

Committee composition:

Prof. Kamel Nadjet Ferhat Abbas University -Setif 1 President

Prof. Aliouat Makhlouf Ferhat Abbas University ïSetif 1 Director

Prof. Bensalem Saddek Grenoble University-France Co-Director

Prof. Boukarram abdallah Abderrahmane Mira University - Bejaia Examiner

Prof. Benmohamed

Mohamed
Constantine - 2- University. Examiner

July 2017

People's Democratic Republic of Algeria

Ministry of Higher Education and Scientific Research

Ferhat Abbas UniversityïSetif-1

Faculty of Sciences

Department of Computer sciences

Fault Tolerance in Embedded Systems

Cloud Computing Systems

 By: Mounya Smara

A thesis submitted in partial fulfillment of the requirements for the

Doctorate degree

I

Abstract

Cloud computing has become a popular computational technology across all

industries, by which desired services can be accessed from any place and at any time.

Cloud environments are characterized by the big data, non centralization, distribution

and non-heterogeneity that bring some challenges such as: reliability which is still a

major issue for cloud service providers. Fault tolerance is an active line of research in

design and implementation of dependable systems. It means to handle unexpected

defects, so that the system meets its specification in the presence of faults. Specification

guarantees can be broadly characterized by safety and liveness properties. Reliability in

cloud environment is handled by a set of fault detection and fault tolerance techniques.

The fault detection is configured by monitoring and heartbeat strategies whereas the

fault tolerance is performed by using techniques based on time and space redundancy

such as checkpointing, retry, SGuardé.etc. The main aim of this thesis is the

incorporation of recovery blocks scheme to enhance reliability of cloud computing

systems by providing Fail-Silent and Fault-Masking nodes. A Fail-Silent cloud node is

a safe component that uses the acceptance test for self-fault detection whereas a Fault-

Masking node is a safe and live component that can detect and recover from failures

using the acceptance test and try blocks. The proposed strategies are proved and time

and space complexities are estimated. Furthermore, a case study and a verification using

the model-checker are provided for the proposed schemes to prove their efficiency and

their applicability.

Keywords: Reliability, Cloud computing, Recovery Blocks, Fault Detection, Fault

Tolerance, Fault Masking, Acceptance test, Component-based approach.

II

Résumé

Le cloud computing ou lôinformatique en nuage est devenu une technologie de

calcul populaire dans toutes les industries, par laquelle les services souhaités peuvent

°tres consult®s ¨ partir de nôimporte quel endroit et ¨ tout moment. Les environnements

cloud sont caractérisés par la grande masse de données, la non-centralisation, la

distribution et le manque dôhétérogénéité. Ces caractéristiques apportent quelques défis

tels que lôassurance de fiabilité ; qui reste un problème majeur pour les fournisseurs des

services cloud. La Tolérance aux fautes est une ligne de recherche active dans la

conception et la mise en îuvre des systèmes fiables. Cela signifie de gérer les pannes

inattendues de sorte que le système réponde à ses spécifications en présence de fautes.

Les garanties de spécification peuvent être largement caractérisées par des propriétés de

sécurité-innocuit® et de vivacit®. La fiabilit® dans lôenvironnement cloud est gérée par

un ensemble de techniques de détection et de tolérance aux fautes. La détection des

fautes est opérée par les stratégies de surveillance et de battement de cîur alors que la

tolérance aux fautes est réalisée en utilisant des techniques basées sur la redondance

spatiale et temporelle telles que le checkpointing, le ré-essai, le Sguard, éetc. Le but

principal de cette thèse côest lôincorporation du schéma des blocs de reprise pour

améliorer la fiabilité des systèmes cloud computing en fournissant des nîuds défaillants

silencieusement et des nîuds masquants des fautes. Un nîud défaillant silencieusement

est un composant sécurisé qui utilise le test dôacceptation pour la d®tection automatique

des fautes alors quôun nîud masquant des fautes est un composant sûr et actif qui peut

détecter les fautes et faire une reprise vers lôavant en utilisant un test dôacceptation et un

ensemble de blocks dôessai. Les stratégies proposées ont été prouvées dans un contexte

de support de modélisation et vérification formelle BIP et la complexité temporelle et

spatiale a été estimée. De plus, une étude de cas et sa v®rification ¨ lôaide dôun model-

checker ont été réalisées sur des schémas proposés afin de prouver leur efficacité et leur

applicabilité.

Mots-clés : Fiabilité, Blocs de Reprises, Détection des Fautes, Tolérance aux fautes,

Cloud computing, Test dôacceptation, Reprise vers lôavant, Approche de Conception à

base de composants.

III

To my husband

To my parents

To my brothers and sisters

and

To my son Mouataz Billah.

IV

Acknowledgement

In the name of ALLAH, The most gracious and the most merciful, Alhamdulillah, all

praises to ALLAH for his blessing in completing this thesis.

This thesis would have never seen the daylight without the help of some very important

people to whom I would like to express my deepest gratitude.

My most sincere gratitude goes to my supervisor, Prof. Makhlouf Aliouat and to Dr.

Zibouda Aliouat for their support, advice and contribution to my studies.

Further, I would like to express my deepest gratitude to Prof. Al-Sakib Khan Pathan for

providing indispensible advices, information and support on different aspects of my

research.

I thank the members of my committee for their comments for my dissertation.

Last and not least, I would like to thanks all my friends and colleagues for their

encouragement.

V

Table of Contents

List of Tableséééééééééééééééééééé...éééééé VIII

List of Figuresééééééééééééééééééééé..éééé... IX

List of Appendiceséééééééééééééééééééé..éééé XI

Introduction ééééééééééééééééééééééé...ééé. 1

Chapter One: Backgroundééééééééééééééééé...ééé 5

1.1 Introductionéééééééé..ééééééééééééééééé 5

1.2 Fault Toleranceééééééééééééééééééééé...ééé 6

 1.2.1 Faults modelééééééééééé..éééééééééééé 6

 1.2.2 Safety and Liveness propertieséééééééé.éééé...éééé 6

 1.2.3 Fault Tolerance techniqueséééé...éééééé...ééééééé 7

 1.2.4 Recovery Blocks techniqueéééééééééé...ééé..éééé 7

 1.2.5 Distributed Recovery Blockséééééé...ééééééééééé 8

1.3 Cloud computing systemsééééééééééééééé...ééééé 11

 1.3.1 Definitionééééééééééééééééééé.....ééééé 11

 1.3.2 Architectureéééééééééééééééé...é..éééééé 12

 1.3.3 Reliability in Cloud computingééééééééééé....éé...éé 13

1.3.3.1 Fault Detection in Cloud computing ééééééééé..éééééé 14

a. Intrusion and Anomaly Detection systems éééééééééééé..é 14

b. Heartbeat and Pinging strategiesééééééééééééééé.é.é 16

1.3.3.2 Fault tolerance in Cloud computingééééé.ééééééééé...é 18

a. Proactive Fault Toleranceéé...éééééééééééééé...éé... 18

b. Reactive Fault Toleranceééé..ééééééééééééééééé 18

1.4 Conclusioné...ééééééééééééééééééééé...ééé 20

Chapter Two: Related Worksééééééé..é...éééééééééé. 21

2.1 Introductionéééééééééééééééé..ééééééééé 21

2.2 Fault Detection in Cloud computing systemséééééééééé..éé 21

VI

2.3 Fault Tolerance in Cloud computingéééééééééééééééé 23

2.4 Fault Tolerance in Component-based systemsééééééééé.ééé 26

2.5 Conclusionéééééééééééééééééééééééééé 27

Chapter Three: Component-based Cloud computingéééééééééé 29

3.1 Introductionéééééééééééééééééééééééééé 29

3.2 BIP Framework for Component-based designéééééééé...éééé 30

 3.2.1 Atomic componentéééééééééééééééé...ééééé 30

 3.2.2 Composite componentéééééééééééééééé..éééé 32

 3.2.3 Connectorsééééééééééééééééééééééééé 33

 3.2.3.1 Rendezvous connectorééééééééééééééééééé 33

 3.2.3.2 Broadcast connectorééééééééééééééé...éééé 34

3.3 Recapitulationéééééééééééééééééééééé.ééé 34

3.4 Conclusionéééééééééééééééééééééééé..éé 35

Chapter Four : Fault Detection in Component-based Cloud computingéé. 36

4.1 Introductionéééééééééééééééééééééééééé 36

4.2 Acceptance Test for Fault Detectionéééééééé.................................. 37

 4.2.1 Fault Detection in atomic componentééééééééééééé...é 37

 4.2.2 Fault Detection in composite component ééééééééééééé 39

 4.2.2.1 Rendezvous connectionééééééééééééééé..ééé 40

 4.2.2.2 Broadcast connectionéééééééééééééé..ééééé 40

4.3 Construction of Fail-Silent modelséééééééééééééé.ééé 41

 4.3.1 Construction of Fail-Silent atomic componentéééééééééé.é 41

 4.3.2 Construction of Fail-Silent composite componentéééééééé...é 41

4.4 A case studyéééééééééééééééééééééééééé 45

 4.4.1 Fire Control systemééééééééééééééééééé.éé 45

 4.4.2 Construction of the Fail-Silent free fire control systemééééééé.. 47

 4.4.3 Time and Space complexityéééééééééééééééééé 51

 4.4.4 Safety verification using model-checkeréééééééééééé.é 53

 4.4.4.1 Safety verification of fault-free modelééééééé..ééééé 55

VII

 4.4.4.2 Safety verification of failed modeléééééééééééééé 56

4.5 Comparative Analysiséééééééééééééééééééééé 57

4.6 Conclusionééééééééééééééééééééééééé..é 60

Chapter Five: Fault-Masking in Component-based Cloud computingééé 63

5.1 Introductionéééééééééééééééééééééééééé 63

5.2 Recovery Blocks for Fault-Masking éééééééééééééééé. 64

 5.2.1 Fault-Masking atomic componentéééééééééééééééé 65

 5.2.2 Fault-Masking composite component éééééééééééé.éé 66

 5.2.2.1 Rendevous connectoréééééééééééééééé..ééé 66

 5.2.2.2 Broadcast connectorééééééééééééééé...éééé 67

5.3 A Case Studyéééééééééééééééééééééééé..é 67

 5.3.1 Construction of Fault-Masking modelsééééééééééé..é 67

 5.3.2 Time and Space complexityéééééééééééééééé.éé 71

 5.3.3 Distributed Recovery Blocks Schemeéééééééééééé..éé 72

 5.3.3.1 Construction of Fault-Masking model using DRB schemeééééé 73

 5.3.3.2 Liveness verification using model-checkerééééééééééé 78

a. Liveness verification on the fault-free modeléééééééééééééé 80

b. Liveness verification on the failed modelééééééééééé..éééé 80

5.4 Comparative Analysiséééééééééééééééééééééé 81

5.5 Conclusionéééééééééééééééééééééééééé.. 84

Conclusionéééééééééééééééééééééééééé....... 85

Bibliographyééééééééééééééééééééééééééé 87

Appendix Aééééééééééééééééééééééééééé.. 101

Appendix Bééééééééééééééééééééééééééé.. 105

VIII

List of Tables

Table 3.1 Some mathematical notations and their meaningsééééééé... 33

Table 3.2 Component-based concepts and their equivalents in Cloud systems... 35

Table 4.1 The values defined by the system developeréééééééééé 46

Table 4.2 Key notations and meaningséééééééééééééééé. 48

Table 4.3 Safety properties of Fire Control System modeléééééééé.. 54

Table 4.4 Variable initialization used for the fault free verificationééééé. 55

Table 4.5 Faults injected in the Fail-Silent Fire control modelééééééé 56

Table 4.6 Comparison of various aspects of IDS, Heartbeat/Pinging and

 Acceptance Test strategieséééééééééééééééé. 61

Table 4.7 Accuracy Scaleééééééééééééééééééééé. 62

Table 5.1 Key Notations and Meaningséééééééééééééééé 75

Table 5.2 Liveness properties of the Cloud node1 modelééééééééé 79

Table 5.3 Faults injected in the fault free model éééééééééééé. 80

Table 5.4 Comparison between fault tolerance technique in Cloud systemsé... 82

IX

List of Figures

Figure 1.1 Recovery Bocks Architectureééééééééééééééé.. 8

Figure 1.2 Basic Structure of Distributed Recovery Blockséééééééé. 9

Figure 1.3 Role Reverse in DRB schemeééééééééééééééé.. 11

Figure 1.4 Overview of Cloud computingééééééééééééééé 12

Figure 1.5 Top Cloud Computing Services Providerséééééééééé.. 12

Figure 1.6 Cloud computing architectureééééééééééééééé.. 13

Figure 1.7 Anomaly Detection Systeméééééééééééééééé. 15

Figure 1.8 a)Heartbeat strategy; b)Pinging strategyééééééééééé. 17

Figure 1.9 Fault Tolerance techniques in Cloud computingéééééééé. 19

Figure 3.1 A BIP atomic component (Producer)éééééééééééé.. 31

Figure 3.2 Rendezvous interactionéééééééééééééééééé 33

Figure 3.3 Broadcast interactionéééééééééééééééééé... 34

Figure 4.1 Fault Detection in atomic component using the Acceptance Testé... 38

Figure 4.2 PFC composite component modelééééééééééééé... 42

Figure 4.3 Fail-Silent Producerééééééééééééééééééé. 42

Figure 4.4 Fail-Silent FIFOéééééééééééééééééééé... 43

Figure 4.5 Fail-Silent Consumeréééééééééééééééééé... 44

Figure 4.6 Fail-Silent composite component PFCéééééééééééé 44

Figure 4.7 Fire Control Systemééééééééééééééééééé. 45

Figure 4.8 Fire Control System BIP modeléééééééééééééé... 45

Figure 4.9 Fail-Silent Fire Control systemééééééééééééééé 47

X

Figure 4.10 Time and Space complexity of Cloud node1ééééééééé... 53

Figure 4.11 Simulation of Fail-Silent fire control system modelééééééé 54

Figure 4.12 Safety properties verification on fault-free fire control modelééé 56

Figure 4.13 Fail-Silent fire control model after fault injectionééééééé... 57

Figure 4.14 Safety verification of the failed Fail-Silent control modeléééé.. 57

Figure 5.1 Fault-Masking node behaviorééééééééééééééé.. 64

Figure 5.2 Cloud node1éééééééééééééééééééééé. 68

Figure 5.3 Fault-Masking Cloud node1éééééééééééééééé 69

Figure 5.4 Time and Space complexity of Cloud node1ééééééééé... 72

Figure 5.5 Cloud node1 BIP modelééééééééééééééééé... 73

Figure 5.6 Fault- Masking Cloud node1 based on DRB schemeéééééé.. 74

Figure 5.7 Fault-Masking model of Cloud node1éééééééééééé. 79

Figure 5.8 Liveness properties verification on the fault-free modelééééé. 80

Figure 5.9 Liveness properties verification on the failed modeléééééé.. 81

XI

List of Appendices

Appendix Aéééééééééééééééééééééééééé....... 101

Appendix Bééééééééééééééééééééééééééé... 105

Introduction

Embedded Computing systems could be seen now almost everywhere in our

daily life. They are found in household items, multimedia equipment, in mobile phones

as well as in cars, smart munitions, satellites and so on. However, despite increasing

hardware capabilities, these mobile devices will always be resource-constrained

compared to fixed hardware. In order to mitigate the hardware limitations on mobile and

wearable devices, cloud computing [1], [2], [3], [4], [5], [72] allows users to use remote

infrastructure in an on-demand fashion. Over the past years, cloud computing has

become a popular computational technology across all industries. It brings many vast

advantages such as the reduction of costs, development of efficiency, central promotion

of software, compatibility of various formats, unlimited storage capacity, easy access to

services at any time and from any location and most importantly, the independence of

these services from the hardware [94]. Cloud computing is a type of parallel and

distributed computing system which consists of a collection of inter-connected and

virtualized computers that are dynamically provisioned and presented as one or more

unified computing resource(s) [8], [9], [10].

We could fairly state that applications developed on cloud systems are often

critical in terms of human lives. For instance, many such applications could be

practically employed in healthcare, military, or disaster management scenarios.

