexity of the failure detection process using
theacceptanceetst does not lead to any unreasonable overhead or calculus complexities
in the Cloud nodel (Figu#e10). Finally, our proposed framework allows integration of

the failure detection over théood nodes without large costs. Hence, this is a fair and

practical solution to the issue.

4.4.4 Safety verification using modethecker

As noted previously, thecaeptanceest stréegy aims to ensure safety itoed
systems in spite of failures. In order to prove the efficiency of our framewppaall
4.0.14 modekthecker for afety verification is used. First, a simulation of the fsiieént
Fire Control model is done to ensure ghracticability of the model (See Figutell).
After that, a set ofafety properties that must be insured by the-&dént model are

specified.
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sensor CloudNode1

CloudNode2

CloudMode1
@t £, G, 1de)
CloudMode1
(@, <, G, die)
ssssss

ssssss sensor_CloudNode1 Cl Controller

ssssss
®, C, 6, Ide)
SendTemperature : sensor —> Cloudhode 1

Fichier de trace:

Figure4.11 Simulation of Fa#Silent Fire Control System model

The safety properties must be satisfied by the =iént model in order to say that it is

Safe. Safety properties are summarized in the TaBle

Table4.3. Safety property of Fire Control System model.

Safety Properties Safety Request

A[Jnot (sensor.Qi and (Tprev)>sensor.alfa)
1. The sensor node nev _
(n.b.,alfa value must be defined).
produce random temperatl

| A[] not (sensor.Qi and (T>sensor.Tmax or T<sensor.Tmil
values.
(n.b., sensor.Tmin, sensor.Tmax values must be defined

2. The Cloud nodel never ear _
A[] not (CloudNodel.Qi and CloudNodel.Testl=<value>)

execution if it does not produg _
(n.b., <value> must be defined)

the correct temperature averag

3. The Cloud nodel nevs
reaches the procedu
| Al] not(CloudNodel.E and CoudNodel.S!=0)
AverageCalcul with

temperature sum different of O

4. The Cloud node2 never ear _
A[] not (CloudNode2. Qi and GLudNode2.Test!=<value>)

execution if it does not produc ,
(n.b., <value> must be defined)

the correct decision

5. The sensor node never ea , )
_ o E[] not (sensor.Qi and sensor.clkl>sensor.TimeOut)
execution if it sends i
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temperature after the expirati(
of its TimeOut.

6. The Cloud nodel never ear
execuion if it sends| E[] not (ClouNodel.Qi and
temperature  average  aft CloudNodel.clk2>CloudNodel.TimeOut)

expiration of its TimeOut.

7. The Cloud node2 never ear, ,
E[Jnot (CloudNode2.Qi ahCoudNode?2.clk3>CloudNode2

TimeOut)

execution if it sends decisig

after expiration of its Tim@ut.

8. The entire system never eal
execution if it producey

decisions after the expiration | .
E[] not (CloudNode2.Qi and

CloudNode2.clk3><SystemTimeOut>)

its Time-Out.

(n.b.,The clock of the Iag
component can be considered
the global clock of the system)

4.4.4.1 Safety Verification of faultfree model
First, the properties are verified on the fault free Fire Control model using the

variable values defined in Tabfied and the verification results are presented in Figure
4.12

Table4.4.Variable initialization used for the fault free verification.

Variable Value
Y 120
Y -20
| ©Oa Qo 40
N 5
i Qei €i 10
0 ¢ PQ 15
0¢QQ 25
C If temperature average>60 then, Fire Alarm Eng
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A[] not (sensor.Qi and senscr.TempVarianceysensor.alfa)
A[] not (sensor.Qi and (I>asensor .Tmax or T<sensor .Tmin))

L[] not (CloudNodel.E and CloudNodel.Test!=3)

A[] not (CloudNodel.E and CloudNodel.S5!=0}
A[] not (CloudNode2.Qi and CloudNode2.Test!=0)
E[] not (sensor.Qi and sensor.clkl>lQ)

E[] not(CloudNodel.Qi and CleoudNodel.clk2>15)
E[] not (CloudNode2.0i and CloudNode2.clk3»25)

Figure4.12safety properties verification on fatfitee FaitSilent Fire Control model.

