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Abstract  
        In the present work, we have explored some physical properties of the two newly synthetized quaternary diamond-like 

semiconductors Cu2MgSiS4 and Cu2MgGeS4, and two polymorphs of the ternary nitrides α-Sr2GeN2 and β-Sr2GeN2, using first-

principle calculations based on the density functional theory (DFT). The exchange-correlation effects were treated within the new 

version of the generalized gradient approximation (GGA-PBEsol). 

        The structural, elastic, electronic and optical properties of the two considered diamond-like semiconductors were studied in 

detail using two complementary first-principles approaches: the pseudopotential plane wave (PP-PW) and the full potential 

augmented plane wane (FP-LAPW). The calculated equilibrium structural parameters are in good agreement with the available 

experimental data. Single-crystal and polycrystalline elastic moduli and their related properties, including elastic constants, bulk 

modulus, shear modulus, Young’s modulus, Poisson’s ratio, elastic anisotropy indexes, Pugh’s criterion, elastic wave velocities 

and Debye temperature, were predicted. We find that the inclusion of the electronic exchange-correlation through the newly 

developed TB-mBJ improves the description of the electronic structure. The TB-mBJ yields a direct band gap (Γ-Γ) of 2.64 and 

1.54 eV for Cu2MgSiS4 and Cu2MgGeS4, respectively. Frequency-dependence of the dielectric function, refractive index, 

extinction coefficient, absorption coefficient, reflectivity, energy loss function and optical conductivity were predicted, and the 

origins of the observed electronic transitions were assigned. Both Cu2MgSiS4 and Cu2MgGeS4 exhibit noticeable absorption in the 

ultraviolet range. 

        The structural, elastic and thermodynamic properties of the α (tetragonal) and β (orthorhombic) polymorphs of the Sr2GeN2 

compound have been examined in detail using ab initio pseudopotential plane-wave calculations. Apart the structural properties at 

ambient conditions, all present reported results are predicted for the first time. The calculated equilibrium lattice parameters and 

inter-atomic bond-lengths of the considered polymorphs are in good agreement with the available experimental data. It is found 

that α-Sr2GeN2 is energetically more stable than β-Sr2GeN2. The two examined polymorphs are very similar in their crystal 

structures and have almost identical local environments. The single-crystal and polycrystalline elastic parameters and related 

properties, including elastic constants, bulk, shear and Young’s moduli, Poisson’s ratio, anisotropy indexes, Pugh’s criterion, 

elastic wave velocities and Debye temperature, have been predicted. Temperature and pressure dependence of some macroscopic 

properties - including the bulk modulus, volume thermal expansion coefficient, heat capacity and Debye temperature - have been 

evaluated using ab initio calculations combined with the quasi-harmonic Debye model.  

 

Key words: Diamond-like compound; Sr2GeN2 polymorphs; First-principles calculations; structural parameters;  Elastic moduli; 

Electronic structure; Optical properties; thermodynamic properties.  
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Nomenclature 

Frequently used abbreviations: 

DFT 

H 

HF 

xc 

KS 

LDA 

LSDA 

GGA 

PBEsol 

TB-mBJ 

PP-PW 

ZB 

AE 

NC 

BHS 

KB 

US-PP 

APW 

LAPW 

FP 

MT 

I 

LO 

EOS 

BM 

V-R-H 

Eg 

VB 

CB 

TDOS 

PDOS 

Density Functional Theory. 

Hartree. 

Hartree-Fock. 

Exchange Correlation. 

Kohn-Sham. 

Local Density Approximation. 

Local Spin Density Approximation. 

Generalized Gradient Approximation. 

Perdew-Burke-Ernzerhof functional for Solids. 

Tran-Blaha modified Becke-Johnson potential. 

Pseudopotential-Plane Wave. 

Brillouin Zone. 

All Electrons. 

Norm-Conserving. 

Bachelet, Hamann, Schluter procedure for constructing norm-conserving PP. 

Kleinman and Bylander. 

Ultrasoft pseudopotential. 

Augmented Plane Wave. 

Linearized Augmented Plane Wave. 

Full Potential. 

Muffin-Tin region. 

Interstitial region. 

Local Orbitals. 

Equation Of State. 

Birch Murnaghan. 

Voigt-Reuss-Hill. 

Energy band gap. 

Valence Band. 

Conduction Band. 

Total Density Of States. 

Partial Density Of States. 
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Chapter 1 

General introduction 

 

1.1. Preamble 

Solids are the physical objects with which we come into contact continuously in our 

everyday life.  They exhibit a wide range of properties, which what makes them so useful and 

indispensable to humankind. The use and understanding of matter in its condensed (liquid or 

solid) state have gone hand in hand with the advances of civilization and technology since the 

first use of primitive tools. So important has the control of condensed matter been to man that 

historical ages -the Stone Age, the Bronze Age, the Iron Age- have often been named after the 

material dominating the technology of the time [1]. Today, the search for new materials with 

specific physical or chemical properties is a major challenge of the current industry, which 

makes the number of synthesized materials very considerable and constantly increasing. 

Indeed, the modern scientific and technological development makes it possible to design new 

materials adapted to each new application, depending on the physical properties required. One 

of the best examples that can be given is the search of semiconducting materials, which 

constitute today the basic building blocks of emitters and receivers in cellular, satellite, and 

fiberglass communication.  

Solid-state physics constitutes one of the largest subfields of modern physics. It is the 

most important branch of condensed matter physics
1
 that occupies something like 50% of 

physicists working in fundamental research, and the industrial opportunities in the 

engineering sciences [2,3]. One definition of solid-state physics is that it is the study of the 

physical properties of solids in terms of basic physical laws. Solid-state physics branch began 

in the early years of twentieth century, following the discovery of X-ray diffraction by 

                                                           
1
 Condensed matter physics is the field of physics that deals with the macroscopic physical properties of matter. 

In particular, it is concerned with the "condensed" phase matter; phases that appear whenever the number of 

constituents in a system is extremely large and the interactions between the constituents are strong. The most 

familiar examples of condensed phases are solids and liquids. 
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crystals and the publication of a series of simple calculations and successful predictions of 

crystal properties [4]. However, a separate field going by the name of solid-state physics did 

not emerge until the 1940, with the publication of Fredrick Seitz’s book, Modern Theory of 

Solids  in 1940 [5], and had its most extensive expansion with the development of the 

transistor, integrated circuits, and microelectronics [2].  

The term “solid-state” is often restricted to mean only crystalline (periodic) materials 

that exhibit translational symmetry [2,4]. The existence of crystals has facilitated considerably 

the study of solids, since a crystalline solid can be analyzed by considering what happens in a 

single unit of the crystal (referred to as the unit-cell), which is then repeated periodically in all 

three dimensions to form the idealized perfect and infinite solid. This regularity has made it 

possible to develop powerful analytical tools and to use clever experimental techniques to 

study the properties of solids [6]. It is the most important property for developing the theory 

of the energy spectrum of electrons, lattice vibrations or the matter-radiation interaction, in 

which, from these theories, one can calculate the thermal, electrical, optical, elastic or 

magnetic magnitudes. There is a wide variety of crystal structures, which are formed by 

different elements or by different combinations of elements. Physics tends also to investigate 

new materials under artificial conditions in order to characterize certain properties. Near 

perfect macroscopic crystals can be formed by simply melting and then slowly cooling a 

substance in the laboratory, produced more and more artificial materials.  

Interaction between electrons in the outer shells of atoms, the so-called valence 

electrons, determines the atomic structure and all other properties of solids, including 

mechanical, electrical, optical, thermal, magnetic and so on properties [6,7]. The basic 

concepts of modern physics in the form of statistical physics and quantum mechanics are thus 

essential to understand the macroscopic behavior of electrons in solids [3]. The characteristic 

properties of free atoms do, of course, determine the nature of the solid they make up, but, 

when embedded in a crystal lattice, these properties are greatly influenced by the 

surroundings. Electrical conductivity, ferromagnetism, specific heat, and phase transitions are, 

moreover, examples of concepts which can be defined for the solid but not for an individual 

atom. A theoretical description of the properties of solids must therefore use methods 

appropriate to many-body systems [8]. Thus, two properties of the solid state are of special 

importance: the solid as a many-body system and the symmetries of the crystal lattice.   

Today, with the advanced technology it has become possible to analyze 

experimentally the structural properties of crystals, even under conditions of high temperature 
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and high pressure. However, the pressure and temperature domain is limited by the 

experimental device. Parallel to these experimental advances, the emergence of computer 

simulations based on the development of computational power of recent computers and the 

rapid advances in calculation methods, it has become possible to determine the properties of 

materials with high precision without any empirical parameters by means of ab initio (first- 

principles) electronic structure methods.  In this way, it is possible not only to explain the 

already known properties of a given material, but also to predict suitable properties for new 

materials. This made it possible to replace very expensive experiments or even impractical in 

the laboratory [9,10]. For these reasons, ab initio computational methods become more and 

more important in materials science, and constitute today an essential complement to 

experimental research techniques in multiple fields.  

Description of physical properties of solids from first-principles theory implies solving 

the Schrödinger equations for a huge number of interacting electrons and nuclei [11], i.e., a 

complex many-body problem. The Density Functional Theory (DFT) [12,13] offers a good 

reformulation of this problem. In its formulation given by Kohn, Hohenberg, and Sham in the 

1960’s, the real system of interacting many-electrons and nuclei  is replaced by an effective 

non-interacting, fictitious particles moving in an effective potential of fixed nuclei, and the 

complex many-body wave function is abandoned in favor of the electronic density which only 

depends on the three spatial coordinates [14]. Solving the single-electron equations self-

consistently, one obtains the equilibrium electron density and the total energy of the system, 

where from the latter, all physical properties that are related to it can be calculated [15]. This 

approach has proved to be highly successful in describing structural and electronic properties 

in a vast class of materials, ranging from atoms and molecules to simple crystals to complex 

extended systems (including glasses and liquids). Furthermore, DFT is computationally very 

simple. All this make DFT today as the most widely used approach that gives a quantum-

mechanical basis for most of the ab initio methods used in computational materials science; 

its application is rapidly becoming a standard tool for diverse materials modeling problems in 

physics, chemistry, materials science, and even nuclear physics
2
 [9,16].  DFT ab initio 

methods to solve Schrödinger equations are classified according to the representations that are 

used for the density, potential and, most importantly, the so-called Kohn-Sham orbitals. The 

                                                           
2
 Traditionally, chemists prefer using the Hartree-Fock wave function as their starting point. Since, the 1970s, 

physicists, on the other hand, have preferred density functional methods wherein the electron density is used as 

the primary starting point for describing the system. 
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choice of representation is made to minimize the computational and human costs of 

calculations, while maintaining sufficient accuracy [10]. Among various approaches used 

within the framework of density functional theory, the Pseudo-Potential Plane-Wave (PP-PW) 

[17-19] and the Full-Potential Linearize Augmented Plane Wave (FP-LAPW) [20,21] 

methods, which we will be used in the present work. The PP-PW method is one of the 

dominant methods for calculating ground state properties of extended systems. The simplicity 

of plane waves leads to very efficient numerical schemes for solving the Kohn–Sham 

equations, and the employment of pseudopotentials guarantees that the wave functions can be 

expanded in a relatively small set of plane waves. The FP-LAPW method has emerged as a 

widely used very robust and precise with reasonable computational efficiency to simulate the 

electronic properties of materials [10].   

1.1. Statement of the problem and research objectives 

1.2.1. Quaternary diamond-like semiconductors Cu2MgSiS4 and Cu2MgGeS4 

Binary, ternary and quaternary diamond-like semiconductors (DLSs) have a crystalline 

structure that resembles either cubic or hexagonal diamond. The diamond-like semiconductor 

structure is derived from either the cubic or the hexagonal diamond by replacing the carbon in 

the lattice of the latters with cations and anions of the DLS compound [22-24]. Diamond-like 

semiconductors adhere to a set of guidelines [25]. First, each atom must have an average 

number of valence electrons of 4. Second, the average number of valence electrons for each 

anion must be 8. Third, each atom must have four nearest neighbor atoms located 

approximately at the corners of the surrounding tetrahedron. Lastly, the octet of each anion 

must be satisfied by its nearest neighbors. These guidelines can be used not only to classify 

the known DLS compounds but also to predict new compounds and their properties. Binary 

diamond-like semiconductors II-VI and III-V (e.g. ZnS and GaAs) and ternary I-III-VI2 

compounds (e.g. CuGaS2) have been studied extensively [26-29], however, for the quaternary 

DLMs, which were first discovered in the1960s [22,23], relatively less studies have been 

reported. But recently, quaternary DLSs have seen an increase in attention [28,30-46] because 

their stable structure and compositional flexibility. The compositional flexibility of the DLSs 

allows the adjustments of their physical and chemical properties by changing their 

compositions; the DLSs are ideal tunable semiconductors [44,47,48]. This makes the 

quaternary DLSs more functional and gives them useful properties. 
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Quaternary diamond-like semiconductors with chemical formula 2 4A B C X
I II IV VI

 (A
I
 = 

Cu, Ag, B
II
 = Mg, Zn, Cd, Hg, X

IV
 = Si, Ge, Sn and X

VI
 =S, Se, Te) have received an 

increasing attention for their promising tunable physical properties and wide applications in 

photovoltaics [30,31], non-linear optics [32-34], solar cells [35-37], magnetics [38,39] and 

thermoelectrics [40-42]. It is worth to note that this kind of compounds possess high degree of 

electron-phonon interaction including anharmonic effects [49]. The latter factor has effects on 

some physical properties, such as superconductivity and nonlinear optical features [49,50]. 

The wide application of these quaternary compounds comes from their increased chemical 

and structural freedom, which makes their physical properties more flexible relative to binary 

and ternary compounds. Therefore, it is extremely important from the fundamental point of 

view to see how the fundamental parameters vary when moving from binary to ternary and 

further to quaternary compounds. The quaternary DLS 2 4A B C X
I II IV VI

 compounds (e.g. 

Cu2ZnSnS4) result from the II-VI binaries (e.g. ZnS) by substituting the cation (e.g. Zn) by 

three types of cations (e.g. Cu, Zn, Sn) [35,51]. Most of the quaternary DLS compounds 

crystallize in the stannite (tetragonal superstructure of sphalerite) with space group 42I m  or 

the wurtzite-stannite structure (orthorhombic superstructure of wurtzite) with space group 

12Pmn  [43,52].  

Recently, Liu et al [48] have synthetized two novel quaternary diamond-like 

semiconductors Cu2MgSiS4 and Cu2MgGeS4 via traditional high-temperature solid-state 

reactions. Single crystal X-ray diffraction analysis revealed that these compounds crystallize 

in the wurtzite-stannite structure with the orthorhombic space group 12Pmn , derived from the 

hexagonal diamond [29]. These two compounds belong to the copper-containing quaternary 

chalcogenide compounds 2 4Cu
II IV VI

B C X  that are very interesting with respect to their wide 

applications in optoelectronics and non-linear optics [29,32,53], as well as in thermoelectric 

applications [40,47,54]. Furthermore, all component elements of these compounds are 

abundant on the earth's crust and are not toxic. The optical absorption spectra transformed 

from diffuse reflectance data have been used to determine their band gaps, which are 3.20 and 

2.36 eV for Cu2MgSiS4 and Cu2MgGeS4, respectively [48]. It is worth to note that the 

substitution of the Zn/Cd atom in the quaternary DLSs Cu2ZnSiS4 (Eg = 3.04 eV), Cu2ZnGeS4 

(Eg = 2.04 eV) and Cu2CdGeS4 (Eg = 1.9-2.0 eV) by the Mg atom has increased their band 

gaps [48], indicating that the element mutation provides an efficient method for manipulating 

the band edge positions. Theoretically, as far as we know, only the electronic band structures 
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of the title compounds have been calculated [48] using first-principles pseudopotential plane-

wave method. From these aforementioned experimental and theoretical studies [48], it turns 

out that data on some fundamental physical properties of these compounds, such as the elastic 

and optical properties, are lacking. Therefore, in order to provide a systematic report about the 

structural properties, elastic moduli and their related properties, electronic band structure, 

charge-carrier masses, density of states spectra and optical properties, we have carried out 

detailed first-principles calculations using two complementary first-principles methods, 

namely the pseudopotential plane-wave (PP-PW) and full-potential linearized augmented 

plane wave (FP-LAPW). Our aim is to identify the systematic variation of some physical 

properties when the Cd/Zn element (atom II) in the Cu2-II-IV-VI4 diamond-like compounds is 

substituted by the Mg element. 

1.2.2. Tetragonal and orthorhombic polymorphs of Sr2GeN2  

Because of their set of excellent useful properties, such as low compressibility,  good 

thermal stability, chemical and radiation inertness and semiconducting, which allow important 

new technological applications, such as high-performance light-emitting devices, ultraviolet 

photodetectors, light-emitting diodes, lasers [55,56], converting solar light into electricity, 

photocatalysis, hydrogen production [57], lithium-ion batteries [58], magnetic and electronic 

devices [59,60], automotive engine wear parts, cutting tools and so on, the nitride materials 

have gained increasing interest since the mid-1980s.  

In the quest of other nitride materials having the interesting properties of the binary 

nitrides and at the same time having other new properties that allow other new applications 

that are limited by the properties of the binary nitrides, such as an optimal band gap for higher 

effectiveness of possible devices, high-performance chemical and radiation inertness…etc., 

the attention has been drawn to ternary and quaternary nitrides [61-77]. Consequently, the 

number of synthesized ternary and quaternary nitrides has progressed rapidly over the last two 

decades. These new multinary nitrides provide a wider range of interesting mechanical, 

electrical, electronic, optical and chemical properties that make them potential candidates for 

probable new technological applications. 

Some of the recently synthesized ternary nitrides are based on the germanium nitrides 

(GeN), such as the orthorhombic and tetragonal polymorphs of the strontium germanium 

nitrides, labeled α-Sr2GeN2 and β-Sr2GeN2 polymorphs, respectively [76,77]. The α-Sr2GeN2 

and β-Sr2GeN2 phases were synthesized as single-crystals by DiSalvo et al. [76,77] from the 
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constituent elements in sealed Nb tubes at about 750 °C, using liquid Na as a growth medium. 

These two Sr2GeN2 polymorphs have several quite similar properties, such as the unit-cell 

volume and bond-lengths.  

Apart the synthesis optimal conditions and structure features [76,77], experimental 

data on α-Sr2GeN2 and β-Sr2GeN2 crystals are not available in the scientific literature. 

Theoretical investigations of these systems are also scarce; as far as we know, there is only 

one theoretical work [78], which explored the electronic and optical properties of these 

compounds using full potential linearized augmented plane wave (FP-LAPW) calculations in 

the framework of the density functional theory. The reported theoretical results [78] reveal 

that α-Sr2GeN2 and β-Sr2GeN2 are very narrow band gap semiconductors. The ternary nitrides 

α-Sr2GeN2 and β-Sr2GeN2 can be used as substrates for GeN-based devices. Other eventual 

applications of these considered nitrides can be revealed from exploring and understanding 

their physical properties.  

For optoelectronic device applications, semiconductor layers are commonly grown as 

thin epitaxial layers and superlattices on substrates. The lattice mismatch and difference in 

thermal expansion coefficients between epitaxial layers and substrates can cause large stresses 

in the epitaxial layers, which could affects their physical properties [79-81]. Hence, it is 

interesting and necessary for practical use to know: (i) the elastic constants, which describe 

the response of the material to the externally applied strains, and (ii) the evolution of the 

physical properties of these materials with pressure and temperature. The electronic and 

optical properties of the title nitrides have been already investigated by Zeyad and Reshak 

[78], whereas, to the best of authors’ knowledge, no theoretical or experimental studies of the 

elastic and thermodynamic properties for these two nitrides are available in the scientific 

literature. On other hand, it is worth noting that the former reported theoretical calculations 

[78] investigated α-Sr2GeN2 and β-Sr2GeN2 phases at zero temperature only without any 

thermal effects included. Commonly, measurements of the elastic constants and effects of 

pressure and temperature on physical proprieties of materials are very difficult. Therefore, the 

lack of experimental data on these properties can be fulfilled via theoretical simulation based 

on accurate ab initio calculations. Thus, the first main objective of the present work is 

accurate calculations of the elastic constants and related properties at ambient as well as 

elevated pressures up to 15GPa using ab initio pseudopotential plane-wave method (PP-PW) 

based on density functional theory. The second main objective is the exploration of the 

pressure and temperature effects on the unit-cell volume, bulk modulus, volume thermal 
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expansion, isochoric heat capacity, Debye temperature and Grüneisen parameter of the title 

compounds using the PP-PW method in combination with the quasi-harmonic Debye model. 

We hope that the reported data can provide theoretical support to the existing experimental 

and theoretical data and provide a basis for future experimental and theoretical studies in 

order to have insight about eventual technological applications of the considered ternary 

nitrides α-Sr2GeN2 and β-Sr2GeN2.  

1.3 Thesis outline 

The present thesis is divided into 7 chapters: 

In chapter 1, we introduce the important of the present study. 

In chapter 2, we outline some of the founding principles of the density functional theory. 

In chapter 3, we describe the Pseudopotential Plane-Waves method. 

In chapter 4, we describe the Full Potential Linearized Augmented Plane Wave method. 

In chapter 5, we present and discuss the predicted physical properties of the Quaternary 

diamond-like semiconductors Cu2MgSiS4 and Cu2MgGeS4. 

In chapter 6, we present and discuss the predicted physical properties of the Tetragonal and 

orthorhombic polymorphs of Sr2GeN2. 

Finally, in chapter 7, we summarize the main results obtained so far. 

We hope that the reported data can provide theoretical support to the existing 

experimental and theoretical data and provide a basis for future experimental and theoretical 

studies in order to have insight about eventual technological applications of the considered 

two groups of materials concerned in our study. 
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2.1. Introduction 

Since the discovery of the electron and the rise of quantum mechanics and particle 

physics, it has been shown that many natural phenomena of interest can be well explained by 

how electrons behave in the vast environment of other electrons and nuclei. In this century, 

the description of many-particle systems has been an important goal of physics. Analytic 

solutions of the Schrodinger equation are possible for a few very simple systems, and 

numerically exact solutions can be found for a small number of atoms and molecules [1]. 

However, many-particle system (e.g. electron-electron interactions in solids) is too complex 

to actually carry out. The solution to the problem can only be approximated. Such theoretical 

methods called first principles or ab initio
1
 methods have been appeared before the formalism 

of Density Functional Theory (DFT) which is our subject in this chapter. Quantum mechanics 

and statistical mechanics are such theories, which should in principle suffice to determine the 

properties of solids from first principles [2]. A historically very important one is the Hartree-

Fock method, described in many condensed matter textbooks [3]. These methods which are 

based on the many-body wave function as basic variable, present serious limitations: (1) the 

problem is highly nontrivial, even for very small numbers N and the resulting wave functions 

are complicated objects and (2) the computational effort grows very rapidly with increasing 

N, so the description of larger systems becomes prohibitive [4]. 

A different approach is taken in density-functional theory where, instead of the many-

body wave function, the one-body density is used as the fundamental variable. Since the 

density ρ is a function of only three spatial coordinates (rather than the 3N coordinates of the 

wave function), density functional theory is computationally feasible even for large systems. 

It is an exact theory in its principle which makes it possible to calculate all the properties of 

the ground state. Despite the necessary approximations that implies its practical implementat-

ion, it offers good accuracy with relatively low computational cost, which allows it to tackle 

systems beyond the reach of other methods based on the wave function. It has proved to be 

highly successful in describing structural and electronic properties in a vast class of materials, 

ranging from atoms and molecules to simple crystals to complex extended systems, and 

attempts have been made to extend it to obtain excited-states [5]. For these reasons DFT has 

                                                           
1
 The term ab initio is Latin for ''from the beginning'' This name is given to computations that are derived 

directly from theoretical principles with no inclusion of experimental data. This is an approximate quantum 

mechanical calculation. The approximations made are usually mathematical approximations, such as using a 

simpler functional form for a function or finding an approximate solution to a deferential equation.  
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become a common tool in first-principles calculations aimed at describing - or even predicting 

- properties.  

The theory originates from the pioneering work due to Thomas and Fermi in the early 

thirties of the twentieth century and further refinements by Hartree, Dirac, Fock and Slater. It 

was given a firm foundation by Hohenberg, Kohn and Sham almost forty years after the work 

of Thomas and Fermi. The original scheme as proposed by Hohenberg and Kohn and Kohn 

and Sham is a ground-state theory which provides a reliable and inexpensive method for the 

calculation of ground-state energy of an interacting many fermionic system. Today, the 

Density Functional theory gives a quantum-mechanical basis for most of the ab initio methods 

used in computational materials science [6]. 

In this chapter, we have returned to the foundations of this theory, in which we have 

detailed the different levels of approximation that intervene in its practical implementation, 

beginning with the problem of several bodies, followed by the approximation of Oppenheimer 

up to Hartree and Hartree Fock approximations. Then, we have presented the DFT and its 

implementations for solving the Kohn Sham equations. 

2.2. The DFT foundations  

2.2.1. Many-body problem 

A solid is a collection of large number of particles in interactions: heavy, positively 

charged particles (nuclei) and lighter, negatively charged particles (electrons). In crystalline 

solids the nuclei of atoms are arranged at the nodes of the crystal lattice that has a spatial 

periodicity. The properties of these systems are governed by those electrons which are 

immersed in a periodic potential created by the ions. This is a many-body problem. An exact 

theory for a system like this is inherently quantum mechanical, and is based on solving a 

many-body time independent Schrödinger equation of the form [7]:        

tottot EH Ψ=Ψˆ  (2.1) 

where E and Ψ  are respectively the total energy and the total wave function of the system. 

Ĥ is the Hamiltonian operator of the system that takes into account all forms of energies 

involved in the system [8]:  

nneneene VVVTTH ˆˆˆˆˆˆ ++++=       (2.2) 

with: 
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where the summation over i and  j correspond to electrons, and summations over K and L 

correspond to nuclei; MK and ZK represent respectively the mass and charge of the K
th

 

nucleus; me the mass of an electron and k the Coulomb's constant (k = 1/4πε0).  

The wave function Ψ depends on the coordinates of all the particles, that is to say: 

),...,,;,...,,( 2121 PNtottot RRRrrr
rrrrrr

Ψ=Ψ ),( Rrtot

rr
Ψ=  by convention, where N is the number of 

electrons, and P is the number of nuclei. If we have P nuclei, we are dealing with a problem 

of P+ZP (in the case where the atoms are identical). Thus, the number of variables is 

3(Z+1)P, and as there are of the order of 10
23

 atoms/cm
3
, the number of variables for a 

macroscopic crystal is very large (~10
24

-10
25

 variables) [9]. Today, it is out of question to 

solve this problem of many-body exactly, and we can not obtain exactly analytical solutions 

except for single-electronic systems, otherwise known as "hydrogen-like atoms" (H, He
+
, 

Li
2+

, …). So the solution can only be approximate, and use a number of approximations is 

essential, as stated by Dirac in 1929 [10]: “progress depends mostly on the elaboration of 

sufficiently accurate and approximate techniques”. The first step to overcome this objection is 

given by the Born-Oppenheimer approximation. 

2.2.2. Born Oppenheimer approximation 

The Born-Oppenheimer approximation [11, 12] or adiabatic is based on the fact that 

the nuclei are much heavier than electrons (the mass of a proton is approximately 1800 times 

larger than the mass of an electron), thus, their inertia is greater. The movement of the nuclei 

is therefore much slower than electrons. We can hence consider them frozen at fixed 

positions, (i.e. they are at rest) and assume the electrons to be in instantaneous equilibrium 

with them. The nuclei can therefore be treated adiabatically. This means that the electronic 
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and nuclear coordinates in the many-body wave function can be separated. Thus, if the nuclei 

are to rest, their kinetic energy is neglected ( nT̂  = 0), and the potential energy of the nuclear 

interaction nnV̂  becomes a certain constant (in this case the coordinates of the nuclei R
r

 appear 

as parameters noted 0R
r

). For a suitable choice of the origin of potential energy can cancel nnV̂

. The Hamiltonian of the system reduced then to his only electronic components: the kinetic 

energy of the electron gas, the potential energy due to electron-electron interactions and the 

potential energy of the electrons in the (now external) potential of the nuclei:  
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       (2.3) 

The new term eĤ  is known as the electronic Hamiltonian, as it describes the movement of NZ 

electrons in the potential of nuclei. The total wave function with separate variables has the 

form: 

 ),()(),( 000 RrRRr eNtot

rrrrr
Ψ=Ψ φ  (2.4) 

where Ψe( r
r

, 0R
r

) is the electronic wave function, and )( 0RN

r
φ is the wave function of the 

nuclei. The Schrödinger equation to be solved is now much simpler than equation (1.1):  

HeΨe = EeΨe    (2.5) 

where Ee= Ee( 0R
r

) is the electronic energy. Ψe and Ee depend only parametrically on nuclei 

positions. The total energy of the system will be the sum of Ee and energy and the constant 

nuclear repulsion term Enuc:                                                              

Etot=Ee +Enuc (2.6) 

Despite the considerable implications of this approximation, which allows separating 

the movement of electrons from those nuclei, and therefore the problem of solving the 

Schrödinger equation reduces to that of the electron behavior, it is still far too difficult to 

solve the equation (2.5). This is due to the presence of the term eeV̂ of electron-electron 

interactions, which is the most difficult to determine. Therefore the use of other 

complementary approximations is essential. 

2.2.3. Reduction to single-particle Problem 

Under the adiabatic approximation, the complexity of solving the equation (2.5) is due 

to electron-electron interactions that prevents the separation of this equation in N electronic 

equations, and therefore the wave function of the many-electron system remains dependent on 
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the coordinates of the electrons. Such an approximation which reduces the problem of N 

electrons in interaction to that of a single-electron is qualified as the independent particles 

approximation. 

In order to find a suitable strategy to approximate the analytically not accessible 

solutions of many-body problems, a very useful tool is the Rayleigh-Ritz variational 

calculation [13-16], in which the ground state wave function, which corresponds to the lowest 

energy of the system E0, can be approached. This technique will be used to derive both the 

Hartree and Hartree-Fock equations. A variational procedure will also be used with the 

density functional method to develop the Kohn-Sham equations.  

2.2.3.1. Hartree approximation 

One of the earliest and most widely used of all approximations for Ψe is due to Hartree 

(1928) [17], who approximated the many-electron wave function as a product of single-

particle functions: 

( )Ne rrr
rrr

,...,, 21Ψ  = ( )11 r
r

φ ( )22 r
r

φ … ( )NN r
r

φ  = ( )∏
=

N

i

ii r
1

r
φ                       (2.7) 

Each of the functions ( )ii r
r

φ  satisfies a one-electron Schrodinger equation, where every 

electron is assumed to move in an effective potential composed of the external potential due 

to the nuclei and a contribution which describes the average electrostatic interaction between 

the electrons. In this approximation, the idea is to replace in equation (2.5) the potential 

energy of electron-electron interactions eeV̂  by the potential energy of the form  ∑
i

iH rV )(ˆ r
 , 

where )(ˆ
iH rV
r

 is the interaction energy of i
th

 electron, which moves independently in the field, 

created by all other electrons. If we set )(ˆ
iext rV
r

 the external potential of the i
th

 electron in the 

nuclei field, the potential energy of electron-nuclei interactions will be written:  
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The approximated Hamiltonian is then the sum of the effective one particle Hamiltonians: 

∑∑ =
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 (2.9)  

With this approximation, the total energy of the system eee

H

e HE ΨΨ=  becomes: 
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with 
eeee TT ΨΨ= ˆ  is the kinetic energy of the electrons.  

       
eeeeH VE ΨΨ= ˆ  is the Hartree energy of electron-electron interactions. 

       
eeneext VE ΨΨ= ˆ  is the electron-nuclei energy interactions.  

Using a variational argument, we obtain from this the single-particle Hartree equations: 

 ( ) ( ) ( ) ( )iiiiiiextiHi rrrVrV
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rrrrrh
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( )iH rV
rˆ  called: Hartree potential. It is given by: 
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   (2.12) 

The constants
iε are the Lagrange multipliers introduced to take into account the normalization 

of the single-particle states 
iφ . Each orbital 

iφ  can then be determined by solving the 

corresponding single-particle Schrödinger equation, if all the other orbitals jφ ( ij ≠ ), were 

known. In principle, this problem of self-consistency, i.e. the fact that the equation for one 
iφ  

depends on all the other jφ ’s, can be solved iteratively [18].  