Furthermore, desired services in cloud computing can be accessed from any place and at

any time. These cause removing the restrictions using in systems and traditional

networks in providing service to users. But that can bring some new problems,

restrictions, and challenges for users and applications. The reliability of cloud

application is still a major issue for providers and users. Failures of cloud apps generally

result in big economic losses as core business activities now rely on them [145]. This

was the case in 2011, there was a Microsoft cloud service outage which lasted for

approximately 2,5 hours [149]. In December 24, 2012 a failure of Amazon web services

caused an outage of Netflix cloud services for 19 hours. In October 2013, Facebook

reported an unavailable service for photos and ñLikesò. In January 2014, one of Google

services (Gmail) was down for about 25-50 min [150].

Introduction

2

 The demand for highly dependable cloud apps has reached high levels [147].

However, there is still no clear methodology in industry today for developing highly

dependable cloud applications [145]. A research presented in [146] has revealed that

infrastructure and platform services offered by big players like Amazon, Google and

Microsoft suffer from regular performance and availability issues due to service

overload, hardware failures, software errors and operator errors. Moreover, because of

the constantly increasing complexity of cloud apps and because developers have little

control over the execution environment of these applications, it is exceedingly difficult

to develop fault-free cloud apps. Therefore, cloud apps should be robust to failures if

they are to be highly dependable [148].

Fault tolerance has always been an active line of research in design and

implementation of dependable systems. It involves providing a system with the means

to handle unexpected defects, so that the system meets its specification in the presence

of faults. Fault tolerance is carried out via fault detection and recovery [130]. In this

context, the notion of specification may vary depending on the guarantees that the

system must deliver in the presence of faults [45]. Such guarantees can be broadly

characterized by safety and liveness [20] properties. In fact, Safety properties can be

ensured by fault detection techniques whereas recovery mechanisms are used to meet

liveness properties.

 In cloud computing systems, failure detection is processed by using two main

strategies: Intrusion detection systems (IDS) for network or hosts attacks detection [32],

[33] and Heartbeat/Pinging strategy [43] for hardware fault detection. In the other side,

fault tolerance capability is configured in cloud systems via proactive and reactive fault

tolerance techniques [22-27][94][98][101][102][103]. However, fault tolerance

strategies used in clouds [22-27] are based on time or spatial redundancy which can

tolerate only hardware faults without dealing with software bugs. According to our

thorough investigation of the area, there is clearly a lack of formal approach that

rigorously relates the cloud computing with software fault tolerance concerns.

Recovery blocks scheme [29],[30] is a variant of design diversity for software

fault tolerance [28]. It is based on the selection of a set of operations on which recovery

operations are based. Recovery blocks are composed of a set of try blocks and an

acceptance Test. This earlier is an internal audit that can configure the fault detection

Introduction

3

process. While the forward recovery can be present by the set of try blocks. For

constructing highly hardware and software fault tolerance in real-time distributed

computer systems, Distributed Recovery Blocks (DRB) is formulated by Kim Kan in

1983 [109][110][132]. It is a scheme that can handle the software and hardware faults in

the same manner in distributed real-time environment.

 In this thesis, we propose a novel formal framework for constructing reliable

cloud modules using the recovery blocks scheme. The aim is to provide strategy that

can enhance cloud reliability by uniform treatments of software and hardware faults by

constructing Fail-Silent and Fault-Masking nodes. A Fail-Silent node is able of self-

fault detection by using the acceptance test. This earlier can guarantee initial safety

requirement in spite of faults. In the other hand, a Fault-Masking node is apt to handle

(i.e., detect and tolerate) software, hardware and response time faults by using both the

acceptance test and try blocks to ensure safety and liveness properties in the same time.

In order to well explain the proposed schemes, Fire Control System is used as a case

study. Time & space complexity for such schemes is estimated. Also, safety and

liveness verification using the model-checker is applied on the deduced models to prove

the efficiency and the applicability of the proposed schemes. BIP (Behavior,

Interaction, Priority) [14], [15], [16] is used as a Component-based framework with

multi-party interactions for system modelization and UPPAAL model-checker is used

as a tool for simulation and verification.

The thesis is divided into five chapters. First, we introduce the background to

and the motivation for the research and identify key research problems and

contributions. After, the chapter 1 explains the background of fault tolerance including

definitions and basic concepts then it presents the cloud computing systems, fault

detection and fault tolerance techniques in the cloud environment. In Chapter 2, a

survey of some current related works on fault detection and fault tolerance in cloud

computing are cited. Chapter 3, introduces the component-based cloud computing

approach and BIP as a Component-based framework. The Chapter 4 presents a fault

detection scheme for constructing Fail-Silent cloud nodes that ensures safety properties

in the presence of faults. In Chapter 5, Fault-Masking scheme is described for fault

detection and recovery in cloud modules that can ensure both safety and liveness

Introduction

4

properties in the same time. Finally, conclusion and future perspectives are cited in the

conclusion section.

5

Chapter One

Background

Summary

1.1 Introductionéééééééééééééééééééééé..ééé. 5

1.2 Fault toleranceééééééééééééééé.ééééé..éééé 6

 1.2.1 Faults modeléééééééééééé.ééééééééé...é 6

 1.2.2 Safety and liveness propertieséé...ééééééééééé..éé 6

 1.2.3 Fault tolerance techniqueséééé.ééééééééééééé. 7

 1.2.4 Recovery blocks techniqueééééééé...ééééééé...é... 7

 1.2.5 Distributed recovery blockséééé..éééééééééé...é... 8

 1.3 Cloud computing systemsééééééééé..ééééééééé...... 11

 1.3.1 Definitionééééééééééé..ééééééééééé...... 11

 1.3.2 Architectureééééééééééé...ééééééééééé. 12

 1.3.3 Reliability in cloud computingéééééééééééééé...... 13

 1.3.3.1 Fault detection in cloud computing éééééééééééé. 14

 a. Intrusion and anomaly detection systems éé.éééééééé...... 14

 b. Heartbeat and pinging strategieséééééé..ééééé...éé... 16

 1.3.3.2 Fault tolerance in cloud computingééééééééééé...... 18

 a. Proactive fault toleranceéééééééééééééééé...é... 18

 b. Reactive fault toleranceéééééééééééééééé...é... 18

1.4 Conclusionééééééééééééééééééééééé...éé. 20

1.1 Introduction

Reliability is the ability of a system or component to perform its required

functions under stated conditions and for a specified period of time. One way to

increasing the reliability is by employing fault tolerance strategies. Fault tolerance is

defined as the ability of a system to deliver desired results even in the presence of faults.

A system is considered as fault tolerant if the behavior of the system, despite the failure

of some of its components, is consistent with its specifications [106].

Chapter1 Background

6

1.2 Fault Tolerance

Fault Tolerance is carried out via fault detection and recovery [130]. The fault

detection is the phase in which the presence of a fault is deduced by detecting an error

in the state of some subsystem. After the fault detection phase, the error in the system

has to be corrected this is what we call recovery. With a system recovery task, the

system will reach an error-free state

1.2.1 Faults model

Three terms are crucial and related to system failure and thus need to be clearly defined,

which are named failure, error and fault. Failure, error and fault [104], have technical

meaning in the fault tolerance literature. A failure occurs when ña system is unable to

provide its required functionsò. An error is ñthat part of the system state which is liable

to lead to subsequent failureò, while a fault is ñthe adjudged or hypothesized cause of

an errorò. For example, a sensor may break due to a fault introduced by overheating.

The sensor reading error may then lead to a system failure. A fault can be of hardware

origin, which is caused by physical malfunctions or can be a software fault which is

caused by software bugs in system development.

A fault can be classified into three main groups, namely permanent, intermittent and

transient faults [133], according to their stability and occurrence:

Permanent faults, are caused by irreversible physical changes. The most common

sources for this kind of faults are the manufacturing processes.

Intermittent faults, are occasional error bursts that usually repeat themselves. But they

are not continuous as permanent faults. These faults are caused by unstable hardware

and are activated by an environmental change such as a temperature or voltage change.

Transient faults, are temporal single malfunctions caused by some temporary

environmental conditions which can be an external phenomenon such as radiation or

noise originating from other parts of the system.

In this thesis, the terms fault, error and failure refers to the same meaning which is the

deviation from the regular behavior of the system.

1.2.2 Safety and liveness properties

Tolerating faults involves providing a system with the means to handle

unexpected defects, so that the system meets its specification even in the presence of

faults. In this context, the notion of specification may vary depending upon the

Chapter1 Background

7

guarantees that the system must deliver in the presence of faults. Such guarantees can be

broadly characterized by safety and liveness properties [112]. Every possible property

can be expressed a by a conjunction of safety and liveness properties [113].

Safety property can be described over the state that must hold for all executions of the

system. It rules that ñbad things never happenò. As an example, the requirement for a

system controlling the traffic lights of a street intersection that the lights for two

crossing streets may never be green at the same time.

Liveness property, this property can be expressed via a predicate that must be eventually

satisfied, guaranteeing that ña good thing will finally happenò. As an example of

liveness violation is deadlock involving two or more processes, which cyclically block

each other indefinitely in an attempt to access common resources.

 1.2.3 Fault Tolerance techniques

Fault tolerance is based on redundancy. It can be: time, hardware or software

redundancy [105].

Time redundancy, is based on the execution of some instructions many times (e.g.,

Checkpointing and rollback recovery).

Hardware redundancy is based on the idea to overcome hardware faults by using

additional physical components (e.g., TMR, Codingé).

Software redundancy or design redundancy, is based on all programs and instructions

that are employed for supporting fault tolerance (e.g., N version programming,

Recovery blocks).

1.2.4 Recovery Blocks technique

Recovery Blocks technique [107], [108] is a variant of N Versions Software

(NVS). It is based on the notion of try blocks. The try blocks are a set of operations (of

a program) that can be considered as a unit of detection and recovery. Each try block

contains a primary block, zero or more alternate blocks and an acceptance Test (see

Figure 1.1). The possible syntax of a recovery block is the following:

ensure<Acceptance Test> by <ὄ> else by <ὄ> é.else by <ὄ> else error. Where

ὄ is the primary try block and ὄ ρ Ὧ ὲ, is the alternate try block.

Chapter1 Background

8

Figure 1.1. Recovery blocks architecture

The primary try block is the first block entered. It performs conventionally the desired

operation. The alternate try block, is entered when the primary block fails to pass the

acceptance Test. It is required to perform the desired operation in a different way or to

perform some alternative action acceptable to the program as a whole. All, primary or

alternates blocks must pass on exit on the acceptance test to judge their outputs. The

acceptance test is a section of program which is invoked in order to ensure that the

operation performed by the recovery block is to the satisfaction of the problem. The

acceptance test is an internal audit logic by which the component can possesses the

capability of judging the reasonableness of its computation results.

The forward recovery mechanism used in recovery blocks can enhance the efficiency in

terms of the overhead (time and memory) it requires. This can be crucial in real-time

applications where the time overhead of backward recovery can exceed stringent time

constraints [109] [110].

1.2.5 Distributed Recovery Blocks (DRB)

Since its first formulation in 1983 by Kim Kan, [109][132] distributed recovery

blocks (DRB) has been a technology for constructing highly hardware and software

fault-tolerance in real-time distributed computer systems.

DRB uses a pair of self-checking processing (PSP) nodes structure together with both

software internal audit and watchdog timer to facilitate real-time hardware fault

Chapter1 Background

9

tolerance. For facilitating real-time software fault tolerance, the software implemented

internal audit function and multiple versions of real-time task software which are

structured via the recovery block scheme [107], [108] and executed concurrently on

multiple nodes within a PSP structure. The DRB is a based on forward recovery which

is primarily used when there is no time for backward recovery.

Figure 1.2. Basic structure of Distributed Recovery Blocks[109]

The Figure 1.2 presents the DRB scheme structure. X is the primary node which

executes the primary try block A and B is the alternate try block. In the other hand, the

backup node Y executes B as the primary try block and A as the alternate try block. We

can see that the nodes use the try blocks in reverse order, this aims to avoid the failure

coincidence between the nodes. In other meaning, if both nodes use the same order of

try blocks, the same faults in the try block that causes a node to fail in processing a

certain data set will cause the other node to fail too.

Both nodes will receive the same input data and process them concurrently by the use of

two different try blocks (i.e., the try block A on X and the try block B on Y). After the

execution of the try blocks, the results judgment is performed by using the common

Chapter1 Background

10

acceptance test. As soon as each node passes the acceptance test, it updates its local

database. If we assume that X and Y never fail in the same time, three cases are possible

[109]:

Fault free situation, both nodes will pass the acceptance test with the results computed

with their primary try blocks. In such a case, the primary node X notifies Y of its success

of the acceptance test. Therefore, only the primary node sends its output to the successor

node.

Failure of the primary node X, and the backup node Y pass the acceptance test. In this

case, the node X attempts to inform the backup node upon its failure. At just reception

of the notice, the backup node Y will send its output to the successor and then the role of

the primary and backup nodes are reversed (see Figure 1.3). For the new primary node

Y, the try block A must become the primary try block. In this time, the new backup node

X (i.e., the failed primary node) will use the try block B for recovery in order to bring

the database in the node up to date without disturbing the new primary node Y. After the

successful retry, the try block B remains as the primary in the new backup node Y. In the

case when the primary crash completely, the backup node will recognize the failure of

the primary upon expiration of the preset time limit.

Failure of the backup node Y, in this case, the primary node X needs not be disturbed.

The backup node will just make a retry with try block A to achieve localized recovery.

DRB is an attractive strategy for two raisons: First, the two nodes always execute two

different try blocks. An advantage here is that if a data set causes one of the try blocks

to fail but not both of them, then one acceptable result can be sent to the successor with

little delay. Second, the current primary node always uses A as the primary try block

and try block A is generally designed to produce better quality outputs than try block B.

A primary node can have one or more backup nodes. In other words, the primary try

block can have more than one alternate try block. As long as there are more backup

nodes with more alternate try blocks, the system will be more reliable.

Chapter1 Background

11

Figure 1.3. Roles reverse in DRB scheme

1.3 Cloud computing systems

1.3.1 Definition

Cloud computing [8], [9] is a type of parallel and distributed computing system

which consists of a collection of inter-connected and virtualized computers that are

dynamically provisioned and presented as one or more unified computing resource(s)

based on service-level agreements (SLAs) established through negotiation between the

service provider and the consumers [8], [10] (Figure 1.4).

The Figure 1.5 shows some examples of various cloud service providers

X

 Primary Node

A B

Y

 Backup Node

B A

 Roles Reverse

 X

 Backup Node

B A

 Y

 Primary Node

A B

 Roles Reverse

Y Failure

X Failure

 X

 Primary Node

A B

Y

 Backup Node

B A

Chapter1 Background

12

Figure 1.4. Overview of cloud computing [98]

Figure 1.5. Top cloud computing services providers

1.3.2 Architecture

The architecture of the cloud computing [96] can be divided into 4 layers: the

hardware /datacenter layer, the infrastructure layer, the platform layer and the

application layer, as shown in the Figure 1.6.

Chapter1 Background

13

Figure 1.6. Cloud computing architecture [96]

Hardware Layer, This layer is responsible for managing the physical resources of the

cloud, including physical servers, routers, switcherséetc. in practice, the hardware

layer is typically implemented in data centers.

Infrastructure layer, this layer creates a pool of storage and computing resources by

partitioning the physical resources using virtualization technologies.

Platform layer, consists of operating systems and application frameworks. The purpose

of this layer is to minimize the burden of deploying applications directly into virtual

machine containers.

Application layer, is the highest level of the architecture. The application layer consists

of the actual cloud applications. Different from traditional applications, cloud

applications can leverage the automatic ïscaling feature to achieve better performance,

availability and lower operating cost.

1.3.3 Reliability in cloud computing

The emergence of cloud computing has brought new dimension to the world of

information technology. Even though cloud computing provides many benefits, one key

challenge in it is to ensure continuous reliability and guaranteed availability of

resources provided by it. Therefore, there is a serious need for fault tolerant mechanisms

in cloud environments. Before dealing with the fault tolerance techniques in cloud

systems, it should first explore the different faults model that may occur in such system.

The failures in cloud computing are categorized in four classes [99]:

Chapter1 Background

14

Hardware faults: mainly occur in processors, hard disk drive, integrated circuits

sockets and memory.

Software faults: provided as a result of software bugs.

Network faults: this type of failures inhibits the communication between the cloud and

the end users. It is caused by server overload and network congestion.

Timeout failure [100]: can be considered as a result of failures (e.g., hardware,

software, and network). It occurs when the time needed for executing a task exceeds the

delay set by the service monitor.

In our thesis, we focalize on tolerating hardware faults, software faults and Timeout

failures.

