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I 

 

Abstract 

 

Cloud computing has become a popular computational technology across all 

industries, by which desired services can be accessed from any place and at any time.  

Cloud environments are characterized by the big data, non centralization, distribution 

and non-heterogeneity that bring some challenges such as: reliability which is still a 

major issue for cloud service providers. Fault tolerance is an active line of research in 

design and implementation of dependable systems. It means to handle unexpected 

defects, so that the system meets its specification in the presence of faults. Specification 

guarantees can be broadly characterized by safety and liveness properties. Reliability in 

cloud environment is handled by a set of fault detection and fault tolerance techniques. 

The fault detection is configured by monitoring and heartbeat strategies whereas the 

fault tolerance is performed by using techniques based on time and space redundancy 

such as checkpointing, retry, SGuardé.etc. The main aim of this thesis is the 

incorporation of recovery blocks scheme to enhance reliability of cloud computing 

systems by providing Fail-Silent and Fault-Masking nodes.  A Fail-Silent cloud node is 

a safe component that uses the acceptance test for self-fault detection whereas a Fault-

Masking node is a safe and live component that can detect and recover from failures 

using the acceptance test and try blocks.  The proposed strategies are proved and time 

and space complexities are estimated. Furthermore, a case study and a verification using 

the model-checker are provided for the proposed schemes to prove their efficiency and 

their applicability.   

 

Keywords: Reliability, Cloud computing, Recovery Blocks, Fault Detection, Fault 

Tolerance, Fault Masking, Acceptance test, Component-based approach.  

 

 

 

 

 

 

 



II  

 

Résumé 

Le cloud computing ou lôinformatique en nuage est devenu une technologie de 

calcul populaire dans toutes les industries, par laquelle les services souhaités peuvent 

°tres consult®s ¨ partir de nôimporte quel endroit et ¨ tout moment. Les environnements 

cloud sont caractérisés par la grande masse de données, la non-centralisation, la 

distribution et le manque dôhétérogénéité. Ces caractéristiques apportent quelques défis 

tels que lôassurance de fiabilité ;  qui reste un problème majeur pour les fournisseurs des 

services cloud. La Tolérance aux fautes est une ligne de recherche active dans la 

conception et la mise en îuvre des systèmes fiables. Cela signifie de gérer les pannes 

inattendues de sorte que le système réponde à ses spécifications en présence de fautes. 

Les garanties de spécification peuvent être largement caractérisées par des propriétés de 

sécurité-innocuit® et de vivacit®. La fiabilit® dans lôenvironnement cloud est gérée par 

un ensemble de techniques de détection et de tolérance aux fautes. La détection des 

fautes est opérée par les stratégies de surveillance et de battement de cîur alors que la 

tolérance aux fautes est réalisée en utilisant des techniques basées sur la redondance 

spatiale et temporelle telles que le checkpointing, le ré-essai, le Sguard, éetc.  Le but 

principal de cette thèse côest lôincorporation du schéma des blocs de reprise pour 

améliorer la fiabilité des systèmes cloud computing en fournissant des nîuds défaillants 

silencieusement et des nîuds masquants des fautes. Un nîud défaillant silencieusement 

est un composant sécurisé qui utilise le test dôacceptation pour la d®tection automatique 

des fautes  alors quôun nîud masquant des fautes est un composant sûr et actif qui peut 

détecter les fautes et faire une reprise vers lôavant en utilisant un test dôacceptation et un 

ensemble de blocks dôessai. Les stratégies proposées ont été prouvées dans un contexte 

de support de modélisation et vérification formelle BIP et la complexité temporelle et 

spatiale a été estimée. De plus, une étude de cas et sa v®rification ¨ lôaide dôun model-

checker ont été réalisées sur des schémas proposés afin de prouver leur efficacité et leur 

applicabilité.  

 

Mots-clés : Fiabilité, Blocs de Reprises, Détection des Fautes, Tolérance aux fautes, 

Cloud computing, Test dôacceptation, Reprise vers lôavant, Approche de Conception à 

base de composants.  
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Introduction  

 

Embedded Computing systems could be seen now almost everywhere in our 

daily life. They are found in household items, multimedia equipment, in mobile phones 

as well as in cars, smart munitions, satellites and so on. However, despite increasing 

hardware capabilities, these mobile devices will always be resource-constrained 

compared to fixed hardware. In order to mitigate the hardware limitations on mobile and 

wearable devices, cloud computing [1], [2], [3], [4], [5], [72] allows users to use remote 

infrastructure in an on-demand fashion. Over the past years, cloud computing has 

become a popular computational technology across all industries. It brings many vast  

advantages  such as the reduction of costs, development of efficiency, central promotion 

of software, compatibility of various formats, unlimited storage capacity, easy access to 

services at any time and from any location and most importantly, the independence of 

these services from the hardware [94].  Cloud computing is a type of parallel and 

distributed computing system which consists of a collection of inter-connected and 

virtualized computers that are dynamically provisioned and presented as one or more 

unified computing resource(s) [8], [9], [10].   

We could fairly state that applications developed on cloud systems are often 

critical in terms of human lives. For instance, many such applications could be 

practically employed in healthcare, military, or disaster management scenarios. 

Furthermore, desired services in cloud computing can be accessed from any place and at 

any time. These cause removing the restrictions using in systems and traditional 

networks in providing service to users. But that can bring some new problems, 

restrictions, and challenges for users and applications. The reliability of cloud 

application is still a major issue for providers and users. Failures of cloud apps generally 

result in big economic losses as core business activities now rely on them [145]. This 

was the case in 2011, there was a Microsoft cloud service outage which lasted for 

approximately 2,5 hours [149]. In December 24, 2012 a failure of Amazon web services 

caused an outage of Netflix cloud services for 19 hours. In October 2013, Facebook 

reported an unavailable service for photos and ñLikesò. In January 2014, one of Google 

services (Gmail) was down for about 25-50 min [150].  
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   The demand for highly dependable cloud apps has reached high levels [147].  

However, there is still no clear methodology in industry today for developing highly 

dependable cloud applications [145]. A research presented in [146] has revealed that 

infrastructure and platform services offered by big players like Amazon, Google and 

Microsoft suffer from regular performance and availability issues due to service 

overload, hardware failures, software errors and operator errors. Moreover, because of 

the constantly increasing complexity of cloud apps and because developers have little 

control over the execution environment of these applications, it is exceedingly difficult 

to develop fault-free cloud apps. Therefore, cloud apps should be robust to failures if 

they are to be highly dependable [148].   

Fault tolerance has always been an active line of research in design and 

implementation of dependable systems. It involves providing a system with the means 

to handle unexpected defects, so that the system meets its specification in the presence 

of faults. Fault tolerance is carried out via fault detection and recovery [130].  In this 

context, the notion of specification may vary depending on the guarantees that the 

system must deliver in the presence of faults [45]. Such guarantees can be broadly 

characterized by safety and liveness [20] properties. In fact, Safety properties can be 

ensured by fault detection techniques whereas recovery mechanisms are used to meet 

liveness properties.   

 In cloud computing systems, failure detection is processed by using two main 

strategies: Intrusion detection systems (IDS) for network or hosts attacks detection [32], 

[33] and Heartbeat/Pinging strategy [43] for hardware fault detection.  In the other side, 

fault tolerance capability is configured in cloud systems via proactive and reactive fault 

tolerance techniques [22-27][94][98][101][102][103].  However, fault tolerance 

strategies used in clouds [22-27] are based on time or spatial redundancy which can 

tolerate only hardware faults without dealing with software bugs. According to our 

thorough investigation of the area, there is clearly a lack of formal approach that 

rigorously relates the cloud computing with software fault tolerance concerns.  

Recovery blocks scheme [29],[30] is a variant of design diversity for software 

fault tolerance [28]. It is based on the selection of a set of operations on which recovery 

operations are based. Recovery blocks are composed of a set of try blocks and an 

acceptance Test. This earlier is an internal audit that can configure the fault detection 
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process. While the forward recovery can be present by the set of try blocks. For 

constructing highly hardware and software fault tolerance in real-time distributed 

computer systems, Distributed Recovery Blocks (DRB) is formulated by Kim Kan in 

1983 [109][110][132]. It is a scheme that can handle the software and hardware faults in 

the same manner in distributed real-time environment.  

 In this thesis, we propose a novel formal framework for constructing reliable 

cloud modules using the recovery blocks scheme. The aim is to provide strategy that 

can enhance cloud reliability by uniform treatments of software and hardware faults by 

constructing Fail-Silent and Fault-Masking nodes. A Fail-Silent node is able of self-

fault detection by using the acceptance test. This earlier can guarantee initial safety 

requirement in spite of faults. In the other hand, a Fault-Masking node is apt to handle 

(i.e., detect and tolerate) software, hardware and response time faults by using both the 

acceptance test and try blocks to ensure safety and liveness properties in the same time. 

In order to well explain the proposed schemes, Fire Control System is used as a case 

study. Time & space complexity for such schemes is estimated. Also, safety and 

liveness verification using the model-checker is applied on the deduced models to prove 

the efficiency and the applicability of the proposed schemes.  BIP (Behavior, 

Interaction, Priority) [14], [15], [16] is used as a Component-based framework with 

multi-party interactions for system modelization and UPPAAL model-checker is used 

as a tool for simulation and verification.  

The thesis is divided into five chapters. First, we introduce the background to 

and the motivation for the research and identify key research problems and 

contributions. After, the chapter 1 explains the background of fault tolerance including 

definitions and basic concepts then it presents the cloud computing systems, fault 

detection and fault tolerance techniques in the cloud environment. In Chapter 2,   a 

survey of some current related works on fault detection and fault tolerance in cloud 

computing are cited.  Chapter 3, introduces the component-based cloud computing 

approach and BIP as a Component-based framework. The Chapter 4 presents a fault 

detection scheme for constructing Fail-Silent cloud nodes that ensures safety properties 

in the presence of faults.   In Chapter 5, Fault-Masking scheme is described for fault 

detection and recovery in cloud modules that can ensure both safety and liveness 
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properties in the same time. Finally, conclusion and future perspectives are cited in the 

conclusion section.        
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1.1 Introduction 

Reliability is the ability of a system or component to perform its required 

functions under stated conditions and for a specified period of time. One way to 

increasing the reliability is by employing fault tolerance strategies. Fault tolerance is 

defined as the ability of a system to deliver desired results even in the presence of faults. 

A system is considered as fault tolerant if the behavior of the system, despite the failure 

of some of its components, is consistent with its specifications [106].    
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1.2 Fault Tolerance  

Fault Tolerance is carried out via fault detection and recovery [130]. The fault 

detection is the phase in which the presence of a fault is deduced by detecting an error 

in the state of some subsystem. After the fault detection phase, the error in the system 

has to be corrected this is what we call recovery. With a system recovery task, the 

system will reach an error-free state 

1.2.1 Faults model 

Three terms are crucial and related to system failure and thus need to be clearly defined, 

which are named failure, error and fault.  Failure, error and fault [104], have technical 

meaning in the fault tolerance literature. A failure occurs when ña system is unable to 

provide its required functionsò. An error is ñthat part of the system state which is liable 

to lead to subsequent failureò, while a fault is ñthe adjudged or hypothesized cause of 

an errorò. For example, a sensor may break due to a fault introduced by overheating. 

The sensor reading error may then lead to a system failure. A fault can be of hardware 

origin, which is caused by physical malfunctions or can be a software fault which is 

caused by software bugs in system development.  

A fault can be classified into three main groups, namely permanent, intermittent and 

transient faults [133], according to their stability and occurrence:  

Permanent faults, are caused by irreversible physical changes. The most common 

sources for this kind of faults are the manufacturing processes.  

Intermittent faults, are occasional error bursts that usually repeat themselves. But they 

are not continuous as permanent faults. These faults are caused by unstable hardware 

and are activated by an environmental change such as a temperature or voltage change.  

Transient faults,   are temporal single malfunctions caused by some temporary 

environmental conditions which can be an external phenomenon such as radiation or 

noise originating from other parts of the system. 

In this thesis, the terms fault, error and failure refers to the same meaning which is the 

deviation from the regular behavior of the system. 

1.2.2 Safety and liveness properties 

Tolerating faults involves providing a system with the means to handle 

unexpected defects, so that the system meets its specification even in the presence of 

faults. In this context, the notion of specification may vary depending upon the 
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guarantees that the system must deliver in the presence of faults. Such guarantees can be 

broadly characterized by safety and liveness properties [112].  Every possible property 

can be expressed a by a conjunction of safety and liveness properties [113].   

Safety property can be described over the state that must hold for all executions of the 

system. It rules that ñbad things never happenò. As an example, the requirement for a 

system controlling the traffic lights of a street intersection that the lights for two 

crossing streets may never be green at the same time.   

Liveness property, this property can be expressed via a predicate that must be eventually 

satisfied, guaranteeing that ña good thing will finally happenò. As an example of 

liveness violation is deadlock involving two or more processes, which cyclically block 

each other indefinitely in an attempt to access common resources. 

 1.2.3 Fault Tolerance techniques 

Fault tolerance is based on redundancy.  It can be: time, hardware or software 

redundancy [105]. 

Time redundancy, is based on the execution of some instructions many times (e.g., 

Checkpointing and rollback recovery).  

Hardware redundancy is based on the idea to overcome hardware faults by using 

additional physical components (e.g., TMR, Codingé). 

Software redundancy or design redundancy, is based on all programs and instructions 

that are employed for supporting fault tolerance ( e.g., N version programming, 

Recovery blocks).  

1.2.4 Recovery Blocks technique 

Recovery Blocks technique [107], [108] is a variant of N Versions Software 

(NVS). It is based on the notion of try blocks. The try blocks are a set of operations (of 

a program) that can be considered as a unit of detection and recovery. Each try block 

contains a primary block, zero or more alternate blocks and an acceptance Test (see 

Figure 1.1). The possible syntax of a recovery block is the following:  

ensure<Acceptance Test> by <ὄ> else by <ὄ> é.else by <ὄ> else error. Where 

ὄ is the primary try block and ὄ ρ Ὧ ὲ, is the alternate try block. 
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Figure 1.1. Recovery blocks architecture 

The primary try block is the first block entered. It performs conventionally the desired 

operation. The alternate try block, is entered when the primary block fails to pass the 

acceptance Test. It is required to perform the desired operation in a different way or to 

perform some alternative action acceptable to the program as a whole. All, primary or 

alternates blocks must pass on exit on the acceptance test to judge their outputs. The 

acceptance test is a section of program which is invoked in order to ensure that the 

operation performed by the recovery block is to the satisfaction of the problem. The 

acceptance test is an internal audit logic by which the component can possesses the 

capability of judging the reasonableness of its computation results.  