 Unfortunately, the Hartree approximation does not satisfy all the important criteria for 

wave functions. Because electrons are fermions, the wave function must change sign if two 

electrons change places with each other. This is known as the antisymmetry principle. 

Exchanging two electrons does not change the sign of the Hartree product, which is a serious 

drawback. 

Despite these deficiencies, the Hartree approximation can be very useful, e.g. when 

applied to many-electron atoms. It is also useful for gaining a crude understanding of why the 

quasi free-electron picture of metals has some validity. Finally, it is easier to understand the 

Hartree–Fock method as well as the density functional method by slowly building up the 

requisite ideas. The Hartree approximation is a first step [19]. 
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2.2.3.2. Hartree-Fock approximation 

In 1930, Fock [20] showed that the Hartree wave function (Eqn 2.7) violates the Pauli 

exclusion principle, because it is not antisymmetric with respect to the exchange of two 

electrons. The alternative way is based on the minimization of energy using a Slater 

determinant [21], in which the N-electron wave function is formed by combining single-

electron wave functions in a way that satisfies the antisymmetry principle. This is known as 

the Hartree-Fock approximation. The Hartree-Fock many-electron wave function is then:  

( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )NNNN
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φφφ
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22221
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21
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1
,...,, ⋅=Ψ   (2.13) 

where N is the number of electrons; 
iq  refers to the collection of 3N spatial coordinates and N 

spin projections ( ),( iii rq σ
r

= );
 !

1

N
is the normalization factor of this wave function. Note 

that the antisymmetry principle implies:  

 ,...),...,,...,(,...),...,,...,( 11 jieije qqqqqq Ψ−=Ψ  (2.14) 

Using this determinant, the total energy is:  
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The electron-electron interaction for a single Slater determinant yields, due to the anti-

symmetric nature of the determinant, two contributions: 
xHeeee EEV +=ΨΨ ˆ . The first of 

these is simply the classical electrostatic interaction between electrons or Hartree energy 

given in equation (2.10). The second is called the Fock or exchange energy, which a une 

origine purement quantique. It reflects the fact that two electrons of the same spin can not 

occupy the same position, because of the Pauli-exclusion principle effect. This, therefore has 

the effect of decreasing the total energy since the electrostatic repulsion decreases. 

The expressions of energies 
eT , 

extE , HE  et 
xE  are: 
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                  eT  = ( )∑∫ ∇
i

i rdr
m
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The single-particle Hartree-Fock equations, obtained using a variational calculation, are:  

 ( ) ( ) ( ) ( )rrrVrVrV
m

iiiextxHr

rrrrrh
φεφ =









+++∇− )(ˆˆˆ
2

2
2

 (2.20)  

This equation has one extra term compared with the Hartree equation, the last one, which is 

the non-local exchange potential, which describes the effects of exchange between electrons. 

It corrects the defect of the Hartree approximation, but it considerably complicates the 

calculations. Its expression is given by: 

                  ( ) ( ) ( ) ( ) ( )rr
rr

rkerrV j

j

ijix

rr
rr

rrr
φφφφ ∑ ′−

−= '
1

'2
                              (2.21) 

Because the exchange potential is non local and it depends on the spin orbitals, the Hartree-

Fock equations must be solved self-consistently. 

The orbitals ( )ri

r
φ  and the respective energies 

iε , have any physical significance. 

Koopmans’ theorem [22] states that, neglecting the electronic relaxation effects, 
iε  is the 

negative of the energy required to remove an electron in the state ( )ri

r
φ from the solid, i.e. 

( ) ( )1−−≈ NN

i EEε , where ( )NE and ( )1−NE are respectively, the total energy of the N and (N-1) 

electron system, with N ≫1. The single-particle wave functions ( )ri

r
φ  describe also the 

mathematical quasi-particles, without a direct physical meaning.  

This approximation leads to good results. It remains an indispensable benchmark in 

molecular physics, although extended systems such as solids remain a challenge. But it still 

provides an upper bound to the energy, because It ignores the effects of electron correlations. 

Such an approach, where effects beyond the Hartree-Fock approximation (correlation effects) 

are included by improving the many-particle wave function, is known as "configuration 

interaction" (CI), which involves minimization over a sum of different N-particle Slater 
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determinants. It leads, in principle, to the exact wave function, but it is extremely expensive 

since the number of configurations increases very rapidly with the number of electrons. This 

means that only systems with relatively few electrons can be calculated with high accuracy 

[23]. This is a major motivation for the development and use of density functional theory, 

where it is from the electron density, not the wave functions, the Schrödinger equation is 

solved. The Hartree-Fock method despite everything remains an indispensable landmark.  

2.3. Density Functional Theory 

2.3.1. The electron density and the Thomas-Fermi model 

The electron density is the basic variable in DFT. It determines the probability of 

finding any of the N electrons within volume element  ���. For an N-particle system, the 

density operator is defined in terms of N occupied single-particle orbitals, as:  

 ∑
=

=
N

i

ii

1

ˆ φφρ   (2.22) 

It can be expressed as measurable observable only dependent on spatial coordinates:  

 ( ) ( )∑
=

=
N

i

i rr
1

2rr
φρ   (2.23) 

which can e.g. be measured by X-ray diffraction.  The electron density contains all necessary 

informations about the system. In detail that means it has to contain information about the 

electron number N as well as the external potential [24]. The total number of electrons can be 

obtained by integration the electron density over the spatial variables: 

 ( )∫ = Nrdr 3r
ρ  (2.24) 

In addition, ( )r
r

ρ  is a non-negative function and vanishes at infinity, i.e. ( ) 0≥r
r

ρ  and 

( ) 0=∞→rρ . 

 Depending on the electronic density, the Hartree-Fock total energy will be:   
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where ( ) ( ) ( )∑
=

∗ ′=′
N

i

ii rrrr
1

,
rrrr

φφρ  is the mixed electronic density; ( )r
r

τ  = ( )∑ ∇
i

i

e

r
m

2
2

2

rh
φ  is the 

kinetic energy density. 
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 Shortly after the formulation of the quantum mechanic laws, Thomas and Fermi (1927, 

1928) [25, 26] had already tried to express the total energy as a function of the electron 

density. The weakness of this approach, however, lay in the expression of the kinetic energy, 

and did not allow him to reach a satisfactory accuracy. The Thomas and Fermi model is to 

treat the kinetic energy based on a homogeneous gas system of free electrons (the wave 

functions used are plane wave functions). The expression of this energy will be: 

 [ ] ( ) ( ) rdr
m

T
33/53/22

2

3
25

3
∫=

rh
ρπρ  (2.26) 

 The Thomas and Fermi model is a local approximation of the density which does not 

take into account the correlation of electrons, since it considers an inhomogeneous gas as 

being locally homogeneous. Ameliorations have been made to this model by adding other 

effects such as: 

• The exchange effect introduced by Dirac [27] which results in the addition of a 

supplementary term in the Thomas-Fermi energy (Thomas-Fermi-Dirac model): 

[ ] =ρTFDE [ ] ( )∫− rdrCE xTF

33/4 r
ρρ  (2.27) 

• The correlation effect proposed by Wigner: 

[ ] =ρcE
( )

( )
rd

rb

r
a

3

3/1

3/4

∫ +
− r

r

ρ
ρ

 (2.28) 

Despite these improvements, this model which is the ancestor of the DFT is insufficient. 

2.3.2. Density Functional Theory 

 Although its history goes back to the early thirties of the 20
th

 century, density 

functional theory (DFT) has been formally established with the publication of two articles of 

Hohenberg-Kohn in 1964 [28], and Kohn-Sham in 1965 [29], who founded the bases of this 

theory. Its goal is to determining, with the only knowledge of the electron density, the ground-

state properties of a system composed of a fixed number of interacting electrons in an external 

potential due to the nuclei. The theory of DFT is an accurate theory of the effects of electron 

correlations. 

2.3.2.1. Hohenberg-Kohn theorems 

The traditional formulation of the two theorems of Hohenberg and Kohn [28] is as 

follows: 
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First theorem (Uniqueness): « the external potential ( )rVext

r
 is (to within a constant) a 

unique functional of ( )r
r

ρ ».  

An immediate consequence is that the ground-state expectation value of any observable �� is a 

unique functional of the exact ground-state electron density: [ ]ρOO =ΨΨ ˆ .  

Demonstration: Suppose the opposite, where the density ( )r
r

ρ  corresponds two different 

external potentials enV̂  and enV 'ˆ , Which lead two different Hamiltonians Ĥ  and 'Ĥ , where, 

extee VVTH ˆˆˆˆ ++= and extee VVTH ˆˆˆˆ ′++=′ . Let Ψ and E be the fundamental state and its energy 

relative to Ĥ ; Ψ' and E' those of 'Ĥ .  Let us calculate the energy of the system with the 

Hamiltonian H in the state P which is not its ground state:  

                     Ψ′′+′−Ψ′=Ψ′Ψ′ HHHH  

                                         Ψ′′Ψ′+Ψ′′−Ψ′= HHH  

                                         Ψ′′−Ψ′= enen VV E′+   

                                         ( ) ( ) ( )[ ]∫ ′−= rdrVrVr extext

3rrr
ρ E′+  

Since Ψ' is not the ground state of Ĥ , then: E < Ψ′Ψ′ H , which means:  

E < ( ) ( ) ( )[ ] ErdrVrVr extext
′+′−∫

3rrr
ρ ……..(a) 

We do the same thing with the Hamiltonian 'Ĥ  in the state Ψ, we obtain: 

E′< ( ) ( ) ( )[ ] ErdrVrVr extext +−′∫
3rrr

ρ ……..(b) 

Addition of the two equations (a) and (b) leads to following contradiction: EE ′+ < EE ′+ ! 

This proves that there is one-to-one correspondence between an external potential ( )rVext

r
 and 

the density ( )r
r

ρ . 

            According to this theorem, the total energy of interacting electrons in an external 

potential is given exactly as a functional of the ground state electronic density ρ : 

 [ ]ρEE =  (1.29) 

Separating the interaction with the external potential from the rest (kinetic energy and electron 

-electron interaction) we can write the total energy as: 

 [ ] [ ] ( ) ( )∫+= rdrrVFE extHK

3rr
ρρρ  (2.30) 

which defines the Hohenberg-Kohn functional as:    

 [ ] eeeeeHK VTF Ψ+Ψ= ˆˆρ  (2.31) 
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FHK[ρ] is universal functional of the charge density ρ for any many-electron system, because 

it does not depend on external potential extV̂ . The exchange and correlation effects are 

contained in this functional.   

The problem is now only how to find this density. The second theorem is helpful in 

this matter:  

Theorem 2 (Variational principle): «For a given external potential, the true density ( )r
r

0ρ  

minimizes the total energy functional». Therefore, the ground state density can be obtained 

from the variational principle. Thus, for any trial electronic density ( )r
r

ρ : 

 [ ] [ ] ( )ρρρ
ρ

EEE min0 =≥  (2.32) 

Demonstration:  

Let ( )r
r

0ρ  the exact density of the system in its ground state Ψ, we have then:  

( )r
r

0ρ → ( )rVext

r → Ĥ → Ψ .  

Let us ( )r
r

ρ ′  another different density of ( )r
r

0ρ , with ( )∫ =′ Nrdr 3r
ρ , we also have:  

( )r
r

ρ ′ → ( )rVext

rˆ′ → Ĥ ′ → Ψ′ .  

Let us now calculate the energy associated with Ĥ in the state Ψ' which is not its ground 

state: ( )ρ ′=Ψ′Ψ′ EH > ΨΨ H ⇒ ( )ρ ′E > ( )0ρE , with ( )0ρE =
0E = ΨΨ Ĥ  is the 

energy of the ground state. 

This second theorem lends us an approach in order to determine the desired ground 

state density. The theorem proves that for any external potential we know that a functional 

FHK[ρ] exists whose global minimum is the exact ground state energy. Furthermore, the actual 

density that minimizes FHK[ρ] will be the ground state density ( )r
r

0ρ .  

However, the explicit density dependence of FHK[ρ] remains unknown. Approximations have 

been suggested, the oldest one being the well-known Thomas-Fermi approximation. 

However, its performance is really bad due to the poor approximation of the kinetic energy.  

Instead, the Hohenberg-Kohn theorem provides the basic theoretical foundation for the 

construction of an effective single-particle scheme which allows for the calculation of the 

ground-state density and energy of systems of interacting electrons. The resulting equations, 

the so-called Kohn–Sham equations, are at the heart of modern density-functional theory. 
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2.3.2.23. The Kohn-Sham equations 

The task of finding good approximations to the energy functional is greatly simplified 

by using a different separation introduced by Kohn and Sham (1965) [29], which turn DFT 

into a practical tool. The central idea of the Kohn-Sham scheme is to calculate the exact 

kinetic energy of a fictive system of non-interacting electrons with the same density as the 

real interacting one (see Figure 2.1), i.e. ( ) ( )rrs

rr
ρρ = . 

 

 

 

Fig. 2.1: representation of relationship between the real many body system (left hand side) 

and the non interacting system of Kohn-Sham density functional theory (right hand side). 

  

Formally, the total energy functionals E[ρ] and EHF[ρ] corresponding to the exact and 

Hartree-Fock Hamiltonians respectively, are: 

 [ ]=ρE [ ] [ ] [ ]
[ ]

[ ]ρρρρ
ρ

ext

F

xH EEET

HK

+++
444 3444 21

 (2.33) 

 [ ]=ρHFE [ ] [ ] [ ] [ ]ρρρρ extxHs EEET +++  (2.34) 

Here T is the exact kinetic and Ts is the kinetic energy of a non-interacting electron gas, EH 

stands for the Hartree contribution and Ex for the exchange contribution. Traditionally, one 

defines the correlation energy Ec as the difference between the Hartree-Fock and the exact 

energy, i.e: 

 HFc EEE −=   (2.35) 

By subtracting (2.34) from (2.33), the functional for the correlation contribution appears to 

be:                                                              

 [ ] [ ] [ ]ρρρ sc TTE −=   (2.36) 
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With this knowledge, we can rewrite the Hohenberg-Kohn functional in the following way: 

 [ ] [ ] [ ] [ ] [ ]
[ ]

4434421
ρ

ρρρρρ
xcE

cxHsHK EEETF +++=   

             [ ] [ ] [ ]ρρρ xcHs EET ++=  (2.37) 

Here Exc[ρ] is the exchange-correlation energy functional. It is simply the sum of the error 

made in using a non-interacting kinetic energy and the error made in treating the electron-

electron interaction classically. Thus the total energy of the system will be written: 

 [ ] =ρE [ ]ρsT
( ) ( )

rrdd
rr

rrke
′

′−

′
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33
2

2
rr

rr
ρρ ( ) ( )∫+ rdrrVext

3rr
ρ [ ]ρxcE+    (2.38) 

We can interpret the above expression as the energy functional of a non-interacting 

classical electron gas, subject to two external potentials: one due to the nuclei, and one due to 

exchange and correlation effects. The only term that remains unknown is the Exc[ρ], which is 

not easy to calculate, but as we verify the advantage of being much smaller in front of the 

other terms. 

Using the variational principle, we finally obtain the single-particle Kohn-Sham 

equation:  

 ( ) ( ) ( )rrrV
m

iii

H

KS

effi

KS

rr

444 3444 21

rh
φεφ =









+∇−

ˆ

2
2

2
 (2.39) 

Here  

 ( ) ( ) ( ) ( )rVrVrVrV xcextH

KS

eff

rrrr ˆˆˆˆ ++=  (2.40) 

where  

 ( )rV KS

eff

rˆ is the Kohn-Sham effective potential.  

 ( )rVH

rˆ ( )[ ]
( )

==
r

rEH
r

r

δρ
ρδ ( )
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rr
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32
rr
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is the Hartree potential. 

 ( )rVext

rˆ ( )[ ]
( )

==
r

rEext
r

r

δρ
ρδ
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−

−
K K

K

Rr

Z
ke rr

2
is the external potential. 

 ( )rVxc

rˆ ( )[ ]
( )r

rE xc
r

r

δρ
ρδ

= is the exchange-correlation potential. 

iφ  and εi are called, respectively, orbitals and energies of Kohn-Sham. We note that, except 

the highest occupied orbital, and εmax, which equals the negative of the exact ionization 

energy, the Kohn-Sham orbitals 
iφ and the Kohn-Sham energies εi have no physical 
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significance [3], and it is not defined by Koopmans’ theorem [19]. Since KS

effV̂ depends on the 

density, equations (2.23) and (2.39) have to be solved self-consistently. This is known as the 

Kohn-Sham scheme of density functional theory.  

2.3.2.3. Exchange-correlation energy approximations 

The beautiful results of Kohn, Hohenberg, and Sham showed us that the ground state 

we seek can be found by minimizing the energy of an energy functional, and that this can be 

achieved by finding a self-consistent solution to a set of single-particle equations. But as 

stated above, the true form of the exchange-correlation functional Exc[ρ] is simply not known, 

and it is very difficult to be identified. Only the functional system of a uniform electron gas 

was well known (electron density is constant). It is therefore, necessary to approximate this 

functional of exchange-correlation, in which, Exc should have all of the following features: (1) 

a non-empirical derivation, since the principles of quantum mechanics are well-known and 

sufficient; (2) universality, since in principle one functional should work for diverse systems 

(atoms, molecules, solids) with different bonding characters (covalent, ionic, metallic, 

hydrogen, and van der Waals); (3) simplicity, since this is our only hope for intuitive 

understanding and our best hope for practical calculation; and (4) accuracy enough to be 

useful in calculations for real systems [30]. 

1.3.2.3.1. Local density approximation (LDA)  

The local density approximation (LDA) is the base of all exchange-correlation 

functional approximations, and it is the simplest of them. It is based on the uniform 

(homogeneous) electron gas of Tomas-Fermi model [25, 26]. This approximation was 

originally introduced by Kohn and Sham [29] and holds for a slowly varying density. It states 

that the exchange-correlation energy due to a particular density ( )r
r

ρ  could be found by 

dividing the material in infinitesimally small volumes with a constant density. Each such 

volume contributes to the total exchange correlation energy by an amount equal to the 

exchange correlation energy of an identical volume filled with a homogeneous electron gas, 

that has the same overall density as the original material has in this volume [3]. The 

exchange-correlation functional has the following form: 

 [ ]ρLDA

xcE [ ] ( )∫= rdrxc

3r
ρρε  (2.41) 
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where the function [ ]ρε xc
 is the exchange-correlation energy per particle of a homogeneous 

electron gas with density ( )r
r

ρ . Traditionally, the exchange-correlation energy can be 

decomposed into exchange and correlation terms linearly: 

 [ ]ρε xc
= [ ]ρε x

+ [ ]ρε c
 (2.42) 

The exchange contribution was originally derived by Dirac [27]: 

 [ ]
s
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r
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−=
π

ρ
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ρε  (2.43) 

where 

3/1

3

4
−








=
πρ

sr is the Wigner-Seitz radius [31] (radius sphere that contains one 

electron). 

The correlation part can be fitted on the total energy of the homogeneous electron gas. 

The current reference calculation of the energy of a homogeneous electron gas is the Quantum 

Monte-Carlo result of Ceperley and Alder [32]. Parametrisations of the LDA correlation 

energy using Padé approximates based on these results are those of Vosko, Wilk and Nussair 

[33], Perdew-Wang [34] and Perdew-Zunger [35]. 

By its very construction, the LDA is expected to be a good approximation for systems 

with the density that varies slowly. Although this condition is hardly ever met for real 

electronic systems, LDA has proved to be remarkably accurate for a wide variety of systems. 

It is remarkably reliable for the structure, elastic moduli, relative phase stability of many 

materials, and it is often considered satisfactory in condensed-matter systems.  

However, this approximation reached to its limits for systems where the electron 

density varies greatly, and where long-range bonds (hydrogen bonding and Vander Waals 

interactions) are presented. The main failures of the LDA approximation are: (1) it is much 

less accurate in atomic and molecular physics, for which highly accurate experimental data 

are available; (2) it badly overestimates (~20% and more) cohesive energies and bond 

strengths in molecules and solids, and as a consequence bond lengths are often 

underestimated; (3) the underestimation of the band gap of crystalline systems.  

The inclusion of the spin dependence by using the local spin-density approximation 

(LSDA), however, was found to improve the description of the unpaired electron in alkali 

metals [36], thereby improving the cohesive energy of the solid [37]. This approximation was 

proposed in the original work of Kohn and Sham [29], and has proved to be remarkably 
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accurate, useful, and hard to improve upon. It is used most widely in in solid state physic 

calculations. It has the following form: 

 [ ]ρLSDA

xcE [ ] ( )∫ ↓↑= rdrxc

3,
r

ρρρε  (2.44) 

where [ ]↓↑ ρρε ,xc  is the exchange and correlation energy per particle of' a homogeneous, 

spin-polarized electron gas with spin-up and spin-down densities ↑ρ  and ↓ρ , respectively. 

parametrizations of [ ]↓↑ ρρε ,xc  have been given by von Barth and Hedin (1972) [38], 

Gunnarsson and Lundqvist (1976) [39], Vosko et al. (1980) [33], and Perdew and Zunger 

(1981) [35], among others. 

2.3.2.3.2. Generalized Gradient Approximations (GGA) 

The Generalized Gradient Approximations (GGAs) are an extension and an 

amelioration of LDA to inhomogeneous systems: the local exchange-correlation energy 

depends not only on the local charge density but also on the local charge density gradient. 

They have been developed in order to take into account the fact that almost all real systems 

are inhomogeneous, and therefore, the electron density has a spatial variation. Within GGA, 

the exchange-correlation energy is written as: 

[ ]ρρ ∇,GGA

xcE ( ) ( )[ ] ( )∫ ∇= rdrrrxc

3,
rrr

ρρρε  (2.45) 

In practice, the exchange and correlation parts are treated independently. Their 

formulation is purely mathematical. Because there are many ways in which information from 

the gradient of the electron density can be included in a GGA functional, many different 

forms of GGA functionals have been suggested [40-45]. Two of the most popular functionals 

which are widely used in calculations involving solids are the Perdew-Wang functional 

(PW91) [34] and the Perdew-Burke-Ernzerhof functional (PBE) [45]. The latter has been 

widely applied in solid-state physics [46]. It almost always overestimates the lattice constants 

of solids, with the typical errors amount to 1%-2%. A series of alternative GGA functionals 

have recently been proposed to overcome this problem [47-51]. One such functional is the 

PBEsol [49] which can be seen as revised version of PBE specifically adapted for solids. It 

yields indeed lattice constants that are in excellent agreement with experiments [52]. For these 

reason, we have used this functional in this thesis.   

Although hybrid functionals [53-56] which include Hartree-Fock exchange and meta-

GGAs [56-60] which include spin kinetic energy density have also been developed and have 

been popularly and successfully applied in molecular quantum chemistry during the past 



Chapter 2    Density functional theory 

  36 

 

decade, they are not widely used in solid-state physics, and very few solid-state codes have 

the capability of performing calculations with meta-GGAs or hybrid functionals [50]. 

It is tempting to think that because the GGA includes more physical information than 

the LDA it must be more accurate, in particular for molecular systems and often work very 

well for atoms and solids [61]. The following advantages are noteworthy: (1) GGAs 

significantly improve the ground state properties of light atoms and molecules, clusters and 

solids composed of them; (2) many properties of 3d transition metals are greatly improved; 

for example, unlike the LSDA (Local Spin-Density Approximation) the correct bcc ground 

state of Fe is obtained [62];  (3) GGAs give better geometry for the weak bonds, and larger 

band gaps than the LDA, but at a modest additional computational cost; (4) they yield in 

particular, a good description of the Hydrogen bonds, thus opening the way to calculations for 

systems, such as water, in which Hydrogen bonds play a crucial role [63].  

All this, makes GGA method of choice for many first principles studies of materials. 

Unfortunately, this is not always correct. The committed error in GGA is often under-

estimating the cohesive energies. In some systems, GGA leads to higher errors than those 

resulting with LDA. 

2.4. Solving the Kohn–Sham equations 

2.4.1. Basis Sets 

DFT based electronic structure methods are classified according to the representations 

that are used for the density, potential and, most importantly, the Kohn-Sham orbitals. The 

choice of representation is made to minimize the computational and human (e.g. 

programming) costs of calculations, while maintaining sufficient accuracy. In spite of their 

differences, all codes try to solve the Kohn-Sham equations: 

iii

KS
H φεφ =ˆ  (2.46) 

There are many possible ways to solve the Kohn-Sham equations. Frequently, a 

variational method is chosen by which a wave-function  ( )rm

r
φ   is sought as a linear 

combination of adequate basis functions { ( )rp

r
ϕ }: 

 ( ) ( )∑
=

=
P

p

p

m

pm rcr
1

rr
ϕφ  (2.47) 
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where 
m

pc  are expansion coefficients. In principle, ( )rm

r
φ  has an infinite dimension, i.e. P is 

infinite, but in practice one works with a limited set of basis functions that can generate a 

function that is ‘close’ to ( )rm

r
φ . Since, given a choice of basis, the coefficients 

m

pc are the only 

variables in the problem, and since the total energy in DFT is variational, solution of the self-

consistent KS equations amounts to determining the 
m

pc  for the occupied orbitals that 

minimize the total energy. By this expansion, solving the Schrödinger equation in the basis set 

( ){ }rp

r
ϕ  then amounts to diagonalizing the Hamiltonian matrix, i.e (H-εS)c = 0:  
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where ijj

KS

i HH ˆˆ =ϕϕ  is the matrix elements of the Kohn-Sham Hamiltonian in the basis 

states, and ijji S=ϕϕ  is the overlap matrix elements. This equation will be solved at each 

k-point in the irreducible wedge of the Brillouin zone. We can see that if the chosen basis set 

( ){ }rp

r
ϕ  is orthogonal (i.e. ijijS δ= , as for example in case of simple plane-waves), the overlap 

matrix S reduces to the identity matrix I, and Eqn. (2.48) reduces to the regular eigenvalue. 

The larger P, leads to the better approximation of the eigenfunction, but the more time 

consuming the diagonalization of the matrix in Eqn. (2.48) is required.    

The quality of a basis set can, be measured by the extent to which the total energy 

evaluated using the orbitals of Eqn. (2.47) differs from the true Kohn-Sham energy. To makes 

both theory development and programming work easier, a good basis set should be [3,62]: 

- Efficient: if the functions of the basis set are very similar to mφ , one needs only a few 

of them to accurately describe the wave function, and hence P and the matrix size are 

small. Such a basis set is called efficient.  

- Unbiased : the basis must not favors certain regions of space over others (e.g. by not 

being more flexible near atomic nuclei than elsewhere). 

- Simple: it would be nice if the basis functions are mathematically simple. 

- Completeness: the basis can be improved arbitrarily by adding additional functions of 

the same type. 

The most common bases are divided into two categories: 
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• Plane wave sets, which are particularly effective for describing periodic systems such 

as crystals. They are certainly unbiased and simple, but they are known to be 

inefficient in the above sense for a large part of solids. Accuracy can be reached by 

increasing the number of plane-waves in the basis. Furthermore, due to the simplicity 

of this basis the implementation of the plane-wave codes is relatively easy, and the 

matrix elements of many operators can be rapidly estimated. 

• Localized orbitals (atomic-like and muffin-tin wave-functions) in real space, centered 

on atoms. This choice is most prevalent in quantum chemistry, where many bases have 

been developed to ensure rapid convergence at lower costs: the most common are for 

example linear combinations of atomic orbitals (LCAO), Gaussian type orbitals 

(GTO) and Slater-type Orbitals (STO). These atomic-like functions are tailored for 

fast convergence, so that only a few (some tens at most) functions per atom are 

needed. This approach is well suited to the study of finite systems such as molecules. 

This type of localized orbitals is however particularly relatively difficult to control the 

convergence of the results vis-a-vis the base, since there is no systematic process to 

improve the accuracy of the calculation. 

2.4.2. Self-Consistency in DFT calculations 

The theorem of Hohenberg-Kohn shows that the total energy is variational and this 

means that the true ground state density is that which minimizes the energy. Since Hartree 

potential HV̂  and the exchange-correlation potential xcV̂  in the Kohn-Sham Hamiltonian, has a 

functional dependence on the electronic density ρ, the standard approach to solve the Kohn-

Sham equations is the self-consistent procedure, in which the density refined iteratively by 

solving Eqns. (2.23), (2.39) and (2.40) alternately [64,65], as illustrated in Figure 2.2. The 

procedure begins with an initial guess of the density ρ
in

 which can be constructed by a 

superposition of atomic densities:  

 ∑==
atome

atomesystèmein ρρρ  (2.49) 

This initial guess electron density will be used to calculate HV̂  and xcV̂ . There are several 

different techniques to evaluate the Hartree potential HV̂  (Coulomb potential), either by direct 

integration (as it is done when solving the atomic Kohn-Sham equations), or by solving the 

equivalent differential Poisson’s equation (which is most commonly used in solids case): 
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)(4)(ˆ2 rrVH

rr
πρ−=∇ . Calculating the exchange-correlation potential xcV̂  which accounts for all 

other effects is typically carried out on the choice of an appropriate approximation
2
. 

Once we have solved the non-interacting electron problem in the external potential Vext 

to obtain one electron orbitals ( )r
out

m

r
φ  (expanded on the basis set ( ){ }rp

r
ϕ ) we construct the 

ground state density of the non-interacting electron system simply as  ∑
=

=
N

i

out

i

out
rr

1

2

)()(
rr

φρ . 

Self consistency is reached if )()( rr
inout rr

ρρ = . If this is not the case, the procedure is iterated 

with a new guess density constructed from )(r
out r

ρ . In the most simple scheme for example, 

the new guess is )(r
out r

ρ  itself [66].  

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

Fig.2.2: Schematic representation of the self-consistent cycle within the framework of the 

DFT. Electronic density ρ  is the fundamental quantity governing the iterative procedure. 
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 The external potential 
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In practice the self-consistency cycle is stopped when some convergence criterion is 

reached. The two most common criteria are based on the difference of total energies or 

densities from iteration i and i − 1, i.e., the cycle is stopped when Eii EE η<− −1  or 

ρηρρ <− −1ii , where Ei and ρi are the total energy and density at iteration i, and 
Eη  and ρη  

are user defined tolerances. If, on the contrary, the criteria have not been fulfilled, one restarts 

the self-consistency cycle with a new density, which is usually selected by mixing output 

density with the input density to yield a refined input for the next iteration, and to accelerate 

the convergence. The simplest mixing scheme is straight mixing [67]: 

 ( ) out

i

in

i

in

i αρραρ +−=+ 11  (2.50) 

where α is the mixing parameter and i the number of iteration. The accuracy of calculation is 

particularly important that the convergence criterion is low. When convergence is reached, the 

energy of the ground state of the considered system is known. 

2.4.3. DFT implementations  

The quest to solve the Kohn-Sham equation (2.39) efficiently has lead to a wide 

spectrum of very successful and efficient electronic structure methods. Guiding principles to 

develop electronic structure methods are by obtained by having a closer look at the 

mathematical nature of the Schrödinger-like Kohn-Sham equation with the kinetic energy 

operator and the 1/r singularity at the nucleus with the simultaneous necessity to calculate the 

exchange-correlation potential xcV̂  and the Hartree potential HV̂ . The art of theoretical matter 

physics is to find a basis set that is a simultaneously efficient and unbiased. 

In atomic calculations, for a given electronic configuration, the Kohn-Sham equation 

has spherical symmetry and is separable into a radial equation and an angular part (whose 

solutions are the spherical harmonics). Treating isolated clusters or molecules, methods based 

on localized orbitals are frequently selected going hand in hand with the chemical intuition of 

system in question. Considering methods applicable to periodic solids, frequently algorithms 

are chosen where the Bloch boundary condition can be included in the basis set. As it takes 

advantage of the periodicity of the crystal, a plane-wave expansion of the Kohn-Sham wave-

functions is very useful. 
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A brief summary of the many possibilities to solve the Schrödinger’s equation is given 

in Figure 3.3. In this thesis calculations have been concerned with two particular approaches 

namely, plane-wave Pseudo-Potential (PP-PW) and the Linearized Augmented Plane-Wave 

(LAPW).  