1.3.3.1 Fault Detection in Cloud computing

Failures in cloud computing systems are processed by using two main strategies:

Intrusion detection and Heartbeat/Pinging.

a. Intrusion and Anomaly Detection Systems (IDSs)

IDSs [32], [33], [34], [35], [36] are strongly adopted in clouds. Generally, IDSs

are used for detection of network or hosts attacks (e.g., Denial of service, Buffer

overflow, Sniffer attacks). They are based on behavior observation of the component

and an alarm is raised if an abnormal behavior is detected. They can be grouped into

two detection principles, namely misuse-based (or Signature-based) and anomaly-based

IDS.

Signature-based IDS

This kind of IDS recognizes intrusions and anomalies by matching observed data

with pre-defined descriptions of intrusive behavior. Therefore, a signature database

corresponding to known attacks is specified a priori.

Anomaly-based IDS

The strategy of anomaly detection is based on the assumption that abnormal

behavior is rare and different from normal behavior, and thus it tries to model what is

normal rather than what is anomalous. Anomaly detectors generate an anomaly alarm

whenever the deviation between a given observation at an instant and the normal

behavior exceeds a predefined threshold (see Figure 1.7). Anomaly detection refers to

the important problem of finding non-conforming patterns or behaviors in live traffic

data. These non-conforming patterns are often known as anomalies. Three types of

Chapter1 Background

15

anomaly-based IDS techniques are available for cloud Computing: statistical, data

mining, and machine learning techniques [32],[33], [34], [35], [44].

Figure 1.7. Anomaly Detection System.

Statistical based anomaly detection- In this technique, anomaly detection is realized by

observing computations in the cloud and it creates a profile which stores a value to

represent their behavior. In order to detect failures using these techniques, two profiles

must be used. The first one stores the ideal profile while the second one stores the

current profile which is updated periodically (this one calculates anomaly score). If

anomaly score of current profile is higher than the threshold value of stored profile, then

it is considered as anomaly and it can be detected. A survey of statistical based anomaly

detection is presented in [37]. Statistical anomaly detection systems can detect

unpredictable anomalies. They can monitor activities such as CPU (Central Processing

Unit) usage, number of TCP (Transmission Control Protocol) connectors in term of

statistical distribution but more time is required to identify attacks and detection

accuracy is mainly based on the amount of collected behaviors.

Data mining based anomaly detection- Data mining techniques such as: classification,

clustering and association rule mining can be used for failure detection. Data mining

techniques use an analyzer which can differentiate normal and abnormal activity within

clouds by defining some boundaries for valid activities in the cloud. A good number of

approaches are proposed for this issue in [38]. Data mining anomaly detection

techniques are largely used because they do not need any prior knowledge of the system

Chapter1 Background

16

but their algorithms are generally computation-intensive. Moreover, data mining

techniques can produce high false alarm rate (FAR) and they require more time and

more sample training.

Machine learning based anomaly detection - The ability for programs or software to

improve performance over time by learning is an important technique for the detection

of anomaly. Verified values or normal behaviors of data are stored; when anomaly

occurs or is being detected, the machine learns its behavior, stores the new sequence or

rules. This technique creates a system that can improve performance of the program by

learning from the prior results [39],[40], [41]. A survey on existing techniques based on

machine learning is presented in [42]. Machine learning techniques alone can just detect

known attacks. Therefore, they must be accompanied with statistical or data mining

techniques in order to ensure detection of suspected unknown anomalies. We can see

that each of the previous techniques has its strengths and weaknesses; the recent works

for anomaly detection in cloud computing are focusing on development of more

efficient hybrid techniques from the existing IDSs. Hybrid techniques are efficient for

anomaly detection but they often come with high computational cost.

b. Heartbeat and Pinging Strategies

The most common implementation for fault detection in cloud computing

systems is based on two keep-alive massage strategies: heartbeat and pinging [43]. In

Heartbeat strategy, a message is periodically sent from a monitored node to the failure

detector to inform that it is still alive. If the heartbeat does not arrive before a timeout,

the failure detector suspects the node is faulty (see Figure 1.8 (a)).

In pinging strategy, a message is continuously sent from a failure detector to a

monitored node. The failure detector expects to receive as answer an ACK. If a keep-

alive message fails, a probe (i.e., a series of messages separated by a time interval) can

be used to verify whether a node is really faulty (Figure 1.8 (b)).

Chapter1 Background

17

(a)

(b)

Figure 1.8. a) Heartbeat strategy; b) Pinging strategy.

Heartbeat or pinging strategies are used for permanent hardware fault detection

where the detection is focused on finding the crashed nodes. Furthermore, they are

based on message passing which can produce an overflow in network connections.

In cloud computing systems, failure detection is done with the aid of intrusion detection

and heartbeat/pinging strategies. Intrusion detection systems are dedicated to ensuring

safety requirements by preventing any malicious attacks against the cloud connections

or nodes. This strategy is based on monitoring the system behavior to detect any

abnormal behavior produced by malicious attacks. The failure detection in this case is

effected by an external monitor component which manipulates a set of data and applies

Chapter1 Background

18

a sequence of computations to decide whether there is an anomaly or not. This type of

process requires more time, and more computations. That is why, it cannot offer high

accuracy for failure detection and this justifies the high false alarm rate (FAR) in IDSs.

The second strategy used in cloud networks is heartbeat/pinging. It is useful for

detecting the crashed nodes. Heartbeat strategy is based on message-passing between

the failure detector and the set of monitored nodes. As noted earlier, this can lead to an

overflow of the network connections. In both IDS and Heartbeat, fault confinement in

the cloud network is not processed. This means that if one node fails, all of its neighbors

can simply get infected and the failure would be transferred over the network. By this

effect, the safety of the cloud network becomes a great concern.

1.3.3.2 Fault tolerance in cloud computing

The techniques that are used to create the fault Tolerance capability in cloud

computing can be divided into two main categories: proactive fault tolerance and

reactive fault tolerance [98][101][102][103] (see Figure 1.9).

a. Proactive Fault Tolerance

It is based on avoid failures by proactively taking preventative measures. It makes sure

that the job gets done completely without any reconfiguration. Two techniques are

based on proactive fault tolerance which are: Preemptive migration and software

rejuvenation.

Software Rejuvenation, it designs the system for periodic reboots and it restarts the

system with clean state with a fresh start.

Pre-emptive Migration, in this technique, the applications are constantly monitored,

analyzed and depend on a feedback-loop control mechanism.

Self-Healing, for better performance, a big task can divided into parts. Running various

instances of an application on various virtual machines can automatically handle

failures of application instances.

b. Reactive Fault Tolerance

It aims to reduce the effect of the faults already occurred in cloud. Some of the fault

tolerance policies are:

Checkpointing and rollback recovery, is useful for the long running and the big

applications. It is doing after every change in the system. When the task fails, the job

will be restarted from the recently checkpoint rather than restarting from the beginning.

Chapter1 Background

19

Job Migration, in which the task can be migrated to another machine after failure

detection. HAProxy can be used for migration of the jobs to another machine.

Replication, in order to make the execution succeed, various replicas of task are run on

different resources. HAProxy, Hadoop and AmazonEc2 are used for implementing

replication.

SGuard, is based on rollback recovery. It can be implemented in Hadoop and

AmazonEc2.

Retry, is the simplest among all. In which the failed task is implemented again and

again on the same resource.

Rescue Workflow, it allows the workflow to resist after failure of any task until it will

not able to proceed without rectifying the fault.

Task Resubmission, at runtime, the failed task is resubmitted either to the same or to a

different resource for execution.

Figure 1.9. Fault tolerance techniques in Cloud computing

We can observe that fault tolerance techniques in cloud systems can be

categorized under two main categories: Rollback recovery (or time redundancy) and

physical redundancy (or space redundancy). The rollback recovery mechanism consists

of the re-execution of the system from the last correct state (e.g., Checkpointing and

rollback recovery) or even the restart of the system from the begin (e.g., SGuard, Retry,

Software Rejuvenation). Space redundancy consists of the concurrent execution of

many versions of the same program or the division of one program to many parts

Fault Tolerance Policies

Proactive Policies Reactive Policies

Software Rejuvenation

Pre-emptive Migration

Self-Healing

Checkpointing Job Migration SGuard Replication Rescue Workflow

Retry Task Resubmission

Chapter1 Background

20

executed concurrently on different machines (e.g., Replication, Self-Healing) or to

migrate a process from a failed machine to an operational one (.g., Job Migration, Task

Resubmission). Rollback recovery is very convenient for transient hardware fault

tolerance in long applications. But it is not supportable by Real-time cloud applications

because it needs more time for recovery. Furthermore, a consistent state must be

calculated for each recovery and this is not easy to get especially in high scalable

distributed cloud systems. Space redundancy can tolerate only permanent hardware

crashes. It is very convenient for Real-time applications but it requires the

implementation of complicated communication policies between the collaborative

machines.

We can say that the existent strategies used for the fault tolerance in cloud

computing have an observable missing in software fault tolerance. This latest can be

ensured via software redundancy.

1.4 Conclusion

In this chapter, some basic concepts of fault tolerance are introduced such as:

faults model, safety and liveness properties and fault tolerance techniques. Then,

recovery blocks is presented as a forward recover fault tolerance scheme. After, the

DRB scheme is described as a parallel execution of recovery blocks for software and

hardware fault tolerance in real-time distributed systems. Then, Cloud computing

systems are introduced in the next section. Its architectures and characteristics are

highlighted. After that, reliability in cloud environment is discussed and the main fault

detection and fault tolerance techniques are detailed.

21

Chapter Two

 Related Works

Summary

2.1 Introductionéééééééééééééééééééééééé.é 21

2.2 Fault detection in cloud computing systemsééééééééééé...é 21

2.3 Fault tolerance in cloud computingééééééééééééééé.é 23

2.4 Fault tolerance in component-based systemsééééééééééé..é 26

2.5 Conclusionéééééééééééééééééééééééé...é 27

2.1 Introduction
There are quite a good number of works on fault detection and fault tolerance in

cloud computing systems either in component-based systems. Before wrapping up this

thesis, we would like to mention a few of them. The mentioned researches are classified

into three main classes: Fault detection in cloud computing, Fault tolerance in cloud

computing and fault tolerance in component-based systems.

2.2 Fault detection in cloud computing systems

Many researches have been provided for fault detection in cloud Computing.

Fan et al. in [46] use Petri Nets model to propose a fault detection strategy for cloud

module by providing a cloud computing fault Net (CFN). The CFN aims to model

different basic components of the cloud application as either the detection or failure

process. By the CFN, byzantine fault detection can be done dynamically in the

execution process. Wang et al. in [47] propose an online incremental clustering

approach to recognize access behavior patterns and use CCA (Canonical-Correlation

Analysis) to model the correlation between workloads and the metrics of application

performance/resource utilization in a specific access behavior pattern. In [48], Barhuiya

et al. introduce a lightweight anomaly detection tool (LADT) which monitors system-

level and virtual machine level metrics in cloud data to detect node level anomalies

using simple metrics and correlation analysis. In this work, LADT addresses the

complexity of implementing efficient monitoring and analysis tools in large-scale cloud

data centers by collecting and storing the metrics generated by node and virtual

Chapter2 Related Works

22

machines using Apache Chukwa. T. Wang et al. present in [49] a correlation analysis

based approach to detecting the performance anomaly for internet ware using kernel

canonical correlation analysis (KCCA) to model the correlation between workloads and

performance based on monitoring data. Furthermore, XmR control charts are used to

detect anomalous correlation coefficient and trend without a prior knowledge. In [50],

C. Wang et al. propose an algorithm that computes statistics on data based on multiple

time dimensions using statistical methods. The proposed algorithms have low

complexity and are scalable to process large amounts of data. The works in [47], [48],

[49],[50] are based on statistical monitoring techniques which are based on observing

the system behavior to detect any abnormal behavior. This process requires a prior

knowledge which is extremely difficult in large scale systems.

Kumar et al. in [51] present a fault detection algorithm for faulty services using data

miningôs outlier detection method that can help to detect accurate and novel faulty

services without any prior knowledge. In [52], Prasad and Krishna present statistical

chart approach which is the standard algorithm applied to outlier detection for anomaly

detection in continuous datasets. In [53], Ranjan and Sahoo present a new clustering

approach based on K-medoids method for intrusion detection. The works in [51], [52],

[53] are based on data mining system monitoring. These techniques present some hard

computations and generate a high false alarm rate. In [54], Singh et al. propose a

collaborative IDS framework in which known stealthy attacks are detected using

signature matching and unknown attacks are detected using decision tree classifier and

support vector machine (SMV). In [55], Pandeeswari and Kumar introduce an hybrid

algorithm which is a mixture of Fuzzy C-Means Clustering algorithm and Artificial

Neural Network (FCM-ANN). In [56] Sha et al. propose a statistical learning

framework by adopting both the high-order markov chain and multivariate time series.

Ghanem et al. propose in [57] a hybrid approach for anomaly detection in large scale

datasets using detectors generated based on multi-start meta heuristic method and

genetic algorithm. The works in [54], [55], [56], [57] are hybrid system monitoring

techniques which require high computational costs.

In [58], Arockiam and Francis present fault detection technique based on two

strategies: push model and pull model. In push model, fault detector sends signals to

various nodes in the cloud to check their health status. On the other hand, in pull model,

Chapter2 Related Works

23

each component in the system sends signals to fault detector telling its health status.

Some techniques based on heartbeat strategy are presented in [59], [60]. In [61],

Hayashibara et al. presents the • Accrual failure detector. It is based on heartbeat

strategy but instead of providing information of boolean nature (Trust or Suspect); it

produces a suspicious level on a continuous scale. By this, the applications can directly

use the value output by the accrual failure detector as a parameter to their actions. These

approaches are designed to adapt dynamically to their environment and in particular,

adapt their behavior to changing network conditions. In [62], Lavinia et al. present a

failure detection system that combines the power of existing approaches such as gossip

protocol with the decoupling of monitoring and interpretation as offered by the accrual

failure detection solutions. This combination gives a better estimation of the inter-

arrival times of heartbeat and an increase level of confidence in the suspicion of process

being lost. The works in [58], [59], [60], [61] and [62] are focalized only on hardware

fault detection in the cloud computing nodes without detecting software faults. In the

works [46-62] fault detection strategies in cloud computing are presented without

considering the component-based architecture, unlike our proposition which is

dedicated to fault detection in component-based cloud computing architecture.

2.3 Fault Tolerance in Cloud computing systems

In this section, some current researches of fault tolerance are presented. Ganesh

et al. in [22] emphasizes fault tolerance by considering reactive and proactive fault

tolerance policies. In proactive fault tolerance policy, preemptive migration and

software rejuvenation techniques were discussed. Then, Checkpointing/Restart,

replication and task resubmission were discussed in reactive fault tolerance. Zhang et

al. in [114] proposed a novel approach called byzantine fault tolerant cloud (BFT-

Cloud) for tolerating different types of failures in voluntary-resource clouds. BFT

(Byzantine Fault Tolerant Cloud) can tolerate different types of failures including the

malicious behaviors of nodes by making up a BFT group of one primary and 3f replicas.