The forward recovery mechanism used in recovery blocks can enhance the efficiency in 

terms of the overhead (time and memory) it requires. This can be crucial in real-time 

applications where the time overhead of backward recovery can exceed stringent time 

constraints [109] [110]. 

1.2.5 Distributed Recovery Blocks (DRB) 

Since its first formulation in 1983 by Kim Kan,  [109][132] distributed recovery 

blocks (DRB) has been a technology for constructing highly hardware and software 

fault-tolerance in real-time distributed computer systems.   

DRB uses a pair of self-checking processing (PSP) nodes structure together with both 

software internal audit and watchdog timer to facilitate real-time hardware fault 



Chapter1                                                                                                                    Background 

 

9 

 

tolerance. For facilitating real-time software fault tolerance, the software implemented 

internal audit function and multiple versions of real-time task software which are 

structured via the recovery block scheme [107], [108] and executed concurrently on 

multiple nodes within a PSP structure. The DRB is a based on forward recovery which 

is primarily used when there is no time for backward recovery.   

 

 

Figure 1.2. Basic structure of Distributed Recovery Blocks[109] 

 

The Figure 1.2 presents the DRB scheme structure. X is the primary node which 

executes the primary try block A and B is the alternate try block.  In the other hand, the 

backup node Y executes B as the primary try block and A as the alternate try block. We 

can see that the nodes use the try blocks in reverse order, this aims to avoid the failure 

coincidence between the nodes. In other meaning, if both nodes use the same order of 

try blocks,   the same faults in the try block that causes a node to fail in processing a 

certain data set will cause the other node to fail too.    

Both nodes will receive the same input data and process them concurrently by the use of 

two different try blocks (i.e., the try block A on X and the try block B on Y). After the 

execution of the try blocks, the results judgment is performed by using the common 
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acceptance test. As soon as each node passes the acceptance test, it updates its local 

database. If we assume that X and Y never fail in the same time, three cases are possible 

[109]:  

Fault free situation, both nodes will pass the acceptance test with the results computed 

with their primary try blocks. In such a case, the primary node X notifies Y of its success 

of the acceptance test. Therefore, only the primary node sends its output to the successor 

node.    

Failure of the primary node X,  and the backup node Y pass the acceptance test. In this 

case, the node X attempts to inform the backup node upon its failure. At just reception 

of the notice, the backup node Y will send its output to the successor and then the role of 

the primary and backup nodes are reversed (see Figure 1.3). For the new primary node 

Y, the try block A must become the primary try block. In this time, the new backup node 

X (i.e., the failed primary node) will use the try block B for recovery in order to bring 

the database in the node up to date without disturbing the new primary node Y. After the 

successful retry, the try block B remains as the primary in the new backup node Y. In the 

case when the primary crash completely, the backup node will recognize the failure of 

the primary upon expiration of the preset time limit.  

Failure of the backup node Y,  in this case, the primary node X needs not be disturbed. 

The backup node will just make a retry with try block A to achieve localized recovery.   

DRB is an attractive strategy for two raisons: First, the two nodes always execute two 

different try blocks. An advantage here is that if a data set causes one of the try blocks 

to fail but not both of them, then one acceptable result can be sent to the successor with 

little delay. Second, the current primary node always uses A as the primary try block 

and try block A is generally designed to produce better quality outputs than try block B.  

A primary node can have one or more backup nodes. In other words, the primary try 

block can have more than one alternate try block.  As long as there are more backup 

nodes with more alternate try blocks, the system will be more reliable.  
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Figure 1.3.  Roles reverse in DRB scheme 

 

 

1.3 Cloud computing systems 

1.3.1 Definition  

Cloud computing [8], [9] is a type of parallel and distributed computing system 

which consists of a collection of inter-connected and virtualized computers that are 

dynamically provisioned and presented as one or more unified computing resource(s) 

based on service-level agreements (SLAs) established through negotiation between the 

service provider and the consumers [8], [10] (Figure 1.4). 

The Figure 1.5 shows some examples of various cloud service providers 
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Figure 1.4. Overview of cloud computing [98] 

 

 

 

Figure 1.5. Top cloud computing services providers 

1.3.2 Architecture  

The architecture of the cloud computing [96] can be divided into 4 layers: the 

hardware /datacenter layer, the infrastructure layer, the platform layer and the 

application layer, as shown in the Figure 1.6.    
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Figure 1.6. Cloud computing architecture [96] 

 

Hardware Layer, This layer is responsible for managing the physical resources of the 

cloud, including physical servers, routers, switcherséetc. in practice, the hardware 

layer is typically implemented in data centers.  

Infrastructure layer, this layer creates a pool of storage and computing resources by 

partitioning the physical resources using virtualization technologies. 

Platform layer, consists of operating systems and application frameworks. The purpose 

of this layer is to minimize the burden of deploying applications directly into virtual 

machine containers.  

Application layer, is the highest level of the architecture. The application layer consists 

of the actual cloud applications. Different from traditional applications, cloud 

applications can leverage the automatic ïscaling feature to achieve better performance, 

availability and lower operating cost.    

 

1.3.3 Reliability in cloud computing 

The emergence of cloud computing has brought new dimension to the world of 

information technology. Even though cloud computing provides many benefits, one key 

challenge in it is to ensure continuous reliability and guaranteed   availability of 

resources provided by it. Therefore, there is a serious need for fault tolerant mechanisms 

in cloud environments. Before dealing with the fault tolerance techniques in cloud 

systems, it should first explore the different faults model that may occur in such system. 

The failures in cloud computing are categorized in four classes [99]: 
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Hardware faults: mainly occur in processors, hard disk drive, integrated circuits 

sockets and memory. 

Software faults: provided as a result of software bugs. 

Network faults: this type of failures inhibits the communication between the cloud and 

the end users. It is caused by server overload and network congestion.   

Timeout failure [100]: can be considered as a result of failures (e.g., hardware, 

software, and network). It occurs when the time needed for executing a task exceeds the 

delay set by the service monitor.  

In our thesis, we focalize on tolerating hardware faults, software faults and Timeout 

failures.  

1.3.3.1 Fault Detection in Cloud computing  

Failures in cloud computing systems are processed by using two main strategies: 

Intrusion detection and Heartbeat/Pinging. 

a. Intrusion and Anomaly Detection Systems (IDSs)  

IDSs [32], [33], [34], [35], [36] are strongly adopted in clouds. Generally, IDSs 

are used for detection of network or hosts attacks (e.g., Denial of service, Buffer 

overflow, Sniffer attacks). They are based on behavior observation of the component 

and an alarm is raised if an abnormal behavior is detected. They can be grouped into 

two detection principles, namely misuse-based (or Signature-based) and anomaly-based 

IDS. 

Signature-based IDS 

This kind of IDS recognizes intrusions and anomalies by matching observed data 

with pre-defined descriptions of intrusive behavior. Therefore, a signature database 

corresponding to known attacks is specified a priori. 

Anomaly-based IDS 

The strategy of anomaly detection is based on the assumption that abnormal 

behavior is rare and different from normal behavior, and thus it tries to model what is 

normal rather than what is anomalous. Anomaly detectors generate an anomaly alarm 

whenever the deviation between a given observation at an instant and the normal 

behavior exceeds a predefined threshold (see Figure 1.7). Anomaly detection refers to 

the important problem of finding non-conforming patterns or behaviors in live traffic 

data. These non-conforming patterns are often known as anomalies. Three types of 
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anomaly-based IDS techniques are available for cloud Computing: statistical, data 

mining, and machine learning techniques [32],[33], [34], [35], [44]. 

 

Figure 1.7.  Anomaly Detection System. 

 

Statistical based anomaly detection- In this technique, anomaly detection is realized by 

observing computations in the cloud and it creates a profile which stores a value to 

represent their behavior. In order to detect failures using these techniques, two profiles 

must be used. The first one stores the ideal profile while the second one stores the 

current profile which is updated periodically (this one calculates anomaly score). If 

anomaly score of current profile is higher than the threshold value of stored profile, then 

it is considered as anomaly and it can be detected. A survey of statistical based anomaly 

detection is presented in [37]. Statistical anomaly detection systems can detect 

unpredictable anomalies. They can monitor activities such as CPU (Central Processing 

Unit) usage, number of TCP (Transmission Control Protocol) connectors in term of 

statistical distribution but more time is required to identify attacks and detection 

accuracy is mainly based on the amount of collected behaviors. 

Data mining based anomaly detection- Data mining techniques such as: classification, 

clustering and association rule mining can be used for failure detection. Data mining 

techniques use an analyzer which can differentiate normal and abnormal activity within 

clouds by defining some boundaries for valid activities in the cloud. A good number of 

approaches are proposed for this issue in [38]. Data mining anomaly detection 

techniques are largely used because they do not need any prior knowledge of the system 
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but their algorithms are generally computation-intensive. Moreover, data mining 

techniques can produce high false alarm rate (FAR) and they require more time and 

more sample training.  

Machine learning based anomaly detection - The ability for programs or software to 

improve performance over time by learning is an important technique for the detection 

of anomaly. Verified values or normal behaviors of data are stored; when anomaly 

occurs or is being detected, the machine learns its behavior, stores the new sequence or 

rules. This technique creates a system that can improve performance of the program by 

learning from the prior results [39],[40], [41]. A survey on existing techniques based on 

machine learning is presented in [42]. Machine learning techniques alone can just detect 

known attacks. Therefore, they must be accompanied with statistical or data mining 

techniques in order to ensure detection of suspected unknown anomalies. We can see 

that each of the previous techniques has its strengths and weaknesses; the recent works 

for anomaly detection in cloud computing are focusing on development of more 

efficient hybrid techniques from the existing IDSs. Hybrid techniques are efficient for 

anomaly detection but they often come with high computational cost. 

b.  Heartbeat and Pinging Strategies 

The most common implementation for fault detection in cloud computing 

systems is based on two keep-alive massage strategies: heartbeat and pinging [43]. In 

Heartbeat strategy, a message is periodically sent from a monitored node to the failure 

detector to inform that it is still alive. If the heartbeat does not arrive before a timeout, 

the failure detector suspects the node is faulty (see Figure 1.8 (a)).  

In pinging strategy, a message is continuously sent from a failure detector to a 

monitored node. The failure detector expects to receive as answer an ACK. If a keep-

alive message fails, a probe (i.e., a series of messages separated by a time interval) can 

be used to verify whether a node is really faulty (Figure 1.8 (b)). 



Chapter1                                                                                                                    Background 

 

17 

 

 

(a) 

 
(b) 

Figure 1.8. a) Heartbeat strategy; b) Pinging strategy. 

 

Heartbeat or pinging strategies are used for permanent hardware fault detection 

where the detection is focused on finding the crashed nodes. Furthermore, they are 

based on message passing which can produce an overflow in network connections.  

In cloud computing systems, failure detection is done with the aid of intrusion detection 

and heartbeat/pinging strategies. Intrusion detection systems are dedicated to ensuring 

safety requirements by preventing any malicious attacks against the cloud connections 

or nodes. This strategy is based on monitoring the system behavior to detect any 

abnormal behavior produced by malicious attacks. The failure detection in this case is 

effected by an external monitor component which manipulates a set of data and applies 
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a sequence of computations to decide whether there is an anomaly or not. This type of 

process requires more time, and more computations. That is why, it cannot offer high 

accuracy for failure detection and this justifies the high false alarm rate (FAR) in IDSs. 

The second strategy used in cloud networks is heartbeat/pinging. It is useful for 

detecting the crashed nodes. Heartbeat strategy is based on message-passing between 

the failure detector and the set of monitored nodes. As noted earlier, this can lead to an 

overflow of the network connections. In both IDS and Heartbeat, fault confinement in 

the cloud network is not processed. This means that if one node fails, all of its neighbors 

can simply get infected and the failure would be transferred over the network.  By this 

effect, the safety of the cloud network becomes a great concern.  

1.3.3.2 Fault tolerance in cloud computing 

The techniques that are used to create the fault Tolerance capability in cloud 

computing can be divided into two main categories: proactive fault tolerance and 

reactive fault tolerance [98][101][102][103] (see Figure 1.9).   

a. Proactive Fault Tolerance 

It is based on avoid failures by proactively taking preventative measures. It makes sure 

that the job gets done completely without any reconfiguration. Two techniques are 

based on proactive fault tolerance which are: Preemptive migration and software 

rejuvenation.  

Software Rejuvenation, it designs the system for periodic reboots and it restarts the 

system with clean state with a fresh start.  

Pre-emptive Migration, in this technique, the applications are constantly monitored, 

analyzed and depend on a feedback-loop control mechanism.    

Self-Healing, for better performance, a big task can divided into parts. Running various 

instances of an application on various virtual machines can automatically handle 

failures of application instances.   

b. Reactive Fault Tolerance 

It aims to reduce the effect of the faults already occurred in cloud. Some of the fault 

tolerance policies are: 

Checkpointing and rollback recovery,  is useful for the long running and the big 

applications. It is doing after every change in the system. When the task fails, the job 

will be restarted from the recently checkpoint rather than restarting from the beginning.  
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Job Migration, in which the task can be migrated to another machine after failure 

detection. HAProxy can be used for migration of the jobs to another machine.   

Replication, in order to make the execution succeed, various replicas of task are run on 

different resources.  HAProxy, Hadoop and AmazonEc2 are used for implementing 

replication.  

SGuard,  is based on rollback recovery. It can be implemented in Hadoop and 

AmazonEc2.  

Retry, is the simplest among all. In which the failed task is implemented again and 

again on the same resource.  

Rescue Workflow, it allows the workflow to resist after failure of any task until it will 

not able to proceed without rectifying the fault.  

Task Resubmission, at runtime, the failed task is resubmitted either to the same or to a 

different resource for execution.  

 

Figure 1.9. Fault tolerance techniques in Cloud computing 

 

We can observe that fault tolerance techniques in cloud systems can be 

categorized under two main categories: Rollback recovery (or time redundancy) and 

physical  redundancy (or space redundancy). The rollback recovery mechanism consists 

of the re-execution of the system from the last correct state (e.g., Checkpointing and 

rollback recovery) or even the restart of the system from the begin (e.g., SGuard, Retry, 

Software Rejuvenation).  Space redundancy consists of the concurrent execution of 

many versions of the same program or the division of one program to many parts 
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executed concurrently on different machines (e.g., Replication, Self-Healing) or to 

migrate a process from a failed machine to an operational one (.g., Job Migration, Task 

Resubmission). Rollback recovery is very convenient for transient hardware fault 

tolerance in long applications. But it is not supportable by Real-time cloud applications 

because it needs more time for recovery. Furthermore, a consistent state must be 

calculated for each recovery and this is not easy to get especially in high scalable 

distributed cloud systems. Space redundancy can tolerate only permanent hardware 

crashes. It is very convenient for Real-time applications but it requires the 

implementation of complicated communication policies between the collaborative 

machines.     