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

                                         

Fig. 2.3: Schematic representation of various DFT-based methods of calculation. 
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3.1. Introduction 

In the previous chapter it was demonstrated the that many-body problem of strongly 

interacting electrons and nuclei has been mapped within the framework of the Born-

Oppenheimer approximation and density functional theory onto a problem of single-particles 

moving in an effective external potential for a set of fixed nuclei. However, there still remains 

the formidable task of handling an infinite number of non interacting electrons moving in the 

static potential of an infinite number of nuclei or ions. Two difficulties must be overcome: a 

wave function must be calculated for each of the infinite number of electrons in the system, 

and, since each electronic wave function extends over the entire solid, the basis set required to 

expand each wave function is infinite [1]. Our aim now is to develop a practical numerical 

scheme to solve the resulting single-particle Kohn-Sham equations for extended systems like 

crystalline solids or liquids. 

Many of the ab initio [2] methods that physicists and chemists use have existed for 

more than a few decades, where most of them were capable only of modeling systems of a 

few atoms, and hence applicability to real-world systems at that point was extremely limited. 

All of the ab initio methods have been continuously refined over recent years and all have 

benefited from the availability of increasingly powerful computers. Most methods can now 

model to study extended systems like solids. Among the most common and widely used 

methods, the two methods which will be used in this work: Pseudo-Potential Plane-Wave and 

Full-Potential Linearized Augmented Planewave Methods. 

Because of its periodicity, the most straightforward choice for a crystal would be to 

expand the KS wave-function into plane-waves, because Plane-waves are orthogonal, they are 

diagonal in momentum space and the implementation of plane-wave based methods is rather 

straightforward due to their simplicity. However, plane-wave basis sets do not converge at the 

presence of the singularity of the crystal potential at the nucleus, where electron wave-

functions are varying very quickly near it. In this case, the large basis set would be needed to 

represent the wave-functions accurately, which makes the set-up and diagonalization of the 

Hamiltonian matrix in terms of plane-waves impracticable if not impossible. Thus, plane-

wave basis-sets can only be used in the context of a pseudopotential approximation to the true 

potential where the (-1/r) potential has been replaced by an appropriate smooth potential [3]. 

It is the Pseudo-Potential Plane-Waves method (PP-PW). This approach is one of the most 

widely used methods for calculating ground state properties of extended systems within the 

framework of density functional theory. The simplicity of plane waves leads to very efficient 
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numerical schemes for solving the Kohn-Sham equations, and the employment of 

pseudopotentials guarantees that the wave functions can be expanded in a relatively small set 

of plane waves.  

Pseudopotentials are therefore needed when using plane wave basis sets in order to 

limit the number of plane waves. The bare coulomb attraction between electrons and nuclei is 

replaced by pseudopotentials for two main goals. First, only valence electrons are thus 

included in most calculations, as they are the ones involved in the chemistry of the system 

while the charge density of core electrons is very steep and would require a much too large 

number of plane waves to describe. The second role of pseudopotentials is to replace the 

valence orbitals by smooth functions in the core region, while keeping a very good 

approximation of them outside the core region [4]. 

  

3.2. Why Plane-Waves 

3.2.1. Effect of translational symmetry of crystals   

One of the fundamental characteristics of crystals is the symmetry of translation due to 

their periodicity, where the ions are arranged in a regular manner. This property can now be 

exploited to reduce the computational cost for solving the Kohn-Sham equations. The 

translational symmetry of the atomic arrangements imposes on the effective potential of Kohn 

and Sham (as well as the electron density) to possess the invariance by translation, i.e.: 

 )()( RrVrV KS
eff

KS
eff

rrr
+=  (3.1) 

where R
r

 is a Bravais lattice vectors corresponding to an entire linear combination of the three 

unit vectors 1a
r

, 2a
r

 and 3a
r

 of the lattice in space:  

  332211 alalalR
rrrr

++=  (3.2) 

where 1l , 2l  and 3l  can be any integer number. 

Independent electrons, each of which obeys a single-electron Schrödinger equation (Kohn-

Sham equation) with a periodic potential, are known as Bloch electrons. The stationary states 

of Bloch electrons have the following very important property as a general consequence of the 

periodicity of the potential ( KS
effV ) [5].  

Thus, both problems due to infinite number of electrons in the system, and, the infinite 

number required in the basis set can be surmounted by performing calculations on periodic 

systems and applying Bloch's theorem to the electronic wave functions [1]. 
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2.2.2. Bloch's theorem 

The Bloch’s theorem [6] makes it possible to exploit the symmetry properties of the 

system. Since there is invariance by translation of a vector of the direct lattice, this imposes 

that the Hamiltonian of Kohn and Sham 
KSĤ  commutes with the translation operator T̂ . This 

makes it possible to write the mono-electronic wave function of Kohn and Sham )(ri

r
φ  as a 

Bloch function, as stated in the theorem.  

Theorem: The eigenstates )(rn

k

r
rφ of the single-electron Hamiltonian )(22 rVmH

r
h +−= , 

where )()( rVRrV
rrr

=+  for all R
r

 in a Bravais lattice, can be chosen to have the form of a 

plane wave times a function with the periodicity of the Bravais lattice: 

 )()( . ruer n

k

rkin

k

rr
r

rr

r =φ  (3.3) 

where 

 )()( ruRru n

k

n

k

rrr
rr =+  (3.4) 

for all R
r

 in the Bravais lattice. Eqns. (2.3) and (2.4) imply that: 

 )()( . reRr n

k

Rkin

k

rrr
r

rr

r φφ =+  (3.5) 

for every R
r

 in the Bravais lattice [5].  

 Physically we can say that the Bloch function (Eqn. 2.3) is the wave function of a free 

electron 
rkie
rr

.
 (plane wave function) modulated by the periodic potential of the ion lattice 

through the function )(ru n

k

r
r  [5,7]. 

The vector k
r

 represents the wave vector in the first Brillouin zone of the reciprocal 

lattice crystal and n corresponds to the band index. The reason for taking into account only the 

vectors k
r

 belonging to the first Brillouin zone is that any vector k
r
′  of the reciprocal space 

which does not belong to the first Brillouin zone can be written as Kkk
rrr

+=′ , where K
r

 is a 

reciprocal lattice vector satisfies the relation mRK π2. =
rr

, with m is an integer. Since 1. =RKie
rr

 

for any reciprocal lattice vector, if the Bloch form (2.5) holds for k
r
′ , it will also hold for k

r

[5].  

The index n appears in Bloch's theorem because for given k
r

 there are many solutions 

to the Schrödinger equation, where n indicates the number of the Brillouin zone where k
r
′  was 
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in. For n = 1, k
r

 and k
r
′  are identical. For k

r
′  in the second Brillouin zone, we reuse the same 

set of k
r

, but n is increased to 2, etc. For each k
r

, an infinite number of n is possible [8].  

Since the unknown functions )(ru n

k

r
r  are periodic they can be expanded in a set of 

plane waves using the Fourier series: 

 ∑=
G

rGin

Gk

n

k
ecru

r

rr

rrr
r .

,
)(  (3.6) 

where G
r

is the reciprocal lattice vectors. The expansion of each electronic wave function 

)(rn

k

r
rφ  in the same basis is then

1
: 

 rGki

G

n

Gk

n

k
ecr

rrr

r
rrr

r ).()( +

+∑=φ  (3.7) 

and what have to be searched are the coefficients n

Gk
c rr

+
. 

The plane wave basis set for )(rn

k

r
rφ  is therefore { rGki

Gk
er

rrr

rr
r ).()( +

+
=ϕ }. This basis set is k

r
-

dependent: all eigenstates )(rn

k

r
rφ  that have the same k

r
 but a different n will be expressed in 

the basis set with this particular value of k
r

. For eigenstates with another k
r

, a new basis set 

using that other k
r

 has to be used [8]. 

3.2.3. Plane-wave representation of Kohn-Sham equations 

In a plane wave representation of the wave functions the Kohn-Sham equations 

assume a particularly simple form. Substitution of Eqn (7) into Kohn-Sham equation and 

integration over r we get the matrix eigenvalue equation: 

 ( ) ( ) ( ) n

Gk
G

n

k

n

GkxcHextGG
ccGGVGGVGGVGk

m
rr

r
rrrrr

rrrrrrrrh
+

′
′+′∑ =








′−+′−+′−++ εδ

2
2

2
 (3.8) 

In this form, the kinetic energy is diagonal, and the various potentials are described in terms 

of their Fourier transforms. This makes it possible to calculate them as desired in the real 

space or the reciprocal space, according to the ease of the respective calculations; a simple 

Fourier transform then makes it possible to return to the other space. Solution of Eqn. (3.8) 

                                                           
1 For non-periodic systems such as those containing a defect, a surface or isolated molecules, the calculations 

using plane-wave basis sets can only be performed on these systems if a periodic supercell is used. Periodic 

boundary conditions are applied to the supercell so that the supercell is reproduced throughout space. It is 

essential to make the supercells large enough to prevent the defects, surfaces or molecules in neighboring cells 

from interacting appreciably with each other. 
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proceeds by diagonalization of a Hamiltonian matrix whose matrix elements 
GkGk

H rrrr
′++ ,
 are 

given by the terms in the brackets above. 

 The electron density in Fourier representation is given by: 

 rGGi

GG kn

n

Gk

n

Gk
eccr

rrr

rr r
rrrr

r ⋅′−

′

∗

′++∑∑= )(

, ,

)()(ρ  (3.9) 

3.2.4. Truncation of the plane-wave basis set 

In principle, an infinite plane-wave basis set is required at each k-point to expand the 

electronic wave functions. However, the coefficients n

Gk
c rr

+
 for the plane waves with small 

kinetic energy are typically more important than those with large kinetic energy. Thus, in 

practice, the plane-wave basis set can be truncated to include only plane waves that have 

kinetic energies less than some particular cut-off energy: 

 
2

max

2

2
Gk

m
E

e

cut

rrh
+=  (3.10) 

This amounts to selecting a sphere of radius maxG  centered at the origin of the reciprocal 

space by imposing the condition maxGGk ≤+
rr

. The number of plane waves used is: 

 
2/3

2
2

1
cutkpw ENN Ω×≈

π
 (3.11) 

where kN  is the number of vectors k
r

, in which the first Brillouin zone is sampled, and Ω  is 

the volume of the unit cell.  

The truncation of the plane-wave basis set at finite cut-off energy will lead to an error 

in the computed total energy. However, it is possible to reduce the magnitude of the error by 

increasing the value of the cutoff energy but in principle it is possible to make this error 

arbitrarily small by increasing the size of the basis set by allowing a larger energy cut-off. 

This is one of the more advantages of plane wave bases. One of the disadvantages of these 

latter is the need to employ a large number of plane waves to describe the localized states 

which have strong oscillations of their wave functions. One way to get around this difficulty 

is to use the pseudopotential approximation. 

3.2.5. k-Point Sampling 

By the use of Bloch’s theorem, the problem of calculating an infinite number of 

electronic wave functions has now transformed to one of calculating a finite number of 
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electronic wave functions at an infinite number of k-points within the first Brillouin zone of 

the periodic cell. Electronic states are allowed only at a set of k-points determined by the 

Born-von Karman boundary conditions that apply to the bulk solid, in which the k
r

 vectors 

occupy the reciprocal space in a discrete manner but almost continuous (quasi-continuous). 

The number of allowed wave vectors k
r

 in the first Brillouin zone is equal to the number of 

sites in the crystal [5]. Thus, the density of allowed k-points is proportional to the volume of 

the solid.  

In theory, the Schrödinger equation must be solved for each wave vector k
r

 of the first 

Brillouin zone, but in practice things are not so simple because of infinite number of points, k.  

Due to the symmetry of the system, we can reduce the calculation to the first Brillouin zone. 

Furthermore, the electronic wave functions at k-points which are close together will be very 

similar. Hence it is possible to represent the wave functions of a region of k-space by the 

wave function at a single k-point, and we assume a continuous evolution of the bands between 

two points k. In this case the electronic states at only a finite number of k-points are required 

to calculate the electronic potential and hence determine the tota1 energy of the solid [1]. In 

particular, it is advisable to group the equivalent k-points by symmetry in the summation; 

such methods significantly reduce the number of k-points to be considered, called special 

points, while making very good accuracy. To construct such k-point meshes, different 

methods have been developed for obtaining very accurate approximations to the electronic 

potential and the contribution to the total energy from a filled electronic band by calculating 

the electronic states at special sets of k-points in the first Brillouin zone, like the methods of 

Chadi and Cohen [9]; Joannopoulos and Cohen [10]; Evarestov and Smirnov [11], or that of 

Monkhorst and Pack [12]. For our calculations, we have used the Monkhorst and Pack 

method.  

 

3.3. Pseudopotentials 

Although Bloch's theorem states that the electronic wave functions can be expanded 

using a discrete set of plane waves, a plane-wave basis set is usually very poorly suited to 

expanding electronic wave functions because a very large number of plane waves are needed 

to expand the tightly bound core orbitals and to follow the rapid oscillations of the wave 

functions of the valence electrons in the core region. An extremely large plane-wave basis set 

would be required to perform an all-electron calculation, and a vast amount of computational 

time would be required to calculate the electronic wave functions. The pseudopotential 
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approximation allows the electronic wave functions to be expanded using a much smaller 

number of plane-wave basis states [1]. 

3.3.1. Frozen-Core Approximation 

It is well known that most physical and chemical properties of solids are dependent on 

the valence electrons, because binding properties are almost completely due to them, 

especially in metals and semiconductors. While, the core electrons are strongly bound and do 

not play a significant role in the chemical binding of atoms, thus forming with the nucleus an 

(almost) inert core [13]. We can therefore consider that the configuration of the core electrons 

within the solid is equivalent to that of the isolated atoms, i.e., it does not change when the 

atoms are placed in a different chemical environment. 

These considerations make it possible to separate the valence electrons from the core 

electrons and to group the latter with the nuclei to form rigid ions: this is the of the frozen 

core approximation [14]. Within this approximation, the problem of treating the core 

electrons is now solved at the atomic level and the study of the electronic configuration is 

restricted to the investigation of the behaviour of the valence electrons within the ionic 

potential. 

However, this is not very useful since the valence wave functions still have to 

maintain their nodal structure in order to be orthogonal to the core states. Much more practical 

is to replace immediately the ionic core potential by a pseudopotential which will lead to 

nodeless valence wave functions, as we will show in the following.  

2.3.2. The Pseudo-potential Concept 

The pseudopotential method is based on the frozen core approximation, which 

suggests that core electrons can be ignored, thereby reducing the atom to an ionic core that 

interacts with the valence electrons. The main idea is to replace the strong ionic potential by a 

weaker pseudopotential that acts on a set of pseudo wave functions 
ps

vφ  rather than the true 

valence wave functions vφ , which is Called "all-electron" valence wave functions. This 

pseudo-potential must lead to the same eigen-energy in the Schrödinger equation. The use a 

pseudopotential, that approximates the potential felt by the valence electrons, was first 

proposed by Fermi in 1934 [15], then Hellmann in 1935 [16], in order to simplify calculations 

of the electronic structure by eliminating core states which exhibit strong oscillations. 
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The pseudopotential is constructed, ideally, so that its scattering properties or phase 

shifts for the pseudo wave functions are identical to the scattering properties of the ion and the 

core electrons for the valence wave functions, but in such a way that the pseudo wave 

functions have no radial nodes in the core region (defined by cut-off radius rc). Outside the 

core region, the pseudopotential must reduce to the ionic potential, in order for the wave 

functions and the pseudo wave functions to be identical: 

 )()( rVrV ps rr
=  and ( ) ( )rr v

ps
v

rr
φφ = , for r > rc (3.12) 

with the following boundary conditions: 

 ( ) ( )rr v
ps

v

rr
φφ =  and 

( ) ( )
dt

rd

dt

rd v
ps

v

rr
φφ

= , for r = rc (3.13) 

The larger the radius, the smoother the wave function and the potential. Figure 3.1 

illustrates the "pseudization" of the valence wave function and the potential. A valid pseudo-

potential should be:   

(1) Additive: i. e., the total pseudopotential must be the sum of the pseudoptentials when 

several atoms are present. 

(2) Transferable: i. e., the same pseudopotential must be used in different chemical 

environments.  

(3) Soft: A pseudopotential is called soft when few plane waves are needed.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                              

Fig. 3.1: Schematic illustration of 

all-electron (solid lines) and 

Pseudo-electron (dashed lines) 

potentials and their corresponding 

wave functions. The radius at which 

all-electron and pseudoelectron 

values match is designated rc. The 

nodes and the oscillations due to the 

orthonormalization conditions are 

suppressed, which makes it possible 

to describe the wave pseudo-

functions with a reduced number of 

plane waves. 
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3.3.3. The Phillips-Kleinman Formulation 

In spite of the simplification pseudo-potentials introduce in calculations, they 

remained forgotten until the late 50’s. It was only in 1959, with Antonick [17] and Phillips 

and Kleinman [18], that pseudo-potentials began to be extensively used [13], basing on the 

orthogonalized-plane-wave {OPW} method of Herring (1940) [19,20]. 

The Phillips-Kleinman Construction of a pseudopotential can be demonstrated in 

terms of the exact core and valence states cφ  and vφ , respectively, which satisfy: 

nnnH φεφ =ˆ ,  n = c, v (3.14) 

The valence states are smoothed in the core region by subtracting out the core orthogonality 

wiggles, leading to pseudostates ps
vφ given by: 

 ∑+=
c

ps
vccv

ps
v φφφφφ  (3.15) 

Applying the Kohn-Sham hamiltonian to this equation, we obtain: 

 ( ) ps
vv

ps
v

c
cccvH φεφφφεε =








−+∑ˆ  (3.16) 

Thus the valence pseudo-states ps
vφ  satisfy a Schrödinger equation with an energy-

dependent pseudo-Hamiltonian: 

 ( )∑ −+=
c

cccv
ps HH φφεεˆˆ  (3.17) 

but have the same eigenvalues vε  as the original valence states vφ . 

The modified potential for these states is called the “pseudopotential”, given by [21]: 

 ( )∑ −+=
c

cccv
ps VV φφεε  (3.18) 

where the new term ( )∑ −
c

cccv φφεε  has been introduced to account for the effects of the 

core states on the valence states. This term is strictly positive and therefore, because cv εε >  

(valence states have by definition higher energy than core states). Thus, this term is repulsive, 

making the pseudo-potential 
psV much weaker than the true potential V and tends to push the 

corresponding states ps
vφ outside the core. In this sense, the pseudopotential represents the 

effective potential that valence electrons feel, if the only effect of core electrons were to repel 
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them from the core region. Therefore the pseudo-wave functions experience an attractive 

Coulomb potential which is shielded near the position of the nucleus by the core electrons. All 

this implies that the pseudo wave-functions will be smooth and will not oscillate in the core 

region, as desired [22,23,13].   

A more useful feature is that the pseudopotential often is rapidly convergent in a PW 

basis set, and this feature can be utilized for describing most semiconductors as well as metals 

with no d or f bands (or 2p bands) in the valence region [21]. The disadvantage of this 

approach is that it requires experimental values to adjust the form factors that describe the 

potential that will be introduced later in the Schrodinger equation. The improvement made to 

overcome this difficulty is the ab-initio approach [2] that requires only free parameters (such 

as network parameters and atomic number) to generate the pseudopotential. 

3.3.4. Norm Conserving Pseudopotentials 

A valid pseudopotential should be soft, transferable and the pseudo-charge 

density should accurately reproduce the valence charge density as much as possible. 

These conflicting goals can be solved by using the concept of norm conservation, 

which was first used by Topp and Hopfield in 1974 [24] in the context of empirical 

pseudopotentials and was incorporated into ionic potentials by Starkloff and 

Joannopoulos in 1977 [25]. This was made the central feature by Hamann, Schlüter 

and Chiang in 1979 (HSC) [26], then it was refined by Bachelet, Hamann and Schlüter 

(BHS)
2
 [27], Kerker [28] and Hamann [29]. Several modifications have been 

developed that improve the resulting pseudopotentials, both in terms of transferability 

and in terms of hardness [30-34].  

With the norm conserving pseudopotentials, the conditions proposed by Hamann, 

Schlüter and Chiang (HSC) [26] are the following:  

1. The pseudo-wave function and the all electron wave function  correspond to the same 

eigenvalue: 

 ln
ps

l ,εε =  (3.19) 

2. The radial pseudo-wave function should not have nodes, and is identical to the all 

electron wave function outside a suitably chosen cutoff radius rc: 

                                                           
2
 With BHC formulation which is rather widely used, the pseudopotentials for all the elements in the periodic 

table were tabulated accurately from atomic ab-initio calculations. 
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( ) =rR ps
l

r ( )rR ln

r
,  for r > rc    (3.20) 

3. Inside rc, the pseudo-wave-functions differ from the true wave-functions, but the norm 

is constrained to be the same. That is: Inside rc, the pseudo-wave-functions differ from 

the true wave-functions, but the norm is constrained to be the same. That is: 

 ( ) ( )∫ ∫=
c cr r

ln
ps

l drrrRdrrrR
0 0

22

,

2
2 rr

 (3.21) 

4. The logarithm derivatives of the all electron wave function and pseudo-wave function 

agree for r > rc.    

where Rl(r) is the radial part of the wave-function with angular momentum l. The 

index n in the true wave-functions denotes the valence level [35,36,28,13]. 

To obtain the norm conserving pseudo-potential the procedure is:  

(i) The free atom Kohn-Sham radial equations are solved taking into account all the 

electrons, in some given reference configuration: 

( )
( ) ( ) ( )rrRrrRrV

r

ll

dr

d

m
lnlnln

KS

e

rrrh
,,,22

22
1

2
ε=









+






 +
+−  (3.22) 

 

(ii) Using norm-conservation condition, the pseudo wave-functions are determined. 

Their shape in the core region needs to be previously defined, and it is here that 

many modern potentials differ from one another  

(iii) Once the pseudo-wave functions are determined, the pseudopotential screened by 

the valence electrons and acting on the pseudo-wave functions is determined by 

the inversion of the radial Kohn-Sham equation for the pseudo wave-function [13]: 

( ) ( )
( )

( )[ ]rrR
dr

d

rrRmr

ll

m
rV ps

lps
lee
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l

ps
scrl

r
r

hhr
2
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2

2

,

1

2

1

2
+

+
−= ε  (3.23) 

(iv) Finally, the ionic pseudopotential corresponding to the orbital moment l is 

obtained by subtracting the contributions due to the valence electrons in the 

screened pseudopotential (see Figure 3.2): 

( ) ( ) ( )[ ] ( )[ ]rVrVrVrV ps
xc

ps
H

ps
scrl

ps
l

rrrr
ρρ −−= ,  (3.24) 

where ( )rps r
ρ  denotes an electron pseudo-density constructed from the pseudo-

wave functions. 

In the above equations the wave-functions refer to the atomic reference state, thus a 

spherical symmetry is imposed. The wave-function and eigenvalue are different for different 
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angular momenta, l, and this means that the pseudo-potential should also be l-dependent. 

These kinds of pseudo-potentials are called "semi-local" since a different VPS
 (r) is generated 

for each l values. The most general form for a pseudopotential is: 

( ) ml
ps

l
l

l

lm
ml

ps YVYrV ,,∑∑
−=

=
r

 (3.25) 

where mlY ,  are the spherical harmonics and 
ps

lV  is the pseudopotential for angular 

momentum l [35,1,13,37]. pseudo-potentials of this kind are usually called "semi-local" 

because they act on the various angular components of the wave function as a consequence of 

exchange with the core. If all the angular components of the pseudopotential are taken to be 

the same, then the pseudopotential is said to be local [35] (a local pseudopotential is a 

function only of the distance from the nucleus). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.2: Bachelet, Hamann, Schluter (BHS) procedure for constructing norm-conserving 

pseudopotentials. 

Fix pseudo-wave function (r) = (r) for r ≥ rc 

Choose Atomic Reference Configuration 

Solving the Schrödinger equation for all electrons 

   Eigenvalues + wave functions 

Impose Norm Conservation to Construct the 

pseudo-wave function for 0 ≤ r < rc 

Invert the Radial Schrodinger 

equation to Obtain  

Subtraction of VH and Vxc from 

to obtain  
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For practical reasons, the pseudopotential of the above form (Eqn. 3.25) is 

decomposed according to BHS [27] into two parts: a long-range local part 
ps

locV (l-

independent), and a short-range non-local part 
ps

nlocV  (l-dependent). The first has a purely radial 

dependence, and the second, although possessing a radial dependence, contains an average of 

all the angular contributions: 

 ( ) =rV ps r ( )+rV ps
loc

r
( )rV ps

nloc

r
 (3.26) 

where 

 ( ) ( ) ml
ps

l
ml

ml
ps

nloc YrVYrV ,

,

,

rr
∆=∑  (3.27) 

with 

  ( ) ( ) ( )rVrVrV ps
loc

ps
l

ps
l

rrr
−=∆  (3.28) 

The 
ps

lV∆  can be seen as a "correction" to the local part of the pseudopotential in the core 

region. Far from this region, the 
ps

lV are reduced to the Coulomb potentials in (-1/r), and lose 

their angular dependence, and thus become local. That is, the non-local part of the 

pseudopotential will disappear. 

 The main problem with the semi-local form seen above is that the calculations to be 

handled become quickly too heavy from the computer point of view. Kleinman and Bylander 

[38] suggested that the non-local part of (Eqn. 3.26) are written as a separable potential, thus 

transforming the semi-local potential into a truly non-local pseudo-potential, replacing the 

form of ( )rV ps
nloc

r
 with an equivalent form: 

 ( ) ∑
∆

∆∆
=
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ps
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ps
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ps
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ps
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V

VV
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φφ
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 (3.29) 

Kleinman-Bylander separation represents a substantial improvement over the semi-

local from a computa-tional point of view. However, this separation of pseudopotentials has 

some disadvantages leading sometimes to nonphysical results, such as (ghost) states in some 

cases [39,40].  
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Reformulation of energy and effective potential 

The total energy of the system can be reformulated to account for the use of 

pseudopotentials: 

 xcextH
i

ps
i

ps
nloc

ps
i

KS
tot EEEV

m
E ++++∇−=∑ φφ 2

2

2

h
 (3.30) 

where the term extE  of nucleus-electron interactions, now represents the local part: 

 ( ) ( )∫= drrrVE ps
locext

rr
ρ  (3.31) 

At the level of the Kohn and Sham equations, the change results in a reformulation of the 

effective potential and the addition of the non-local potential: 
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3.3.5. Ultrasoft Pseudopotentials 

The development of the norm-conserving pseudopotentials has paved the way to 

accurate calculations of solid-state properties. However, the utility of this approach to systems 

containing highly localized valence orbitals (e.g., for first-row and transition-metal atoms) has 

been limited, because of the difficulty of representing the pseudo-wave-functions in a plane-

wave basis, where a large number of plane waves is required, which often makes calculations 

for such elements prohibitively expensive. A number of attempts have been made to reduce 

the cut-off energy [28,30,32], but without allowing simulation of extended systems. 

 To circumvent this problem Vanderbilt [41] and co-workers [42,43] has introduced a 

new type of pseudopotentials, the so-called ultrasoft pseudopotentials, in which the norm-

conserving requirement was removed so that the pseudo-wave-function can be constructed in 

such a way as to optimize smoothness. Therefore, large values of rc can be used in this 

scheme and consequently the plane-wave cut-off needed in calculations can be greatly 

reduced. In this approach, the pseudo-wave functions are required to be equal to the all-

electron wave-functions outside rc, as with norm-conserving pseudopotentials, but inside rc 

they are allowed to be as soft as possible (Figure 3.3). 

 Nevertheless, the following complications have to be taken into account: 

1. As pseudo-wavefunctions are not normalized, this introduces a non-diagonal overlap 

in the secular equation. 



Chapter 3   Pseudopotential Plane-Wave method  

63 
 

2. The pseudo-wave functions do not make it possible to recover the entire charge of the 

system. Thus, an augmentation term has to be added in the core region. 

3. The resulting pseudopotentials can become less transferable.  

However, Vanderbilt pseudopotentials were proposed for use in large scale calculations, for 

which the cost of generating pseudopotentials is negligible compared with the cost of the 

calculations [37]. 

 In Vanderbilt's ultrasoft pseudopotential approach the non-local pseudopotential is 

given in the following form: 

 ∑=
Inm

I
m

I
nnm

ps
nloc DV

,

0 ββ  (3.33) 

where 
0

nmD  are coefficients which characterize this non-local part of the pseudopotential, and 

the functions ( ) ( )I
I
n

I
n Rrr

rrr
−= ββ  are represented in an angular expansion, i.e. spherical 

harmonics multiplied by radial functions, which vanish outside rc. 

 The pseudo-charge density ρ is given by the square of the pseudo-wave functions plus 

the augmentation inside the spheres: 
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where the ( ) ( )I
I
nm

I
nm RrQrQ

rrr
−=  indicates the local functions determined during the 

generation of the pseudo-potential. 

 Applying the variational principle to the Kohn-Sham and  the pseudo-charge density 

equations, the secular equation is: 
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with  
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and 
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The 
I
nmD  are the 

0

nmD  with a screening term: 
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S is a matrix depends on the positions of the atoms in which the orthonormalization condition 

of the wave functions is replaced by a generalized condition: 

 ij
ps
j

ps
i S δφφ =  (3.39) 

and is expressed as follows: 

 ∑+=
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I
nnmqIS

,
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with 

 ( )∫= drrQq nmnm

r
  (3.41) 

and I denotes the identity operator. 

 For our calculations, we have used this scheme of ultrasoft pseudopotential.  

 

 

  

Fig. 3.3: Illustration of a strongly localized valence wave function (solid line) inside the 

atomic core region and the modified wave function (dashed line) in the Vanderbilt ultrasoft 

pseudopotential scheme [44]. 
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4.1. Introduction 

As a result of the Bloch’s theorem, which starts with the periodicity of the crystal 

lattice, a natural basis set that is certainly unbiased and simple for calculating the single 

particle wave functions in periodic solids is the plane wave basis set that was introduced in 

Bloch functions. This basis set is generally coupled with the use of pseudopotential which 

does not explicitly treats that the valence electrons. However, despite the pseudopotential-

plane wave (PP-PW) method is extremely useful because of the simplification brought by it, 

the use of an all electron method is indispensable if the entry of the core electrons which 

exhibit strong oscillations is desirable (e. g. to study hyperfine fields or excitation of the core 

states). This due to the fact that the plan waves are very inefficient basis set for describing the 

rapid variations of the wave functions near the nucleus. One of the all electron methods, 

which uses complex but more efficient basis sets, and that does not require the introduction of 

a pseudopotential, is the Full Potential Linearized Augmented Plane Wave (FP-LAPW) 

method, which is fundamentally a modification of the original Augmented Plane Wave 

(APW) method [1]. Thus, before embarking on an exposition of the LAPW method, we 

review the relevant aspects of the APW method and the motivation for its modification to the 

LAPW method. 

4.2. The APW method 

  The augmented plane wave (APW) method was developed by Slater [2,3] in 1937 in 

order to solve the one-electron equations of Kohn and Sham within DFT. It was originally 

developed to overcome difficulties inherent in the cellular method in the latter it is difficult to 

satisfy the periodic boundary condition for all points on the boundary of the unit cell [4]. The 

ideas that lead to the APW basis set are very similar to that introduced in pseudopotential. The 

APW method is based on the observation of Slater that:  

(i) Near an atomic nucleus, the potential and wave functions are similar to those in an 

atom; they are strongly varying but nearly spherical.  

(ii) In the interstitial space between the atoms both the potential and wave functions 

are smoother.  

Accordingly, space is divided into two regions, and different basis expansions are used in the 

so-called «muffin-tin» model of the crystal potential:  

(i) Non-overlapping spheres centered on each atom with radius ��, called a «muffin-

tin» (MT) spheres (���, in which, the part of space occupied by the spheres is the 



Chapter 4                                          Full Potential-Linearized Augmented Plane Wave method 

 

71 
 

«muffin-tin» region (Figure 4.1). Inside the spheres, a linear combination of radial 

functions times spherical harmonics are used to solve the Schrodinger's equation in 

a spherical potential.  

(ii) The remaining space outside the spheres, called the interstitial region (I), where 

the plane wave basis set is used to solve the Schrodinger's equation in a constant 

potential [1,4,5]. 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

Fig. 4.1: Division of a unit cell in muffin tin regions and the interstitial region, for a case with 

two atoms.  

 

 

Thus, the single wave-functions  ����	
��� are expressed as trial functions: 

����	
��� � ∑ ���	,����������� 
��� (4.1) 

in terms of the APW basis functions. One augmented plane wave (APW) used in the 

expansion of ����	
��� -for the state specified by the wave vector ���- is defined as: 

������
��� � �Ω��/�������������																		, 									 �� ∈ !	∑ "ℓ$������%ℓ
��&$ℓ 
�̂�			ℓ$ , 									 �� ∈ ��                     (4.2) 
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where Ω is the unit cell volume, )� is the reciprocal space vector, "ℓ$������  are expansion 

coefficients, &$ℓ  are the spherical harmonics, and %ℓ is the regular solution of of the radial 

Schrödinger equation: 

 *+ ,-
�$.