BFT clouds are used for building robust systems in voluntary-resource cloud

environments. In [115], Jia et al. focus on the principle of fault correction by replacing

the failed component by a functionally equivalent one. The authors proposed the fault

correction by providing a light-weight fault handling for migration long-running

application services into shared open cloud infrastructures. To minimize failure impact

Chapter2 Related Works

24

on services and application executions, they presented a diagnosis architecture and a

diagnosis method based on the service dependence graph (SDG) model and the service

execution log for handling service faults. Therefore, by analyzing the dependence

relations of activities in SDG model, the diagnosis method identifies the incorrect

activities and explains the root causes for the web service composition faults, based on

the differences between successful and failed executions of composite service. Choi et

al. in [116], proposed a fault tolerance and a QoS (Quality of Service) scheduling using

CAN (Content Adressable Network) in mobile social cloud computing by which,

members of a social network share cloud service or data with other members without

further authentication by using their mobile device. Fault tolerance and QoS scheduling

consists of four sub-scheduling algorithms: malicious user filtering, cloud service

delivery, QoS, provisioning replication and load balancing. Under the proposed

scheduling, a mobile device is used as a resource for providing cloud services, faults

caused from user mobility or other reasons are tolerated and user requirements for QoS

are considered. By using fault tolerance and QoS scheduling, faults arising from mobile

device are tolerated such as: network disconnection, battery drain. In [117], Jing et al.

proposed matrix multiplication as a cloud selection strategy and technique to improve

fault tolerance and reliability and prevent faulty and malicious clouds in cloud

computing environment. Sun et al. in [118] presented a dynamic adaptive fault tolerance

strategy DAFT. It is based on the idea of combining two fault tolerance models: a

dynamic adaptive checkpointing fault tolerance model and a dynamic adaptive

replication fault tolerance model in order to maximize the serviceability. In [119], Yi et

al. proposed a fault tolerance job scheduling strategy for grid computing. The

scheduling strategy includes JRT (Job Retry), JMG(Job Migration without

Checkpointing) and JCP(Job Migration with Checkpointing). The authors concluded

that JRT strategy has the most optimal system performance improvement for small jobs

and JCP strategy leads to the lowest performance improvement. An adaptive fault

tolerance of real-time applications (AFTRC) running on virtual machines in cloud

environment is proposed by Malik and Huet in [120]. The AFTRC scheme tolerates the

faults on the basis of reliability of each computing node. It is based on such modules

like: Acceptance Test (AT), Time Checker (TC), Reliability assessor (RA), and

Decision Mechanism (DM). Unfortunately, the acceptance test of the virtual machines

Chapter2 Related Works

25

is not discussed. In [121], Wu et al. puts forward that resource consumption is also an

important evaluation metric for any fault tolerant approach. The corresponding

evaluation models based on mean execution time and resource consumption are

constructed to evaluate any fault tolerant approach. In [121], an approach that aims to

handling quite a complete set of failures arising in grid environment by integrating basic

fault tolerant approaches is proposed. It is based on the four basic approaches: retry,

alternate resource, checkpoint/ restart, and replication and it can dynamically and

automatically decide which one is used by analyzing the current state of the running

task. An evaluation model for mean execution time is constructed and used to evaluate

fault tolerant approaches. A membership management solution over social graphs in the

presence of byzantine nodes is proposed by Lim et al. in [122]. A novel software

rejuvenation based fault tolerance scheme is proposed by Liu et al. in [135]. This

scheme comes from two inherently related aspects. First, adaptive failure detection is

proposed to predict which service components deserve foremost to be rejuvenated.

Second, a component rejuvenation approach based on checkpoints with trace replay is

proposed to guarantee the continuous running of cloud application systems. Gang et

al. in [136] proposed a framework to provide load balancing and fault prevention in web

servers in proactive manner to ensure scalability, reliability and availability. This

framework is based on autonomic mirroring and load balancing of data in database

servers using MySQL and master-master replication. Garraghan et al in [137]

introduced a byzantine fault tolerance framework that leverages federated cloud

infrastructure. An implementation of the proposed framework is discussed and detailed

experiments are provided. Alannsary et al in [138], proposed a reliability analysis

model that enables SaaS providers to measure, analyze and predict its reliability.

Reliability prediction is provided by analyzing failures in conjunction with the

workload. Mohammed et al. in [140] propose an infrastructure for IaaS cloud platforms

by optimizing the success rate of virtual computing node or virtual machines. The main

contribution is to develop an optimized fault tolerance approach where a model is

designed to tolerate faults based on the reliability of each compute node and can be

replaced if the performance is not optimal. Reddy et al. in [141], proposed an

FT2R2Cloud as a fault tolerant solution using time-out and retransmission of requests

for cloud applications. FT2R2Cloud measures the reliability of the software components

Chapter2 Related Works

26

in terms of the number of responses and the throughput. The authors proposed an

algorithm to rank software components based on their reliability calculated using a

number of service outages and service invocation. Zheng et al. in [142], identified

major problems when developing fault tolerance strategies and introduced the design of

static and dynamic fault tolerance strategies. The authors identify significant

components of complex service-oriented systems, and investigate algorithms for

optimal fault tolerance strategy selection. An heuristic algorithm is proposed to

efficiently solve the problem of selection of a fault tolerance strategy. Chen et al. in

[143] presented a lightweight software fault tolerance system called SHelp, which can

effectively recover programs from different types of software faults. As final work,

Moghtadaeipour and Tavoli in [144] proposed a new approach to improve load

balancing and fault tolerance using work-load distribution and virtual priority. We can

see clearly that the current researches focus on improving the fault tolerance in cloud

environments by improving the existent strategies or by collaboration of such strategies

to develop one more efficient. Thus, the proposed works are restricted on hardware

faults tolerance without dealing with software fault tolerance.

2.4 Fault tolerance in component-based systems

In this section, some researches dealing with fault tolerance in component-based

systems are presented. The component-based analysis of fault tolerance was first studied

by Arora and Kulkarni in [63], [65]. They proved that a fault tolerant program is a

decomposition of a fault intolerant program and a set of fault tolerance components. A

fault tolerant program satisfies safety and liveness properties. In [65], the authors

proved that fault tolerance components are: Detectors and Correctors, where Detectors

ensure safety property and Correctors ensure liveness property. The work in [65] was

extended to the context of real-time systems in [66]. In [63], [64], [65], [66], a program

is presented as a set of guarded commands in the shared memory model. Moreover, the

Detector (resp. Corrector) component which ensures safety (resp. liveness) property is

defined based on state predicate. State predicate means that properties or requirements

verification is done on the state level. Unlike those works, in this thesis, an actual

system is designed incrementally by composing smaller components. Each component

has its own state space, behavior, interface, and each component is responsible for

delivering a certain set of tasks. Roohitavaf and Kulkarni in [67] presented algorithms

Chapter2 Related Works

27

for adding stabilization and fault tolerance in the presence of unchangeable environment

actions. Bensalem et al. presented in [68] an heuristic method for compositional

deadlock and verification of Component-based systems using the Invariant. This work

focuses on just Deadlock detection. In [45], Bonakdarpour et al. introduced a theory of

fault recovery for component-based models. A non-masking model was constructed

from BIP models in order to ensure liveness property using Corrector component. But,

the authors in [45] have not dealt with fault detection concerns. Wu et al. in [76]

present a model-driven approach to describe specification and semi-automatic

configuration of fault tolerance solutions for component-based systems on the software

architecture level. In this work, the fault tolerance mechanisms are implemented by the

system in the form of a specific kind of component named tolerance facilities. In [77],

Tambe et al. present a model driven technique used to specify the special fault tolerance

requirement for component-based systems. In [78], Jung and Kazanzides presented a

run-time software environment for safety research on component-based medical robot

systems. In both [77], [78], the mechanisms and services are designed to be middleware.

Liu and Joseph in [79], [80] introduced a uniform framework for specifying, refining

and transforming programs that provides fault tolerance and schedulability using the

temporal logic of actions. In [81], a formal framework for the design of fault detection

and identification components has been proposed where the framework is based on

formal semantics provided by temporal epistemic logic. Temporal logic is a logical

language for formal specification of requirements. Generally, temporal logics are used

with model checkers for model verification (e.g., UPPAAL, KRONOS). Finally, Alko

and Mattila in [64] have evaluated effectiveness of service oriented architecture

approach to fault tolerance in mission critical real-time systems without dealing with

component-based approach.

2.5 Conclusion

In this chapter, some current researches are highlighted. In the first part, some

researches of fault detection in cloud systems are cited. They can be categorized under

two main categories: fault detection using systems monitoring and fault tolerance using

heartbeat/pinging strategies. In the second part, some current fault tolerance

researches in cloud computing are mentioned. We can observe that the researches aimed

to enhance the existent fault tolerance techniques by collaboration between more than

Chapter2 Related Works

28

one technique either by reinforcing the existing techniques by novel opportunities.

Finally some research on fault tolerance and fault recovery in component-based systems

are cited.

29

Chapter Three

Component-based Cloud computing

Summary

3.1 Introductionééééééééééééééééééééé.éééé 29

3.2 BIP framework for component-based designééééééééé..ééé 30

 3.2.1 Atomic componentéééééééééééééé.éééééé 30

 3.2.2 Composite componentééééééééééééééééééé 32

 3.2.3 Connectorséééééééééééééééééé..ééééé 33

 3.2.3.1 Rendezvous connectorééééééééééé..éééééé 33

 3.2.3.2 Broadcast connectorééééééééééé.ééééééé 34

3.3 Recapitulationééééééééééééééééééééé..ééé 34

3.4 Conclusionééééééééééééééééééééééééé 35

3.1 Introduction

A cloud application is composed of a number of cloud modules [10]. Each cloud

module has a virtual machine used to realize its function and each function is composed

of a set of tasks. It is evident that the cloud computing architecture, its layers and its

composition of components and services need to be designed as web service

components [11] based on well proven component-based software engineering.

component-based approach is a popular divide-and-conquer technique for designing and

implementing large systems as well as for reasoning about their correctness. It stipule

that a system is designed incrementally by composing smaller components, each

responsible for delivering a certain set of tasks to separate different concerns. Thus,

component-based design and analysis of fault tolerant systems is highly desirable in

order to achieve systematic modularization of such system [45]. Here, a component

represents an entity that provides a specific functionality. The components are expected

to be scalable, fault tolerant, manageable, and autonomous [13]. Several tools are

available for modeling heterogeneous embedded systems founded on component-based

models. One of them is BIP (Behavior, Interaction, Priority) tool [14], [15], [16]. In this

Chapter 3 Component-based Cloud computing

30

thesis, we will use BIP as a Component-based framework. It has been used successfully

in the field of robotics [17], [18], [19]. In BIP framework, a process is represented as a

Transition Labeled System (TLS), where the principal components are: the atomic

component and the composite component.

3.2 BIP framework for component-based design

BIP framework [7] is used for modeling heterogeneous real-time components

which integrates results developed at Verimag Laboratory. It supports a component

construction methodology based on the idea that components are obtained as

superposition of three layers: the first one is the behavior layer which presents the

internal behavior by a set of transitions and states. The intermediate layer includes a set

of connectors describing the interactions between transitions of the behavior. The upper

layer is a set of priority rules describing scheduling policies for interactions. Layering

implies a clear separation between behavior and structure (i.e., connectors and priority

rules). The principle components in BIP framework are: atomic component and

composite component.

3.2.1 Atomic component

We define an atomic component as a Labeled Transition System (LTS) with a

set of ports labeling individual transitions. These ports are used for communication

between different components.

Definition1. An atomic component ὄ is a labeled transition system represented by a

tuple ὗȟὖȟ­ȟὢȟ ή where:

ὗ: is a set of states ήȟήȟȣȟ ή ;

ὖ: is a set of communication ports ὴȟ ὴȟȣȟ ὴ Ƞ we can distinguish two types of

ports: Complete or Incomplete.

Complete Port (Black Triangle): An interaction that contains a complete port is a

complete interaction in the sense that complete port does not need to be synchronized

with other ports to accomplish an interaction.

Incomplete Port (Black Circle): An incomplete port needs to be synchronized with

other ports in order to achieve an interaction. Therefore, an interaction that contains an

incomplete port is incomplete.

­ Ḋ ὗ ³ ὖ ³ Ὃ ³ Ὂ ³ ὗ is a set of transitions, each transition is a tuple of the form ήȟ

ὴȟὫȟὪȟ ή where:

Chapter 3 Component-based Cloud computing

31

ή: is the state which is the transition source;

ὴ: is the transition label and is the port associated to the transition;

Ὣ: is the transition guard which is a boolean condition on the set of variables ὢ; the

transition can be executed iff its guard Ὣ is true and some interactions including the port

ὴ are offered;

Ὢ: is an internal action on the set of variables ὢ, the function f is executed when the

transition ὸ is enabled and we write ὸὪ. In an atomic component, variables are treated

and modified by component internal functions;

ή: is the state which is the transition target;

ὢ: is a set of variables ὼ which are manipulated by the internal functions, Ὢ;

ή: is the initial state of the atomic component.

If we have a variable ὼ which has an initial value ὺ and we write : ὼὺ ὸὪᴼ

ὼὺǋȟ by which we mean that: there exists a transition ὸ which contains an internal

function f such that after the achievement of the transition ὸ, the function f will modify

the variable ὼ from the value ὺ to the new value ὺǋ.

Figure 3.1. A BIP atomic component (Producer).

The Figure 3.1. shows an atomic component (Producer), where:

 ὗ ὖȟὅ

 ὖ ὖὶέὨόὧὩȟὅέάάόὲὭὧὥὸὩ;

 ­ ὖȟὖὶέὨόὧὩȟὼ υȟὼȡ ὼ ρȟὅ ȟ ὅȟὅέάάόὲὭὧὥὸὩȟ

ὝὶόὩȟὖ Ƞ

 ὢ ὼ,

Chapter 3 Component-based Cloud computing

32

 ή=P

An execution cycle of an atomic component ὄ ὗȟὖȟ­ȟὢȟή is ὅώ = ὸὸȣὸ

such that ὸ is the first transition in B and ὸ is the last one. An execution cycle of an

atomic component is the execution of all of its inner transitions for one time.

The behavior of a system as defined in [134] is what the system does to implement its

function and is described by a sequence of states that can be: Computation,

Communication or stored information.

 A Behavior of an atomic component ὄ ὗȟὖȟ­ȟὢȟ ή is ὄὩὬὄ ὪὪȣὪ

and for all i:

- ὪᶰὊ(i.e.,F is the set of internal functions in B) and

- There exists a transition sequence ὸὸȣὸ and a state sequence ήήȣ such that:

q0 ὸὪ Oq1 ὸὪ qO2 éé... ὸ Ὢ qOn

The atomic component behavior has a direct effect on the set of variables X. If the initial

value of the set X is ὺ, it will be ὺ after the achievement of the atomic component

behavior: ὢὺ ὄὩὬὄ ᴼὢὺ ὢὺɂὪᴼὢὺ Ὢᴼὢὺ Ὢᴼ

Ễὢὺ . ὢ is the set of variables andὺȟὺȟȢȢὺare the values of the set X.

Hence, the behavior of ὄ in one execution cycle is:

ὄὩὬ ὄ = q0 ὸὪ Oq1 ὸὪ qO2 éé...ᴼὸ Ὢ qO0 .

This means that ὄὩὬ ὄ produces final results after achievement of one execution of

the entire internal functions of the atomic component ὄ.

3.2.2 Composite component

The composite component is constructed from a set of interacted atomic

components. It represents the cloud computing system which is composed of interacted

cloud nodes.

Definition 2. A composite component ὄ gὄρȣὄὲ is defined by a composition

operator parameterized by a set of interactions. It is a transition systemὗȟgȟ­ȟὢȟ

ή , where different mathematical notations carry the meanings as shown in Table 3.1.

Chapter 3 Component-based Cloud computing

33

Table 3.1.Some mathematical notations and their meanings.

ὗ Ã ὗὭ

The set of global sates is obtained by the cartesian product of

all the atomic componentsô states in the composite

component.

ή ή ȟȢȢȢή Ƞ The set of all the atomic componentsô initial states.

ὢ ὢ Ƞ The union of the atomic componentsô variables sets.

­ : is the least set of

transitions satisfying the rule

[45]:

ὥ ὴ ᶰȢȢ Ὥᶅɴ Ὅȡήᴼήô ὭᶅÎρȢȢάȡ ή ήôήȣή

ᴼ ήôȣήô

- As mentioned in [45], a composite component ὄ

gὄȣὄ can execute an interactionὥÍg,iff for each port

piÍa, the corresponding atomic component ὄcan execute a

transition labeled with ὴ - the states of the components that

do not participate in the interaction stay unchanged.

g ᷾ ‍ The set of connectors which rely on the atomic components.

3.2.3 Connector

A connector ‍ ὴ ᶰȢȢ is a set of ports of the atomic components involved in

‍. It represents the network connection in the cloud system. We assume that a

connector contains at most one port from each atomic component. The Interaction of a

connector is any non-empty subset of this set. As defined in [45], for a given system

built from a set of ὲ atomic components ὄ ὗȟὖȟ­ȟὢȟ ή , we assume that

their respective sets of ports are pairwise disjoint, (i.e., for any two Ὥ̧Ὦ from {1..n}, we

have PiΚPj=)ɲ. We can therefore define the set ὖ ẕ ὖ of all ports in the system.

An interaction is a set aÌP of ports. When we write ὥ ὴ ᶰ , where IÌ{1..m}. An

interaction can be a rendezvous or a broadcast interaction.

3.2.3.1 Rendezvous Connector

Or strong synchronization enables an exchange of information between the

nodes. In this type of interaction, all the ports are synchronous (see Figure 3.2). The

initiative meaning of the synchronous is that it has to wait for other ports in order to

execute the interaction. The connector ‍ ὴ ȢȢȟὴËὄ ȢȢ defines only one

Chapter 3 Component-based Cloud computing

34

interaction: ὥ ὄὄὄ in which, all the atomic components must synchronize at the

same time in order to achieve the interaction ὥ.