We can say that the existent strategies used for the fault tolerance in cloud 

computing have an observable missing in software fault tolerance. This latest can be 

ensured via software redundancy.   

1.4 Conclusion 

In this chapter, some basic concepts of fault tolerance are introduced such as:  

faults model, safety and liveness properties and fault tolerance techniques. Then, 

recovery blocks is presented as a forward recover fault tolerance scheme. After, the 

DRB scheme is described as a parallel execution of recovery blocks for software and 

hardware fault tolerance in real-time distributed systems. Then, Cloud computing 

systems are introduced in the next section. Its architectures and characteristics are 

highlighted. After that, reliability in cloud environment is discussed and the main fault 

detection and fault tolerance techniques are detailed.  
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2.1 Introduction  
There are quite a good number of works on fault detection and fault tolerance in 

cloud computing systems either in component-based systems. Before wrapping up this 

thesis, we would like to mention a few of them. The mentioned researches are classified 

into three main classes: Fault detection in cloud computing, Fault tolerance in cloud 

computing and fault tolerance in component-based systems. 

2.2 Fault detection in cloud computing systems 

Many researches have been provided for fault detection in cloud Computing.  

Fan et al. in [46] use Petri Nets model to propose a fault detection strategy for cloud 

module by providing a cloud computing fault Net (CFN). The CFN aims to model 

different basic components of the cloud application as either the detection or failure 

process. By the CFN, byzantine fault detection can be done dynamically in the 

execution process. Wang et al. in [47] propose an online incremental clustering 

approach to recognize access behavior patterns and use CCA (Canonical-Correlation 

Analysis) to model the correlation between workloads and the metrics of application 

performance/resource utilization in a specific access behavior pattern. In [48], Barhuiya 

et al. introduce a lightweight anomaly detection tool (LADT) which monitors system-

level and virtual machine level metrics in cloud data to detect node level anomalies 

using simple metrics and correlation analysis. In this work, LADT addresses the 

complexity of implementing efficient monitoring and analysis tools in large-scale cloud 

data centers by collecting and storing the metrics generated by node and virtual 

  



Chapter2                                                                                                                   Related Works 

22 

 

machines using Apache Chukwa. T. Wang et al. present in [49] a correlation analysis 

based approach to detecting the performance anomaly for internet ware using kernel 

canonical correlation analysis (KCCA) to model the correlation between workloads and 

performance based on monitoring data. Furthermore, XmR control charts are used to 

detect anomalous correlation coefficient and trend without a prior knowledge. In [50], 

C. Wang et al. propose an algorithm that computes statistics on data based on multiple 

time dimensions using statistical methods. The proposed algorithms have low 

complexity and are scalable to process large amounts of data. The works in [47], [48], 

[49],[50] are based on statistical monitoring techniques which are based on observing 

the system behavior to detect any abnormal behavior. This process requires a prior 

knowledge which is extremely difficult in large scale systems. 

Kumar et al. in [51] present a fault detection algorithm for faulty services using data 

miningôs outlier detection method that can help to detect accurate and novel faulty 

services without any prior knowledge. In [52], Prasad and Krishna present statistical 

chart approach which is the standard algorithm applied to outlier detection for anomaly 

detection in continuous datasets. In [53], Ranjan and Sahoo present a new clustering 

approach based on K-medoids method for intrusion detection. The works in [51], [52], 

[53] are based on data mining system monitoring. These techniques present some hard 

computations and generate a high false alarm rate. In [54], Singh et al. propose a 

collaborative IDS framework in which known stealthy attacks are detected using 

signature matching and unknown attacks are detected using decision tree classifier and 

support vector machine (SMV). In [55], Pandeeswari and Kumar introduce an hybrid 

algorithm which is a mixture of Fuzzy C-Means Clustering algorithm and Artificial 

Neural Network (FCM-ANN). In [56] Sha et al. propose a statistical learning 

framework by adopting both the high-order markov chain and multivariate time series. 

Ghanem et al. propose in [57] a hybrid approach for anomaly detection in large scale 

datasets using detectors generated based on multi-start meta heuristic method and 

genetic algorithm. The works in [54], [55], [56], [57] are hybrid system monitoring 

techniques which require high computational costs.  

In [58],  Arockiam and Francis present fault detection technique based on two 

strategies: push model and pull model. In push model, fault detector sends signals to 

various nodes in the cloud to check their health status. On the other hand, in pull model, 
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each component in the system sends signals to fault detector telling its health status.  

Some techniques based on heartbeat strategy are presented in [59], [60]. In [61], 

Hayashibara et al. presents the • Accrual failure detector. It is based on heartbeat 

strategy but instead of providing information of boolean nature (Trust or Suspect); it 

produces a suspicious level on a continuous scale. By this, the applications can directly 

use the value output by the accrual failure detector as a parameter to their actions. These 

approaches are designed to adapt dynamically to their environment and in particular, 

adapt their behavior to changing network conditions. In [62], Lavinia et al. present a 

failure detection system that combines the power of existing approaches such as gossip 

protocol with the decoupling of monitoring and interpretation as offered by the accrual 

failure detection solutions. This combination gives a better estimation of the inter-

arrival times of heartbeat and an increase level of confidence in the suspicion of process 

being lost. The works in [58], [59], [60], [61] and [62] are focalized only on hardware 

fault detection in the cloud computing nodes without detecting software faults.  In the 

works [46-62] fault detection strategies in cloud computing are presented without 

considering the component-based architecture, unlike our proposition which is 

dedicated to fault detection in component-based cloud computing architecture. 

2.3 Fault Tolerance in Cloud computing systems 

In this section, some current researches of fault tolerance are presented.   Ganesh 

et al. in [22] emphasizes fault tolerance by considering reactive and proactive fault 

tolerance policies. In proactive fault tolerance policy, preemptive migration and 

software rejuvenation techniques were discussed. Then, Checkpointing/Restart, 

replication and task resubmission were discussed in reactive fault tolerance.   Zhang et 

al. in [114] proposed a novel approach called byzantine fault tolerant cloud (BFT-

Cloud) for tolerating different types of failures in voluntary-resource clouds. BFT 

(Byzantine Fault Tolerant Cloud) can tolerate different types of failures including the 

malicious behaviors of nodes by making up a BFT group of one primary and 3f replicas. 

BFT clouds are used for building robust systems in voluntary-resource cloud 

environments. In [115], Jia et al.  focus on the principle of fault correction by replacing 

the failed component by a functionally equivalent one. The authors proposed the fault 

correction by providing a light-weight fault handling for migration long-running 

application services into shared open cloud infrastructures. To minimize failure impact 
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on services and application executions, they presented a diagnosis architecture and a 

diagnosis method based on the service dependence graph (SDG) model and the service 

execution log for handling service faults. Therefore, by analyzing the dependence 

relations of activities in SDG model, the diagnosis method identifies the incorrect 

activities and explains the root causes for the web service composition faults, based on 

the differences between successful and failed executions of composite service. Choi et 

al. in [116], proposed a fault tolerance and a QoS (Quality of Service) scheduling using 

CAN (Content Adressable Network) in mobile social cloud computing by which, 

members of a social network share cloud service or data with other members without 

further authentication by using their mobile device. Fault tolerance and QoS scheduling 

consists of four sub-scheduling algorithms: malicious user filtering, cloud service 

delivery, QoS, provisioning replication and load balancing. Under the proposed 

scheduling, a mobile device is used as a resource for providing cloud services, faults 

caused from user mobility or other reasons are tolerated and user requirements for QoS 

are considered. By using fault tolerance and QoS scheduling, faults arising from mobile 

device are tolerated such as: network disconnection, battery drain. In [117], Jing et al. 

proposed matrix multiplication as a cloud selection strategy and technique to improve 

fault tolerance and reliability and prevent faulty and malicious clouds in cloud 

computing environment. Sun et al. in [118] presented a dynamic adaptive fault tolerance 

strategy DAFT. It is based on the idea of combining two fault tolerance models:  a 

dynamic adaptive checkpointing fault tolerance model and a dynamic adaptive 

replication fault tolerance model in order to maximize the serviceability. In [119], Yi et 

al.  proposed a fault tolerance job scheduling strategy for grid computing. The 

scheduling strategy includes JRT (Job Retry), JMG(Job Migration without 

Checkpointing) and JCP(Job Migration with Checkpointing). The authors concluded 

that JRT strategy has the most optimal system performance improvement for small jobs 

and JCP strategy leads to the lowest performance improvement.  An adaptive fault 

tolerance of real-time applications (AFTRC) running on virtual machines in cloud 

environment is proposed by Malik and Huet in [120].  The AFTRC scheme tolerates the 

faults on the basis of reliability of each computing node. It is based on such modules 

like: Acceptance Test (AT), Time Checker (TC), Reliability assessor (RA), and 

Decision Mechanism (DM). Unfortunately, the acceptance test of the virtual machines 
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is not discussed. In [121], Wu et al. puts forward that resource consumption is also an 

important evaluation metric for any fault tolerant approach. The corresponding 

evaluation models based on mean execution time and resource consumption are 

constructed to evaluate any fault tolerant approach. In [121], an approach that aims to 

handling quite a complete set of failures arising in grid environment by integrating basic 

fault tolerant approaches is proposed. It is based on the four basic approaches: retry, 

alternate resource, checkpoint/ restart, and replication and it can dynamically and 

automatically decide which one is used by analyzing the current state of the running 

task. An evaluation model for mean execution time is constructed and used to evaluate 

fault tolerant approaches. A membership management solution over social graphs in the 

presence of byzantine nodes is proposed by Lim et al. in [122]. A novel software 

rejuvenation based fault tolerance scheme is proposed by Liu et al. in [135]. This 

scheme comes from two inherently related aspects. First, adaptive failure detection is 

proposed to predict which service components deserve foremost to be rejuvenated. 

Second, a component rejuvenation approach based on checkpoints with trace replay is 

proposed to guarantee the continuous running of cloud application systems.    Gang et 

al. in [136] proposed a framework to provide load balancing and fault prevention in web 

servers in proactive manner to ensure scalability, reliability and availability. This 

framework is based on autonomic mirroring and load balancing of data in database 

servers using MySQL and master-master replication.  Garraghan et al in [137] 

introduced a byzantine fault tolerance framework that leverages federated cloud 

infrastructure. An implementation of the proposed framework is discussed and detailed 

experiments are provided.   Alannsary et al in [138], proposed a reliability analysis 

model that enables SaaS providers to measure, analyze and predict its reliability. 

Reliability prediction is provided by analyzing failures in conjunction with the 

workload. Mohammed et al. in [140]  propose an infrastructure for IaaS cloud platforms 

by optimizing the success rate of virtual computing node or virtual machines. The main 

contribution is to develop an optimized fault tolerance approach where a model is 

designed to tolerate faults based on the reliability of each compute node and can be 

replaced if the performance is not optimal.  Reddy et al. in [141], proposed an 

FT2R2Cloud as a fault tolerant solution using time-out and retransmission of requests 

for cloud applications. FT2R2Cloud measures the reliability of the software components 
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in terms of the number of responses and the throughput. The authors proposed an 

algorithm to rank software components based on their reliability calculated using a 

number of service outages and service invocation.  Zheng et al. in [142], identified 

major problems when developing fault tolerance strategies and introduced the design of 

static and dynamic fault tolerance strategies. The authors identify significant 

components of complex service-oriented systems, and investigate algorithms for 

optimal fault tolerance strategy selection. An heuristic algorithm is proposed to 

efficiently solve the problem of selection of a fault tolerance strategy. Chen et al. in 

[143] presented a lightweight software fault tolerance system called SHelp, which can 

effectively recover programs from different types of software faults.  As final work, 

Moghtadaeipour and Tavoli in [144] proposed a new approach to improve load 

balancing and fault tolerance using work-load distribution and virtual priority. We can 

see clearly that the current researches focus on improving the fault tolerance in cloud 

environments by improving the existent strategies or by collaboration of such strategies 

to develop one more efficient.  Thus, the proposed works are restricted on hardware 

faults tolerance without dealing with software fault tolerance.    

2.4 Fault tolerance in component-based systems 

In this section, some researches dealing with fault tolerance in component-based 

systems are presented. The component-based analysis of fault tolerance was first studied 

by Arora and Kulkarni in [63], [65]. They proved that a fault tolerant program is a 

decomposition of a fault intolerant program and a set of fault tolerance components. A 

fault tolerant program satisfies safety and liveness properties. In [65], the authors 

proved that fault tolerance components are: Detectors and Correctors, where Detectors 

ensure safety property and Correctors ensure liveness property. The work in [65] was 

extended to the context of real-time systems in [66]. In [63], [64], [65], [66], a program 

is presented as a set of guarded commands in the shared memory model. Moreover, the 

Detector (resp. Corrector) component which ensures safety (resp. liveness) property is 

defined based on state predicate. State predicate means that properties or requirements 

verification is done on the state level. Unlike those works, in this thesis, an actual 

system is designed incrementally by composing smaller components. Each component 

has its own state space, behavior, interface, and each component is responsible for 

delivering a certain set of tasks.  Roohitavaf and Kulkarni in [67] presented algorithms 
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for adding stabilization and fault tolerance in the presence of unchangeable environment 

actions.  Bensalem et al. presented in [68] an heuristic method for compositional 

deadlock and verification of Component-based systems using the Invariant. This work 

focuses on just Deadlock detection. In [45], Bonakdarpour et al. introduced a theory of 

fault recovery for component-based models. A non-masking model was constructed 

from BIP models in order to ensure liveness property using Corrector component. But, 

the authors in [45] have not dealt with fault detection concerns.    Wu et al. in [76] 

present a model-driven approach to describe specification and semi-automatic 

configuration of fault tolerance solutions for component-based systems on the software 

architecture level. In this work, the fault tolerance mechanisms are implemented by the 

system in the form of a specific kind of component named tolerance facilities. In [77], 

Tambe et al. present a model driven technique used to specify the special fault tolerance 

requirement for component-based systems. In [78], Jung and Kazanzides presented a 

run-time software environment for safety research on component-based medical robot 

systems. In both [77], [78], the mechanisms and services are designed to be middleware. 