/-
/�- 0 ,-

�$.
ℓ
ℓ���
�- 0 1
�� + 2ℓ3 �%ℓ
�� � 0                           (4.3) 

to the energy parameter 2ℓ.  Here, V is the spherical component of the potential in the MT 

sphere. The position �� inside the MT spheres is given with respect to the center of each 

sphere.  

Slater motivates these particular choices of functions by noting that plane-waves are 

the solutions of Schrodinger's equation in a constant potential, while the radial functions are 

solutions in a spherical potential, provided that 2ℓ is equal to the eigenvalue. 

In practical calculations the sum over ℓ5 is finite. The coefficients "ℓ$������   are found by 

expanding each plane-wave into Bessel functions of order ℓ,  6ℓ
7��� 0 )�7�� at the MT spheres, 

� � �89, requiring the basis functions to be continuous at the sphere boundaries. This yields 

[6]:  

               "ℓ$������ � :;�ℓ<=�>���?@����A���
BC/-Dℓ
E��F� 6ℓ
7��� 0 )�7���&$ℓ∗
���0H)��             (4.4) 

where the coefficient of each ℓ5 is matched at the spherical boundary and the origin is taken 

at the center of the sphere. The variational coefficients ���	,���  uniquely determine the wave-

function in the interstitial region. The individual functions, which are labeled by )� and consist 

of single plane-waves in the interstitial matched to radial functions in the spheres, are the 

augmented plane-waves (APWs) [1].  

The APW method can be expected to give meaningful results in a wide variety of 

applications, but it is not the best method to use for all crystals. One of the main advantages of 

this method has been its applicability to a wide variety of materials, such as the NFE (nearly 

free electron) crystals and those containing transition elements. Whereas the APW method 

does not require the difficult separation of the electrons in a crystal containing d states into 

core and itinerant electrons. All that is required in this method is the total electronic charge 

density based on atomic self-consistent-field calculations which are readily available [4,7]. 

This formulation of MT approximation is provides a relatively satisfactory description 

for a faces centered cubic close-packed (fcc) structure or a hexagonal close-packed (hcp). It is 

less good but still reasonable for cubic centered systems (bcc) and materials related to this 
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structure type [1,8]. However, this model becomes increasingly less reliable as the site 

symmetry and coordination decrease. Furthermore, the APWs are solutions of the 

Schrodinger's equation inside the spheres, but only at the energy 2ℓ; they lack variational 

freedom to allow for changes in the wave-function as the band energy deviates from this 

reference. Accordingly, 2ℓ must be set equal to the band energy. This means that the energy 

bands (at a fixed k-point) cannot be obtained from a single diagonalization (this is 

prohibitively expensive for many bands). Rather, it is necessary to solve the secular 

determinant as a function of energy. Another difficulty with this method is that related to 

%ℓ
��� function, which appears in the denominator of "ℓ$������ expression (Eqn. 3.4). Indeed, 

there are in general values of the energy parameter, 2ℓ for which %ℓ vanishes on the sphere 

boundary, causing separation of radial functions with respect to plane wave functions. This is 

the so called asymptote problem.  

A more flexible and accurate band structure method in which the basis functions and 

their derivatives are made continuous by matching to a radial function at fixed 2ℓ plus its 

derivative with respect to 2ℓ, is the LAPW method.  

4.3. The FP-LAPW method 

4.3.1. The LAPW Basis functions  

To avoid the problems connected with the APW method resulting from the energy 

dependence of the Hamiltonian, in 1975, linearized methods were invented by Andersen [9] 

and Koelling and Arbman [10] as a modification of this method, which is not practical for 

more than simple solids. Based on an idea proposed by Marcus [11], the basis functions %ℓ in 

the muffin-tins were supplemented by their energy derivatives %I ℓ, but both, %ℓ and %I ℓ, are 

now evaluated at a fixed energy 2ℓ. Effectively, a development of %ℓ
�� to the first order 

around at some energy 2ℓ brought sufficiency the flexibility to the base in order to obtain all 

the eigenvalues in a single diagonalization. This gave birth to the Linearized APW (LAPW). 

If the radial functions %ℓ
�� was calculated at the fixed energy 2ℓwhich differs slightly 

from the band energy, J, we could make a Taylor expansion to find it at energies not far away 

from it: 

%ℓ
�, J� � %ℓ
�, 2ℓ� 0 
J + 2ℓ�%I ℓ
�, J� 0 K
J + 2ℓ��  (4.5) 
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where %I ℓ
�, J� � LDℓ
�,MNOℓ�LM  and K
J + 2ℓ�� denotes errors that are quadratic in this energy 

difference. The radial functions %ℓ
�� are defined exactly as in the APW method (Eqn. 2), 

with a fixed 2ℓ . The energy derivative, %I ℓ
�� satisfies: 

 *+ ,-
�$.

/-
/�- 0 ,-

�$.
ℓ
ℓ���
�- 0 1
�� + 2ℓ3 �%I ℓ
�� � �%ℓ
��  (4.6) 

These functions are matched to the values and derivatives of the plane-waves on the sphere 

boundaries. Plane-waves, augmented in this way, are the LAPW basis functions or LAPWs. 

Substituting the first two terms of the expansion in the APW wave-functions (Eqn. 2) for a 

fixed 2ℓ gives the definition of the LAPW wave-functions: 

������
��� � PΩ��/�������������																																																, 											 �� ∈ !	∑ *"ℓ$������%ℓ
�� 0 Qℓ$������%I ℓ
��3 &$ℓ 
�̂�			ℓ$ , 											 �� ∈ ��  (4.7) 

where the Qℓ$������ are coefficients for the energy derivative, analogous to the "ℓ$������.	These 

coefficients ("ℓ$������  and Qℓ$������) are determined by matching the value and derivative of the 

basis functions at the sphere boundary (i.e. they are chosen to make the basis functions 

continuous and differentiable at the sphere boundaries). The linear combination of the 

augmenting functions %ℓ
��&$ℓ 
�� and %I ℓ
��&$ℓ 
��, constitute the so called "linearization" of 

the radial function. %ℓ
�� and %I ℓ
�� are obtained by numerical integration of the radial 

Schrödinger equation on a radial mesh inside the sphere.  

The LAPWs are just plane-waves in the interstitial region, as in the APW method. 

Inside the spheres, the wave-function and the band energy are obtained at the cost of very 

small errors of order 
J + 2ℓ�� and 
J + 2ℓ�:, respectively. Despite that, this is an enormous 

simplification over the standard APW method, because  the LAPWs form a good basis set 

over a relatively large energy region, so that all valence bands (at a given k-point) may 

typically be treated with a single set of 2ℓ and therefore with a single diagonalization.   

The asymptote problem found in the APW method is now overcome by the presence 

of the non-zero %I ℓ
��� value. This, ensure that the plane wave and radial functions do not 

decouple. Moreover, the LAPWs have more flexibility than APWs inside the spheres. This 

flexibility is due to the presence of two radial functions (%ℓ&$ℓ  and %I ℓ&$ℓ ) instead of one. 

There is however, a price to be paid for the additional flexibility of the LAPWs: the basis 

functions must have continuous derivatives and consequently higher plane-wave cut-offs are 

required to achieve a given level of convergence.  
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In this method, no muffin-tin or other approximations are made to the charge density 

or potential. Consequently, such a procedure is often called "Full-Potential LAPW" (FP-

LAPW) [12,13]. Because of the greater flexibility of this method, there is no difficulty in 

treating the non-spherical potentials inside the spheres.  

Thus, the efficiency of the LAPW method, which is derived from its use of carefully 

chosen representations of the wave functions in different regions, made it as the method of 

choice for accurate electronic structure calculations for materials containing transition metal 

and rare-earth atoms. Effectively, with this method, rapid variations of the wave functions 

inside the spheres pose no particular problems, and accordingly the method is well suited to 

all-electron calculations as well as d- and f-electron materials [1]. Furthermore, the 

widespread availability of high quality, user-friendly LAPW codes, like WIEN2k [14], has 

made it a very popular method for first principles studies of materials. However, it is not 

without certain shortcomings. Other modifications of the LAPW augmentation have been 

studied proposed by Takeda and Kubler [15], Smrcka [16], Petru and Smrcka [17] and 

Shaughnessy et al. [18], in order to improve the accuracy of calculations for valence states in 

systems without the semi-core problem mentioned in the following. 

The convergence of a plane-wave basis set is controlled by the cut-off parameter 

)$RS. It is not incorrect to use the same criteria for APW and LAPW basis sets, but it is more 

accurate in the context of these formalisms to consider the product �$T . )$RS, which 

determines the matrix-size of the system (usually, it assumes values in between 6 and 9), 

where, the �$T is the smallest muffin-tin radius in the unit cell and )$RS is the magnitude of 

the largest reciprocal lattice vector (plane wave cut-off). Compared to a plane wave basis set, 

the LAPW basis set can be much smaller. 

4.3.2. Semi-core states problem  

The LAPW is among the most accurate generally applicable techniques. It has been 

used extensively in electronic structure and total energy calculations in solids. Its role is to 

obtain accurate energy bands near the linearization energies, 2ℓ. In most materials, simply 

choose the energies 2ℓ near centers of the bands of interest to be assured of reasonable results. 

However, this is not always possible, and there are important classes of materials for which 

there is no single choice of the 2ℓ, and therefore the energy region of interest may be divided 

into a few (very rarely more than 2) windows and separate solutions carried out for each. A 

common example arises in the early transition metals [19,20], as well as in 4f and 5f materials 
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[21,22]. The reason for this is related to the presence of high lying and extended core states 

(e.g. the 5p state in the 4f elements) which called also semi-core states (intermediate between 

valence and core states) in many elements, particularly, the alkali metals, the rare earths, the 

early transition metals and the actinides. This major problem due to the fact that LAPW 

method requires non-overlapping spheres, and therefore, the augmenting functions, %ℓ&$ℓ  and 

%I ℓ&$ℓ , are orthogonal to any core state that is strictly confined within the MT sphere. 

However, for these elements there are extended core states that are not close enough to zero 

on the sphere boundary to have the %ℓ&$ℓ  and %I ℓ&$ℓ  orthogonal to them. On the other hand, the 

valence states may have significant contributions from the same ℓ (Azimuthal quantum 

number), and therefore there is a risk of confusing the semi-core states with the valence states 

(e.g., the core states 3p extended outside the sphere MT and 4p states in the valence region in 

the copper atoms). This problem is encountered in particular when short bond distances do not 

allow sufficiently enlarge the sphere MT. There are two common approaches for treating 

these situations: (i) the use of multiple energy windows and (ii) Relaxation of the linearization 

using local orbitals. 

4.3.2.1. Multiple energy windows 

The first method consists to divide the energy spectrum into windows (sometimes 

called panels) and use a separate set of 2ℓ,  in each window. In the two window treatment 

[23], a division is made into semi-core and valence energy regions (Figure 4.2). Separate 

calculations are then performed for the two windows where a set of 2ℓ is selected for each 

window to treat the corresponding states and the relevant bands are used to construct semi-

core and valence charge densities. This amounts to two independent LAPW calculations, but 

always with the same potential.  

Although this approach does solve many of the problems associated with the 

linearization and permits full relaxation of semi-core states, it is not fully satisfactory. First of 

all, there is a substantial overhead because separate calculations are being done for each 

window. Other problem with the treatment of semi-core states using multiple windows is that 

the semi-core states often satisfy the condition of orthogonality poorly even when the largest 

sphere radii consistent with the crystal structure are chosen. The result is the sufficient overlap 

between the LAPWs and core state, and the so-called "ghost" band will occurs above the true 

core state [24, 25].  
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The ideal solution in such cases is to use the local orbital extension. However, this is 

not available in some codes. If this is the case, the best solution seems to be to set the sphere 

radius as large as possible. 

 

  

 

 

 

 

 

 

 

Fig. 4.2: Example of windows with a semi-core state. The 2ℓ corresponding to the semi-core 

angular momentum is set low in the single window case [1]. 

    

4.3.2.2. Local orbitals  

4.3.2.2.1. LAPW+LO method      

In order to avoid the problem of non-orthogonality that can occurs in calculations in 

which the semi-core states are either frozen or treated in separate energy windows,  Singh, in 

1991 [26] has modified this approach, where he saw that is  necessary to extend the LAPW 

basis set with so called local orbitals (LO’s). It is the so called LAPW+LO method. With such 

an extension, higher level semi-core states can be treated, together with the valence states, in 

one LAPW calculation instead of two (valence and semi-core states) energy windows. The 

extra basis functions (LOs) are entirely localized inside the muffin-tin spheres, i.e. their value 

and derivative falls to zero at the muffin-tin radius. Thus, no additional boundary conditions 

have to be satisfied. This can be achieved for certain ℓ values (e.g. those corresponding to 

semi-core state) via a linear combination including three radial functions, the standard LAPW 

Valece 2ℓ
�� → 

2ℓ
�� → 2ℓ → 

2 Windows 1 Window 

2 

Semi-core 



Chapter 4                                          Full Potential-Linearized Augmented Plane Wave method 

 

78 
 

functions %ℓ and %I ℓ, with as linearization energy 2�,ℓ a value suitable for the highest valence 

state, plus a further radial function %ℓ
��. This new radial function is constructed in the same 

way as %ℓ, but with a different energy parameter 2�,ℓ, which is suitable for the lowest valence 

state, that is much more free atom-like. Local orbitals are not connected to plane waves in the 

interstitial region; they have hence no ���- or )�-dependence. A local orbital then is defined for 

a particular ℓ and m, and for a particular atom as:  

�ℓ$WX 
��� � � 0																																																																																																														, 										 �� ∈ !	Y"ℓ$WX %ℓ��, 2�,ℓ	� 0 Qℓ$WX%I ℓ��, 2�,ℓ� 0 Zℓ$WX%ℓ
����, 2�,ℓ	�[&$ℓ 
�̂�,												�� ∈ ��  (4.8) 

where the three coefficients "ℓ$WX , Qℓ$WX  and Zℓ$WX  are determined by requiring that the LO is 

normalized, and has zero value and zero slope at the muffin tin boundary. The LO is then 

added to usual LAPW basis set in equation (4.7).  In practice the number of local orbitals 

needed is much smaller than the number of plane-waves which equal a few hundred functions 

(e.g. for s and p semi-core states, four local orbitals per atom would be used). Thus the 

convergence of the local orbital extension is practically the same as that of the standard 

LAPW method. The slightly increased computational time is a small price to be paid for the 

much better accuracy that local orbitals offer, and therefore they are always used
1
 [5].  

3.3.2.2.2. APW+lo method 

 Despite the problem of the energy dependence of the basis set, which encountered in 

the APW method, was removed in the LAPW method, the drawback of the latter is the slower 

convergence of the results (e.g. eigenvalues) with respect to the number of basis functions that 

are used in the calculation. The condition of continuous first derivative at the muffin-tin 

boundary made the LAPW basis functions "stiffer" as compared to the APW's. An alternative 

approach of the LAPW method, which combines the advantages of the APW and LAPW 

methods, and which is shown to be highly effective in reducing the basis set sizes, has been 

proposed by Sjöstedt et al [6], namely APW+lo method. The new basis set APW+lo was 

defined by the combination of two types of wave functions: (i) the standard APW’s (Eqn. 

4.2), but at a fixed energies 2ℓ to avoid the non-linear eigenvalue problem. However, it does 

not give a good description of the eigen-functions. This basis set is therefore augmented, 

                                                           
1
 Local orbitals can also be used beyond the Treatment of semi-core states to improve the base with respect to 

the conduction bands. This improvement of the LAPW method is at the origin of the success of the linearization 

method based on the LAPW method Insofar as it allows extending this original method to a much broader 

category of compounds. 
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within the muffin-tin spheres, with a few of the second type functions: (ii) the local orbitals, 

but another type as the one used in the LAPW+LO method (they are abbreviated as "lo" 

instead of as "LO"). They are defined as: 

 �ℓ$\] 
��� � �0																																																																																		,									�� ∈ !	Y"ℓ$\] %ℓ��, 2�,ℓ	� 0 Qℓ$\] %I ℓ��, 2�,ℓ�[&$ℓ 
�̂�										,							�� ∈ ��   (4.9) 

The local orbitals are evaluated at the same fixed energy as the corresponding APWs. 

The two coefficients "ℓ$\]  and Qℓ$\]  are determined by normalization, and by requiring that the 

local orbital has zero value at the muffin tin boundary (not zero slope). It was demonstrated 

that this new scheme can reach the same accuracy as LAPW but converges faster with respect 

to the number of basis functions. The smaller basis set and faster matrix set up of APW+lo 

offers a shorter run-time and uses less memory than LAPW. Then it is favorable for selected 

atoms and ℓ, to use local orbitals to go back to the APW method, especially for d- and f-

states, and structures with atoms that have a muffin-tin sphere much smaller than others 

spheres in the unit cell (like O or N) [27].   

As the two basis sets, APW+lo and LAPW consist of the same functions %ℓ and %I ℓ 
and could easily be mixed in the same code, it is advantageous to treat those states which are 

difficult to converge with APW+lo, and keep using LAPW for all other states, e.g. 

calculations for a molecular reaction on a metal surface could be performed with an APW+lo 

basis set for the adsorbate and a well-tested LAPW treatment for the substrate [6]. 

4.3.3. The Concept of FP-LAPW method  

 The full-potential LAPW method (FP-LAPW) [12,13] combines the choice of the 

LAPW basis set with the treatment of the full-potential and charge density without any shape 

approximations in the interstitial region and inside the muffin-tins. This generalization is 

achieved by relaxing the constant interstitial potential 1̂_and the spherical muffin-tin 

approximation 1̀ a_ 
��� due to the inclusion of a warped interstitial and the non-spherical terms 

inside the muffin-tin spheres. They are developed into harmonics of the lattice within each 

atomic sphere, and into Fourier series in the interstitial regions:   

 1
��� � �∑ 1̂��������� 																									,									�� ∈ !	∑ 1̀ aℓ$
���&$ℓ 
�̂�ℓ$ 										,							�� ∈ �� (4.10) 

This method became possible with the development of a technique for obtaining the 

Coulomb potential for a general periodic charge density without shape-approximations and 

with the inclusion of the Hamiltonian matrix elements due to the warped interstitial and non-



Chapter 4                                          Full Potential-Linearized Augmented Plane Wave method 

 

80 
 

spherical terms of the potential. The charge density b, is represented analogously to Eqn. 

4.10, just exchanging 1 by b: 

 b
��� � �∑ b�̂�������� 																									,									�� ∈ !	∑ b`aℓ$
���&$ℓ 
�̂�ℓ$ 										,							�� ∈ �� (4.11) 
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5.1. Computational details 

In order to benefit of the advantages of available computational methods, two 

complementary first-principles approaches in the framework of density functional theory 

(DFT) were used to perform a complete investigation of the structural, elastic, electronic and 

optical properties of the quaternary diamond-like semiconductor compounds Cu2MgSiS4 and 

Cu2MgGeS4. 

 We have employed the first-principles pseudopotential plane-wave (PP-PW) method 

as implemented in the Cambridge Serial Total Energy Package (CASTEP) code [1] to 

determine the structural parameters and elastic moduli of the considered compounds. A new 

version of the generalized gradient approximation (GGA), namely the GGA-PBEsol [2], 

which has been developed specifically to improve the description of the exchange-correlation 

in solids, was used. Interactions of the valence electrons with the nucleus and frozen core 

electrons were modelled using Vanderbilt ultrasoft pseudopotentials [3]. The Cu: 3d
104s

1, Mg: 

2p
63s

2, Si: 3s
23p

2, Ge: 4s
24p

2 and S: 3s
23p

4 orbitals were treated as valence electron states. A 

Plane-wave basis set cut-off of 450 eV and a Monkhorst–Pack mesh [4] of 9×10×11 for the k-

points were chosen, after a convergence test, to ensure sufficiently accurate calculations. The 

optimized structural parameters were achieved via the Broyden-Fletcher-Goldfarb-Shanno 

(BFGS) minimization algorithm [5]. The fully optimized geometry was performed with the 

following convergence criteria: (i) total energy difference between two consecutive iterations 

were smaller than 5.0×10-6 eV/atom, (ii) maximum force on any atom was smaller than 0.01 

eV/Å-1, (iii) stress was smaller than 0.02 GPa and (iv) atomic displacement was smaller than 

5.0×10-4 Å.  

The single-crystal elastic constants Cijs were determined via a linear fitting of the 

stress-strain curves obtained from first-principles calculations [1]. The elastic constants were 

performed with the following convergence criteria: 1.0×10-6 eV/atom for total energy, 0.002 

eV/Å for Hellman-Feynman force and 1.0×10-4Å for maximal ionic displacement. The 

polycrystalline aggregate elastic moduli, namely the bulk modulus B and shear modulus G, 

were evaluated via the Voigt-Reuss-Hill approximations [6-8].  

The electronic band structure and associated density of states and the optical 

properties of the title crystals were studied using the full-potential linearized augmented 

plane-wave (FP-LAPW) approach as implemented in the WIEN2K package [9] with the 

newly developed Tran-Blaha modified Becke-Johnson potential [10], denoted TB-mBJ, for 

the exchange-correlation potential. The TB-mBJ exchange potential was developed from a 



Chapter 5     Properties of Cu2MgSiS4 and Cu2MgGeS4 
 

87 
 

semi-classical exchange potential proposed by Becke and Johnson [11] to reproduce the shape 

of the exact-exchange optimized-effective potential of atoms. The TB-mBJ functional, 

resulting from the combination of the mBJ exchange with the LDA or GGA correlation, 

describes better the exchange-correlation potential than the standard LDA and GGA, known 

by their serious underestimation of the band gaps [12-14]. The FP-LAPW method with the 

TB-mBJ potential has proven to be a promising tool for an accurate determination of the 

electronic structure for a large family of semiconductors and isolators [15]. In the FP-LAPW 

method, the unit-cell of the crystal is partitioned into non-overlapping muffin-tin spheres, 

which surround each atom, separated by an interstitial region. The muffin-tin sphere radii are 

as large as possible without overlapping spheres. The wave functions are expanded in 

spherical harmonics with an lmax cut-off inside the muffin-tin spheres and Fourier series in the 

interstitial region with a plane wave cut-off defined by the max MTK R  parameter, where RMT is 

the smallest muffin-tin sphere and Kmax is the largest reciprocal lattice vector used in the plane 

wave expansion. The MT sphere radii are chosen to be 2.34 Bohr for Cu, 2.36 Bohr for Mg, 

1.91 Bohr for S and 1.92 Bohr for Si and Ge. The basis set cut-off parameters max MTK R  and 

maxl  were 8 and 10, respectively. The k integrations over the Brillouin zone (BZ) were 

performed up to 8×10×10 Monkorst-Pack mesh [4]. The self-consistent procedure was 

continued until the difference between the total energies in two successive iterations was less 

than10-5 Ry. A dense mesh of uniformly distributed k-points in the Brillouin zone is required 

to calculate the dielectric function, optical constants and density of states. Hence, for these 

properties, the Brillouin zone integration was performed using a 30x30x30 Monkhorst-Pack 

mesh. Details about the calculations of the optical properties can be found elsewhere [16]. 

The theoretical expression of the dielectric function yields an unbroadened spectrum that will 

have more structures than the experimental one. To facilitate a comparison with the expected 

experimental findings, the calculated dielectric function has been broadened with a broaden 

parameter equal to 0.1. 
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5.2. Results and discussion 

5.2.1. Structural properties  

5.2.1.1. Structural description 

The quaternary diamond-like semiconductor compounds Cu2MgSiS4 and Cu2MgGeS4 

have an orthorhombic structure and belong to the 12Pmn  space group (no. 31), with three 

inequivalent S atoms. One conventional cell of the Cu2MgSiS4 crystal is depicted in Fig. 5.1 

as a prototype. The conventional cell of Cu2MgXS4 (X = Si, Ge) contains 16 atoms, 4Cu, 

2Mg, 2X and 8S. The atomic positions are Cu: 4 ) ( Cu Cu Cub x ,y ,z , Mg: 2 ) (0
Mg Mg

a , y ,z , X: 

2  (0 )X Xa ,y ,z , S1: 1 1 14  ( )S S Sb x ,y ,z , S2: S2 S22 (0,y ,z )a  and S3: 3 32 (0 )S Sa ,y ,z . This means 

that the unit cell of Cu2MgXS4 contains two unit formulas (Z = 2). The atoms are indexed in 

order to distinguish between the inequivalent crystallographic positions of the same chemical 

element. So, the crystalline structures of the title compounds are characterized by 17 

parameters not fixed by the group symmetry, 14 atomic coordinates and three lattice 

parameters. All the atoms have normal tetrahedral coordinates, where every atom has four 

nearest neighbor atoms located approximately at the corners of a surrounding tetrahedron. 

Every silicon (Si) or germanium (Ge) atom is surrounded by four sulfur (S) atoms, forming 

SiS4 or GeS4 units (Fig. 5.2); every sulfur atom has four nearest neighbor atoms: two copper 

(Cu) atoms, one magnesium (Mg) atom and one X atom (either Si or Ge atom). 

 

 

Fig. 5.1: Conventional cell structure of the orthorhombic Cu2MgSiS4 compound as a 
prototype. 
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Fig.5.2: Illustration of the tetrahedral centered by Si atom, surrounded by four atoms of S in 

the Cu2MgSiS4 compound. 

 

5.2.1.2. Equilibrium structural properties  

The calculated equilibrium lattice parameters, atomic coordinates and interatomic 

bond-lengths for the title compounds are summarized in Tables 5.1, 5.3 and 5.4, respectively, 

compared with the available experimental data. Our results are in good agreement with the 

existing experimental data.  

 

Table 5.1: Calculated lattice parameters (a0, b0 and c0, in Å), unit-cell volume (V0, in Å3), 

cohesive energy (Ecoh, in eV/atom) and formation enthalpy (Eform, in eV/atom) for the 

orthorhombic quaternary diamond-like Cu2MgSiS4 and Cu2MgGeS4 compared with the 

available experimental data  

Property 
Cu2MgSiS4  Cu2MgGeS4 

Present Expt. [17]  Present Expt. [17] 

a0  7.5396 7.563  7.6142 7.638 

b0  6.3544 6.448  6.4580 6.515 

c0  6.1417 6.179  6.2044 6.225 

V0  294.25 301.3  305.09 309.8 

Ecoh  -4.93   -4.71  

Eform  -1.20   -1.08  
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The relative deviations of the computed lattice parameters a0, b0 and c0 from the 

measured ones are -0.30% (-0.31%), -1.46% (-0.87%) and -0.60% (-0.34%), respectively, in 

Cu2MgSiS4 (Cu2MgGeS4), which make a firm basis for reliability of the subsequent analysis 

of the elastic, electronic and optical properties of these materials. In order to compare the 

structures of our studied compounds with other Cu2-II-IV-S4 (II = Zn, Cd and Hg; IV = Si, Ge 

and Sn) quaternary diamond-like semiconductors, we have listed in Table 5.2 the lattice 

constants and the unit cell volume of each compound.  

 

Table 5.2: Experimental Lattice constants (a, b, and c in Å) and the unit cell volume (in Å3) 

of some Cu2-II-IV-S4 (II = Mg, Zn, Cd and Hg; IV = Si, Ge and Sn) quaternary diamond-like 

compounds                                                                   

Compound Cu2MgSiS4  Cu2ZnSiS4  Cu2CdSiS4 Cu2HgSiS4 

Structure 
12Pmn  [17]  

12Pmn  [18,19] 

a 7.563  7.435  7.614 7.592 

b 6.448  6.396  6.489 6.484 

c 6.179  6.135  6.254 6.269 

V 301.3  291.8 309 308.6 

Compound Cu2MgSiS4  Cu2ZnGeS4  Cu2CdGeS4 Cu2HgGeS4  

Structure 
12Pmn  [17]  

12Pmn  [18] 

a 7.638  7.504  7.692 7.679  

b 6.515  6.474  6.555 6.522 

c 6.225  6.185  6.299 6.325 

V 305.1  300.6 317.6  316.8 

Compound Cu2MgSnS4  Cu2ZnSnS4  Cu2CdSnS4 Cu2HgSnS4  

Structure -  42I m  [19] 

a -  5.427 5.586 5.566  

b -  - - - 

c -  10.848 10.834 10.88 

V -  319.6 338 337.2 
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The volume calculated of the unit cell is slightly lower than that of experimental data 

of about 2.36% and 1.52%, respectively for Cu2MgSiS4 and Cu2MgGeS4. This is due to the 

fact that our values are calculated at 0 K, while the experimental values are taken at ambient 

temperature (the volume increases when the temperature increases). We note that the 

conventional cell volume of Cu2MgGeS4 is larger by approximately 3.60% than that of 

Cu2MgSiS4, which can be attributed to the fact that the Ge atom radius is larger than that of Si 

atom. Same trend was observed in other Cu2-II-IV-S4 (II = Zn, Cd and Hg; IV = Si, Ge and 

Sn) quaternary diamond-like compounds (see Table 5.2) [17-19], i.e., the unit-cell volume  of 

quaternary diamond-like compounds Cu2-II-IV-S4 increases when moving down in the 

column IV of the periodic table, as shown in Fig. 5.3. 

 

 

Fig. 5.3: Variation of the unit-cell volume for some Cu2-II-IV-S4 quanternary diamond-like 

compounds with respect to the chemical nature of the IV cation at ambient temperature. 

 

 

Calculated values for the atomic positions (Table 5.3) deviate by 0.04% to 7.3% from 

the experimental values, with the exception of the z coordinate of Ge in Cu2MgGeS4 unit cell, 

which deviate by 75% from its experimental value. With respect to the bond lengths between 

atoms, the difference between our results and those of experience does not exceed 2.5% 

(Table 5.4). We note that our calculation of (Si,Ge)-S and Mg-S bond lengths are slightly 
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larger than those of the experimental data, while the calculation of Cu-S bond lengths are 

slightly lower than those of the experimental data. 

 

Table 5.3: Calculated atomic coordinates for the Cu2MgSiS4 and Cu2MgGeS4 crystals 

compared with the available experimental findings  

Atom W.S. 
 Present work  Expt. [17] 

 x/a y/b z/c  x/a y/b z/c 

Cu2MgSiS4         

Cu 4b  0.25207    0.17783    0.49330  0.25258 0.17753 0.4935 

Mg  2a  0   0.65648    0.50303   0 0.6544 0.5008 

Si 2a  0   0.32009    0.00099  0 0.3227 0.0010 

S(1) 4b  0.22842    0.15832    0.12669  0.2286 0.1643 0.1210 

S(2) 2a  0   0.29907    0.65118  0 0.3083 0.6574 

S(3) 2a  0    0.64466   0.09991  0 0.6368 0.1078 

Cu2MgGeS4         

Cu 4b  0.25114    0.17519    0.49536  0.25186 0.17587 0.49469 

Mg  2a  0   0.66115    0.50297  0 0.6609 0.4996 

Ge 2a  0    0.32311    0.00142  0 0.3246 0.0008 

S(1) 4b  0.23565    0.15304    0.13195  0.2345 0.1606 0.1266 

S(2) 2a  0    0.30386    0.63741  0 0.3117 0.6455 

S(3) 2a  0    0.65844    0.10365  0 0.6487 0.1116 

W.S.: Wyckoff site 

 

The thermodynamic and chemical stabilities of the Cu2MgSiS4 and Cu2MgGeS4 

compounds can be judged from their cohesive energies Ecoh and formation enthalpies Eform. 

The first represents the energy that is required for the crystal to decompose into free atoms, 

while the second is the difference between the total energies of pure constituent elements in 

their stable crystal structures and the total energy of the compound. They are calculated for 

the studied compounds by using the following expression, respectively: 

���� � �
�∙	
�����������
�����
������
������
����� (5.1) 

����� � �
�∙	
�����������
�����
������
������
����� (5.2) 

where ��Cu�MgXS�� represents the total energy of Cu2MgXS4 molecule; �$�X� refers to the 

total energy of an isolated X atom and �%�S� is the total energy per atom of pure element X, in 
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solid phase. The energy of the free atom was calculated using a cubic box with a large lattice 

constant. As can be seen from Table 5.1, both considered compounds have negative cohesive 

energies and formation enthalpies, indicating that they are energetically stable. 