Figure 3.2.Rendezvous interaction.

3.2.3.2 Broadcast Connector

Or weak synchronization is used to update information stored at the nodes. It

includes one trigger (i.e., initiator) port in ὄ and two synchronous ports. The intuitive

meaning of trigger is that it can initiate the interaction, even if all other ports are not

enabled.

Figure 3.3. Broadcast interaction.

The connector (in Figure3.3) ‍ ὴ ȢȢȟὴËὄ ȢȢ ȟὄ Ὥί ὸὬὩ ὄὶέὥὨὧὥὸ ὭὲὭὸὭὥὸέὶ

describes the set of all interactions that contains at least ὄ, which are:ὥ ὄ , ὥ

ὄὄ , ὥ ὄὄ ,ὥ ὄὄὄ . We can see that all the possible interactions

contain the initiator ὄand the maximum one contains all the atomic components: ὄ,ὄ

and ὄ.

3.3 Recapitulations

In the next chapters, the cloud system will be considered as a complex system

which is composed of a set of atomic components (i.e., nodes) supported by network

connections. The atomic component is the simpler component; it reflects the cloud

module and the atomic component transitions reflect the cloud module tasks, where the

composite component represents the cloud computing system that is composed of a set

Chapter 3 Component-based Cloud computing

35

of interacted cloud modules. The set of component-based concepts used in this thesis

and their equivalents in cloud computing system are presented in the Table 3.2.

Table 3.2. Component-based concepts and their equivalents in Cloud system.

Cloud system concepts Component-based approach concepts

Cloud module / node Atomic component

Module task Atomic transition

Cloud system Composite component

Network connections Connectors

Primary block Primary behavior

Alternate block Alternate behavior

3.4 Conclusion

In this chapter, the component-based approach for cloud systems is introduced.

Then, the main concepts of BIP as a framework for component-based design such as:

the atomic component, the composite component and connectors are described. Finally,

a recapitulation of the used terms in this thesis is given to facilitate the comprehension

of the rest of chapters.

36

Chapter Four

Fault Detection in Component-based Cloud

computing

Summary

 4.1 Introductionééééééééééééééééééééééééé 36

 4.2 Acceptance test for fault detectionéééééééé................................. 37

 4.2.1 Fault detection in atomic componentééééééééééééé. 37

 4.2.2 Fault detection in composite component ééééééééééé... 39

 4.2.2.1 Rendezvous connectionéééééééééééééééé... 40

 4.2.2.2 Broadcast connectionééééééééééééééééé.. 40

4.3 Construction of Fail-Silent modelséééééééééééééééé. 41

 4.3.1 Construction of Fail-Silent atomic componentéééééééééé 41

 4.3.2 Construction of Fail-Silent composite componentéééééééé... 41

4.4 A case studyééééééééééééééééééééééééé 45

 4.4.1 Fire Control systeméééééééééééééééééééé.. 45

 4.4.2 Construction of the Fail-Silent free fire control systeméééééé... 47

 4.4.3 Time and space complexityééééééééééééééééé.. 51

 4.4.4 Safety verification using model-checkeréééééééééééé.. 53

 4.4.4.1 Safety verification of fault-free modelééééééééééé... 55

 4.4.4.2 Safety verification of failed modelééééééééééééé. 56

4.5 Comparative Analysisééééééééééééééééééééé. 57

4.6 Conclusionééééééééééééééééééééééééé... 62

4.1 Introduction

Fault Detection is considered as one of the main challenges in large-scale

dynamic environments and thus, for maintaining the reliability requirements of cloud

systems. Most of the popular existing techniques for fault detection applied on the cloud

computing environment in general, are based on system-monitoring despite the extreme

Chapter4 Fault Detection in Component-based Cloud Computing

37

difficulty of keeping track of all machines with their huge number in cloud systems. In

this chapter, we propose a fault detection framework for the component-based cloud

computing by using Recovery Blocksô acceptance test. This framework aims to

construct Fail-Silent cloud modules which have the ability of self-fault detection. In

this, the detection process of transient hardware faults, software faults, and response-

time failures is performed locally on each computing machine in the cloud system. We

assume that there is no permanent crash in the cloud nodes and the acceptance test is

reliable and cannot be altered. Each cloud node has one predefined function and the

software developer can set the acceptance test of each cloud node on the system.

4.2 Acceptance test for fault detection

Critical systems are usually related to human life, thus ensuring safety property

is very important in order to avoid catastrophic consequences caused by failures. Final

results of a critical system must be validated in order to judge their correctness. This

validation can be offered by the acceptance test. An acceptance test ὃὝ of a component

B is a boolean expression on the set of variables, X. It is used to validate final resultsô

correctness. The acceptance test ensures that the final results are acceptable but not

always they may be the desired results (i.e., some results may not be desired).Thus, it

ensures the continuity of service offered in spite of degradation in the system quality,

just to be safe from any disaster.

4.2.1 Fault detection in atomic component

An atomic component ὄ ὗȟὖȟ­ȟὢȟ ή produces results after each

execution cycle. The results could be correct or not correct. Without a mechanism of

fault detection, we cannot judge the correctness of final results. Therefore, an atomic

component must have an acceptance test which is a boolean expression on the set of

variables ὢ of the atomic component.

Definition 1. An acceptance test ὃὝ ὢ of the atomic component ὄ ὗȟὖȟ­ȟὢȟ

ή is a boolean expression on the set of variables, ὢ. The acceptance test validates the

correctness of ὄôs final results and ensures that they do not lead to disastrous

consequence even if they are not the expected results.

Chapter4 Fault Detection in Component-based Cloud Computing

38

After one execution cycle, ὢὺ ὄὩὬ ὄ ᴼὢὺ , the set of variables ὢ will be

modified by ὄὩὬ ὄ from the value ὺ to the new value ὺ. Final results ὺwill be

checked by ὃὝ ὢ and three cases are possible here. Final results may be:

- The Correct results c, which satisfy the acceptance test and which are considered as

the desired results.

- The Acceptable results a, which satisfy the acceptance test but they are not the desired

results and they do not lead to disaster for the system.

- The Faulty results Ὢ, that do not satisfy the acceptance test. These kinds of results can

incur huge damages to the system.

Basing on these latest cases, the AT judges the behavior of the atomic component ὄ and

decides its correctness.Now, again two cases are possible for ὄ:

- If the final results validate the acceptance test (i.e.,ὃὝ ὺᴂ = True) then, B has a

correct or acceptable behavior (Fault-Free Behavior)and it earns execution.

- If the final results do not validate the acceptance test (i.e., ὃὝ ὺᴂ = False) then, B

has a failed behavior and it must be stopped immediately to go through recovery and

fault correction.

We mean by these two cases that: if ὄὩὬ ὄ Ṻ !4 Ý B is correct else B is failed.

Figure 4.1. Fault detection in atomic component using the acceptance test.

Figure 4.1 shows the fault detection using the acceptance test. The atomic component

ὄ operates and validates its final results after each execution cycle. If ὄôs final results

satisfy the AT, ὄ has a correct or acceptable behavior (i.e., in left state). ὄ stands at that

state till detection of failure by ὃὝ ὢ. At that moment, the atomic component ὄ will

be considered as failed and ὄ will pass to an unstable state (i.e., the right state). At that

state, the component will be blocked till recovery. An atomic component that has the

ability of self-fault detection using an acceptance test is Fail-Silent atomic component

(FSB). A Fail-Silent atomic component satisfies the regular expression:ὧȾὥ ᶻὪ. The-‫

atomic component has a correct behavior ὧ or an acceptable behavior ὥ. At just

Chapter4 Fault Detection in Component-based Cloud Computing

39

detection of a failure by the AT, the atomic component will be considered as failed (f)

and it will be blocked immediately attending the correction. The last correct state of the

atomic component ὄ will be saved in the history state Ὄίὄ . A Fail-Silent atomic

component operates without failures and returns a correct or an accepted result;

otherwise, it will be blocked immediately.

Proposition: A history state Hs is used in the atomic component in order to save the last

correct variable values of the atomic component and the last received messages from the

other atomic components. Hs=<ὢὺȟ άίὫ ȟ άίὫȟȣ >. The history state is

indispensable for recovery phase.

Definition 2. A Fail-Silent atomic component, ὊὛ ὗȟὖȟ­ȟὢȟήȟὌίȟὃὝ is a

component which can validate its final results and judge its correctness by the

acceptance test !4 Ȣ 4ÈÅ regular expression of a Fail-Silent atomic component is-‫

ὧȾὥᶻὪ.

Algorithm of Fail -Silent atomic component:

Fail-SilentB: ExecuteὄὩὬ ὄ

 If (ὃὝὢ then

 Update Ὄίὄ

 Go to Fail-SilentB

 Else

 Deadlock

EndIf

End Fail-SilentB

Theorem1: A Fail-Silent atomic component, ὊὛ ὗȟὖȟ­ȟὢȟήȟὌίȟὃὝ can

insure safety property using the cceptance Test ὃὝ. The AT can validate final results

and decide their correctness. In the case of fault detection, the atomic component ὊὛ

will be passed to a Deadlock state till failure correction.

4.2.2 Fault detection in composite component

A composite component ὄ gὄȣὄ is a set of atomic components ὄ ȢȢ

glued by the set of connectors g ‍ ȢȢ . As seen in chapter 3 - section 3.2.3, a

connector in a composite component can be rendezvous or broadcast connector.

Chapter4 Fault Detection in Component-based Cloud Computing

40

4.2.2.1 Rendezvous connection

If we have the Rendezvous connector ‍ such that ‍ ὴ ȢȢȟὴËὄ , the only

possible interaction is ὥ ὄ ὄ ὄȣὄ which contains all the atomic components

involved in the connector ‍. Therefore, the failure of one atomic component will

directly infect the others atomic components in the same rendezvous interaction. This

means that ᶅ ὄ ᶰ‍Ƞ ὭὪ ὄ is failed, then ᶅὄ ὥὲὨὄᶰ‍, ὄ will fail too. Thus,

to construct a Fail-Silent rendezvous connector, all its inner atomic components must be

Fail-Silent as well. Therefore, ὊὛ ὊὛȟὊὛ ȟȣȟὊὛ .

Lemma1. A rendezvous connector, ‍ ὴ ȢȢȟὴËὄ which involves a set of Fail-

Silent atomic component is Fail-Silent rendezvous connector: ὊὛ

ὴ ȢȢȟὴË ὊὛ ȢȢ .

4.2.2.2 Broadcast connection

If we have the broadcast connector :

‍ ὴ ȢȢȟὴËὄ ὥὲὨ ὄ Ὥί ὄὶέὥὨὧὥίὸ ὭὲὭὸὭὥὸέὶ.

 The possible set of interactions in this case are those containing at least one instance of

ὄ . The minimum interaction is ὥ ὄ which contains only the broadcast initiator

and the maximum interaction is ὥ ὄὄὄȣὄ which contains all the atomic

components involved in the connector ‍. We can see that if the atomic component ὄ

fails and enters in a deadlock state, the others atomic component involved in the same

broadcast connector will be blocked too. But, if ὄ έὶ ὄ fails and blocked, it does not

affect the broadcast initiator ὄ . Thus, to construct a Fail-Silent connector ‎, at least

the broadcast initiator ὄ must be Fail-Silent. Therefore, ὊὛ

ὊὛȟὄςȟȣȟὄ .

Lemma2.A broadcast connector ‍ ὴ ȢȢȟὴËὄ ὥὲὨ ὄ Ὥί ὄὶέὥὨὧὥίὸ ὭὲὭὸὭὥὸέὶ

which involve at least a Fail-Silent broadcast initiator is a Fail-Silent broadcast

connector: ὊὛ ὊὛȟὄςȟȣȟὄ ..

Lemma 3. A composite component which contains Fail-Silent connectors (rendezvous

and/or broadcast) is Fail-Silent composite component. The ‫ ὶὩὫόὰὥὶ expression of

a Fail-Silent composite component is: ὅ Ⱦ ὃȾ ὊᶻὊ.

Theorem 2. A composite component which is composed of a set of Fail-Silent atomic

component is Fail-Silent composite component: ὊὛ ‎ὊὛȟ ὊὛȟȣȟ ὊὛ .

Chapter4 Fault Detection in Component-based Cloud Computing

41

4.3 Construction of Fail-Silent models

4.3.1 Construction of Fail-Silent atomic Component

Now, let us see how we could construct a Fail-Silent atomic component from an

initial model that is not Fail-Silent. Let ὄ ὗȟὖȟ­ȟὢȟή be an atomic

component. In order to construct a Fail-Silent atomic component, we must add the

acceptance test. This test validates ὄôs final results. The Fail-Silent ὄ is ὊὛ

ὗȟὖȟ­ȟὢȟὍȟὌίὄ ȟὃὝ such that:

ὗ ὗ᷾ὗȟ ὗ ;ὗand ὗ are two new states. ὗ is the initial state.

ὖ ὖ᷾Ὓὸὥὶὸ ȟ ὝὩίὸ , Ὓὸὥὶὸ ὥὲὨ ὝὩίὸ are two new ports where, Ὓὸὥὶὸ is

the first port in the Fail-Silent atomic component and ὝὩίὸ is the last one.

The first transition Ὓὸὥὶὸ leaves the initial state ὗ to the state ή, where, the

transition ὝὩίὸ achieves from the state ὗ to the state ὗ.

­ ­ ẕ ὗȟὛὸὥὶὸȟὟὴὨὥὸὩ Ὄίὄ ȟ ή ȟ ὗȟ ὝὩίὸȟὃὝ ȟὗ .

The set of transitions will be enriched by two transitions associated with the

ports Ὓὸὥὶὸ ὥὲὨ ὝὩίὸ. The transition ὗȟὛὸὥὶὸȟὟὴὨὥὸὩ Ὄίὄ ȟή is

the first transition which leaves the initial state ὗ to the state ή,its internal function is

ὟὴὨὥὸὩ Ὄί which updates the history state Ὄίὄ by the last correct variable values

and the last received messages. The second new transition is

ὗȟ ὝὩίὸȟὃὝ ȟ ὗ Ȣ It is the test transition in the component ὊὛï it aims to test

and validate the final results of X by the guard ὃὝ which is the expression of the

acceptance test. The transition ὝὩίὸ leaves from the state ὗ to the initial state ὗ.

This transition is triggered iff the acceptance test is satisfied (ὃὝὢ ὝὶόὩ); else, the

Fail-Silent atomic component will be blocked on the state ὗ .

4.3.2 Construction of Fail-Silent composite component

As seen in the section 4.2.2, in order to construct a Fail-Silent composite

component for ὄ=‎ὄȟὄȟȣȟὄ which contains a set of atomic components glued by

a set of connectors ‎. All its inner connectors, rendezvous and/or broadcast must be

Fail-Silent and so, all its inner atomic components must be Fail-Silent as well.

Therefore, if we have a composite component, ὄ=‎ὄȟὄȟȣȟὄ , the Fail-Silent

composite component is ὊὛ ‎ὊὛȟὊὛȟȣȟὊὛ Ȣ

In the next section, we will apply our approach on the Producer-FIFO-Consumer model.

Chapter4 Fault Detection in Component-based Cloud Computing

42

The Figure 4.2 presents a Producer-FIFO-Consumer (PFC) model. This model is

composed of three atomic components: Producer, FIFO, and Consumer. ὖὊὅ

‎ὖὶέὨόὧὩὶȟὊὍὊὕȟὅέὲίόάὩὶ. Here, ‎ is the set of connectors:‎ ‍ȟ‍ . ‍

and ‍ are rendezvous connectors.

‍ ὥ ὖὶέὨόὧὩὶȢὅέάάόὲὭὧὥὸὩȠ ὊὍὊὕȢὡὶὭὸὩ.

‍ ὥ ὊὍὊὕȢὙὩὥὨȠ ὅέὲίόάὩὶȢὅέάάόὲὭὧὥὸὩ.

Figure 4.2. PFC composite component model.

In order to construct a Fail-Silent PFC model, we must first construct its inner Fail-

Silent atomic component. Therefore, we should construct the Fail-Silent Producer, the

Fail-Silent FIFO and Fail-Silent Consumer.

Construction of Fail-Silent producer:

Figure 4.3.Fail-Silent producer.