Liu and Joseph in [79], [80] introduced a uniform framework for specifying, refining 

and transforming programs that provides fault tolerance and schedulability using the 

temporal logic of actions. In [81], a formal framework for the design of fault detection 

and identification components has been proposed where the framework is based on 

formal semantics provided by temporal epistemic logic. Temporal logic is a logical 

language for formal specification of requirements. Generally, temporal logics are used 

with model checkers for model verification (e.g., UPPAAL, KRONOS). Finally, Alko 

and Mattila in [64] have evaluated effectiveness of service oriented architecture 

approach to fault tolerance in mission critical real-time systems without dealing with 

component-based approach. 

2.5 Conclusion 

In this chapter, some current researches are highlighted. In the first part,  some 

researches of fault detection in cloud systems are cited. They can be categorized under 

two main categories: fault detection using systems monitoring and fault tolerance using 

heartbeat/pinging strategies.     In the second part, some current fault tolerance 

researches in cloud computing are mentioned. We can observe that the researches aimed 

to enhance the existent fault tolerance techniques by collaboration between more than 



Chapter2                                                                                                                   Related Works 

28 

 

one technique either by reinforcing the existing techniques by novel opportunities. 

Finally some research on fault tolerance and fault recovery in component-based systems 

are cited.  
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3.1 Introduction 

A cloud application is composed of a number of cloud modules [10]. Each cloud 

module has a virtual machine used to realize its function and each function is composed 

of a set of tasks. It is evident that the cloud computing architecture, its layers and its 

composition of components and services need to be designed as web service 

components [11] based on well proven component-based software engineering. 

component-based approach is a popular divide-and-conquer technique for designing and 

implementing large systems as well as for reasoning about their correctness. It stipule 

that a system is designed incrementally by composing smaller components, each 

responsible for delivering a certain set of tasks to separate different concerns. Thus, 

component-based design and analysis of fault tolerant systems is highly desirable in 

order to achieve systematic modularization of such system [45].   Here, a component 

represents an entity that provides a specific functionality. The components are expected 

to be scalable, fault tolerant, manageable, and autonomous [13]. Several tools are 

available for modeling heterogeneous embedded systems founded on component-based 

models. One of them is BIP (Behavior, Interaction, Priority) tool [14], [15], [16].  In this 
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thesis, we will use BIP as a Component-based framework. It has been used successfully 

in the field of robotics [17], [18], [19]. In BIP framework, a process is represented as a 

Transition Labeled System (TLS), where the principal components are: the atomic 

component and the composite component.  

3.2  BIP framework for component-based design 

BIP framework [7] is used for modeling heterogeneous real-time components 

which integrates results developed at Verimag Laboratory. It supports a component 

construction methodology based on the idea that components are obtained as 

superposition of three layers: the first one is the behavior layer which presents the 

internal behavior by a set of transitions and states. The intermediate layer includes a set 

of connectors describing the interactions between transitions of the behavior. The upper 

layer is a set of priority rules describing scheduling policies for interactions. Layering 

implies a clear separation between behavior and structure (i.e., connectors and priority 

rules). The principle components in BIP framework are: atomic component and 

composite component. 

3.2.1 Atomic component  

We define an atomic component as a Labeled Transition System (LTS) with a 

set of ports labeling individual transitions. These ports are used for communication 

between different components. 

Definition1. An atomic component ὄ is a labeled transition system represented by a 

tuple  ὗȟὖȟ­ȟὢȟ ή  where:  

ὗ:  is a set of states ήȟήȟȣȟ ή ;    

ὖ: is a set of communication ports ὴȟ ὴȟȣȟ ὴ Ƞ we can distinguish two types of 

ports: Complete or Incomplete. 

Complete Port (Black Triangle): An interaction that contains a complete port is a 

complete interaction in the sense that complete port does not need to be synchronized 

with other ports to accomplish an interaction. 

Incomplete Port (Black Circle): An incomplete port needs to be synchronized with 

other ports in order to achieve an interaction. Therefore, an interaction that contains an 

incomplete port is incomplete. 

­ Ḋ ὗ ³ ὖ ³ Ὃ ³ Ὂ ³ ὗ is a set of transitions, each transition is a tuple of the form  ήȟ

ὴȟὫȟὪȟ ή    where:  



Chapter 3                                                                                        Component-based Cloud computing  

 

31 

 

 

ή: is the state which is the transition source;  

ὴ: is the transition label and is the port associated to the transition;  

Ὣ: is the transition guard which is a boolean condition on the set of variables ὢ; the 

transition can be executed iff its guard Ὣ is true and some interactions including the port 

ὴ are offered; 

Ὢ: is an internal action on the set of variables ὢ, the function f is executed when the 

transition ὸ is enabled and we write ὸὪ. In an atomic component, variables are treated 

and modified by component internal functions; 

ή: is the state which is the transition target; 

ὢ: is a set of variables ὼ which are manipulated by the internal functions, Ὢ; 

ή: is the initial state of the atomic component. 

If we have a variable ὼ which has an initial value ὺ and we write : ὼὺ ὸὪᴼ

ὼὺǋȟ by which we mean that: there exists a transition ὸ which contains an internal 

function f such that after the achievement of the transition ὸ, the function f will modify 

the variable ὼ from the value ὺ to the new value ὺǋ.   

 

Figure 3.1. A BIP atomic component (Producer). 

 

The Figure 3.1. shows an atomic component (Producer), where: 

 ὗ ὖȟὅ 

 ὖ  ὖὶέὨόὧὩȟὅέάάόὲὭὧὥὸὩ; 

 ­ ὖȟὖὶέὨόὧὩȟὼ υȟὼȡ ὼ ρȟὅ ȟ ὅȟὅέάάόὲὭὧὥὸὩȟ

ὝὶόὩȟὖ Ƞ 

 ὢ ὼ,  
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 ή=P 

An execution cycle of an atomic component ὄ ὗȟὖȟ­ȟὢȟή  is ὅώ =  ὸὸȣὸ 

such that ὸ is the first transition in B and ὸ is the last one.  An execution cycle of an 

atomic component is the execution of all of its inner transitions for one time. 

The behavior of a system as defined in [134] is what the system does to implement its 

function and is described by a sequence of states that can be: Computation, 

Communication or stored information.  

 A Behavior of an atomic component ὄ  ὗȟὖȟ­ȟὢȟ ή  is ὄὩὬὄ ὪὪȣὪ 

and for all i:  

- ὪᶰὊ(i.e.,F is the set of internal functions in B) and 

- There exists a transition sequence ὸὸȣὸ and a state sequence ήήȣ such that: 

q0 ὸὪ  Oq1 ὸὪ qO2 éé... ὸ Ὢ qOn 

The atomic component behavior has a direct effect on the set of variables X. If the initial 

value of the set X is ὺ, it will be ὺ after the achievement of the atomic component 

behavior: ὢὺ ὄὩὬὄ ᴼὢὺ  ὢὺɂὪᴼὢὺ Ὢᴼὢὺ Ὢᴼ

Ễὢὺ . ὢ is the set of variables andὺȟὺȟȢȢὺare the values of the set X. 

Hence, the behavior of  ὄ  in one execution cycle is: 

ὄὩὬ ὄ  =  q0 ὸὪ  Oq1 ὸὪ qO2 éé...ᴼὸ Ὢ qO0 . 

This means that ὄὩὬ ὄ  produces final results after achievement of one execution of 

the entire internal functions of the atomic component ὄ.  

3.2.2 Composite component 

The composite component is constructed from a set of interacted atomic 

components. It represents the cloud computing system which is composed of interacted 

cloud nodes. 

Definition 2. A composite component ὄ gὄρȣὄὲ is defined by a composition 

operator parameterized by a set of interactions. It is a transition systemὗȟgȟ­ȟὢȟ

ή , where different mathematical notations carry the meanings as shown in Table 3.1. 
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Table 3.1.Some mathematical notations and their meanings. 

ὗ Ã  ὗὭ 

The set of global sates is obtained by the cartesian product of 

all the atomic componentsô states in the composite 

component. 

ή ή ȟȢȢȢή Ƞ The set of all the atomic componentsô initial states. 

ὢ  ὢ Ƞ The union of the atomic componentsô variables sets. 

­ : is the least set of 

transitions satisfying the rule 

[45]: 

ὥ ὴ ᶰȢȢ Ὥᶅɴ Ὅȡήᴼήô ὭᶅÎρȢȢάȡ ή ήôήȣή

ᴼ ήôȣήô  

 

- As mentioned in [45], a composite component ὄ

gὄȣὄ  can execute an interactionὥÍg,iff for each port 

piÍa, the corresponding atomic component ὄcan execute a 

transition labeled with ὴ - the states of the components that 

do not participate in the interaction stay unchanged. 

 

g ᷾ ‍ The set of connectors which rely on the atomic components. 

 

3.2.3 Connector 

A connector ‍ ὴ ᶰȢȢ is a set of ports of the atomic components involved in 

‍. It represents the network connection in the cloud system. We assume that a 

connector contains at most one port from each atomic component. The Interaction of a 

connector is any non-empty subset of this set. As defined in [45], for a given system 

built from a set of ὲ atomic components ὄ ὗȟὖȟ­ȟὢȟ ή , we assume that 

their respective sets of ports are pairwise disjoint, (i.e., for any two Ὥ̧Ὦ from {1..n}, we 

have PiΚPj= )ɲ. We can therefore define the set ὖ ẕ ὖ of all ports in the system. 

An interaction is a set aÌP of ports. When we write  ὥ ὴ ᶰ , where IÌ{1..m}. An 

interaction can be a rendezvous or a broadcast interaction. 

3.2.3.1 Rendezvous Connector 

Or strong synchronization enables an exchange of information between the 

nodes. In this type of interaction, all the ports are synchronous (see Figure 3.2). The 

initiative meaning of the synchronous is that it has to wait for other ports in order to 

execute the interaction. The connector ‍ ὴ ȢȢȟὴËὄ ȢȢ defines only one 
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interaction: ὥ ὄὄὄ in which, all the atomic components must synchronize at the 

same time in order to achieve the interaction ὥ. 

 

Figure 3.2.Rendezvous interaction. 

 

3.2.3.2 Broadcast Connector 

Or weak synchronization is used to update information stored at the nodes. It 

includes one trigger (i.e., initiator) port in ὄ and two synchronous ports. The intuitive 

meaning of trigger is that it can initiate the interaction, even if all other ports are not 

enabled.  

 

Figure 3.3. Broadcast interaction. 

 

The connector (in Figure3.3) ‍ ὴ ȢȢȟὴËὄ ȢȢ ȟὄ Ὥί ὸὬὩ ὄὶέὥὨὧὥὸ ὭὲὭὸὭὥὸέὶ  

describes the set of all interactions that contains at least ὄ, which are:ὥ ὄ , ὥ

ὄὄ , ὥ ὄὄ  ,ὥ ὄὄὄ .  We can see that all the possible interactions 

contain the initiator ὄand the maximum one contains all the atomic components: ὄ,ὄ 

and ὄ. 

3.3 Recapitulations 

In the next chapters, the cloud system will be considered as a complex system 

which is composed of a set of atomic components (i.e., nodes) supported by network 

connections. The atomic component is the simpler component; it reflects the cloud 

module and the atomic component transitions reflect the cloud module tasks, where the 

composite component represents the cloud computing system that is composed of a set 
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of interacted cloud modules. The set of component-based concepts used in this thesis 

and their equivalents in cloud computing system are presented in the Table 3.2. 

 

Table 3.2. Component-based concepts and their equivalents in Cloud system. 

Cloud system concepts Component-based approach concepts 

Cloud module / node Atomic component 

Module task Atomic transition 

Cloud system Composite component 

Network connections Connectors 

Primary block Primary behavior 

Alternate block Alternate behavior 

 

3.4 Conclusion 

In this chapter, the component-based approach for cloud systems is introduced. 

Then, the main concepts of BIP as a framework for component-based design such as: 

the atomic component, the composite component and connectors are described. Finally, 

a recapitulation of the used terms in this thesis is given to facilitate the comprehension 

of the rest of chapters.   
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4.1 Introduction 

Fault Detection is considered as one of the main challenges in large-scale 

dynamic environments and thus, for maintaining the reliability requirements of cloud 

systems. Most of the popular existing techniques for fault detection applied on the cloud 

computing environment in general, are based on system-monitoring despite the extreme 
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difficulty of keeping track of all machines with their huge number in cloud systems. In 

this chapter, we propose a fault detection framework for the component-based cloud 

computing by using Recovery Blocksô acceptance test. This framework aims to 

construct Fail-Silent cloud modules which have the ability of self-fault detection. In 

this, the detection process of transient hardware faults, software faults, and response-

time failures is performed locally on each computing machine in the cloud system. We 

assume that there is no permanent crash in the cloud nodes and the acceptance test is 

reliable and cannot be altered. Each cloud node has one predefined function and the 

software developer can set the acceptance test of each cloud node on the system. 

4.2 Acceptance test for fault detection  

Critical systems are usually related to human life, thus ensuring safety property 

is very important in order to avoid catastrophic consequences caused by failures. Final 

results of a critical system must be validated in order to judge their correctness. This 

validation can be offered by the acceptance test. An acceptance test ὃὝ of a component 

B is a boolean expression on the set of variables, X. It is used to validate final resultsô 

correctness. The acceptance test ensures that the final results are acceptable but not 

always they may be the desired results (i.e., some results may not be desired).Thus, it 

ensures the continuity of service offered in spite of degradation in the system quality, 

just to be safe from any disaster. 

4.2.1 Fault detection in atomic component 

An atomic component ὄ  ὗȟὖȟ­ȟὢȟ ή  produces results after each 

execution cycle. The results could be correct or not correct. Without a mechanism of 

fault detection, we cannot judge the correctness of final results. Therefore, an atomic 

component must have an acceptance test which is a boolean expression on the set of 

variables ὢ of the atomic component. 

Definition 1. An acceptance test ὃὝ ὢ of the atomic component ὄ ὗȟὖȟ­ȟὢȟ

ή  is a boolean expression on the set of variables, ὢ. The acceptance test validates the 

correctness of ὄôs final results and ensures that they do not lead to disastrous 

consequence even if they are not the expected results. 
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After one execution cycle, ὢὺ ὄὩὬ ὄ ᴼὢὺ , the set of variables ὢ will be 

modified by ὄὩὬ ὄ from the value  ὺ to the new value ὺ. Final results ὺwill be 

checked by ὃὝ ὢ and three cases are possible here. Final results may be: 

- The Correct results c, which satisfy the acceptance test and which are considered as 

the desired results. 

- The Acceptable results a, which satisfy the acceptance test but they are not the desired 

results and they do not lead to disaster for the system. 

- The Faulty results Ὢ, that do not satisfy the acceptance test. These kinds of results can 

incur huge damages to the system.   