We can see in the Figurel2that all thesafety properties are verified on the

fault free FailSilent Control model which means that the modeafs.

Table4.5. Faults injected in the Fa8ilent Fire control model.

Safety
o property
Fault Fault Type | Component | Injection _
in Table
10
Production of Transient High temperature value +
Sensor ] ] 1
random values. hardware high temperature variance
_ Algorithm 2line20, i:=1
Incorrect calculation Software Cloud nodel 2

instead of i:=0

_ Algorithm 2line 8, the
Incorrect calculation Software Cloud nodel| ) _ 2-3
instruction S=0 is deleted

Production of Transient
o Cloud node?2| Incorrect result 4
random decision hardware

Add a loop on the state

Component Time | Response sensor.Qt (see Figure
) Sensor 5
out Time 4.13to produce a response
time failure.

Add a loop on the state
Component Time | Response CloudNodel.Qt (see Figure
_ Cloud nodel 6
out Time 4.13 that produces +10 of

execution time

Add a loop on thetate
Component Time | Response CloudNode2.Qt (see Figure
_ Cloud node2 7-8
out Time 4.13 that produces +10 of

execution time
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4.4.4.2 Safety verification of failed model
After safety verification on the fault free model, teafety verification is done

on the failed model. Thsafety properties of the Tabe3 will be verified on the same
Fail-Silent Fire Control model with the same variables but this time with injected faults.
A set of faults are injected in the model, in order to make the model failed and to test
whether theacceptancedest strategy can prase safety in spite of faults. The set of
injected faults are summarized in Taldlé. For each injected fault, some details are
given such as: the type of fault, the component, how the injection is applied and the
safety property violated.

After injection of the faults, the produced model is presented in FigiB After that,

the safety properties (Tabld.3) are verified on the failed model and the verification

results are presented in the Figdrg4

sensor CloudNode1

ssssss

ssssss

ssssss

ssssss
@, C, G, Ide)
'SendTemperature : sensor —> CloudNode 1
(Qt, D, G, Ide)
ssssss

Fichier de trace:

Figure4.13Fail-Silent FireControl model after faults injection.

A[] not (sensor.Qi and sensor.TempVariance>rsensor.alfa)
A[] not (sensor.Qi and (Trsensor.Tmax or I<sensor.Imin))
A[] not (CloudNodel.E and CloudNodel.Test!=3)

A[] not (CloudNodel.E and CloudNodel.5!=0)

A[] not (CloudNede2.0i and CleoudNede2.Test!=0)

E[] not (sensor.Qi and sensor.clkl>in)

E[] not(CloudNodel.Qi and Cloudiodel.clk2>15)

E[] not (CloudNcde2.Qi and CloudNode2.clk3>25)

Figure4.14 Safety verification of the failed Fa8ilent Control model.

As can be seen in Figure 4.14, all the properties are satisfied by the failed Fire
Control model. Henceall safety properties that are satisfied on the correct model are
also satisfied on the failed model. This means that theSHeitt behavior of the

acceptance test strategy preserves safety in spite of presence of failures.
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Finally, we can say that thacceptance test strategy is efficient enough for safety
insurance in the cloud Systems.

4.5 Comparative Analysis
The comparisons beten IDS, Heartbeat/Pinging anccaptanceest strategies

are summarized in Tablk.6, where the main differences betwettre strategies are
mentioned:

Strategy based onThe strategy of IDS is based on ttieud monitoring in which the
Cloud behavior is compared to a previous daahahich is different than thesartbeat
strategy that is based dteepalive message transmission. In tleceptanceest
strategy, the failure detection is distributed ondloeid nodes where each node has its
own acceptance tethat can validate its behavior.

Monitoring processcentralized ordistributed: It is centralized inIDS. In heartbeat,
each failure detector node is responsible for a seloafl nodes; therefore, we can say
that it is partially-distributed. In the eceptanceest strategy, each node has its own
acceptancedest. Hence, the failure detection processlisgributed over all theloud
nodes.