Figure 4.3 shows the Fail-Silent, Producer. It is defined as:

ὊὛ ὗȟὖᴂȟ­ᴂȟὢȟὍȟ ὌίȟὃὝ where:ὗᴂ ὗ ẕ ὗȟὗ ὗȟὖȟ

ὅȟὗ

Chapter4 Fault Detection in Component-based Cloud Computing

43

ὖ ὖẕ Ὓὸὥὶὸ ȟὝὩίὸ

 Ὓὸὥὶὸ ȟὖὶέὨόὧὩȟὅέάάόὲὭὧὥὸὩȟὝὩίὸ

­ ­ẕ ὗ ȟὛὸὥὶὸ ȟὝὶόὩȟὟὴὨὥὸὩὌίȟὖ ȟ

ὗȟὝὩίὸ ȟὃὝ ȟὗ

 ὗȟὛὸὥὶὸ ȟὝὶόὩȟὟὴὨὥὸὩὌίȟὖ ȟ ὖȟὖὶέὨόὧὩȟὼ υȟὼ ὼ ρȟὅ

ȟ ὅȟὅέάάόὲὭὧὥὸὩȟὝὶόὩȟὗ ȟ

ὗȟὝὩίὸ ȟὃὝ ȟὗ

At fault free execution, ὊὛ performs one execution cycle and before

updating the history state Ὄί with the new values of ὢ, ὊὛ first validates the

acceptance test on the transition labeled ὝὩίὸ . If the guard ὃὝ is true,

the results are acceptable and the next execution cycle begins with the

transition Ὓὸὥὶὸ . On which, the internal function ὟὴὨὥὸὩὌί will ensure

saving of the last correct variable values on the history state (Hs). If the component

ὊὛ reaches the state ὗ and the variable values do not satisfy the guard

ὃὝ , at that moment, the Fail-Silent atomic component ὃὝ will be

blocked on the state ὗ attending the recovery phase. Finally, we can see that we have

constructed a Fail-Silent atomic component ὊὛ which can insure the safety

property using the acceptance test and which respect the ‫ ὶὩὫόὰὥὶ expressionὧȾ

ὥᶻὪ. In the same manner, we will construct the Fail-Silent FIFO (see Figure 4.4) and

the Fail-Silent Consumer (see Figure 4.5).

Figure 4.4.Fail-Silent FIFO

Chapter4 Fault Detection in Component-based Cloud Computing

44

Figure 4.5. Fail-Silent Consumer

After constructing the Fail-Silent atomic components, we will have the Fail-Silent

composite component PFC (see Figure 4.5).

Figure 4.6.Fail-Silent composite component PFC.

The Fail-Silent composite component PFC in the Figure 4.6 is composed of a set of the

Fail-Silent atomic components. If we suppose that a failure occurs in the Fail-Silent

Producer, then it will be blocked on the sate ὗ because its results do not satisfy the

ὝὩίὸ guard. At the same time, both FIFO and Consumer are in correct

operation. But, in a future moment, the transition ñWriteò of FIFO component will need

to synchronize with the component, Producer. This latter is in deadlock state and

therefore, the components, FIFO and Consumer will be blocked too. We can see that the

failure of one component in the composite component PFC brings the deadlock of all

the components which are involved in direct or indirect interaction with the failed

component. By this way, we have not only stopped the failed component but also we

Chapter4 Fault Detection in Component-based Cloud Computing

45

have stopped the fault confinement in the composite component. After this fault

detection phase, recovery and fault tolerance must be set.

4.4 A CASE STUDY

4.4.1 Fire Control System

Let us explain our approach with a mobile cloud system. Let us consider a fire

control system which monitors the temperatures in the forest in order to prevent fires. In

our system, we have three main components: Sensor node, Cloud node1 and Cloud

node2. In this system, the mobile sensor frequently takes measures of the forest

temperatures and sends those data to the Cloud node1 (which receives the temperature

measures and calculates their average).The average temperature would be sent to the

Cloud node2 which produces a status report which would be transferred to the system

control (see Figure 4.7). We have used BIP model to design the fire control system as

shown in Figure 4.8.

Figure 4.7.Fire control system.

Figure 4.8.Fire Control system BIP model.

Chapter4 Fault Detection in Component-based Cloud Computing

46

The sensor node periodically takes temperature measures ὝᶰὝ ȟὝ such

that Ὕ and Ὕ are defined according to the area climate conditions and to the

sensor node capacities. The difference between two successive temperatures does not

exceed ‌ȡ ȿὝ Ὕ ȿ ‌Ȣ

The Cloud node1 receives the temperatures Ὕ from the sensor node in the system and

calculates the average Ὕof n different temperatures. Then, it sends the average ╣○ to the

Cloud node 2. The average temperature ╣○ must be between the highest received

temperature ╣▐ and the lowest one ╣■(i.e., ╣■ ╣○ ╣▐ .

The Cloud node 2 receives the average temperature Ὕ from the Cloud node1.

According to the set of conditions ╒ and the average temperature ╣○, the Cloud node2

produces a status report about the forest Ὑ ὪὝȟὅ. The values that must be defined

by the software developer are summarized in the Table 4.1.

Table 4.1. The values defined by the system developer.

Notation Meaning

Ὕ The highest temperature that can be detected

Ὕ The lowest temperature that can be detected

‌ ὥὰὪὥ The difference between two successive temperatures

N
Required number of temperatures for average

calculation

ίὩὲίέὶ Sensor Time-Out

ὔέὨὩρ Cloud node1 Time-Out

ὔέὨὩς Cloud node2 Time-Out

C
The predefined conditions for the Cloud node2

decision

Chapter4 Fault Detection in Component-based Cloud Computing

47

Figure 4.9. Fail-Silent Fire Control system

4.4.2 Construction of the Fail-Silent Fire Control System

In order to construct Fail-Silent system, we will use the acceptance test

approach. First, we have to construct the Fail-Silent components. In the next section, we

describe each component:

The Sensor node: its main function is measuring the temperature. Therefore, to ensure

that the component is correct, we have to validate its behavior using an acceptance test.

The system developer has previous knowledge about the sensor characteristics and the

area climate where the sensor is deployed. Therefore, according to this information, he

can define an adequate acceptance test. In our example, we have supposed that one of

the main characteristics of the sensor is that it can detect only temperatures between

Ὕ and Ὕ ὭȢὩȢȟ Ὕ Ὕ Ὕ Ȣ Besides, the difference between two

successive temperatures would not exceed ‌ (i.e., ȿὝ Ὕ ȿ ‌) which is a threshold

used to detect whether the sensor gives a random temperature reading. Furthermore, the

sensor has to send the temperature to the Cloud node1 before expiration of its Time-

Out. The sensor Time-Out is defined by the system developer. A Clock clk1 is used for

calculating the passage of time in the sensor. Finally, we can have the sensor node

acceptance test : ὃὝ Ὕ Ὕ Ὕ ǪǪȿὝ Ὕ ȿ ‌ ǪǪ ὧὰὯρ

ίὩὲίέὶ . To say that the sensor operates correctly, it must validate the logical

expression of the acceptance test. Therefore, ὃὝ will take place as ὝὩίὸ

transition guard (Figure 4.9). If the component validates the ὃὝ , then the

temperature will be saved in Ὕ on the next checkpoint and the Clock clk1 will be

initialized for the next execution cycle. Else, the sensor will be considered as failed and

Chapter4 Fault Detection in Component-based Cloud Computing

48

will be blocked on the state ὗ . The failed sensor can be replaced by an operational one

which can get temperature measure from the last correct temperature Ὕ .

The Cloud node 1: The main function of this component is to calculate the average of

received n temperatures. Therefore, the average temperature will be included between

the highest temperatures Ὕ and the lowest one ὝὭȢὩȢȟ Ὕ Ὕ Ὕ . Also, we have

to ensure that the Cloud node1 has the ability of correct average calculation. For that,

we can test the component by calculating: ὃὺὩὶὥὫὩὅὥὰὧόὰὥȟὦȟὧȟὨ Ὡ where ὥȟὦȟ

ὧȟὨ are predefined random values. Furthermore, the Cloud node1 have to calculate and

send the average without exceeding its Time-Out (i.e., defined by the system

developer). A Clock clk2 is used to calculate time. Therefore, the acceptance test for the

Cloud node1 is: ὃὝ Ὕ Ὕ Ὕ ǪǪὃὺὩὶὥὫὩὅὥὰὧόὰὥȟὦȟὧȟὨ

ὩǪǪὧὰὯς ὔέὨὩρ .The ὃὝ is the guard of the transition ὝὩίὸ

(Figure 4.9). If the node satisfies its acceptance test, Ὕ will be saved on the next

checkpoint and the Clock clk2 will be initialized. If the acceptance test is not satisfied,

then the component is failed and it will be blocked on the state ὗ .

The Cloud node 2:The main function of this component is to produce a forest report

state Ὑ according to the temperature average Ὕ received from the node1 and according

to predefined conditions ὅ:Ὑ ὪὝȟὅ. Therefore, we have to ensure that the

component is able to produce the correct report. For this aim, we can test the component

using the same function Ὢ but with different data to see whether the component

produces the predicted report or not. Furthermore, taking and sending of decision must

be before the expiration of the Cloud node2 Time-Out. A Clock clk3 is used to calculate

the time in the Cloud node2. Finally, the acceptance test is: ὃὝ ὪὝȟὅ

Ὑ ǪǪὧὰὯσ ὔέὨὩς . The acceptance test ὃὝ is the guard of the

transition ὝὩίὸ . If the ὃὝ is satisfied, a checkpoint will be taken at the

beginning of the next execution. Else, the Cloud node2 will be blocked on ὗ and the

last correct report can be restored from the checkpoint.

Table 4.2.Key notations and meanings.

Symbol Description

clk2 Cloud node1 Clock

ὅ Counter of received temperature

Ὓ Temperatures Sum

Chapter4 Fault Detection in Component-based Cloud Computing

49

T Received Temperature

Temp Table for saving the received temperatures

N
Number of temperatures needed for average

calculation

Ὕ Temperature Average

Ὕ Lowest received temperature

Ὕ Highest received temperature

Checkpoint() Procedure of Checkpoint

AverageCalcul() Procedure of average temperature calculation

TestNode1 Procedure of the acceptance test

Algorithm 1: Cloud node1

Input: temperatures T;

Output: temperature Average ╣○;

[1]Co = 0;

[2]S = 0;

[3]AverageCalcul():

[4]Receive(T, Sensor);

[5]Co = Co + 1;

[6]Temp [Co] = T;

[7]If Co < N Then

[8]GoToAverageCalcul();

[9]Else

[10]For i=0 to N - 1 do

[11]S=S+Temp[i];

[12]Temp[i] = 0;

[13]End for

[14] 4= S / N;

[15]Send (4, Node2); // Send of ͼ Ὕò to the Cloud node2

[16]Co = 0; // re - initialization of Co

[17]S = 0; // re - initialization of S

[18]Go to AverageCalcul()

[19]End If

[20]End AverageCalcul()

The Cloud node1 has a main function which consists of ñCalculating the average Ὕ

of ὔ temperatures received from the Sensor nodeò. In the Algorithm 1, in order to count

the number of received temperatures, a counter ὅέ is used (line 1). First, the node1

receives the temperature Ὕ from the Sensor node (line 4), the counter ὅέ is then

incremented (line 5) and the temperature Ὕ will be saved in the table ὝὩάὴ (line 6). The

Chapter4 Fault Detection in Component-based Cloud Computing

50

Cloud node1 enters in a loop till reception of ὔ temperaturesὭȢὩȢȟὅέ ὔ . At that

moment, the temperature average can be calculated (line 9) by first calculus of the sum

of ὔ temperature (lines [10-13]). After calculation of the average Ὕ(line 14), it will be

sent to the Cloud node2 ([15]). A re-initialization for the next execution cycle will be

done(line 16-17).The notations used in the algorithms and their meanings are presented

in Table 9for a quick look-up.

Algorithm 2: Fail - Silent Cloud node1

Input: Temperatures T;

Output: temperature Average ╣○;

[1]clk2 =0; // Clock Initialization

[2]Co = 0;

[3]S = 0;

[4]Checkpoint():

[5]Save (4);// save of the last correct 4

[6]clk2=0;// re - initializations for the next execution cycle

[7] Co=0;

[8] S=0;

[9]GoToAverageCalcul();

[10]End Checkpoint

[11]AverageCalcul():

[12]Receive(T, Sensor);

[13]Co = Co + 1;

[14]Temp [Co] = T;

[15]If Co < N Then

[16]GoToAverageCalcul();

[17]Else

[18] 4=Temp[1];

[19] 4 =Temp[1];

[20] For i=0 to N - 1 do

[21]S=S+Temp[i];

[22]If Temp[i]> 4then// Calculation of the highest temperature

[23] 4= Temp[i];

[24]End If

[25]If Temp[i]< 4 then//Calculation of the lowest temperature

[26] 4= Temp[i];

[27]End If

[28]Temp [i] = 0;

[29]End for

[30] 4= S / N;

[31]Send (4, Node2);

[32]GoTo TestNode1();

[33]End If

[34]End AverageCalcul()

[35]TestNode1():

[36] If [4 4 4 ǪǪὃὺὩὶὥὫὩὅὥὰὧόὰÁȟÂȟÃȟÄ Å ǪǪ ὧὰὯς ὔέὨὩρ]

then

[37] Go to Checkpoint();

[38] Else

Chapter4 Fault Detection in Component-based Cloud Computing

51

[39] Deadlock();//Deadlock in the case of non valida tion of the

Acceptance Test

[40] End If

[41] End TestNode1

In the Algorithm 2, The Fail-Silent Cloud node1 executes its main function of

calculating the average temperature but with consideration of fault detection and time

flow. In order to calculate time, a clock clk2 is used. It is initialized at the beginning of

each execution cycle to calculate time needed by the Cloud node1 to achieve its

function.

After the reception of ὔ temperatures by the Cloud node1, the highest temperature is

calculated and saved in ╣▐(lines[22-24]) and the lowest temperature ╣▐ also will be

calculated and saved (lines [25-27]). After calculating the average temperature ╣○ (line

30), it will be sent to the Cloud node2 (line 31). Before starting a next execution cycle,

the output (i.e., Ὕ)must first pass the acceptance test within the procedure

TestNode1(line 35). The main role of this procedure is to judge the correctness of the

Cloud node1 outputs. The expression of the acceptance test (line 36) is composed of

three parts; the first one is:Ὕ Ὕ Ὕ . This part of test is to ensure thatὝ is

comprised between the lowest temperature and the highest one. The second part of the

acceptance test is ὃὺὩὶὥὫὩὅὥὰὧόὰὥȟὦȟὧȟὨ Ὡ; it tests the calculus rigor of the

Cloud node1 by calculating a similar simplified operation such that the input (a, b, c, d)

and the output (e) are pre-known. The third part of the acceptance test isὧὰὯς

ὔέὨὩρ . It aims to test whether the outputs are produced after the Time-Out

expiration, which means that a response-time failure is occurred. In the case where the

acceptance test is passed, the next execution cycle of node1 will start by a checkpoint

(line 4) in order to save the last correct Ὕ (line 5) and to initialize variables and clock

(lines [6-8]). In the worst case, when the acceptance test is not validated (i.e., at least

one part of the Acceptance Test expression is not satisfied) the Cloud node1 will be

considered as failed and it will remain in a deadlock state (line 39).

4.4.3 Time and Space complexity

In order to analyze time and space complexity of the previous algorithms, Big

Omega asymptotic notation will be used. This notation allows calculating both time and

space complexity of an algorithm. We have calculated the running expressions of the

Chapter4 Fault Detection in Component-based Cloud Computing

52

precedent algorithms: Cloud node1algorithm and Fail-Silent Cloud node1algorithm. We

have:

Ὢ ὲ ρσὲ ς Ὣὲ Ὢέὶ ὥὰὰ ὲ π, and

Ὢ ὲ ρωὲ ρχ Ὣὲ Ὢέὶ ὥὰὰ ὲ π

Where: Ὣὲ σφὲ Ὢέὶ ὲ πȢ

We can say that:

The time and space complexity of the functions Ὢ ὲ and Ὢ ὲ are

calculated according to the n values. If we assume that n represents the time unit, then

the graph plot in Figure 4.10 represents the time complexity of the Cloud node1

program. In this case, we can see that the functions Ὢ ὲ and Ὢ ὲhave the

same time growth rate. That means that the incorporation of the acceptance test in the

Cloud node1 program does not produce any big overhead. If we assume that n

represents the space unit, then the Figure 4.10 is a space complexity graph of the

functions Ὢ ὲ and Ὢ ὲ which are similar in space growth rate. It means

that the Fail-Silent Cloud node1 does not need a big storage space compared to the

primary Cloud node1 program.