 

Table 5.4: Calculated bond lengths (d, in Å) and bond stiffness (k, in GPa) for some bonds in 

the Cu2MgSiS4 and Cu2MgGeS4 compounds. The bond stiffness k is given by the inverse of 

the first pressure derivative (1 / α ), where & is the first pressure derivative of the bond-length  

Bond 

 Cu2MgSiS4   Cu2MgGeS4  

 Bond lengths k  Bond lengths k 

 Present Expt. [17] Present  Present Expt. [17] Present 

(Si/Ge)-S1  2.1491 2.143 390.6   2.2542 2.228 341.3 

(Si/Ge)-S2  2.1526 2.120 387.6  2.2619 2.213 325.7 

(Si/Ge)-S3  2.1501 2.131 366.3  2.2565 2.221 306.7 

Cu-S1  2.2621 2.310 238.1  2.2623 2.297 235.8 

Cu-S1  2.2925 2.345 260.4  2.2850 2.343 263.2 

Cu-S2  2.2684 2.321 253.2  2.2636 2.316 246.9 

Cu-S3  2.2793 2.331 219.8  2.2796 2.330 219.8 

Mg-S1  2.4808 2.476 228.3  2.4763 2.468 218.8 

Mg-S2  2.4466 2.432 257.7  2.4535 2.450 231.5 

Mg-S3  2,4769 2.431 227.3  2.4776 2.417 204.5 

          

5.2.1.3. Equations of states and the pressure effect on the structural parameters 

One of the more used methods to test the reliability of the obtained theoretical results 

consists of comparing between the numerical values of one property that are obtained via 

different theoretical procedures. For this issue, the bulk modulus B was used as a test 

parameter. For this purpose, the structural parameters of the studied compounds were 

calculated at fixed applied hydrostatic pressures in the range from 0 to 15 GPa with a step of 3 

GPa; such an option is implemented in CASTEP code and permits for finding an optimized 

structure at any axial or hydrostatic pressure. First, the obtained unit-cell volume (V) versus 

pressure (P) and the associated total energy (E) versus unit-cell volume (V) were fitted to 

some different versions of the equation of state (EOS) [20-24]: the Birch-Murnaghan and 

Murnaghan P-V EOSs, given respectively by: 
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and the Birch-Murnaghan, Murnaghan and Vinet E-V EOSs, given respectively by: 
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Fig. 5.4 visualizes the fits of the calculated P(V) and E(V) data to the P(V) and E(V) Birch-

Murnaghan EOSs [20,22], respectively, as a prototype. One can appreciate the good fits of the 

calculated data to the mentioned EOSs. The obtained values for the bulk modulus B and its 

pressure derivative ’B  are reported in Table 5.5.  

 

Table 5.5: Calculated bulk modulus (B0, in GPa) and its pressure derivative B’, for the 

orthorhombic quaternary diamond-like Cu2MgSiS4 and Cu2MgGeS4  

Method Cu2MgSiS4 Cu2MgGeS4 

B B’ B B’ 

Birch Murnaghan P-V EOS [20] 82.28 4.24  78.27 4.22  

Murnaghan P-V EOS [21] 82.76 4.00  78.76 3.96  

Birch Murnaghan E-V EOS [22] 83.59 2.59  79.37 2.61 

Murnaghan P-V EOS [23] 81.28 4.33  76.78 4.36  

Vinet E-V EOS [24] 81.71 4.50  77.26  4.54  

From βXs  82.03  78.99  

From βV 82.24  79.11  
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Fig. 5.4: Calculated pressure (P) and total energy (E) versus unit-cell volume V (symbols) and 
fits to Birch-Murnaghan equation of states (solid lines) for the Cu2MgSiS4 and Cu2MgGeS4 
compounds. 
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Second, we have estimated the linear compressibilities along the a-axis, b-axis and c-

axis, aβ , bβ  and cβ , respectively, and the volume compressibility ( Vβ )  for the studied 

materials by fitting the data of normalized lattice parameters ratio a/a0, b/b0 and c/c0 and the 

normalized unit-cell volume ratio V/V0 versus pressure to a third polynomial function given 

by the following expression (Figs. 5.5 and 5.6):   

 
3

0
2

1 n

X n

n

X / X P K Pβ
=

= + +∑
                                                                              

   (5.8) 

where X represents the lattice constants a, b, c and the volume V at a pressure P, and X0 is the 

corresponding values at zero pressure. We can see from the Figs. 5 and 6 that a/a0, b/b0 and 

c/c0 and V/V0 decrease with increasing pressure according to the following expressions: 

 3725
0 1040.21098.600360.01/ PPPaa

−− ×−×+−=   

 3624
0 1008.41054.100505.01/ PPPbb

−− ×−×+−=   

 3625
0 1018.21048.900354.01/ PPPcc

−− ×−×+−=    

 3624
0 1042.71052.301216.01/ PPPVV

−− ×−×+−=   

for Cu2MgSiS4, and: 

 
3725

0 106.29107.560.003841/ PPPaa
−− ×−×+−=   

 3624
0 101.29101.070.004921/ PPPbb

−− ×−×+−=   

 3624
0 103.89101.340.003911/ PPPcc

−− ×−×+−=   

 3624
0 106.65103.540.012641/ PPPVV

−− ×−×+−=   

for Cu2MgGeS4. The obtained linear compressibilities aβ , bβ  and cβ , and the volume 

compressibility Vβ  were used to estimate the bulk modulus B as follows:  

 ( )1 a b cB / β β β= + +             (5.9) 

 1 VB / β=            (5.10) 

The obtained results are given in Table 5. One can appreciate the good agreement between the 

values of the bulk modulus B obtained from three different procedures, i.e., the linear 

compressibilities ( aβ , bβ  and cβ ), the volume compressibility ( Vβ ) and the EOSs fits. This 

constitutes a good proof for the reliability of our calculations.  

Third, the obtained bulk modulus values at this step will be compared to the 

corresponding ones that will be achieved from the elastic constants later.  
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Fig. 5.5: Calculated pressure dependence of the normalized lattice parameters ratio, a/a0, b/b0 

and c/c0 (symbols) for the Cu2MgSiS4 and Cu2MgGeS4 compounds. The solid lines are least 

squares third-order polynomial fits of the data points. 

 

 

 

Fig. 5.6: Calculated pressure dependence of the normalized unit-cell volume V/V0 for the 

Cu2MgSiS4 and Cu2MgGeS4 compounds. The solid lines are least squares third-order 

polynomial fits of the data points. 
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From Table 5.5, one can see that B0 (Cu2MgSiS4) > B0 (Cu2MgGeS4) of about 5%; 

knowing that the lattice volume of Cu2MgGeS4 is higher than that of Cu2MgSiS4, this is in 

good agreement with the well-known relation between the bulk modulus and the lattice 

volume B ∝ (�) . This means that Cu2MgSiS4 is slightly harder than Cu2MgGeS4. 

Effectively, one can see from Fig. 5.6 that Cu2MgGeS4 is slightly more compressible than 

Cu2MgSiS4. The bulk modulus value for the studied compounds (~ 80 GPa) is smaller than 

100 GPa, so these two compounds should be classified as a relatively soft materials. We note 

that to date, no reported experimental or theoretical data in the scientific literature for the bulk 

moduli of the Cu2MgSiS4 and Cu2MgGeS4 compounds to be compared with our obtained 

results.  

From Fig. 5.5, one can observe that the considered materials are less compressible 

along the [001] and [100] crystallographic directions than along the [010] direction, i.e., the 

largest compressibility is realized along the b crystallographic axis. These materials are 

slightly less compressible along the [001] direction than along the [100] direction, i.e., the 

smallest compression is exhibited along the c-axis. This result suggests that the chemical 

bonds along the b-axis are less strong than those along the a- and c-axes. 

In order to have an insight on the stiffness of the Cu-S, Mg-S and Si/Ge-S bonds, we 

have calculated the pressure dependence of their relative length d/d0 (where d0 is the 

equilibrium bond length). The symbols in Fig. 5.7, shows the calculated d/d0 data while the 

solid lines represent their fits to a second-order polynomial: 

*/*, � 1 . &/ . 0/�                                                                            (5.11) 

Calculated values of the bond stiffness k, which given by the inverse of the first pressure 

derivative (1 / α ), where & is the first pressure derivative of the bond-length ( d Pd / dα = ) 

are listed in Table 5.4. From Fig. 5.7 and Table 5.4, it can be seen that Si/Ge-S bonds are the 

stiffest ones. The difference between the linear compressibilities along different axes could be 

explained by the orientations of the strongest bonds Si/Ge-S along these axes.  

The less compressibility of the considered compounds along the c-axis is due to the 

strongest of the Si/Ge-S2 bond, which is almost oriented along the c-axis; there is only about 

3.5° between the Si/Ge-S2 bond and the c-axis (see Table 6).  
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Table 5.6: The angles (in deg.) between different strongest bonds Si-S (or Ge-S) and the main 

crystallographic axes, for Cu2MgSiS4 and Cu2MgGeS4 compounds 

 Cu2MgSiS4    Cu2MgGeS4   

 a-axis b-axis c-axis  a-axis b-axis c-axis 

Si-S1 36.7 61.4 68.9  37.3 60.8 68.9 

Si-S2 90 86.4 3.5  90 86.8 3.4 

Si-S3 90 16.5 73.6  90 16.3 73.7 

 

 

 

 

 

Fig. 5.7: Calculated pressure dependence of the relative bond lengths d/d0 for the Cu2MgSiS4 
and Cu2MgGeS4 compounds. The solid lines are least squares second-order polynomial fits of 
the data points. 
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5.2.2. Elastic properties 

The elastic properties of single-crystal and polycrystalline aggregates of the 

Cu2MgSiS4 and Cu2MgGeS4 compounds were explored by calculating their independent 

elastic constants Cij, bulk modulus B, shear modulus G, Young’s modulus E, Poisson’s 

coefficient ν and related properties. The Cijs were obtained via linear fittings of the stress-

strain curves. The main advantage of this method is the great reduction of the independent 

strain modes number compared to the ab initio total energy versus strain approach. The elastic 

stiffness tensor is related to the stress tensor and the strain tensor by Hooke’s law. Since the 

stress tensor and the strain tensor are symmetric, the most general elastic stiffness tensor has 

only 21 non-zero independent components. For our system (orthorhombic crystal), they are 

reduced to nine independent components, namely C11, C22, C33, C44, C66, C12, C13 and C23. The 

corresponding matrixes of elastic constants Cij are given as follow: 

( )
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                    (5.12) 

To determine the nine independent elastic constants Cij of the elastic tensor for the 

orthorhombic phase, three strain patterns - one with non-zero 1)) and 12� components, second 

with non-zero 1�� and 12) components and the third with non-zero 122 and 1)� components 

were used. 

5.2.2.1. Single-crystal elastic constants 

 The complete set of the calculated independent elastic constants Cijs of the Cu2MgSiS4 

and Cu2MgGeS4 compounds are listed in Table 5.7. No experimental or theoretical values for 

these quantities are reported in the literature. From the obtained results, we can make the 

following conclusions: 

(i) The C11, C22 and C33 elastic constants reflect the stiffness-to-uniaxial stress along the 

crystallographic a, b and c axes, respectively. For both Cu2MgSiS4 and Cu2MgGeS4, the C33 

is larger than C11 and the latter is larger than C22. This means that these materials are less 

resistant to applied stress along the [010] crystallographic direction than along the [100] and 

[001] directions, which is consistent with the results shown in Fig. 5.5. These results can be 
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again attributed to the more strong bonds Si/Ge-S along the crystallographic c-axis. The C44, 

C55 and C66, which represent the shear moduli of the (100), (010) and (001) planes, 

respectively, are relatively small than the C11, C22 and C33, indicating that these materials are 

more resistance to compression than to shear deformation. 

 

 

Table 5.7: Calculated independent single-crystal elastic constants (Cij, in GPa), for the 

Cu2MgSiS4 and Cu2MgGeS4 compounds 

System C11 C22 C33 C44 C55 C66 C12 C13 C23 

Cu2MgSiS4 123.27 109.65 148.45 26.17 26.43 27.78 59.20 58.10 48.01 

Cu2MgGeS4 122.95 111.61 144.36 26.87 24.26 26.85 58.59 53.26 49.21 

 

   

(ii) To be mechanically stable, orthorhombic crystals should satisfy the following Born-

Huang stability criteria [25]: 

11 0C > , 22 0C > , 33 0C > , 44 0C > , 55 0C >  , 66 0C > , 11 22 122 0C C C+ − > , 

11 33 132 0C C C+ − > , 22 33 232 0C C C+ − > , ( )11 22 33 12 13 232 0C C C C C C+ + + + + > (5.13)      

Our predicted Cijs satisfy these conditions, implying that the considered systems are 

mechanically stable. 

(iii) The sound wave velocity in a crystal is related to some of its physical properties such as 

its thermal conductivity, thus it is important to evaluate it. Acoustic wave velocities along 

different directions in a crystal can be obtained via the resolution of the Christoffel equation 

[26]: 

345678 ∙ 96 ∙ 97 : ;<�=58>?8 � 0                                                                (5.14) 

where Cijkl is the elastic constant tensor, n is the wave propagation direction, ρ is the density 

of material, v is the wave velocity and u is the wave polarization. The pure longitudinal and 

transverse wave velocities for the orthorhombic system along the directions [100], [010] and 

[001] are given by the following expressions: 

<A	),,� � B4)) ;⁄  ;  	<E)	),,� � B4FF ;⁄  ;  <E�	),,� � B4GG ;⁄  

<A	,),� � B4�� ;⁄  ;  	<E)	,),� � B4FF ;⁄  ;  <E�	,),� � B4�� ;⁄              

<A	,,)� � B422 ;⁄  ;  	<E)	,,)� � B4GG ;⁄  ;  <E�	,,)� � B4�� ;⁄                                 (5.15) 
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The calculated sound wave velocities propagating in the [100], [010] and [001] 

crystallographic directions of the title compounds are listed in Table 5.8. The longitudinal 

sound wave velocities are larger than the corresponding transverse ones. The elastic wave 

velocities of Cu2MgSiS4 are slightly higher than those of Cu2MgGeS4 because Cu2MgSiS4 is 

slightly harder than Cu2MgGeS4, as we have already seen previously. 

 

 

Table 5.8: Calculated elastic wave velocities for some different propagating crystallographic 

directions (V, in m/s) for the Cu2MgSiS4 and Cu2MgGeS4 compounds. The subscripts L and T 

denote the longitudinal and transversal polarization of the sound wave 

System  
100
LV  

100
1TV  

100
2TV  

010
LV  

010
1TV  

010
2TV  

001
LV  

001
1TV  

001
2TV  

Cu2MgSiS4 5957.5 2828.2 2758.6 5618.8 2828.2 2745.0 6537.7 2758.6 2745.0 

Cu2MgGeS4 5662.7 2646.3 2515.4 5395.2 2646.3 2647.2 6136.0 2515.4 2647.2 

 

 

5.2.2.2 Polycrystalline elastic properties   

In the particular case of randomly oriented polycrystals, the elastic constants Cijs 

cannot be measured and instead of that the isotropic polycrystalline elastic moduli, such as the 

bulk modulus B (resistance of a solid against its volume change under hydrostatic pressure) 

and shear modulus G (resistance to shape change caused by a shearing force), can be 

measured. Theoretically, these polycrystalline elastic moduli can be derived from the Cijs 

based on additional hypotheses such as isostress named as Reuss [6] or isostrain named as 

Voigt [7] states (subscripted, respectively, R and V in the following). The general expressions 

of the bulk modulus B and shear modulus G in the Voigt and Reuss approaches are as 

follows: 

11 22 33 12 13 23(1/9)[ 2( )]VB C C C C C C= + + + + +  (5.16) 

11 22 33 44 55 66 12 13 23(1/15)[ 3( ) ( )]VG C C C C C C – C C C= + + + + + + +  (5.17) 

11 22 33 12 23 131 ( ) 2( )R/ B s s s s s s= + + + + +  (5.18) 

11 22 33 12 13 23 44 55 661 (4/15)( ) (4/15)( ) (1/5)( ) R/ G s s s – s s s s s s= + + + + + + +  (5.19)                

The ij
s  are the components of the compliance matrix S, which is related to the elastic constant 

matrix C by the following relationship: 
1−=S C . Using energy consideration, Hill [8] has 
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demonstrated that the arithmetic mean of the two above mentioned limits -Voigt and Reuss 

approximations- are the best effective polycrystalline elastic moduli (Hill’s approximation). In 

the Hill’s approximation, the polycrystalline bulk (BH) and shear (GH) moduli are given by: 

2
V R

H

B B
B

+
=  and 

2
V R

H

G G
G

+
=        (5.20) 

The Young’s modulus E and Poisson’s ratio ν can be computed from the Hill’s values of B 

and G through the following relationships: 

9
3

BG
E

B G
=

+
 and 

( )
3 2

2 3
B G

B G
ν

−
=

+
        (5.21) 

Using the aforementioned relations, the calculated bulk modulus B, shear modulus G, 

Young’s modulus E and Poisson’s ratio ν  are quoted in Table 5.9. 

 

 

Table 5.9: Calculated Bulk modulus (B, in GPa), shear modulus (G, in GPa), Young’s 

modulus (E, in GPa), B/G ratio and Poisson’s ratio (ν, dimensionless) for the Cu2MgSiS4 and 

Cu2MgGeS4 compounds 

System BV BR BH GV GR GH E B/G ν 

Cu2MgSiS4 79.11 78.02 78.57 30.48 29.33 29.91 79.62 2.627 0.3331 

Cu2MgGeS4 77.89 77.33 77.61 30.12 28.89 29.50 78.56 2.630 0.3313 

 

 

 The obtained results allow us to make the following conclusions: 

(a) One can appreciate that the estimated bulk modulus value based on the Cijs agrees very 

well with those obtained via other procedures (see Table 5.5), confirming again the reliability 

of the present calculations (The B calculated from Cijs deviated from that calculated from 

different EOSs fits, and from linear and volume compressibilities, by -3.33% to -6.00% for 

Cu2MgSiS4, and by -0.45% to -2.22% for Cu2MgGeS4).  

(b) The Poisson’s ratio ν, defined as the ratio of transverse strain (normal to the applied stress) 

to the longitudinal strain (in the direction of the applied stress), is generally connected with 

the volume change in a solid during uniaxial deformation and the chemical bonding character 

[27,28]. If ν  is equal to 0.5, no volume change occurs, while if it is lower than 0.5 a large 

volume change is expected for any elastic deformation. In our case, the value of ν is 
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approximately 0.33 in both Cu2MgSiS4 and Cu2MgGeS4, suggesting a considerable volume 

change can be associated with elastic deformation. 

(c) To distinguish between brittleness (fragility) and ductility (malleability) behavior of 

solids, Pugh [29] has proposed a simple empirical relationship between the bulk modulus B 

and shear modulus G. A B/G value higher than 1.75 is associated with ductility, whereas a 

lower value than 1.75 is associated with brittleness. According to this criterion, both 

considered compounds are ductile materials. A ductile material is more resistant to thermal 

shocks (B/G is about 2.63 for each material). 

(d) In Debye model, the Debye temperature θD is used to distinguish between high- and low-

temperature regions for a solid. Debye temperature θD is correlated with many physical 

properties, such as thermal expansion, melting point and Grüneisen parameter. Debye 

temperature θD can be numerically estimated from the average sound wave velocity 
m

V  as 

follows [30]: 

1 3
3
4

/

A
D m

B

Nh n
V

K M

ρ
θ

π

  
=   

  
       (5.22) 

where, h is Planck constant, kB is Boltzmann constant, NA is Avogadro number, ρ is the mass 

density, M is the molecular weight and n is the number of atoms in the molecule. In 

polycrystalline materials, the average wave velocity 
m

V  can be evaluated as follows: 
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Here, lV  and tV  are the average longitudinal and transverse elastic wave velocities, which are 

defined by Navier’s equations [31]: 
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      (5.24) 

The calculated sound wave velocities ( lV , tV  and mV ) and Debye temperature ( Dθ ) for the 

Cu2MgSiS4 and Cu2MgGeS4 polycrystalline aggregates are listed in Table 5.10. One can see 

from this table that the values of (8, (H, (� and IJof Cu2MgSiS4 are slightly larger than those 

of Cu2MgGeS4 of about 5.8%, 0.63%, 5.4% and 6.7%, respectively.  
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Table 5.10: Calculated molecular weight (M, in g), density (ρ, in g/cm3), transverse, 

longitudinal and average sound velocities ( tV , lV and mV , in m/s) and Debye temperatures ( Dθ , 

in K) for the Cu2MgSiS4 and Cu2MgGeS4 compounds 

System M ρ 
tV
 lV  mV  Dθ  

Cu2MgSiS4 307.722 3.4732 2934.45 5557.96 3280.53 370.02 

Cu2MgGeS4 352.227 3.8343 2773.98 5522.78 3111.05 346.70 

 

 

5.2.2.3. Elastic anisotropy 

The anisotropy of physical properties in crystals reflects the anisotropy in bonding 

between atoms in different planes. We have already reported above that Cu2MgSiS4 and 

Cu2MgGeS4 are anisotropic in compressibility (Fig. 5.5). Quantification of the elastic 

anisotropy is necessary and significant due to its implication in the apparition of microcracks 

in solids [32] and its influence on the nanoscale precursor textures in alloys [33]. To quantify 

the anisotropy of the elastic properties of the Cu2MgSiS4 and Cu2MgGeS4 compounds, five 

different criteria were employe:  

1. The shear anisotropic factors are among the used criteria to measure the degree of 

anisotropy in the bonding between atoms in different planes. The shear anisotropic factor for 

the {100} shear planes between the <011> and <010> directions in orthorhombic crystals is 

[34]: 

44
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11 33 13

4
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C
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C C C
=

+ −
         (5.25) 

For the {010} shear planes between <101> and <001> directions it is: 
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        (5.26) 

For the {001} shear planes between <110> and <010> directions it is: 

66
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C C C
=

+ −
          (5.27) 

For isotropic materials, A1, A2 and A3 are equal to one, whereas values smaller or greater than 

unity measure the degree of elastic anisotropy possessed by the crystal. Table 5.11 shows that 

A1 and A2 anisotropy factors are very different from unity, implying that shears of {100} and 
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{010} planes both are characterized by a noticeable elastic anisotropy. In contract, the 

anisotropy factor A3 is close to unity, implying that the resistance to shears of {001} a plane is 

less anisotropic. We can see also that Cu2MgSiS4 is slightly more isotropic than Cu2MgGeS4. 

2. Another way for measuring the elastic anisotropy possessed by solids has been proposed by 

Chung and Buessem [35], which is the percentage anisotropy in compressibility (AB) and 

shear (AG) moduli of elastic anisotropy defined as:  

( ( )B V R V R
A B B ) / B B= − +  and ( ( )G V R V R

A G G ) / G G= − +     (5.28) 

The subscripts V and R denote the Voigt and Reuss approximations. A value of zero (0%) is 

associated to a complete elastic isotropy; while a value of 1 (100%) corresponds to the largest 

possible anisotropy. The results listed in Table 5.11 for AB and AG suggest that Cu2MgSiS4 

and Cu2MgGeS4 are anisotropic.   

3. A universal anisotropy index AU has been proposed by Ranganathan and Ostoja-Starzewski 

[36] to quantify the elastic anisotropy of crystals accounting for both bulk and shear modulus 

contributions. The A
U index is defined as follows: 

5 6U V V

R R

G B
 A

G B
= + −         (5.29) 

For isotropic crystals, AU is equal to zero and deviations of AU from zero define the extent of 

elastic anisotropy. The results listed in Table 5.11 for A
U indicate that Cu2MgSiS4 and 

Cu2MgGeS4 have a certain degree of elastic anisotropy.  

 

 

Table 5.11: Calculated shear anisotropic factors (A1, A2 and A3), percentage of elastic 

anisotropy for bulk modulus and shear modulus (AB and AG) and universal anisotropy index 

(AU) for the Cu2MgSiS4 and Cu2MgGeS4 compounds. 

System A1 A2 A3 AB (%) AG (%) A
U 

Cu2MgSiS4 0.6732 0.6523 0.9701 0.70 1.92 0.2093 

Cu2MgGeS4 0.6685 0.6159 0.9149 0.36 2.09 0.2204 

 

 

4. The elastic anisotropy can be accurately analyzed by examining the ratio of the principle 

Young’s moduli Eii along crystallographic axes along crystallographic axes. The anisotropic 



Chapter 5     Properties of Cu2MgSiS4 and Cu2MgGeS4 
 

107 
 

Young’s moduli Eii and Poisson’s ratio νij (i, j=x, y, z) can be estimated from the calculated 

elastic compliances Sii by using the following relations: 

  
ii

ii
S

E
1

=   and  
ii

ij

ij
S

S−
=ν                                                                         (5.30) 

The values of the principle Young’s moduli Eii and Poisson’s ratio νij are reported in Table 

5.12. Eii and Poisson’s ratio νij values illustrate also the considerable anisotropic behavior of 

Cu2MgSiS4 and Cu2MgGeS4 with respect to external deformation. 

 

 

Table 5.12: The calculated elastic compliances Sij (in 10-4 GPa-1), principle Young’s moduli 

Eii (in GPa) and Poisson’s ratios νij for the Cu2MgSiS4 and Cu2MgGeS4 compounds  

Cu2MgSiS4    Cu2MgGeS4   

Sij Eii νij Sij Eii νij 

S11 = 0.0120216 

S22 = 0.0128397 

S33 = 0.0086139 

S44 = 0.0382075 

S55 = 0.0378331 

S66 = 0.0360030 

S12 = -0.0051612  

S13 = -0.0030361 

S23 = -0.0021320 

E11 = 83.18328 

E22 = 77.88372 

E33 = 116.09117 

ν12 = 0.4293 

ν13 = 0.2525 

ν21 = 0.4020 

ν23 = 0.1661 

ν31 = 0.3525 

ν32 = 0.2475 

 S11 = 0.0116200 

S22 = 0.0126561   

S33 = 0.0087337 

S44 = 0.0372144 

S55 = 0.0412187 

S66 = 0.0372463 

S12 = -0.0049536 

S13 = -0.0025989 

S23 = -0.0024863 

E11 = 86.05831 

E22 = 79.01319 

E33 = 114.49919 

ν12 = 0.4263 

ν13 = 0.2237 

ν21 = 0.3914 

ν23 = 0.1965 

ν31 = 0.2976 

ν32 = 0.2847 

 

 

5. A practical way to evidence the elastic anisotropy behavior in crystals is to plot three-

dimensional (3D) representation of the directional dependence of the Young’s modulus E. In 

a 3D-representation, a perfectly isotropic system would exhibit a spherical shape, and the 

degree of deviation of the 3D surface from spherical shape reveals the extent of the elastic 

anisotropy. In an orthorhombic crystal, the 3D closed surface for the Young’s modulus E is 

given by the following expression [37]: 

4 4 4 2 2 2 2 2 2 2 2 2 2 2 2
1 11 2 22 3 33 1 2 12 1 3 13 2 3 23 2 3 44 1 3 55 1 2 66

1
2 2 2l S l S l S l l S l l S l l S l l S l l S l l S

E
= + + + + + + + +    (5.31) 

Here, l1, l2 and l3 are the directional cosines with respect to the x-, y- and z-axes, respectively, 

and the Sij refer to the compliance constants, which can be obtained through an inversion of 

the elastic constant tensor. 
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 Application of equation 5.31 for the cases of Cu2MgSiS4 and Cu2MgGeS4 yields the 

Young’s modulus closed surfaces and their cross-sections shown in Figs. 5.8. The clearly 

visible deviations of the 3D surface from spherical shape and its cross-section from the circle 

form evidence the noticeable elastic anisotropy of the examined compounds. From the Figs. 

5.8, one can see clearly that Cu2MgGeS4 is slightly more anisotropic than Cu2MgSiS4.    

 

 

 

 

 

 

Fig. 5.8: 3D-surface representation of the directional dependence of the Young’s modulus (in 

GPa) and its projection on the ab {(001)}, ac {(010)} and bc {(100)} planes for the the 

Cu2MgSiS4 and Cu2MgGeS4 compounds. 
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5.2.3. Electronic properties 

In order to explore the electronic structure and related properties of two compounds 

Cu2MgSiS4 and Cu2MgGeS4, we have calculated at zero pressure their electronic band 

structures, the total and partial electron densities of states (TDOSs and PDOSs), and the 

effective masses of electrons and holes. 

5.2.3.1. Electronic band structure  

Figures 5.9 and 5.10 shows the calculated electronic band structures for the 

Cu2MgSiS4 and Cu2MgGeS4 compounds at their equilibrium structural parameters, along the 

lines of high symmetry points in the first Brillouin zone (BZ), associated to the simple 

orthorhombic lattice:  Γ(0 0 0), X(0.5 0 0), Y(0.5 0 0), Z(0 0 0.5), T(0 0.5 0.5), U(0.5 0 0.5) , 

S(0.5 0.5 0) and R(0.5 0.5 0.5) (Fig. 5.11), using the full potential linearized augmented 

plane wave (FP-LAPW) method with both the GGA-PBEsol and TB-mBJ approaches for 

comparison.  

As shown in Figures 5.9 and 5.10, there is no sensible difference between features of 

the band structures predicted by GGA-PBEsol and TB-mBJ functionals but there is a 

noticeable difference between the band gap values yielded by these two approaches. The TB-

mBJ shifts the conduction band upward. The overall energy band profiles of Cu2MgSiS4 and 

Cu2MgGeS4 are similar. The valence band maximum (VBMa) and the conduction band 

minimum (CBMi) for both considered compounds occur at the BZ center (Γ-point). 

Therefore, the band edge in Cu2MgSiS4 and Cu2MgGeS4 is of a direct type, (Γ- Γ).  

The obtained band gaps using the GGA-PBEsol and TB-mBJ are listed in Table 5.13 

along with the existing experimental and theoretical data for comparison. The calculated band 

gap using the GGA-PBEsol agrees with the previous theoretical gap value [17], but it is 

underestimated severely compared to the measured one; the measured gap for Cu2MgSiS4 

(Cu2MgGeS4) is 1.71 eV (1.50 eV) higher than the calculated one using the GGA-PBEsol. 

One can appreciate that the TB-mBJ improves considerably the band gap value compared to 

that yielded by the GGA-PBEsol. However, the TB-mBJ does not produce exactly the 

reported experimental values of the band gaps of the title compounds; the band gap is still 

underestimated. The relative deviation of the calculated band gap using the TB-mBJ regards 

the measured one is approximately -17% in the case of Cu2MgSiS4 and -35% in the case of 

Cu2MgSiS4.  
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Fig. 5.9: Calculated electronic band structures of the Cu2MgSiS4 compound, using the GGA-

PBEsol and TB-mBJ approximations. The fundamental band gap is shown by an arrow.  
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Fig. 5.10: Calculated electronic band structures of the Cu2MgGeS4 compound, using the 

GGA-PBEsol and TB-mBJ approximations. The fundamental band gap is shown by an arrow. 
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Fig. 5.11: High symmetry points in the first Brillouin zone (BZ) of the simple orthorhombic 

lattice, in which Cu2MgSiS4 and Cu2MgGeS4 crystallize. The red line corresponds to the path 

of the band structure diagram. b1, b2 and b3 are the unit vectors of the reciprocal lattice. 

 

 

Table 5.13: Calculated energy band gap (in eV) for the Cu2MgSiS4 and Cu2MgGeS4 

compounds compared with the available experimental and theoretical data in the scientific 

literature 

System This work  Experimental Other calculations 

TB-mBJ GGA-PBEsol  [17] GGA-PP-PW [17] 

Cu2MgSiS4 2.643 1.491  3.20 2.01 

Cu2MgGeS4 1.536 0.856  2.36 1.25 

 

 

As there is only one experimental value and we do not have information about the 

measurement accuracy, we cannot state with certitude about the capability of the TB-mBJ 

method to produce acceptable band gap values for the examined systems. Based on the value 

of the energy band gap, Cu2MgSiS4 and Cu2MgSiS4 can be classified as wide band gap 

semiconductors suitable for doping with different impurities to get luminescence in particular 

spectral region [38]. It is worth to note that the band gap value of Cu2MgSiS4 is larger than 
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that of Cu2MgGeS4 by about 60% using the TB-mBJ. This ratio is very close to that between 

the band gap of the Si (Eg = 1.17 eV) to that of the Ge (Eg = 0.75 eV) semiconductors at zero 

temperature [39]. This means that the difference between the fundamental band gaps of 

Cu2MgSiS4 and Cu2MgGeS4 is due to the nature of the Si and Ge atoms, indicating that the 

element mutation provides an efficient method for manipulating the positions of the band gap 

edges.  