Detectedfailure origin: IDS can detect any malicious attack over theud nodes or
network where the dartbeat strategy can detemnly the hardware crashes. The
acceptancdest strategy can detect any abnorbethavior caused by software faults or
transient hardware faults.

Alarm causes:The key question idn which cases the alarm announces that there is a
failure? In the IDS strategy, the failure alarm is raised whenever a deviation from the
normal behaviord monitored on theloud system. In thbeartbeat strategy, if théoad
node does not send any alwessage to the detector node before the timeout
expiration, the dilure alarm is raised. In the@eptancdest strategy, if any abnoah
behavior is deteted by the acceptance test over tltmud node, the failure alarm is
raised.

Property nsurance:Which norfunctional property is ensured by the strate¢fp3 can
insure thesafety property by protecting theoud system from malicious attackhe
heartleat strategycan ensure onlyfiveness of theloud nodes whereas tlaeceptance
test strategy ensures thafety property by protectingoud nodes from software faults

and hardware transient failures.
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Monitored components:In IDS, monitored componentare the tud nodes andhe
network connections. In the heartbeat and the acceptastesttategies, amitored
components are onlyaud nodes.

Failure detector omponent:In IDS, it is the system monitor. Inelartbeat, the detector
nodes are chargedylihe crash detection. In thec@ptancdest strategy, eactioud

node is responsible for its failure detection process.

Failure detectionaccuracy: When we talk about the accuracy of the failure detection
strategy, we respond to the questida there really a failure when an alarm is raised?
The failure detection accuracy strongly relies on the monitoring process architecture
(i.e., Centralized, partialidistributed, or distributed) which means that the distance
between thedilure detectoandcloud nodes is very important in théoad network. We

have used the scale shown in Tahlé

As noted before, in IDS strategy, the most known problem is the False Alarm Rate.
This is because of the difficulty of monitoring a huge numbeclafid rodes by a
central monitoring approach which would produce high distance between the monitor
and the monitored components. Therefore, we can say that the accuracy of IDS is low.
However in theheartbeat strategy, monitoring is partiadligtributed where e crash
detector is responsible for a set of nodes. The accuracy of crash alarm here is related to
the network conditions and timeout but the distance between the monitor and the
monitored component is medium and therefore, the accuracy is medium leysred

to that of IDS. In the distributed monitoring such as dlceeptance testrategy, the
failure detector is the Cloud node; there is no distance between the monitor and the
monitored component, thus the failure alarm is raised only in the case of failure. Hence,
the accuracy of the failure alarm is high compared to that ofilizfBeartbeat.
Componentbased ApproachlDS and eartbeat strategies dot deal with ompment

based architecture of théoad systems but thacceptancdest strategy is based on this
approach.

Scalability: The IDS does not support the scalability &ese it is difficult to provide
frequent database knowledger fscalablecloud systems. The heartbeat strategy is
known as &rgescale crash detection strategy because it supports the scaldiigty.
acceptanceest strategy is based on t@mponentbase& approach, where atomitoud

nodes are coondated to construct the global cloud system. Thengonentbased
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approach supports the scalability. Furthermdne, faut detection strategy using the
acceptanceest is independent from the architecture & tloud system because it
depends only on theloud node behavior. Therefore, theceptancetest strategy is
scalable.

Costs:For the IDS, the monitoring algorithms need complicated algorittarge data
and long time. The dartbeat strategy needs lafgendwidh for network connections.
The aceptancdest strategy doesot need large costs becaWdeud nodes will carry

on the monitoring process in addition to their main functions.

4.6 Conclusion
In this chapter, adult detection frameworks proposedor cloud mmputing

systemsby usingR e ¢ 0 v e r yaccBptancdestsTide proposedramework aims to
constructFail-Silent cloud modules which have the ability eéli-fault detection. In

this, the detection process of transient hardware faults, software faults, and response
time failures is performed locally on each computing machirieerdoud systemThe
proposed strategy is performed on a case study, time and space complexities are

estimated ad efficiency is proved using verification by moalecker.
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Table4.6. Comparison of various aspects of IDS, Heartbeat/Pingingaeceptance testrategies.
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Table4.7. Accuracy scale.