Chapter4 Fault Detection in Component-based Cloud Computing

53

Figure 4.10.Time and space complexity of Cloud node1. fNode1 (resp. fFSNode1)

represents the Cloud node 1 complexity before (resp. After) the acceptance test

integration.

We can deduce that the time and space complexity of the failure detection process using

the acceptance test does not lead to any unreasonable overhead or calculus complexities

in the Cloud node1 (Figure 4.10). Finally, our proposed framework allows integration of

the failure detection over the cloud nodes without large costs. Hence, this is a fair and

practical solution to the issue.

4.4.4 Safety verification using model-checker

As noted previously, the acceptance test strategy aims to ensure safety in cloud

systems in spite of failures. In order to prove the efficiency of our framework, uppaal

4.0.14 model-checker for safety verification is used. First, a simulation of the Fail-Silent

Fire Control model is done to ensure the practicability of the model (See Figure 4.11).

After that, a set of safety properties that must be insured by the Fail-Silent model are

specified.

Chapter4 Fault Detection in Component-based Cloud Computing

54

Figure 4.11. Simulation of Fail-Silent Fire Control System model

The safety properties must be satisfied by the Fail-Silent model in order to say that it is

Safe. Safety properties are summarized in the Table 4.3.

Table 4.3. Safety property of Fire Control System model.

Safety Properties Safety Request

1. The sensor node never

produce random temperature

values.

A[]not (sensor.Qi and (T-Tprev)>sensor.alfa)

(n.b.,alfa value must be defined).

A[] not (sensor.Qi and (T>sensor.Tmax or T<sensor.Tmin))

(n.b., sensor.Tmin, sensor.Tmax values must be defined)

2. The Cloud node1 never earns

execution if it does not produce

the correct temperature average.

A[] not (CloudNode1.Qi and CloudNode1.Test!=<value>)

(n.b., <value> must be defined)

3. The Cloud node1 never

reaches the procedure

AverageCalcul with

temperature sum different of 0.

A[] not(CloudNode1.E and CoudNode1.S!=0)

4. The Cloud node2 never earns

execution if it does not produce

the correct decision

A[] not (CloudNode2. Qi and CloudNode2.Test!=<value>)

(n.b., <value> must be defined)

5. The sensor node never earns

execution if it sends a
E[] not (sensor.Qi and sensor.clk1>sensor.TimeOut)

Chapter4 Fault Detection in Component-based Cloud Computing

55

temperature after the expiration

of its Time-Out.

6. The Cloud node1 never earns

execution if it sends

temperature average after

expiration of its Time-Out.

E[] not (ClouNode1.Qi and

CloudNode1.clk2>CloudNode1.TimeOut)

7. The Cloud node2 never earns

execution if it sends decision

after expiration of its Time-Out.

E[]not (CloudNode2.Qi and CoudNode2.clk3>CloudNode2.

TimeOut)

8. The entire system never earns

execution if it produces

decisions after the expiration of

its Time-Out.

(n.b.,The clock of the last

component can be considered as

the global clock of the system).

E[] not (CloudNode2.Qi and

CloudNode2.clk3><SystemTimeOut>)

4.4.4.1 Safety Verification of fault-free model

First, the properties are verified on the fault free Fire Control model using the

variable values defined in Table 4.4 and the verification results are presented in Figure

4.12.

Table 4.4.Variable initialization used for the fault free verification.

Variable Value

Ὕ 120

Ὕ -20

‌ ὥὰὪὥ 40

N 5

ίὩὲίέὶ 10

ὔέὨὩρ 15

ὔέὨὩς 25

C If temperature average>60 then, Fire Alarm End If

Chapter4 Fault Detection in Component-based Cloud Computing

56

Figure 4.12.safety properties verification on fault-free Fail-Silent Fire Control model.

We can see in the Figure 4.12 that all the safety properties are verified on the

fault free Fail-Silent Control model which means that the model is safe.

Table 4.5. Faults injected in the Fail-Silent Fire control model.

Fault Fault Type Component Injection

Safety

property

in Table

10

Production of

random values.

Transient

hardware
Sensor

High temperature value +

high temperature variance
1

Incorrect calculation Software Cloud node1
Algorithm 2-line20, i:=1

instead of i:=0
 2

Incorrect calculation Software Cloud node1
Algorithm 2-line 8, the

instruction S=0 is deleted
 2-3

Production of

random decision

Transient

hardware
Cloud node2 Incorrect result 4

Component Time-

out

Response-

Time
Sensor

Add a loop on the state

sensor.Qt (see Figure

4.13)to produce a response-

time failure.

 5

Component Time-

out

Response-

Time
Cloud node1

Add a loop on the state

CloudNode1.Qt (see Figure

4.13) that produces +10 of

execution time

 6

Component Time-

out

Response

Time
Cloud node2

Add a loop on the state

CloudNode2.Qt (see Figure

4.13) that produces +10 of

execution time

 7-8

Chapter4 Fault Detection in Component-based Cloud Computing

57

4.4.4.2 Safety verification of failed model

After safety verification on the fault free model, the safety verification is done

on the failed model. The safety properties of the Table 4.3 will be verified on the same

Fail-Silent Fire Control model with the same variables but this time with injected faults.

A set of faults are injected in the model, in order to make the model failed and to test

whether the acceptance test strategy can preserve safety in spite of faults. The set of

injected faults are summarized in Table 4.5. For each injected fault, some details are

given such as: the type of fault, the component, how the injection is applied and the

safety property violated.

After injection of the faults, the produced model is presented in Figure 4.13. After that,

the safety properties (Table 4.3) are verified on the failed model and the verification

results are presented in the Figure 4.14.

Figure 4.13.Fail-Silent Fire Control model after faults injection.

Figure 4.14.Safety verification of the failed Fail-Silent Control model.

As can be seen in Figure 4.14, all the properties are satisfied by the failed Fire

Control model. Hence, all safety properties that are satisfied on the correct model are

also satisfied on the failed model. This means that the Fail-Silent behavior of the

acceptance test strategy preserves safety in spite of presence of failures.

Chapter4 Fault Detection in Component-based Cloud Computing

58

Finally, we can say that the acceptance test strategy is efficient enough for safety

insurance in the cloud Systems.

4.5 Comparative Analysis

The comparisons between IDS, Heartbeat/Pinging and acceptance test strategies

are summarized in Table 4.6, where the main differences between the strategies are

mentioned:

Strategy based on: The strategy of IDS is based on the cloud monitoring in which the

Cloud behavior is compared to a previous database which is different than the heartbeat

strategy that is based on keep-alive message transmission. In the acceptance test

strategy, the failure detection is distributed on the cloud nodes where each node has its

own acceptance test that can validate its behavior.

Monitoring process centralized or distributed: It is centralized in IDS. In heartbeat,

each failure detector node is responsible for a set of cloud nodes; therefore, we can say

that it is partially-distributed. In the acceptance test strategy, each node has its own

acceptance test. Hence, the failure detection process is distributed over all the cloud

nodes.

Detected failure origin: IDS can detect any malicious attack over the cloud nodes or

network where the heartbeat strategy can detect only the hardware crashes. The

acceptance test strategy can detect any abnormal behavior caused by software faults or

transient hardware faults.

Alarm causes: The key question is: In which cases the alarm announces that there is a

failure? In the IDS strategy, the failure alarm is raised whenever a deviation from the

normal behavior is monitored on the cloud system. In the heartbeat strategy, if the cloud

node does not send any alive-message to the detector node before the timeout

expiration, the failure alarm is raised. In the acceptance test strategy, if any abnormal

behavior is detected by the acceptance test over the cloud node, the failure alarm is

raised.

Property insurance: Which non-functional property is ensured by the strategy? IDS can

insure the safety property by protecting the cloud system from malicious attacks. The

heartbeat strategy can ensure only liveness of the cloud nodes whereas the acceptance

test strategy ensures the safety property by protecting cloud nodes from software faults

and hardware transient failures.

Chapter4 Fault Detection in Component-based Cloud Computing

59

Monitored components: In IDS, monitored components are the cloud nodes and the

network connections. In the heartbeat and the acceptance test strategies, monitored

components are only cloud nodes.

Failure detector component: In IDS, it is the system monitor. In heartbeat, the detector

nodes are charged by the crash detection. In the acceptance test strategy, each cloud

node is responsible for its failure detection process.

Failure detection accuracy: When we talk about the accuracy of the failure detection

strategy, we respond to the question: Is there really a failure when an alarm is raised?

The failure detection accuracy strongly relies on the monitoring process architecture

(i.e., Centralized, partially-distributed, or distributed) which means that the distance

between the failure detector and cloud nodes is very important in the cloud network. We

have used the scale shown in Table 4.7:

As noted before, in IDS strategy, the most known problem is the False Alarm Rate.

This is because of the difficulty of monitoring a huge number of cloud nodes by a

central monitoring approach which would produce high distance between the monitor

and the monitored components. Therefore, we can say that the accuracy of IDS is low.

However in the heartbeat strategy, monitoring is partially-distributed where each crash

detector is responsible for a set of nodes. The accuracy of crash alarm here is related to

the network conditions and timeout but the distance between the monitor and the

monitored component is medium and therefore, the accuracy is medium level compared

to that of IDS. In the distributed monitoring such as the acceptance test strategy, the

failure detector is the Cloud node; there is no distance between the monitor and the

monitored component, thus the failure alarm is raised only in the case of failure. Hence,

the accuracy of the failure alarm is high compared to that of IDS and heartbeat.

Component-based Approach: IDS and heartbeat strategies do not deal with component-

based architecture of the cloud systems but the acceptance test strategy is based on this

approach.

Scalability: The IDS does not support the scalability because it is difficult to provide

frequent database knowledge for scalable cloud systems. The heartbeat strategy is

known as large-scale crash detection strategy because it supports the scalability. The

acceptance test strategy is based on the component-based approach, where atomic cloud

nodes are coordinated to construct the global cloud system. The component-based

Chapter4 Fault Detection in Component-based Cloud Computing

60

approach supports the scalability. Furthermore, the fault detection strategy using the

acceptance test is independent from the architecture of the cloud system because it

depends only on the cloud node behavior. Therefore, the acceptance test strategy is

scalable.

Costs: For the IDS, the monitoring algorithms need complicated algorithms, large data

and long time. The heartbeat strategy needs large bandwidth for network connections.

The acceptance test strategy does not need large costs because Cloud nodes will carry

on the monitoring process in addition to their main functions.

4.6 Conclusion

In this chapter, a fault detection framework is proposed for cloud computing

systems by using Recovery Blocksô acceptance test. The proposed framework aims to

construct Fail-Silent cloud modules which have the ability of self-fault detection. In

this, the detection process of transient hardware faults, software faults, and response-

time failures is performed locally on each computing machine in the cloud system. The

proposed strategy is performed on a case study, time and space complexities are

estimated and efficiency is proved using verification by model-checker.

Chapter4 Fault Detection in Component-based Cloud Computing

61

Table 4.6. Comparison of various aspects of IDS, Heartbeat/Pinging, and acceptance test strategies.

Features

Approaches
S

tr
a

te
g

y
 b

a
s
e

d
 o

n

C
e

n
tr

a
liz

e
d

/

D
is

tr
ib

u
te

d

M
o

n
it
o

ri
n

g
 P

ro
c
e

s
s

D
e

te
c
te

d
 F

a
ilu

re

O
ri
g

in

A
la

rm
 C

a
u

s
e

s

P
ro

p
e

rt
y
 i
n

s
u

ra
n

c
e

M
o

n
it
o

re
d

C
o

m
p
o

n
e

n
t

F
a

ilu
re

 D
e

te
c
to

r

C
o

m
p
o

n
e

n
t

A
c
c
u

ra
c
y

C
o

m
p
o

n
e

n
t-
b

a
s
e

d

A
p

p
ro

a
c
h

S
c
a

la
b

ili
ty

C
o

s
ts

Intrusion/Anomaly

Detection Systems

(IDS)

Cloud

System

Monitoring

Centralized
Malicious

attacks

Behavior

Deviation
Safety

Nodes and

network

Connections

System

Monitor
Low No No

Complicate

algorithms,

Time&Data

Heartbeat and

Pinging

Keep-Alive

Messages

partially-

Distributed

Hardware

crash

Failures

Timeout

Expiration
Liveness Nodes

Node

Detector
Medium No Yes

Large

network

connections

bandwidth

Acceptance Test

Strategy

Acceptance

Test
Distributed

Software

Faults

&Transient

Hardware

faults

Acceptance

Test no

validation

Safety Nodes Nodes High Yes Yes

Reliable

Acceptance

Test

Chapter4 Fault Detection in Component-based Cloud Computing

62

Table 4.7. Accuracy scale.

Accuracy

Distance

High Medium Low

Big - - X

Medium - X -

Small X - -

63

Chapter Five

Fault Masking in Component-based Cloud

Computing

Summary

5.1 Introductionééééééééééééééééééééééééé. 63

5.2 Recovery Blocks for Fault-Masking ééééééééééééééé.. 64

 5.2.1 Fault-Masking atomic componentééééééééééééééé 65

 5.2.2 Fault-Masking composite component ééééééééééééé. 66

 5.2.2.1 Rendevous connectoréééééééééééééééééé. 66

 5.2.2.2 Broadcast connectoréééééééééééééééééé... 67

5.3 A Case Studyéééééééééééééééééééééééé... 67

 5.3.1 Construction of Fault-Masking modeléééééééééééé.. 67

 5.3.2 Time and Space complexityééééééééééééééééé. 71

 5.3.3 Distributed Recovery Blocks Schemeééééééééééééé.. 72

 5.3.3.1 Construction of Fault-Masking model using DRB schemeéé 73

 5.3.3.2 Liveness verification using model-checkeréééééééééé 78

 a. Liveness verification on the fault-free modelééééééééééé 80

 b. Liveness verification on the failed modelééééééééé............. 80

5.4 Comparative Analysis..éééééééééééééééééééé... 81

5.5 Conclusionééééééééééééééééééééééééé... 84

5.1 Introduction

 Fault tolerance has always been an active line of research in design and

implementation of dependable systems. It involves providing a system with the means

to handle unexpected defects, so that the system meets its specification in the presence

of faults. Many Techniques are used to create the fault tolerance capability in cloud

systems. They can be divided into two main categories: Proactive Fault Tolerance (i.e.,

Software Rejuvenation, Pre-emptive migration and Self-healing) and Reactive Fault

Tolerance (i.e., Checkpointing, Job Migration, Replication, SGuard, Retry éetc) [22-

27][94][98][101][102][103]. Fault tolerance techniques used in cloud computing are

Chapter5 Fault Masking in Component-based Cloud Computing

64

based on time and space redundancy which can tolerate only hardware faults without

dealing with software faults. According to our thorough investigation of the area, there

is clearly a lack of formal approach that rigorously relates cloud computing with

software fault tolerance concerns. In this chapter, a strategy of Fault-Masking in

component-based cloud computing based on Recovery Blocks is presented. The aim is

to construct reliable and available cloud nodes using the acceptance test and forward

recovery.

5.2 Recovery Blocks for Fault-Masking

In order to construct the Fault-Masking component, Recovery Blocks scheme is

used. A Fault-Masking node is able to satisfy safety and liveness [16][17] specification

properties in spite of faults. Thatôs means that it can detect and tolerate failures at just

appearance and continue to offer its main service without any perturbation. The Fault-

Masking node is a self-fault detector and a self-stabilizer in the same time. A node that

ensures safety property means that it never reaches a non-desirable state whereas a node

with liveness property insurance means that it always reaches a stable state after any

fault detection. In other meaning, the Fault-Masking node offers secure and continued

service in spite of failures.

Figure 5.1. Fault-Masking node behavior

The Figure 5.1 shows the Fault-Masking node behavior. In which the cloud node earns

execution (i.e., left state) since the behavior is correct or acceptable. At the moment of

fault detection, the cloud node will stop operating and then will enter in a forward

recovery phase (Figure 5.1. the right state). In the forward recovery an alternate try

block will be used to recover from the failure. After the recovery phase, the cloud node

behavior will reach a stable state with an acceptable behavior.