A comparison between the measured band gaps for the considered compounds and 

those of other quaternary diamond-like compounds (Table 5.14) reveals that:  

(i) The band gap of the Cu2-II-IV-S4 diamond-like compounds decreases when moving down 

in column II of the periodic table in the following consequence:  Mg → Zn → Cd [17,40-43] 

(Fig. 5.12 (a)).   

(ii) The band gap decreases when the IV cation is substituted in the following consequence: 

Si Ge Sn→ →  (Fig. 5.12 (b)). This trend can be explained by the fact that the increase of 

cation radius when going from Si to Ge to Sn leads to the increase of the IV-S bond-length, 

which causes the decrease of the band gap [44].  Effectively, one can see from the Table 5.4 

that Ge-S bond-length is higher than that of Si-S bond. The same can be said when moving 

down in column II of the periodic table. On other hand, the decrease of the electronegativity 

when moving down in the column causing the decrease of the band gap [44].  

 

 

Table 5.14: Experimental energy band gap Eg (eV) of some Cu2-II-IV-S4 diamond-like 

semiconductors at ambient temperature 

Compound Cu2MgSiS4 Cu2ZnSiS4  Cu2CdSiS4 

Eg (eV) 3.20 [17] 3.04 [40] 2.45 [40] 

Compound Cu2MgGeS4 Cu2ZnGeS4  Cu2CdGeS4 

Eg (eV) 2.36 [17] 2.04 [40] 1.95 [41] 

Compound - Cu2ZnSnS4  Cu2CdSnS4 

 - 1.51 [42] 1.16 [43] 
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Fig. 5.12: Variation of the band gap Eg in some Cu2-II-IV-S4 quaternary diamond-like 

semiconductors with respect to the chemical nature of the II (a) and IV (b) cations.  

 

 

5.2.3.2. Study of the effective mass 

The effective masses of electrons and holes are fundamental quantities that used in 

numerous experimental analysis and theoretical models in semiconductor materials, for 

example the effective charge-carrier mass is one of the main factors that determine the 

transport properties and electrical conductivity of materials. In the present work, the effective 

charge-carrier masses are numerically evaluated by fitting the energy band dispersion E-k 

around the extremes to parabolas then the effective mass m*  (in unit of m0, where m0 

denotes the electron rest mass) is calculated via the following formula: 

2
0
2 2

1 E(k)
m* k

m ∂
=

∂h
        (5.32) 

Dense k-points through the lines of high symmetry in the Brillouin zone were used to 

calculate the energy band dispersion and only the nearest ones to the extremes were taken into 

account to calculate the effective masses. The computed effective charge-carrier masses at the 

Γ point from the band dispersion around the VBMa and CBMi towards the Z directions in the 

Brillouin zone are: 

2 4(Cu MgSiS ) = 0.400*

em , 2 4(Cu MgSiS ) = 2.428*

hm , 

 2 4(Cu MgGeS ) = 0.341*

em  and 2 4(Cu MgGeS ) = 2.283*

hm   
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The effective electron and hole masses are indicated by the subscripts '' ''e  ( *
em ) and '' ''h  ( hm

∗

), respectively. From Figures 5.9 and 5.10, one can observe that the electronic states at the 

conduction-band minimum are more dispersive than the topmost valence-band states; 

consequently, the conduction-band electrons have lower effective masses than the valence-

band holes. Therefore, the mobility of the holes will be substantially lower than that of the 

electrons. 

5.2.3.3. Analysis of the density of states 

The nature of the electronic states that composing the calculated energy bands of 

Cu2MgSiS4 and Cu2MgGeS4 can be deduced from the associated total density of states 

(TDOS) and the site and angular momentum decomposed density of states (PDOS) diagrams 

depicted in Figures 5.13 and 5.14. Overall, the DOS spectra show a rather similar energy 

distribution of the eigenstates for the title compounds, which can be attributed to the fact that 

the only different constituting atoms, i.e., the Si and Ge atoms, are isoelectronic. The Cu-3d 

states show two clearly separated structures, whose barycenters are situated approximately at -

3.74 eV and -0.9 eV (eV), which are the d-eg and d-t2g states, respectively, resulting from the 

splitting of the Cu-3d  states in a tetrahedral crystal field. The upper valence bands (UVB), 

whose width is approximately 1.8 eV (1.9 eV) in Cu2MgSiS4 (Cu2MgGeS4), is formed 

prevailingly by the hybridized Cu-3d-t2g and S-3p states; there is a p-d hybridization between 

the Cu cation and S anion.  

The group of valence bands in the energy range between -6.5 and -3.1 eV (-6.3 and -

3.2 eV) in the Cu2MgSiS4 (Cu2MgGeS4) DOS diagram is essentially originated from the S-3p 

and Cu-3d-eg states with significant contributions from the Si-3p (Ge-3p) orbitals and small 

contributions from the Mg-2p3s orbitals. There is a hybridization between the S anions and Si 

(Ge) cations in the deep energy range between ~ -6.5 (-6.4) to -5.2 (-5.0) eV, suggesting a 

significant covalent character of the Si/Ge-S bonds and explains the fact that Si/Ge-S bond is 

the strongest one. A handle of valence bands originates from Si-3s (Ge-4s) and S-3p orbitals 

forms a sharp peak at about -8.3 eV (-8.5eV) in Cu2MgSiS4 (Cu2MgGeS4). The lowest 

energetic bands are formed by the S-3s states with the peaks are at about -13.6 eV (-13.54 eV) 

and -14.9 eV (-14.60 eV) (not shown for the clarity of the figure). The bottom of the 

conduction band is made mainly by the s-p hybridization between the group-IV cation (Si and 

Ge) and the S anion. Finally, due to the difference in the electronegativity between the 

comprising elements, the ionic character is presented. 
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Fig. 5.13: Calculated total density of states (TDOS) and partial density of states (PDOS) of 

the Cu2MgSiS4 compound. 
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Fig. 5.14: Calculated total density of states (TDOS) and partial density of states (PDOS) of 

the Cu2MgGeS4 compound. 
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It is worth to note that although there are three inequivalent S atoms, their projected 

densities of states are similar to each other, indicating their bonding characters are similar. It 

is clear from Fig. 5.15 the great convergence between the curves of the three atoms. The slight 

variance between them is due to the fact that S1, S2 and S3 atoms have not identical 

environment in the crystal.  

 

 

 
 
 

Fig. 5.15: Illustration of the slight variance between the partial densities of states (PDOSs) of 

S1, S2 and S3 atoms in Cu2MgSiS4 and Cu2MgGeS4 compounds.  
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5.2.4. Optical properties 

 It is of great interest to know the different ways in which light interacts with matter in 

the physics of the solid state, such as absorption, transmission, reflection, scattering and 

emission. The optical properties of solids provide an important tool for studying energy band 

structure, impurity levels, excitons, localized defects, lattice vibrations, and certain magnetic 

excitations. 

5.2.4.1. The dielectric function 

The dielectric constant is the ratio of the permittivity of a substance to the permittivity 

of the vacuum. It represents how difficult it is for the field to propagate inside a medium due 

to the response of the medium to the field. It is the frequency-dependent complex dielectric 

function 	1�K� which is directly related to the energy band structure of solids, where other 

optical properties are derived from it. It is defined as: 

 1�K� � 1)�K� . L1��K�                       (5.33) 

The imaginary part of the dielectric function 1��K� is calculated from the momentum matrix 

elements between the occupied and unoccupied states as follows: 

 1��K� � MN�
�OP��Q� R*2S ∑ |VS9|W|S9XY|�Z7[�1 : Z7[\�[,[\ =��7[ : �7[\ : PK� (5.34)      

where ^ is the electronic charge, ( is the unit cell volume, W is the momentum operator, |S9Y 
is a crystal wave function, Z7[ is the Fermi distribution function, and PK is the energy of the 

incident photon. The real part 1)�K� can be attracted from Kramers-Kroning relationship [45]: 

 1)�K� � 1 . �
O_R `��QX�QX

QX��Q� *K′b
,              (5.35) 

where _ is the principal value of the integral. With the knowledge of the complex dielectric 

function, all other frequency dependent optical constants can be obtained.     

Compounds with orthorhombic structures have three nonzero independent components 

of the dielectric tensor, namely, xxε , yyε  and zzε . These components, i.e., xxε , yyε  and zzε , 

correspond to incident light with an electrical field E
r

 polarized parallel to x-, y- and z-axes, 

respectively. The calculated components ( 2 (ω)xxε , 2 (ω)yyε  and 2 (ω)zzε ) of the imaginary part 

of the dielectric tensor ( 2 (ω)=Im ( (ω))ε ε ) for the title compounds are shown in Fig. 5.16. 

There is a considerable anisotropy between the spectra corresponding to the different 

polarizations for each compound. The components of the absorptive part 2 (ω)ε exhibit four 

peaks, labelled E1, E2, E3 and E4, in Cu2MgSiS4 and five peaks, labelled E1, E2, E3, E4 and E5, 
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in Cu2MgGeS4. After the absorption edge, the superposed yyε  and zzε spectra, rise rapidly 

followed by the xxε  spectrum.   

  

 

 

 

Fig. 5.16: Real and imaginary parts of the dielectric function for incident radiation with 

electric field polarized parallel to the three different crystal directions, x-, y- and z-axes, for 

the Cu2MgSiS4 and Cu2MgGeS4 compounds. 

 

 

In order to determine the microscopic origin of the observed optical structures, the 

2 (ω)ε  spectrum was decomposed to the individual contributions from each direct allowed 

electronic transition from the occupied state iV  in the valence band to the unoccupied state 

jC  in the conduction band i j(V C )→  and the transition energy band
i jC VE( )=E ( )-E ( )k k k  was 

plotted. Figures 5.17 and 5.18 show the decomposition of each component of the imaginary 

part of the dielectric function into band-to-band contributions and the structure of the 

transition energy band for Cu2MgSiS4 and Cu2MgGeS4. The fundamental absorption edge 

(threshold energy) E0 for the direct optical transitions between the highest valence band and 



Chapter 5     Properties of Cu2MgSiS4 and Cu2MgGeS4 
 

121 
 

the lowest conduction band, due to the electronic transition 1 1V C→ , occurs at 2.64 eV in 

Cu2MgSiS4 and at 1.54 eV in Cu2MgGeS4. Positions of the center of the main structures (Ei) 

in the spectra of the components of 2 (ω)ε  and the extended direct inter-band transitions 

giving the dominant contributions to the optical structures and their regions in the Brillouin 

zone are given in Tables 5.15-5.20. The counting of the bands is from the top (bottom) for the 

valence (conduction) bands. The main contributions to the direct optical transitions originate 

from the upper valence band states to the bottom of the conduction band states. Based on the 

density of states spectra, we can conclude that the inter-band transitions originate 

predominantly from the Cu-3d valence bands and in a second degree from the S-3p valence 

band states to the Si-3s (or Ge-4s) and Si-3p (or Ge-4p) conduction band states.   

The components of the dispersive part of the dielectric function ( 1(ω)=Re( (ω))ε ε ) 

were calculated from the imaginary part 2 (ω)ε  via the Kramers-Kronig relation and they are 

shown in Fig. 5.16 also. The optical dielectric constants which corresponds to the electronic 

part of the static dielectric constants, a parameter of fundamental importance in many aspect 

of materials science, is given by the low energy limit of 1(ω)ε . The calculated static dielectric 

constants for the considered crystals are listed in Table 5.21. The components of 1(ω 0)ε → in 

Cu2MgSiS4 are lower than those of Cu2MgGeS4. This trend can be explained by the Penn 

model [46]: 

1)�0� c 1 . dPQe
f g
�

          (5.36) 

Here, p
ωh is the plasma energy. The 1(0)ε  value is inversely proportional to the band gap Eg. 
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Fig. 5.17: Decomposition of the components of the imaginary part of the dielectric function 

into band-to-band contributions (top panels) and the transition energy band structure (bottom 

panels) in the Cu2MgSiS4 compound. 
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Fig. 5.18: Decomposition of the components of the imaginary part of the dielectric function 

into band-to-band contributions (top panels) and the transition energy band structure (bottom 

panels) in the Cu2MgGeS4 compound. 
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Table 5.15: Peaks positions of the 
2

( )xxε ω  spectrum together with the dominant interband 

transition contributions to every peak and their location in the Brillouin zone of Cu2MgSiS4. 

The energy is in eV  

Structure Peak position  Transitions Region transitions Energy 

E1 4.45 V10-C3  Γ-Z-T-Y-S-X, X-X, X-U 4.60 

  V8-C3  Z-T-Y-S-X, R-R 4.47 

  V6-C3  Z-T-Y-S-X, U-R 4.29 

  V3-C6  Γ-Z-T, X-U-R 4.15 

  V2-C6  Z-T-Y-S, U-R 4.49 

  V2-C7  Γ-Z, S-X-U-R 4.23 

E2 5.22 V2-C9  Γ-Z, S-X-U 5.09 

  V2-C10 Γ-Z-T, Z-Z, Y-S-X-U-R 5.22, 5.31 

  V2-C11 Γ-Z-T, Z-Z, S-X-U-R 5.32, 5.36 

  V1-C10  Γ-Z-T, Z-Z, S-X-U-R 5.21 

  V1-C11  Γ-Z, S-X-U 5.21 

E3 7.47 V26-C5  Γ-Z-T, S-X, U-R 7.55 

  V22-C5  Γ-Z-T, S-X, U-R 7.22 

  V22-C7  X-U-R 7.33 

  V21-C6  Γ-Z-T, X-U-R 7.14 

  V21-C7  Γ-Z, S-X-U-R 7.27 

  V21-C8  Γ-Z-T, S-X, U-R 7.42 

E4 8.65 V38-C1  Z-T, X-U 8.46 

  V37-C1  Z-T, X-U 8.44 

  V27-C10  Γ-Z-T, Y-S-X-U 8.77 

  V27-C11  Γ-Z, S-X-U, U-U 8.83 

  V21-C12  Γ-Z, T-Y-S, X-U 8.60 
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Table 5.16: Peaks positions of the 
2

( )yyε ω  spectrum together with the dominant interband 

transition contributions to every peak and their location in the Brillouin zone of Cu2MgSiS4. 
The energy is in eV 

Structure Peak position  Transitions  Region transitions Energy 

E1 4.25 V9-C3 Γ-Z, Z-Z, Y-S-X-U 4.53 

  V6-C5 Γ-Z-T, S-X, U-R 4.54 

  V5-C3 Z-Z, S-X-U-R 4.08 

  V5-C5 Z-Z, S-X, U-R 4.46 

  V4-C4 Z-T-Y-S-X, U-R 4.12 

  V4-C5 Z-T, S-X, U-R 4.33 

E2 5.51 V2-C11 Z-T, Y-S, X-U-R 5.60 

  V2-C12 Γ-Z-T, Y-S-X-U-R 5.55 

  V2-C13 Z-T, S-X-U 5.58 

  V1-C11 Z-T, S-S, U-R, R-R 5.52 

  V1-C12 Z-T, S-S, Y-S-X-U-R 5.54; 5.63 

E3 7.44 V28-C5 Z-T, S-X, U-R 7.70 

  V25-C3 Z-T, S-X, U-R 7.28 

  V25-C5 Z-T, S-X, U-R 7.50 

  V24-C5 Γ-Z-T, S-X, U-R 7.42 

  V23-C6 Z-T, S-X, U-R 7.50 

E4 8.72 V40-C1 Γ-Z-T, S-X-U-R 8.68 

  V39-C2 Γ-Z-T, X-U, R-R 8.75 

  V38-C2 S-X 8.92 

  V25-C11 Z-T, T-T, S-X-U-R 8.86 

  V21-C11 Γ-Z-T-Y, S-X-U-R 8.46 
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Table 5.17: Peaks positions of the 
2

( )zzε ω  spectrum together with the dominant interband 

transition contributions to every peak and their location in the Brillouin zone of Cu2MgSiS4. 
The energy is in eV 

Structure Peak position  Transitions Region transitions Energy 

E1 4.48 V8-C3 Z-T-Y-S-X-U-R 4.42 

  V8-C4 Γ-Z-T-Y, S-S, X-U, R-R 8.48 

  V6-C5 Γ-Z-T, S-X, U-R 4.54 

  V5-C5 Z-Z, S-X, U-R 4.46 

  V4-C5 Z-T, S-X, U-R 4.33 

  V3-C5 Z-T, S-X, U-R 4.30 

  V3-C8 Z-T, S-X, U-R 4.38 

  V2-C8 Z-T-Y-S-X 4.76 

  V1-C6 Z-T, Y-S, U-R 4.44 

E2 5.65 V4-C11 Z-T, S-S, X-U-R 5.71 

  V3-C11 Z-T, S-X-U-R 5.66 

  V3-C12 Z-T, Y-S, X-U-R, R-R 5.77 

  V2-C11 Z-T, Y-S, X-U-R 5.61 

  V1-C12 Z-T, Y-S, U-R 5.63 

E3 7.56 V27-C4 Z-T-Y, S-X 7.58 

  V27-C5 Z-T, S-X, U-R 7.67 

  V26-C5 Γ-Z-T, S-X, U-R 7.56 

  V24-C5 Z-T, S-X, U-R 7.44 

  V24-C6 Γ-Z-T, S-X, U-R 7.51 

  V22-C6 Γ-Z, T-Y, S-X-U-R 7.36 

E4 8.53 V38-C1 Γ-Z-T, S-X 8.38 

  V37-C1 Γ-Z-T, S-X, U-R 8.27 

  V37-C2 Γ-Z-T, X-U 8.37 

  V22-C11 Γ-Z-T-Y, S-X-U-R 8.50 

  V21-C11 Γ-Z-T-Y, S-X-U-R 8.46 
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Table 5.18: Peaks positions of the 
2

( )xxε ω  spectrum together with the dominant interband 

transition contributions to every peak and their location in the Brillouin zone of Cu2MgGeS4. 
The energy is in eV 

Structure Peak position  Transitions Region transitions Energy 

E1 2.64 V7-C1 Z-T, S-X-U-R, U-U 2.71 ; 2.84 

  V5-C1 Γ-Z-T, S-X-U-R 2.38; 2.72 

  V4-C1 Z-T, S-X-U-R 2.33; 2.48 

  V4-C2 Z-T-Y-S-X, U-R 2.68; 2.75 

  V3-C2 Z-T-Y-S-X, U-R 2.72 

  V1-C2 Z-T-Y-S-X, U-R 2.57 

E2 4.44 V10-C3 Γ-Z-T-Y-S-X-U 4.53 

  V8-C3 Z-T-Y,S-S, S-X 4.38 

  V7-C4 Z-T-Y, S-S, S-X 4.38 

  V6-C4 Γ-Z-T-Y-S-X, U-R, R-R 4.23; 4.31 

  V6-C6 Γ-Z-T, X-U-R 4.56 

  V4-C6 Z-T-Y-S-X, U-R 4.46 

  V4-C8 Γ-Z-T-Y-S-X, U-R 4.69 

  V2-C6 Z-T, Y-S-X, U-R 4.31 

E3 5.36 V22-C1 Z-T, S-X, U-R 5.32 

  V22-C2 T-Y, S-X, U-R 5.40 

  V21-C1 Z-Z, Z-T, S-X, X-X, U-U 5.14 

  V21-C2 Z-T, S-X, U-R 5.28 

  V3-C11 Γ-Z, S-X-U 5.37; 5.40 

  V1-C10 Γ-Z, S-X-U-R 5.18 

E4 7.33 V38-C1 T-Y, Y-Y, S-X 7.32; 7.35 

  V37-C2 T-Y, Y-Y, S-X 7.35 

  V21-C7 Γ-Z, X-X, X-U-R 7.20 

  V21-C8 X-U-R 7.25 

E5 8.77 V38-C4 Γ-Z, T-Y, S-X-U 8.86 

  V37-C4 Γ-Γ, Γ-Z-T-Y-S-X 8.75 

  V28-C10 Γ-Z-T, Y-S-X-U 8.80 

  V27-C10 Γ-Z-T, Y-S-X-U, X-X 8.79 

  V27-C11 Γ-Z, S-X-U 8.90 

  V21-C13 Z-T, S-S, S-X-U 8.84; 8.87 
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Table 5.19: Peaks positions of the 
2

( )yyε ω  spectrum together with the dominant interband 

transition contributions to every peak and their location in the Brillouin zone of Cu2MgGeS4. 
The energy is in eV 

Structure Peak position  Transitions Region transitions Energy 

E1 2.57 V8-C1 Z-T, S-X-U-R 2.73; 2.88 

  V7-C2 Γ-Z-T-Y-S-X, U-R 2.80; 2.99; 3.07 

  V6-C1 Z-T, S-X-U-R 2.56; 2.82 

  V4-C1 Z-T, Y-Y, S-X, U-R 2.55 

  V4-C2 Z-T-Y-S-X, T-T, U-R 2.63; 2.76 

  V3-C1 Z-T, S-X, U-R 2.45 

  V3-C2 Z-T-S-X, U-R 2.57 

  V1-C1 Z-T, S-X, U-R 2.38 

  V1-C2 Z-T,Y-Y, Y-S-X, U-R 2.50 

E2 4.23 V11-C3 Z-T, S-X-U-R, U-U 4.64 

  V6-C4 Z-T-Y-S-X, U-R 4.27 

  V6-C5 Γ-Z-T, S-X, U-R 4.37 

  V4-C3 Z-T-Y-S-X-U-R 3.80; 3.92 

  V4-C5 Z-T, Y-S-X, U-R 4.25 

  V3-C6 Γ-Z-T-Y-S-X,Y-Y, X-X, U-R 4.06; 4.37 

  V2-C5 Z-T, Y-S-X, U-R 4.20 

  V1-C4 Z-T-Y, S-S, R-R 3.95 

  V1-C6 Z-T, Y-S-X, U-R 4.22 

E3 5.80 V28-C1 Z-T, S-X, U-R 5.82 

  V27-C1 Z-T, S-X, U-R 5.82 

  V23-C1 Γ-Z-T, X-U, U-U 5.25; 5.35 

  V23-C2 T-T, S-X 5.69 

  V22-C1 Z-T, S-X, U-R 5.32 

E4 7.52 V40-C1 Γ-Z-T-Y, X-U-R 7.51 

  V39-C2 Γ-Z, T-Y, S-X, U-R 7.54 

  V38-C2 Γ-Z, S-S, S-X 7.44 

E5 8.80 V24-C11 Z-T, S-X-U-R 8.89  

  V23-C11 Γ-Z, S-X-U 8.63 

  V22-C13 Γ-Γ, Z-T, Y-S, X-U-R 8.91; 8.98 

  V21-C11 Γ-Z, S-X-U-R 8.56 

  V21-C12 Z-T-Y, S-X-U 8.74 
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Table 5.20: Peaks positions of the 
2

( )zzε ω  spectrum together with the dominant interband 

transition contributions to every peak and their location in the Brillouin zone of Cu2MgGeS4. 
The energy is in eV 

Structure Peak position  Transitions Region transitions Energy 

E1 2.60 V7-C1 Z-T, S-X, U-R 2.84; 2.90 

  V6-C1 Z-T, S-X-U-R 2.63; 2.76 

  V6-C2 Z-T, S-X, U-R 2.75 

  V5-C1 Γ-Z, X-U 2.45 

  V4-C1 Z-T, Y-S-X, U-R 2.54 

  V4-C2 Z-T-Y-S-X, U-R 2.64; 2.68 

  V3-C1 Z-T-Y-S-X, Y-Y, U-R 2.56 

  V3-C2 Z-T-Y-S-X, U-R 2.61 

  V2-C1 Z-T, S-X, U-R 2.39 

  V2-C2 Z-T-Y,S-S, S-X, R-R 2.61 

  V1-C1 Z-T, Y-S-X, U-R 2.38; 2.48 

E2 4.37 V8-C3 Z-T-Y-S, X-X, X-U, R-R  4.34 

  V7-C4 Γ-Z-T-S-X, U-R 4.31; 4.49 

  V6-C4 Γ-Z-T-S-X, U-R 4.29 

  V6-C5 Γ-Z-T, S-X, U-R 4.37 

  V5-C5 Γ-Z, S-X-U-R 4.26 

  V3-C7 Γ-Z, S-X-U-R 4.19 

  V2-C8 Γ-Z-T-Y, S-X, U-R 4.53 

E3 5.86 V31-C1 Z-Z, X-U-R 5.96 

  V25-C2 T-Y, S-X, U-R 5.82 

  V24-C2 Y-Y, Y-S-X 5.80 

E4 7.32 V40-C1 Γ-Z-T,T-T, X-U-R 7.50 

  V39-C1 Z-Z, S-X-U 7.39 

  V38-C1 Γ-Z-T, S-X-U-R 7.18; 7.29 

  V37-C2 Γ-Z-T, S-X, U-R 7.03; 7.12 

  V27-C3 Z-T, S-X, U-R 7.27 

  V25-C5 Γ-Z-T, X-X, U-R 7.21 

  V24-C4 Γ-Z, T-T, T-Y-S-X 7.18 

E5 8.84 V24-C12 Γ-Z-T, S-X-U 8.90 

  V23-C11 Z-T, S-X-U-R 8.76 

  V22-C11 Z-T-Y, S-X-U-R 8.67 

  V22-C12 Γ-Z-T-Y-S-X-U 8.76 

  V21-C13 Z-T, S-S, X-U 8.88 
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5.2.4.2. Refractive index and extinction coefficient 

One of the most important optical constants of a material is its refractive index, which 

in general depends on the wavelength of the electromagnetic wave, through a relationship 

called dispersion. In materials where an electromagnetic wave can lose its energy during its 

propagation, the refractive index becomes complex as follow: 

iknn +=~                                                                           (5.37) 

The real part of n~ , namely n, is the same as the normal refractive index which is defined as 

the ratio of the velocity of light in free space c to the velocity of light in the medium v; 

vcn /= .  The imaginary part of n~ , namely k, is called the extinction coefficient, which is 

directly related to the absorption light of the medium (The extinction coefficient k vanishes 

for lossless materials). For non-magnetic materials (µ = 1), the complex refractive index can 

be related to the complex dielectric constant by: ε~~ =n . Therefore, the refractive index 

9�K� and the extinction coefficient S�K�, are given as follows: 

 9�K� � h|`�Q�|i`��Q��                             (5.38) 

 S�K� � h|`�Q�|�`��Q��                             (5.39) 

Fig. 5.19 displays the frequency dependent refractive index )(ωn  and extinction 

coefficient k(ω)  for three different polarizations of the incident radiations for Cu2MgSiS4 and 

Cu2MgGeS4 in a wider spectral region up to 30 eV. The calculated zero energy ( λ = ∞ ) )0(n  

values and the energies for which the dispersion is null ( )1( =nE ) are listed in Table 5.21. 

The maximum of the )(ωn  is found at ~3.65 eV for the [010] polarization, while the 

maximum of the )(ωk  appears at high energy (~9.0 eV). The refractive index increases with 

increasing photon energy in the visible part of the spectrum. 
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Fig. 5.19: Calculated refractive index (ω)n and extinction coefficient )(ωk  for the 

Cu2MgSiS4 and Cu2MgGeS4 compounds. 

 

 

Table 5.21: Calculated static dielectric constant 1(0)ε , static refractive index (0)n  and 

energy for which the dispersion is null (E( =1))n  for the Cu2MgSiS4 and Cu2MgGeS4 

compounds for three polarizations. Energy values are in eV 

    [100] [010] [001] 

Cu2MgSiS4    

 
1(0)ε  

  5.576 5.816 5.864 

 n (0)   2.361 2.412 2.422 

 E (n = 1)   10.98 10.93 10.95 

Cu2MgGeS4    

 1)�0�   6.119 6.729 6.716 

 n (0)   2.474 2.594 2.592 

 E (n = 1)   10.95 10.90 10.79 
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5.2.4.3. Absorption coefficient  

The absorption of light by an optical medium is quantified by its absorption coefficient 

α. This is defined as the fraction of the power absorbed in a unit length of the medium. If the 

wave is propagating in the z direction, the absorption coefficient is given by Beer’s law as 

follow: 

zeIzI α−= 0)(                                                                  (5.40) 

where )(zI  and 0I  are the optical intensities (optical power per unit area) at position z and at 

z=0, respectively.  The absorption coefficient α is directly related to extinction coefficient k. 

By considering the propagation of plane electromagnetic waves through a medium with a 

complex refractive index, we can conclude the relationship between α and k, using the 

relationship between the optical intensity and the electric field, as follow: 

 &�K� � �7Q
�                                           (5.41) 

 

 

 

 

Fig. 5.20: Calculated absorption coefficient (ω)α  for the Cu2MgSiS4 and Cu2MgGeS4 

compounds.  
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Fig. 5.20 shows the calculated absorption coefficient (ω)α . The absorption coefficient 

(ω)α  indicates the fraction of energy lost by the incident radiation per length unit when it 

passes through a material. The absorption coefficient (ω)α  increases rapidly when the photon 

energy is higher than the absorption edge and reaches its maximal value ( 62 10~ ×  cm-1) at 

about 10 eV. This is a typical characteristic of semiconductors and insulators. Both 

Cu2MgSiS4 and Cu2MgGeS4 exhibit a noticeable absorption in the ultraviolet range. The 

strong absorption of the UV light makes these quaternary semiconductors very competitive 

for the UV light detector. 

5.2.4.4. Reflectivity and loss function 

The reflection at the surfaces is described by the coefficient of reflection or reflectivity 

R. It is defined as the ratio of the reflected power to the power incident on the surface. If we 

apply appropriate boundary conditions to a solid surface, Maxwell relations lead us to the 

relationship: 

 j�K� � k[l�)[li)k
� � �[�)��i7�

�[i)��i7�                               (5.42) 

A further property that can be calculated from the complex dielectric constant is the 

energy loss function L(ω) . It describes the energy lost by an electron passing through a 

homogeneous dielectric material and is given by: 

 m�K� � no p �)`�Q�q � `��Q�
`���Q�i`���Q�                                                 (5.43) 

Fig. 5.21(a) shows the frequency dependent reflectivity spectra R(ω)  for three 

different polarizations of the incident radiation for Cu2MgSiS4 and Cu2MgGeS4. The R(ω)

increases with increasing photon energy in the ultraviolet region and reaches its maximal 

value of approximately 40-45% at about 15 eV in both title compounds.  

The electron energy loss function L(ω)  of Cu2MgSiS4 and Cu2MgGeS4 is depicted in 

Fig. 5.21(b). The location of its primary peak is generally associated to the plasma frequency 

p
ω , which occurs when 2 1  ε <  and 1 0   ε = [47]. A sharp maximum of the L(ω)  spectrum at 

approximately 20 eV is associated with the plasma oscillations. The peak of L(ω)  

corresponds to the trailing edges in the reflection spectrum.  
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Fig. 5.21: Calculated reflectivity (ω)R and energy-loss function (ω)L  for the Cu2MgSiS4 and 

Cu2MgGeS4 compounds. 

 

 

5.2.4.5. Optical conductivity  

The optical conductivity is a material property, which links the current density to 

the alternating electric field. The frequency-dependent complex conductivity (ω)σ  is also 

such as dielectric constant directly related to the energy band structure of solids. The optical 

conductivity is related to the dielectric constant by the following relationship: 

             r�K� � r)�K� . Lr��K� � :L Q�O 	1�K� : 1�               (5.44)  
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Fig. 5.22: Calculated complex optical conductivity (ω)σ  for the Cu2MgSiS4 and Cu2MgGeS4 

compounds. 

 

The optical conductivity function (ω)σ  spectra are depicted in Fig. 5.22. The real part 

( 1(ω)σ ) of the conductivity function is negligible for photon energy in the band gap, and 

increases rapidly to reach a maximum in the UV region, confirming that these compounds 

have semiconductor properties.  