Fault Detection in Componeiitased Cloud Computing

Accuracy High Medium Low
Distance
Big - - X
Medium - X -
Small X - -
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5.1 Introduction
Fault blerance has always been an active line of research in design and

implementation of dependable systems. It involves providing a system with the means

to handle unexpectedefects, so that the system meets its specification in the presence

of faults. Many Techniques are used to create treult tolerance capability inloud

systems Theycanbe divided into two main categories: Proactive Fault Tolerance (i.e.,
Software Rejuvenation, RPemptive migration and Selfealing) and Reactive Fault

Tolerance (ieCheckpointing, Job Migration22 Replic
27][94]198][101][102][103]. Faul tolerance techniques used in clouohmputing are
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based on timand spaceedundancy which can tolerate only hardware faults without
dealing with softwardaults. According to our thorough investigation of the area, there
is clearly a lack of formal approach that rigorously relatlesid computing with
software fault blerance concerndn this chapter, a strategef FaultMasking in
componerdbasedcloud mmputing based on Recovery Blocks is preseniée aim is
to constructreliable and availablel@ud nodesusing theacceptanceest and forward

recovery

5.2 Recovery Blocks for FaukMasking
In order to construct the FatNMtasking component, Recovery Blockshemds

used. A FaultMasking node is able to satisfy safety andriesq16][17] specification
properties in spite of faults. Thawsbs mean
appearancend continue to offeits main servicewithout any perturbationThe Fault

Masking node is geli-fault detector and a settabilizer in thesame time. A node that

ensures afety property means that it never reaches adesirable state véreas a node

with livenesspropertyinsurancemeans that it always aehes a stable state after any

fault detection. In other meaning, th&@ultMasking node offers secure and continued

servicein spiteof failures.

Correct/Acceptable
Behavior

[AT] Fault Detection

Roll-Forward
Recovery

Figure5.1. FaultMasking node behavior

The Figure 5.1 shows the Fatasking node behaviom which thecloud node eam
execution (i.e., left stategincethe behavior is correct or acceptable. At the moment of
fault detection, thecloud nodewill stop operating and themill enter in aforward
recovery phase (Figurg.l the right state)in the forward recoveryn alternate try
block will be used to recover from the failudter the recovery phase, thioad rode

behavior will reach a stable statgh an acceptable behavior
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Algorithm of Fault -Masking based on Recovery Blocks

Ensure Acceptance Test By
Primary Try block

Else By
Alternate Try Block

End Recovery Blocks

5.2.1 FaultMasking atomic component

Definition1: an atomic component is defined as a tugle O @ such that:

‘is a set of states) hn B hn ;

(o]

(e]

. is a set of communication port§ hry 8 hiy N

6 OFzNO (3°0°"030 s the behavior of the atomic componéntlt is

composed of a set of transitions. Each transition contains one guard and a set of internal

functions. The main behavior of an atomic component is considered as its Primary

behavior.

@ is a set of variableso which are manipulated by the interfiahctions,’Q

Definition 2: An acceptanceestd "Y @& of an atomic componeiit O @ is
a boolean expression on the set of variablesThe acceptanceest validates the
correctness of66 s final resul ts and ensures
consequence even if they amet the expected results. The acceptamst e€nsures
Safetypropertiesn the atomic componemAn atomic component that has acceptance
test is aail-Silentatomic component.

Definition 3: A Fail-Silent atomic componentO"Y 0O @Woh 6 Y is a self
fault detectorit can exsureSafetypropertiesusing theacceptanceestd “Y In the case
of fault detection, the atomic compone@X™vill pass to a eldlock state tilrecovery
achievement4 E1A-regular expression othe Fail-Silent atomic component is 6¥
» Q.