Correct/Acceptable

Behavior
[AT]

Fault Detection
ὃὝ

Fault-Masking
ὃὝ

Roll-Forward

Recovery

Chapter5 Fault Masking in Component-based Cloud Computing

65

Algorithm of Fault -Masking based on Recovery Blocks

Ensure Acceptance Test By

 Primary Try block

Else By

 Alternate Try Block

End Recovery Blocks

5.2.1 Fault-Masking atomic component

Definition1: an atomic component is defined as a tuple ὄ ὗȟὖȟὄὩὬȟὢ such that:

ὗ: is a set of states ήȟήȟȣȟ ή ;

ὖ: is a set of communication ports ὴȟ ὴȟȣȟ ὴ Ƞ

ὄὩὬ ȾO ʐɴ ᴼ ὗ ³ Ὃ ³ Ὂ ³ ὗ is the behavior of the atomic component ὄ. It is

composed of a set of transitions. Each transition contains one guard and a set of internal

functions. The main behavior of an atomic component is considered as its Primary

behavior.

ὢ: is a set of variables ὼ which are manipulated by the internal functions, Ὢ;

Definition 2: An acceptance test ὃὝὢ of an atomic component ὄ ὗȟὖȟὄὩὬȟὢ is

a boolean expression on the set of variables, ὢ. The acceptance test validates the

correctness of ὄôs final results and ensures that they do not lead to disastrous

consequence even if they are not the expected results. The acceptance test ensures

Safety properties in the atomic component. An atomic component that has an acceptance

test is a Fail-Silent atomic component.

Definition 3: A Fail-Silent atomic component, ὊὛ ὗȟὖȟὄὩὬȟὢȟ ὃὝ is a self-

fault detector, it can ensure Safety properties using the acceptance test ὃὝ. In the case

of fault detection, the atomic component ὊὛwill pass to a deadlock state till recovery

achievement. 4ÈÅ regular expression of the Fail-Silent atomic component is ὧȾ-‫

ὥᶻὪ.

A Fail-Silent atomic component has a correct behavior ὧ or an acceptable

behavior ὥ. At just fault detection by the AT, the atomic component will be

considered as failed (f) and it will be blocked immediately attending the recovery phase.

Chapter5 Fault Masking in Component-based Cloud Computing

66

Definition 4: a Primary behavior of a Fail-Silent atomic component is the main

behavior that offers desired results. We write: ὊὛ ὗȟὖȟ ὄὩὬ ȟὢȟ ὃὝ .

ὄὩὬ : is the Primary behavior. It performs the desired operation.

Definition 5: An Alternate behavior ὄὩὬ of the Fail-Silent atomic component

performs the operation in different manner. It aims to replace the Primary behavior in

the case of fault detection.

By using the Alternate behavior, the component can performs a roll-forward recovery

phase till the reach of a stable state (i.e., correct (c) or acceptable (a) state). The -‫

regular expression which design the main role of the Alternate behavior in an atomic

component is ὶᶻὧȾὥ such that:

ὶ : Recovery;

ὧ : Correct behavior;

ὥ : Acceptable behavior.

Lemma 1: A Fail-Silent atomic component that uses an Alternate behavior

ὭȢὩȢȟὄὩὬ can ensure Liveness property even in the presence of faults.

Theorem 1: The use of an Alternate behavior in the Fail-Silent atomic component can

produce a Fault-Masking component that ensures both Safety and Liveness properties in

the same time. The regular expression of the Fault-Masking atomic component-‫

is ὧȾὥᶻὪ ὶᶻ ὧȾὥ .

Definition 6: a Fault-Masking atomic component is a component that can preserve and

Liveness specification properties in presence of faults. We write:

 Ὂὓ ὗȟὖȟ ὄὩὬ ȟ ὄὩὬ ȟὢȟ ὃὝ Such that:

 ὄὩὬ : is the Primary behavior and

ὄὩὬ : is the Alternate behavior. It is required to perform the desired operation

in a different way.

5.2.2 Fault-Masking composite component

A composite component ὄ gὄȣὄ is a set of atomic components ὄ ȢȢ

glued by the set of connectors g ‍ ȢȢ . As seen in the chapter 3 - Section 3.2.3, a

connector in a composite component can be a rendezvous or broadcast connector.

5.2.2.1 Rendezvous connector

If we have the rendezvous connector ‎ such that ‎ ὴ ȢȢȟὴËὄ , the only

possible interaction is ὥ ὄ ὄ ὄȣὄ which contains all the atomic components

Chapter5 Fault Masking in Component-based Cloud Computing

67

involved in the connector ‎. Therefore, the failure of one atomic component will

directly infect the others atomic components. This means that ᶅ ὄ ᶰ‎Ƞ ὭὪ ὄ is

failed, then ᶅ ὄ ὥὲὨὄᶰ‎, ὄ will be failed too.

Lemma 2: Let ὄ gὄȣὄ a composite component. In order to construct a Fault-

Masking rendezvous connector g , all the atomic components ὄȣὄ involved in it

must be Fault- Masking as well. Ὂὓ Ὂὓ ȟὊὓ ȟȣȟὊὓ .

5.2.2.2 Broadcast connector

If we have the broadcast connector ‎ ὴ ȢȢȟ

ὴËὄ ὥὲὨ ὄ Ὥί ὄὶέὥὨὧὥίὸ ὭὲὭὸὭὥὸέὶ. The possible set of interactions in this case

are those containing at least one instance of ὄ . The minimum interaction is ὥ ὄ

which contains only the broadcast initiator where the maximum interaction is ὥ

ὄὄὄȣὄ which contains all the atomic components involved in the connector ‎.

Lemma 3: Let ὄ gὄȣὄ a composite component where g is a broadcast

connector. To construct a Fault-Masking broadcast connector ‎, at least the broadcast

initiator ὄ must be Fault-Masking: Ὂὓ Ὂὓ ȟὄςȟȣȟὄ .

Theorem 2. A composite component that is composed of a set of Fault-Masking atomic

component is Fault-Masking composite component: Ὂὓ

‎Ὂὓ ȟ Ὂὓ ȟȣȟ Ὂὓ .

5.3 A Case Study

5.3.1 Construction of Fault-Masking models

In order to describe the construction of Fault-Masking models, we will present a

case study of Fire Control System (seen in chapter 4-Section 4.4.1). The Figure 5.2

presents the Cloud node 1 model.

Chapter5 Fault Masking in Component-based Cloud Computing

68

Figure 5.2 Cloud node 1

ὅὰέόὨὔέὨὩρ ὗȟὖȟὄὩὬȟὢ where:

ὗ ὅȟὈȟὉ

 ὖ ὛὥὺὩȟὃὺὩὶὥὫὩὅὥὰὧόὰȟὛὩὲὨ

ὄὩὬ ὅȟίὥὺὩὝ ȟὈ ȟ ὈȟὙὩὧὩὭὺὩὝȟὈ ȟ ὈȟὝ ὃὺὩὶὥὫὩὅὥὰὧόὰȟὉȟ

ȟ ὉȟὛὩὲὨ Ὕ ȟὅ .

ὢ Ὕ .

Algorithm 1: Cloud node1

Input: temperatures T;

Output: temperature Average ἢἾ;

[1]Co = 0;

[2]S = 0;

[3]ReceiveTemperatures()

[4] Receive(T, Sensor);

[5] Co = Co + 1;

[6] Temp [Co] = T;

[7] If Co < N Then

[8] GoToReceiveTemperatures();

[9] Else

[10] AverageCalcul():

[11] For i=0 to N - 1 do

[1 2] S=S+Temp[i];

[13] Temp[i] = 0;

[14] End for

[15] 4= S / N;

[16] EndAverageCalcul()

[17] Send (4, Node2); // Send of ͼ 4ò to the Cloud

node2

[18] Co = 0; // re - initialization of Co

Receive(T)

Chapter5 Fault Masking in Component-based Cloud Computing

69

[19] S = 0; // re - initialization of S

[20] Go to ReceiveTemperatures()

[21]End If

For constructing the Fault-Masking model of the Cloud node1. An acceptance

test and an Alternate behavior must be incorporated in the model. The acceptance test

can be inserted using the procedure described in chapter 4. By this way, we will have a

Fail-Silent component. Then, the Alternate behavior must be inserted in order to

construct the Fault-Masking component.

Figure 5.3 Fault-Masking Cloud node 1

The Fault-Masking model of the Cloud node 1 in the Figure 5.3 is composed of:

Ὂὓ ὗᴂȟὖᴂȟὄὩὬ ȟὄὩὬ ȟὢȟ ὃὝ such that :

ὗ ὅȟὈȟὉȟὊȟή.

ὖ

ὛὥὺὩȟὃὥὺὩὶὥὫὩὅὥὰὧόὰȟὄὥὺὩὶὥὫὩὅὥὰὧόὰȟὖὶὭάὥὶώὊὥὭὰȟὙὩὧέὺὩὶώȟὝὩίὸȟὛὩὲὨ

ὄὩὬ ὅȟίὥὺὩὝ ȟὈ ȟ ὈȟὝ ὃὺὩὶὥὫὩὅὥὰὧόὰȟὉȟȟ ὉȟὝὩίὸȟὃὝȟ

Ὂ ȟ ὊȟὛὩὲὨὝ ȟὅ .

ὄὩὬ Ὁȟ ὃὝȟὖὶὭάὥὶώὊὥὭὰὝὶόὩȟή ȟ ήȟὙὩὧέὺὩὶώȟὈ ȟ

ὈȟὝ ὄὥὺὩὶὥὫὩὅὥὰὧόὰȟὉ ȟ ὉȟὝὩίὸȟὃὝȟὊ ȟ ὊȟὛὩὲὨὝ ȟὅ .

The Fault-Masking Cloud node1 algorithm is the following:

D

E

Ὕ

ὃὥὺὩὶὥὫὩὅὥὰὧόὰ

Ὂ

ὅ

Save (Ὕ)
 Initialization

 Test

ὃὝ

Ὕ

ὄὥὺὩὶὥὫὩὅὥὰὧόὰ

Recovery

Input Buffer

ή

[¬ AT]

PrimaryFail

Send (Ὕ)

 Send

Chapter5 Fault Masking in Component-based Cloud Computing

70

Algorithm 2: Fault - Masking Cloud node1

Input: Temperatures T;

Output: temperature Average ἢἾ;

[1]clk2=0; // Clock Initialization

[2]Co = 0;

[3]S = 0;

[4] Checkpoint():

[5] Save (4);// save of the last correct 4

[6] clk2=0;// re - initializations for the next execution cycle

[7] Co=0;

[8] S=0;

[9] GoToReceiveTemperatures();

[10] End Checkpoint

[11]ReceiveTemperatures():

[12] Receive(T, Sensor);

[13] Co = Co + 1;

[14] Temp [Co] = T;

[15] If Co < N Then

[16] GoToReceiveTemperatures();

[17] Else

[18] 4=Temp[1];

[19] 4 =Temp[1];

[20] For i=0 to N - 1 do

[21] If Temp[i]> 4then// Calculation of the highest temperature

[22] 4= Temp[i];

[23] End If

[24] If Temp[i]< 4 then//Calculation of the lowest temperature

[25] 4= Temp[i];

[26] End If

[27] EndFor

[28] GoToAaverageCalcul()

[29]EndReceiveTemperatures()

[30]AaverageCalcul()

[31] For i=0 to N - 1 do

[32] S=S+Temp[i];

[33] Temp [i] = 0;

[34] End for

[35] 4= S / N;

[36] If [4 4 4 ǪǪ ὧὰὯς .ÏÄÅρ] then

[37] Send (4, Node2);

[38] Go to Checkpoint();

[39] Else

[40] GoToBaverageCalcul();//non validation of the Acceptance

Test

[41] End If

[42] End AverageCalcul()

[43] BaverageCalcul():

[44] 4 4ÅÍÐπ 4ÅÍÐÎ ρ Ⱦς
[45] If [4 4 4 ǪǪ ὧὰὯς .ÏÄÅρ] then

[46] Send (4, Node2);

[47] Go to Checkpoint();

[48] Else

Chapter5 Fault Masking in Component-based Cloud Computing

71

[49] FailedRecoveryBlocks();//non validation of the Acceptance

Test

[50] End If

[51] End BaverageCalcul()

As said before, the construction of a Fault-Masking model must follow two

phase: the construction of the Fail-Silent model then the incorporation of the forward

recovery to reach the Fault-Masking model. The Algorithm 2 describes the fault ï

Masking model of the Cloud node 1. The main behavior of the Cloud node1 is the

calcul of the average temperature Ὕ of ὔ received temperatures. Then, it sends the

output to Cloud node2. The Primary behavior of Cloud node1 is designed by the

procedure ὃὥὺὩὶὥὫὩὅὥὰὧόὰ [line 30]. After the calcul of Ὕ , it must pass the

acceptance test [line 36]. If Ὕ satisfies the test, it will be sent to Cloud node 2, else a

forward recovery will be provided by invoking the Alternate behavior which is designed

by the procedure ὄὥὺὩὶὥὫὩὅὥὰὧόὰ [line 40]. By using the alternate procedure [line 43-

44], the average temperature Ὕ will be calculated by using only the first received

temperature and the last one. At the end, the result must pass the acceptance test to

validate its correctness. If Ὕ is accepted then it will be sent to the successor else the

recovery blocks will be considered as failed.

5.3.2 Time and space complexity

 In order to analyze time and space complexity of previous algorithms, Big

Omega asymptotic notation is used. We have calculated the running expressions of the

Cloud node1 algorithm and for the Fault-Masking Cloud node1algorithm. We have:

Ὢ ὲ ρυὲ ω Ὣὲ Ὢέὶ ὥὰὰ ὲ π, and

Ὢ ὲ ςυὲ στ Ὣὲ Ὢέὶ ὥὰὰ ὲ π

Where: Ὣὲ υωὲ Ὢέὶ ὲ πȢ

We can say that:

The time and space complexity of the functions Ὢ ὲ and Ὢ ὲ are

calculated according to the n values. If we assume that n represents the time unit, then

the graph plot in Figure 5.4 represents the time complexity of the Cloud node1

Chapter5 Fault Masking in Component-based Cloud Computing

72

algorithm. In this case, we can see that the functions Ὢ ὲ and Ὢ ὲhave

the same time growth rate. That means that the incorporation of the fault masking

strategy in the Cloud node1 program does not produce any big overhead. If we assume

that n represents the space unit, then the Figure 5.4 is a space complexity graph of the

functions Ὢ ὲ and Ὢ ὲwhich are similar in space growth rate. It means

that the Fault-Masking Cloud node1 does not need a big storage space compared to the

primary Cloud node1 program.

Figure 5.4 Time and space complexity of Cloud node1. fNode1 (resp. fFMNode1)

represents the Cloud node 1 complexity before (resp. After) the Fault Masking

Integration.

We can deduce that the time and space complexity of the Fault-Masking process

using the acceptance test and the try blocks does not lead to any unreasonable overhead

or calculus complexities in the Cloud node1 (Figure 5.4).

5.3.3 Distributed Recovery Blocks scheme

Recovery Blocks is an efficient mechanism for Fault-Masking, but it is based on

the sequential execution (i.e., if the primary block fail then the alternate block will take

place) which provide a latency in response time delays. This last is an important key in

real-time applications especially in Cloud applications. In order to adapt Recovery

Chapter5 Fault Masking in Component-based Cloud Computing

73

Blocks scheme for distributed real time constraints, Kim Kan proposed many

architectures for Distributed Recovery Blocks. In this section, we will apply DRB

scheme on the Cloud node1 model. It is composed of two nodes ὢ and ὣ. Each node is

considered as Fault Masking atomic component. ὢ and ὣ are performed in distributed

and parallel execution where the Primary node is the responsible for response delivery.

Each Fault-Masking node has two try blocks ὃ and ὄ. ὃ returns the desired output

whereas ὄ returns an acceptable one. The primary node ὢ performs ὃ as the primary

block and ὄ as the Alternate block. The backup node ὣ performs the try blocks in

inverse way, by executing ὄ as the Primary block and ὃ as the Alternate one.

We assume that only one node fails at a moment. This assumption aims to

ensure that at least one node is operator and hence it can send an output to the successor.

5.3.3.1 Construction of Fault-Masking model using DRB scheme

Figure 5.5: Cloud node1 BIP model - Fire Control system.

The Figure 5.5 is the BIP model of the Cloud node1. It is only Fail-Silent but not Fault-

Masking model. The Figure 5.6 presents the Fault-Masking model of Cloud node1

using the DRB scheme.