Basing on these latest cases, the AT judges the behavior of the atomic component ὄ and 

decides its correctness.Now, again two cases are possible for ὄ:  

- If the final results validate the acceptance test (i.e.,ὃὝ ὺᴂ = True) then, B has a 

correct or acceptable behavior (Fault-Free Behavior)and it earns execution. 

- If the final results do not validate the acceptance test (i.e.,  ὃὝ ὺᴂ = False) then, B 

has a failed behavior and it must be stopped immediately to go through recovery and 

fault correction. 

We mean by these two cases that: if  ὄὩὬ ὄ Ṻ !4 Ý B is correct else B is failed.  

 

Figure 4.1. Fault detection in atomic component using the acceptance test. 

 

Figure 4.1 shows the fault detection using the acceptance test. The atomic component 

ὄ operates and validates its final results after each execution cycle. If ὄôs final results 

satisfy the AT, ὄ has a correct or acceptable behavior (i.e., in left state). ὄ stands at that 

state till detection of failure by ὃὝ ὢ. At that moment, the atomic component  ὄ will 

be considered as failed and ὄ will pass to an unstable state (i.e., the right state). At that 

state, the component will be blocked till recovery. An atomic component that has the 

ability of self-fault detection using an acceptance test is Fail-Silent atomic component 

(FSB). A Fail-Silent atomic component satisfies the regular expression:ὧȾὥ ᶻὪ. The-‫ 

atomic component has a correct behavior ὧ or an acceptable behavior ὥ. At just 
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detection of a failure by the AT, the atomic component will be considered as failed (f) 

and it will be blocked immediately attending the correction. The last correct state of the 

atomic component ὄ will be saved in the history state Ὄίὄ . A Fail-Silent atomic 

component operates without failures and returns a correct or an accepted result; 

otherwise, it will be blocked immediately. 

Proposition: A history state Hs is used in the atomic component in order to save the last 

correct variable values of the atomic component and the last received messages from the 

other atomic components. Hs=<ὢὺȟ άίὫ ȟ άίὫȟȣ  >. The history state is 

indispensable for recovery phase. 

Definition 2. A Fail-Silent atomic component, ὊὛ ὗȟὖȟ­ȟὢȟήȟὌίȟὃὝ is a 

component which can validate its final results and judge its correctness by the 

acceptance test  !4 Ȣ   4ÈÅ  regular expression of a Fail-Silent atomic component is-‫ 

ὧȾὥᶻὪ.  

 

Algorithm of Fail -Silent atomic component: 

Fail-SilentB: ExecuteὄὩὬ ὄ  

                If (ὃὝὢ  then 

                  Update Ὄίὄ  

                  Go to Fail-SilentB 

               Else 

                Deadlock 

EndIf 

End Fail-SilentB 

 

Theorem1: A Fail-Silent atomic component, ὊὛ ὗȟὖȟ­ȟὢȟήȟὌίȟὃὝ can 

insure safety property using the cceptance Test ὃὝ. The AT can validate final results 

and decide their correctness. In the case of fault detection, the atomic component  ὊὛ 

will be passed to a Deadlock state till failure correction. 

4.2.2 Fault detection in composite component 

A composite component ὄ  gὄȣὄ  is a set of atomic components ὄ ȢȢ 

glued by the set of connectors g ‍ ȢȢ .  As seen in chapter 3 - section 3.2.3, a 

connector in a composite component can be rendezvous or broadcast connector. 
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4.2.2.1  Rendezvous connection 

If we have the Rendezvous connector ‍ such that ‍ ὴ ȢȢȟὴËὄ , the only 

possible interaction is ὥ  ὄ ὄ ὄȣὄ  which contains all the atomic components 

involved in the connector ‍. Therefore, the failure of one atomic component will 

directly infect the others atomic components in the same rendezvous interaction. This 

means that ᶅ ὄ ᶰ‍Ƞ ὭὪ ὄ  is failed, then ᶅὄ ὥὲὨὄᶰ‍, ὄ will fail  too. Thus, 

to construct a Fail-Silent rendezvous connector, all its inner atomic components must be 

Fail-Silent as well. Therefore,  ὊὛ ὊὛȟὊὛ ȟȣȟὊὛ  . 

Lemma1. A rendezvous connector, ‍ ὴ ȢȢȟὴËὄ  which involves a set of Fail-

Silent atomic component is Fail-Silent rendezvous connector:  ὊὛ

ὴ ȢȢȟὴË ὊὛ ȢȢ . 

4.2.2.2  Broadcast connection 

If we have the broadcast connector :   

‍ ὴ ȢȢȟὴËὄ   ὥὲὨ ὄ Ὥί ὄὶέὥὨὧὥίὸ ὭὲὭὸὭὥὸέὶ. 

 The possible set of interactions in this case are those containing at least one instance of 

ὄ . The minimum interaction is ὥ ὄ  which contains only the broadcast initiator 

and the maximum interaction is ὥ ὄὄὄȣὄ  which contains all the atomic 

components involved in the connector ‍.  We can see that if the atomic component ὄ  

fails and enters in a deadlock state, the others atomic component involved in the same 

broadcast connector will be blocked too. But, if ὄ έὶ ὄ fails and blocked, it does not 

affect the broadcast initiator ὄ  .   Thus, to construct a Fail-Silent connector ‎, at least 

the broadcast initiator ὄ  must be Fail-Silent.  Therefore,  ὊὛ

ὊὛȟὄςȟȣȟὄ  . 

Lemma2.A broadcast connector ‍ ὴ ȢȢȟὴËὄ ὥὲὨ ὄ Ὥί  ὄὶέὥὨὧὥίὸ ὭὲὭὸὭὥὸέὶ 

which involve at least a Fail-Silent broadcast initiator is a Fail-Silent broadcast 

connector: ὊὛ ὊὛȟὄςȟȣȟὄ  .. 

Lemma 3. A composite component which contains Fail-Silent connectors (rendezvous 

and/or broadcast) is Fail-Silent composite component. The ‫ ὶὩὫόὰὥὶ expression of 

a Fail-Silent composite component is: ὅ Ⱦ ὃȾ ὊᶻὊ. 

Theorem 2. A composite component which is composed of a set of Fail-Silent atomic 

component is Fail-Silent composite component: ὊὛ ‎ὊὛȟ ὊὛȟȣȟ ὊὛ . 

 



Chapter4                                                               Fault Detection in Component-based Cloud Computing 

 

41 

 

4.3 Construction of Fail-Silent models 

4.3.1 Construction of Fail-Silent atomic Component 

Now, let us see how we could construct a Fail-Silent atomic component from an 

initial model that is not Fail-Silent. Let ὄ ὗȟὖȟ­ȟὢȟή  be an atomic 

component. In order to construct a Fail-Silent atomic component, we must add the 

acceptance test. This test validates ὄôs final results. The Fail-Silent  ὄ is ὊὛ

ὗȟὖȟ­ȟὢȟὍȟὌίὄ ȟὃὝ  such that: 

ὗ ὗ᷾ὗȟ ὗ ;ὗand ὗ are two new states. ὗ is the initial state. 

ὖ ὖ᷾Ὓὸὥὶὸ ȟ ὝὩίὸ , Ὓὸὥὶὸ ὥὲὨ ὝὩίὸ are two new ports where, Ὓὸὥὶὸ is 

the first port in the Fail-Silent atomic component and ὝὩίὸ is the last one. 

The first transition Ὓὸὥὶὸ  leaves the initial state ὗ to the state ή, where, the 

transition ὝὩίὸ achieves from the state ὗ  to the state ὗ. 

­ ­ ẕ ὗȟὛὸὥὶὸȟὟὴὨὥὸὩ Ὄίὄ ȟ ή ȟ ὗȟ ὝὩίὸȟὃὝ ȟὗ . 

The set of transitions will be enriched by two transitions associated with the 

ports  Ὓὸὥὶὸ ὥὲὨ ὝὩίὸ. The transition ὗȟὛὸὥὶὸȟὟὴὨὥὸὩ Ὄίὄ ȟή is 

the first transition which leaves the initial state ὗ to the state ή,its internal function is 

ὟὴὨὥὸὩ Ὄί which updates the history state Ὄίὄ  by the last correct variable values 

and the last received messages. The second new transition is 

ὗȟ ὝὩίὸȟὃὝ ȟ ὗ Ȣ It is the test transition in the component ὊὛï it aims to test 

and validate the final results of X by the guard ὃὝ which is the expression of the 

acceptance test. The transition ὝὩίὸ leaves from the state ὗ  to the initial state ὗ. 

This transition is triggered iff the acceptance test is satisfied (ὃὝὢ ὝὶόὩ); else, the 

Fail-Silent atomic component will be blocked on the state ὗ . 

4.3.2 Construction of Fail-Silent composite component  

As seen in the section 4.2.2, in order to construct a Fail-Silent composite 

component for ὄ=‎ὄȟὄȟȣȟὄ which contains a set of atomic components glued by 

a set of connectors ‎. All its inner connectors, rendezvous and/or broadcast must be 

Fail-Silent and so, all its inner atomic components must be Fail-Silent as well.  

Therefore, if we have a composite component, ὄ=‎ὄȟὄȟȣȟὄ , the Fail-Silent 

composite component is ὊὛ ‎ὊὛȟὊὛȟȣȟὊὛ Ȣ 

In the next section, we will apply our approach on the Producer-FIFO-Consumer model. 
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The Figure 4.2 presents a Producer-FIFO-Consumer (PFC) model. This model is 

composed of three atomic components: Producer, FIFO, and Consumer. ὖὊὅ

‎ὖὶέὨόὧὩὶȟὊὍὊὕȟὅέὲίόάὩὶ. Here, ‎ is the set of connectors:‎ ‍ȟ‍ . ‍ 

and ‍ are rendezvous connectors. 

‍ ὥ   ὖὶέὨόὧὩὶȢὅέάάόὲὭὧὥὸὩȠ ὊὍὊὕȢὡὶὭὸὩ. 

‍ ὥ ὊὍὊὕȢὙὩὥὨȠ ὅέὲίόάὩὶȢὅέάάόὲὭὧὥὸὩ. 

 

Figure 4.2. PFC composite component model. 

 

In order to construct a Fail-Silent PFC model, we must first construct its inner Fail-

Silent atomic component. Therefore, we should construct the Fail-Silent Producer, the 

Fail-Silent FIFO and Fail-Silent Consumer. 

 

Construction of Fail-Silent producer: 

 

Figure 4.3.Fail-Silent producer. 

Figure 4.3 shows the Fail-Silent, Producer. It is defined as: 

ὊὛ  ὗȟὖᴂȟ­ᴂȟὢȟὍȟ ὌίȟὃὝ where:ὗᴂ  ὗ ẕ ὗȟὗ  ὗȟὖȟ

ὅȟὗ  
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ὖ ὖẕ Ὓὸὥὶὸ ȟὝὩίὸ

 Ὓὸὥὶὸ ȟὖὶέὨόὧὩȟὅέάάόὲὭὧὥὸὩȟὝὩίὸ  

­ ­ẕ ὗ ȟὛὸὥὶὸ ȟὝὶόὩȟὟὴὨὥὸὩὌίȟὖ ȟ

ὗȟὝὩίὸ  ȟὃὝ ȟὗ  

 ὗȟὛὸὥὶὸ ȟὝὶόὩȟὟὴὨὥὸὩὌίȟὖ ȟ ὖȟὖὶέὨόὧὩȟὼ υȟὼ ὼ ρȟὅ

ȟ ὅȟὅέάάόὲὭὧὥὸὩȟὝὶόὩȟὗ ȟ

ὗȟὝὩίὸ ȟὃὝ ȟὗ   

 

At fault free execution, ὊὛ  performs one execution cycle and before 

updating the history state Ὄί with the new values of  ὢ,  ὊὛ  first validates the 

acceptance test on the transition labeled ὝὩίὸ . If the guard ὃὝ  is true, 

the results are acceptable and the next execution cycle begins with the 

transition Ὓὸὥὶὸ . On which, the internal function ὟὴὨὥὸὩὌί will ensure 

saving of the last correct variable values on the history state (Hs). If the component 

ὊὛ reaches the state ὗ  and the variable values do not satisfy the guard 

ὃὝ , at that moment, the Fail-Silent atomic component ὃὝ  will be 

blocked on the state ὗ  attending the recovery phase. Finally, we can see that we have 

constructed a Fail-Silent atomic component ὊὛ  which can insure the safety 

property using the acceptance test and which respect the ‫ ὶὩὫόὰὥὶ expressionὧȾ

ὥᶻὪ. In the same manner, we will construct the Fail-Silent FIFO (see Figure 4.4) and 

the Fail-Silent Consumer (see Figure 4.5). 

 

Figure 4.4.Fail-Silent FIFO 
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Figure 4.5. Fail-Silent Consumer 

 

After constructing the Fail-Silent atomic components, we will have the Fail-Silent 

composite component PFC (see Figure 4.5). 

 

Figure 4.6.Fail-Silent composite component PFC. 

The Fail-Silent composite component PFC in the Figure 4.6 is composed of a set of the 

Fail-Silent atomic components. If we suppose that a failure occurs in the Fail-Silent 

Producer, then it will be blocked on the sate ὗ  because its results do not satisfy the 

ὝὩίὸ  guard. At the same time, both FIFO and Consumer are in correct 

operation. But, in a future moment, the transition ñWriteò of FIFO component will need 

to synchronize with the component, Producer. This latter is in deadlock state and 

therefore, the components, FIFO and Consumer will be blocked too. We can see that the 

failure of one component in the composite component PFC brings the deadlock of all 

the components which are involved in direct or indirect interaction with the failed 

component. By this way, we have not only stopped the failed component but also we 
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have stopped the fault confinement in the composite component. After this fault 

detection phase, recovery and fault tolerance must be set. 

4.4 A CASE STUDY  

4.4.1 Fire Control System 

Let us explain our approach with a mobile cloud system. Let us consider a fire 

control system which monitors the temperatures in the forest in order to prevent fires. In 

our system, we have three main components:  Sensor node, Cloud node1 and Cloud 

node2. In this system, the mobile sensor frequently takes measures of the forest 

temperatures and sends those data to the Cloud node1 (which receives the temperature 

measures and calculates their average).The average temperature would be sent to the 

Cloud node2 which produces a status report which would be transferred to the system 

control (see Figure 4.7). We have used BIP model to design the fire control system as 

shown in Figure 4.8. 

 

Figure 4.7.Fire control system. 