We do not find optical data in the literature for Cu2MgSiS4 and Cu2MgGeS4, and we 

hope our calculations will lead to further experimental efforts on these materials. By 

combining the measured data with the calculation results, a near total understanding of the 

electronic and optical properties of the title materials is possible. 
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6.1. Computational details 

All performed ab initio calculations in the present work were carried out using 

pseudopotential plane-wave (PP-PW) method in the framework of density functional theory 

as implemented in the CASTEP module [1]. The exchange-correlation effects were treated 

using the recent developed generalized gradient approximation of Perdew et al. [2], the so-

called GGA-PBEsol, which is known to yield better results for solids. To take into account the 

contribution of core electrons, Vanderbilt ultra-soft pseudopotential [3] was employed. The 

Sr: 4s
24p

65s
2, Ge: 4s

24p
2 and N: 2s

22p
3 orbitals were treated as electronic valence states. The 

Monkhorst-Pack scheme [4] was used for the k-points sampling in the Brillouin zone (BZ). A 

kinetic energy cutoff of 280 eV and k-mesh corresponding to a separation of 0.03Å-1 (0.04Å-1) 

in the reciprocal space for the α-Sr2GeN2 (β-Sr2GeN2) phase were used. These calculation 

parameters were chosen after careful convergence tests. 

The optimized structural parameters were obtained using the Broyden-Fletcher-

Goldfarb-Shanno (BFGS) minimization algorithm [5]. The lattice parameters and internal 

coordinates were relaxed until: (i) total energy variation was smaller than 5.0 ×10-6 eV/atom, 

(ii) the absolute value of force on any atom was less than 0.01 eV/Å, (iii)  stress was smaller 

than 0.02 GPa and (iv) atomic displacement was smaller than 5.0 ×10-4 Å. 

 The elastic properties of single-crystal and polycrystalline aggregates of α-Sr2GeN2  

and β-Sr2GeN2 compounds were explored by calculating  their independent elastic constants 

Cij, bulk modulus B, shear modulus G, Young’s modulus E, Poisson’s coefficient σ and 

related properties. The Cij were obtained via linear fittings of the stress-strain curves 

computed from accurate ab initio calculations [1]. The main advantage of this method is the 

great reduction of the independent strain modes number compared to the ab initio total energy 

versus strain approach. The elastic stiffness tensor is related to the stress tensor and the strain 

tensor by Hooke’s law. Since the stress tensor and the strain tensor are symmetric, the most 

general elastic stiffness tensor has only 21 non-zero independent components. For a tetragonal 

crystal, they are reduced to six independent components, namely C11, C33, C44, C66, C12 and 

C13, and for an orthorhombic crystal, they are reduced to nine independent components, 

namely C11, C22, C33, C44, C55, C66, C12, C13 and C23. To determine the six independent elastic 

constants Cij of the tetragonal system, two strain patterns - one with nonzero 11ε  and 23ε  

components and the second with nonzero 33ε and 12ε components - were used. To obtain the 
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nine independent components of the elastic tensor for the orthorhombic phase, three strain 

patterns - one with nonzero 11ε and 23ε components, second with nonzero 22ε and 31ε  

components and the third with non-zero 33ε  and 12ε  components - were used. The elastic 

constants were performed with the following convergence criteria: 1.0 ×10-6 eV/atom for the 

total energy, 0.002 eV/Å for the Hellman-Feynman force and 1.0 ×10-4 Å for the maximal 

ionic displacement. After calculating the single-crystal elastic constants Cij, the 

polycrystalline elastic moduli and related properties were evaluated using the well-known 

Voigt-Reuss-Hill approximations [6-8].  

Knowledge of the behaviours of solids when they are under severe constraints such as 

high pressure and high temperature environment are of a great interest and importance for 

both the fundamental research and technological applications. To address this interest in the 

present work, pressure and temperature dependences of the unit-cell volume, bulk modulus, 

volume expansion coefficient, isochoric heat capacity and Debye temperature of both 

considered phases were explored using the PP-PW method [1] combined with the quasi-

harmonic Debye model as implemented in Gibbs program [9]. Theoretical details about the 

quasi-harmonic Debye model are available in Ref. [9]. 
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6.2. Results and discussions 

6.2.1. Structural properties  

6.2.1.1. Structural description 

The α-Sr2GeN2 compound crystallizes in a tetragonal structure (� � � � � and 

� � � � � � 90°), space group P42/mbc (No. 135), with eight unit formulas (i.e., 8 Sr2GeN2) 

per unit-cell (Z=8), while the β-Sr2GeN2 polymorph crystallizes in an orthorhombic structure 

(� � � � � and � � � � � � 90°), space group Cmac (No. 64), with eight unit formulas per 

unit-cell (Z=8) also [10,11]. This implies that the unit-cell of both polymorphs contains 40 

atoms: 16 Sr, 16 N and 8 Ge. The atomic positions in the α-Sr2GeN2 crystal are Sr1 (xSr1, ySr1, 

0), Sr2 (xSr2, ySr2, 0), Ge (xGe, yGe, 0), N1 (xN1, yN1, 0) and N2 (xN2, yN2, 0) and  in the β-

Sr2GeN2 crystal, they are Sr1 (0, ySr1, zSr1), Sr2 (0, ySr2, zSr2), Ge (0, yGe, zSr2), N1 (0, yN1, zN1) 

and N2 (0, yN2, zN2). The atoms are indexed in order to distinguish between the inequivalent 

crystallographic positions of the same chemical element.   

A differentiating factor of the crystalline structures of these two polymorphs is the 

relative orientation of the 2GeN  units in the lattice [10,11]. Fig. 6.1 displays the unit-cells of 

the tetragonal and orthorhombic polymorphs of Sr2GeN2. As one can observe, the 2GeN  units 

belong to the plane (001) in the α-Sr2GeN2 crystal, while in the β-Sr2GeN2 crystal, they 

belong to the plane (100). From Fig. 6.1, one can observe that both α-Sr2GeN2 and β-Sr2GeN2 

crystals are layered materials; the layers are stacked along the c-axis in α-Sr2GeN2, while in β-

Sr2GeN2, they are stacked along the a-axis. The structural difference between these two 

compounds is due to the manner that adjacent planes are stacked. The stacking is carried out 

in alternating manner for both compounds. As shown in Fig. 6.2, for α-Sr2GeN2, the adjacent 

planes A and A’, which are stacked along the c-axis according to the following sequence: 

...AA’AA’AA’…, are related by a 90° rotation, i.e., A’ plane is produced by rotating the A 

plane by an angle of 90°. Whereas, in β-Sr2GeN2, the adjacent planes A and A’, which are 

stacked along the a-axis according to the following sequence: ...AA’AA’AA’…, are related 

by a translation of
1
2

b
r

, i.e., A’ plane is a result of the translation of the A plane by
1
2

b
r

.  
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Fig 6.1: Unit-cell structures of the tetragonal and orthorhombic polymorphs of the Sr2GeN2 

crystal (α-Sr2GeN2 and β-Sr2GeN2 phases, respectively). 

 

 

 

Fig. 6.2: The adjacent planes stacked in both α-Sr2GeN2 and β-Sr2GeN2 crystals. 



Chapter 6            Properties of α-Sr2GeN2 and β-Sr2GeN2 

 

146 
 

6.2.1.2. Equilibrium structural parameters 

 Knowledge of the equilibrium structural parameters of materials is necessary before 

investigating their physical and chemical properties using ab initio calculations.  Information 

on the structural parameters of the investigated α and β polymorphs of Sr2GeN2, which were 

used as input data in the present calculations, were taken from Refs. [10] and [11]. 

The equilibrium structural parameters at zero pressure and zero temperature for α-

Sr2GeN2 and β-Sr2GeN2, calculated with full structural optimization including atomic 

positions, are listed in Tables 6.1 and 6.2 along with the available experimental values. The 

obtained equilibrium lattice parameters appear to be in very good agreement with their 

corresponding experimental data. For α-Sr2GeN2, the computed equilibrium lattice parameters 

a0 and c0 are slightly lower than the experimental values and the discrepancies are about -

0.25% and -1.59%, respectively. For β-Sr2GeN2, the computed equilibrium lattice parameters 

a0 and c0 are slightly lower than the experimental values with relative deviations of about -

1.54% and -0.92%, respectively, while the equilibrium lattice parameter b0 is slightly higher 

than the experimental value with a relative deviation of about +0.18%. The calculated 

equilibrium unit-cell volume is slightly lower than the measured one by about -2.08% in α-

Sr2GeN2 and about -2.26% in β-Sr2GeN2. This observed slight relative deviation of the 

calculated results from the measured ones could be attributed to the fact that our values are 

calculated at zero temperature while the corresponding experimental ones are measured at 

ambient temperature; the volume increases with the increasing temperature. This good 

consistency between our calculated equilibrium lattice parameters and the corresponding 

measured ones constitutes a proof of reliability of the present calculations and accuracy of the 

reported results. We note that the two considered polymorphs have practically the same unit-

cell volume; the unit-cell volume of β-Sr2GeN2 is slightly larger than that of α-Sr2GeN2 by 

about 0.76%.  

The optimized atomic positions (Table 6.2) and interatomic bond-lengths (Table 6.1) 

of α-Sr2GeN2 and β-Sr2GeN2 are also in good agreement with the corresponding experimental 

data. Fig. 6.3 shows interatomic bond lengths for each of the bonds belonging to the same 

planes or those situated between them.  From Table 6.1 data, one can observe that both 

polymorphs have practically the same bond-lengths between the corresponding atoms, where 

the difference between our results and those of the experiment does not exceed 1.7% (Ge-N1 

and Ge-N2 bond lengths of isolated bent anions of 2GeN
 
for example, are respectively, 1.882 

and 1.898 Å for α-Sr2GeN2; 1.904 and 1.875 Å for β-Sr2GeN2). Both polymorphs have also 
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practically the same N-Ge-N bond-angles (113.23° for α-Sr2GeN2 and 113.49° for β-

Sr2GeN2). All this indicates that α-Sr2GeN2 and β-Sr2GeN2 have almost identical local 

environments. The Sr-N bonds, which are indexed with a star (*) in Table 6.1, ensure the 

coherence between adjacent planes.  

 

 

 

Fig. 6.3:  The bond lengths in both α-Sr2GeN2 and β-Sr2GeN2 structures. The bond lengths 

presented in the left are those belong to the adjacent planes, while the bond lengths presented 

in the right are those located between adjacent planes, which ensure the coherence between 

them.  
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Table 6.1: Calculated lattice parameters (a0, b0 and c0, in Å), unit-cell volume (V0, in Å3), 

cohesive energy (Ecoh, in eV/atom), formation enthalpy (Eform, in eV/atom), interatomic 

distances (in Å) and bond-angle (in degree) for the tetragonal and orthorhombic polymorphs 

of Sr2GeN2 together with available experimental data for the sake of comparison 

 

Property α-Sr2GeN2 β-Sr2GeN2 

Present Expt. [10] Present Expt. [11] 

a0  11.7434 11.773  5.3565 5.441  

b0  11.7434 11.773 11.3982 11.377  

c0  5.3233 5.409  12.1166 12.229  

V0  734.126 749.7  739.776 756.9  

Ecoh  -5.907  -5.898  

Eform  -1.500  -1.491  

Ge – N1  1.882 1.851 1.904 1.879 

Ge – N2  1.898 1.877 1.875 1.852 

Sr1 – N1  2.547 2.562 2.653 2.662 

Sr1 – N1* 2.670 2.713 2.700 2.744 

Sr1 – N1  2.779 2.807 - - 

Sr1 – N2  2.603 2.628 2.554 2.584 

Sr1 – N2 - - 2.756 2.787 

Sr2 – N1  2.664 2.681 2.530 2.561 

Sr2 – N1 - - 2.723 2.737 

Sr2 – N2  2.535 2.564 2.656 2.653 

Sr2 – N2* 2.695 2.741 2.684 2.728 

Sr2 – N2  2.740 2.742 - - 

N1–Ge–N2  113.23 113.51 113.49 113.17 

* The bonds that ensure the coherence between adjacent planes.  
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Table 6.2: Calculated atomic positions for the α-Sr2GeN2 and β-Sr2GeN2 crystals along with 

available theoretical and experimental findings for comparison 

 

atom 
Present work Experiments  Other calculations  

x/a y/b z/c x/a y/b z/c x/a y/b z/c 
α-Sr2GeN2     [10]   [12]   

Sr(1) 0.36669 0.42058 0 0.3671 0.4190 0 0.36642 0.42015 0 

Sr(2) 0.02219 0.34864 0 0.0224 0.3482 0 0.02167 0.34869 0 

Ge 0.25614 0.15184 0 0.2559 0.1514 0 0.25572 0.15083 0 

N(1) 0.09687 0.13442 0 0.0996 0.1340 0 0.09734 0.13392 0 

N(2) 0.33567 0.0111 0 0.3353 0.0131 0 0.33538 0.01088 0 

β-Sr2GeN2     [11]   [12]  

Sr(1) 0 0.04757 0.35851 0 0.0479 0.3576 0 0.04768 0.35739 

Sr(2) 0 0.35563 0.44232 0 0.3564 0.4411 0 0.35556 0.44286 

Ge 0 0.23881 0.18162 0 0.2398 0.1799 0 0.24001 0.18031 

N(1) 0 0.07730 0.14139 0 0.0797 0.1419 0 0.07835 0.14125 

N(2) 0 0.34079 0.06024 0 0.3389 0.0597 0 0.34058 0.05971 

 

6.2.1.3. Thermodynamic stability 

To ensure the chemical stability of both studied polymorphs, their cohesive and 

formation energies were calculated. The cohesive energy Ecoh is the energy that is required for 

the crystal to decompose into free atoms. Therefore, the cohesive energies of α-Sr2GeN2 and 

β-Sr2GeN2 were calculated using the following expression:  

[ ]2 2 2) ( ) ( )
1

( 2 ( )
5coh a a aE E Sr GeN E Sr E Ge E N= − − −       (6.1) 

Here, E(Sr2GeN2) represents the total energy of one unit formula of the Sr2GeN2 compound, 

( )
a

E X refers to the total energy of an isolated X atom. The ( )
a

E X energy was calculated 

using a cubic box with a large lattice constant. The energy of formation (Eform) of a compound 

is calculated by subtracting the total energies of pure constituent elements in their stable 

crystal structures from the total energy of the compound. Therefore, the Eform of α-Sr2GeN2 

and β-Sr2GeN2 were calculated using the following expression: 

[ ]2 2 2

1
( 2) ( ( )

5
) ( )form s sE E Sr GeN E Sr E Ge E N= − − −      (6.2) 
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In eqn. (6.1), ( )
s

E Sr  and ( )
s

E Ge  denote the total energies per atom of the pure elements Sr 

and Ge, respectively, in their solid phase and 2( )E N is the total energy of the N2 molecule. 

The obtained cohesive and formation energies for α-Sr2GeN2 and β-Sr2GeN2 are listed in 

Table 6.1. Both energies for both considered polymorphs are negative, implying that they are 

both energetically stable and can be synthesized. Furthermore, one can appreciate that Ecoh 

and Eform energies for the α-Sr2GeN2 crystal are slightly lower than those of the β-Sr2GeN2 

one, implying that the α-Sr2GeN2 structure is more stable than the β-Sr2GeN2 one. 

Additionally, the calculated static total energy versus volume (E-V) curves, presented in Fig. 

6.4, show that the unit-cell total energy of α-Sr2GeN2 is slightly lower than that of the β-

Sr2GeN2 one, confirming that α-Sr2GeN2 structure is more stable than β-Sr2GeN2 one. This 

result is consistent with the fact that synthesis of the α-Sr2GeN2 polymorph was not 

accompanied with the appearance of the β-Sr2GeN2 polymorph, while synthesis of the β-

Sr2GeN2 compound was accompanied with the production of the α-Sr2GeN2 polymorph 

[10,11]. 

6.3.1.4. Pressure effect on the structural parameters and equation of states 

            In order to have insight on the pressure dependence behavior of the structural 

parameters for the two considered polymorphs, full optimizations of their unit-cell parameters 

and full relaxations of their atomic positions were performed for fixed pressures in pressure 

range from 0 to 20 GPa with a step of 5 GPa. Fig. 6.5 displays the pressure dependence of the 

normalized lattice parameters a/a0, b/b0 and c/c0 and the normalized unit-cell volume V/V0, 

where a0, b0, c0 and V0 are the corresponding values at zero-pressure. From Fig. 5, it can be 

seen that the α-Sr2GeN2 unit-cell is more compressible along the c-axis than along the a-one, 

while β-Sr2GeN2 unit-cell is less compressible along the b-axis than along the a- and c-ones; 

a- and c-axes have practically the same compressibility. Further, a look to the pressure 

dependence of the unit-cell volume, shown in Fig. 5, shows that α-Sr2GeN2 is slightly less 

compressible than β-Sr2GeN2.  

            The linear compressibility βX (βa, βb and βc) along the X-axis (a-, b- and c-axes, 

respectively), has been evaluated from the fit of the lattice parameter X versus pressure data to 

a third-order polynomial:  

             
3

0
2

/ 1
n

n

X n

n

X X P K Pβ
=

=

= + +∑          (6.3)  
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Fig. 6.4: (a) Pressure P versus relative unit-cell volume V/V0 for α-Sr2GeN2 and β-Sr2GeN2, 

(b) Total energy E versus relative unit-cell volume V/V0 for α-Sr2GeN2 and β-Sr2GeN2.  

 

 

Fig. 6.5:  Variation of the normalized lattice parameters ratio; a/a0, b/b0 and c/c0, and the 

normalized unit-cell volume V/V0 as a function of hydrostatic pressure P, for the α-Sr2GeN2 

and β-Sr2GeN2 polymorphs. The solid lines are least squares third-order polynomial fits of the 

data points. 
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The obtained linear compressibilities are:  

10.00453 a b GPaβ β −= =
 
and   10.00518 c GPaβ −=  for α-Sr2GeN2;  

10.005a GPaβ −= , 10.00399 b GPaβ −= and 10.00578 c GPaβ −=
 
for β-Sr2GeN2.  

           The bulk modulus B may be estimated from the linear compressibilities βa, βb and βc 

via the following relationship:  

              ( )1/ 2 a cB β β= +           (6.4) 

for α-Sr2GeN2 (tetragonal structure) and   

             ( )1/ a b cB β β β= + +       (6.5) 

for β-Sr2GeN2 (orthorhombic structure). Moreover, the volume compressibility has been 

evaluated from the fit of the volume-pressure (V–P) data to a third-order polynomial 

expression. The volume compressibility V
β  was used to estimate the bulk modulus B as 

follows: 

1
V

B / β=                                                                                                          (6.6)
 

The volume compressibility obtained for two polymorphs are:  

βV (α-Sr2GeN2) = 0.01413 GPa-1  

βV (β-Sr2GeN2) = 0.01466 GPa-1  

From Table 6.1, one can appreciate that the obtained value for the bulk modulus B from the 

linear compressibilities is in very good agreement with that obtained from the volume 

compressibility.  

One of the more used methods to test the reliability of obtained theoretical results 

consists of comparing between the numerical values of one property that are calculated using 

different theoretical procedures. For this issue, the bulk modulus B and its pressure derivative 

’B  were used as test. The bulk modulus values derived from the fitting of the calculated 

pressure versus unit-cell volume (P-V) data and total energy versus unit-cell volume (E-V) 

data to the Birch-Murnaghan and Murnaghan P-V EOSs [13,14], and to the Birch-Murnaghan 

and Vinet E-V EOSs [15,16] are compared to that calculated from the elastic constants, linear 

compressibility and volume compressibility to testify the reliability and accuracy of the 

present reported results. Fig. 6.4-panel (a) and Fig. 4-panel (b) present the fits of the P-V and 

E-V data to the P-V and E-V Birch-Murnaghan EOSs, respectively, as prototype. One can 

appreciate the good fit of the first-principles calculated data to the mentioned EOSs. The 

obtained values of B and ’B  are reported in Table 6.3. The calculated values of the bulk 
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modulus from the EOS fits are in very good agreement with those calculated from the linear 

and volume compressibilities for both considered materials. These results are good tests of the 

accuracy of our simulations. According to our results, the bulk modulus B of α-Sr2GeN2 is 

slightly larger than that of β-Sr2GeN2 by about 2.0% to 4.0%, revealing that β-Sr2GeN2 is 

slightly more compressible than α-Sr2GeN2. knowing that the lattice volume of β-Sr2GeN2 is 

slightly higher than that of α-Sr2GeN2, this is in good agreement with the well-known relation 

between the bulk modulus and the lattice volume B ∝ �� . To date, no reported experimental 

or theoretical data in the scientific literature for the bulk moduli of the α-Sr2GeN2 and β-

Sr2GeN2 materials to be compared with our obtained results. 

 

 

Table 6.3: Calculated bulk modulus (B0, in GPa) and its pressure derivative B’, for the 

tetragonal and orthorhombic polymorphs of Sr2GeN2  

Method α-Sr2GeN2 β-Sr2GeN2 

B B’ B B’ 

Birch Murnaghan P-V EOS [13] 68.569 4.533 66.614 4.633 

Murnaghan P-V EOS [14] 69.426 4.161 67.521 4.238 

Birch Murnaghan E-V EOS [15] 69.00 3.40 67.82 3.35 

Vinet E-V EOS [16] 68.808   4.866 66.092 5.048 

From βXs  70.77   68.21  

From βV 70.23  67.71  

 

 

 

Fig. 6.6 shows the pressure dependence behavior of the relative bond-length d/d0 of 

the Ge-N and Sr-N bonds, where d0 is the equilibrium bond-length at zero pressure. The 

obtained numerical data are well fitted with a second-order polynomial expression: 

2
0/ 1d d P Pα β= + + .                (6.7) 

From Fig. 6, it can be seen that the Ge-N bond, which belongs to the isolated 2GeN bent units, 

is stronger than the Sr-N one.  
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Fig. 6.6:  Variation of the relative bond lengths d/d0 as a function of hydrostatic pressure P for 
the α-Sr2GeN2 and β-Sr2GeN2 compounds. The star (*) indicates the bond between the 
adjacent planes. The solid lines are least squares second-order polynomial fits of the data 
points.  

 

 

The so-called bond stiffness coefficient k defined by the following relation:  

1/k α=                            (6.8) 

where α is the first pressure derivative of the bond-length ( 2
0/ 1d d P Pα β= + + ), is 

calculated in order to characterize the stiffness of the existing chemical bonds. The estimated 

values of the bond stiffness k for the α-Sr2GeN2 and β-Sr2GeN2 polymorphs are listed in Table 

6.4. One can appreciate that the chemical bonding between two atoms belonging to two 

adjacent planes is weaker than that between two atoms belonging to the same plane. This 

behavior could explain the more compressibility of the c-axis (a-axis) in the α-polymorph (β-

polymorph) seeing that the stacking is along the c-axis (a-axis) in the α-Sr2GeN2 (β-Sr2GeN2) 

compound. The less compressibility of  β-Sr2GeN2 along the b-axis compared to a- and c-axes 

is due to the fact that, statistically, the strongest bond, namely Ge-N1 ( 826k GPa= ), has 

greater impact along the b-axis than along the c-one; the angle between the Ge-N1 bond and 

b-axis is only 14.8°  compared to that of 75.2° between the Ge-N1 bond and c-axis.  
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Table 6.4: Calculated bond stiffness (k, in GPa) for some bonds in the α-Sr2GeN2 and β-

Sr2GeN2 compounds. The star (*) indicates the bond between adjacent planes  

System kGe-N1 kGe-N2 kSr1-N1 kSr1-N1* kSr1-N1 kSr1-N2 kSr2-N1 kSr2-N2 kSr2-N2* kSr2-N2 

α-Sr2GeN2 740.7 653.6 446.4 202.8 134.0 502.5 177.6 300.3 225.7 192.3 

 kGe-N1 kGe-N2 kSr1-N1 kSr1-N1* kSr1-N2 kSr1-N2 kSr2-N1 kSr2-N1 kSr2-N2 kSr2-N2* 

β-Sr2GeN2 826.4 632.9 230.9 206.6 279.3 142.0 606.1 162.9 306.7 214.1 

  

 

Another way to demonstrate that the b-axis is less compressed than a-axis in the β-

Sr2GeN2 compound is to use the angle change between axes A and B in its primitive cell. Fig. 

6.7 shows that the angle γ between A and B of primitive cell illustrated in Fig. 6.8, decreases 

when pressure increases, indicating that b-axis is less compressible than a-axis. 

 

 

 

 

Fig. 6.7: Variation of the angle γ situated between two lattice parameters A and B in primitive 

cell of β-Sr2GeN2. 
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Fig. 6.8: Primitive cell of the orthorhombic Sr2GeN2. A, B and C are their lattice parameters, 

while a, b and c = C are the lattice parameters of the conventional unit cell. The angle γ 

between A and B decreases when pressure increases, because a-axis is more compressible 

than the b-axis. 
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6.2.2. Elastic properties 

6.2.2.1. Single-crystal elastic constants and related properties 

 The elastic stiffness tensor ( )
ijklC  (i, j, k, l = 1, 2, 3) is related to the stress tensor ijσ  

and the strain tensor klε  by the generalized form of Hooke’s law states that: 

klijklij C εσ =             (6.9) 

Due to the symmetry of ijσ ( jiij σσ = ) and klε ( lkkl εε = ) there are only 6 independent stress 

iσ , and 6 independent strain components jε , according to the scheme, 

tensor notation 11 22 33 23, 32 31, 13 12, 21 

matrix notation 1 2 3 4 5 6 

Therefore, the stiffness constants ijklC  are abbreviated to ijC (i, j = 1, 2, …, 6), and their 

number is reduced from 81 to 36. This symmetry makes it possible to use the matrix notation 

[17]: 

jiji C εσ =               (6.10) 

The symmetry of the (Cij) matrice further reduces the number of independent elastic constants 

Cij from 36 to 21. For a tetragonal crystal, they are reduced to 6 components, i.e. C11, C33, C44, 

C66, C12 and C13, and for an orthorhombic crystal, they are reduced to 9 components, i.e. C11, 

C22, C33, C44, C55, C66, C12, C13 and C23. The corresponding matrixes of elastic constants Cij 

are given as follow: 

( )



























=

66

44

44

331313

131112

131211

00000

00000

00000

000

000

000

C

C

C

CCC

CCC

CCC

Cij                     (6.11) 

for the tetragonal polymorph, with 4��, 4�2�, 422 and 4/��� classes, and: 

 

( )



























=

66

55

44

332313

232212

131211

00000

00000

00000

000

000

000

C

C

C

CCC

CCC

CCC

Cij                     (6.12) 
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for the orthorhombic polymorph [17].  

         The calculated independent elastic constants Cij and the elastic compliances Sij, 

which are calculated directly from the Cij, for both studied Sr2GeN2 polymorphs are listed in 

Table 6.5. The obtained data allow us to highlight the following points: 

 

 

Table 6.5: Calculated independent elastic constants (Cij, in GPa) and elastic compliance (Sij, 

in GPa-1) for the α-Sr2GeN2 and β-Sr2GeN2 single-crystals 

 

α-Sr2GeN2  β-Sr2GeN2 

Cij Sij Cij Sij 

C11 =124.8 

C33 =123.5 

C44 =36.7 

C66 =40.9 

C12 =48.4 

C13 =32.7 

S11 = 0.0097517 

S33 =0.0090089 

S44 =0.0272196 

S66 =0.0244564 

S12 = –0.0033363 

S13 = –0.0017018 

 C11=123.2 

C22=134.4 

C33=127.9 

C44=40.0 

C55=25.2 

C66=40.6 

C12=41.3 

C13=28.6 

C23=40.9 

S11 =0.0092388 

S22 =0.0088889 

S33 =0.0088393 

S44 =0.0250226 

S55 =0.0396926 

S66 =0.0246356 

S12 = –0.0024495 

S13 = –0.0012805 

S23 = –0.0022928 

 

 

(i) To be mechanically stable, the Cij of a tetragonal crystal should satisfy the Born–Huang 

stability criteria [18]:  

           C11> 0, C33> 0, C44> 0, C66> 0, C11− C12> 0,  

           C11+ C33− 2C13> 0, 2(C11+ C12) + C33 + 4C13> 0          (6.13) 

The mechanical stability of an orthorhombic crystal requires the following conditions [18]: 

           C11>0, C22>0, C33>0, C44>0, C55>0, C66>0, C11+ C22−2C12>0,  

           C11+ C33−2C13>0, C22+ C33−2C23>0, C11+ C22+ C33+ 2(C12+ C13+ C23)> 0    (6.14) 
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The data listed in Table 6.5 demonstrate that the Cij of both examined polymorphs satisfy the 

above-mentioned criteria. This implies that the examined polymorphs α-Sr2GeN2 and β-

Sr2GeN2 are mechanically stable.   

(ii) C11 is slightly higher than C33 in the α-Sr2GeN2 crystal, which means that the resistance 

against the applied stress along the [100] crystallographic direction is slightly higher than the 

resistance to the applied stress along the [001] one. This suggests that the chemical bonding 

between nearest neighbors along the [100] direction is slightly stronger than those along the 

[001] one. In the β-Sr2GeN2 crystal, C22 is slightly higher than C11 and C33, implying that the 

resistance against the external applied stress along the [010] direction is slightly higher than 

that against the external applied stress along the [100] and [001] directions. This result 

suggests that the inter-atomic interactions along the [010] crystallographic direction are 

slightly stronger than those along the [100] and [001] ones. These results are in concordance 

with those obtained from the pressure dependence behavior of the lattice parameters and 

chemical bond-lengths, which have been already discussed in Section 5.3.1.4.  

(iii) It is important to evaluate the sound velocity in a crystal because they are related to some 

physical properties of the material such as its thermal conductivity. Single-crystal elastic wave 

velocities propagating in different crystallographic directions can be predicted from the 

resolution of the Christoffel equation [19]: 

( )2 0ijkl j k il lC n n V uρ δ− =                         (6.15) 

Here, Cijkl are the components of the elastic constant tensor in the full (4-index) notation, n
r

 is 

the wave propagation direction, ρ is the mass density of the propagating medium, V is the 

sound wave velocity and u
r

 is the sound wave polarization. The pure longitudinal (L) and 

transverse (T) wave velocities propagating along the [100], [010] and [001] crystallographic 

directions in an orthorhombic system are given by the following expressions: 

[100]
11 /LV C ρ=  ; 

[100]
61 6 /T CV ρ=  ; 

[100]
52 5 /T CV ρ=  

[010]
22 /LV C ρ=  ; 

[010]
61 6 /T CV ρ=  ; 

[010]
42 4 /T CV ρ=

 
(6.16) 

[001]
33 /LV C ρ=  ; 

[001]
51 5 /T CV ρ=  ; 

[001]
42 4 /T CV ρ=            

The pure longitudinal (L) and transverse (T) sound wave velocities propagating along the 

[100] (or [010]), [001] and [110] crystallographic directions of a tetragonal system are given 

by the following expressions: 
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[100]
11 /LV C ρ=  ; 

[100]
61 6 /T CV ρ=  ; 

[100]
42 4 /T CV ρ=  

[001]
33 /LV C ρ=  ; 

[001] [001]
1 2 44 /T TV CV ρ= =

 
(6.17) 

11 12 66
[110] ( 2 ) / 2LV C C C ρ+ +=  ; 

[110]
11 121 ( ) / 2T C CV ρ−=  ; 

[110]
42 4 /T CV ρ=        

The calculated elastic wave velocities along the above-mentioned crystallographic directions 

for the α-Sr2GeN2 and β-Sr2GeN2 polymorphs are listed in Table 6.6. One can appreciate that 

the longitudinal sound wave velocities have almost equal values for both considered 

compounds (~ 5000 m/s) and they are larger than the transverse ones. 

 

 

Table 6.6: Elastic wave velocities (in m/s) for some different propagating crystallographic 

directions for the α-Sr2GeN2 and β-Sr2GeN2 crystals 

 

α-

Sr2GeN2 
 ��
��� ���

��� ���
��� ��

��� ���
��� ���

��� ��
��� ���

��� ���
��� 

5000.7 2862.1 2713.0 4971.4 2713.0 2713.0 5054.2 2766.5 2713.0 

β-

Sr2GeN2 

 ��
��� ���

��� ���
��� ��

��� ���
��� ���

��� ��
��� ���

��� ���
��� 

4986.1 2862.6 2255.2 5209.3 2862.6 2840.4 5080.7 2255.2 2840.4 

 

 

6.2.2.2. Pressure effect on the single crystal properties   

          Fig. 6.9 shows the variations of the elastic constants Cij versus hydrostatic pressure. 

One can observe that C11, C33 and C12, especially C33, for α-Sr2GeN2 are highly sensitive to 

pressure variations than other constants.The C44 remains almost invariable to the pressure 

variations. For β-Sr2GeN2, C11, C22, C33 and C23, especially C11, are the highly sensitive to 

pressure variations than other constants. The C44, C55 and C66 remain almost invariable to 

pressure variations. In Fig. 6.10, we have presented the elastic wave velocities under pressure. 