A Fail-Silent atomic componenthas a correct behavior®d or an acceptable
behavior 0. At just fault detection by the AT, the atomic componenwill be

considered as failed) andit will beblocked immediatelynttending the recovery phase.

65

t hat



Chapter5 Fault Masking in Componeiitased Cloud Computing

Definition 4: a Primary behavior of a Fail-Silent atomic componenis the main

~ o~ o

behaviorthatoffers desired results. We writ®@'Y 0h0hd @ hoho Y.

0 '@ . isthePrimary behaviarlt performs the desired operation

Definition 5: An Alternatebehavioré ‘@ of the Fail-Silentatomic component
performs the operation in different mannét aims to replace the Primary behavior in
the caseof fault detection

By using the Alternate behavior, the component can pesfermoll-forward recovery
phase tillthe reach of a stable state (i.e., correct (c) or acceptable (a) statg).-The
regularexpression which design the main role of the Alternate behavior in an atomic
component i$” ¢¥¢ such that:

i : Recovery;

o: Correct behavior;

®: Acceptable behaor.

Lemma 1 A Fail-Silent atomic component thatises an Alternate behavior
HD '@ can ensurkivenesgropertyeven in the presence of faults

Theorem 1 The use of an Alternate behavior in fRail-Silentatomic component can
produce &ault-Maskingcomponent thagnsurs both SafetyandLivenesgroperties in

the same time. The -regular expressiorf the FaultMasking atomic component

is O AT FO

Definition 6: a FaultMaskingatomic component is a component that can preserve and

Livenessspecificationpropertiesn presence of faults. @write:

~ O~ o~

@ vhoho @ ho6 @ foh & “Y Such that:
0 : isthe Primarybehavig and
0o @ . is the Alternate behavior. It isequired to perform the desired operation

in a different way
5.2.2 FaultMasking composite component

A composite componend g6 8 0 is a set of atomic componerits g
glued by the set of connectags T g . As seen in the chapt8r- Section 3.2.3a

connector in a composite component can be a rendezvous or broadcast connector.

5.2.2.1 Rendezvous connector
If we have therendezvous connector such that N gMESG , the only

possible interaction 60 6 6 80 which contains all the atomic components
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involved in the connector. Therefore, the failure of one atomic component will
directly infect the others atomic components. Thisans thdt 6 NTNQG s
failed, thenl 6 @& &N 1,0 will befailedtoo.
Lemma2 Let 6 g6 806 acomposite componerih order b construct a Fault
Masking rendezvous connectgr, all the atomic components 8 6 involved in it
must beFault Maskingas well. "® ‘@ ROO M KOO
5.2.2.2 Broadcast connector

If we have the broadcast  connector’ N gh
NES GE® QBT ¢ OQOETQG Qdbhiepassible set of interactions in this case
are those containing at least one instancg ofThe minimum interaction i 0
which contains only the broadcast initiawhere the maximum interaction is
6 6 6 86 which contains all the atomic components involved in the connector
Lemma 3: Let 6 g0 80 a composite componenhere gis a broadcast
connector. To construet FaultMaskingbroadcastconnector , at least the broadcast
initiator & must beFaultMasking "O0 o0 M B
Theorem 2.A composite componetihatis composed of a set BaultMaskingatomic
component is FaultMasking composite component:  "O0
r "00 h"00 M h00

5.3 ACase Study
5.3.1 Construction of FaultMasking models

In order to describe theonstruction ofault-Maskingmodels we will present a
case study of Fire Contr@ystem (seen in chaptdrSection 4.4.1 The Figure 5.2

presents the Cloud node 1 model.
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¥

Input Buffar

Figure 5.2 Cloud node 1

6 & o0Qp ¢ QM WD where:

0 YOO Qi QoY@ e Qo o

) O OGURNAO h ORYQO'QEEOQHR ORY 00 Qi O QUBRha Mo A
h OAYQe ¥ R
o Y.