 

Figure 4.8.Fire Control system BIP model. 
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The sensor node periodically takes temperature measures ὝᶰὝ ȟὝ such 

that Ὕ  and Ὕ  are defined according to the area climate conditions and to the 

sensor node capacities. The difference between two successive temperatures does not 

exceed ‌ȡ ȿὝ Ὕ ȿ ‌Ȣ 

The Cloud node1 receives the temperatures Ὕ from the sensor node in the system and 

calculates the average Ὕof n different temperatures. Then, it sends the average ╣○ to the 

Cloud node 2. The average temperature ╣○ must be between the highest  received 

temperature ╣▐ and the lowest one ╣■(i.e., ╣■ ╣○ ╣▐ . 

The Cloud node 2 receives the average temperature Ὕ from the Cloud node1. 

According to the set of conditions ╒ and the average temperature ╣○, the Cloud node2 

produces a status report about the forest Ὑ ὪὝȟὅ. The values that must be defined 

by the software developer are summarized in the Table 4.1. 

Table 4.1.  The values defined by the system developer. 

Notation Meaning 

Ὕ  The highest temperature that can be detected 

Ὕ  The lowest temperature that can be detected 

‌ ὥὰὪὥ The difference between two successive temperatures 

N 
Required number of temperatures for average 

calculation 

ίὩὲίέὶ Sensor Time-Out 

ὔέὨὩρ  Cloud node1 Time-Out 

ὔέὨὩς  Cloud node2 Time-Out 

C 
The predefined conditions for the Cloud node2 

decision 
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Figure 4.9. Fail-Silent Fire Control system 

 

4.4.2 Construction of the Fail-Silent Fire Control System   

In order to construct Fail-Silent system, we will use the acceptance test 

approach. First, we have to construct the Fail-Silent components. In the next section, we 

describe each component: 

The Sensor node: its main function is measuring the temperature. Therefore, to ensure 

that the component is correct, we have to validate its behavior using an acceptance test. 

The system developer has previous knowledge about the sensor characteristics and the 

area climate where the sensor is deployed. Therefore, according to this information, he 

can define an adequate acceptance test. In our example, we have supposed that one of 

the main characteristics of the sensor is that it can detect only temperatures between 

Ὕ  and Ὕ ὭȢὩȢȟ   Ὕ Ὕ Ὕ Ȣ Besides, the difference between two 

successive temperatures would not exceed ‌ (i.e., ȿὝ Ὕ ȿ ‌) which is a threshold 

used to detect whether the sensor gives a random temperature reading. Furthermore, the 

sensor has to send the temperature to the Cloud node1 before expiration of its Time-

Out. The sensor Time-Out is defined by the system developer. A Clock clk1 is used for 

calculating the passage of time in the sensor. Finally, we can have the sensor node 

acceptance test : ὃὝ  Ὕ Ὕ Ὕ ǪǪȿὝ Ὕ ȿ ‌ ǪǪ ὧὰὯρ

ίὩὲίέὶ . To say that the sensor operates correctly, it must validate the logical 

expression of the acceptance test. Therefore, ὃὝ   will take place as ὝὩίὸ  

transition guard (Figure 4.9). If the component validates the ὃὝ , then the 

temperature will be saved in Ὕ on the next checkpoint and the Clock clk1 will be 

initialized for the next execution cycle.  Else, the sensor will be considered as failed and 
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will be blocked on the state ὗ . The failed sensor can be replaced by an operational one 

which can get temperature measure from the last correct temperature Ὕ . 

The Cloud node 1: The main function of this component is to calculate the average of 

received n temperatures. Therefore, the average temperature will be included between 

the highest temperatures Ὕ and the lowest one ὝὭȢὩȢȟ    Ὕ Ὕ Ὕ . Also, we have 

to ensure that the Cloud node1 has the ability of correct average calculation. For that, 

we can test the component by calculating: ὃὺὩὶὥὫὩὅὥὰὧόὰὥȟὦȟὧȟὨ Ὡ where ὥȟὦȟ

ὧȟὨ are predefined random values. Furthermore, the Cloud node1 have to calculate and 

send the average without exceeding its Time-Out (i.e., defined by the system 

developer). A Clock clk2 is used to calculate time. Therefore, the acceptance test for the 

Cloud node1 is: ὃὝ Ὕ Ὕ Ὕ ǪǪὃὺὩὶὥὫὩὅὥὰὧόὰὥȟὦȟὧȟὨ

ὩǪǪὧὰὯς ὔέὨὩρ .The ὃὝ  is the guard of the transition ὝὩίὸ  

(Figure 4.9). If the node satisfies its acceptance test, Ὕ will be saved on the next 

checkpoint and the Clock clk2 will be initialized. If the acceptance test is not satisfied, 

then the component is failed and it will be blocked on the state ὗ .  

The Cloud node 2:The main function of this component is to produce a forest report 

state Ὑ according to the temperature average Ὕ received from the node1 and according 

to predefined conditions ὅ:Ὑ ὪὝȟὅ. Therefore, we have to ensure that the 

component is able to produce the correct report. For this aim, we can test the component 

using the same function Ὢ but with different data to see whether the component 

produces the predicted report or not. Furthermore, taking and sending of decision must 

be before the expiration of the Cloud node2 Time-Out. A Clock clk3 is used to calculate 

the time in the Cloud node2.  Finally, the acceptance test is: ὃὝ  ὪὝȟὅ

Ὑ ǪǪὧὰὯσ ὔέὨὩς . The acceptance test ὃὝ  is the guard of the 

transition ὝὩίὸ . If the ὃὝ  is satisfied, a checkpoint will be taken at the 

beginning of the next execution. Else, the Cloud node2 will be blocked on ὗ and the 

last correct report can be restored from the checkpoint.   

Table 4.2.Key notations and meanings. 

Symbol Description 

clk2 Cloud node1 Clock 

ὅ Counter of received temperature 

Ὓ Temperatures Sum 
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T Received Temperature 

Temp Table for saving the received temperatures 

N 
Number of temperatures needed for average 

calculation 

Ὕ Temperature Average 

Ὕ Lowest received temperature 

Ὕ Highest received temperature 

Checkpoint() Procedure of  Checkpoint 

AverageCalcul() Procedure of average temperature calculation 

TestNode1 Procedure of the acceptance test 

Algorithm 1: Cloud node1  

Input: temperatures T;  

Output: temperature Average ╣○;  

[1]Co = 0;  

[2]S = 0;  

[3]AverageCalcul():  

[4]Receive(T, Sensor);  

[5]Co = Co + 1;  

[6]Temp [Co] = T;  

[7]If Co < N Then  

[8]GoToAverageCalcul();  

[9]Else  

[10]For i=0 to N - 1 do  

[11]S=S+Temp[i];  

[12]Temp[i] = 0;  

[13]End for  

[14]       4= S / N;  

[15]Send ( 4, Node2);       // Send of  ͼ  Ὕò to the Cloud node2 

[16]Co = 0;                 // re - initialization of Co  

[17]S = 0;                 // re - initialization of S  

[18]Go to AverageCalcul()  

[19]End If  

[20]End AverageCalcul()  

The Cloud node1 has a main function which consists of ñCalculating the average   Ὕ  

of ὔ temperatures received from the Sensor nodeò. In the Algorithm 1, in order to count 

the number of received temperatures, a counter ὅέ is used (line 1). First, the node1 

receives the temperature Ὕ from the Sensor node (line 4), the counter ὅέ is then 

incremented (line 5) and the temperature Ὕ will be saved in the table ὝὩάὴ (line 6). The 
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Cloud node1 enters in a loop till reception of ὔ temperaturesὭȢὩȢȟὅέ ὔ . At that 

moment, the temperature average can be calculated (line 9) by first calculus of the sum 

of ὔ temperature (lines [10-13]). After calculation of the average   Ὕ(line 14), it will be 

sent to the Cloud node2 ([15]). A re-initialization for the next execution cycle will be 

done(line 16-17).The notations used in the algorithms and their meanings are presented 

in Table 9for a quick look-up.  

Algorithm 2: Fail - Silent Cloud node1  

Input: Temperatures T;  

Output: temperature Average ╣○;   

[1]clk2 =0;                  // Clock Initialization  

[2]Co = 0;  

[3]S = 0;  

[4]Checkpoint():  

[5]Save ( 4);// save of the last correct 4 

[6]clk2=0;// re - initializations for the next execution cycle  

[7] Co=0;  

[8] S=0;  

[9]GoToAverageCalcul();  

[10]End Checkpoint  

[11]AverageCalcul():  

[12]Receive(T, Sensor);  

[13]Co = Co + 1;  

[14]Temp [Co] = T;  

[15]If Co < N Then  

[16]GoToAverageCalcul();  

[17]Else  

[18] 4=Temp[1];  

[19] 4 =Temp[1];  

[20] For i=0 to N - 1 do  

[21]S=S+Temp[i];  

[22]If Temp[i]> 4then// Calculation of the highest temperature  

[23]  4= Temp[i];  

[24]End If  

[25]If Temp[i]< 4  then//Calculation of the lowest temperature  

[26] 4= Temp[i];  

[27]End If  

[28]Temp [i] = 0;  

[29]End for  

[30] 4= S / N;  

[31]Send ( 4, Node2);  

[32]GoTo TestNode1();  

[33]End If  

[34]End AverageCalcul()  

[35]TestNode1():  

[36] If [ 4 4 4  ǪǪὃὺὩὶὥὫὩὅὥὰὧόὰÁȟÂȟÃȟÄ Å ǪǪ ὧὰὯς ὔέὨὩρ ] 

then   

[37] Go to Checkpoint();  

[38] Else  
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[39] Deadlock();//Deadlock in the case of non valida tion of the 

Acceptance Test  

[40] End If  

[41] End TestNode1  

 

In the Algorithm 2, The Fail-Silent Cloud node1 executes its main function of 

calculating the average temperature but with consideration of fault detection and time 

flow. In order to calculate time, a clock clk2 is used. It is initialized at the beginning of 

each execution cycle to calculate time needed by the Cloud node1 to achieve its 

function. 

After the reception of ὔ temperatures by the Cloud node1, the highest temperature is 

calculated and saved in ╣▐(lines[22-24]) and the lowest temperature ╣▐  also will be 

calculated and saved (lines [25-27]). After calculating the average temperature ╣○ (line 

30), it will be sent to the Cloud node2 (line 31). Before starting a next execution cycle, 

the output (i.e., Ὕ )must first pass the acceptance test within the procedure 

TestNode1(line 35).  The main role of this procedure is to judge the correctness of the 

Cloud node1 outputs. The expression of the acceptance test (line 36) is composed of 

three parts; the first one is:Ὕ Ὕ Ὕ . This part of test is to ensure thatὝ is 

comprised between the lowest temperature and the highest one. The second part of the 

acceptance test is ὃὺὩὶὥὫὩὅὥὰὧόὰὥȟὦȟὧȟὨ Ὡ; it tests the calculus rigor of the 

Cloud node1 by calculating a similar simplified operation such that the input (a, b, c, d) 

and the output (e) are pre-known. The third part of the acceptance test isὧὰὯς

ὔέὨὩρ . It aims to test whether the outputs are produced after the Time-Out 

expiration, which means that a response-time failure is occurred. In the case where the 

acceptance test is passed, the next execution cycle of node1 will start by a checkpoint 

(line 4) in order to save the last correct  Ὕ (line 5) and to initialize variables and clock 

(lines [6-8]).  In the worst case, when the acceptance test is not validated (i.e., at least 

one part of the Acceptance Test expression is not satisfied) the Cloud node1 will be 

considered as failed and it will remain in a deadlock state (line 39).    

4.4.3 Time and Space complexity  

In order to analyze time and space complexity of the previous algorithms, Big 

Omega asymptotic notation will be used. This notation allows calculating both time and 

space complexity of an algorithm. We have calculated the running expressions of the 
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precedent algorithms: Cloud node1algorithm and Fail-Silent Cloud node1algorithm. We 

have: 

Ὢ ὲ ρσὲ ς Ὣὲ  Ὢέὶ ὥὰὰ   ὲ π, and  

Ὢ ὲ ρωὲ ρχ Ὣὲ  Ὢέὶ ὥὰὰ  ὲ π 

Where: Ὣὲ σφὲ  Ὢέὶ  ὲ πȢ 

We can say that:  

 

The time and space complexity of the functions Ὢ ὲ and Ὢ ὲ are 

calculated according to the n values. If we assume that n represents the time unit, then 

the graph plot in Figure 4.10 represents the time complexity of the Cloud node1 

program. In this case, we can see that the functions Ὢ ὲ and Ὢ ὲhave the 

same time growth rate. That means that the incorporation of the acceptance test in the 

Cloud node1 program does not produce any big overhead. If we assume that n 

represents the space unit, then the Figure 4.10 is a space complexity graph of the 

functions Ὢ ὲ and Ὢ ὲ which are similar in space growth rate. It means 

that the Fail-Silent Cloud node1 does not need a big storage space compared to the 

primary Cloud node1 program. 
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Figure 4.10.Time and space complexity of Cloud node1. fNode1 (resp. fFSNode1) 

represents the Cloud node 1 complexity before (resp. After) the acceptance test 

integration. 

 

We can deduce that the time and space complexity of the failure detection process using 

the acceptance test does not lead to any unreasonable overhead or calculus complexities 

in the Cloud node1 (Figure 4.10). Finally, our proposed framework allows integration of 

the failure detection over the cloud nodes without large costs. Hence, this is a fair and 

practical solution to the issue. 

 

4.4.4 Safety verification using model-checker 

As noted previously, the acceptance test strategy aims to ensure safety in cloud 

systems in spite of failures. In order to prove the efficiency of our framework, uppaal 

4.0.14 model-checker for safety verification is used. First, a simulation of the Fail-Silent 

Fire Control model is done to ensure the practicability of the model (See Figure 4.11).  

After that, a set of safety properties that must be insured by the Fail-Silent model are 

specified. 
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Figure 4.11. Simulation of Fail-Silent Fire Control System model  

 

The safety properties must be satisfied by the Fail-Silent model in order to say that it is 

Safe. Safety properties are summarized in the Table 4.3. 

 

Table 4.3. Safety property of Fire Control System model. 

Safety Properties Safety Request 

1. The sensor node never 

produce random temperature 

values.   

A[]not (sensor.Qi and (T-Tprev)>sensor.alfa) 

(n.b.,alfa value must be defined). 

A[] not (sensor.Qi and (T>sensor.Tmax or T<sensor.Tmin)) 

(n.b., sensor.Tmin, sensor.Tmax values must be defined) 

2. The Cloud node1 never earns 

execution if it does not produce 

the correct temperature average.   

A[] not (CloudNode1.Qi and CloudNode1.Test!=<value>)  

(n.b., <value> must be defined)   

3. The Cloud node1 never 

reaches the procedure 

AverageCalcul with 

temperature sum different of 0.  