We can see from this figure, that the longitudinal wave velocities for both α-Sr2GeN2 and β-

Sr2GeN2 are highly sensitive to pressure variations than those of transverse waves, which 

remain almost invariant to pressure variations. 
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Fig. 6.9: Variation of the elastic constants Cij for the α-Sr2GeN2 and β-Sr2GeN2 as a function 

of pressure. 

 

 

Fig. 6.10. Variation of the elastic wave velocities for the α-Sr2GeN2 and β-Sr2GeN2 as a 

function of pressure. The solid lines are least-squares second-order polynomial fits of the data 

points.    
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          Under pressure, for the tetragonal crystal, the mechanical stability requires that the 

elastic constants satisfy the following stability criteria [20,21]: 

          11C 0P− > , 33C 0P− > , 44C – 0P > and 66C – 0P > , 

          11 12C C – 2 0P− > , 11 33 13C C 2C 4 0P+ − − > , ( )11 12 33 132 C C C 4C 3 0P+ + + + >       (6.18) 

For the orthorhombic crystal, the required criteria are as follows [20,21]: 

 11C 0P− > , 22C 0P− > , 33C – 0P > , 44C 0P− > , 55C 0P− > , 66C 0P− > ,  

           11 22 12C C 2C 4 0P+ − − > , 11 33 13C C 2C 4 0P+ − − > , 22 33 23 C C 2C 4 0P+ − − > ,  

           ( )11 22 33 12 13 23C C C 2 C C C 3 0P+ + + + + + >  (6.19)                                      

Both investigated polymorphs satisfy the required criteria for mechanical stability in the 

considered pressure range. 

6.2.2.3. Elastic moduli and related properties for polycrystalline aggregates 

Generally, it is difficult to synthetize materials in single-crystal form, and in this case, 

the elastic constants Cij cannot be measured. In the polycrystalline aggregates form, only the 

isotropic polycrystalline elastic moduli can be measured. Theoretically, polycrystalline elastic 

moduli such as the bulk modulus B (which represents the resistance of a solid against volume 

change under hydrostatic pressure), shear modulus G (which represents the resistance of a 

solid to shape change caused by a shearing force) and Young’s modulus E (which represents 

the resistance of a solid against uniaxial stress), can be derived from the calculated single-

crystal elastic constants Cij using some approximations. In the case of randomly oriented 

polycrystals, one may evaluate aggregate average elastic properties based on additional 

hypotheses such as isostress named as Reuss [6] or isostrain named as Voigt [7] states 

(subscripted, respectively, R and V in the following). The general expressions for the Voigt 

and Reuss approaches for bulk and shear moduli are expressed as follows [6,7]: 

BV = (1/9) [C11 + C22 + C33 + 2(C12 + C13 + C23)]                                                   (6.20) 

GV = (1/15) [C11 + C22 + C33 + 3(C44 + C55 + C66) – (C12 + C13 + C23)]                  (6.21) 

1/BR= (S11 + S22 + S33) + 2(S12 + S23 + S13)                                                             (6.22) 

 1/GR = (4/15) (S11 + S22 + S33) – (4/15) (S12 + S13 + S23) + (1/5) (S44 + S55 + S66) (6.23) 

Here, the Sij are the components of the compliance matrix S which is related the elastic 

constant matrix C by the following relationship: 1−=S C . Hill [8] has demonstrated that the 

arithmetic mean of the two above-mentioned limits – Voigt and Reuss- are the best effective 
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polycrystalline elastic moduli (Hill’s approximation). In the hill’s approximation the 

polycrystalline bulk (BH) and shear (GH) moduli are given by the following expressions:   

2
V R

H

B B
B

+
= ,  

2
V R

H

G G
G

+
=                 (6.24) 

The Young’s modulus E and Poisson’s ratio ν, which is defined as the ratio of transverse 

strain (normal to the applied stress) to the longitudinal strain (in the direction of the applied 

stress), can be computed from the Hill’s values of B and G through the following relations: 

  9

3
H H

H H

B G
E

B G
=

+
,   

)3(2
23

HH

HH
H

GB

GB

+

−
=ν          (6.25) 

Using the above-mentioned relations, the calculated bulk modulus, shear modulus, 

Young’s modulus and Poisson’s ratio are summarized in Table 6.7.  

 

 

Table 6.7:  Calculated bulk modulus (B, in GPa), shear modulus (G, in GPa), Yong’s 

modulus (EH, in GPa), B/G ratio and Poisson’s ratio Hν  for the α-Sr2GeN2 and β-Sr2GeN2 

polycrystals. The subscript V, R and H stand to Voigt, Reuss and Hill approximations 

System BV BR BH GV GR GH EH B/G ν H 

α-Sr2GeN2 66.75 66.52 66.64 40.15 39.717 39.930 99.850 1.67 0.250 

β-Sr2GeN2 67.43 67.02 67.224 39.47 37.50 38.480 96.95 1.75 0.260 

 

 

Furthermore, we have evaluated the effect of the pressure on the isotropic elastic 

moduli, B, G (�), E, λ and Poisson’s ratio ν for α-Sr2GeN2 and β-Sr2GeN2 as they are depicted 

in Figs. 6.11 and 6.12. From the obtained results, one can make the following conclusions: 

(i) The polycrystalline elastic moduli calculated for both Sr2GeN2 polymorphs are almost 

equal, indicating the resemblance of their mechanical properties. Under pressure, as shown in 

Fig. 6.11, all these parameters increase with increasing pressure, indicating that their hardness 

increases with pressure.  

(ii) Calculated bulk modulus from the single-crystal elastic constants Cij is in good agreement 

with that calculated from the EOS fits and from linear and volume comopressibilities, for both 

considered polymorphs. This serves to give an indication of the reliability and accuracy of our 
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predicted elastic constants. The calculated bulk modulus value for both compounds is smaller 

than 100 GPa, so these two compounds can be classified as a relatively soft material.  

(iii) The Poison’s ration ν is often used to reflect the stability of a crystal against shear and 

provides information about the nature of the bonding forces. The value of ν for covalent 

materials is small (ν = 0.1), whereas for ionic materials, a typical value for ν is 0.25 [22,23]. 

The calculated ν for both crystals are almost equal: ν = 0.25 for α-Sr2GeN2 and ν = 0.26 for β-

Sr2GeN2. These values indicate that a considerable ionic contribution in the interatomic 

bonding should be assumed in these crystals. On the other hand, for covalent and ionic 

materials, the typical relations between bulk and shear modulus are G ≈ 1.1 B and G ≈ 0.6 B, 

respectively. We found that G ≈ 0.6 B for both crystals, which also suggests the dominance of 

the ionic nature in the two considered compounds. From the Fig. 6.12 we can see that under 

pressure, the Poisson’s ratio ν for both crystals increases with increasing pressure. Under 

pressure of 15 GPa, they have the same Poisson’s ratio (ν = 0.32).    

 

 
 

Fig. 6.11: Calculated pressure dependence of the isotropic elastic constants (bulk modulus B, 

shear modulus G, Young’s modulus E and Lamé’s coefficient λ) for the α-Sr2GeN2 and β-

Sr2GeN2 compounds. The solid lines are least-squares second-order polynomial fits of the 

data points. 



Chapter 6            Properties of α-Sr2GeN2 and β-Sr2GeN2 

 

165 
 

 

(iv) To know if a material has a brittle or a ductile behavior, Pugh [24] has proposed a simple 

empirical relationship between the bulk modulus B and shear modulus G. The shear modulus 

G represents the resistance to plastic deformation, while B represents their resistance to 

fracture. Therefore, a high B/G ratio is associated with ductility, whereas a low value 

corresponds to brittle nature. The critical value that separates ductile and brittle materials is 

around 1.75 [24]; i.e., if B/G > 1.75, the material behaves in a ductile manner, otherwise, the 

material behaves in a brittle manner. For β-Sr2GeN2, the B/G ratio is exactly equal to the 

critical value (B/G = 1.75), therefore, its mechanical properties are intermediate between those 

of a ductile material and a brittle material. For α-Sr2GeN2, the B/G ratio is slightly lower than 

the critical value 1.75; therefore, this compound is considered somewhat brittle material. As 

shown in Fig. 6.12, the B/G ratio, for both crystals increase with increasing pressure away 

from 1.75, which indicate that both crystals become more ductile with increasing pressure. 

 

 

Fig. 6.12: Variation of the Poisson’s ratio ν and B/G ratio as a function of pressure for the α-

Sr2GeN2 and β-Sr2GeN2 compounds. 

 



Chapter 6            Properties of α-Sr2GeN2 and β-Sr2GeN2 

 

166 
 

(v) Within the Debye model, the Debye temperature D
θ

 
is one of the fundamental parameters 

of solids; it is closely correlated with many physical properties, such as heat capacity, melting 

temperature, thermal expansion, elastic constants and so on. The D
θ

 
is the highest 

temperature that can be achieved due to a single normal vibration and then it is used to 

distinguish between high- and low-temperature regions for a solid. The D
θ  can be numerically 

estimated from the average sound-wave velocity mV
 
through the following relationship [25]: 

1/3
3
4

A
D m

B

Nh n
V

K M

ρ
θ

π

  
=   

  
                      (6.26) 

Her, h is the Planck’s constant, B
k  is the Boltzmann’s constant, NA is the Avogadro’s number, 

ρ is the mass density, M is the molecular weight and n is the number of atoms in the molecule. 

The average sound-wave velocity mV  in the polycrystalline materials can be computed using 

the following expression: 

1/3

3 3

1 2 1

3m

t l

V
V V

−
  

= +  
   

                                 (6.27) 

Here, lV  and tV  are the longitudinal and transverse sound-wave velocities in the 

polycrystalline material, respectively, which can be calculated from the Navier’s equation 

[26]: 
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Table 6.8: Molecular weight (M, in g/mol), density (ρ, in g/cm3), transverse, longitudinal and 

average sound velocities ( lV , tV  and mV , respectively, in m/s) and the Debye temperatures (

Dθ , in K) for the α-Sr2GeN2 and β-Sr2GeN2 compounds 

Compound M ρ 
tV  lV  

mV  
Dθ  

α-Sr2GeN2 275.844 4.9915 2828.4 4900.7 3140.2 354.4 

β-Sr2GeN2 275.844 4.9534 2787.3 4891.7 3097.9 348.8 
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Fig 6.13: Transverse and longitudinal sound velocities (�� and ��, respectively) and Debye 

temperature (��) versus pressure for the α-Sr2GeN2 and β-Sr2GeN2 compounds. The solid 

lines are least-squares polynomial fits of the data points.   
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The calculated sound-wave velocities ( lV , tV  and mV ) and Debye temperature ( Dθ ) for 

the polycrystalline α-Sr2GeN2 and β-Sr2GeN2 compounds are listed in Table 6.8. One can see 

from this table that the values of ρ, tV , lV  , mV  and Dθ  of α-Sr2GeN2 are slightly larger than 

those of β-Sr2GeN2 of about 0.76%, 1.45%, 0.18%, 1.35% and 1.60%, respectively. The 

variation of tV , lV  and Dθ  as a function of pressure is plotted in Fig. 6.13. We clearly observe 

a quadratic dependence of these parameters in the considered range of pressure.  

6.2.2.4. Elastic anisotropy 

Crystal anisotropy reflects the difference between the atomic arrangements along 

different directions. Many low symmetry crystals exhibit a high degree of elastic anisotropy. 

Crystal anisotropy has an important implication in engineering science as well as in crystal 

physics, for example, microcracks can easily induced in materials having significant 

anisotropy of the thermal expansion coefficient as well as elastic anisotropy [27]. 

Furthermore, recent research report states that the elastic anisotropy has a significant 

influence on the nanoscale precursor textures in alloys [28]. Therefore, it is necessary and 

significant to properly describe the elastic anisotropy of solids in order to understand this 

property and consequently to find mechanisms that will improve their resistance to 

microcracks. We have employed different criteria to quantify the anisotropy of the elastic 

properties for the concerning materials. First, elastic anisotropy behavior of a crystal can be 

sufficiently and completely described by plotting three-dimensional (3D) representation of 

directional dependence of its elastic moduli. To visualize the elastic anisotropy extent of the 

two considered crystals, three-dimensional closed surfaces illustrating the dependence of the 

Young’s modulus E and linear compressibility β on the crystallographic directions are plotted.  

In tetragonal system with 4��, 4�2�, 422 and 4/��� classes, and orthorhombic crystals, 

the 3D closed surfaces for E and β are described by the following relationships [17]: 

( ) ( ) ( )

( ) ( ) ( )







+++++++=

++++++++=

2
33313

2
2131112

2
1131211

66
2
2

2
144

2
3

2
2

2
3

2
113

2
3

2
2

2
3

2
112

2
2

2
133

4
311

4
2

4
1

2

22
1

lSSlSSSlSSS

SllSllllSllllSllSlSll
E

β
          (6.29) 

while for orthorhombic crystals, they are given by: 
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Here, 1l , 2l and 3l  are the directional cosines with respect to the x-, y- and z-axes, respectively, 

and the ijS  stand to the elastic compliance constants that can be obtained through an inversion 

of the elastic constant tensor. In a 3D-representation, the distance from the origin of the 

system of coordinates to this surface gives the value of the represented elastic modulus in a 

given direction. Thus, in a 3D representation, a perfectly isotropic system would exhibit a 

spherical shape, and the degree of deviation of the 3D surface from spherical shape reveals 

the extent of the elastic anisotropy.  

 

 

 

 

 

 

 

 

   

       

 
 

 

 

 

 

 

 

Fig. 6.14: Directional dependence of the Young‘s modulus and its cross sections in different 

planes for α-Sr2GeN2 and β-Sr2GeN2 crystals. The distance between zero and any point on the 

surface is equal to the Young‘s modulus in that direction 
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 Fig. 6.14 (Fig. 6.15) illustrates three-dimensional representation of the directional 

dependence of the Young’s modulus E (linear compressibility β) together with its cross 

section in the xy, xz and yz crystallographic planes for α-Sr2GeN2 and β-Sr2GeN2 crystals. 

From Fig. 6.14 (Fig. 6.15), one can observe the appreciable deviation of the 3-D 

representation of the Young’s modulus (linear compressibility) from the spherical shape in 

both studied crystals, suggesting that α-Sr2GeN2 and β-Sr2GeN2 crystals exhibit a pronounced 

elastic anisotropy. We can see clearly from Figs. 6.15 and 6.15 that β-Sr2GeN2 is more 

anisotropic than α-Sr2GeN2. 

 

 

 

 

Fig. 6.15: Directional dependence of the linear compressibility and its cross sections in 

different planes for α-Sr2GeN2 and β-Sr2GeN2 crystals. The distance between zero and any 

point on the surface is equal to the linear compressibility β in that direction 



Chapter 6            Properties of α-Sr2GeN2 and β-Sr2GeN2 

 

171 
 

 

 Second, the use of the different criteria of the anisotropy factors enables us to analyze 

the crystal elastic anisotropy for the studied compounds: 

(i) Among them, we find the shear anisotropic factors [26], which provide a measure of the 

degree of anisotropy in the bonding between atoms in different planes. For the tetragonal 

crystals, the shear anisotropic factors are given by [29]: 

 � �
�!""

!##�!#$
                                   (6.31) 

for the {1 0 0} or {0 1 0} shear planes, and 

 � �
%!&&

!##'!((��!#(
                           (6.32) 

for the {0 0 1} shear planes. 

For the orthorhombic crystals, they are given by [30]: 
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for the {1 0 0} shear planes. 
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    (6.34) 

for the {0 1 0} shear planes, and 

 * �
%!""

!##'!$$��!#$
    (6.35) 

for the {0 0 1} shear planes. For the orthorhombic crystals, where an isotropic material will 

have A1 = A2 = A3 = 1, while the deviations of A from the unity measure the degree of elastic 

anisotropy.  

The calculated shear anisotropic factors listed in Table 9 indicate that both α-Sr2GeN2 

and β-Sr2GeN2 exhibit some anisotropy. For α-Sr2GeN2, the anisotropy factor A1 is very close 

to unity, implying that the resistance to shears of {1 0 0} and {0 1 0} planes are almost 

isotropic. For β-Sr2GeN2, the anisotropy factor A2 is very different from unity, implying that 

{010} shear planes are characterized by a noticeable elastic anisotropy, compared to {1 0 0} 

and {0 0 1} shear planes. We can conclude also from Table 6.9 that β-Sr2GeN2 has more 

elastic anisotropy than α-Sr2GeN2. Under pressure, as shown in Fig. 6.16, the shear 

anisotropic factor A1 of α-Sr2GeN2 increases when the pressure increases, while the A2 

decreases. Both factors move away together from 1, indicating that the degree of elastic 

anisotropy of α-Sr2GeN2 increases with increasing pressure. The same behavior is shown for 

β-Sr2GeN2 (i. e. the degree of anisotropy increases when pressure increases) because A1 and 

A3 decrease sharply away from 1, despite the slight increase of A2.  
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(ii) Another way for measuring the elastic anisotropy of crystal is given by the percentage of 

anisotropy in compressibility AB and shear modulus AG [31], which are defined as: 

( ( )B V R V R
A B B ) / B B= − +  and ( ( )G V R V R

A G G ) / G G= − +     (6.36) 

A value of 0 (0%) corresponds to complete elastic isotropy, while a value of 1 (100%) 

corresponds the largest possible anisotropy. It can be seen from Table 9 that both compounds 

are anisotropic in compression and shear. From Fig 6.16, we can see that under pressure, AB 

remains almost the invariable, while AG increases with increasing pressure. 

(iii) Finally, The universal anisotropy index A
U [32] was used to measuring the elastic 

anisotropy of crystals accounting for both bulk and shear modulus contributions. It is defined 

as: 

5 6U V V

R R

G B
 A

G B
= + −         (6.37) 

For isotropic crystals A
U = 0; deviations of A

U from zero define the extent of elastic 

anisotropy. The results listed in Table 6.9 confirm also the elastic anisotropy of the two 

compounds. We can see from Fig. 6.16 that AU of both α-Sr2GeN2 and β-Sr2GeN2, increases 

with increasing pressure. We show from this figure that the AB, AG and AU of the β-Sr2GeN2 

are largest than those of α-Sr2GeN2. They all demonstrate that the orthorhombic structural of 

Sr2GeN2 is more anisotropic than that of tetragonal structure. 

 

 

Table 6.9: The shear anisotropic factors (A1, A2 and A3), the percentage of elastic anisotropy 

in compressibility and shear modulus (AB and AG), and the universal anisotropy index (AU), 

for the α-Sr2GeN2 and β-Sr2GeN2 polymorphs 

 

α-Sr2GeN2 A1 A2 AB (%) AG (%) A
U 

 1.070 0.804 0.170 0.544 0.058 

β-Sr2GeN2 A1 A2 A3 AB (%) AG (%) A
U 

0.824 0.558 0.928 0.303 2.554 0.268 
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Fig. 6.16: Pressure dependence of shear anisotropic factors(A1, A2 and A3), elastic anisotropy 

in compressibility and in shear modulus (AB and AG), and the universal anisotropy index 

(AU), for the α-Sr2GeN2 and β-Sr2GeN2  polymorphs. 
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6.2.3. Thermodynamic properties 

Investigation of the thermodynamic properties of solids at high pressure and high 

temperature is an interesting topic in the condensed matter physics. Here, we applied the 

quasi-harmonic Debye approximation [9] to investigate the thermodynamic properties of the 

α-Sr2GeN2 and β-Sr2GeN2 compounds. The thermal properties are determined in the 

temperature range from 0 to 900 K at some fixed pressures (P = 0, 5, 10, 15 GPa).  

6.2.3.1. Normalized volume variation 

In Fig. 6.17, we present the normalized volume-temperature diagram of α-Sr2GeN2 

and β-Sr2GeN2 compounds at different pressures. The unit cell volume increases slowly with 

increasing temperature in the range temperature between 0 and 100 K, then, the rate become 

more important for the temperature range above 100 K. On the other side, at a given 

temperature, the normalized volume V/V0 decreases with increasing pressure. The effect of 

increasing temperature on the unit cell volume is just the same as decreasing pressure.  

 

Fig. 6.17: Variation of the normalized volume versus temperature at different pressures for 

the α-Sr2GeN2 and β-Sr2GeN2. V0 is the equilibrium volume at T = 0 K. 
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6.2.3.2. The heat capacity CV 

The heat capacity of a crystal does not only provide essential information on its 

vibrational properties, but it is also mandatory for many applications. Temperature 

dependence of the constant volume heat capacity VC  at some fixed pressures is shown in Fig. 

6.18. From this figure, one can see the sharp increase of VC  in the temperature range from 0  

up to ~200 K and at high temperature, the  VC  tends to a constant value (997.7 J.mol-1 K-1), 

the so-called Dulong-Petit limit. At 300 K and zero pressure, VC  = 936.0 J.mol-1 K-1 for α-

Sr2GeN2 and 935.4 J.mol-1 K-1 for β-Sr2GeN2. 

 

 

 

 

 

Fig 6.18: The heat capacity versus temperature at different pressures for the α-Sr2GeN2 and 

β-Sr2GeN2. 
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6.2.3.3. The thermal expansion coefficient 

The thermal expansion coefficient α reflects the temperature dependence of the 

volume at constant pressure. Fig. 6.19 shows the evolution of the thermal expansion 

coefficient α with temperatures at some different fixed pressures. From this figure, we can see 

that the thermal expansion increases sharply with temperature in the temperature range from 0 

K up to ~200 K, especially at zero pressure, then for temperature higher than 200 K, the 

increase becomes slowly and gradually approaches a linear increase. The increase of α is 

faster at lower pressures than at higher pressures. For a given temperature, α decreases 

drastically with the increase of pressure. At zero pressure and 300 K, α = 7.91242× 10-5 K−1 

for α-Sr2GeN2 and 7.42234× 10-5 K−1 for β-Sr2GeN2.  

 

 

 

 

 

Fig. 6.19: The thermal expansion coefficient versus temperature at different pressures for the 

α-Sr2GeN2 and β-Sr2GeN2. 
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6.2.3.4. Debye temperature 

Fig. 6.20 shows temperature dependence of the Debye temperature �� at some fixed 

pressures. At fixed pressure, Debye temperature decreases with increasing temperature and at 

fixed temperature, �� increases with increasing pressure, indicating the change of the 

vibration frequency of particles under pressure and temperature effects. From Fig. 20, one can 

observe that as the pressure goes higher, the decreasing slope of �� with temperature becomes 

smaller; the high pressure suppresses the temperature effect. At zero pressure and zero 

temperature, Debye temperatures for α-Sr2GeN2 and β-Sr2GeN2 are 353.2 K and 353.9 K, 

respectively. It is worth to note here that the value of �� calculated using Debye model is in 

good agreement with that calculated from the sound velocities (354.43 K and 348.76 K, 

respectively).   

 

 

 

 

Fig. 6.20: The Debye temperature  �� versus temperature at different pressures for the α-

Sr2GeN2 and β-Sr2GeN2.  
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6.2.3.5. The bulk modulus 

Fig. 6.21 depicts the variation of bulk modulus versus temperature at some given 

pressures. The bulk modulus B decreases with increasing temperature in a quasi-linear manner 

after 100 K at a given pressure, and increases with pressure at a given temperature. It can be 

seen from the Diagrams of B (T) that the influence of the temperature on the bulk modulus B 

decreases slightly with increasing pressure (The effect of the temperature on B is significant at 

0 GPa). The calculated values of B at 300 K and zero pressure are equal to 59.9 GPa and 58.5 

GPa, respectively for α-Sr2GeN2 and β-Sr2GeN2.   

 

 

 

 

 

Fig. 6.21: The bulk modulus B versus temperature at different pressures for the α-Sr2GeN2 

and β-Sr2GeN2.  
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6.2.3.6. Grüneisen parameter 

The Grüneisen parameter, which describes usually anharmonic effects of the vibrating 

lattice, is an important quantity in geophysics as it often occurs in equations which describe 

the thermoelastic behavior of materials at high pressures and temperatures [33]. It can be 

defined as: 	� � ,
-�./0123

-�.2
. Fig. 6.22 presents the Gruneisen parameter γ versus temperature 

at different pressures. We can see from this figure that at a given pressure, the Gruneisen 

parameter γ increases with increasing temperature, but very slowly at low temperatures (T < 

100 K). Moreover, the Grüneisen parameter γ increases more slowly at high pressure than at 

low pressure. 

 

 
 
 

Fig. 6.22: The variation of Grüneisen parameter γ versus temperature at different pressures 

for the α-Sr2GeN2 and β-Sr2GeN2 
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Chapter 7 

General conclusion 

 

In the present work, we have reported the results of detailed first-principle calculations 

of the some physical properties for two groups of compounds: the first group is related to the 

two novel quaternary diamond-like semiconductors Cu2MgSiS4 and Cu2MgGeS4, while the 

second group includes both polymorphs of the ternary nitrides α-Sr2GeN2 and β-Sr2GeN2. The 

obtained results for each group are summarized separately as follows: 

7.1. Cu2MgSiS4 and Cu2MgGeS4 diamond like semiconductors 

For these two diamond-like semiconductors, we have investigated their structural, 

elastic, electronic and optical properties, using two ab initio density functional theory 

approaches: (i) the pseudo-potential plane wave (PP-PW) method as implemented in the 

CASTEP code was employed to calculate the structural and elastic properties. (ii) The 

electronic and optical properties of the title crystals were studied using the full potential 

linearized augmented plane wave (FP-LAPW) as implemented in the WIEN2K package. The 

exchange correlation effects are treated within the new version of the generalized gradient 

approximation, namely GGA-PBEsol, in addition to the use of TB-mBJ approximation in 

calculate of the last two properties. The obtained results are summarized as follows: 

� Both Cu2MgSiS4 and Cu2MgGeS4 have an orthorhombic structure and belong to the 

12Pmn  space group (no. 31). All the atoms have normal tetrahedral coordinates. 

� The optimized structural parameters, including lattice parameters, atomic positions 

and interatomic bond-lengths, reproduce the available experimental data. The 

structural parameters of Cu2MgGeS4 are slightly larger than those of Cu2MgSiS4. 

� Both considered compounds have negative cohesive energies and formation 

enthalpies, indicating that they are energetically stable.        
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� The calculated pressure dependence of the lattice parameters shows that both 

Cu2MgSiS4 and Cu2MgGeS4 are more compressible along the b-axis than along the a- 

and c-axes. 

� Pressure dependence of the bond-lengths reveals that the Si/Ge-S bonds are stronger 

than the other bonds. The different orientations of these bonds along crystallographic 

axes explain the difference between linear compressibilities. 

� We have evaluated the single-crystal and polycrystalline elastic moduli and related 

properties. The results indicate that Cu2MgSiS4 is slightly harder than Cu2MgGeS4. 

� The calculated bulk modulus from the single-elastic constants is in good agreement 

with those estimated from different EOS fits and from compressibilities. This serves to 

give an indication of the accuracy of our predicted elastic constants. The two 

examined chalcogenids are classified as a relatively soft material (B ~ 80 GPa). 

� They are mechanically stable, and behave in a ductile manner (B/G = 2.63 for both 

compounds). 

� The Poisson’s ratio is approximately equal to 0.33 in both Cu2MgSiS4 and 

Cu2MgGeS4, suggesting a considerable volume change can be associated with elastic 

deformation.  

� The different criteria used to quantify the elastic anisotropy indicate that these two 

compounds exhibit a considerable elastic anisotropy. The Cu2MgGeS4 is slightly more 

anisotropic than the Cu2MgSiS4.   

� Analysis of the TB-mBJ potential band structure indicates that Cu2ZnGeS4 and 

Cu2CdGeS4 semiconductors have a direct band gap (Γ-Γ) of 2.64 and 1.54 eV, 

respectively. 

� The introduction of the Mg element instead of the Zn/Cd element in the Cu2-II-IV-VI4 

diamond-like compounds to the II sites for the first time yields to widen the band gaps 

of these materials, and thus obtaining new properties. 

� The investigation of TDOS and PDOS has been reported. The top of the valence bands 

is dominated by the hybridized Cu-3d and S-3p states, and the bottom of the 

conduction band is formed by the s-p hybridization between the Si/Ge cation and the S 

anion. The bonding character may be described as a mixture of covalent-ionic.  

� The effective masses of electrons and holes are estimated at the Γ point from the band 

dispersion around the VBMa and CBMi. The mobility of the holes will be 

substantially lower than that of the electrons. 
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� The frequency dependent polarized macroscopic linear optical spectra, including 

dielectric function, refractive index, extinction coefficient, absorption coefficient, 

reflectivity, energy loss function and optical conductivity, were obtained and 

discussed. Optical spectra of the title materials exhibit a noticeable anisotropy. 

� The microscopic origin of the features in the optical spectra and the contributions of 

the different regions in the Brillouin zone were identified through decomposing the 

imaginary dielectric functions into individual inter-band contributions and plotting the 

transition band structures. 

� Both Cu2MgSiS4 and Cu2MgGeS4 exhibits noticeable absorption in the ultraviolet 

range.  

7.2. α-Sr2GeN2 and β-Sr2GeN2 ternary nitrides 

       We have investigated the structural and elastic properties of the two polymorphs of 

Sr2GeN2, using the ab initio pseudopotential plane-wave method (PP-PW) based on DFT, as 

implemented in the CASTEP code, and with the use of GGAsol approximation to treat the 

exchange correlation effects. This method was combined with the quasi-harmonic Debye 

model to calculate the thermodynamic properties for these two compounds. The effect of 

pressure is taken into account up to 15 GPa. We have reached the following conclusions: 

� The α-Sr2GeN2 polymorph in the P42/mbc (No. 135) tetragonal space group, while 

β-Sr2GeN2 crystallizes in Cmac (No. 64) orthorhombic space group. A 

differentiating factor of the crystalline structures of these two polymorphs is the 

relative orientation of the 2GeN  units in the lattice. 

� The optimized structural parameters, including lattice parameters, atomic positions 

and interatomic bond-lengths, are in good agreement with the experimental data. 

The two polymorphs have almost identical local environments. 

� The calculated cohesive energy and formation enthalpy demonstrate that both 

examined polymorphs are energetically stable. 

� The calculated pressure dependence of the lattice parameters shows that α-

Sr2GeN2 is slightly more compressible along the c-axis than along the a-axis, 

whereas β-Sr2GeN2 is slightly more compressible along the c-axis and a-axis than 

along the b-axis. The β -Sr2GeN2 is slightly more compressible than α-Sr2GeN2.  

� The normalized lattice parameters ratio and the normalized unit-cell volume are 

well described by a third-order polynomial versus pressure. 
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� The differences between linear compressibilities can be explained by the different 

orientations of the stronger bonds Ge-N along crystallographic axes.  

� Pressure dependence of the bond-lengths reveals that chemical bonding between 

neighbors inside the stacking planes is stronger than those between adjacent 

planes. 

� We have evaluated the single-crystal and polycrystalline elastic moduli and related 

properties at zero pressure and under pressure. The calculated elastic constants Cij 

satisfy the stability conditions for both α-Sr2GeN2 and β-Sr2GeN2 at 0 GPa and 

under the considered pressure range. Their hardness increases with increasing 

pressure.   

� The calculated bulk modulus from the single-elastic constants is in good 

agreement with those estimated from different EOS fits and from 

compressibilities. The two examined polymorphs have relatively a small bulk 

modulus (B < 100 GPa), so they are classified as a relatively soft material. 

� According to Pugh’s criterion, both phases are intermediate between ductile and 

brittle materials (B/G ~ 1.75 for both compounds). 

� For both crystals The Poisson’s ratio is almost equal to 0.25, indicating that a 

considerable ionic contribution in the interatomic bonding should be assumed in 

these crystals. 

� The investigated crystals exhibit a strong elastic anisotropy. The orthorhombic 

polymorph β-Sr2GeN2 is more anisotropic than the tetragonal polymorph α-

Sr2GeN2. Under pressure, the degree of anisotropy increases when the pressure 

increases. 

� Using the quasi-harmonic Debye model, temperature dependences of the heat 

capacity, thermal expansion, Debye temperature, bulk modulus and Grüneisen 

parameter at some fixed pressures are predicted in temperature range from of 0 to 

900 K. The effect temperature on these parameters decrease with increasing 

pressure.   

� The calculated Debye temperature at zero pressure and zero temperature through 

this model is in good agreement with that calculated from the elastic constants. 

� To the best of our knowledge, there are no previous reports on the elastic and 

thermodynamic properties, so, we hope future experimental and theoretical 

investigations of these materials will testify our present reported results. 

 