Algorithm 1: Cloud nodel

Input: temperatures T;

Output: temperature Average N

[1]Co =0;

[2]S=0;
[3]ReceiveTemperatures()
[4] Receive(T, Sensor);
[5] Co=Co+1;

[6] Temp[Co] =T,;

[7] 1fCo<NThen

[8] GoToReceiveTemperatures();
[9] Else

[10] AverageCalcul():

[11] Fori=Oto N -1do
[12] S=S+Templi];

[13 ] Temp[i] = 0;

[14] End for

[15 ] 4 =S/N;

[16] EndAverageCalcul()

[17] Send ( 4, Node2); /I Send of c40 to the
node2
[18] Co=0; Il re - initialization of Co
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[19] S=0; Il re - initialization of S
[20 ] Go to ReceiveTemperatures()
[21 JEnd If

For constructing the FadMasking model ofthe Cloud nodel. An acceptance
test and an Alternate behavioust beincorporatedn the model. The @eptancdest
can beinsertedusing theproceduredescribed in chaptet. By this way, we will have a
Fail-Silent component. Therthe Alternate behaviomust be insertedn order to
construct the Faullasking component.

Input Buffer

Senq’ 6 OL M OQQS ¢

N
[ AT] ~
PrimaryFail N N
< Test
0"Y

Send

Figure5.3 Fault-Masking Cloud node 1

The FaultMasking model of th€loud node 1 in thEigure5.3is composed of

~

"0 Ve @ b @ hioh 6 Y such that :
0  GRORORON .

C

YO B 0 Qi G QD @U@ @ QADI (FAKXD dtY DGO R VR KEQ ¢ Q

6 @ 6 GURAO h ORY 60 Qi & QBN MEYR &Y
"0 h "aiYQeR
6 @ Oh 6 ™ivi Q& dOi OBOER K MRYQOE TMiho

ORY 6 GL QI OQEG dadyahd WO h "AYQe 0D
The FaukMasking Cloud nodel algorithm is the following:
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Algorithm 2: Fault - Masking Cloud nodel

Input: Temperatures T,

Output: temperature Average 1K

[1]clk2=0; /I Clock Initialization

[2]Co =0;

BlS= 0

[4] Checkpoint():

[5] Save ( 4 );/l save of the last correct 4
[6] clk2=0;// re - initializations for the next execution cycle
[7] Co=0;

8] S=0;

[9] GoToReceiveTemperatures();
[10] End Checkpoint
[11]ReceiveTemperatures():

[12] Receive(T, Sensor);

[13] Co=Co+1;

[14] Temp[Co]=T,;

[15] IfCo <N Then

[16] GoToReceiveTemperatures();
[17] Else

[18] 4 =Temp[1];

[19] 4 =Temp[1];

[20] Fori=0to N -1do

[21] If Temp[i]> 4 then// Calculation of the highest temperature
[22] 4 = Templi];

[23] End If

[24] If Templi]< 4  then//Calculation of the lowest temperature
[25] 4 =Templi];

[26] End If

[27] EndFor

[28 ] GoToAaverageCalcul()
[29 JEndReceiveTemperatures()
[30 JAaverageCalcul()

[31] Fori=OtoN -1do
[32] S=S+Templi];

[33] Templi]=0;

[34 ] End for

[35] 4=S/N;

[36] If[ 4 4 4 QO0wx Q.1 AAp ]then
[37 ] Send ( 4 , Node2);
[38 ] Go to Checkpoint();

[39] Else

[40 ] GoToBaverageCalcul();//non validation of the Acceptance
Test

[41] EndlIf

[42 ] End AverageCalcul()

[43 ] BaverageCalcul():

[44] 4 4AT®D 4A1P p Ig

[45] [ 4 4 4 QQw&Q. 1 AAp ]then
[46 ] Send( 4, Node2);

[47 ] Go to Checkpoint();

[48 ] Else
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[49 ] FailedRecoveryBlocks();//non validation of the Acceptance
Test

[50 1End If

[51] End BaverageCalcul()