A[] not(CloudNode1.E and CoudNode1.S!=0) 

4. The Cloud node2 never earns 

execution if it does not produce 

the correct decision 

A[] not (CloudNode2. Qi and CloudNode2.Test!=<value>) 

(n.b.,  <value> must be defined)    

5. The sensor node never earns 

execution if it sends a 
E[] not (sensor.Qi and sensor.clk1>sensor.TimeOut) 
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temperature after the expiration 

of its Time-Out.  

6. The Cloud node1 never earns 

execution if it sends 

temperature average after 

expiration of its Time-Out.  

E[] not (ClouNode1.Qi and 

CloudNode1.clk2>CloudNode1.TimeOut ) 

7. The Cloud node2 never earns 

execution if it sends decision 

after expiration of its Time-Out.  

E[]not (CloudNode2.Qi and CoudNode2.clk3>CloudNode2. 

TimeOut) 

8. The entire system never earns 

execution if it produces 

decisions after the expiration of 

its Time-Out.  

(n.b.,The clock of the last 

component can be considered as 

the global clock of the system).  

E[] not (CloudNode2.Qi and 

CloudNode2.clk3><SystemTimeOut>) 

 

4.4.4.1 Safety Verification of fault-free model 

First, the properties are verified on the fault free Fire Control model using the 

variable values defined in Table 4.4 and the verification results are presented in Figure 

4.12. 

Table 4.4.Variable initialization used for the fault free verification. 

Variable Value 

Ὕ  120 

Ὕ  -20 

‌ ὥὰὪὥ 40 

N 5 

ίὩὲίέὶ 10 

ὔέὨὩρ  15 

ὔέὨὩς  25 

C If  temperature average>60 then, Fire Alarm End If 
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Figure 4.12.safety properties verification on fault-free Fail-Silent Fire Control model. 

 

We can see in the Figure 4.12 that all the safety properties are verified on the 

fault free Fail-Silent Control model which means that the model is safe. 

 

Table 4.5. Faults injected in the Fail-Silent Fire control model. 

Fault Fault Type Component Injection  

Safety 

property 

in Table 

10 

Production of 

random values. 

Transient 

hardware 
Sensor 

High temperature value + 

high temperature variance 
1 

Incorrect calculation Software Cloud node1 
Algorithm 2-line20,  i:=1 

instead of i:=0 
        2 

Incorrect calculation Software Cloud node1 
Algorithm 2-line 8,  the 

instruction S=0 is deleted 
      2-3 

Production of 

random decision 

Transient 

hardware 
Cloud node2 Incorrect result        4 

Component Time-

out 

Response-

Time 
Sensor 

Add a loop on the state 

sensor.Qt (see Figure 

4.13)to produce a response-

time failure. 

       5 

Component Time-

out 

Response-

Time 
Cloud node1 

Add a loop on the state 

CloudNode1.Qt (see Figure 

4.13) that produces +10 of 

execution time 

       6 

Component Time-

out 

Response 

Time 
Cloud node2 

Add a loop on the state 

CloudNode2.Qt (see Figure 

4.13) that produces +10 of 

execution time 

     7-8 
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4.4.4.2 Safety verification of failed model 

After safety verification on the fault free model, the safety verification is done 

on the failed model. The safety properties of the Table 4.3 will be verified on the same 

Fail-Silent Fire Control model with the same variables but this time with injected faults. 

A set of faults are injected in the model, in order to make the model failed and to test 

whether the acceptance test strategy can preserve safety in spite of faults. The set of 

injected faults are summarized in Table 4.5. For each injected fault, some details are 

given such as: the type of fault, the component, how the injection is applied and the 

safety property violated.        

After injection of the faults, the produced model is presented in Figure 4.13.  After that, 

the safety properties (Table 4.3) are verified on the failed model and the verification 

results are presented in the Figure 4.14. 

 

 

Figure 4.13.Fail-Silent Fire Control model after faults injection. 

 

Figure 4.14.Safety verification of the failed Fail-Silent Control model. 

 

As can be seen in Figure 4.14, all the properties are satisfied by the failed Fire 

Control model. Hence, all safety properties that are satisfied on the correct model are 

also satisfied on the failed model. This means that the Fail-Silent behavior of the 

acceptance test strategy preserves safety in spite of presence of failures.  
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Finally, we can say that the acceptance test strategy is efficient enough for safety 

insurance in the cloud Systems.  

4.5 Comparative Analysis 

The comparisons between IDS, Heartbeat/Pinging and acceptance test strategies 

are summarized in Table 4.6, where the main differences between the strategies are 

mentioned: 

Strategy based on: The strategy of IDS is based on the cloud monitoring in which the 

Cloud behavior is compared to a previous database which is different than the heartbeat 

strategy that is based on keep-alive message transmission. In the acceptance test 

strategy, the failure detection is distributed on the cloud nodes where each node has its 

own acceptance test that can validate its behavior.  

Monitoring process centralized or distributed: It is centralized in IDS. In heartbeat, 

each failure detector node is responsible for a set of cloud nodes; therefore, we can say 

that it is partially-distributed. In the acceptance test strategy, each node has its own 

acceptance test. Hence, the failure detection process is distributed over all the cloud 

nodes.  

Detected failure origin:  IDS can detect any malicious attack over the cloud nodes or 

network where the heartbeat strategy can detect only the hardware crashes. The 

acceptance test strategy can detect any abnormal behavior caused by software faults or 

transient hardware faults. 

Alarm causes: The key question is: In which cases the alarm announces that there is a 

failure? In the IDS strategy, the failure alarm is raised whenever a deviation from the 

normal behavior is monitored on the cloud system. In the heartbeat strategy, if the cloud 

node does not send any alive-message to the detector node before the timeout 

expiration, the failure alarm is raised. In the acceptance test strategy, if any abnormal 

behavior is detected by the acceptance test over the cloud node, the failure alarm is 

raised. 

Property insurance: Which non-functional property is ensured by the strategy? IDS can 

insure the safety property by protecting the cloud system from malicious attacks. The 

heartbeat strategy can ensure only liveness of the cloud nodes whereas the acceptance 

test strategy ensures the safety property by protecting cloud nodes from software faults 

and hardware transient failures.  
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Monitored components: In IDS, monitored components are the cloud nodes and the 

network connections. In the heartbeat and the acceptance test strategies, monitored 

components are only cloud nodes.    

Failure detector component: In IDS, it is the system monitor. In heartbeat, the detector 

nodes are charged by the crash detection.  In the acceptance test strategy, each cloud 

node is responsible for its failure detection process.  

Failure detection accuracy: When we talk about the accuracy of the failure detection 

strategy, we respond to the question:  Is there really a failure when an alarm is raised? 

The failure detection accuracy strongly relies on the monitoring process architecture 

(i.e., Centralized, partially-distributed, or distributed) which means that the distance 

between the failure detector and cloud nodes is very important in the cloud network. We 

have used the scale shown in Table 4.7: 

As noted before, in IDS strategy, the most known problem is the False Alarm Rate.  

This is because of the difficulty of monitoring a huge number of cloud nodes by a 

central monitoring approach which would produce high distance between the monitor 

and the monitored components. Therefore, we can say that the accuracy of IDS is low. 

However in the heartbeat strategy, monitoring is partially-distributed where each crash 

detector is responsible for a set of nodes. The accuracy of crash alarm here is related to 

the network conditions and timeout but the distance between the monitor and the 

monitored component is medium and therefore, the accuracy is medium level compared 

to that of IDS. In the distributed monitoring such as the acceptance test strategy, the 

failure detector is the Cloud node; there is no distance between the monitor and the 

monitored component, thus the failure alarm is raised only in the case of failure. Hence, 

the accuracy of the failure alarm is high compared to that of IDS and heartbeat.   

Component-based Approach: IDS and heartbeat strategies do not deal with component-

based architecture of the cloud systems but the acceptance test strategy is based on this 

approach. 

Scalability: The IDS does not support the scalability because it is difficult to provide 

frequent database knowledge for scalable cloud systems. The heartbeat strategy is 

known as large-scale crash detection strategy because it supports the scalability. The 

acceptance test strategy is based on the component-based approach, where atomic cloud 

nodes are coordinated to construct the global cloud system. The component-based 
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approach supports the scalability. Furthermore, the fault detection strategy using the 

acceptance test is independent from the architecture of the cloud system because it 

depends only on the cloud node behavior. Therefore, the acceptance test strategy is 

scalable. 

Costs: For the IDS, the monitoring algorithms need complicated algorithms, large data 

and long time. The heartbeat strategy needs large bandwidth for network connections. 

The acceptance test strategy does not need large costs because Cloud nodes will carry 

on the monitoring process in addition to their main functions.  

4.6 Conclusion 

In this chapter, a fault detection framework is proposed for cloud computing 

systems by using Recovery Blocksô acceptance test. The proposed framework aims to 

construct Fail-Silent cloud modules which have the ability of self-fault detection. In 

this, the detection process of transient hardware faults, software faults, and response-

time failures is performed locally on each computing machine in the cloud system. The 

proposed strategy is performed on a case study, time and space complexities are 

estimated and efficiency is proved using verification by model-checker.    
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Table 4.6. Comparison of various aspects of IDS, Heartbeat/Pinging, and acceptance test strategies. 
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Intrusion/Anomaly 

Detection Systems 

(IDS) 

Cloud 

System 

Monitoring 

Centralized 
Malicious 

attacks 

Behavior 

Deviation 
Safety 

Nodes and 

network 

Connections 

System 

Monitor 
Low No No 

Complicate 

algorithms, 

Time&Data 

Heartbeat and 

Pinging 

Keep-Alive 

Messages 

partially-

Distributed 

Hardware 

crash 

Failures 

Timeout 

Expiration 
Liveness Nodes 

Node 

Detector 
Medium No Yes 

Large 

network 

connections 

bandwidth 

Acceptance Test 

Strategy 

Acceptance 

Test 
Distributed 

Software 

Faults 

&Transient 

Hardware 

faults 

Acceptance 

Test no 

validation 

Safety Nodes Nodes High Yes Yes 

Reliable 

Acceptance 

Test 
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Table 4.7. Accuracy scale. 

                                        

Accuracy 

Distance 

High Medium Low 

Big - - X 

Medium - X - 

Small X - - 
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5.1 Introduction 

 Fault tolerance has always been an active line of research in design and 

implementation of dependable systems. It involves providing a system with the means 

to handle unexpected defects, so that the system meets its specification in the presence 

of faults. Many Techniques are used to create the fault tolerance capability in cloud 

systems. They can be divided into two main categories: Proactive Fault Tolerance (i.e., 

Software Rejuvenation, Pre-emptive migration and Self-healing) and Reactive Fault 

Tolerance (i.e., Checkpointing, Job Migration, Replication, SGuard, Retry éetc ) [22-

27][94][98][101][102][103]. Fault tolerance techniques used in cloud computing are 
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based on time and space redundancy which can tolerate only hardware faults without 

dealing with software faults. According to our thorough investigation of the area, there 

is clearly a lack of formal approach that rigorously relates cloud computing with 

software fault tolerance concerns. In this chapter, a strategy of Fault-Masking in 

component-based cloud computing based on Recovery Blocks is presented. The aim is 

to construct reliable and available cloud nodes using the acceptance test and forward 

recovery.   

5.2 Recovery Blocks for Fault-Masking  

In order to construct the Fault-Masking component, Recovery Blocks scheme is 

used.  A Fault-Masking node is able to satisfy safety and liveness [16][17] specification 

properties in spite of faults. Thatôs means that it can detect and tolerate failures at just 

appearance and continue to offer its main service without any perturbation. The Fault-

Masking node is a self-fault detector and a self-stabilizer in the same time. A node that 

ensures safety property means that it never reaches a non-desirable state whereas a node 

with liveness property insurance means that it always reaches a stable state after any 

fault detection. In other meaning, the Fault-Masking node offers secure and continued 

service in spite of failures.   

 

 

Figure 5.1. Fault-Masking node behavior 

 

The Figure 5.1 shows the Fault-Masking node behavior. In which the cloud node earns 

execution (i.e., left state) since the behavior is correct or acceptable. At the moment of 

fault detection, the cloud node will  stop operating and then will enter in a forward 

recovery phase (Figure 5.1. the right state). In the forward recovery an alternate try 

block will  be used to recover from the failure. After the recovery phase, the cloud node 

behavior will reach a stable state with an acceptable behavior.   

 

 

Correct/Acceptable 

Behavior 
[AT]  

Fault Detection 
ὃὝ 

Fault-Masking 
ὃὝ 

 

Roll-Forward 

Recovery 
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Algorithm of Fault -Masking based on Recovery Blocks 

Ensure Acceptance Test By  

  Primary Try block  

Else By 

   Alternate Try Block 

End Recovery Blocks 

 

5.2.1 Fault-Masking atomic component  

Definition1: an atomic component is defined as a tuple   ὄ ὗȟὖȟὄὩὬȟὢ such that: 

ὗ: is a set of states ήȟήȟȣȟ ή ;    

ὖ: is a set of communication ports ὴȟ ὴȟȣȟ ὴ Ƞ  

ὄὩὬ ȾO  ʐɴ ᴼ ὗ ³ Ὃ ³ Ὂ ³ ὗ   is the behavior of the atomic component ὄ. It is 

composed of a set of transitions. Each transition contains one guard and a set of internal 

functions.   The main behavior of an atomic component is considered as its Primary 

behavior.    

ὢ: is a set of variables ὼ  which are manipulated by the internal functions, Ὢ; 

Definition 2: An acceptance test ὃὝὢ of an atomic component ὄ ὗȟὖȟὄὩὬȟὢ is 

a boolean expression on the set of variables, ὢ. The acceptance test validates the 

correctness of ὄôs final results and ensures that they do not lead to disastrous 

consequence even if they are not the expected results. The acceptance test ensures 

Safety properties in the atomic component. An atomic component that has an acceptance 

test is a Fail-Silent atomic component.   

Definition 3: A Fail-Silent atomic component, ὊὛ ὗȟὖȟὄὩὬȟὢȟ  ὃὝ is a self-

fault detector, it can ensure Safety properties using the acceptance test ὃὝ. In the case 

of fault detection, the atomic component ὊὛwill  pass to a deadlock state till recovery 

achievement. 4ÈÅ regular expression of the Fail-Silent atomic component is ὧȾ-‫

ὥᶻὪ.  

A Fail-Silent atomic component has a correct behavior ὧ or an acceptable 

behavior ὥ. At just fault detection by the AT, the atomic component will  be 

considered as failed (f) and it will  be blocked immediately attending the recovery phase.  
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Definition 4: a Primary behavior of a Fail-Silent atomic component is the main 

behavior that offers desired results. We write: ὊὛ ὗȟὖȟ ὄὩὬ  ȟὢȟ  ὃὝ . 

ὄὩὬ  : is the Primary behavior. It performs the desired operation.  

Definition 5: An Alternate behavior ὄὩὬ of the Fail-Silent atomic component 

performs the operation in different manner.  It aims to replace the Primary behavior in 

the case of fault detection.  

By using the Alternate behavior, the component can performs a roll-forward recovery 

phase till the reach of a stable state (i.e., correct (c) or acceptable (a) state). The -‫

regular expression which design the main role of the Alternate behavior in an atomic 

component  is ὶᶻὧȾὥ  such that: 

ὶ : Recovery; 

ὧ : Correct behavior; 

ὥ : Acceptable behavior. 

Lemma 1: A Fail-Silent atomic component that uses an Alternate behavior 

ὭȢὩȢȟὄὩὬ  can ensure Liveness property even in the presence of faults. 

Theorem 1: The use of an Alternate behavior in the Fail-Silent atomic component can 

produce a Fault-Masking component that ensures both Safety and Liveness properties in 

the same time. The regular expression of the Fault-Masking atomic component-‫ 

is ὧȾὥᶻὪ ὶᶻ ὧȾὥ . 

Definition 6: a Fault-Masking atomic component is a component that can preserve and 

Liveness specification properties in presence of faults. We write: 

 Ὂὓ ὗȟὖȟ ὄὩὬ  ȟ ὄὩὬ  ȟὢȟ  ὃὝ   Such that: 

 ὄὩὬ  : is the Primary behavior and  

ὄὩὬ  : is the Alternate behavior. It is required to perform the desired operation 

in a different way. 

5.2.2 Fault-Masking composite component 

A composite component  ὄ  gὄȣὄ  is a set of atomic components ὄ ȢȢ 

glued by the set of connectors g ‍ ȢȢ .  As seen in the chapter 3 - Section 3.2.3, a 

connector in a composite component can be a rendezvous or broadcast connector. 

5.2.2.1 Rendezvous connector 

If we have the rendezvous connector ‎ such that ‎ ὴ ȢȢȟὴËὄ , the only 

possible interaction is ὥ  ὄ ὄ ὄȣὄ which contains all the atomic components 



Chapter5                                                       Fault Masking in Component-based Cloud Computing 

67 

 

involved in the connector ‎. Therefore, the failure of one atomic component will 

directly infect the others atomic components. This means that ᶅ ὄ ᶰ‎Ƞ ὭὪ ὄ  is 

failed,  then ᶅ ὄ ὥὲὨὄᶰ‎, ὄ will  be failed too.  

Lemma 2: Let  ὄ  gὄȣὄ  a composite component. In order to construct a Fault-

Masking rendezvous connector g , all  the atomic components ὄȣὄ involved in it 

must be Fault- Masking as well.   Ὂὓ Ὂὓ ȟὊὓ ȟȣȟὊὓ . 

5.2.2.2 Broadcast connector 

If we have the broadcast connector  ‎ ὴ ȢȢȟ

ὴËὄ   ὥὲὨ ὄ Ὥί ὄὶέὥὨὧὥίὸ ὭὲὭὸὭὥὸέὶ.  The possible set of interactions in this case 

are those containing at least one instance of ὄ . The minimum interaction is ὥ ὄ  

which contains only the broadcast initiator where the maximum interaction is ὥ

ὄὄὄȣὄ  which contains all the atomic components involved in the connector ‎.   

Lemma 3: Let  ὄ  gὄȣὄ  a composite component where g is a broadcast 

connector. To construct a Fault-Masking broadcast connector ‎, at least the broadcast 

initiator ὄ  must be Fault-Masking:   Ὂὓ Ὂὓ ȟὄςȟȣȟὄ . 

Theorem 2. A composite component that is composed of a set of Fault-Masking atomic 

component is Fault-Masking composite component: Ὂὓ

‎Ὂὓ ȟ Ὂὓ ȟȣȟ Ὂὓ . 

 

5.3 A Case Study  

5.3.1 Construction of Fault-Masking models 

In order to describe the construction of Fault-Masking models, we will present a 

case study of Fire Control System (seen in chapter 4-Section 4.4.1). The Figure 5.2 

presents the Cloud node 1 model.   
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Figure 5.2   Cloud node 1 

 

ὅὰέόὨὔέὨὩρ ὗȟὖȟὄὩὬȟὢ where: 

ὗ ὅȟὈȟὉ 

 ὖ ὛὥὺὩȟὃὺὩὶὥὫὩὅὥὰὧόὰȟὛὩὲὨ  

ὄὩὬ ὅȟίὥὺὩὝ ȟὈ ȟ ὈȟὙὩὧὩὭὺὩὝȟὈ ȟ ὈȟὝ ὃὺὩὶὥὫὩὅὥὰὧόὰȟὉȟ

ȟ ὉȟὛὩὲὨ Ὕ ȟὅ . 

ὢ Ὕ .  

Algorithm 1: Cloud node1  

Input: temperatures T;  

Output: temperature Average ἢἾ;  

[1]Co = 0;  

[2]S = 0;  

[3]ReceiveTemperatures()  

[4]  Receive(T, Sensor);  

[5]  Co = Co + 1;  

[6]  Temp [Co]  = T;  

[7]  If Co < N Then  

[8]  GoToReceiveTemperatures();  

[9]  Else  

[10]  AverageCalcul():  

[11 ]    For i=0 to N - 1 do  

[1 2]     S=S+Temp[i];  

[13 ]     Temp[i] = 0;  

[14 ]   End for  

[15 ]         4= S / N;  

[16]   EndAverageCalcul()  

[17 ]  Send ( 4, Node2);       // Send of  ͼ  4ò to the Cloud 

node2  

[18 ]  Co = 0;                 // re - initialization of Co  

Receive(T) 
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[19 ]  S = 0;                 // re - initialization of S  

[20 ]  Go to ReceiveTemperatures()  

[21 ]End If  

 

For constructing the Fault-Masking model of the Cloud node1. An acceptance 

test and an Alternate behavior must be incorporated in the model. The acceptance test 

can be inserted using the procedure described in chapter 4. By this way, we will  have a 

Fail-Silent component. Then, the Alternate behavior must be inserted in order to 

construct the Fault-Masking component.   

 

 

Figure 5.3  Fault-Masking Cloud node 1  

 

The Fault-Masking model of the Cloud node 1 in the Figure 5.3 is composed of:  

Ὂὓ  ὗᴂȟὖᴂȟὄὩὬ ȟὄὩὬ ȟὢȟ   ὃὝ  such that :  

ὗ ὅȟὈȟὉȟὊȟή. 

ὖ

ὛὥὺὩȟὃὥὺὩὶὥὫὩὅὥὰὧόὰȟὄὥὺὩὶὥὫὩὅὥὰὧόὰȟὖὶὭάὥὶώὊὥὭὰȟὙὩὧέὺὩὶώȟὝὩίὸȟὛὩὲὨ  

ὄὩὬ ὅȟίὥὺὩὝ ȟὈ ȟ ὈȟὝ ὃὺὩὶὥὫὩὅὥὰὧόὰȟὉȟȟ ὉȟὝὩίὸȟὃὝȟ

Ὂ ȟ ὊȟὛὩὲὨὝ ȟὅ .  

ὄὩὬ Ὁȟ ὃὝȟὖὶὭάὥὶώὊὥὭὰὝὶόὩȟή ȟ ήȟὙὩὧέὺὩὶώȟὈ ȟ

ὈȟὝ ὄὥὺὩὶὥὫὩὅὥὰὧόὰȟὉ ȟ ὉȟὝὩίὸȟὃὝȟὊ ȟ ὊȟὛὩὲὨὝ ȟὅ .  

The Fault-Masking Cloud node1 algorithm is the following:  

D 
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Algorithm 2: Fault - Masking Cloud node1  

Input: Temperatures T;  

Output: temperature Average ἢἾ;   

[1]clk2=0;                  // Clock Initialization  

[2]Co = 0;  

[3]S =  0;  

[4]  Checkpoint():  

[5]   Save ( 4);// save of the last correct 4 

[6]   clk2=0;// re - initializations for the next execution cycle  

[7]  Co=0;  

[8]  S=0;  

[9]   GoToReceiveTemperatures();  

[10]  End Checkpoint  

[11]ReceiveTemperatures():  

[12]  Receive(T, Sensor);  

[13]  Co = Co + 1;  

[14]  Temp [Co] = T;  

[15]  If Co < N Then  

[16]  GoToReceiveTemperatures();  

[17]  Else  

[18]   4=Temp[1];  

[19]   4 =Temp[1];  

[20]   For i=0 to N - 1 do  

[21]   If Temp[i]> 4then// Calculation of the highest temperature  

[22]    4= Temp[i];  

[23]   End If   

[24]   If Temp[i]< 4  then//Calculation of the lowest temperature  

[25]   4= Temp[i];  

[26]   End If  

[27] EndFor  

[28 ]  GoToAaverageCalcul()  

[29 ]EndReceiveTemperatures()  

[30 ]AaverageCalcul()  

[31 ]   For i=0 to N - 1 do  

[32 ]   S=S+Temp[i];  

[33 ]   Temp [i] = 0;  

[34 ]  End for  

[35 ]   4= S / N;  

[36 ]   If [ 4 4 4   ǪǪ ὧὰὯς .ÏÄÅρ ] then   

[37 ]    Send ( 4, Node2);  

[38 ]    Go to Checkpoint();  

[39 ]  Else  

[40 ]  GoToBaverageCalcul();//non validation of the Acceptance 

Test  

[41 ]  End If  

[42 ]  End AverageCalcul()  

[43 ]  BaverageCalcul():  

[44 ] 4 4ÅÍÐπ 4ÅÍÐÎ ρ Ⱦς 
[45 ]  If [ 4 4 4   ǪǪ ὧὰὯς .ÏÄÅρ ] then   

[46 ]  Send ( 4, Node2);  

[47 ] Go to Checkpoint();  

[48 ] Else  
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[49 ] FailedRecoveryBlocks();//non validation of the Acceptance 

Test  

[50 ] End If  

[51] End BaverageCalcul()  

 

As said before, the construction of a Fault-Masking model must follow two 

phase: the construction of the Fail-Silent model then the incorporation of the forward 

recovery to reach the Fault-Masking model. The Algorithm 2 describes the fault ï

Masking model of the Cloud node 1.     The main behavior of the Cloud node1 is the 

calcul of the average temperature Ὕ of ὔ received temperatures. Then, it sends the 

output to Cloud node2. The Primary behavior of Cloud node1 is designed by the 

procedure ὃὥὺὩὶὥὫὩὅὥὰὧόὰ [line 30]. After the calcul of Ὕ , it must pass the 

acceptance test  [line 36]. If  Ὕ satisfies the test, it will be sent to Cloud node 2, else a 

forward recovery will be provided by invoking the Alternate behavior which is designed 

by the procedure ὄὥὺὩὶὥὫὩὅὥὰὧόὰ [line 40]. By using the alternate procedure [line 43-

44], the average temperature Ὕ  will be calculated by using only the first received 

temperature and the last one. At the end, the result must pass the acceptance test to 

validate its correctness. If Ὕ is accepted then it will be sent to the successor else the 

recovery blocks will be considered as failed.       

5.3.2 Time and space complexity 

 In order to analyze time and space complexity of previous algorithms, Big 

Omega asymptotic notation is used. We have calculated the running expressions of the 

Cloud node1 algorithm and for the Fault-Masking Cloud node1algorithm. We have: 

Ὢ ὲ ρυὲ ω Ὣὲ  Ὢέὶ ὥὰὰ   ὲ π, and  

Ὢ ὲ ςυὲ στ Ὣὲ  Ὢέὶ ὥὰὰ  ὲ π 

Where: Ὣὲ υωὲ  Ὢέὶ  ὲ πȢ 

We can say that:   

 

The time and space complexity of the functions Ὢ ὲ and Ὢ ὲ are 

calculated according to the n values. If we assume that n represents the time unit, then 

the graph plot in Figure 5.4 represents the time complexity of the Cloud node1 
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algorithm. In this case, we can see that the functions Ὢ ὲ and Ὢ ὲhave 

the same time growth rate. That means that the incorporation of the fault masking 

strategy in the Cloud node1 program does not produce any big overhead. If we assume 

that n represents the space unit, then the Figure 5.4 is a space complexity graph of the 

functions Ὢ ὲ and Ὢ ὲwhich are similar in space growth rate. It means 

that the Fault-Masking Cloud node1 does not need a big storage space compared to the 

primary Cloud node1 program. 

 

 

Figure 5.4 Time and space complexity of Cloud node1. fNode1 (resp. fFMNode1) 

represents the Cloud node 1 complexity before (resp. After) the Fault Masking 

Integration. 

 

We can deduce that the time and space complexity of the Fault-Masking process 

using the acceptance test and the try blocks does not lead to any unreasonable overhead 

or calculus complexities in the Cloud node1 (Figure 5.4).  

 

5.3.3 Distributed Recovery Blocks scheme  

Recovery Blocks is an efficient mechanism for Fault-Masking, but it is based on 

the sequential execution (i.e., if the primary block fail then the alternate block will take 

place) which provide a latency in response time delays. This last is an important key in 

real-time applications especially in Cloud applications. In order to adapt Recovery 
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Blocks scheme for distributed real time constraints, Kim Kan proposed many 

architectures for Distributed Recovery Blocks. In this section, we will apply DRB 

scheme on the Cloud node1 model.  It is composed of two nodes ὢ and ὣ. Each node is 

considered as Fault Masking atomic component. ὢ and ὣ are performed in distributed 

and parallel execution where the Primary node is the responsible for response delivery.  

Each Fault-Masking node has two try blocks ὃ and ὄ. ὃ returns the desired output 

whereas ὄ returns  an acceptable one. The primary node ὢ performs ὃ as the primary 

block and ὄ as the Alternate block. The backup node ὣ performs the try blocks in 

inverse way, by executing ὄ as the Primary block and ὃ as the Alternate one. 

We assume that only one node fails at a moment. This assumption aims to 

ensure that at least one node is operator and hence it can send an output to the successor.  

 

5.3.3.1 Construction of Fault-Masking model using DRB scheme        

 

Figure 5.5: Cloud node1 BIP model -  Fire Control system. 

 

The Figure 5.5 is the BIP model of the Cloud node1. It is only Fail-Silent but not Fault-

Masking model. The Figure 5.6 presents the Fault-Masking model of Cloud node1 

using the DRB scheme.    