As said before, the construction of a Fauiisking model must follow two
phase: the construction of the F8ilent model then the incorporation of the forward
recovery to reach the FawMasking model. TheAlgorithm 2 describes the fauit
Masking model of the Cloud node 1. The main behavior of the Cloud nodel is the
calcul of the average temperatué of 0 received temperatures. Then, it sends the
output to Cloud node2. The Primary behavior of Clowtlel is designed by the
procedured® U Qi & "QQ[tiné B@) 6After the calcul of”Y , it must pass the
acceptance test [line 36]. IfY satisfies the test, it will be sent to Cloud node 2, else a
forward recovery will be provided by inking the Alternate behavior which is designed
by the proceduré &0 Qi & "Q(liheXD]wRy @ising the alternate procedure [line 43
44], the average temperatui® will be calculated byusing only the first received
temperature and the lashe. At the endthe result must pass the acceptance test to
validate its correctness. 1 is accepted then it will be sent to the successor else the
recovery blocks will be considered as failed.

5.3.2 Time and space complexity

In order to anaize time and space complexity gfrevious algorithmsBig
Omega asymptotic notatias used. We have calculatélde running expressions of the
Cloud nodeX&lgorithm andor the FaultMaskingCloud nodelalgorithm. We have:

"Q E pB w Q¢ Qé¢da& mand
"Q 3 C8 o1 Q& "QEDwasd T
Where:"Q¢ L& Q E T8

We can say that:

fnode1 ()

frmnoder (M)

O(n),n=0.

The time and space complexity of the functifs & and™Q ¢ are
calculated according tthe n values.If we assume that representshe time unit,then

the graph plot in Figuré&.4 represents the time complexity of the Cloud nodel
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algorithm In this case, we can see that the functiéhs €& and™Q ¢ have
the same time growth rate. Thateans that the incorporation of tfeult masking
strategy inthe Cloud nodel program does not prodacg big overheadf we assume
thatn represents thepace unitthen the Figuré.4is a space complexity graph of the
functions™Q ¢ and™Q ¢ which are similar in space growth rate. It means
that theFault-MaskingCloud nodel does not need a big storage spargared to the

primary Cloud nodel program.

600000

500000 -—

400000

300000 a
/7 —4—fNodel
100000
0 —f_—;—b—eld‘/_"i/.

Time & space Complexity

Figure5.4 Time and space complexity of Cloud nodel. fNodel (réd@Nodel)
represents the Cloud node 1 complexity before (resp. Aftefatk Masking
Integration.

We can deduce th#te time and space complexity of thaultMaskingprocess
using the acceptancestand the try blocksloes not lead to any unreasonable overhead
or calculus complexities in the Cloud nodel (Figbie®.

5.3.3 Distributed Recovery Blocks scheme
RecoveryBlocksis an efficient mechanism for FatMasking, but it is based on
the sequential execution (i.€.the primary block fail then the alternate block will take

place) which provide a latency in response time delays. This last is an important key in

reattime applicationsespecially in Cloud applicationdn order to adapt Recovery
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Blocks scheme for disbuted real itme constraints Kim Kan proposed many
architectures for Distributed Recovery BlocKs. this section, w will apdy DRB
scheme on the Cloutbdel model. It is composed of two nodeand. Each node is
considered afault Masking atomic componenéand @ are performedn distributed
and parallel execution where the Primary node is the responsible for response delivery.
Each FaultMasking node has two try blocks and 6. O returns the desired output
whereasd returns an acceptable one. The primary n@d@erformso as the primary
block and6 as the Alternate block. The backup nadeperforms the try blocks in
inverseway, by executingd asthePrimaryblockando asthe Alternateone

We assume thabnly one nale fails at a momenfrhis assumption aims to

ensure that at least one nodeperatorandhenceit cansend an output tthe successor.

5.3.3.1 Constructionof Fault-Masking model using DRB scheme
v

ceive(T)

AgverageCalcul()

Send

Figure5.5 Cloud nodel BIP model Fire Control system.
TheFigure 5.5 ighe BIP model of the Cloud nodel. Itdsly Fail-Silent but not Fault

Masking model. Té Figure 5.6 presents the FaMasking model of Cloudhodel
using the DRB scheme.
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